WO2022262295A1 - 一种车载dcdc变换器防输出侧电池电压丢失的电路 - Google Patents

一种车载dcdc变换器防输出侧电池电压丢失的电路 Download PDF

Info

Publication number
WO2022262295A1
WO2022262295A1 PCT/CN2022/075677 CN2022075677W WO2022262295A1 WO 2022262295 A1 WO2022262295 A1 WO 2022262295A1 CN 2022075677 W CN2022075677 W CN 2022075677W WO 2022262295 A1 WO2022262295 A1 WO 2022262295A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
terminal
switch tube
unit
self
Prior art date
Application number
PCT/CN2022/075677
Other languages
English (en)
French (fr)
Inventor
胡森军
郝世强
徐衍伟
李文渝
施鸿波
贺强
平定钢
Original Assignee
浙江富特科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江富特科技股份有限公司 filed Critical 浙江富特科技股份有限公司
Priority to EP22823788.9A priority Critical patent/EP4358349A1/en
Publication of WO2022262295A1 publication Critical patent/WO2022262295A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • H02M1/322Means for rapidly discharging a capacitor of the converter for protecting electrical components or for preventing electrical shock
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/0034Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits using reverse polarity correcting or protecting circuits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • B60R16/03Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for supply of electrical power to vehicle subsystems or for
    • B60R16/033Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for supply of electrical power to vehicle subsystems or for characterised by the use of electrical cells or batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/10Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers
    • H02H7/12Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers
    • H02H7/1213Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers for DC-DC converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/342The other DC source being a battery actively interacting with the first one, i.e. battery to battery charging
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection

Definitions

  • the invention relates to the field of power supplies, in particular to a circuit for preventing battery voltage loss at the output side of a vehicle-mounted DC-DC converter.
  • the on-board charger is mainly used to draw electric energy from the 220V power grid, and after power conversion, the energy is charged into the high-voltage battery pack of the electric vehicle, while the on-board DCDC converter is used to convert the energy of the high-voltage battery pack of the electric vehicle into, for example, 12V battery energy , the integrated solution of on-board charger (Charger) and on-board DCDC converter (Char Con) will be the mainstream solution for energy supply of electric vehicles in the future.
  • the vehicle-mounted DCDC converter Since the vehicle-mounted DCDC converter is directly connected to the 12V battery of the vehicle, the reliability of its output side directly affects the safety of the vehicle. At present, the industry gradually regards the instantaneous loss of the 12V battery voltage on the output side of the vehicle-mounted DCDC converter as the functional safety requirement of ASIL C. It is necessary to add an additional safety mechanism with high self-test coverage to the traditional vehicle-mounted DCDC converter to cope with the functional safety of ASIL C. need.
  • the vehicle-mounted DCDC converter includes a DCDC conversion unit, which converts the energy Vin of the high-voltage battery pack into an output voltage Voutput of, for example, 12V to charge the low-voltage battery pack (Battery) (ie, the battery on the output side of the vehicle-mounted DCDC converter).
  • Voutput the low-voltage battery pack
  • the low-voltage battery pack Battery
  • the reverse cut-off characteristic of the diode is generally used to prevent the reverse flow of current in the circuit, but when the diode is in the forward conduction state, due to the existence of the forward conduction voltage drop, a certain amount of energy loss will be caused.
  • electric vehicles have higher and higher requirements for the functional safety of the vehicle, and the traditional diode reverse cut-off scheme can no longer meet the corresponding functional safety requirements.
  • the circuit (anti-backflow circuit) to prevent the voltage loss of the 12V battery on the output side by detecting the coverage ratio has become the demand of the industry.
  • the present invention proposes a circuit for preventing battery voltage loss at the output side of a vehicle-mounted DCDC converter.
  • the vehicle-mounted DCDC converter includes an output capacitor and a low-voltage battery pack connected in parallel.
  • the circuit for preventing battery voltage loss at the output side of the vehicle-mounted DCDC converter includes: a first switch The unit and the detection resistor, the first switch unit includes a switch tube Q OR , the switch tube Q OR and the detection resistor are connected in series between the first end of the output capacitor and the first end of the low-voltage battery pack; the switch control unit, the switch control unit
  • the first input terminal is connected to the first terminal of the low-voltage battery pack, the second input terminal is connected to the common node of the first voltage dividing resistor unit and the second voltage dividing resistor unit, and the output terminal is connected to the positive terminal of the auxiliary voltage and the control of the switch tube Q OR terminal, the first voltage-dividing resistor unit and the second voltage-dividing resistor unit are connected in series between the positive terminal and the negative terminal of
  • the first self-test control signal and the second self-test control signal are output by a controller, wherein the first self-test control signal includes a high level and a low level, so as to control the switching tube Q test2 to be turned on or off off, and then control the switch tube Q test1 to be turned on or off, wherein when the switch tube Q test1 is turned on, the auxiliary voltage is applied to the detection connection end of the switch control unit; the second self-test control signal includes high level and low level , so as to control the switching tube Q test3 to be turned on or off.
  • the auxiliary voltage is applied to the control terminal of the switching tube Q OR , so that the switching tube Q OR remains turned on; when the voltage at the first input terminal is greater than or equal to the second The voltage at the input end, the switch tube Q OR is turned off.
  • the switch control unit includes a comparator, the positive input terminal of the comparator is connected to the first input terminal of the switch control unit, the negative input terminal is connected to the second input terminal of the switch control unit, and the output terminal is connected to the anode of the diode D Q , and the diode The cathode of D Q is connected to the detection connection terminal of the switch control unit.
  • the switch control unit includes a switch tube Q off , the first end of the switch tube Q off is connected to the negative terminal of the auxiliary voltage, and the cathode of the diode D Q is connected to the control terminal of the switch tube Q off by driving a pull-down resistor.
  • the second end of Q off is connected to the positive end of the auxiliary voltage and the control end of the switch transistor Q OR .
  • the voltage drop generated by the detection resistor R sense and the on-resistance R ds_ON of the switch tube Q OR acts on the
  • the voltage of the positive input terminal of the comparator is 0V or negative voltage
  • the voltage of the negative input terminal of the comparator is formed by the resistance division of the auxiliary voltage V aux by the first voltage dividing resistor unit and the second voltage dividing resistor unit, then the comparator at this time
  • the voltage at the positive input terminal of the comparator is less than the input voltage at the negative terminal, then the output terminal of the comparator outputs a low level, then the diode D Q is not conducted, the switch tube Q off remains off, and the auxiliary voltage V aux is loaded to the switch tube Q OR on the control terminal of the switch tube Q OR to keep it on; when the current flows from the low-voltage battery pack to the output capacitor Cout, the voltage drop generated by the
  • the output terminal of the comparator When the positive voltage increases to be greater than or equal to the voltage of the negative input terminal of the comparator, the output terminal of the comparator outputs a high level, then the diode D Q is turned on, and the high level output of the comparator Applied to the control terminal of the switch tube Q off , the switch tube Q off is turned on, and then the switch tube Q OR is controlled to be turned off.
  • the controller outputs a high-level first self-test control signal S1, and the high-level first self-test control signal S1 controls the switch tube Q test2 in the first self-test unit to be turned on, Therefore, the voltage between the first terminal and the control terminal of the switch tube Q test1 in the second self-test unit increases, and the switch tube Q test1 in the second self-test unit is turned on, and the auxiliary voltage V aux is applied to the first terminal.
  • the control terminal of the switch tube Q off in the second switch unit, the switch tube Q off is turned on, and the control signal of the control terminal of the switch tube Q OR in the first switch unit is pulled down, then the switch tube Q in the first switch unit OR is turned off, at time t1, the controller outputs a high-level second self-test control signal S2, and the high-level second self-test control signal S2 controls the switching tube Q test3 in the third self-test unit to be turned on, Then the output capacitor Cout is discharged through the discharge branch circuit formed by the switch tube Q test3 and the discharge resistance unit, until the time t2, the controller outputs the first self-test control signal S1 of low level, and the first self-test control signal of low level
  • the S1 control makes the switch tube Q test2 in the first self-test unit turn off, and the switch tube Q test1 in the second self-test unit turns off, and the voltage applied to the positive input terminal of the comparator is the difference between the low-voltage battery pack and the output capacitor Cout and the voltage difference between
  • the switch control unit also includes a series branch formed by a hysteresis resistance unit and a diode D FB , wherein one end of the hysteresis resistance unit is connected to the output terminal of the comparator, and the other end of the hysteresis resistance unit is connected to the anode of the diode D FB , the cathode of the diode D FB is connected to the positive input of the comparator.
  • the first terminal of the output capacitor Cout is a positive voltage terminal
  • the first terminal of the low-voltage battery pack is a positive voltage terminal
  • the second terminal of the output capacitor Cout is a negative voltage terminal
  • the second terminal of the low-voltage battery pack is a negative voltage terminal end.
  • the first terminal of the output capacitor Cout is a negative voltage terminal
  • the first terminal of the low-voltage battery pack is a negative voltage terminal
  • the second terminal of the output capacitor Cout is a positive voltage terminal
  • the second terminal of the low-voltage battery pack is a positive voltage terminal end.
  • the sense resistor R sense is connected between the first end of the output capacitor Cout and the first end of the switch transistor Q OR .
  • the sense resistor R sense is connected between the first end of the low-voltage battery pack and the second end of the switch tube Q OR .
  • the switching tube Q test2 is an NPN transistor, the first end is the emitter E, the second end is the collector C, and the control terminal is the base B;
  • the switching tube Q test1 is a PNP transistor, the first end is the emitter Pole E, the second terminal is the collector C, the control terminal is the base B;
  • the switching tube Q test3 is an NPN transistor, the first terminal is the emitter E, the second terminal is the collector C, and the control terminal is the base B.
  • the switching tube Q off is an N-type metal-oxide semiconductor field effect transistor, the first terminal of which is the source S, the second terminal is the drain D, and the control terminal is the gate G;
  • the switching tube Q OR is N Type Metal-Oxide Semiconductor Field Effect Transistor, the first terminal is the source S, the second terminal is the drain D, and the control terminal is the gate G.
  • Figure 1 is a schematic diagram of a typical on-board DCDC converter.
  • FIG. 2 is a schematic circuit diagram of a vehicle-mounted DCDC converter preventing loss of battery voltage at an output side according to an embodiment of the present invention.
  • Fig. 3a is a schematic diagram of the first working mode of the circuit for preventing the voltage loss of the output side battery of the vehicle-mounted DCDC converter according to an embodiment of the present invention.
  • Fig. 3b is a schematic diagram of the second working mode of the circuit for preventing the voltage loss of the output side battery of the vehicle-mounted DCDC converter according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of control waveforms of a circuit for preventing battery voltage loss at the output side according to an embodiment of the present application.
  • FIG. 5 is a schematic circuit diagram of an on-vehicle DCDC converter preventing battery voltage loss at the output side according to another embodiment of the present invention.
  • the vehicle-mounted DCDC converter includes a DCDC conversion unit, an output capacitor Cout and a low-voltage battery pack (Battery).
  • the input terminal of the DCDC conversion unit is connected to the high-voltage battery pack, and the two output terminals of the DCDC conversion unit are connected to both ends of the output capacitor Cout, and the low-voltage battery pack is connected in parallel.
  • a circuit for preventing battery voltage loss on the output side of a vehicle-mounted DCDC converter includes: a first switch unit 110 and a sense resistor R sense , the first switch unit 110 includes a switch tube Q OR , the switch tube Q OR and the sense resistor R sense is connected in series between the first end of the output capacitor Cout and the first end of the low-voltage battery pack; the switch control unit 100, the first input end of the switch control unit 100 is connected to the first end of the low-voltage battery pack, and the second input end Connect the common node of the first voltage-dividing resistor unit and the second voltage-dividing resistor unit, the output terminal is connected to the positive terminal of the auxiliary voltage V aux and the control terminal of the switch tube Q OR , the first voltage-dividing resistor unit and the second voltage-dividing resistor unit Connected
  • the first self-test control signal S1 and the second self-test control signal S2 are output by a controller.
  • the first self-test control signal S1 includes a high level and a low level to control the switch tube Q test2 to be turned on or off, and then to control the switch tube Q test1 to be turned on or off, wherein when the switch tube Q test1 is turned on When on, the auxiliary voltage V aux is applied to the detection connection terminal of the switch control unit 100
  • the second self-test control signal S2 includes high level and low level to control the switch tube Q test3 to be turned on or off.
  • the auxiliary voltage V aux is applied to the control terminal of the switch transistor Q OR to keep the switch transistor Q OR turned on.
  • the switch tube Q OR is turned off.
  • the first switch unit 110 further includes a driving resistor Rgoff
  • the switch tube QOR includes a first terminal, a second terminal and a control terminal
  • the first terminal of the switch tube QOR is connected to the first terminal of the output capacitor Cout
  • the second terminal of the switch tube Q OR is connected to the first terminal of the low-voltage battery pack
  • the first terminal of the driving resistor R goff is connected to the control terminal of the switch tube Q OR .
  • the switch control unit 100 includes a comparator unit 120, the comparator unit 120 includes a comparator U 1 , the comparator U 1 includes a positive input terminal, a negative input terminal and an output terminal, and the positive input terminal of the comparator is connected to the switch
  • the first input terminal and the negative input terminal of the control unit 100 are connected to the second input terminal of the switch control unit 100 , the output terminal is connected to the anode of the diode D Q , and the cathode of the diode D Q is connected to the detection terminal of the switch control unit 100 .
  • the switch control unit 100 includes a second switch unit 130, the second switch unit 130 includes a switch tube Q off , the switch tube Q off includes a first terminal, a second terminal and a control terminal, and the first terminal of Q off Connect the negative end of the auxiliary voltage V aux , and connect the cathode of the diode D Q and the control end of the switch tube Q off by driving the pull-down resistor R dw1 , and the second end of the switch tube Q off is connected to the positive end of the auxiliary voltage V aux and the switch tube
  • the control terminal of Q OR may also be connected to the second terminal of the driving resistor Rgoff.
  • the switching tube Q test2 in the first self-test unit 210 includes a first terminal, a second terminal and a control terminal, the first terminal of the switching tube Q test2 is grounded, and the control terminal of the switching tube Q test2 receives a signal from the control The device's first self-test control signal S1.
  • the switch tube Q test1 in the second self-test unit 220 includes a first terminal, a second terminal and a control terminal, the first terminal of the switch tube Q test1 is connected to the positive terminal of the auxiliary voltage V aux , the switch tube Q The second terminal of test1 is connected to the cathode of the diode D Q , and the control terminal of the switching tube Q test1 is connected to the second terminal of the switching tube Q test2 .
  • the switch tube Q test3 in the third self-test unit 230 includes a first terminal, a second terminal and a control terminal, the first terminal of the switch tube Q test3 is connected to the negative voltage terminal of the output capacitor Cout, and the switch tube Q test3 is connected to the negative voltage terminal of the output capacitor Cout.
  • the second terminal of test3 is connected to the positive voltage terminal of the output capacitor Cout, the control terminal receives the second self-test control signal S2 from the controller, and the discharge resistance unit is connected between the positive voltage terminal of the output capacitor Cout and the second terminal of the switch tube Q test3 or connected between the negative voltage end of the output capacitor Cout and the first end of the switch tube Q test3 , wherein the discharge resistance unit is shown as the discharge resistance R dis in FIG. 2 .
  • diode D Q is an independent diode device, which may also be a body diode of a device, such as a metal-oxide semiconductor field effect transistor (MOSFET).
  • MOSFET metal-oxide semiconductor field effect transistor
  • the switch tube Q test2 is an NPN transistor, the first terminal is the emitter E, the second terminal is the collector C, and the control terminal is the base B.
  • the switch tube Q test2 can also be a Metal-Oxide Semiconductor Field Effect Transistor (MOSFET), the first end is the source S, the second end is the drain D, and the control end is the gate G.
  • MOSFET Metal-Oxide Semiconductor Field Effect Transistor
  • the switch tube Q test1 is a PNP transistor, the first terminal is the emitter E, the second terminal is the collector C, and the control terminal is the base B.
  • the switch tube Q test1 can also be a metal-oxide semiconductor field effect transistor (MOSFET), the first terminal is the source S, the second terminal is the drain D, and the control terminal is the gate G.
  • MOSFET metal-oxide semiconductor field effect transistor
  • the switching tube Q test3 is an NPN transistor, the first terminal is the emitter E, the second terminal is the collector C, and the control terminal is the base B.
  • the switch tube Q test3 can also be a Metal-Oxide Semiconductor Field Effect Transistor (MOSFET), the first end is the source S, the second end is the drain D, and the control end is the gate G.
  • MOSFET Metal-Oxide Semiconductor Field Effect Transistor
  • the switch tube Q off in the second switch unit 130 is an N-type metal-oxide semiconductor field effect transistor (MOSFET), the first terminal of which is the source S, and the second terminal is the drain D, and the control terminal is the gate G. It can also be other switching devices, such as P-type Metal-Oxide Semiconductor Field Effect Transistor (MOSFET) or triode.
  • MOSFET N-type metal-oxide semiconductor field effect transistor
  • MOSFET P-type Metal-Oxide Semiconductor Field Effect Transistor
  • the switching tube Q OR in the first switching unit 110 is an N-type metal-oxide semiconductor field effect transistor (MOSFET), the first end of which is the source S, and the second end is the drain D, and the control terminal is the gate G. It can also be other switching devices, such as P-type Metal-Oxide Semiconductor Field Effect Transistor (MOSFET) or triode.
  • MOSFET N-type metal-oxide semiconductor field effect transistor
  • MOSFET P-type Metal-Oxide Semiconductor Field Effect Transistor
  • the switching tube Q test2 as an NPN transistor
  • the switching tube Q test1 as a PNP transistor
  • the switching tube Q test3 as an NPN transistor as an example
  • FIG. 3a The schematic diagram of the first working mode of the circuit for preventing the loss of battery voltage on the output side of the device. The current flow direction is shown by the arrow in Figure 3a, or there is no current flow.
  • the detection resistor R sense and the conduction resistance R of the switch tube Q OR
  • the voltage drop generated by ds_ON acts on the positive input terminal of the comparator U 1 as 0V or negative voltage, and the voltage at the negative input terminal of the comparator U 1 is determined by the first voltage dividing resistor unit and the second voltage dividing resistor unit (as shown in Figure 2
  • the resistor R bias and the resistor R N in the resistor form a resistor divider to the auxiliary voltage V aux , and the resistor divider is the reference voltage of the comparator U 1 , then the voltage of the positive input terminal of the comparator U 1 is smaller than its negative terminal input voltage, the output terminal of the comparator U 1 outputs a low level, then the diode D Q is not conducting, and the switch tube Q off remains off, so the auxiliary voltage V aux is loaded to the switch tube Q OR through the drive resistor R goff to control terminal, so that the switch tube Q OR remains on, so that the energy flows from the output capacitor Cout to the low-
  • the voltage of the positive input terminal of the comparator U1 is greater than or equal to the input voltage of its negative terminal, and the output terminal of the comparator U1 outputs
  • the level is high, the diode D Q is turned on, and the high level output by the comparator U1 is applied to the control terminal of the switch tube Q off , so that the switch tube Q off is turned on, because the first terminal of Q off is connected to the auxiliary voltage V
  • the negative terminal of aux , the first terminal of the switching tube Q OR is connected to the first terminal of the output capacitor Cout, and the first terminal of the output capacitor Cout is connected to the negative terminal of the auxiliary voltage V aux , and then the switching tube Q OR is controlled to be turned off, so To prevent the current from continuing to flow backward from the low-voltage battery pack to the output capacitor Cout, that is, to prevent the voltage loss of the low-voltage battery pack.
  • the first self-inspection unit 210, the second self-inspection unit 220 and the third The self-check unit 230 can sequentially check the validity of the first switch unit 110 , the comparator unit 120 and the second switch unit 130 , thereby improving the reliability of the circuit for preventing battery voltage loss at the output side of the present application.
  • the flat first self-test control signal S1 controls the switch tube Q test2 in the first self-test unit 210 to be turned on, so that the voltage between the first terminal and the control terminal of the switch tube Q test1 in the second self-test unit 220 SQ test1 rises, and the switch tube Q test1 in the second self-test unit 220 is turned on, then the auxiliary voltage V aux is applied to the control terminal of the switch tube Q off in the second switch unit 130, that is, the second switch unit
  • the control signal S Qoff of the control terminal of the switch tube Q off in 130 becomes high level, the switch tube Q off is turned on, and the control signal S QOR of the control terminal of the switch tube Q OR in the first switch unit 110 is pulled down, Then the switch tube Q OR in the first switch unit 110 is turned off, so if the controller outputs a high-level first self-test control signal S1, the switch tube Q OR in the first switch unit 110 can be in an off state, Then it can be considered that the first switch unit 110 and the second switch unit 130 can work
  • the controller outputs a high-level second self-test control signal S2, and a high-level second self-test control signal S2 S2 control makes the switching tube Q test3 in the third self-test unit 230 conduct, then the output capacitor Cout discharges through the discharge branch formed by the switching tube Q test3 and the discharge resistance unit, so the switching tube Q in the first switching unit 110
  • the low-voltage battery pack cannot charge the output capacitor Cout, so as to ensure that the output capacitor Cout can work normally through the discharge branch formed by the switch tube Q test3 and the discharge resistance unit.
  • the controller outputs a low-level first self-test control signal S1, and then the low-level first self-test control signal S1 controls the switch tube Q test2 in the first self-test unit 210 to turn off and the switch tube Q test1 in the second self-test unit 220 is turned off.
  • the voltage applied to the positive input terminal of the comparator U1 is the voltage difference between the low-voltage battery pack and the output capacitor Cout, due to the output capacitor Cout
  • the voltage difference between the low-voltage battery pack and the output capacitor Cout is relatively large, and is greater than or equal to the reference voltage of the negative input terminal of the comparator U1
  • the output terminal of the comparator U1 outputs a high level
  • the diode D Q is turned on, and the high level output by the comparator U1 is applied to the control terminal of the switch tube Q off , so that the switch tube Q off continues to conduct, and the switch tube Q OR continues to turn off until the self-test at time t3 End, so if the controller outputs the high-level second self-test control signal S2, the switch tube Q OR in the first switch unit 110 can continue to be in the off state or the output terminal of the comparator U1 outputs a high level or lose If the voltage of the output capacitor Cout is still small,
  • the reliability of the first switch unit 110, the comparator unit 120 and the second switch unit 130 can be detected by the first self-test unit 210, the second self-test unit 220 and the third self-test unit 230, thereby The reliability of the circuit for preventing the voltage loss of the output side battery of the present application is improved.
  • the comparator unit 120 further includes a hysteresis control loop 121.
  • the hysteresis control loop 121 includes a hysteresis resistance unit (such as resistor R FB in FIG. 2 ) and a diode D FB .
  • a series branch wherein one end of the hysteresis resistance unit is connected to the output terminal of the comparator U1, the other end of the hysteresis resistance unit is connected to the anode of the diode D FB , and the cathode of the diode D FB is connected to the positive input end of the comparator U1.
  • the negative input terminal of the comparator receives the reference voltage.
  • the switch tube Q OR When the comparator U 1 outputs a low level, the switch tube Q OR is turned on, so when the voltage drop generated by the reverse sink current at the detection resistor R sense and the switch tube Q OR ’s conduction resistance R ds_ON fluctuates around the reference voltage, Then the comparator U1 frequently switches between the output high level and low level, which affects the normal operation of the circuit of the vehicle-mounted DCDC converter of the present invention to prevent the output side battery voltage from being lost.
  • the present invention increases the hysteresis control loop 121, in The voltage drop generated by the reverse sink current in the detection resistor R sense and the on-resistance R ds_ON of the switch tube Q OR is greater than or equal to the reference voltage.
  • the comparator U 1 When the comparator U 1 outputs a high level, the high level output by the comparator U 1 passes through the resistor R FB and diode D FB are applied to the positive input terminal of comparator U1, then the voltage drop of the positive input terminal of comparator U1 is caused by the reverse sink current in the detection resistor R sense and the on-resistance R ds_ON of the switch tube Q OR
  • the sum of the voltage drop generated by the detection resistor R sense and the on-resistance R ds_ON of the switch tube Q OR and the high level output of the comparator U 1 through the resistor R FB is the sum of the voltage fed back to the sink current, so that even if the sink current fluctuates slightly It will not change the output of the comparator U 1 , only when the sink current is small enough, until the voltage drop generated by the sink current in the sense resistor R sense and the conduction resistance R ds_ON of the switch tube Q OR is high with the output of the comparator U 1 When the sum of the voltage
  • the hysteresis control range can be adjusted by adjusting the resistance value of the hysteresis resistance unit of the hysteresis control loop 121 and adjusting the voltage value fed back from the output terminal of the comparator U1 to the positive input terminal of the comparator U1.
  • the first self-test unit 210 further includes a drive pull-down resistor R dw5 , a drive pull-down capacitor C dw5 , and a drive resistor R b2 , and both the drive pull-down resistor R dw5 and the drive pull-down capacitor C dw5 are connected to the switch tube Q test2 Between the first terminal and the control terminal, the control terminal of the switching tube Q test2 receives the first self-test control signal S1 through the driving resistor R b2 .
  • the second end of the switch tube Q test1 in the second self-test unit 220 is also connected to the cathode of the diode D Q through the pull-up resistor R up2 .
  • the control terminal of the switch tube Q test1 is also connected to the second terminal of the switch tube Q test2 through a resistor unit (such as the resistor R b1 in FIG. 2 ).
  • the second self-test unit 220 further includes a drive pull-down resistor R dw2 and a drive pull-down capacitor C dw2 , both of which are connected to the switch tube Q test2 between the first terminal and the control terminal.
  • the third self-test unit 230 further includes a drive pull-down resistor R dw4 , a drive pull-down capacitor C dw4 , and a drive resistor R b3 , and both the drive pull-down resistor R dw4 and the drive pull-down capacitor C dw4 are connected to the switch tube Q test3 Between the first terminal and the control terminal, the control terminal of the switch tube Q test3 receives the second self-test control signal S2 through the driving resistor R b3 .
  • the first switch unit 110 further includes a drive pull-down resistor R dw3 , a drive pull-down capacitor C dw3 and protection diodes Z 1 , Z 2 , a drive pull-down resistor R dw3 and a drive pull-down capacitor C dw3 Both are connected between the first terminal and the control terminal of the switch tube Q OR , the cathode of the protection diode Z1 is connected to the cathode of the protection diode Z2, the anode of the protection diode Z1 is connected to the control terminal of the switch tube QOR , and the protection diode Z2 The anode of the switch transistor Q OR is connected to the first terminal to improve the reliability of the first switch unit 110 .
  • the second switch unit 130 further includes a driving pull-down capacitor C dw1 connected between the first terminal of the switch transistor Q off and the control terminal.
  • the first voltage-dividing resistor unit includes a resistor R bias
  • the second voltage-dividing resistor unit includes a resistor R N
  • the resistor R bias and the resistor R N are connected in series to the positive side of the auxiliary voltage V aux
  • a voltage divider branch is formed between the terminal and the negative terminal.
  • the positive input end of the comparator is connected to the first end of the low-voltage battery pack through a resistance unit (such as the resistance Rp in FIG. 2 ).
  • a resistance unit such as the resistance Rp in FIG. 2
  • the comparator unit 120 further includes a diode D PN , a capacitor C PN and a pull-up resistor R up1 , the anode of the diode D PN is connected to the positive input terminal of the comparator U1, and the diode D PN
  • the cathode of the comparator U 1 is connected to the negative input terminal
  • the capacitor C PN is connected between the positive input terminal and the negative input terminal of the comparator U 1
  • the pull-up resistor R up1 is connected between the output terminal of the comparator U 1 and the auxiliary voltage V
  • the diode D PN is mainly used to protect the input port of the comparator U 1 to prevent excessive voltage difference.
  • the second terminal of the switch tube Q off is connected to the positive terminal of the auxiliary voltage V aux through a resistor unit (such as the resistor R gon shown in FIG. 2 ).
  • the sense resistor R sense is connected between the first end of the output capacitor Cout and the first end of the switch transistor Q OR . In other embodiments, the sense resistor R sense may also be connected between the first end of the low voltage battery pack and the second end of the switch transistor Q OR .
  • the first terminal of the output capacitor Cout is a positive voltage terminal
  • the first terminal of the low-voltage battery pack is a positive voltage terminal
  • the second terminal of the output capacitor Cout is a negative voltage terminal
  • the low-voltage battery pack The second end of the pack is a negative voltage end, that is, the switch tube Q OR is connected between the output capacitor Cout and the positive voltage end of the low-voltage battery pack.
  • the first terminal of the output capacitor Cout is a negative voltage terminal
  • the low-voltage battery pack The first end of the output capacitor Cout is the negative voltage end
  • the second end of the output capacitor Cout is the positive voltage end
  • the second end of the low-voltage battery pack is the positive voltage end, that is, the switch tube Q OR is connected between the output capacitor Cout and the negative voltage end of the low-voltage battery pack. between voltage terminals.
  • Others are the same as the embodiment shown in FIG. 2 and will not be described again.
  • the above-mentioned negative voltage terminal of the output capacitor Cout and the negative voltage terminal of the low-voltage battery pack are reference ground terminals.
  • Any resistance unit as described above may include only one resistor, or may include a series and/or parallel connection of multiple resistors.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

本发明提出一种车载DCDC变换器防输出侧电池电压丢失的电路,在输出电容和低压电池包之间设置电流防倒灌单元,通过设定施加到电流防倒灌单元内的比较器的负输入端的由第一分压电阻单元与第二分压电阻单元对辅助电压形成的电阻分压,可实现不同的防倒灌电流值,并设置第一自检单元、第二自检单元和第三自检单元以实现该安全机制的高自检覆盖率,而实现更加灵活、低功耗、高可靠性及高自检覆盖率的应用于车载DCDC变换器防输出侧12V电池电压瞬间丢失的功能安全机制设计。

Description

一种车载DCDC变换器防输出侧电池电压丢失的电路
本申请要求于2021年6月17日提交中国专利局、申请号为202110669083.3、申请名称为“一种车载DCDC变换器防输出侧电池电压丢失的电路”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及电源领域,尤其是一种车载DCDC变换器防输出侧电池电压丢失的电路。
背景技术
随着电动汽车技术的不断发展,零部件集成化趋势越来越明显,集成化解决方案不仅可以为整车带来功能扩展的优势,而且可以通过机械及电子部件的共用,为整车降低成本。车载充电机主要用于从220V电网中汲取电能,经过功率变换,将能量充入电动汽车高压电池包中,而车载DCDC变换器则用于将电动汽车高压电池包能量转换为例如12V的电池能量,车载充电机(Charger)与车载DCDC变换器的集成方案(Char Con)将是未来电动汽车能量补给的主流方案。车载DCDC变换器由于其直连整车12V电池,其输出侧的可靠性直接影响车辆安全。目前业内逐渐将车载DCDC变换器防输出侧12V电池电压瞬间丢失作为ASIL C的功能安全要求,需要在传统车载DCDC变换器中添加额外的高自检覆盖率的安全机制以应对ASIL C的功能安全需求。
请参阅图1所示的典型车载DCDC变换器示意图。如图1所示,车载 DCDC变换器包括DCDC变换单元,其将高压电池包能量Vin转换为例如12V的输出电压Voutput给低压电池包(Battery)(即车载DCDC变换器输出侧电池)充电。正常工作时,希望能量从输出电容Cout端流向低压电池包侧。然而,考虑到DCDC变换器故障时如内部短路失效,会造成电流从低压电池包倒灌至DCDC变换器内部的情况,从而使输出侧12V电池电压瞬时丢失,而影响整车的驾驶安全。
现有技术中,一般利用二极管反向截止的特性阻止电路中出现电流倒灌的情况,但是当二极管处于正向导通状态时,由于正向导通压降的存在,会造成一定的能量损耗。另,电动汽车对整车功能安全的要求越来越高,传统的二极管反向截止方案已经无法满足对应功能安全需求,因此,在车载DCDC变换器中设计高可靠性、低功耗、高自检覆盖率的防止输出侧12V电池电压丢失的电路(防倒灌电路)成为业界的需求。
发明内容
本发明提出一种车载DCDC变换器防输出侧电池电压丢失的电路,车载DCDC变换器包括并联连接的输出电容和低压电池包,车载DCDC变换器防输出侧电池电压丢失的电路包括:第一开关单元和检测电阻,第一开关单元包括开关管Q OR,开关管Q OR与检测电阻串联连接在输出电容的第一端与低压电池包的第一端之间;开关控制单元,开关控制单元的第一输入端连接低压电池包的第一端,第二输入端连接第一分压电阻单元与第二分压电阻单元的共节点,输出端连接辅助电压的正端及开关管Q OR的控制端,第一分压电阻单元与第二分压电阻单元串联后连接在辅助电压的正端与负端之间,辅助电压的负端还连接输出电容的第一端;第一自检单元至第 三自检单元,第一自检单元包括开关管Q test2,开关管Q test2的第一端接地,控制端接收第一自检控制信号,第二自检单元包括开关管Q test1,开关管Q test1的第一端连接辅助电压的正端,第二端连接开关控制单元的检测连接端,控制端连接开关管Q test2的第二端,第三自检单元,包括开关管Q test3和放电电阻单元,开关管Q test3与放电电阻单元串联后并联在输出电容的正负电压端之间,开关管Q test3控制端接收第二自检控制信号。
更进一步的,第一自检控制信号和第二自检控制信号由一控制器输出,其中,第一自检控制信号包括高电平和低电平,以控制使得开关管Q test2导通或关断,进而控制使得开关管Q test1导通或关断,其中当开关管Q test1导通时,辅助电压加载到开关控制单元的检测连接端;第二自检控制信号包括高电平和低电平,以控制使得开关管Q test3导通或关断。
更进一步的,当第一输入端的电压小于第二输入端的电压,辅助电压加载到开关管Q OR的控制端上,而使开关管Q OR保持导通,当第一输入端的电压大于等于第二输入端的电压,开关管Q OR关断。
更进一步的,开关控制单元包括比较器,比较器的正输入端连接开关控制单元的第一输入端,负输入端连接开关控制单元的第二输入端,输出端连接二极管D Q的阳极,二极管D Q的阴极连接开关控制单元的检测连接端。
更进一步的,开关控制单元包括开关管Q off,开关管Q off的第一端连接辅助电压的负端,并通过驱动下拉电阻连接二极管D Q的阴极和开关管Q off的控制端,开关管Q off的第二端连接辅助电压的正端及开关管Q OR的控制端。
更进一步的,当输出电容Cout与低压电池包之间无能量流动或电流自输出电容Cout流向低压电池包,由检测电阻R sense和开关管Q OR的导通阻抗R ds_ON产生的压降作用到比较器的正输入端的电压为0V或负电压,比较器的负输入端的电压为由第一分压电阻单元和第二分压电阻单元对辅助电压V aux形成电阻分压,则此时比较器的正输入端的电压小于其负端输入电压,则比较器的输出端输出低电平,则二极管D Q不导通,则开关管Q off保持断开,辅助电压V aux加载到开关管Q OR的控制端上,而使开关管Q OR保持导通;当电流自低压电池包流向输出电容Cout时,由检测电阻R sense和开关管Q OR的导通阻抗R ds_ON产生的压降作用到比较器的正输入端的电压为正电压,当该正电压增加到大于等于比较器负输入端的电压,则比较器的输出端输出高电平,则二极管D Q导通,比较器输出的高电平施加到开关管Q off的控制端,而使开关管Q off导通,进而控制使得开关管Q OR关断。
更进一步的,在t0时刻,控制器输出高电平的第一自检控制信号S1,高电平的第一自检控制信号S1控制使得第一自检单元中的开关管Q test2导通,从而使第二自检单元中的开关管Q test1的第一端与控制端间的电压升高,而使第二自检单元中的开关管Q test1导通,则辅助电压V aux施加到第二开关单元中的开关管Q off的控制端,开关管Q off导通,而将第一开关单元中的开关管Q OR的控制端的控制信号拉低,则第一开关单元中的开关管Q OR关断,在t1时刻,控制器输出高电平的第二自检控制信号S2,高电平的第二自检控制信号S2控制使得第三自检单元中的开关管Q test3导通,则输出电容Cout通过开关管Q test3和放电电阻单元形成的放电支路放电,直至t2时刻,控制器输出低电平的第一自检控制信号S1,则低电平的第一自 检控制信号S1控制使得第一自检单元中的开关管Q test2关断,并第二自检单元中的开关管Q test1关断,施加到比较器的正输入端的电压为低压电池包与输出电容Cout之间的压差,并低压电池包与输出电容Cout之间的压差大于等于比较器的负输入端的参考电压,则比较器的输出端输出高电平,则二极管D Q导通,将比较器输出的高电平施加到开关管Q off的控制端,而使开关管Q off继续导通,开关管Q OR继续关断,直至t3时刻自检结束。
更进一步的,开关控制单元还包括滞回电阻单元与二极管D FB形成的串联支路,其中滞回电阻单元的一端连接比较器的输出端,滞回电阻单元的另一端连接二极管D FB的阳极,二极管D FB的阴极连接比较器的正输入端。
更进一步的,输出电容Cout的第一端为正电压端,低压电池包的第一端为正电压端,输出电容Cout的第二端为负电压端,低压电池包的第二端为负电压端。
更进一步的,输出电容Cout的第一端为负电压端,低压电池包的第一端为负电压端,输出电容Cout的第二端为正电压端,低压电池包的第二端为正电压端。
更进一步的,检测电阻R sense连接在输出电容Cout的第一端与开关管Q OR的第一端之间。
更进一步的,检测电阻R sense连接在低压电池包的第一端与开关管Q OR的第二端之间。
更进一步的,开关管Q test2为NPN型三极管,第一端为发射极E,第二端为集电极C,控制端为基极B;开关管Q test1为PNP型三极管,第一端为发射极E,第二端为集电极C,控制端为基极B;开关管Q test3为NPN型三 极管,第一端为发射极E,第二端为集电极C,控制端为基极B。
更进一步的,开关管Q off为N型金属-氧化物半导体场效应晶体管,其第一端为源极S,第二端为漏极D,控制端为栅极G;开关管Q OR为N型金属-氧化物半导体场效应晶体管,其第一端为源极S,第二端为漏极D,控制端为栅极G。
附图说明
图1为典型车载DCDC变换器示意图。
图2为本发明一实施例的车载DCDC变换器防输出侧电池电压丢失的电路示意图。
图3a为本发明一实施例的车载DCDC变换器防输出侧电池电压丢失的电路第一工作模式示意图。
图3b为本发明一实施例的车载DCDC变换器防输出侧电池电压丢失的电路第二工作模式示意图。
图4为本申请一实施例的防输出侧电池电压丢失的电路的控制波形示意图。
图5为本发明另一实施例的车载DCDC变换器防输出侧电池电压丢失的电路示意图。
具体实施方式
下面将结合附图,对本发明中的技术方案进行清楚、完整的描述,显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在不做出创造性劳动的前提下所获得的所有其它实施例,都属于本发明保护的范围。
本发明一实施例中,在于提供一种车载DCDC变换器防输出侧电池电压丢失的电路,具体的,请参阅图2所示的本发明一实施例的车载DCDC变换器防输出侧电池电压丢失的电路示意图。车载DCDC变换器包括DCDC变换单元、输出电容Cout和低压电池包(Battery),DCDC变换单元的输入端连接高压电池包,DCDC变换单元的两输出端连接输出电容Cout的两端,低压电池包并联在输出电容Cout的两端,DCDC变换单元将高压电池包电压Vin转换为输出电压Voutput给低压电池包(Battery)充电。本发明一实施例的车载DCDC变换器防输出侧电池电压丢失的电路,包括:第一开关单元110和检测电阻R sense,第一开关单元110包括开关管Q OR,开关管Q OR与检测电阻R sense串联连接在输出电容Cout的第一端与低压电池包的第一端之间;开关控制单元100,开关控制单元100的第一输入端连接低压电池包的第一端,第二输入端连接第一分压电阻单元与第二分压电阻单元的共节点,输出端连接辅助电压V aux的正端及开关管Q OR的控制端,第一分压电阻单元与第二分压电阻单元串联后连接在辅助电压V aux的正端与负端之间,辅助电压V aux的负端还连接输出电容Cout的第一端;第一自检单元至第三自检单元,第一自检单元210包括开关管Q test2,开关管Q test2的第一端接地,控制端接收第一自检控制信号S1,第二自检单元220包括开关管Q test1,开关管Q test1的第一端连接辅助电压V aux的正端,第二端连接开关控制单元100的检测连接端,控制端连接开关管Q test2的第二端,第三自检单元230,包括开关管Q test3和放电电阻单元,开关管Q test3与放电电阻单元串联后并联在输出电容Cout的正负电压端之间,开关管Q test3控制端接收第二自检控制信号S2。
在一实施例中,第一自检控制信号S1和第二自检控制信号S2由一控制器输出。其中,第一自检控制信号S1包括高电平和低电平,以控制使得开关管Q test2导通或关断,进而控制使得开关管Q test1导通或关断,其中当开关管Q test1导通时,辅助电压V aux加载到开关控制单元100的检测连接 端,并第二自检控制信号S2包括高电平和低电平,以控制使得开关管Q test3导通或关断。
在一实施例中,当第一输入端的电压小于第二输入端的电压,辅助电压V aux加载到开关管Q OR的控制端上,而使开关管Q OR保持导通,当第一输入端的电压大于等于第二输入端的电压,开关管Q OR关断。
在一实施例中,第一开关单元110还包括驱动电阻R goff,开关管Q OR包括第一端、第二端和控制端,开关管Q OR的第一端连接输出电容Cout的第一端,开关管Q OR的第二端连接低压电池包的第一端,驱动电阻R goff的第一端连接开关管Q OR的控制端。
在一实施例中,开关控制单元100包括比较器单元120,比较器单元120包括比较器U 1,比较器U 1包括正输入端、负输入端和输出端,比较器的正输入端连接开关控制单元100的第一输入端,负输入端连接开关控制单元100的第二输入端,输出端连接二极管D Q的阳极,二极管D Q的阴极连接开关控制单元100的检测连接端。
在一实施例中,开关控制单元100包括第二开关单元130,第二开关单元130包括开关管Q off,开关管Q off包括第一端、第二端和控制端,Q off的第一端连接辅助电压V aux的负端,并通过驱动下拉电阻R dw1连接二极管D Q的阴极及开关管Q off的控制端,开关管Q off的第二端连接辅助电压V aux的正端及开关管Q OR的控制端,也可连接驱动电阻Rgoff的第二端。
在一实施例中,第一自检单元210中的开关管Q test2包括第一端、第二端和控制端,开关管Q test2的第一端接地,开关管Q test2的控制端接收来自控制器的第一自检控制信号S1。
在一实施例中,第二自检单元220中的开关管Q test1包括第一端、第 二端和控制端,开关管Q test1的第一端连接辅助电压V aux的正端,开关管Q test1的第二端连接二极管D Q的阴极,开关管Q test1的控制端连接开关管Q test2的第二端。
在一实施例中,第三自检单元230中的开关管Q test3包括第一端、第二端和控制端,开关管Q test3的第一端连接输出电容Cout的负电压端,开关管Q test3的第二端连接输出电容Cout的正电压端,控制端接收来自控制器的第二自检控制信号S2,放电电阻单元连接在输出电容Cout的正电压端与开关管Q test3的第二端之间或连接在输出电容Cout的负电压端与开关管Q test3的第一端之间,其中放电电阻单元如图2中的放电电阻R dis
在一实施例中,二极管D Q为独立的二极管器件,其也可为一器件的体二极管,如其可为金属-氧化物半导体场效应晶体管(MOSFET)的体二极管。
在一实施例中,如图2所示,开关管Q test2为NPN型三极管,第一端为发射极E,第二端为集电极C,控制端为基极B。在一实施例中,开关管Q test2还可为金属-氧化物半导体场效应晶体管(MOSFET),第一端为源极S,第二端为漏极D,控制端为栅极G。
在一实施例中,如图2所示,开关管Q test1为PNP型三极管,第一端为发射极E,第二端为集电极C,控制端为基极B。在一实施例中,开关管Q test1还可为金属-氧化物半导体场效应晶体管(MOSFET),第一端为源极S,第二端为漏极D,控制端为栅极G。
在一实施例中,如图2所示,开关管Q test3为NPN型三极管,第一端为发射极E,第二端为集电极C,控制端为基极B。在一实施例中,开关 管Q test3还可为金属-氧化物半导体场效应晶体管(MOSFET),第一端为源极S,第二端为漏极D,控制端为栅极G。
在一实施例中,如图2所示,第二开关单元130中的开关管Q off为N型金属-氧化物半导体场效应晶体管(MOSFET),其第一端为源极S,第二端为漏极D,控制端为栅极G。其还可为其它的开关器件,如P型金属-氧化物半导体场效应晶体管(MOSFET)或三极管。
在一实施例中,如图2所示,第一开关单元110中的开关管Q OR为N型金属-氧化物半导体场效应晶体管(MOSFET),其第一端为源极S,第二端为漏极D,控制端为栅极G。其还可为其它的开关器件,如P型金属-氧化物半导体场效应晶体管(MOSFET)或三极管。
以开关管Q OR和开关管Q off为N型金属-氧化物半导体场效应晶体管、开关管Q test2为NPN型三极管、开关管Q test1为PNP型三极管以及开关管Q test3为NPN型三极管为例,当车载DCDC变换器正常工作时,输出电容Cout与低压电池包之间无能量流动,或电流自输出电容Cout流向低压电池包,可参阅图3a所示的本发明一实施例的车载DCDC变换器防输出侧电池电压丢失的电路第一工作模式示意图,其电流流向如图3a中的箭头所示,或无电流流动,则此时由检测电阻R sense和开关管Q OR的导通阻抗R ds_ON产生的压降作用到比较器U 1的正输入端的电压为0V或负电压,比较器U 1的负输入端的电压为由第一分压电阻单元和第二分压电阻单元(如图2中的电阻R bias和电阻R N)对辅助电压V aux形成电阻分压,该电阻分压为比较器U 1的参考电压,则此时比较器U 1的正输入端的电压小于其负端输入电压,则比较器U 1的输出端输出低电平,则二极管D Q不导通,则开关管Q off保持断 开,如此辅助电压V aux通过驱动电阻R goff加载到开关管Q OR的控制端上,而使开关管Q OR保持导通,而使能量自输出电容Cout流向低压电池包,或无能量流动。如果出现电流倒灌,即当电流自低压电池包流向输出电容Cout时,可参阅图3b所示的本发明一实施例的车载DCDC变换器防输出侧电池电压丢失的电路第二工作模式示意图,其电流流向如图3b中的箭头所示,此时由检测电阻R sense和开关管Q OR的导通阻抗R ds_ON产生的压降作用到比较器U 1的正输入端的电压为正电压,当该正电压增加到大于等于由R bias和R N对辅助电压V aux形成电阻分压时,则比较器U 1的正输入端的电压大于等于其负端输入电压,则比较器U 1的输出端输出高电平,则二极管D Q导通,比较器U 1输出的高电平施加到开关管Q off的控制端,而使开关管Q off导通,由于Q off的第一端连接辅助电压V aux的负端,开关管Q OR的第一端连接输出电容Cout的第一端,并输出电容Cout的第一端连接辅助电压V aux的负端,进而控制使得开关管Q OR关断,如此达到阻止电流继续自低压电池包倒灌向输出电容Cout,也即阻止低压电池包电压丢失。
另根据如上的分析可知,通过设定施加到比较器U 1的负输入端的由第一分压电阻单元与第二分压电阻单元对辅助电压V aux形成的电阻分压,可实现不同的防倒灌电流值。具体的,如图2所示,施加到比较器U 1的负输入端的由电阻R bias和电阻R N对辅助电压V aux形成电阻分压越大,实现的防倒灌电流值越大。如此可根据实际产品需求设定不同的防倒灌电流值,也即本发明的防输出侧电池电压丢失的电路更加灵活,且功耗小。
随着电动汽车技术的发展,业界对整车功能安全的要求越来越高,本申请的防输出侧电池电压丢失的电路中的第一自检单元210、第二自检单 元220和第三自检单元230可依次检测第一开关单元110、比较器单元120和第二开关单元130的有效性,从而提高本申请的防输出侧电池电压丢失的电路的可靠性。具体的,请参阅图4所示的本申请一实施例的防输出侧电池电压丢失的电路的控制波形示意图,在t0时刻,控制器输出高电平的第一自检控制信号S1,高电平的第一自检控制信号S1控制使得第一自检单元210中的开关管Q test2导通,从而使第二自检单元220中的开关管Q test1的第一端与控制端间的电压SQ test1升高,而使第二自检单元220中的开关管Q test1导通,则辅助电压V aux施加到第二开关单元130中的开关管Q off的控制端,也即第二开关单元130中的开关管Q off的控制端的控制信号S Qoff变为高电平,开关管Q off导通,而将第一开关单元110中的开关管Q OR的控制端的控制信号S QOR拉低,则第一开关单元110中的开关管Q OR关断,如此若控制器输出高电平的第一自检控制信号S1时,第一开关单元110中的开关管Q OR能处于关断状态,则可认为第一开关单元110及第二开关单元130可正常工作,接下来,在t1时刻,控制器输出高电平的第二自检控制信号S2,高电平的第二自检控制信号S2控制使得第三自检单元230中的开关管Q test3导通,则输出电容Cout通过开关管Q test3和放电电阻单元形成的放电支路放电,因此时第一开关单元110中的开关管Q OR关断,则低压电池包不能给输出电容Cout充电,从而保证输出电容Cout能通过开关管Q test3和放电电阻单元形成的放电支路的正常工作,直至t2时刻,输出电容Cout的电压放电至足够小,则在t2时刻,控制器输出低电平的第一自检控制信号S1,则低电平的第一自检控制信号S1控制使得第一自检单元210中的开关管Q test2关断,并第二自检单元220中的开关管Q test1关断, 此时施加到比较器U 1的正输入端的电压为低压电池包与输出电容Cout之间的压差,由于输出电容Cout的电压被放电至足够小,则低压电池包与输出电容Cout之间的压差较大,并大于等于比较器U 1的负输入端的参考电压,则比较器U 1的输出端输出高电平,则二极管D Q导通,将比较器U 1输出的高电平施加到开关管Q off的控制端,而使开关管Q off继续导通,开关管Q OR继续关断,直至t3时刻自检结束,如此若控制器输出高电平的第二自检控制信号S2后,第一开关单元110中的开关管Q OR能继续处于关断状态或比较器U 1的输出端输出高电平或输出电容Cout的电压仍较小,则可认为比较器单元120可正常工作。如此,在待机状态下通过第一自检单元210、第二自检单元220和第三自检单元230可检测第一开关单元110、比较器单元120和第二开关单元130的可靠性,从而提高本申请的防输出侧电池电压丢失的电路的可靠性。
在一实施例中,比较器单元120还包括滞回控制回路121,如图2所示,滞回控制回路121包括滞回电阻单元(如图2中的电阻R FB)与二极管D FB形成的串联支路,其中滞回电阻单元的一端连接比较器U 1的输出端,滞回电阻单元的另一端连接二极管D FB的阳极,二极管D FB的阴极连接比较器U 1的正输入端。如图2所示,比较器的负输入端接收参考电压,当电流倒灌时,若由倒灌电流在检测电阻R sense和开关管Q OR的导通阻抗R ds_ON产生的压降大于等于参考电压时,比较器U 1输出高电平,则开关管Q OR关断实现防止电电流倒灌,当由倒灌电流在检测电阻R sense和开关管Q OR的导通阻抗R ds_ON产生的压降小于参考电压时,比较器U 1输出低电平,则开关管Q OR导通,如此当倒灌电流在检测电阻R sense和开关管Q OR的导通阻抗R ds_ON 产生的压降在参考电压附近波动时,则比较器U 1在输出高电平与低电平之间频繁切换,影响本发明的车载DCDC变换器防输出侧电池电压丢失的电路的正常工作,本发明通过增加滞回控制回路121,在由倒灌电流在检测电阻R sense和开关管Q OR的导通阻抗R ds_ON产生的压降大于等于参考电压,比较器U 1输出高电平时,比较器U 1输出的该高电平通过电阻R FB和二极管D FB施加到比较器U 1的正输入端,则将比较器U 1的正输入端的电压由倒灌电流在检测电阻R sense和开关管Q OR的导通阻抗R ds_ON产生的压降增加至倒灌电流在检测电阻R sense和开关管Q OR的导通阻抗R ds_ON产生的压降与比较器U 1输出的高电平通过电阻R FB反馈的电压的和,如此即使倒灌电流稍许波动也不会改变比较器U 1的输出,只有当倒灌电流足够小,直到由倒灌电流在检测电阻R sense和开关管Q OR的导通阻抗R ds_ON产生的压降与比较器U 1输出的高电平通过电阻R FB反馈的电压的和小于参考电压时,比较器U 1才输出低电平,如此提高车载DCDC变换器防输出侧电池电压丢失的电路的可靠性。并可通过调节滞回控制回路121的滞回电阻单元的电阻值,调节比较器U 1输出端反馈至比较器U 1正输入端的电压值而调价滞回控制的范围。
在一实施例中,第一自检单元210还包括驱动下拉电阻R dw5、驱动下拉电容C dw5和驱动电阻R b2,驱动下拉电阻R dw5和驱动下拉电容C dw5均连接在开关管Q test2的第一端与控制端之间,开关管Q test2的控制端通过驱动电阻R b2接收第一自检控制信号S1。
在一实施例中,如图2所示,第二自检单元220中的开关管Q test1的第二端还通过上拉电阻R up2连接二极管D Q的阴极。在一实施例中,如图2所示,开关管Q test1的控制端还通过电阻单元(如图2中的电阻R b1)连接 开关管Q test2的第二端。在一实施例中,如图2所示,第二自检单元220还包括驱动下拉电阻R dw2和驱动下拉电容C dw2,驱动下拉电阻R dw2和驱动下拉电容C dw2均连接在开关管Q test2的第一端与控制端之间。
在一实施例中,第三自检单元230还包括驱动下拉电阻R dw4、驱动下拉电容C dw4和驱动电阻R b3,驱动下拉电阻R dw4和驱动下拉电容C dw4均连接在开关管Q test3的第一端与控制端之间,开关管Q test3的控制端通过驱动电阻R b3接收第二自检控制信号S2。
在一实施例中,如图2所示,第一开关单元110还包括驱动下拉电阻R dw3、驱动下拉电容C dw3和保护二极管Z 1,Z 2,驱动下拉电阻R dw3和驱动下拉电容C dw3均连接在开关管Q OR的第一端与控制端之间,保护二极管Z 1的阴极连接保护二极管Z 2的阴极,保护二极管Z 1的阳极连接开关管Q OR的控制端,保护二极管Z 2的阳极连接开关管Q OR的第一端,以提高第一开关单元110的可靠性。
在一实施例中,如图2所示,第二开关单元130还包括连接在开关管Q off的第一端与控制端之间的驱动下拉电容C dw1
在一实施例中,如图2所示,第一分压电阻单元包括电阻R bias,第二分压电阻单元包括电阻R N,电阻R bias与电阻R N串联连接在辅助电压V aux的正端与负端之间而形成分压支路。并比较器的正输入端通过一电阻单元(如图2中的电阻Rp)连接低压电池包的第一端。在一实施例中,如图2所示,比较器单元120还包括二极管D PN、电容C PN和上拉电阻R up1,二极管D PN的阳极连接比较器U 1的正输入端,二极管D PN的阴极连接比较器U 1的负输入端,电容C PN连接在比较器U 1的正输入端与负输入端之间,上拉 电阻R up1连接在比较器U 1的输出端与辅助电压V aux的正端之间,二极管D PN主要用于保护比较器U 1的输入端口,防止压差过大。
在一实施例中,如图2所示,开关管Q off的第二端通过电阻单元(如图2中所示的电阻R gon)连接辅助电压V aux的正端。
在一实施例中,如图2所示,检测电阻R sense连接在输出电容Cout的第一端与开关管Q OR的第一端之间。在其它实施例中,检测电阻R sense还可连接在低压电池包的第一端与开关管Q OR的第二端之间。
在一实施例中,如图2所示,输出电容Cout的第一端为正电压端,低压电池包的第一端为正电压端,输出电容Cout的第二端为负电压端,低压电池包的第二端为负电压端,也即开关管Q OR连接在输出电容Cout和低压电池包的正电压端之间。
在另一实施例中,如图5所示的的本发明另一实施例的车载DCDC变换器防输出侧电池电压丢失的电路示意图,输出电容Cout的第一端为负电压端,低压电池包的第一端为负电压端,输出电容Cout的第二端为正电压端,低压电池包的第二端为正电压端,也即开关管Q OR连接在输出电容Cout和低压电池包的负电压端之间。其它与图2所示的实施例相同,再次不在赘述。
上述的输出电容Cout的负电压端、低压电池包的负电压端即为参考地端。
如上所述的任何电阻单元可仅包括一个电阻,也可包括多个电阻的串和/或并联。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非 对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (15)

  1. 一种车载DCDC变换器防输出侧电池电压丢失的电路,车载DCDC变换器包括并联连接的输出电容和低压电池包,其特征在于,包括:
    第一开关单元和检测电阻,第一开关单元包括开关管Q OR,开关管Q OR与检测电阻串联连接在输出电容的第一端与低压电池包的第一端之间;
    开关控制单元,开关控制单元的第一输入端连接低压电池包的第一端,第二输入端连接第一分压电阻单元与第二分压电阻单元的共节点,输出端连接辅助电压的正端及开关管Q OR的控制端,第一分压电阻单元与第二分压电阻单元串联后连接在辅助电压的正端与负端之间,辅助电压的负端还连接输出电容的第一端;
    第一自检单元至第三自检单元,第一自检单元包括开关管Q test2,开关管Q test2的第一端接地,开关管Q test2的控制端接收第一自检控制信号,第二自检单元包括开关管Q test1,开关管Q test1的第一端连接辅助电压的正端,第二端连接开关控制单元的检测连接端,控制端连接开关管Q test2的第二端,第三自检单元包括开关管Q test3和放电电阻单元,开关管Q test3与放电电阻单元串联后并联在输出电容的正负电压端之间,开关管Q test3的控制端接收第二自检控制信号。
  2. 根据权利要求1所述的一种车载DCDC变换器防输出侧电池电压丢失的电路,其特征在于,第一自检控制信号和第二自检控制信号由一控制器输出,其中,第一自检控制信号包括高电平和低电平,以控制使得开关管Q test2导通或关断,进而控制使得开关管Q test1导通或关断,其中当开关管Q test1导通时,辅助电压加载到开关控制单元的检测连接端;第二自 检控制信号包括高电平和低电平,以控制使得开关管Q test3导通或关断。
  3. 根据权利要求1所述的一种车载DCDC变换器防输出侧电池电压丢失的电路,其特征在于,当第一输入端的电压小于第二输入端的电压,辅助电压加载到开关管Q OR的控制端上,而使开关管Q OR保持导通,当第一输入端的电压大于等于第二输入端的电压,开关管Q OR关断。
  4. 根据权利要求1所述的一种车载DCDC变换器防输出侧电池电压丢失的电路,其特征在于,开关控制单元包括比较器,比较器的正输入端连接开关控制单元的第一输入端,负输入端连接开关控制单元的第二输入端,输出端连接二极管D Q的阳极,二极管D Q的阴极连接开关控制单元的检测连接端。
  5. 根据权利要求4所述的一种车载DCDC变换器防输出侧电池电压丢失的电路,其特征在于,开关控制单元包括开关管Q off,开关管Q off的第一端连接辅助电压的负端,并通过驱动下拉电阻连接二极管D Q的阴极和开关管Q off的控制端,开关管Q off的第二端连接辅助电压的正端及开关管Q OR的控制端。
  6. 根据权利要求5所述的一种车载DCDC变换器防输出侧电池电压丢失的电路,其特征在于,当输出电容与低压电池包之间无能量流动或电流自输出电容流向低压电池包,由检测电阻和开关管Q OR的导通阻抗产生的压降作用到比较器的正输入端的电压为0V或负电压,比较器的负输入端的电压为由第一分压电阻单元和第二分压电阻单元对辅助电压形成的电阻分压,则此时比较器的正输入端的电压小于其负端输入电压,则比较器的输出端输出低电平,则二极管D Q不导通,则开关管Q off保持断开,辅 助电压加载到开关管Q OR的控制端上,而使开关管Q OR保持导通;当电流自低压电池包流向输出电容时,由检测电阻和开关管Q OR的导通阻抗产生的压降作用到比较器的正输入端的电压为正电压,当该正输入端电压增加到大于等于比较器负输入端的电压,则比较器的输出端输出高电平,则二极管D Q导通,比较器输出的高电平施加到开关管Q off的控制端,而使开关管Q off导通,进而控制使得开关管Q OR关断。
  7. 根据权利要求5所述的一种车载DCDC变换器防输出侧电池电压丢失的电路,其特征在于,在t0时刻,第一自检控制信号为高电平,高电平的第一自检控制信号控制使得第一自检单元中的开关管Q test2导通,从而使第二自检单元中的开关管Q test1的第一端与控制端间的电压升高,而使第二自检单元中的开关管Q test1导通,则辅助电压施加到第二开关单元中的开关管Q off的控制端,开关管Q off导通,而将第一开关单元中的开关管Q OR的控制端的控制信号拉低,则第一开关单元中的开关管Q OR关断,在t1时刻,第二自检控制信号为高电平,高电平的第二自检控制信号控制使得第三自检单元中的开关管Q test3导通,则输出电容通过开关管Q test3和放电电阻单元形成的放电支路放电,直至t2时刻,第一自检控制信号转为低电平,则低电平的第一自检控制信号控制使得第一自检单元中的开关管Q test2关断,则第二自检单元中的开关管Q test1关断,此时施加到比较器的正输入端的电压为低压电池包与输出电容之间的压差,由于输出电容的电压被放电至足够小,则低压电池包与输出电容之间的压差大于等于比较器的负输入端的参考电压,则比较器的输出端输出高电平,则二极管D Q导通,将比较器输出的高电平施加到开关管Q off的控制端,而使开关管 Q off继续导通,开关管Q OR继续关断,直至t3时刻自检结束。
  8. 根据权利要求1所述的一种车载DCDC变换器防输出侧电池电压丢失的电路,其特征在于,开关控制单元还包括滞回电阻单元与二极管D FB形成的串联支路,其中滞回电阻单元的一端连接比较器的输出端,滞回电阻单元的另一端连接二极管D FB的阳极,二极管D FB的阴极连接比较器的正输入端。
  9. 根据权利要求1所述的一种车载DCDC变换器防输出侧电池电压丢失的电路,其特征在于,输出电容的第一端为正电压端,低压电池包的第一端为正电压端,输出电容的第二端为负电压端,低压电池包的第二端为负电压端。
  10. 根据权利要求1所述的一种车载DCDC变换器防输出侧电池电压丢失的电路,其特征在于,输出电容的第一端为负电压端,低压电池包的第一端为负电压端,输出电容的第二端为正电压端,低压电池包的第二端为正电压端。
  11. 根据权利要求9或10所述的一种车载DCDC变换器防输出侧电池电压丢失的电路,其特征在于,检测电阻连接在输出电容的第一端与开关管Q OR的第一端之间。
  12. 根据权利要求9或10所述的一种车载DCDC变换器防输出侧电池电压丢失的电路,其特征在于,检测电阻连接在低压电池包的第一端与开关管Q OR的第二端之间。
  13. 根据权利要求1所述的一种车载DCDC变换器防输出侧电池电压丢失的电路,其特征在于,开关管Q test2为NPN型三极管,第一端为发射 极E,第二端为集电极C,控制端为基极B;开关管Q test1为PNP型三极管,第一端为发射极E,第二端为集电极C,控制端为基极B;开关管Q test3为NPN型三极管,第一端为发射极E,第二端为集电极C,控制端为基极B。
  14. 根据权利要求1所述的一种车载DCDC变换器防输出侧电池电压丢失的电路,其特征在于,开关管Q OR为N型金属-氧化物半导体场效应晶体管,其第一端为源极S,第二端为漏极D,控制端为栅极G。
  15. 根据权利要求5所述的一种车载DCDC变换器防输出侧电池电压丢失的电路,其特征在于,开关管Q off为N型金属-氧化物半导体场效应晶体管,其第一端为源极S,第二端为漏极D,控制端为栅极G。
PCT/CN2022/075677 2021-06-17 2022-02-09 一种车载dcdc变换器防输出侧电池电压丢失的电路 WO2022262295A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP22823788.9A EP4358349A1 (en) 2021-06-17 2022-02-09 Circuit for preventing loss of battery voltage on output side of vehicle-mounted dcdc converter

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110669083.3A CN113258648B (zh) 2021-06-17 2021-06-17 一种车载dcdc变换器防输出侧电池电压丢失的电路
CN202110669083.3 2021-06-17

Publications (1)

Publication Number Publication Date
WO2022262295A1 true WO2022262295A1 (zh) 2022-12-22

Family

ID=77188284

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/075677 WO2022262295A1 (zh) 2021-06-17 2022-02-09 一种车载dcdc变换器防输出侧电池电压丢失的电路

Country Status (3)

Country Link
EP (1) EP4358349A1 (zh)
CN (1) CN113258648B (zh)
WO (1) WO2022262295A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113258648B (zh) * 2021-06-17 2021-12-07 浙江富特科技股份有限公司 一种车载dcdc变换器防输出侧电池电压丢失的电路
CN114520532B (zh) * 2022-03-02 2023-03-10 上海迈相电源技术有限公司 一种防倒灌电流的充电器

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5793189A (en) * 1995-06-14 1998-08-11 Honda Giken Kogyo Kabushiki Kaisha Apparatus for preventing over-discharge of batteries used in an electric vehicle
CN106965761A (zh) * 2016-01-13 2017-07-21 厦门雅迅网络股份有限公司 一种车载设备系统断电保护装置
CN209462249U (zh) * 2019-01-30 2019-10-01 晟道科技石家庄有限公司 一种车载dcdc变换器输出防倒灌电路
CN111615247A (zh) * 2020-05-13 2020-09-01 迅驰车业江苏有限公司 一种汽车驱动前端pmos防倒灌电路
CN111864719A (zh) * 2020-08-21 2020-10-30 河南新太行电源股份有限公司 一种防反接防倒灌充电保护电路
CN112769175A (zh) * 2020-12-28 2021-05-07 山东鲁能软件技术有限公司智能电气分公司 一种充电桩降低冲击电流的控制方法及系统
CN113258648A (zh) * 2021-06-17 2021-08-13 杭州富特科技股份有限公司 一种车载dcdc变换器防输出侧电池电压丢失的电路

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5793189A (en) * 1995-06-14 1998-08-11 Honda Giken Kogyo Kabushiki Kaisha Apparatus for preventing over-discharge of batteries used in an electric vehicle
CN106965761A (zh) * 2016-01-13 2017-07-21 厦门雅迅网络股份有限公司 一种车载设备系统断电保护装置
CN209462249U (zh) * 2019-01-30 2019-10-01 晟道科技石家庄有限公司 一种车载dcdc变换器输出防倒灌电路
CN111615247A (zh) * 2020-05-13 2020-09-01 迅驰车业江苏有限公司 一种汽车驱动前端pmos防倒灌电路
CN111864719A (zh) * 2020-08-21 2020-10-30 河南新太行电源股份有限公司 一种防反接防倒灌充电保护电路
CN112769175A (zh) * 2020-12-28 2021-05-07 山东鲁能软件技术有限公司智能电气分公司 一种充电桩降低冲击电流的控制方法及系统
CN113258648A (zh) * 2021-06-17 2021-08-13 杭州富特科技股份有限公司 一种车载dcdc变换器防输出侧电池电压丢失的电路

Also Published As

Publication number Publication date
EP4358349A1 (en) 2024-04-24
CN113258648B (zh) 2021-12-07
CN113258648A (zh) 2021-08-13

Similar Documents

Publication Publication Date Title
WO2022262295A1 (zh) 一种车载dcdc变换器防输出侧电池电压丢失的电路
US10236677B2 (en) Semiconductor device
US8054605B2 (en) Power supply controller
JP5067786B2 (ja) 電力用半導体装置
US20080198526A1 (en) Semiconductor device
US7741884B2 (en) Load drive circuit
US9793825B2 (en) Power conversion device with a voltage generation part that is configured to supply current to a sense diode and a sense resistor in select situations
US20160265501A1 (en) Semiconductor device
WO2022037482A1 (zh) 一种利用分立元件搭建的带全诊断功能的负载驱动电路
US11545970B2 (en) Current detection circuit, current detection method, and semiconductor module
US20120176117A1 (en) Electronic control apparatus having switching element and drive circuit
CN104104225B (zh) 调节器电路以及形成调节器的半导体集成电路装置
CN113328734A (zh) 快速阻断开关
US20050146823A1 (en) Semiconductor device and semiconductor device module
CN209994110U (zh) 基于nmos管的车载直流电源防反接保护电路
US11799472B2 (en) Drive circuit
US20160276819A1 (en) Power switch device
US11581886B2 (en) Current detection circuit, current detection method, and semiconductor module
US5770967A (en) Device and method for controlling a power switch
US20210111713A1 (en) Electronic circuit with two voltage supply circuits
CN212649088U (zh) 一种igbt过流保护电路及空调器
JP5223757B2 (ja) 電力変換回路の駆動装置
WO2024075407A1 (ja) スイッチ装置、電子機器、車両
US12015264B2 (en) Power converter
TWI831296B (zh) 電子電路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22823788

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022823788

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022823788

Country of ref document: EP

Effective date: 20240117