WO2022037482A1 - 一种利用分立元件搭建的带全诊断功能的负载驱动电路 - Google Patents

一种利用分立元件搭建的带全诊断功能的负载驱动电路 Download PDF

Info

Publication number
WO2022037482A1
WO2022037482A1 PCT/CN2021/112404 CN2021112404W WO2022037482A1 WO 2022037482 A1 WO2022037482 A1 WO 2022037482A1 CN 2021112404 W CN2021112404 W CN 2021112404W WO 2022037482 A1 WO2022037482 A1 WO 2022037482A1
Authority
WO
WIPO (PCT)
Prior art keywords
load
resistor
protection module
transistor
mos transistor
Prior art date
Application number
PCT/CN2021/112404
Other languages
English (en)
French (fr)
Inventor
刘汝涛
马江涛
刘渊
霍舒豪
张德兆
王肖
李晓飞
张放
Original Assignee
重庆兰德适普信息科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 重庆兰德适普信息科技有限公司 filed Critical 重庆兰德适普信息科技有限公司
Publication of WO2022037482A1 publication Critical patent/WO2022037482A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H1/00Details of emergency protective circuit arrangements
    • H02H1/0007Details of emergency protective circuit arrangements concerning the detecting means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/20Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for electronic equipment
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/20Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for electronic equipment
    • H02H7/205Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for electronic equipment for controlled semi-conductors which are not included in a specific circuit arrangement

Definitions

  • the invention relates to the technical field of automotive electronics, in particular to a load driving circuit with full diagnostic function constructed by using discrete components.
  • the electronic load driving circuit of the existing automobile is generally realized by means of a protected high-side switch or a bottom-side switch. These two methods are basically in the form of integrated circuits, and the circuits are simple and reliable.
  • a protected high-side switch or a bottom-side switch are basically in the form of integrated circuits, and the circuits are simple and reliable.
  • control and diagnosis time is long, and high-speed PWM (ie pulse width modulation) control is not supported. For loads that require high-speed control, these two methods cannot meet the control requirements;
  • the purpose of the present invention is to provide a load driving circuit with full diagnostic function built by using discrete components in view of the technical defects existing in the prior art.
  • the present invention provides a load drive circuit with full diagnostic function built by using discrete components, including a single chip MCU, a load positive drive protection module, a load negative drive protection module and a load, wherein:
  • the single chip MCU is used to output the switch control signal to the load positive drive protection module and the load negative drive protection module, and to collect the diagnostic signals output by the load positive drive protection module and the load negative drive protection module;
  • the single-chip MCU is also used to send a shutdown control signal to the load positive drive protection module and the load negative drive protection module when the positive pole of the load is short-circuited to ground and/or the negative pole of the load is short-circuited to the power supply, to control the shutdown of the load positive drive protection module and the load negative drive protection module and load negative drive protection module;
  • the load positive drive protection module is used to supply power to the positive pole of the load and provide short-circuit protection under the control of the single-chip MCU;
  • the negative electrode drive protection module of the load is used to supply power to the negative electrode of the load and provide short circuit protection under the control of the single chip MCU.
  • the load positive drive protection module includes triode T1;
  • the base B of the transistor T1 is connected to the first control signal terminal A1 of the microcontroller MCU through the resistor R1;
  • the emitter of the triode T1 is directly grounded
  • the collector C of the transistor T1 is connected to one end of the resistor R2;
  • the other end of the resistor R2 is respectively connected with the collector C of the transistor T2, one end of the resistor R4 and the gate g of the MOS transistor Q1;
  • the base B of the transistor T2 is connected to one end of the resistor R3;
  • the other end of the resistor R3 is respectively connected with the other end of the resistor R4, the drain d of the MOS transistor Q1 and one end of the sampling resistor R5;
  • the emitter E of the transistor T2 and the other end of the sampling resistor R5 are connected to the first power supply VBAT1 after the confluence intersects;
  • the source s of the MOS transistor Q1 is connected to the cathode of the freewheeling diode D1, one end of the resistor R13 and the anode of the load X, respectively.
  • the anode of the freewheeling diode D1 is directly grounded;
  • the other end of the resistor R13 is respectively connected with the first diagnostic signal end B1 of the microcontroller MCU and one end of the resistor R14;
  • resistor R14 The other end of resistor R14 is directly connected to ground.
  • the load negative drive protection module includes a resistor R6 and a triode T3;
  • the second control signal end A2 of the microcontroller MCU is connected to one end of the resistor R6;
  • the other end of the resistor R6 is respectively connected with the collector C of the transistor T3 and the gate g of the MOS transistor Q2;
  • the emitter E of the triode T3 is directly grounded
  • the base of the transistor T3 is connected to one end of the resistor R7;
  • the other end of the resistor R7 is connected to one end of the resistor R8 and one end of the resistor R9 respectively;
  • the other end of the resistor R8 is respectively connected with the source S of the MOS transistor Q2 and one end of the sampling resistor R10;
  • sampling resistor R10 is directly grounded
  • resistor R9 The other end of resistor R9 is directly connected to ground.
  • the drain d of the MOS transistor Q2 is respectively connected with the negative electrode of the load X, the positive electrode of the freewheeling diode D2 and one end of the resistor R11;
  • the cathode of the freewheeling diode D2 is directly connected to the second power supply VBAT2;
  • the other end of the resistor R11 is respectively connected with the second diagnostic signal end B2 of the microcontroller MCU and one end of the resistor R12;
  • resistor R12 The other end of resistor R12 is directly connected to ground.
  • the triodes T1 and T3 are NPN type triodes, and the triode T2 is a PNP type triode;
  • the MOS tube Q1 is a PMOS tube
  • the MOS tube Q2 is an NMOS tube.
  • the present invention provides a load driving circuit with a full diagnostic function built by using discrete components, which has a low overall cost and can realize fast load driving. PWM control.
  • the load driving circuit of the present invention can reliably protect the safety of the circuit by increasing the load state acquisition signal to determine the load working state.
  • the load driving circuit of the present invention uses the current sampling resistor R5 at the rear stage of the MOS, which can realize the setting of the short-circuit threshold, which is convenient for debugging and simple in control logic.
  • the application of the load driving circuit of the present invention is beneficial to reducing the production cost of the electronic load driving circuit of the automobile, and is applicable to a wide range of load types, which has great practical significance in production.
  • FIG. 1 is a circuit diagram of a load drive circuit with full diagnostic function built by using discrete components provided by the present invention
  • Fig. 2 is a specific implementation circuit diagram of a load positive drive protection module in a load drive circuit with full diagnostic function built with discrete components provided by the present invention
  • FIG. 3 is a specific implementation circuit diagram of a load negative drive protection module in a load drive circuit with full diagnostic function built with discrete components provided by the present invention.
  • the present invention provides a load driving circuit with full diagnostic function built with discrete components, including resistor R1, resistor R2, resistor R4, resistor R30, sampling resistor R5, resistor R6, resistor R7, resistor R8, resistor R9, sampling resistor R10, resistor R11, resistor R12, resistor R13, resistor R14, transistor T1, transistor T2, transistor T3, freewheeling diode D1, freewheeling diode D2, MOS transistor Q1 and MOS transistor Q2 .
  • the present invention provides a load drive circuit with full diagnostic function built by using discrete components, including a single chip MCU, a load positive drive protection module, a load negative drive protection module and a load, wherein:
  • the single chip MCU is used to output the switch control signal (specifically: the open control signal is a valid signal of a high level, and the close control signal is an invalid signal of a low level) to the load positive drive protection module and the load negative drive protection module, as well as collecting The diagnostic signal output by the load positive drive protection module and the load negative drive protection module;
  • the switch control signal specifically: the open control signal is a valid signal of a high level, and the close control signal is an invalid signal of a low level
  • the single-chip MCU is also used to send a shutdown control signal to the load positive drive protection module and the load negative drive protection module when the positive pole of the load is short-circuited to ground, to control the shutdown of the load drive circuit (that is, to turn off the load positive drive protection module and the load negative drive protection module at the same time. ); and when the negative pole of the load is short-circuited to the power supply (ie, the power supply), a shutdown control signal is sent to the load positive drive protection module and the load negative drive protection module to control the shutdown of the load drive circuit;
  • the load positive drive protection module is used to supply power to the positive pole of the load and provide short-circuit protection under the control of the single-chip MCU;
  • the negative electrode drive protection module of the load is used to supply power to the negative electrode of the load and provide short circuit protection under the control of the single chip MCU.
  • the load positive drive protection module includes a triode T1;
  • the base B of the transistor T1 is connected to the first control signal terminal A1 of the microcontroller MCU through the resistor R1;
  • the emitter of the triode T1 is directly grounded (ie, connected to GND);
  • the collector C of the transistor T1 is connected to one end of the resistor R2;
  • the other end of the resistor R2 is respectively connected with the collector C of the transistor T2, one end of the resistor R4 and the gate g of the MOS transistor Q1;
  • the function of the resistor R1 is to limit the current for the base B of the transistor T1 to prevent the single-chip MCU or the transistor T1 from being burned during driving.
  • the function of the resistor R2 is: when the control signal output by the first control signal terminal 1 of the single-chip MCU is valid (ie, high level), the collector C and the emitter E of the transistor T1 Connected to GND; the gate g of the MOS transistor Q1 turns the control signal into a low level due to the voltage divider circuit composed of the resistors R2 and R4; the function of the resistor R2 is to prevent the transistor T1 or the transistor from burning out when the transistor T2 is turned on T2.
  • the role of the transistor T1 is: when the control signal output by the first control signal terminal 1 of the single-chip MCU is valid (that is, a high level), the transistor T1 is turned on, so that the resistors R4 and R2 form a voltage divider circuit, The voltage difference between the voltage of the gate g of the MOS transistor Q1 and the voltage of the drain d is Vgs ⁇ Vgs(TH) (ie, the lowest voltage is turned on), thereby turning on the PMOS transistor Q1.
  • the base B of the transistor T2 is connected to one end of the resistor R3;
  • the other end of the resistor R3 is respectively connected with the other end of the resistor R4, the drain d of the MOS transistor Q1 and one end of the sampling resistor R5;
  • the function of the resistor R3 is: in order to provide current limiting for the base B of the triode T2, when the current passing through the sampling resistor R5 (which is a current sampling resistor) is too large and exceeds a certain value, sampling When the voltage drop on the resistor R5 exceeds 0.7V, the transistor T2 is turned on, and the resistor R3 limits the current of the base B of the transistor T2 to prevent it from being burned due to excessive current.
  • the emitter E of the transistor T2 and the other end of the sampling resistor R5 are connected to the first power supply VBAT1 after the confluence intersects;
  • the voltages of the first power supply VBAT1 and the second power supply VBAT2 are the same, and their voltage values are generally the vehicle voltage 9-16V, and the typical value is generally 12V.
  • the role of the transistor T2 is: when the voltage difference VR5 of the sampling resistor R5 (that is, the voltage value VR5 generated by the detection of the sampling resistor R5 in the case of a short circuit) is greater than 0.7V, that is, the voltage difference VR5 flowing through the sampling resistor R5
  • the transistor T2 is turned on, and the voltage of the collector C of the transistor T2 is equal to the voltage of the first power supply VBAT1, that is, the voltage of the gate g of the MOS transistor Q1 is equal to the voltage of the first power supply VBAT1, and the voltage of the MOS transistor Q1 is equal to the voltage of the first power supply VBAT1.
  • Vgs (that is, the difference between the voltage of the gate g and the voltage of the drain d) is equal to 0, and the PMOS transistor Q1 is turned off to achieve the purpose of protecting the MOS transistor Q1.
  • the sampling resistor R5 is used as a current sampling resistor, and its function is to set the magnitude of the short-circuit current by detecting the voltage value VR5 generated when the sampling resistor R5 passes through the sampling resistor R5 during a short circuit.
  • the function of the resistor R4 is to form a voltage divider with the resistor R2 when the MOS transistor Q1 is normally turned on, so as to provide a reliable gate g turn-on voltage of the MOS transistor Q1.
  • the source s of the MOS transistor Q1 is connected to the negative electrode of the freewheeling diode D1, one end of the resistor R13 and the positive electrode of the load X, respectively.
  • the load X may be an inductive load such as a wiper, various fans, etc. on an automobile.
  • MOS transistor Q1 the function of the MOS transistor Q1 is to control the opening of the positive electrode of the load and provide a current source for it.
  • the anode of the freewheeling diode D1 is directly grounded (that is, directly connected to GND);
  • the function of the freewheeling diode D1 is to provide a freewheeling loop to prevent breakdown of the MOS transistor Q1 when the load is an inductive load and a GND short-circuit fault occurs at the positive pole of the load X.
  • the magnitude of the forward current of the freewheeling diode D1 is determined by the current of the load.
  • the other end of the resistor R13 is respectively connected to the first diagnostic signal end B1 of the single-chip MCU and one end of the resistor R14;
  • the other end of the resistor R14 is directly grounded (that is, directly connected to GND);
  • the function of the freewheeling diode D1 is to limit the current of the gate g of the MOS transistor Q2 and to act as a current limiting resistor of the collector C when the transistor T3 is turned on.
  • the voltage of the load X can be directly collected through the voltage divider circuit composed of the resistors R13 and R14, the ON state of the MOS transistor Q1 can be judged, and the judgment of the load state can be realized by judging the state of the MOS transistor Q1. .
  • the resistance values of the resistors R1 and R2 can be 4.7K ohms
  • the resistance value of resistors R3 and R4 can be 10K ohms
  • the resistance value of resistors R13 and R14 can be 2.2K ohms
  • the resistance value of the sampling resistor R5 is 100MR (ie 0.1 ⁇ )
  • a resistor R15 is further set between the resistor R13 and the first diagnostic signal terminal B1 of the single-chip MCU.
  • Resistor R15 has a resistance value of 33K ohms.
  • the load negative drive protection module includes a resistor R6 and a triode T3;
  • the second control signal end A2 of the microcontroller MCU is connected to one end of the resistor R6;
  • the other end of the resistor R6 is respectively connected with the collector C of the transistor T3 and the gate g of the MOS transistor Q2;
  • the emitter E of the transistor T3 is directly grounded (ie, connected to GND);
  • the base of the transistor T3 is connected to one end of the resistor R7;
  • the function of the transistor T3 is: when the current flowing through the sampling resistor R10 is too large and exceeds a certain value, the transistor T3 is turned on, and then the control signal input by the single-chip MCU (that is, the first signal of the single-chip MCU) is turned on. The valid control signal input from the control signal terminal A2) is invalid.
  • the other end of the resistor R7 is connected to one end of the resistor R8 and one end of the resistor R9 respectively;
  • the other end of the resistor R8 is respectively connected with the source S of the MOS transistor Q2 and one end of the sampling resistor R10;
  • sampling resistor R10 is directly grounded
  • resistor R9 The other end of resistor R9 is directly connected to ground.
  • the function of the resistor R7 is to provide current limiting for the base of the transistor T3.
  • the function of the sampling resistor R10 is: when the current of the load X is too large, a large voltage drop VR10 will be generated on the sampling resistor R10.
  • the transistor T3 is turned on after dividing the voltage by the resistors R8 and R9. , so that the gate voltage of the MOS transistor Q2 is less than Vgs, and the MOS transistor Q2 is turned off.
  • the voltage divider circuit formed by the resistor R8 and the resistor R9 can divide the voltage drop VR10 generated on the sampling resistor R10, which can adjust the maximum current value flowing through the sampling resistor R10.
  • the drain d of the MOS transistor Q2 is respectively connected to the negative electrode of the load X, the positive electrode of the freewheeling diode D2 and one end of the resistor R11;
  • the cathode of the freewheeling diode D2 is directly connected to the second power supply VBAT2;
  • the voltages of the second power supply VBAT2 and the first power supply VBAT1 are the same, and their voltage values are generally the vehicle voltage 9-16V, and the typical value is generally 12V.
  • the function of the freewheeling diode D2 is to provide a freewheeling loop to prevent breakdown of the MOS transistor Q2 when the load X is an inductive load and a power supply short-circuit fault occurs at the negative pole of the load X.
  • the magnitude of the forward current of the freewheeling diode D2 is determined by the load current.
  • the other end of the resistor R11 is respectively connected to the second diagnostic signal end B2 of the microcontroller MCU and one end of the resistor R12;
  • the other end of the resistor R12 is directly grounded (that is, directly connected to GND);
  • the voltage of the load can be directly collected through the voltage divider circuit composed of resistors R11 and R12, and the ON state of the MOS transistor Q2 can be judged. judge.
  • the function of the MOS transistor Q2 is to control the opening of the negative electrode of the load X to provide a ground loop for it.
  • the resistance values of the resistors R6, R7, R8 and R9 can be 4.7K ohms
  • the resistance value of resistors R11 and R12 can be 2.2K ohms
  • the resistance value of the sampling resistor R10 is 100MR (ie 0.1 ⁇ )
  • a resistor R16 is further set between the resistor R11 and the second diagnostic signal terminal B2 of the single-chip MCU.
  • Resistor R16 has a resistance value of 33K ohms.
  • the single-chip MCU is an existing single-chip microcomputer, which may be a TC297 type single-chip microcomputer of Infineon specifically.
  • the single chip MCU is used for collecting and diagnosing the control time energy of the load control signal and the diagnosis signal. .
  • the first control signal terminal A1 and the second control signal terminal A2 are both GPIO terminals (ie, general-purpose input and output pins) of the single-chip MCU. If the load requires PWM duty control, the corresponding signal terminal satisfies the PWM function. .
  • the first diagnosis signal terminal B1 and the second diagnosis signal terminal B2 are pins with a pulse capture function in the microcontroller MCU to capture PWM signal pulses.
  • FIG. 2 and FIG. 3 the specific implementation circuit diagrams of the load positive drive protection module and the load negative drive protection module are respectively shown.
  • the triodes T1 and T3 are NPN-type triodes, and the triode T2 is a PNP-type triode;
  • the MOS tube Q1 is a PMOS tube
  • the MOS tube Q2 is an NMOS tube.
  • the present invention provides a load driving circuit with a full diagnostic function constructed by using discrete components, and the functional modules of the circuit are also suitable for low-end output short-circuit circuits.
  • the installation positions of the triodes T1/T3 are not limited to using triodes, and can also be controlled by other methods such as MOS tubes. Whether the diode D1/D2 is used or not is related to the type of load and the driving method of the load; the voltage divider circuit composed of sampling resistors R8 and R9 can be appropriately adjusted or even deleted according to the size of the sampling resistor R10 and the size of the short-circuit current.
  • the PWM acquisition port or the AD acquisition port can be used to realize this function.
  • two MOSs are mainly used to form a combination of a high-side switch and a bottom-side switch, so as to drive the load at the same time, and short-circuit fault current limiting protection and state detection are added to monitor the state of the load. After monitoring the abnormality, the output control can be turned off to achieve the purpose of improving the reliability of the short-circuit protection circuit, reducing the cost, and increasing the switching frequency.
  • the load driving circuit provided by the present invention is a load driving circuit capable of realizing high-speed control, low cost, safety and reliability, and using all types of loads.
  • the transistor T1, the MOS transistor Q1, and the transistor T2 are all turned off state, at the first diagnostic signal terminal B1 of the single-chip MCU, the first diagnostic acquisition signal collected is a stable low level.
  • the transistor T1 is turned on, the collector and the emitter of the transistor are turned on, and the gate of the MOS transistor Q1 is divided by the resistors R4 and R2.
  • the Vgs (TH) of the lower configuration MOS transistor Q1 reaches the opening threshold, and the MOS transistor Q1 is controlled to be turned on. At this time, at the first diagnostic signal terminal B1 of the single-chip MCU, the first diagnostic acquisition signal collected is a stable high level.
  • the transistor T3 and the MOS transistor Q2 are both in the off state, and the diagnostic acquisition signal 2 is collected at a stable low level.
  • the control signal output by the second diagnostic signal terminal B2 of the microcontroller MCU is at a high level, when the gate voltage of the MOS transistor Q2 is greater than the turn-on threshold value, the MOS transistor Q2 is turned on, the source and drain of the MOS transistor are turned on, and the load is on. A current loop is generated, and the control load is effective.
  • the collected second diagnostic signal is a stable low level.
  • the implementation manner of the diagnostic function thereof specifically includes the following manners:
  • Open circuit diagnosis logic when the first control signal output by the first control signal terminal A1 of the single-chip MCU is valid (ie, high level), and the second control signal output by the second control signal terminal A2 of the single-chip MCU is invalid, the single-chip MCU MCU The second control signal output by the second control signal terminal A2 is invalid.
  • the first diagnostic signal collected at the first diagnostic signal terminal B1 of the MCU is a stable high level
  • the second diagnostic signal collected at the second diagnostic signal terminal B2 of the microcontroller MCU is a stable low level, it indicates that the load has an open-circuit fault. .
  • the positive pole of the load is short-circuited to the power supply: when the first control signal output by the first control signal terminal A1 of the single-chip MCU is invalid (ie, low level), the first diagnostic signal collected at the first diagnostic signal terminal B1 of the single-chip MCU There is a steady high level, indicating that the positive side of the load is shorted to the power supply.
  • the positive pole of the load is short-circuited to GND: when the first control signal output by the first control signal terminal A1 of the single-chip MCU is valid, the first diagnostic signal collected at the first diagnostic signal terminal B1 of the single-chip MCU has a stable PWM signal. Indicates that the positive side of the load is shorted to GND.
  • the negative pole of the load is short-circuited to the power supply: when the second control signal output by the second control signal terminal A2 of the single-chip MCU is valid, the second diagnostic signal collected at the second diagnostic signal terminal B2 of the single-chip MCU has a stable PWM signal. Indicates that the negative terminal of the load is shorted to the power supply.
  • the negative pole of the load is short-circuited to GND: when the first control signal output by the first control signal terminal A1 of the single-chip MCU is valid, and the second control signal output by the second control signal terminal A2 of the single-chip MCU is invalid, the second diagnosis of the single-chip MCU
  • the second diagnostic signal collected at the signal terminal B2 has a stable low level signal, indicating that the negative electrode of the load is short-circuited to GND.
  • the short-circuit current flowing through the MOS transistor Q1 has always been a periodic current from 0 to I, and the collected signal can collect a The PWM signal of a stable period, at this time, it is determined that the positive pole of the load X is short-circuited to the power supply (ie, the first power supply VBAT1).
  • the output control signal should shut down the driver in a timely manner. Specifically, when a fault is detected, the single-chip MCU can disable the control signal, thereby turning off the driver, thereby protecting the safety of the driver circuit.
  • the PWM signal of a stable period can be collected from the collected signal. At this time, it is judged that the negative electrode of the load X is short-circuited to the power supply (ie, the second power supply VBAT2). When a short circuit to the power supply is diagnosed, the output control signal should shut down the driver in a timely manner. Specifically, when a fault is detected, the single-chip MCU can disable the control signal, thereby turning off the driver, thereby protecting the safety of the driver circuit.
  • the load driving circuit with full diagnostic function built by using discrete components provided by the present invention has the following beneficial effects:
  • the present invention provides a load driving circuit with full diagnostic function built with discrete components, which has lower overall cost and can realize fast PWM control of the load.
  • the load driving circuit of the present invention can reliably protect the safety of the circuit by increasing the load state acquisition signal and judging the load working state.
  • the load driving circuit of the present invention uses the current sampling resistor R5 at the rear stage of the MOS, which can realize the setting of the short-circuit threshold, which is convenient for debugging and simple in control logic.
  • the application of the load driving circuit of the present invention is beneficial to reducing the production cost of the electronic load driving circuit of the automobile, and is applicable to a wide range of load types, which has great practical significance in production.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electronic Switches (AREA)

Abstract

本发明公开了一种利用分立元件搭建的带全诊断功能的负载驱动电路,包括:单片机MCU,用于输出开关控制信号给负载正极驱动保护模块和负载负极驱动保护模块,及采集负载正极驱动保护模块和负载负极驱动保护模块所输出的诊断信号;单片机MCU,还用于当负载的正极短路接地和/或负载的负极短路到电源时,发送关闭控制信号给负载正极驱动保护模块和负载负极驱动保护模块,控制关闭负载正极驱动保护模块和负载负极驱动保护模块;负载正极驱动保护模块,用于为负载的正极供电,并提供短路保护;负载负极驱动保护模块,用于为负载的负极供电,并提供短路保护。本发明整体成本较低,能够实现对负载进行快速的PWM控制,可以可靠地保护电路的安全。

Description

一种利用分立元件搭建的带全诊断功能的负载驱动电路 技术领域
本发明涉及汽车电子技术领域,特别是涉及一种利用分立元件搭建的带全诊断功能的负载驱动电路。
背景技术
目前,现有汽车的电子负载驱动电路,一般是采用带保护的高边开关或者底边开关的方式来实现,此两种方式基本都为集成电路形式,电路简单可靠,但是,都存在以下的缺点:
1、电路成本高;
2、控制及诊断时间较长,不支持高速度的PWM(即脉冲宽度调制)控制,对需要高速控制的负载,这两种方式是无法满足控制要求;
3、负载在某些危险故障发生后,无法切断故障状态,存在安全隐患。虽然在诊断方面,这两种方式能够检测到一些故障,但是在故障检测到后不能对某些危险故障及时进行处理,例如:现有的高边开关驱动电路在检测到电源发生短路故障时,负载也一直保持开启状态,无法及时切断故障状态,存在安全风险。
有鉴于此,目前亟需开发出一种诊断全面、低成本、可实现高速开关的驱动电路。
发明内容
本发明的目的是针对现有技术存在的技术缺陷,提供一种利用分立元件搭建的带全诊断功能的负载驱动电路。
为此,本发明提供了一种利用分立元件搭建的带全诊断功能的负载驱动电路,包括单片机MCU、负载正极驱动保护模块、负载负极驱动保护模块和负载,其中:
单片机MCU用于输出开关控制信号给负载正极驱动保护模块和负载负极驱动保护模块,以及采集负载正极驱动保护模块和负载负极驱动保护模块所输出的诊断信号;
单片机MCU还用于当负载的正极短路接地和/或负载的负极短路到电源时,发送关闭控制信号给负载正极驱动保护模块和负载负极驱动保护模块,控制关闭负载正极驱动保护模块和负载负极驱动保护模块;
负载正极驱动保护模块用于为负载的正极供电,并在单片机MCU的控制下提供短路保护;
负载负极驱动保护模块用于为负载的负极供电,并在单片机MCU的控制下提供短路保护。
其中,负载正极驱动保护模块,包括三极管T1;
三极管T1的基极B通过电阻R1与单片机MCU的第一控制信号端A1相连;
三极管T1的发射极直接接地;
三极管T1的集电极C与电阻R2的一端相连;
电阻R2的另一端分别与三极管T2的集电极C、电阻R4的一端以及MOS管Q1的栅极g相连接;
三极管T2的基极B与电阻R3的一端相连;
电阻R3的另一端分别与电阻R4的另一端、MOS管Q1的漏极d和采样电阻R5的一端相连;
三极管T2的发射极E与采样电阻R5的另一端在汇流相交后与第一电源VBAT1相连接;
MOS管Q1的源极s分别与续流二极管D1的负极、电阻R13的一端和负载X的正极相连。
其中,续流二极管D1的正极直接接地;
电阻R13的另一端分别与单片机MCU的第一诊断信号端B1和电阻R14的一端相连;
电阻R14的另一端直接接地。
其中,负载负极驱动保护模块包括电阻R6和三极管T3;
单片机MCU的第二控制信号端A2与电阻R6的一端相连;
电阻R6的另一端分别与三极管T3的集电极C、MOS管Q2的栅极g相连;
三极管T3的发射极E直接接地;
三极管T3的基极与电阻R7的一端相连;
电阻R7的另一端分别与电阻R8的一端和电阻R9的一端相连;
电阻R8的另一端分别与MOS管Q2的源极S和采样电阻R10的一端相连;
采样电阻R10的另一端直接接地;
电阻R9的另一端直接接地。
其中,MOS管Q2的漏极d分别与负载X的负极、续流二极管D2的正极和电阻R11的一端相连;
续流二极管D2的负极与第二电源VBAT2直接相连;
电阻R11的另一端分别与单片机MCU的第二诊断信号端B2和电阻R12的一端相连;
电阻R12的另一端直接接地。
其中,三极管T1和T3为NPN型三极管,三极管T2为PNP型三极管;
MOS管Q1为PMOS管,MOS管Q2为NMOS管。
由以上本发明提供的技术方案可见,与现有技术相比较,本发明提供了一种利用分立元件搭建的带全诊断功能的负载驱动电路,其整体成本较低,能够实现对负载进行快速的PWM控制。
此外,本发明的负载驱动电路,通过增加负载状态采集信号,判断负载工作状态,可以可靠地保护电路的安全。
另外,本发明的负载驱动电路,使用利用MOS后级的电流采样电阻R5,可以实现短路阈值的设定,便于调试,控制逻辑简单。
本发明的负载驱动电路的应用,有利于降低汽车的电子负载驱动电路的生产成本,且适用负载类型广泛,具有重大的生产实践意义。
附图说明
图1为本发明提供的一种利用分立元件搭建的带全诊断功能的负载驱动电路的电路图;
图2为本发明提供的一种利用分立元件搭建的带全诊断功能的负载驱动电路中,负载正极驱动保护模块的具体实现电路图;
图3为本发明提供的一种利用分立元件搭建的带全诊断功能的负载驱动电路中,负载负极驱动保护模块的具体实现电路图。
具体实施方式
为使本发明实现的技术手段更容易理解,下面结合附图和实施例对本申请作进一步的详细说明。可以理解的是,此处所描述的具体实施例仅仅用于解释相关申请,而非对该申请的限定。另外还需要说明的是,为了便于描述,附图中仅示出了与本申请相关的部分。
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本申请。
参见图1至图3所示,本发明提供了一种利用分立元件搭建的带全诊断功能的负载驱动电路,包括电阻R1、电阻R2、电阻R4、电阻R30、采样电阻R5、电阻R6、电阻R7、电阻R8、电阻R9、采样电阻R10、电阻R11、电阻R12、电阻R13、电阻R14、三极管T1、三极管T2、三极管T3、续流二极管D1、续流二极管D2、MOS管Q1以及MOS管Q2。
对于本发明,具体实现上,本发明提供了一种利用分立元件搭建的带全诊断功能的负载驱动电路,包括单片机MCU、负载正极驱动保护模块、负载负极驱动保护模块和负载,其中:
单片机MCU用于输出开关控制信号(具体为:其中开启控制信号为高电平的有效信号,关闭控制信号为低电平的无效信号)给负载正极驱动保护模块和负载负极驱动保护模块,以及采集负载正极驱动保护模块和负载负极驱动保护模块所输出的诊断信号;
单片机MCU还用于当负载的正极短路接地时,发送关闭控制信号给负载正极驱动保护模块和负载负极驱动保护模块,控制关闭负载驱动电路(即同时关闭负载正极驱动保护模块和负载负极驱动保护模块);以及当负载的负极短路到电源(即供电电源)时,发送关闭控制信号给负载正极驱动保护模块和负载负极驱动保护模块,控制关闭负载驱动电路;
负载正极驱动保护模块用于为负载的正极供电,并在单片机MCU的控制下提供短路保护;
负载负极驱动保护模块用于为负载的负极供电,并在单片机MCU的控制下提供短路保护。
对于本发明,具体实现上,参见图1、图2所示,负载正极驱动保护模块包括三极管T1;
三极管T1的基极B,通过电阻R1与单片机MCU的第一控制信号端A1相连;
三极管T1的发射极直接接地(即与GND相连);
三极管T1的集电极C与电阻R2的一端相连;
电阻R2的另一端分别与三极管T2的集电极C、电阻R4的一端以及MOS管Q1的栅极g相连接;
需要说明的是,在本发明中,电阻R1的作用是:为三极管T1的基极B限流,防止驱动时,烧毁单片机MCU或者三极管T1。
需要说明的是,在本发明中,电阻R2的作用是:当单片机MCU的第一控制信号端1输出的控制信号有效(即为高电平)时,三极管T1的集电极C和发射极E相连到GND;MOS管Q1的栅极g由于电阻R2和R4组成的分压电路,使该控制信号变为低电平;电阻R2的作为为:防止三极管T2开启时,烧坏三极管T1或者三极管T2。
在本发明中,三极管T1的作用为:当单片机MCU的第一控制信号端1输出的控制信号有效(即为高电平)时,通过开启三极管T1,使电阻R4和R2组成分压电路,MOS管Q1的栅极g的电压和漏极d的电压差Vgs<Vgs(TH)(即开启最低电压),从而打开PMOS管Q1。
具体实现上,三极管T2的基极B,与电阻R3的一端相连;
电阻R3的另一端,分别与电阻R4的另一端、MOS管Q1的漏极d和采样电阻R5的一端相连;
需要说明的是,在本发明中,电阻R3的作用是:为了给三极管T2的基极B提供限流,当经过采样电阻R5(是电流采样电阻)的电流过大,超过一定值时,采样电阻R5上的压降超过0.7V时,三极管T2开启,电阻R3限制三极管T2基极B的电流,防止因为电流过大而烧毁。
具体实现上,三极管T2的发射极E与采样电阻R5的另一端在汇流相交后与第一电源VBAT1相连接;
需要说明的是,在本发明中,第一电源VBAT1和第二电源VBAT2的电压相同,它们的电压值一般为车载电压9~16V,典型值一般为12V。
需要说明的是,在本发明中,三极管T2的作用是:当采样电阻R5的电压差VR5(即在短路时,通过检测经过采样电阻R5时产生的电压值VR5)大于0.7V,即流经MOS管Q1的电流过大时,三极管T2开启,三极管T2的集电极C的电压等于第一电源VBAT1的电压,即MOS管Q1栅极g的电压等于第一电源VBAT1的电压,MOS管Q1的Vgs(即栅极g的电压和漏极d的电压差)等于0,PMOS管Q1关闭,达到保护MOS管Q1的目的。
在本发明中,采样电阻R5作为电流采样电阻,其作用是:在短路时,通过检测经过采样电阻R5时产生的电压值VR5,来设定短路电流的大小。
在本发明中,电阻R4的作用是:在正常开启MOS管Q1时,与电阻R2组成分压,提供MOS管Q1可靠的栅极g开启电压。
具体实现上,MOS管Q1的源极s,分别与续流二极管D1的负极、电阻R13的一端和负载X的正极相连。
需要说明的是,在本发明中,具体实现上,负载X可以是汽车上的雨刮器、各种风扇等感性负载。
需要说明的是,MOS管Q1的作用是:控制负载正极的开启,为其提供电流源。
具体实现上,续流二极管D1的正极直接接地(即与GND直接相连);
需要说明的是,续流二极管D1的作用是当负载为感性负载时,并且负载X的正极发生GND短路故障时,提供续流回路,防止击穿MOS管Q1。续流二极管D1的前向电流的大小,由负载的电流决定。
具体实现上,电阻R13的另一端分别与单片机MCU的第一诊断信号端B1和电阻R14的一端相连;
电阻R14的另一端直接接地(即直接与GND相连);
需要说明的是,在本发明中,续流二极管D1的作用是:对MOS管Q2的栅极g限流,以及作为当三极管T3导通时的集电极C的限流电阻。
需要说明的是,对于本发明,可以通过电阻R13和R14组成的分压电路直接采集负载X的电压,可判断MOS管Q1的开启状态,通过判断MOS管Q1的状态,实现对负载状态的判断。
具体实现上,参见图2所示,电阻R1和R2的电阻值可以为4.7K欧姆;
电阻R3和R4的电阻值可以为10K欧姆;
电阻R13和R14的电阻值可以为2.2K欧姆;
采样电阻R5的电阻值为100MR(即0.1Ω)
具体实现上,参见图2所示,电阻R13和单片机MCU的第一诊断信号端B1之间,还设置有一个电阻R15。
电阻R15的电阻值为33K欧姆。
对于本发明,具体实现上,参见图1、图3所示,负载负极驱动保护模块,包括电阻R6和三极管T3;
单片机MCU的第二控制信号端A2,与电阻R6的一端相连;
电阻R6的另一端,分别与三极管T3的集电极C、MOS管Q2的栅极g相连;
三极管T3的发射极E直接接地(即与GND相连);
三极管T3的基极与电阻R7的一端相连;
需要说明的是,对于本发明,三极管T3的作用是:当流经采样电阻R10的电流过大,超过一定值时,将三极管T3打开,然后使单片机MCU输入的控制信号(即单片机MCU的第二控制信号端A2输入的有效控制信号)无效。
具体实现上,电阻R7的另一端,分别与电阻R8的一端和电阻R9的一端相连;
电阻R8的另一端,分别与MOS管Q2的源极S和采样电阻R10的一端相连;
采样电阻R10的另一端直接接地;
电阻R9的另一端直接接地。
需要说明的是,电阻R7的作用是:为三极管T3的基极提供限流。采样电阻R10的作用是:当负载X的电流过大时,会在采样电阻R10上产生较大的电压降VR10,当电压降VR10大于一定值时,通过电阻R8和R9分压后开启三极管T3,使MOS管Q2的栅极g电压小于Vgs,MOS管Q2关闭。
需要说明的是,通过电阻R8和电阻R9组成的分压电路,可对采样电阻R10上产生的电压降VR10进行分压,可起到调整流经采样电阻R10的最大电流值的作用。
具体实现上,MOS管Q2的漏极d分别与负载X的负极、续流二极管D2的正极和电阻R11的一端相连;
续流二极管D2的负极与第二电源VBAT2直接相连;
需要说明的是,在本发明中,第二电源VBAT2和第一电源VBAT1的电压相同,它们的电压值一般为车载电压9~16V,典型值一般为12V。
需要说明的是,续流二极管D2的作用是:当负载X为感性负载时,并且负载X的负极发生电源短路故障时,提供续流回路,防止击穿MOS管Q2。续流二极管D2的前向电流的大小,由负载电流决定。
具体实现上,电阻R11的另一端分别与单片机MCU的第二诊断信号端B2和电阻R12的一端相连;
电阻R12的另一端直接接地(即直接与GND相连);
需要说明的是,对于本发明,可通过电阻R11和R12组成的分压电路,来直接采集负载的电压,可判断MOS管Q2的开启状态,通过判断MOS管Q2的状态,实现对负载状态的判断。
对于本发明,MOS管Q2的作用是:控制负载X的负极的开启,为其提供对地回路。
具体实现上,参见图3所示,电阻R6、R7、R8和R9的电阻值可以为4.7K欧姆;
电阻R11和R12的电阻值可以为2.2K欧姆;
采样电阻R10的电阻值为100MR(即0.1Ω)
具体实现上,参见图3所示,电阻R11和单片机MCU的第二诊断信号端B2之间还设置有一个电阻R16。
电阻R16的电阻值为33K欧姆。
在本发明中,具体实现上,单片机MCU为现有的单片机,具体可以为英飞凌的TC297型号的单片机。在本发明中,单片机MCU用于作为负载控制信号的控制时能以及诊断信号的采集诊断。。
具体实现上,第一控制信号端A1和第二控制信号端A2均为单片机MCU的GPIO端(即通用输入输出管脚),如果负载需要PWM占空调制的话,相应的此信号端满足PWM功能。
具体实现上,第一诊断信号端B1和第二诊断信号端B2是单片机MCU中具有带脉冲捕获功能的引脚,以采集PWM信号脉冲。
参见图2、图3所示,分别是负载正极驱动保护模块和负载负极驱动保护模块的具体实现电路图。
在本发明中,具体实现上,三极管T1和T3为NPN型三极管,三极管T2为PNP型三极管;
MOS管Q1为PMOS管,MOS管Q2为NMOS管。
在本发明中,具体实现上,本发明提供的利用分立元件搭建的带全诊断功能的负载驱动电路,该电路的功能模块也适用于低端输出短路电路。
具体实现上,在三极管T1/T3的安装位置,不限于使用三极管,也可用MOS管等其他方式控制。二极管D1/D2的使用与否,与负载类型及负载的驱动方式有关;采样电阻R8和R9组成的分压电路,可以根据采样电阻R10的大小及短路电流的大小,可适当调整甚至删除。本发明的采集信号口,可用PWM捕获口或者AD采集口,都可实现此功能。
需要说明的是,对于本发明,主要是利用两个MOS组成高边开关加底边开关的组合,从而同时驱动负载的方式,并且加入短路故障限流保护及状态检测来监控负载的状态,在监控到异常后,可关闭输出控制,到达提高短路保护电路的可靠性、降低成本、提高开关频率的目的。
需要说明的是,本发明提供的负载驱动电路,是一种可实现高速控制、成本低、安全可靠、使用负载类型全的负载驱动电路。
为了更加清楚地理解本发明的技术方案,下面说明本发明的工作原理。
参见图1所示,对于本发明提供的负载驱动电路,当单片机MCU的第一控制信号端A1输出的第一控制信号为低电平无效时,三极管T1、MOS管Q1、三极管T2均处于关闭状态,单片机MCU的第一诊断信号端B1处,所采集到的第一诊断采集信号是稳定的低电平。单片机MCU的第一控制信号端A1输出的第一控制信号为高电平有效时,三极管T1开启,三极管的集电极与发射极导通,MOS管Q1的栅极在电阻R4和R2的分压下配置MOS管Q1的Vgs(TH)达到开启门限,控制MOS管Q1管开启,此时单片机MCU的第一诊断信号端B1处,采集到的第一诊断采集信号是稳定的高电平。
当单片机MCU的第二控制信号端A2输出的第二控制信号为低电平无效时,三极管T3、MOS管Q2均处于关闭状态,诊断采集信号2采集到稳定的低电平。单片机MCU的第二诊断信号端B2输出的控制信号为高电平 时,MOS管Q2的栅极电压大于开启门限值时,MOS管Q2开启,MOS管的源极与漏极导通,负载上产生电流回路,控制负载有效,此时单片机MCU的第二诊断信号端B2处,采集到的第二诊断信号是稳定的低电平。
对于本发明提供的负载驱动电路,其诊断功能实现方式,具体包括如下方式:
1、开路诊断逻辑:当单片机MCU的第一控制信号端A1输出的第一控制信号有效(即高电平)、单片机MCU的第二控制信号端A2输出的第二控制信号无效时,单片机MCU的第一诊断信号端B1处采集到的第一诊断信号为稳定高电平,以及单片机MCU的第二诊断信号端B2处采集到的第二诊断信号为稳定低电平时,表示负载发生开路故障。
2、负载正极短路到电源:当单片机MCU的第一控制信号端A1输出的第一控制信号无效(即低电平)时,单片机MCU的第一诊断信号端B1处采集到的第一诊断信号有稳定的高电平,表明负载正极短路到电源。
3、负载正极短路到GND:当单片机MCU的第一控制信号端A1输出的第一控制信号有效时,单片机MCU的第一诊断信号端B1处采集到的第一诊断信号有稳定的PWM信号,表明负载正极短路到GND。
4、负载负极短路到电源:当单片机MCU的第二控制信号端A2输出的第二控制信号有效时,单片机MCU的第二诊断信号端B2处采集到的第二诊断信号有稳定的PWM信号,表明负载负极短路到电源。
5、负载负极短路到GND:当单片机MCU的第一控制信号端A1输出的第一控制信号有效、单片机MCU的第二控制信号端A2输出的第二控制信号无效时,单片机MCU的第二诊断信号端B2处采集到的第二诊断信号有稳定低电平信号,表明负载负极短路到GND。
对于本发明提供的负载驱动电路,关于负载正极短路到GND,以及负载负极短路到电源的逻辑说明,具有如下:
一、当电路的输出端(即MOS管Q1的源极,也是负载的正极)短路到GND时,MOS管Q1的源漏极电流I急剧增加,经过采样电阻R5的电流同样为I,VR5=I*R5,当I*R5=0.7V时,三极管T2开启,使其发射极和集电极相连,即Q1的栅极接VBAT,关闭MOS管Q1,关闭MOS管Q1后,短路电流迅速减小,同时三极管T2也会相应的迅速关闭,再次会打开MOS管Q1,这样处于动态平衡中,流过MOS管Q1的短路电流一 直是从0到I的周期性电流,采集信号出能够采集到一个稳定周期的PWM信号,此时判断负载X的正极短路到电源(即第一电源VBAT1)。当诊断到短路至电源时,输出控制信号应适时关闭驱动,具体为:当检测到有故障存在时,单片机MCU就可以将控制信号禁能,从而使驱动关闭,从而可以保护驱动电路的安全。
二、当电路的输出端(即MOS管Q2的漏极,也是负载的负极)短路到电源时,MOS管Q2的源漏极电流I急剧增加,经过采样电阻R10的电流同样为I,VR10=I*R10,当I*R10*R9/(R8+R9)=0.7V时,三极管T2开启,使其发射极和集电极相连,即MOS管Q2的栅极接GND,关闭MOS管Q2,关闭MOS管Q2后,短路电流迅速减小,同时三极管T3也会相应的迅速关闭,再次会打开MOS管Q2,这样处于动态平衡中,流过MOS管Q2的短路电流一直是从0到I的周期性电流,采集信号出能够采集到一个稳定周期的PWM信号,此时判断负载X的负极短路到电源(即第二电源VBAT2)。当诊断到短路至电源时,输出控制信号应适时关闭驱动,具体为:当检测到有故障存在时,单片机MCU就可以将控制信号禁能,从而使驱动关闭,从而可以保护驱动电路的安全。
与现有技术相比较,本发明提供的利用分立元件搭建的带全诊断功能的负载驱动电路,具有如下有益效果:
1、可实现快速的PWM控制。
2、增加负载状态采集信号,判断负载工作状态,可以可靠地保护电路的安全。
3、使用利用MOS后级的电流采样电阻R5,实现短路阈值的设定,便于调试,控制逻辑简单。
4、有利于降低成本,且适用负载类型广泛。
综上所述,与现有技术相比较,本发明提供的一种利用分立元件搭建的带全诊断功能的负载驱动电路,其整体成本较低,能够实现对负载进行快速的PWM控制。
此外,本发明的负载驱动电路,通过增加负载状态采集信号,判断负载工作状态,可以可靠地保护电路的安全。
另外,本发明的负载驱动电路,使用利用MOS后级的电流采样电阻R5, 可以实现短路阈值的设定,便于调试,控制逻辑简单。
本发明的负载驱动电路的应用,有利于降低汽车的电子负载驱动电路的生产成本,且适用负载类型广泛,具有重大的生产实践意义。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (6)

  1. 一种利用分立元件搭建的带全诊断功能的负载驱动电路,其特征在于,包括单片机MCU、负载正极驱动保护模块、负载负极驱动保护模块和负载,其中:
    单片机MCU用于输出开关控制信号给负载正极驱动保护模块和负载负极驱动保护模块,以及采集负载正极驱动保护模块和负载负极驱动保护模块所输出的诊断信号;
    单片机MCU还用于当负载的正极短路接地和/或负载的负极短路到电源时,发送关闭控制信号给负载正极驱动保护模块和负载负极驱动保护模块,控制关闭负载正极驱动保护模块和负载负极驱动保护模块;
    负载正极驱动保护模块用于为负载的正极供电,并在单片机MCU的控制下提供短路保护;
    负载负极驱动保护模块用于为负载的负极供电,并在单片机MCU的控制下提供短路保护。
  2. 如权利要求1所述的利用分立元件搭建的带全诊断功能的负载驱动电路,其特征在于,负载正极驱动保护模块包括第一三极管(T1);
    第一三极管(T1)的基极(B)通过第一电阻(R1)与单片机MCU的第一控制信号端(A1)相连;
    第一三极管(T1)的发射极直接接地;
    第一三极管(T1)的集电极(C)与第二电阻(R2)的一端相连;
    第二电阻(R2)的另一端分别与第二三极管(T2)的集电极(C)、第四电阻(R4)的一端以及第一MOS管(Q1)的栅极(g)相连接;
    第二三极管(T2)的基极(B)与第三电阻(R3)的一端相连;
    第三电阻(R3)的另一端分别与第四电阻(R4)的另一端、第一MOS管(Q1)的漏极(d)和第一采样电阻(R5)的一端相连;
    第二三极管(T2)的发射极(E)与第一采样电阻(R5)的另一端在汇流相交后与第一电源(VBAT1)相连接;
    第一MOS管(Q1)的源极(s)分别与续流二极管(D1)的负极、第五电阻(R13)的一端和负载(X)的正极相连。
  3. 如权利要求2所述的利用分立元件搭建的带全诊断功能的负载驱动电路,其特征在于,续流二极管D1的正极直接接地;
    第五电阻(R13)的另一端分别与单片机MCU的第一诊断信号端(B1)和另一电阻(R14)的一端相连;
    所述另一电阻(R14)的另一端直接接地。
  4. 如权利要求1至3中任一项所述的利用分立元件搭建的带全诊断功能的负载驱动电路,其特征在于,负载负极驱动保护模块包括第六电阻(R6)和第三三极管(T3);
    单片机MCU的第二控制信号端(A2)与第六电阻(R6)的一端相连;
    第六电阻(R6)的另一端分别与第三三极管(T3)的集电极(C)、第二MOS管(Q2)的栅极(g)相连;
    第三三极管(T3)的发射极(E)直接接地;
    第三三极管(T3)的基极与第七电阻(R7)的一端相连;
    第七电阻(R7)的另一端分别与第八电阻(R8)的一端和第九电阻(R9)的一端相连;
    第八电阻(R8)的另一端分别与第二MOS管(Q2)的源极(S)和第二采样电阻(R10)的一端相连;
    第二采样电阻(R10)的另一端直接接地;
    第九电阻(R9)的另一端直接接地。
  5. 如权利要求4所述的利用分立元件搭建的带全诊断功能的负载驱动电路,其特征在于,第二MOS管(Q2)的漏极(d)分别与负载(X)的负极、续流二极管(D2)的正极和第十电阻(R11)的一端相连;
    续流二极管(D2)的负极与第二电源(VBAT2)直接相连;
    第十电阻(R11)的另一端分别与单片机MCU的第二诊断信号端(B2)和第十一电阻(R12)的一端相连;
    第十一电阻(R12)的另一端直接接地。
  6. 如权利要求5所述的利用分立元件搭建的带全诊断功能的负载驱动电路,其特征在于,第一三极管(T1)和第三三极管(T3)为NPN型三极管,第二三极管(T2)为PNP型三极管;
    第一MOS管(Q1)为PMOS管,第二MOS管(Q2)为NMOS管。
PCT/CN2021/112404 2020-08-18 2021-08-13 一种利用分立元件搭建的带全诊断功能的负载驱动电路 WO2022037482A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010830089.X 2020-08-18
CN202010830089.XA CN112019003A (zh) 2020-08-18 2020-08-18 一种利用分立元件搭建的带全诊断功能的负载驱动电路

Publications (1)

Publication Number Publication Date
WO2022037482A1 true WO2022037482A1 (zh) 2022-02-24

Family

ID=73504889

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/112404 WO2022037482A1 (zh) 2020-08-18 2021-08-13 一种利用分立元件搭建的带全诊断功能的负载驱动电路

Country Status (2)

Country Link
CN (1) CN112019003A (zh)
WO (1) WO2022037482A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115102532A (zh) * 2022-08-23 2022-09-23 宁波兴为汽车电子有限公司 Mos管高边输出的短路过流保护电路、保护方法及车辆
CN116599346A (zh) * 2023-07-17 2023-08-15 广州中基国威电子科技有限公司 一种负载驱动电路、方法及电子设备

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112019003A (zh) * 2020-08-18 2020-12-01 重庆智行者信息科技有限公司 一种利用分立元件搭建的带全诊断功能的负载驱动电路
CN113054715A (zh) * 2021-04-07 2021-06-29 科世达(上海)机电有限公司 一种低成本带过载过压保护功能的汽车门把手供电电路
CN113541098A (zh) * 2021-09-14 2021-10-22 杭州博雅鸿图视频技术有限公司 电源保护电路及天线设备
CN114447880A (zh) * 2022-01-12 2022-05-06 中汽创智科技有限公司 一种负载过流过压保护回路及车辆供电系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102570377A (zh) * 2010-12-07 2012-07-11 中国第一汽车集团公司无锡油泵油嘴研究所 负载故障诊断检测方法与装置
JP2016101032A (ja) * 2014-11-25 2016-05-30 トヨタ自動車株式会社 車両およびその制御方法
CN106627181A (zh) * 2015-09-10 2017-05-10 北汽福田汽车股份有限公司 电池管理系统及包括其的车辆以及控制电池继电器的方法
CN208094179U (zh) * 2018-04-27 2018-11-13 北京新能源汽车股份有限公司 车辆、车辆的控制系统和低端输出恒流保护电路
CN208198311U (zh) * 2018-04-27 2018-12-07 北京新能源汽车股份有限公司 车辆、车辆的控制系统和高端输出恒流保护电路
CN210517765U (zh) * 2019-08-02 2020-05-12 北京智行者科技有限公司 一种基于nmos管的低端驱动输出短路保护电路
CN112019003A (zh) * 2020-08-18 2020-12-01 重庆智行者信息科技有限公司 一种利用分立元件搭建的带全诊断功能的负载驱动电路

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102969693B (zh) * 2012-05-31 2015-04-15 南京浦镇海泰制动设备有限公司 轨道车辆电控阀驱动保护电路

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102570377A (zh) * 2010-12-07 2012-07-11 中国第一汽车集团公司无锡油泵油嘴研究所 负载故障诊断检测方法与装置
JP2016101032A (ja) * 2014-11-25 2016-05-30 トヨタ自動車株式会社 車両およびその制御方法
CN106627181A (zh) * 2015-09-10 2017-05-10 北汽福田汽车股份有限公司 电池管理系统及包括其的车辆以及控制电池继电器的方法
CN208094179U (zh) * 2018-04-27 2018-11-13 北京新能源汽车股份有限公司 车辆、车辆的控制系统和低端输出恒流保护电路
CN208198311U (zh) * 2018-04-27 2018-12-07 北京新能源汽车股份有限公司 车辆、车辆的控制系统和高端输出恒流保护电路
CN210517765U (zh) * 2019-08-02 2020-05-12 北京智行者科技有限公司 一种基于nmos管的低端驱动输出短路保护电路
CN112019003A (zh) * 2020-08-18 2020-12-01 重庆智行者信息科技有限公司 一种利用分立元件搭建的带全诊断功能的负载驱动电路

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115102532A (zh) * 2022-08-23 2022-09-23 宁波兴为汽车电子有限公司 Mos管高边输出的短路过流保护电路、保护方法及车辆
CN116599346A (zh) * 2023-07-17 2023-08-15 广州中基国威电子科技有限公司 一种负载驱动电路、方法及电子设备
CN116599346B (zh) * 2023-07-17 2023-10-13 广州中基国威电子科技有限公司 一种负载驱动电路、方法及电子设备

Also Published As

Publication number Publication date
CN112019003A (zh) 2020-12-01

Similar Documents

Publication Publication Date Title
WO2022037482A1 (zh) 一种利用分立元件搭建的带全诊断功能的负载驱动电路
CN103036494A (zh) 双极电机控制器中的过流条件的诊断
US7301129B1 (en) Control circuit for semiconductor device having overheating protection function
CN205829455U (zh) 一种带避免短路保护盲区的igbt驱动电路
CN211018790U (zh) 一种低边电子开关电路
CN106130520A (zh) Igbt短路保护电路及方法、igbt驱动器以及igbt电路
CN109510176A (zh) 一种智能功率模块驱动保护电路
CN210156904U (zh) 车用电源短路保护电路
KR101360436B1 (ko) Pwm제어기
CN106896755A (zh) 车用单低端控制的负载驱动电路
CN210517765U (zh) 一种基于nmos管的低端驱动输出短路保护电路
CN214097526U (zh) 用于电流型速度传感器的采样电路
CN211556863U (zh) 车灯恒流驱动模块短路保护电路、装置和车辆
CN210317466U (zh) 一种汽车电子水泵控制器及水泵
EP1686690A2 (en) Configurable high/low side driver using a low-side fet pre-driver
CN219831675U (zh) 一种通风控制电路
CN111367214A (zh) 一种带诊断及保护的按键实现电路
CN217037450U (zh) 一种车载音频保护电路
CN220367374U (zh) 一种igbt短路检测电路和汽车加热器
CN221010090U (zh) 高边驱动电路、控制器及车辆
CN220492855U (zh) 一种功率驱动保护电路
CN215728550U (zh) 一种继电器线圈短路与开路的诊断电路
CN219676405U (zh) 温度监控装置及车辆
CN204956293U (zh) 汽车转向灯监视器
CN214479580U (zh) 一种基于n沟道mos管的开关短路保护电路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21857577

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21857577

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 21857577

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 18.10.2023)