WO2022261888A1 - 天线自适应调整方法、控制设备、飞行系统和存储介质 - Google Patents

天线自适应调整方法、控制设备、飞行系统和存储介质 Download PDF

Info

Publication number
WO2022261888A1
WO2022261888A1 PCT/CN2021/100561 CN2021100561W WO2022261888A1 WO 2022261888 A1 WO2022261888 A1 WO 2022261888A1 CN 2021100561 W CN2021100561 W CN 2021100561W WO 2022261888 A1 WO2022261888 A1 WO 2022261888A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
control device
signal
aircraft
wireless signal
Prior art date
Application number
PCT/CN2021/100561
Other languages
English (en)
French (fr)
Inventor
舒小平
陈洋
何佳欢
靖俊
陆城富
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to PCT/CN2021/100561 priority Critical patent/WO2022261888A1/zh
Publication of WO2022261888A1 publication Critical patent/WO2022261888A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/28Adaptation for use in or on aircraft, missiles, satellites, or balloons

Definitions

  • the present application generally relates to the technical field of unmanned aerial vehicle control, and more specifically relates to an antenna self-adaptive adjustment method, a control device, a flight system and a storage medium.
  • the flight system is generally composed of control equipment such as the aircraft and the remote control.
  • the aircraft usually has 4 or more antennas on the 4-axis; and the control device has at least 2 antennas.
  • the antenna transmits information through radio.
  • the link When the aircraft is flying for a long distance, or when there are factors such as occlusion and interference during flight, the link may be disconnected.
  • power inspection because the distance of the power line is generally very long, once there is a partial disconnection during the flight, it will affect the efficiency of the inspection and affect the safety of use. Therefore, for such application scenarios, it is necessary to further improve the robustness of wireless transmission.
  • a method for adaptive antenna adjustment is provided, which is executed by a control device.
  • the method includes: receiving a first wireless signal from an aircraft; determining the first wireless signal according to the first wireless signal.
  • the signal-to-noise ratio of the wireless signal when the signal-to-noise ratio of the first wireless signal is less than a preset threshold, automatically adjust the orientation of the antenna of the control device so that the signal-to-noise ratio of the second wireless signal received from the aircraft The ratio is greater than the signal-to-noise ratio of the first wireless signal.
  • a control device includes an antenna, a memory, a processor, and an antenna control device, wherein: the antenna is used to transmit wireless signals to an aircraft, and/or transmit wireless signals from the aircraft receiving a wireless signal; the antenna control device is used to receive a control instruction from the processor, and adjust the orientation of the antenna based on the control instruction; the memory is used to store a computer program run by the processor, when the computer When the program runs on the processor, the processor is made to perform the following operations: determine the signal-to-noise ratio of the first wireless signal according to the first wireless signal received by the antenna from the aircraft; when the first When the signal-to-noise ratio of the wireless signal is less than the preset threshold, the antenna control device is controlled to automatically adjust the orientation of the antenna of the control device so that the signal-to-noise ratio of the second wireless signal received from the aircraft is greater than the preset threshold.
  • the signal-to-noise ratio of the first wireless signal is used to transmit wireless signals to an aircraft, and/or transmit wireless signals from the aircraft receiving
  • a flight system includes a control device and an aircraft, wherein the aircraft communicates wirelessly with the control device, and the aircraft performs For flight operations, the control device is the above-mentioned control device.
  • a storage medium where a computer program is stored on the storage medium, and the computer program executes the above antenna adaptive adjustment method when running.
  • the antenna adaptive adjustment method, control device, flight system and storage medium can automatically adjust the orientation of the antenna whenever the signal-to-noise ratio of the wireless signal received from the aircraft is lower than the preset threshold, so that the control device
  • the wireless communication with the aircraft is always at a high signal-to-noise ratio level, thereby improving the physical transmission capability of the antenna and realizing high-reliability long-distance communication.
  • FIG. 1 shows a schematic diagram of wireless communication between a control device at the ground end and an aircraft at the air end.
  • Fig. 2 shows a schematic diagram of an existing implementation of wireless communication between the control device at the ground end and the aircraft at the sky end when the control device at the ground end performs a long-distance flight with the control device at the ground end.
  • Fig. 3 shows a schematic flowchart of an antenna adaptive adjustment method according to an embodiment of the present application.
  • Fig. 4 shows a schematic diagram of a communication process between a control device and an aircraft in an antenna adaptive adjustment method according to an embodiment of the present application.
  • Fig. 5 shows a schematic flow of controlling a device to perform antenna adaptive adjustment in an antenna adaptive adjustment method according to another embodiment of the present application.
  • Fig. 6 shows a schematic diagram of rotation of the antenna of the control device according to the embodiment shown in Fig. 5 .
  • Fig. 7 shows a schematic block diagram of a control device according to an embodiment of the present application.
  • Fig. 8 shows a schematic block diagram of a flight system according to an embodiment of the present application.
  • FIG. 1 shows a schematic diagram of wireless communication between a control device at the ground end and an aircraft at the air end.
  • the aircraft usually has four or more antennas on the 4-axis (antennas ANT2, ANT3, ANT4 and ANT5 shown in Figure 1), and the control equipment (such as remote controller, automatic airport, etc.) will at least There are 2 antennas (antenna ANT0 and ANT1 shown in Figure 1), and the antenna is used as a physical channel for receiving and transmitting wireless signals, and the information is transmitted by radio.
  • the link may be disconnected. Therefore, for such application scenarios, it is necessary to further improve the robustness of wireless transmission.
  • the realization scheme of the long-distance flight of the aircraft is mainly in the following ways: 1) Increase the wireless transmission power to increase the communication distance; 2) Use the mobile public access network (4G/5G) to realize long-distance flight.
  • For the above method 1) it increases the wireless transmission power, and the disadvantages are obvious: firstly, it increases the power consumption of the aircraft, increases the difficulty of heat dissipation of the system, reduces the battery life of the whole aircraft, and reduces the reliability of the system. ;
  • the wireless transmission power is limited by the certification standards of various regions, and it is impossible to increase without limit. Generally, it is difficult to continue to increase the communication distance when it reaches the level of 10km.
  • the control device such as a remote control device, including antennas ANT0 and ANT1
  • the aircraft including antennas ANT2, ANT3, ANT4 and ANT5
  • 4G/5G mobile base stations
  • the public network similar to mobile phone communication, theoretically, unlimited communication can be achieved; however, for some In mountainous areas where the network cannot cover or areas with poor signal, this control method has the disadvantage of poor stability.
  • this application provides a method for adaptively adjusting the antenna of the control device, which can automatically control the orientation of the antenna, so that the transmission efficiency of the antenna of the control device in the direction of connecting to the aircraft is at the highest, so that the wireless communication between the control device and the aircraft
  • the signal is always in a state of high signal-to-noise ratio, maximizing the use of wireless performance and realizing high-reliability long-distance communication.
  • Fig. 3 shows a schematic flowchart of an antenna adaptive adjustment method 300 according to an embodiment of the present application.
  • the antenna adaptive adjustment method 300 according to the embodiment of the present application may be executed by the control device, and includes the following steps:
  • step S310 a first wireless signal is received from the aircraft.
  • step S320 the signal-to-noise ratio of the first wireless signal is determined according to the first wireless signal.
  • step S330 when the signal-to-noise ratio of the first wireless signal is less than the preset threshold, the orientation of the antenna of the control device is automatically adjusted so that the signal-to-noise ratio of the second wireless signal received from the aircraft is greater than the signal-to-noise ratio of the first wireless signal Compare.
  • the control device such as the remote controller in the flight system, the ground terminal equipment such as the automatic airport
  • receives a wireless signal from the aircraft in order to distinguish it from the wireless signal received again later, the wireless signal is called the first wireless signal
  • the signal-to-noise ratio of the wireless signal can be determined. If the signal-to-noise ratio of the wireless signal is lower than the preset threshold, it is considered that the current wireless signal is not good, and the antenna orientation needs to be automatically adjusted to improve the next time.
  • the signal-to-noise ratio of the received wireless signal (in order to distinguish from the aforementioned first wireless signal, the wireless signal here is referred to as the second wireless signal).
  • an enabling condition is set for the automatic adjustment of the antenna on the control device for wireless communication with the aircraft.
  • the enabling condition is satisfied , the orientation of the antenna is automatically adjusted so that the antenna faces a direction with a larger gain, thereby improving the physical transmission capability and realizing high-reliability long-distance communication.
  • the enabling condition for the automatic adjustment of the antenna is set, the situation of continuously adjusting the position of the antenna during short-distance communication or when the wireless communication state is normal can be avoided.
  • the automatic adjustment of the orientation of the antenna of the control device in step S330 may include the following operations: determine the optimal orientation of the antenna based on the status information of the aircraft, the status information of the antenna of the control device, and the antenna pattern , and automatically adjust the antenna to the best orientation, wherein the status information includes position information and orientation information, and the optimal orientation refers to the orientation that enables the antenna to achieve the highest gain.
  • the relative positional relationship between the antenna of the control device and the aircraft is obtained by using the orientation of the aircraft and the orientation of the antenna of the control device, combined with the pattern reflecting the gain characteristics of the antenna in each direction, the current position of the antenna can be accurately calculated.
  • the best orientation is the direction in which the antenna can currently achieve the highest gain, so that the orientation of the antenna can be precisely controlled, so that the wireless communication between the control device and the aircraft via the antenna can achieve the best signal-to-noise ratio level.
  • the status information of the aircraft can be obtained according to the positioning device and compass of the aircraft itself; the antenna is a passive component, and its status information cannot be obtained by itself.
  • the status information of the control device can be obtained through the positioning device and compass of the control device, and then
  • the state information of the antenna is determined according to the state information of the control device and the coordinate mapping relationship between the antenna and the control device.
  • the aforementioned antenna pattern and the coordinate mapping relationship here may be pre-stored in the memory of the control device, such as using two tables to store them separately, so as to be used for the aforementioned antenna state information calculation and the antenna's maximum Calculation of the best orientation.
  • the preset threshold value of the signal-to-noise ratio, Table 1 and Table 2 are written in advance in the control device, where Table 1 records the coordinate mapping relationship between the antenna and the control device, and Table 2 records the coordinate mapping relationship between the antenna and the control device. gain characteristics.
  • the control device continuously receives wireless signals from the aircraft, determines the signal-to-noise ratio, and compares it with the preset threshold; when the signal-to-noise ratio of the received wireless signal (called the first wireless signal) is found to be less than the preset threshold, the state of the aircraft is obtained from the aircraft Information (or, every predetermined time interval, such as 20 seconds, obtain the status information of the aircraft from the aircraft); then combine its own status information to calculate the relative position and distance from the aircraft; Calculate the best orientation currently required by the antenna; control the antenna to adjust to the best orientation; after that, continue to receive wireless signals from the aircraft, determine the signal-to-noise ratio, compare it with the preset threshold, and repeat the above process, so that whenever the aircraft receives When the signal-to-noise ratio of the wireless signal is lower than the preset threshold, the above-mentioned process of automatically adjusting the antenna is performed, so that the antenna is always in the best orientation, so that the wireless communication between the control device and the aircraft is always at a high signal
  • the automatic adjustment of the orientation of the antenna of the control device in step S330 may include the following operations: automatically searching for the signal-to-noise ratio of the second wireless signal received from the aircraft is not less than the preset threshold The orientation of the antenna, and automatically adjust the antenna to the orientation based on the search results.
  • automatically searching for the signal-to-noise ratio of the second wireless signal received from the aircraft is not less than the preset threshold The orientation of the antenna, and automatically adjust the antenna to the orientation based on the search results.
  • the automatic search can improve The antenna orientation of the signal-to-noise ratio, such as automatically adjusting the orientation of the antenna (such as rotating a certain angle), and receiving the wireless signal from the aircraft again after adjustment, if the signal-to-noise ratio of the received wireless signal is improved compared to before, It indicates that the adjustment strategy (direction) of the antenna orientation is correct, and the adjustment can be continued to continue to improve the signal-to-noise ratio of the received wireless signal so that it is not lower than the preset threshold (of course, it is also possible that the first adjustment has already been completed). so that the signal-to-noise ratio is not lower than the preset threshold). Therefore, this automatic search solution can also improve the physical transmission capability of the antenna and realize high-reliability long-distance communication.
  • the control device receives the first wireless signal from the aircraft, and determines the signal-to-noise ratio of the first wireless signal; when the signal-to-noise ratio of the first wireless signal is less than a preset threshold, controls the antenna to rotate a preset angle; from the aircraft Receive the second wireless signal, and determine the signal-to-noise ratio of the second wireless signal; when it is determined that the signal-to-noise ratio of the second wireless signal is not less than the preset threshold, no operation is performed (that is, there is no need to adjust the antenna orientation, and return to receiving the second wireless signal from the aircraft.
  • the antenna when it is determined that the signal-to-noise ratio of the second wireless signal is still less than the preset threshold, control the antenna to rotate a preset angle (as shown in Figure 6, the preset angle is, for example, 10 degrees, 15 degrees , 20 degrees, 30 degrees, etc., which can be set in combination with the position of the control device antenna itself, the angle that the antenna can rotate, the adjustment accuracy, the adjustment speed and other factors); continue to receive wireless signals from the aircraft (the same as the initial first wireless signal) Signal discrimination, here still referred to as the second wireless signal), determine the signal-to-noise ratio of the second wireless signal; and so on, until the signal-to-noise ratio of the second wireless signal is not less than the preset threshold.
  • the preset angle is, for example, 10 degrees, 15 degrees , 20 degrees, 30 degrees, etc., which can be set in combination with the position of the control device antenna itself, the angle that the antenna can rotate, the adjustment accuracy, the adjustment speed and other factors
  • Signal discrimination here still referred
  • the antenna can be automatically adjusted to obtain the maximum signal-to-noise ratio in all rotatable angles
  • the rotation angle corresponds to the orientation, which also realizes the maximum use of wireless performance that can be achieved currently.
  • the antenna adaptive adjustment method can automatically adjust the orientation of the antenna whenever the signal-to-noise ratio of the wireless signal received from the aircraft is lower than the preset threshold, so that the distance between the control device and the aircraft
  • the wireless communication is always at a high signal-to-noise ratio level, thereby improving the physical transmission capability of the antenna and realizing high-reliability long-distance communication.
  • control device 700 provided according to another aspect of the present application with reference to FIG. 7 , which can be used to execute the antenna adaptive adjustment method 300 described above.
  • the control device 700 may include an antenna 710 , a memory 720 , a processor 730 and an antenna control device 740 .
  • the antenna 710 is used to transmit wireless signals to the aircraft, and/or receive wireless signals from the aircraft;
  • the antenna control device 740 is used to receive the control instructions of the processor 730, and adjust the orientation of the antenna 710 based on the control instructions;
  • the computer program running on the processor when the computer program is running on the processor, the processor 730 is made to perform the following operations: determine the signal-to-noise ratio of the first wireless signal according to the first wireless signal received by the antenna 710 from the aircraft; When the signal-to-noise ratio of the signal is lower than the preset threshold, the control antenna control device 740 automatically adjusts the orientation of the antenna 710 of the control device, so that the signal-to-noise ratio of the second wireless signal received from the aircraft is greater than that of the first wireless signal.
  • the processor 730 can determine the signal-to-noise ratio of the wireless signal, and if the signal-to-noise ratio of the wireless signal is less than a preset threshold, it is considered that the current wireless signal is not good, and the antenna control The device 740 automatically adjusts the orientation of the antenna to improve the signal-to-noise ratio of the wireless signal received next time (in order to distinguish it from the aforementioned first wireless signal, the wireless signal here is called the second wireless signal).
  • an enabling condition is set for the automatic adjustment of the antenna 710 on the control device 700 for wireless communication with the aircraft.
  • the processor 730 controls the antenna control device 740 to automatically adjust the orientation of the antenna 710 so that the antenna 710 faces a direction with greater gain, thereby improving physical transmission capability and realizing high-reliability long-distance communication.
  • the enabling condition for the automatic adjustment of the antenna 710 is set, the situation of continuously adjusting the position of the antenna during short-distance communication or when the wireless communication state is normal can be avoided.
  • the processor 730 automatically adjusts the orientation of the antenna of the control device, which may include the following operations: determine the antenna 710 based on the state information of the aircraft, the state information of the antenna 710 of the control device 700 and the pattern of the antenna 710 and control the antenna control device 740 to automatically adjust the antenna 710 to the optimal orientation, wherein the status information includes position information and orientation information, and the optimal orientation refers to the orientation that enables the antenna 710 to achieve the highest gain.
  • the relative positional relationship between the antenna 710 and the aircraft is obtained by using the orientation of the aircraft and the orientation of the antenna 710 of the control device 700, and combined with the pattern reflecting the gain characteristics of the antenna 710 in each direction, the processor 730 can Accurately calculate the current best orientation of the antenna 710, that is, the direction in which the antenna 710 can achieve the highest gain at present, so as to precisely control the antenna control device 740 to adjust the orientation of the antenna, so that the wireless communication between the control device 700 and the aircraft via the antenna 710 can be maximized.
  • Optimum signal-to-noise ratio level is Optimum signal-to-noise ratio level.
  • the state information of the aircraft can be obtained according to the positioning device and compass of the aircraft itself; the antenna 710 is generally a passive component, and its state information cannot be obtained by itself, and can be obtained through the positioning device and compass (not shown) carried by the control device 700.
  • the positioning device is used to obtain the position information of the control device 700
  • the compass is used to obtain the orientation information of the control device 700
  • the coordinate mapping relationship of the antenna 710 is determined to determine the state information.
  • the aforementioned antenna 710 pattern and the coordinate mapping relationship here may be pre-stored in the memory 720 of the control device 700, such as using two tables to store them separately, for the aforementioned calculation of the status information of the antenna 710 And the calculation of the optimal orientation of the antenna 710 .
  • the preset threshold value of the signal-to-noise ratio, Table 1 and Table 2 are written in the memory 720 of the control device 700 in advance, wherein Table 1 records the coordinate mapping relationship between the antenna 710 and the control device 700, and Table 2 records the antenna 710 in each direction. gain characteristics.
  • the antenna 710 of the control device 700 continues to receive wireless signals from the aircraft, and the processor 730 determines the signal-to-noise ratio and compares it with a preset threshold; when it is determined that the signal-to-noise ratio of the received wireless signal (called the first wireless signal) is less than the preset threshold , the status information of the aircraft can be obtained from the aircraft (or, every predetermined time interval, such as 20 seconds, that is, the status information of the aircraft is obtained from the aircraft once); then the relative position and distance to the aircraft can be calculated in combination with its own status information; Then by looking up Table 1 and Table 2, the optimal orientation required by the antenna 710 is calculated at present; the antenna control device 740 is controlled to adjust the antenna 710 to the optimal orientation; after that, the antenna 710 can continue to receive wireless signals from the aircraft, and the processor 730 determines The signal-to-noise ratio is compared with the preset threshold, and the above-mentioned process is repeated, so that whenever the signal-to-noise ratio of the wireless
  • the processor 730 automatically adjusts the orientation of the antenna of the control device, which may include the following operations: automatically searching for the signal-to-noise ratio of the second wireless signal received from the aircraft is not less than the preset threshold An orientation of the antenna 710, and automatically adjust the antenna 710 to the orientation based on the search result.
  • the processor 730 does not need to obtain the state information of the aircraft and the state information of the antenna 710, nor does it need to obtain the pattern of the antenna 710, when the signal-to-noise ratio of the wireless signal received by the antenna 710 from the aircraft is lower than a preset threshold , the processor 730 automatically searches for an antenna orientation that can improve the signal-to-noise ratio, for example, controls the antenna control device 740 to automatically adjust the orientation of the antenna 710 (such as rotating a certain angle), and after adjustment, the antenna 710 receives wireless signals from the aircraft again, If the signal-to-noise ratio of the wireless signal received again is higher than before, it indicates that the adjustment strategy (direction) of the antenna orientation is correct, and the adjustment can be continued to continue to improve the signal-to-noise ratio of the received wireless signal so that it does not is lower than the preset threshold (of course, it is also possible that the first adjustment has made the signal-to-noise ratio not lower than the preset threshold). Therefore, this automatic search
  • the antenna 710 of the control device 700 receives the first wireless signal from the aircraft, and the processor 730 determines the signal-to-noise ratio of the first wireless signal; Rotate a preset angle; Antenna 710 receives a second wireless signal from the aircraft, and processor 730 determines the signal-to-noise ratio of the second wireless signal; when it is determined that the signal-to-noise ratio of the second wireless signal is not less than a preset threshold, no operation is performed (ie There is no need to control the antenna control device 740 to adjust the antenna orientation, the antenna 710 continues to receive the first wireless signal from the aircraft); when it is determined that the signal-to-noise ratio of the second wireless signal is still less than the preset threshold, the processor 730 controls the antenna control device 740 to turn the antenna Rotate preset angles (such as 10 degrees, 15 degrees, 20 degrees, 30 degrees, etc., which can be set in combination with the position of the control device
  • the processor 730 can control the antenna control device 740 to automatically adjust the antenna to all angles.
  • the orientation corresponding to the rotation angle with the maximum signal-to-noise ratio is obtained, which also realizes the maximum use of wireless performance that can be realized currently.
  • the control device can automatically adjust the orientation of the antenna whenever the signal-to-noise ratio of the wireless signal received from the aircraft is lower than the preset threshold, so that the wireless communication between the control device and the aircraft It is always at a high signal-to-noise ratio level, thereby improving the physical transmission capability of the antenna and realizing high-reliability long-distance communication.
  • the flight system 800 includes a control device 810 and an aircraft 820, wherein the aircraft 820 communicates wirelessly with the control device 810, and the aircraft 820 performs flight operations under the control of the control device 810, and the control device 810 is the aforementioned A control device 700 according to an embodiment of the present application.
  • the control device 810 is the aforementioned A control device 700 according to an embodiment of the present application.
  • a storage medium is also provided, on which program instructions are stored, and when the program instructions are executed by a computer or a processor, they are used to execute the antenna adaptive Adjust the corresponding steps of the method.
  • the storage medium may include, for example, a memory card of a smart phone, a storage unit of a tablet computer, a hard disk of a personal computer, a read-only memory (ROM), an erasable programmable read-only memory (EPROM), a portable compact disk ROM, etc. (CD-ROM), USB memory, or any combination of the above storage media.
  • the computer readable storage medium can be any combination of one or more computer readable storage medium.
  • the antenna adaptive adjustment method, control device, flight system and storage medium can automatically adjust the antenna's The orientation makes the wireless communication between the control device and the aircraft always at a high signal-to-noise ratio level, thereby improving the physical transmission capacity of the antenna and realizing high-reliability long-distance communication.
  • the disclosed devices and methods may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components can be combined or May be integrated into another device, or some features may be omitted, or not implemented.
  • the various component embodiments of the present application may be realized in hardware, or in software modules running on one or more processors, or in a combination thereof.
  • a microprocessor or a digital signal processor (DSP) may be used in practice to implement some or all functions of some modules according to the embodiments of the present application.
  • DSP digital signal processor
  • the present application can also be implemented as an apparatus program (for example, a computer program and a computer program product) for performing a part or all of the methods described herein.
  • Such a program implementing the present application may be stored on a computer-readable storage medium, or may be in the form of one or more signals.
  • Such a signal may be downloaded from an Internet site, or provided on a carrier signal, or provided in any other form.

Abstract

一种天线自适应调整方法(300)、控制设备(700,810)、飞行系统(800)和存储介质,方法(300)由控制设备(700,810)执行,包括:从飞行器(820)接收第一无线信号;根据第一无线信号确定第一无线信号的信噪比;当第一无线信号的信噪比小于预设阈值时,自动调整控制设备(700,810)的天线(710)的朝向,以使得从飞行器(820)接收的第二无线信号的信噪比大于第一无线信号的信噪比。能够在每当从飞行器(820)接收到的无线信号的信噪比低于预设阈值时自动调整天线(710)的朝向,使得控制设备(700,810)与飞行器(820)之间的无线通信总是处于高信噪比水平,从而提高天线(710)物理上的传输能力,实现高可靠性的远距离通信。

Description

天线自适应调整方法、控制设备、飞行系统和存储介质
说明书
技术领域
本申请总体上涉及无人飞行器控制技术领域,更具体地涉及一种天线自适应调整方法、控制设备、飞行系统和存储介质。
背景技术
飞行系统一般由飞行器和遥控器等控制设备构成。其中,飞行器在4轴上通常会有4根甚至多根天线;而控制设备至少会有2根天线。天线作为接收和发射无线信号的物理通道,通过无线电进行信息的传递。
飞行器在长距离飞行时,或者在飞行时存在遮挡、干扰等因素时,可能导致链路断连的情况。比如电力巡检,由于电力线的距离一般很长,一旦飞行过程中出现局部断连,就会影响巡检效率,以及影响使用安全。因此,对于此类应用场景,需要进一步提高无线传输的鲁棒性。
发明内容
基于上述问题,根据本申请一方面,提供了一种天线自适应调整方法,由控制设备执行,所述方法包括:从飞行器接收第一无线信号;根据所述第一无线信号确定所述第一无线信号的信噪比;当所述第一无线信号的信噪比小于预设阈值时,自动调整所述控制设备的天线的朝向,以使得从所述飞行器接收的第二无线信号的信噪比大于所述第一无线信号的信噪比。
根据本申请另一方面,提供了一种控制设备,所述控制设备包括天线、存储器、处理器和天线控制装置,其中:所述天线用于向飞行器发射无线信号,和/或从所述飞行器接收无线信号;所述天线控制装置用于接收所述处理器的控制指令,基于所述控制指令调整所述天线的朝向;所述存储器用于存储由所述处理器运行的计算机程序,当计算机程序在所述处理器上运行时,使得所述处理器执行如下操作:根据所述天线从所述飞行器接收的第一无线信号确定所述第一无线信号的信噪比;当所述第一无线信号的 信噪比小于所述预设阈值时,控制所述天线控制装置自动调整所述控制设备的天线的朝向,以使得从所述飞行器接收的第二无线信号的信噪比大于所述第一无线信号的信噪比。
根据本申请再一方面,提供了一种飞行系统,所述飞行系统包括控制设备和飞行器,其中,所述飞行器与所述控制设备进行无线通信,所述飞行器在所述控制设备的控制下执行飞行作业,所述控制设备为上述控制设备。
根据本申请又一方面,提供了一种存储介质,所述存储介质上存储有计算机程序,所述计算机程序在运行时执行上述天线自适应调整方法。
根据本申请实施例的天线自适应调整方法、控制设备、飞行系统和存储介质能够在每当从飞行器接收到的无线信号的信噪比低于预设阈值时自动调整天线的朝向,使得控制设备与飞行器之间的无线通信总是处于高信噪比水平,从而提高天线物理上的传输能力,实现高可靠性的远距离通信。
附图说明
图1示出地面端的控制设备与天空端的飞行器之间进行无线通信的示意图。
图2示出地面端的控制设备与天空端的飞行器进行长距离飞行时与地面端的控制设备进行无线通信的一个现有的实现方式的示意图。
图3示出根据本申请实施例的天线自适应调整方法的示意性流程图。
图4示出根据本申请一个实施例的天线自适应调整方法中控制设备与飞行器的通信过程示意图。
图5示出根据本申请另一个实施例的天线自适应调整方法中控制设备进行天线自适应调整的示意性流程。
图6示出根据图5所示实施例中控制设备的天线进行旋转的示意图。
图7示出根据本申请实施例的控制设备的示意性框图。
图8示出根据本申请实施例的飞行系统的示意性框图。
具体实施方式
为了使得本申请的目的、技术方案和优点更为明显,下面将参照附图 详细描述根据本申请的示例实施例。显然,所描述的实施例仅仅是本申请的一部分实施例,而不是本申请的全部实施例,应理解,本申请不受这里描述的示例实施例的限制。基于本申请中描述的本申请实施例,本领域技术人员在没有付出创造性劳动的情况下所得到的所有其它实施例都应落入本申请的保护范围之内。
在下文的描述中,给出了大量具体的细节以便提供对本申请更为彻底的理解。然而,对于本领域技术人员而言显而易见的是,本申请可以无需一个或多个这些细节而得以实施。在其他的例子中,为了避免与本申请发生混淆,对于本领域公知的一些技术特征未进行描述。
应当理解的是,本申请能够以不同形式实施,而不应当解释为局限于这里提出的实施例。相反地,提供这些实施例将使公开彻底和完全,并且将本申请的范围完全地传递给本领域技术人员。
在此使用的术语的目的仅在于描述具体实施例并且不作为本申请的限制。在此使用时,单数形式的“一”、“一个”和“所述/该”也意图包括复数形式,除非上下文清楚指出另外的方式。还应明白术语“组成”和/或“包括”,当在该说明书中使用时,确定所述特征、整数、步骤、操作、元件和/或部件的存在,但不排除一个或更多其它的特征、整数、步骤、操作、元件、部件和/或组的存在或添加。在此使用时,术语“和/或”包括相关所列项目的任何及所有组合。
为了彻底理解本申请,将在下列的描述中提出详细的步骤以及详细的结构,以便阐释本申请提出的技术方案。本申请的较佳实施例详细描述如下,然而除了这些详细描述外,本申请还可以具有其他实施方式。
图1示出地面端的控制设备与天空端的飞行器之间进行无线通信的示意图。如图1所示,飞行器在4轴上通常会有4根甚至多根天线(如图1所示的天线ANT2、ANT3、ANT4以及ANT5),控制设备(例如遥控器、自动机场等)至少会有2根天线(如图1所示的天线ANT0和ANT1),天线作为接收和发射无线信号的物理通道,通过无线电进行信息的传递。
飞行器在长距离飞行时,或者在飞行时存在遮挡、干扰等因素时,可能导致链路断连的情况。因此,对于此类应用场景,需要进一步提高无线传输的鲁棒性。
目前,飞行器长距离飞行的实现方案主要以下方式:1)加大无线发射功率,提高通信距离;2)采用移动公共接入网(4G/5G)的方式去实现远距离飞行。对于上述方式1),其加大了无线发射功率,带来的缺点是显而易见的:首先是增加了飞行器的功耗,增加了系统散热难度、减少了整机续航时间,降低了系统的可靠性;其次,无线发射功率受限于各个地区认证的标准,不可能无限制的增加,一般通信距离到了10km级别就难以继续提高。对于上述方式2),如图2所示的,其采用移动公网控制的方式,即控制设备(例如遥控器类的设备,包括天线ANT0和ANT1)和飞行器(包括天线ANT2、ANT3、ANT4以及ANT5)都是通过附近的移动基站(4G/5G)去实现通信,不具备直接通信的通道;由于采用公网,类似手机通信,理论来说可以做到无距离限制的通信;但是,对于一些网络无法覆盖的山区或者信号差的区域,这种控制方式具有稳定性差的缺点。
基于此,本申请提供一种控制设备的天线自适应调整方法,可以自动控制天线的朝向,使得控制设备的天线在连接飞行器方向的发射效率处于最高,从而使得控制设备与飞行器之间的无线通信信号总是处于高信噪比状态,最大化利用无线性能,实现高可靠性的远距离通信。下面参照图3来描述根据本申请实施例的天线自适应调整方法。
图3示出根据本申请实施例的天线自适应调整方法300的示意性流程图。如图3所示,根据本申请实施例的天线自适应调整方法300可以由控制设备来执行,包括如下步骤:
在步骤S310,从飞行器接收第一无线信号。
在步骤S320,根据第一无线信号确定第一无线信号的信噪比。
在步骤S330,当第一无线信号的信噪比小于预设阈值时,自动调整控制设备的天线的朝向,以使得从飞行器接收的第二无线信号的信噪比大于第一无线信号的信噪比。
在本申请的实施例中,当控制设备(诸如飞行系统中的遥控器、自动机场等地面端设备)从飞行器接收到一个无线信号(为了与之后再次接收的无线信号相互区分,将该无线信号称为第一无线信号)时,可以确定该无线信号的信噪比,如果该无线信号的信噪比小于预设阈值,则认为当前无线信号不佳,需要自动调整天线朝向,以提高下次再接收到的无线信号 (为了与前述的第一无线信号相互区分,将此处的无线信号称为第二无线信号)的信噪比。因此,在本申请的实施例中,通过设置信噪比的预设阈值,为控制设备上用于与飞行器无线通信的天线的自动调整设定了一个使能条件,当该使能条件被满足时,则自动调整天线的朝向,使得天线朝向具备较大增益的方向,从而提高物理上的传输能力,实现高可靠性的远距离通信。此外,由于设置了用于天线自动调整的使能条件,可以避免短距离通信时候或者无线通信状态正常时候也不断调整天线位置的情况。
在本申请的一个实施例中,步骤S330中自动调整控制设备的天线的朝向,可以包括如下操作:基于飞行器的状态信息、控制设备的天线的状态信息以及天线的方向图确定天线的最佳朝向,并自动将天线调整到最佳朝向,其中,状态信息包括位置信息和朝向信息,最佳朝向是指能使天线达到最高增益的朝向。在该实施例中,利用飞行器的位置朝向和控制设备天线的位置朝向获取控制设备天线与飞行器的相对位置关系,再结合反映天线在各方向的增益特性的方向图,能够精准解算出天线当前的最佳朝向,即天线当前能够达到最高增益的方向,从而精准地控制天线朝向,使得控制设备与飞行器之间经由天线的无线通信达到最佳信噪比水平。
其中,飞行器的状态信息可以根据飞行器自身的定位装置和指南针来获取;天线是被动元件,本身无法获取其状态信息,可以通过控制设备自带的定位装置和指南针来获取控制设备的状态信息,再根据控制设备的状态信息以及天线与控制设备之间的坐标映射关系来确定天线的状态信息。示例性地,前述的天线的方向图以及此处的坐标映射关系可以预先存储在控制设备的存储器中,诸如采用两个表来分别存储,以用于前述的天线状态信息的计算以及天线的最佳朝向的计算。
下面结合图4来描述该实施例中控制设备与飞行器的通信过程。如图4所示,控制设备中提前被写入信噪比的预设阈值、表一和表二,其中表一记载了天线与控制设备的坐标映射关系,表二记载了天线在各个方向的增益特性。控制设备持续从飞行器接收无线信号,确定信噪比,与预设阈值比较;当发现接收的无线信号(称为第一无线信号)的信噪比小于预设阈值时,从飞行器获取飞行器的状态信息(或者,每隔预定时间间隔,诸如20秒,即从飞行器获取一次飞行器的状态信息);然后结合自身状态信 息进行与飞行器相对位置和距离的解算;再通过查表一和表二解算出天线当前需要的最佳朝向;控制天线调整到该最佳朝向;之后,可继续从飞行器接收无线信号,确定信噪比,与预设阈值比较,重复上述过程,使得每当从飞行器接收到的无线信号的信噪比低于预设阈值时,均执行上述自动调整天线的过程,使得天线总是处于最佳朝向,进而使得控制设备与飞行器之间的无线通信总是处于高信噪比水平,从而最大化利用无线性能,实现高可靠性的远距离通信。
在本申请的另一个实施例中,步骤S330中自动调整控制设备的天线的朝向,可以包括如下操作:自动搜索使从飞行器接收的第二无线信号的信噪比不小于所述预设阈值的天线的朝向,并基于搜索结果自动将天线调整到所述朝向。在该实施例中,无需获取飞行器的状态信息和控制设备天线的状态信息,也无需获取天线的方向图,当从飞行器接收的无线信号的信噪比低于预设阈值时,自动搜索能够提高信噪比的天线朝向,例如自动将天线的朝向做出一定的调整(诸如旋转一定角度),调整后再次从飞行器接收无线信号,如果再次接收的无线信号的信噪比相对于之前提高了,则表明天线朝向的调整策略(方向)是正确的,可继续调整,以继续提高接收到的无线信号的信噪比,使其不低于预设阈值(当然,也可能第一次调整就已经使得信噪比提高至不低于预设阈值)。因此,这种自动搜索的方案亦能够提高天线物理上的传输能力,实现高可靠性的远距离通信。
下面结合图5来描述该实施例中控制设备进行天线自适应调整的示意性流程。如图5所示,控制设备从飞行器接收第一无线信号,确定第一无线信号的信噪比;当第一无线信号的信噪比小于预设阈值时,控制天线旋转预设角度;从飞行器接收第二无线信号,确定第二无线信号的信噪比;当确定第二无线信号的信噪比不小于预设阈值时,不执行操作(即不需要调整天线朝向,回到从飞行器接收第一无线信号位置来操作);当确定第二无线信号的信噪比仍然小于预设阈值时,控制天线旋转预设角度(如图6所示的,该预设角度例如为10度、15度、20度、30度等等,这可以结合控制设备天线本身所处位置、天线能够旋转的角度、调整精度、调整速度等因素来设置);从飞行器继续接收无线信号(与最初的第一无线信号区分,此处仍称为第二无线信号),确定第二无线信号的信噪比;如此反复,直到 第二无线信号的信噪比不小于预设阈值。另一方面,如果天线已旋转了所有可旋转角度,但从飞行器接收的第二无线信号的信噪比仍然小于预设阈值时,可以自动将天线调整到所有可旋转角度中得到最大信噪比的旋转角度对应的朝向,这样也是实现了当前能够实现的最大化利用无线性能。
基于上面的描述,根据本申请实施例的天线自适应调整方法能够在每当从飞行器接收到的无线信号的信噪比低于预设阈值时自动调整天线的朝向,使得控制设备与飞行器之间的无线通信总是处于高信噪比水平,从而提高天线物理上的传输能力,实现高可靠性的远距离通信。
下面结合图7描述根据本申请另一方面提供的控制设备700,其可以用于执行前文所述的天线自适应调整方法300。如图7所示,控制设备700可以包括天线710、存储器720、处理器730和天线控制装置740。其中:天线710用于向飞行器发射无线信号,和/或从飞行器接收无线信号;天线控制装置740用于接收处理器730的控制指令,基于控制指令调整天线710的朝向;存储器720用于存储由处理器运行的计算机程序,当计算机程序在处理器上运行时,使得处理器730执行如下操作:根据天线710从飞行器接收的第一无线信号确定第一无线信号的信噪比;当第一无线信号的信噪比小于预设阈值时,控制天线控制装置740自动调整控制设备的天线710的朝向,以使得从飞行器接收的第二无线信号的信噪比大于第一无线信号的信噪比。
在本申请的实施例中,当控制设备700(诸如飞行系统中的遥控器、自动机场等地面端设备)的天线710从飞行器接收到一个无线信号(为了与之后再次接收的无线信号相互区分,将该无线信号称为第一无线信号)时,处理器730可以确定该无线信号的信噪比,如果该无线信号的信噪比小于预设阈值,则认为当前无线信号不佳,控制天线控制装置740自动调整天线朝向,以提高下次再接收到的无线信号(为了与前述的第一无线信号相互区分,将此处的无线信号称为第二无线信号)的信噪比。因此,在本申请的实施例中,通过设置信噪比的预设阈值,为控制设备700上用于与飞行器无线通信的天线710的自动调整设定了一个使能条件,当该使能条件被满足时,处理器730控制天线控制装置740自动调整天线710的朝向,使得天线710朝向具备较大增益的方向,从而提高物理上的传输能力, 实现高可靠性的远距离通信。此外,由于设置了用于天线710自动调整的使能条件,可以避免短距离通信时候或者无线通信状态正常时候也不断调整天线位置的情况。
在本申请的一个实施例中,处理器730自动调整控制设备的天线的朝向,可以包括如下操作:基于飞行器的状态信息、控制设备700的天线710的状态信息以及天线710的方向图确定天线710的最佳朝向,并控制天线控制装置740自动将天线710调整到最佳朝向,其中,状态信息包括位置信息和朝向信息,最佳朝向是指能使天线710达到最高增益的朝向。在该实施例中,利用飞行器的位置朝向和控制设备700的天线710的位置朝向获取天线710与飞行器的相对位置关系,再结合反映天线710在各方向的增益特性的方向图,处理器730能够精准解算出天线710当前的最佳朝向,即天线710当前能够达到最高增益的方向,从而精准地控制天线控制装置740调整天线朝向,使得控制设备700与飞行器之间经由天线710的无线通信达到最佳信噪比水平。
其中,飞行器的状态信息可以根据飞行器自身的定位装置和指南针来获取;天线710一般是被动元件,本身无法获取其状态信息,可以通过控制设备700自带的定位装置和指南针(未示出)来获取控制设备700的状态信息(其中定位装置用于获取控制设备700的位置信息,指南针用于获取控制设备700的朝向信息),再根据控制设备700的状态信息以及天线710与控制设备700之间的坐标映射关系来确定天线710的状态信息。示例性地,前述的天线710的方向图以及此处的坐标映射关系可以预先存储在控制设备700的存储器720中,诸如采用两个表来分别存储,以用于前述的天线710状态信息的计算以及天线710的最佳朝向的计算。
下面描述该实施例中控制设备700与飞行器的通信过程。控制设备700的存储器720中提前被写入信噪比的预设阈值、表一和表二,其中表一记载了天线710与控制设备700的坐标映射关系,表二记载了天线710在各个方向的增益特性。控制设备700的天线710持续从飞行器接收无线信号,处理器730确定其信噪比,与预设阈值比较;当确定接收的无线信号(称为第一无线信号)的信噪比小于预设阈值时,可以从飞行器获取飞行器的状态信息(或者,每隔预定时间间隔,诸如20秒,即从飞行器获取一次飞 行器的状态信息);然后结合自身状态信息进行与飞行器相对位置和距离的解算;再通过查表一和表二解算出天线710当前需要的最佳朝向;控制天线控制装置740将天线710调整到该最佳朝向;之后,天线710可继续从飞行器接收无线信号,处理器730确定信噪比,与预设阈值比较,重复上述过程,使得每当从飞行器接收到的无线信号的信噪比低于预设阈值时,均执行上述自动调整天线710的过程,使得天线710总是处于最佳朝向,进而使得控制设备700与飞行器之间的无线通信总是处于高信噪比水平,从而最大化利用无线性能,实现高可靠性的远距离通信。
在本申请的另一个实施例中,处理器730自动调整控制设备的天线的朝向,可以包括如下操作:自动搜索使从飞行器接收的第二无线信号的信噪比不小于所述预设阈值的天线710的朝向,并基于搜索结果自动将天线710调整到所述朝向。在该实施例中,处理器730无需获取飞行器的状态信息和天线710的状态信息,也无需获取天线710的方向图,当天线710从飞行器接收的无线信号的信噪比低于预设阈值时,处理器730自动搜索能够提高信噪比的天线朝向,例如控制天线控制装置740自动将天线710的朝向做出一定的调整(诸如旋转一定角度),调整后天线710再次从飞行器接收无线信号,如果再次接收的无线信号的信噪比相对于之前提高了,则表明天线朝向的调整策略(方向)是正确的,可继续调整,以继续提高接收到的无线信号的信噪比,使其不低于预设阈值(当然,也可能第一次调整就已经使得信噪比提高至不低于预设阈值)。因此,这种自动搜索的方案亦能够提高天线物理上的传输能力,实现高可靠性的远距离通信。
下面描述该实施例中控制设备700进行天线自适应调整的示意性流程。控制设备700的天线710从飞行器接收第一无线信号,处理器730确定第一无线信号的信噪比;当第一无线信号的信噪比小于预设阈值时,控制天线控制装置740将天线710旋转预设角度;天线710从飞行器接收第二无线信号,处理器730确定第二无线信号的信噪比;当确定第二无线信号的信噪比不小于预设阈值时,不执行操作(即不需要控制天线控制装置740调整天线朝向,天线710继续从飞行器接收第一无线信号);当确定第二无线信号的信噪比仍然小于预设阈值时,处理器730控制天线控制装置740将天线旋转预设角度(例如10度、15度、20度、30度等等,这可以 结合控制设备天线本身所处位置、天线能够旋转的角度、调整精度、调整速度等因素来设置);天线710从飞行器继续接收无线信号(与最初的第一无线信号区分,此处仍称为第二无线信号),处理器730确定第二无线信号的信噪比;如此反复,直到第二无线信号的信噪比不小于预设阈值。另一方面,如果天线710已旋转了所有可旋转角度,但从飞行器接收的第二无线信号的信噪比仍然小于预设阈值时,处理器730可以控制天线控制装置740自动将天线调整到所有可旋转角度中得到最大信噪比的旋转角度对应的朝向,这样也是实现了当前能够实现的最大化利用无线性能。
基于上面的描述,根据本申请实施例的控制设备能够在每当从飞行器接收到的无线信号的信噪比低于预设阈值时自动调整天线的朝向,使得控制设备与飞行器之间的无线通信总是处于高信噪比水平,从而提高天线物理上的传输能力,实现高可靠性的远距离通信。
下面结合图8描述根据本申请另一方面提供的飞行系统800。如图8所示,飞行系统800包括控制设备810和飞行器820,其中,飞行器820与控制设备810进行无线通信,飞行器820在控制设备810的控制下执行飞行作业,控制设备810为前文所述的根据本申请实施例的控制设备700。本领域技术人员可以结合前文描述理解控制设备810的结构及其和飞行器820执行的操作,为了简洁,此处不再赘述。
此外,根据本申请实施例,还提供了一种存储介质,在所述存储介质上存储了程序指令,在所述程序指令被计算机或处理器运行时用于执行本申请实施例的天线自适应调整方法的相应步骤。所述存储介质例如可以包括智能电话的存储卡、平板电脑的存储部件、个人计算机的硬盘、只读存储器(ROM)、可擦除可编程只读存储器(EPROM)、便携式紧致盘只读存储器(CD-ROM)、USB存储器、或者上述存储介质的任意组合。所述计算机可读存储介质可以是一个或多个计算机可读存储介质的任意组合。
基于上面的描述,根据本申请实施例的天线自适应调整方法、控制设备、飞行系统和存储介质能够在每当从飞行器接收到的无线信号的信噪比低于预设阈值时自动调整天线的朝向,使得控制设备与飞行器之间的无线通信总是处于高信噪比水平,从而提高天线物理上的传输能力,实现高可靠性的远距离通信。
尽管这里已经参考附图描述了示例实施例,应理解上述示例实施例仅仅是示例性的,并且不意图将本申请的范围限制于此。本领域普通技术人员可以在其中进行各种改变和修改,而不偏离本申请的范围和精神。所有这些改变和修改意在被包括在所附权利要求所要求的本申请的范围之内。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
在本申请所提供的几个实施例中,应该理解到,所揭露的设备和方法,可以通过其它的方式实现。例如,以上所描述的设备实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个设备,或一些特征可以忽略,或不执行。
在此处所提供的说明书中,说明了大量具体细节。然而,能够理解,本申请的实施例可以在没有这些具体细节的情况下实践。在一些实例中,并未详细示出公知的方法、结构和技术,以便不模糊对本说明书的理解。
类似地,应当理解,为了精简本申请并帮助理解各个发明方面中的一个或多个,在对本申请的示例性实施例的描述中,本申请的各个特征有时被一起分组到单个实施例、图、或者对其的描述中。然而,并不应将该本申请的方法解释成反映如下意图:即所要求保护的本申请要求比在权利要求中所明确记载的特征更多的特征。更确切地说,如相应的权利要求书所反映的那样,其发明点在于可以用少于某个公开的单个实施例的所有特征的特征来解决相应的技术问题。因此,遵循具体实施方式的权利要求书由此明确地并入该具体实施方式,其中权利要求本身都作为本申请的单独实施例。
本领域的技术人员可以理解,除了特征之间相互排斥之外,可以采用任何组合对本说明书(包括伴随的权利要求、摘要和附图)中公开的所有特征以及如此公开的任何方法或者设备的所有过程或单元进行组合。除非另外明确陈述,本说明书(包括伴随的权利要求、摘要和附图)中公开的 特征可以由提供相同、等同或相似目的的替代特征来代替。
此外,本领域的技术人员能够理解,尽管在此所述的一些实施例包括其它实施例中所包括的某些特征而不是其它特征,但是不同实施例的特征的组合意味着处于本申请的范围之内并且形成不同的实施例。例如,在权利要求书中,所要求保护的实施例的任意之一都可以以任意的组合方式来使用。
本申请的各个部件实施例可以以硬件实现,或者以在一个或者多个处理器上运行的软件模块实现,或者以它们的组合实现。本领域的技术人员应当理解,可以在实践中使用微处理器或者数字信号处理器(DSP)来实现根据本申请实施例的一些模块的一些或者全部功能。本申请还可以实现为用于执行这里所描述的方法的一部分或者全部的装置程序(例如,计算机程序和计算机程序产品)。这样的实现本申请的程序可以存储在计算机可读存储介质上,或者可以具有一个或者多个信号的形式。这样的信号可以从因特网网站上下载得到,或者在载体信号上提供,或者以任何其他形式提供。
应该注意的是上述实施例对本申请进行说明而不是对本申请进行限制,并且本领域技术人员在不脱离所附权利要求的范围的情况下可设计出替换实施例。在权利要求中,不应将位于括号之间的任何参考符号构造成对权利要求的限制。本申请可以借助于包括有若干不同元件的硬件以及借助于适当编程的计算机来实现。在列举了若干装置的单元权利要求中,这些装置中的若干个可以是通过同一个硬件项来具体体现。单词第一、第二、以及第三等的使用不表示任何顺序。可将这些单词解释为名称。
以上所述,仅为本申请的具体实施方式或对具体实施方式的说明,本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。本申请的保护范围应以权利要求的保护范围为准。

Claims (18)

  1. 一种天线自适应调整方法,由控制设备执行,其特征在于,所述方法包括:
    从飞行器接收第一无线信号;
    根据所述第一无线信号确定所述第一无线信号的信噪比;
    当所述第一无线信号的信噪比小于预设阈值时,自动调整所述控制设备的天线的朝向,以使得从所述飞行器接收的第二无线信号的信噪比大于所述第一无线信号的信噪比。
  2. 根据权利要求1所述的方法,其特征在于,所述自动调整所述控制设备的天线的朝向,包括:
    基于所述飞行器的状态信息、所述控制设备的天线的状态信息以及所述天线的方向图确定所述天线的最佳朝向,并自动将所述天线调整到所述最佳朝向,其中,所述状态信息包括位置信息和朝向信息,所述最佳朝向是指能使所述天线达到最高增益的朝向。
  3. 根据权利要求2所述的方法,其特征在于,所述天线的状态信息是基于所述控制设备的状态信息以及所述天线与所述控制设备之间的坐标映射关系而得到的,其中所述坐标映射关系和所述天线的方向图预先存储在所述控制设备的存储器中。
  4. 根据权利要求2所述的方法,其特征在于,所述飞行器的状态信息是当确定所述第一无线信号的信噪比小于所述预设阈值时从所述飞行器获取的;或者,所述飞行器的状态信息是每隔预定时间间隔从所述飞行器获取的。
  5. 根据权利要求1所述的方法,其特征在于,所述自动调整所述控制设备的天线的朝向,包括:
    自动搜索使从所述飞行器接收的第二无线信号的信噪比不小于所述预设阈值的所述天线的朝向,并基于搜索结果自动将所述天线调整到所述朝向。
  6. 根据权利要求5所述的方法,其特征在于,所述自动搜索使从所述飞行器接收的第二无线信号的信噪比不小于所述预设阈值的所述天线的朝向,包括:
    控制所述天线旋转预设角度,并从所述飞行器接收第二无线信号;
    当确定所述第二无线信号的信噪比不小于所述预设阈值时,不执行操作;
    当确定所述第二无线信号的信噪比仍然小于所述预设阈值时,控制所述天线旋转预设角度,并从所述飞行器接收第二无线信号,直到所述第二无线信号的信噪比不小于所述预设阈值。
  7. 根据权利要求6所述的方法,其特征在于,当所述天线已旋转了所有可旋转角度,但从所述飞行器接收的第二无线信号的信噪比仍然小于所述预设阈值时,自动将所述天线调整到所有可旋转角度中得到最大信噪比的旋转角度对应的朝向。
  8. 一种控制设备,其特征在于,所述控制设备包括天线、存储器、处理器和天线控制装置,其中:
    所述天线用于向飞行器发射无线信号,和/或从所述飞行器接收无线信号;
    所述天线控制装置用于接收所述处理器的控制指令,基于所述控制指令调整所述天线的朝向;
    所述存储器用于存储由所述处理器运行的计算机程序,当计算机程序在所述处理器上运行时,使得所述处理器执行如下操作:
    根据所述天线从所述飞行器接收的第一无线信号确定所述第一无线信号的信噪比;
    当所述第一无线信号的信噪比小于所述预设阈值时,控制所述天线控制装置自动调整所述控制设备的天线的朝向,以使得从所述飞行器接收的第二无线信号的信噪比大于所述第一无线信号的信噪比。
  9. 根据权利要求8所述的控制设备,其特征在于,所述处理器执行的所述自动调整所述控制设备的天线的朝向,包括:
    基于所述飞行器的状态信息、所述控制设备的天线的状态信息以及所述天线的方向图确定所述天线的最佳朝向,并控制所述天线控制装置自动将所述天线调整到所述最佳朝向,其中,所述状态信息包括位置信息和朝向信息,所述最佳朝向是指能使所述天线达到最高增益的朝向。
  10. 根据权利要求9所述的控制设备,其特征在于,所述天线的状态 信息是基于所述控制设备的状态信息以及所述天线与所述控制设备之间的坐标映射关系而得到的,其中所述坐标映射关系和所述天线的方向图预先存储在所述存储器中。
  11. 根据权利要求10所述的控制设备,其特征在于,所述控制设备包括定位装置和指南针,所述定位装置用于获取所述控制设备的位置信息,所述指南针用于获取所述控制设备的朝向信息。
  12. 根据权利要求9所述的控制设备,其特征在于,所述飞行器的状态信息是当确定所述第一无线信号的信噪比小于所述预设阈值时从所述飞行器获取的;或者是每隔预定时间间隔从所述飞行器获取的。
  13. 根据权利要求8所述的控制设备,其特征在于,所述处理器执行的所述自动调整所述控制设备的天线的朝向,包括:
    自动搜索使从所述飞行器接收的第二无线信号的信噪比不小于所述预设阈值的所述天线的朝向,并基于搜索结果控制所述天线控制装置自动将所述天线调整到所述朝向。
  14. 根据权利要求13所述的控制设备,其特征在于,所述处理器执行的所述自动搜索使从所述飞行器接收的第二无线信号的信噪比不小于所述预设阈值的所述天线的朝向,包括:
    控制所述天线控制装置自动将所述天线旋转预设角度,并且所述天线从所述飞行器接收第二无线信号;
    当确定所述第二无线信号的信噪比不小于所述预设阈值时,不执行操作;
    当确定所述第二无线信号的信噪比仍然小于所述预设阈值时,控制所述天线控制装置自动将所述天线旋转预设角度,并且所述天线从所述飞行器接收第二无线信号,直到所述第二无线信号的信噪比不小于所述预设阈值。
  15. 根据权利要求14所述的控制设备,其特征在于,当所述天线已旋转了所有可旋转角度,但从所述飞行器接收的第二无线信号的信噪比仍然小于所述预设阈值时,所述处理器控制所述天线控制装置自动将所述天线调整到所有可旋转角度中得到最大信噪比的旋转角度对应的朝向。
  16. 根据权利要求8-15中的任一项所述控制设备,其特征在于,所述 控制设备为遥控器或者自动机场。
  17. 一种飞行系统,其特征在于,所述飞行系统包括控制设备和飞行器,其中,所述飞行器与所述控制设备进行无线通信,所述飞行器在所述控制设备的控制下执行飞行作业,所述控制设备为权利要求8-16中的任一项所述控制设备。
  18. 一种存储介质,其特征在于,包括计算机可读指令,当所述计算机可读指令在计算机上运行时,使得所述计算机执行如权利要求1-7中的任一项所述的天线自适应调整方法。
PCT/CN2021/100561 2021-06-17 2021-06-17 天线自适应调整方法、控制设备、飞行系统和存储介质 WO2022261888A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/100561 WO2022261888A1 (zh) 2021-06-17 2021-06-17 天线自适应调整方法、控制设备、飞行系统和存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/100561 WO2022261888A1 (zh) 2021-06-17 2021-06-17 天线自适应调整方法、控制设备、飞行系统和存储介质

Publications (1)

Publication Number Publication Date
WO2022261888A1 true WO2022261888A1 (zh) 2022-12-22

Family

ID=84525925

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/100561 WO2022261888A1 (zh) 2021-06-17 2021-06-17 天线自适应调整方法、控制设备、飞行系统和存储介质

Country Status (1)

Country Link
WO (1) WO2022261888A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5027124A (en) * 1989-03-17 1991-06-25 The Boeing Company System for maintaining polarization and signal-to-noise levels in received frequency reuse communications
CN107547121A (zh) * 2017-08-30 2018-01-05 广东欧珀移动通信有限公司 天线控制方法、装置、存储介质及电子设备
CN107690823A (zh) * 2016-09-26 2018-02-13 深圳市大疆创新科技有限公司 一种通信质量检测方法、装置及设备
CN108232410A (zh) * 2017-12-28 2018-06-29 广州亿航智能技术有限公司 一种无人机的天线辐射方向调节器
CN109981158A (zh) * 2017-12-28 2019-07-05 北京松果电子有限公司 控制无人机的方法、装置及计算机可读存储介质
CN112909547A (zh) * 2019-12-04 2021-06-04 中国移动通信集团上海有限公司 无人机定向天线的调整系统和方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5027124A (en) * 1989-03-17 1991-06-25 The Boeing Company System for maintaining polarization and signal-to-noise levels in received frequency reuse communications
CN107690823A (zh) * 2016-09-26 2018-02-13 深圳市大疆创新科技有限公司 一种通信质量检测方法、装置及设备
CN107547121A (zh) * 2017-08-30 2018-01-05 广东欧珀移动通信有限公司 天线控制方法、装置、存储介质及电子设备
CN108232410A (zh) * 2017-12-28 2018-06-29 广州亿航智能技术有限公司 一种无人机的天线辐射方向调节器
CN109981158A (zh) * 2017-12-28 2019-07-05 北京松果电子有限公司 控制无人机的方法、装置及计算机可读存储介质
CN112909547A (zh) * 2019-12-04 2021-06-04 中国移动通信集团上海有限公司 无人机定向天线的调整系统和方法

Similar Documents

Publication Publication Date Title
US9871571B2 (en) Wireless communication apparatus and wireless communication control method
US7343180B2 (en) Wireless transmit/receive units having multiple receivers and methods
CN103916816B (zh) 一种无线接入方法和接入控制器
US20160044626A1 (en) Mobile terminal, and locating method and device
WO2019023902A1 (zh) 通信方式控制方法及设备
CN104679032A (zh) 一种利用岸基基站和船舶位置信息的动态天线调整和通信的方法
CN106255183B (zh) 调整Wi-Fi发射功率的方法、装置及终端
US11693431B2 (en) Method and system of measuring radio wave distribution of a radio signal source and estimating corresponding radio characteristics by using a flying vehicle
CN105848261A (zh) Wifi天线的发射功率调节方法及装置
US20150098348A1 (en) Wireless communicaton device, wireless communication system, wireless communication method, and wireless apparatus
US8493901B2 (en) Wireless communication system, wireless communication apparatus, and method of control thereof
EP2180738A2 (en) Method and apparatus for antenna steering for WLAN
SE1551033A1 (en) System, device, node, and method for tracking a device
US7979079B2 (en) Single point location tracking for a mobile device in a communication network
US20230247618A1 (en) Communication method and apparatus
JP2017041744A (ja) 通信システム、通信装置ならびに制御方法
WO2022261888A1 (zh) 天线自适应调整方法、控制设备、飞行系统和存储介质
US20180254808A1 (en) Terminal device, base station device, and wireless communication system
CN107613503B (zh) 波束通信的方法和装置
WO2019047016A1 (zh) 小区重选方法及装置
US20230411822A1 (en) Antenna device and antenna controlling method
CN103888903A (zh) 一种定位方法和装置
CN105337655B (zh) 一种卫星确认方法、控制器以及卫星确认系统
US20220330094A1 (en) Method and system for managing orientation of consumer premise equipment
WO2020103391A1 (zh) 船用超远距离移动通信信号自动跟踪方法和终端

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21945474

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE