WO2020103391A1 - 船用超远距离移动通信信号自动跟踪方法和终端 - Google Patents

船用超远距离移动通信信号自动跟踪方法和终端

Info

Publication number
WO2020103391A1
WO2020103391A1 PCT/CN2019/082817 CN2019082817W WO2020103391A1 WO 2020103391 A1 WO2020103391 A1 WO 2020103391A1 CN 2019082817 W CN2019082817 W CN 2019082817W WO 2020103391 A1 WO2020103391 A1 WO 2020103391A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
antenna
tracking
strongest
mobile communication
Prior art date
Application number
PCT/CN2019/082817
Other languages
English (en)
French (fr)
Inventor
张向余
李锦灵
耿健
李小华
区启康
单晓明
Original Assignee
广州易而达科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广州易而达科技股份有限公司 filed Critical 广州易而达科技股份有限公司
Publication of WO2020103391A1 publication Critical patent/WO2020103391A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/34Adaptation for use in or on ships, submarines, buoys or torpedoes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/02Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system using mechanical movement of antenna or antenna system as a whole
    • H01Q3/04Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system using mechanical movement of antenna or antenna system as a whole for varying one co-ordinate of the orientation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/029Location-based management or tracking services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • H04W4/44Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P] for communication between vehicles and infrastructures, e.g. vehicle-to-cloud [V2C] or vehicle-to-home [V2H]

Definitions

  • the invention relates to the field of maritime mobile communication, in particular to a method for automatically tracking a marine ultra-long-range mobile communication signal, and an automatic tracking terminal for a marine ultra-long-range mobile communication signal based on the method.
  • the first type a mobile signal receiving terminal using a low gain, omnidirectional antenna.
  • This type of product has a relatively stable signal, but a short distance from the base station for stable communication. In applications where the mobile signal is weak, it cannot meet the user's mobile communication demand.
  • the second type mobile signal receiving terminals using static high-gain directional antennas.
  • a stationary state such as urban villages
  • the distance to stable communication with the base station is relatively far
  • application sites that are in motion such as ships and vehicles
  • the signal is extremely unstable and cannot meet the mobile communication needs of users.
  • the technical problem to be solved by the present invention is to provide an automatic tracking method and terminal for ultra-long-distance mobile communication signals for ships, so as to solve the problem that the existing mobile signal receiving terminal cannot realize long-distance mobile communication at sea.
  • An automatic tracking method for marine ultra-long distance mobile communication signals including:
  • Step 1 When the vessel is in the tracking start position, perform a 360 ° rotation scan on the horizontal plane with a scanning antenna of type directional antenna on the vessel to determine: during the scanning process, the scanning antenna receives the strongest The direction of signal transmission and reception during the mobile communication signal is recorded as the direction of the strongest scanning signal, and the base station transmitting the strongest mobile communication signal is recorded as the strongest signal base station;
  • Step 2 During the voyage of the vessel sailing from the tracking start position to the preset sailing distance to the tracking end position:
  • the communication antenna When the communication antenna whose control type is a directional antenna rotates on the horizontal plane on the vessel, so that when the vessel is located at any tracking position in the navigation route of the navigation process, the signal transmission and reception direction of the communication antenna rotates to the
  • the communication antenna can receive the direction of the strongest mobile communication signal transmitted by the strongest signal base station to the tracking position, which is recorded as the direction of the strongest tracking signal, wherein there are multiple tracking positions in the navigation route, And the tracking start position and the tracking end position are the first and last tracking positions of the navigation route, respectively, and the navigation mileage between two adjacent tracking positions is less than a preset navigation mileage threshold;
  • Step 3 When the vessel reaches the tracking end position, the current position of the vessel is used as the new tracking start position, and the vessel is sailed from the current position to the preset sailing mileage again. The position is used as the new tracking end position, and repeat steps 1 and 2;
  • Step 4 Establish a local area network on the vessel, and convert the mobile communication signal received by the communication antenna into a network signal adapted to the local area network, so that user terminal devices connected to the local area network can receive the local area network through the local area network.
  • the scanning antenna and the communication antenna are two directional antennas.
  • the scanning antenna and the communication antenna are the same directional antenna, that is, the directional antenna is used as the scanning antenna in step one, and is used as the communication antenna in step two .
  • the manner of determining the direction of the strongest scanning signal and the strongest signal base station is:
  • the scanning antenna is driven to perform 360 ° rotation scanning on a horizontal plane, and the mobile communication signal received by the scanning antenna is sampled according to a preset rotation angle interval, and the sampling is performed The obtained mobile communication signals are compared to determine the strongest mobile communication signal;
  • the preset rotation angle interval is one or more minimum step angles of the first stepping motor
  • the way to compare the sampled mobile communication signals is to first compare the signal strength of each mobile communication signal, and select the mobile communication signal with the strongest signal strength as the strongest mobile communication signal, if the mobile communication signal with the strongest signal strength If there are multiple signals, then the signal with the best signal quality is selected from the multiple mobile communication signals with the strongest signal strength as the strongest mobile communication signal.
  • a second stepping motor is used as a power source to drive the communication antenna to rotate on a horizontal plane, and control the communication antenna to perform on a horizontal plane
  • the method of rotation is:
  • the signal transmission and reception direction of the communication antenna is directly controlled to rotate to the direction of the strongest scanning signal determined in step one.
  • the strong scanning signal direction is the direction of the strongest tracking signal of the communication antenna when the vessel is at the tracking starting position;
  • the ship When the ship is at the current tracking position and the current tracking position is any tracking position other than the tracking start position of the navigation route, place the communication antenna at the previous tracking position of the ship
  • the direction of the strongest tracking signal at the position is called the zero point direction.
  • the deviation angle and the deviation direction of the signal transmission and reception direction of the communication antenna at the current moment relative to the zero point direction are measured by the gyroscope installed on the vessel , And then control the signal transmission and reception direction of the communication antenna to rotate in the horizontal plane to the signal peak direction in the following manner:
  • the step angle of the second stepper motor to one or more of its minimum step angles, and controlling the second stepper motor to drive the signal transceiving direction of the communication antenna in the reverse direction of the deviation direction Perform multiple rotations, and the angle of each rotation is the step angle set by the second stepping motor, and at the same time of each rotation, the mobile communication received by the communication antenna after each rotation
  • the signals are compared until a certain rotation of the communication antenna meets the signal peak condition, then the direction of the signal transmission and reception direction of the communication antenna at that rotation is recorded as the signal peak direction, and the communication is controlled
  • the signal transceiving direction of the antenna rotates in the horizontal plane to the signal peak direction, which is the strongest tracking signal direction of the communication antenna when the vessel is at the current tracking position; wherein, the signal peak condition is: From a certain rotation to the first N rotations and the last N rotations, the signal strength of the mobile communication signal received by the communication antenna is gradually decreasing, and N is a positive integer.
  • An ultra-long-distance mobile communication signal automatic tracking terminal for ships includes a scanning antenna, a communication antenna and an antenna controller located on a ship, the types of the scanning antenna and the communication antenna adopt rotatably driven directional antennas; the antenna The controller controls the tracking mode of the scanning antenna and the communication antenna as follows: first, the scanning antenna is used to lock the strongest signal base station, and then during the voyage of the preset sailing distance, the communication antenna is used to track and orientate at the strongest signal base station. The direction of the strong mobile communication signal; and repeat the foregoing process cyclically within each preset sailing mileage, so that within each preset sailing mileage, the communication antenna only establishes and maintains a communication link with the strongest signal base station.
  • the scanning antenna is controlled to perform 360 ° rotation scanning in the horizontal plane to determine: during the scanning process, the scanning antenna receives the signal when the strongest mobile communication signal is received
  • the transceiver direction is recorded as the strongest scanning signal direction, and the base station transmitting the strongest mobile communication signal is recorded as the strongest signal base station;
  • the antenna controller takes the position of the ship when it starts working as the first tracking start position.
  • the antenna controller controls the rotation angle of the scanning antenna in the horizontal plane through a rotation driving mechanism;
  • the rotation driving mechanism uses the first stepping motor as a power source to drive the scanning antenna in the horizontal plane Spin
  • the manner in which the antenna controller determines the direction of the strongest scanning signal and the strongest signal base station is:
  • the preset rotation angle interval is one or more minimum step angles of the first stepping motor
  • the way to compare the sampled mobile communication signals is to first compare the signal strength of each mobile communication signal, and select the mobile communication signal with the strongest signal strength as the strongest mobile communication signal, if the mobile communication signal with the strongest signal strength If there are multiple signals, then the signal with the best signal quality is selected from the multiple mobile communication signals with the strongest signal strength as the strongest mobile communication signal.
  • the antenna controller controls the rotation angle of the communication antenna in the horizontal plane through a rotation drive mechanism;
  • the rotation drive mechanism uses the second stepping motor as a power source to drive the communication antenna in the horizontal plane Rotation;
  • the marine ultra-long-distance mobile communication signal automatic tracking terminal further includes a gyroscope installed on the vessel;
  • the antenna controller controls the communication antenna to rotate in the horizontal plane as follows:
  • the signal transmission and reception direction of the communication antenna is directly controlled to rotate to the direction of the strongest scanning signal determined in step one.
  • the strong scanning signal direction is the direction of the strongest tracking signal of the communication antenna when the vessel is at the tracking starting position;
  • the gyro is used to measure the deviation angle and deviation direction of the communication antenna's signal transmission and reception direction at the current time relative to the zero point direction, and then in the following manner Control the signal transmission and reception direction of the communication antenna to rotate in the horizontal plane to the signal peak direction:
  • the step angle of the second stepper motor to one or more of its minimum step angles, and controlling the second stepper motor to drive the signal transceiving direction of the communication antenna in the reverse direction of the deviation direction Perform multiple rotations, and the angle of each rotation is the step angle set by the second stepping motor, and at the same time of each rotation, the mobile communication received by the communication antenna after each rotation
  • the signals are compared until a certain rotation of the communication antenna meets the signal peak condition, then the direction of the signal transmission and reception direction of the communication antenna at that rotation is recorded as the signal peak direction, and the communication is controlled
  • the signal transceiving direction of the antenna rotates in the horizontal plane to the signal peak direction, which is the strongest tracking signal direction of the communication antenna when the vessel is at the current tracking position; wherein, the signal peak condition is: From a certain rotation to the first N rotations and the last N rotations, the signal strength of the mobile communication signal received by the communication antenna is gradually decreasing, and N is a positive integer.
  • the present invention further includes a signal transceiving module and a router, the signal transceiving module is provided with a first signal port, a second signal port, an output port and a network port, the first signal port and the scanning antenna Is connected to the antenna port, the second signal port is connected to the antenna port of the communication antenna, the output port is electrically connected to the antenna controller, and the network port is communicatively connected to the router, and the The router can establish a local area network on the vessel so that:
  • the signal transceiving module can convert the mobile communication signal received by the scanning antenna into a digital signal of the scanning antenna after demodulation and decoding and output it to the antenna controller;
  • the signal transceiving module can demodulate and decode the mobile communication signal received by the communication antenna into a digital signal of the communication antenna and output it through the network port, and the router can convert the digital signal of the communication antenna
  • the user terminal equipment connected to the local area network can receive the mobile communication signal received by the communication antenna through the local area network, and the signal transceiving module can connect the user terminal equipment
  • the network signal sent to the local area network is converted into a mobile communication signal to be transmitted through the communication antenna to a base station that maintains a communication link with the communication antenna.
  • the first signal port of the signal transceiving module is connected to the antenna port of the scanning antenna through the first amplifying module, and the second signal port of the signal transceiving module is connected to the Describe the antenna port connection of the communication antenna;
  • the first amplifying module and the second amplifying module are both composed of a duplexer, an RF power amplifier and a low-noise amplifier.
  • the receiving end of the duplexer is electrically connected to the output end of the RF power amplifier.
  • the output end of the tool is electrically connected to the input end of the low-noise amplifier; and, for the first amplification module, the antenna port of its duplexer is connected to the antenna port of the scanning antenna, and the input of its RF power amplifier
  • the terminal is electrically connected to the output terminal of the first signal port, and the output terminal of the low noise amplifier is electrically connected to the input terminal of the first signal port; for the second amplification module, the antenna of the duplexer
  • the port is connected to the antenna port of the communication antenna, the input terminal of the RF power amplifier is electrically connected to the output terminal of the second signal port, and the output terminal of the low noise amplifier is electrically connected to the input terminal of the second signal port connection.
  • the network signal of the local area network is any one of an Ethernet signal, a WiFi network signal, a Bluetooth signal, and a Zigbee network signal.
  • the present invention has the following beneficial effects:
  • the present invention controls the communication antenna of the directional antenna at any tracking position, and the signal transmission direction is rotated to the direction that it can receive the strongest mobile communication signal, so that the navigation is at sea
  • the communication antenna installed on the ship can realize the ultra-long-distance mobile communication signal communication link with the base station on the shore, so that the user terminal equipment on the ship can indirectly use the mobile communication network provided by the base station through the communication antenna to meet the user's maritime mobile communication Demand, and has the advantage of long mobile communication transmission distance between offshore user terminal equipment and onshore base stations;
  • the present invention uses “scanning antenna to lock the strongest signal base station first, and then uses the communication antenna interval to track the strongest mobile communication signal of the strongest signal base station during the navigation process of the preset mileage, and repeats the foregoing process cyclically.
  • the tracking method enables the communication antenna to establish and maintain a communication link with the strongest signal base station within each preset mileage, ensuring the communication stability between the communication antenna and the base station, and avoiding” due to the signal strength of the base station Fluctuation, in the short sailing distance of the ship, the strongest mobile communication signal scanned by the 360 ° rotation of the scanning antenna comes from different base stations (for example: when the ship sails to the position in FIG. 1, it is different from the base station S1 in FIG.
  • the distance from the base station S2 is not much different. Under the influence of the base station signal strength fluctuations, the strongest mobile communication signal scanned by the scanning antenna may come from the base station S1 or the base station S2), which causes the communication antenna to frequently switch to establish communication with it.
  • the linked base stations frequently cause the user terminal equipment to drop and go online frequently, resulting in the problem of poor signal stability of the user terminal equipment.
  • the present invention controls the manner in which the communication antenna rotates in the horizontal plane in step two, that is, the signal transmission and reception direction of the communication antenna is controlled to rotate multiple times in the reverse direction of the deviation direction, and the signal peak value is obtained by comparison
  • the direction method can speed up the communication antenna to track the direction of the strongest tracking signal at each tracking position and improve the accuracy, so as to further improve the quality of the mobile communication network used by users at sea.
  • the present invention connects the signal transceiving module and the scanning antenna with the first amplifying module, so that the upstream and downstream feeding paths of the scanning antenna are separated by the duplexer, and independently amplified by the RF power amplifier and the low-noise amplifier, further increasing
  • the scanning distance of the scanning antenna to the mobile communication signal is increased, and the present invention uses a second amplifying module to connect the signal transceiver module and the communication antenna, so that the uplink and downlink feed paths of the communication antenna are separated by the duplexer and independently pass through the radio frequency
  • the amplification of the power amplifier and the low-noise amplifier further increases the distance that the communication antenna can establish a stable communication link with the base station. Therefore, the present invention can further increase the mobile communication transmission distance between the marine user terminal equipment and the onshore base station.
  • FIG. 1 is a schematic diagram of an automatic tracking method for a marine ultra-long-distance mobile communication signal of the present invention
  • FIG. 2 is a schematic diagram of a marine ultra-long-distance mobile communication signal automatic tracking terminal of the present invention.
  • the present invention discloses an automatic tracking method for ultra-long-distance mobile communication signals for ships, including:
  • Step 1 When the vessel is at the tracking start position P1, perform a 360 ° rotation scan on the vessel with a scanning antenna 1 of type directional antenna on the vessel to determine that: during the scanning process, the scanning antenna 1 receives The direction of signal transmission and reception when the strongest mobile communication signal is reached is recorded as the strongest scanning signal direction D1, and the base station transmitting the strongest mobile communication signal is recorded as the strongest signal base station S1;
  • the base station may be all mobile communication base stations such as 2G / 3G / 4G / 5G;
  • the directional antenna may be a high-gain directional antenna such as a Yagi Uda antenna, a grid antenna, a plate sector antenna, a parabolic antenna.
  • Step 2 During the voyage of the vessel from the tracking start position P1 to the preset sailing distance to the tracking end position Pn:
  • the signal transmission and reception direction of the communication antenna 2 d When the communication antenna 2 whose directional antenna is controlled on the vessel rotates in the horizontal plane, so that the vessel is located at any tracking position Pi in the navigation route L of the navigation process, the signal transmission and reception direction of the communication antenna 2 d. Rotate to the direction that the communication antenna 2 can receive the strongest mobile communication signal transmitted by the strongest signal base station S1 to the tracking position, which is recorded as the strongest tracking signal direction Di, where the navigation route L There are a plurality of the tracking positions Pi, and the tracking start position P1 and the tracking end position Pn are the first and last tracking positions Pi of the navigation route L, respectively, and the two adjacent tracking positions Pi
  • the voyage mileage between is less than the preset voyage mileage threshold, and the value of the voyage mileage threshold depends on factors such as the speed of the vessel, the degree of influence of the vessel by wind and waves, etc., to ensure that the signal transmission and reception direction d of the communication antenna 2 is in phase
  • the change angle between the two adjacent tracking positions Pi is less than 180 ° and
  • the subscript n of the tracking end position Pn represents the number of times of tracking during the navigation
  • the subscript i of the tracking position Pi and the direction Di of the strongest tracking signal is an integer ranging from 1 to n, indicating i tracking.
  • Step 3 When the vessel reaches the tracking end position Pn, use the current position of the vessel as the new tracking start position P1, and sail the vessel from the current position to the preset sailing mileage again.
  • the reached position is taken as the new tracking end position Pn, and repeat the first step and the second step;
  • Step 4 Establish a local area network on the vessel, convert the mobile communication signal received by the communication antenna 2 into a network signal adapted to the local area network, so that the user terminal device 7 connected to the local area network can receive through the local area network
  • the mobile communication signal received by the communication antenna 2 and converting the network signal sent by the user terminal device 7 to the local area network into a mobile communication signal to be transmitted to the communication antenna 2 through the communication antenna 2 The strongest signal base station S1 of the communication link.
  • the network signal of the local area network may be Ethernet, WiFi, Bluetooth, Zigbee, etc.
  • the user terminal device 7 may be a mobile communication network terminal device such as a mobile phone, IPAD, personal computer, or the like.
  • the signal transmission and reception direction d is rotated to the direction in which it can receive the strongest mobile communication signal, making the navigation
  • the communication antenna 2 installed on the ship at sea can realize the ultra-long-distance mobile communication signal communication link with the base station on the shore, so that the user terminal equipment 7 on the ship can indirectly use the mobile communication network provided by the base station through the communication antenna 2 to meet
  • the user's maritime mobile communication needs, and has the advantage of a long mobile communication transmission distance between the maritime user terminal equipment 7 and the onshore base station, through experiments, through the present invention, the mobile communication transmission distance between the maritime user terminal equipment 7 and the onshore base station Can reach 30 to 40 kilometers;
  • the present invention uses "scan antenna 1 to lock the strongest signal base station S1 first, and then uses communication antenna 2 to track the strongest signal base station S1's strongest mobile communication signal at intervals during the voyage of the preset voyage distance, and loops
  • the tracking method of repeating the aforementioned process "enables the communication antenna 2 to establish and maintain a communication link with the strongest signal base station S1 within each preset mileage, ensuring the communication stability between the communication antenna 2 and the base station,
  • the strongest mobile communication signal scanned by the scanning antenna 1 360 ° rotation comes from a different base station (for example: when the ship sails to the position Pi in FIG.
  • the distance between the base station S1 and the base station S2 in FIG. 1 is not much different.
  • the strongest mobile communication signal scanned by the scanning antenna 1 may come from the base station S1 or the base station S2. ), Which causes the communication antenna 2 to frequently switch to the base station with which it establishes a communication link, causing the user terminal device 7 to frequently go offline and go online, resulting in the problem of poor signal stability of the user terminal device 7 ".
  • this second embodiment also adopts the following preferred structure:
  • the scanning antenna 1 and the communication antenna 2 are two directional antennas. Therefore, the scanning antenna 1 can perform 360 ° rotation scanning during the entire voyage of the vessel, or 360 ° rotation scanning only at the first step.
  • the communication antenna 2 can establish and maintain a communication link with the corresponding strongest signal base station S1 according to the second step throughout the voyage of the vessel, to ensure that the user terminal device 7 can use the mobile communication network throughout the voyage of the vessel .
  • the third embodiment also adopts the following preferred structure:
  • the scanning antenna 1 and the communication antenna 2 are the same directional antenna, that is, the directional antenna serves as the scanning antenna 1 at the first step, and serves as the communication antenna 2 at the second step. Therefore, only one directional antenna can be implemented on the vessel, but when the step 1 is performed, the directional antenna as the scanning antenna 1 will disconnect the communication link with the strongest signal base station S1 , Causing the user terminal device 7 to go offline at this time.
  • this embodiment 4 also adopts the following preferred structure:
  • the manner of determining the strongest scanning signal direction D1 and the strongest signal base station S1 is:
  • the scanning antenna 1 is driven to rotate and scan 360 ° in a horizontal plane, and the mobile communication signal received by the scanning antenna 1 is performed at a preset rotation angle interval Sampling, and comparing each sampled mobile communication signal to determine the strongest mobile communication signal, the strongest scanning signal direction D1 is the first stepping motor 3 when receiving the strongest mobile communication signal -1 Drive the rotation angle of the scanning antenna 1;
  • the preset rotation angle interval is one or more minimum step angles of the first stepping motor 3-1;
  • the way to compare the sampled mobile communication signals is to first compare the signal strength of each mobile communication signal, and select the mobile communication signal with the strongest signal strength as the strongest mobile communication signal, if the mobile communication signal with the strongest signal strength If there are multiple signals, then the signal with the best signal quality is selected from the multiple mobile communication signals with the strongest signal strength as the strongest mobile communication signal.
  • the fifth embodiment also adopts the following preferred structure:
  • the second stepping motor 3-2 is used as a power source to drive the communication antenna 2 to rotate in a horizontal plane, and to control the manner in which the communication antenna 2 rotates in a horizontal plane for:
  • the signal transmission / reception direction d of the communication antenna 2 is directly controlled to rotate to the strongest scan determined in step one Signal direction D1, the strongest scanning signal direction D1 is the strongest tracking signal direction Di of the communication antenna 2 when the vessel is at the tracking start position P1;
  • the vessel When the vessel is at the current tracking position Pi, and the current tracking position Pi is any tracking position Pi of the navigation route L except the tracking start position P1, place the communication antenna 2 at all
  • the direction of the strongest tracking signal Di-1 when the ship is at the previous tracking position Pi-1 is called the zero point direction, and the signal of the communication antenna 2 at the current time is first measured by the gyroscope 8 mounted on the ship
  • the deviation angle ⁇ and the deviation direction of the transmission and reception direction d relative to the zero point direction, and then the signal transmission and reception direction d of the communication antenna 2 is controlled to rotate in the horizontal plane to the signal peak direction as follows:
  • the size of the step angle set by the second stepping motor 3-2 depends on the deviation angle ⁇ .
  • the first stepping motor 3-1 and the second stepping motor 3-2 are two stepping motors; for the third embodiment, the first stepping motor 3-1 and the second stepping motor The two stepper motors 3-2 are the same stepper motor.
  • the sixth embodiment discloses a marine ultra-long-distance mobile communication signal automatic tracking terminal, which can implement the methods described in the first to third embodiments, which includes: Scan antenna 1, communication antenna 2, rotation drive mechanism 3, antenna controller 4, signal transceiving module 5 and router 6, wherein the types of the scan antenna 1 and communication antenna 2 are both directional antennas; the antenna controller 4 Communicate with the vessel's navigation system to receive the vessel's mileage data; the rotary drive mechanism 3 is fixed on the vessel, and the scanning antenna 1 and the communication antenna 2 are both installed on the rotary drive mechanism 3, the rotation drive mechanism 3 can drive the scanning antenna 1 and the communication antenna 2 to rotate in a horizontal plane; the antenna controller 4 is electrically connected to the control end of the rotation drive mechanism 3 to pass the rotation The driving mechanism 3 controls the rotation angle of the scanning antenna 1 and the communication antenna 2 in the horizontal plane; the signal transceiving module 5 is provided with a first signal port S1, a second signal port S2, an output port and a network port, the first The signal port S
  • the signal transceiving module 5 can demodulate and decode the mobile communication signal received by the scanning antenna 1 into a scanning antenna digital signal and output it to the antenna controller 4;
  • the signal transceiving module 5 can demodulate and decode the mobile communication signal received by the communication antenna 2 into a digital signal of the communication antenna and output it through the network port, and the router 6 can convert the communication antenna The digital signal is converted into a network signal adapted to the local area network, so that the user terminal device 7 connected to the local area network can receive the mobile communication signal received by the communication antenna 2 through the local area network, and the signal transceiving module 5 can Convert the network signal sent by the user terminal device 7 to the local area network into a mobile communication signal to be transmitted through the communication antenna 2 to a base station that maintains a communication link with the communication antenna 2;
  • the network signal of the local area network may be Ethernet, WiFi, Bluetooth, Zigbee, etc.
  • the user terminal device 7 may be a mobile communication network terminal device such as a mobile phone, IPAD, personal computer, or the like.
  • the antenna controller 4 controls the scanning antenna 1 and the communication antenna 2 according to the following steps:
  • Step 1 When the vessel is at the tracking start position P1, control the scanning antenna 1 to perform 360 ° rotation scanning on the horizontal plane to determine: during the scanning process, the scanning antenna 1 receives the strongest mobile communication signal.
  • the signal receiving and sending direction is recorded as the strongest scanning signal direction D1, and the base station transmitting the strongest mobile communication signal is recorded as the strongest signal base station S1;
  • the base station may be all mobile communication base stations such as 2G / 3G / 4G / 5G;
  • the directional antenna may be a high-gain directional antenna such as a Yagi Uda antenna, a grid antenna, a plate sector antenna, a parabolic antenna.
  • Step 2 During the voyage of the vessel from the tracking start position P1 to the preset sailing distance to the tracking end position Pn:
  • the signal transmission and reception direction d of the communication antenna 2 rotates to the communication antenna 2
  • the direction of the strongest mobile communication signal transmitted by the base station S1 to the tracking position capable of receiving the strongest signal which is denoted as the strongest tracking signal direction Di
  • the navigation route L has a plurality of the tracking positions Pi
  • the tracking start position P1 and the tracking end position Pn are the first and last tracking positions Pi of the navigation route L, respectively
  • the mileage between two adjacent tracking positions Pi is less than a preset Threshold mileage threshold
  • the value of this threshold depends on factors such as the speed of the ship, the degree of influence of the ship by wind and waves, etc., to ensure that the signal transmission and reception direction d of the communication antenna 2 is at the two adjacent tracking positions Pi
  • the angle of change between is less than 180 ° and the smaller the better, but the value of the voyage mileage threshold is too small will cause the problem of excessive calculation required
  • the subscript n of the tracking end position Pn represents the number of times of tracking during the navigation
  • the subscript i of the tracking position Pi and the direction Di of the strongest tracking signal is an integer ranging from 1 to n, indicating i tracking.
  • Step 3 When the vessel reaches the tracking end position Pn, use the current position of the vessel as the new tracking start position P1, and sail the vessel from the current position to the preset sailing mileage again.
  • the reached position is taken as the new tracking end position Pn, and repeat the first step and the second step;
  • the antenna controller 4 takes the position of the ship when it starts working as the first tracking start position P1.
  • this Embodiment 7 also adopts the following preferred structure:
  • the rotation driving mechanism 3 uses the first stepping motor 3-1 as a power source to drive the scanning antenna 1 to rotate in a horizontal plane;
  • the manner in which the antenna controller 4 determines the strongest scanning signal direction D1 and the strongest signal base station S1 is:
  • the preset rotation angle interval is one or more minimum step angles of the first stepping motor 3-1;
  • the way to compare the sampled mobile communication signals is to first compare the signal strength of each mobile communication signal, and select the mobile communication signal with the strongest signal strength as the strongest mobile communication signal, if the mobile communication signal with the strongest signal strength If there are multiple signals, then the signal with the best signal quality is selected from the multiple mobile communication signals with the strongest signal strength as the strongest mobile communication signal.
  • this Embodiment 8 also adopts the following preferred structure:
  • the rotation driving mechanism 3 uses the second stepping motor 3-2 as a power source to drive the communication antenna 2 to rotate in a horizontal plane; and the marine ultra-long distance mobile communication signal automatic tracking terminal further includes a Gyroscope 8 on the ship;
  • the antenna controller 4 controls the communication antenna 2 to rotate in a horizontal plane as follows:
  • the signal transmission / reception direction d of the communication antenna 2 is directly controlled to rotate to the strongest scan determined in step one Signal direction D1, the strongest scanning signal direction D1 is the strongest tracking signal direction Di of the communication antenna 2 when the vessel is at the tracking start position P1;
  • the gyroscope 8 is used to measure the signal transmission direction d of the communication antenna 2 at the current time relative to The deviation angle ⁇ and the deviation direction of the zero point direction, and then control the signal transmission and reception direction d of the communication antenna 2 to rotate in the horizontal plane to the signal peak direction in the following manner:
  • the deviation direction of the signal transceiving direction d at the tracking position Pi relative to the zero point direction, that is, the strongest tracking signal direction Di-1 is counterclockwise, then Control the signal transmission / reception direction d of the communication antenna 2 to rotate clockwise), and the angle of each rotation is the step angle set by the second stepping motor 3-2, and, at the same time of each rotation, Comparing the mobile communication signals received by the communication antenna 2 after each rotation, until it is found that a certain rotation of the communication antenna 2 meets the signal peak condition, then the signal transmission and reception direction of the communication antenna 2 is d
  • the direction of the rotation is recorded as the signal peak direction, and the signal transmission and reception direction d of the communication antenna 2 is controlled to rotate in the horizontal plane to the signal peak direction, and the signal peak direction is the communication antenna 2 on the vessel
  • the size of the step angle set by the second stepping motor 3-2 depends on the deviation angle ⁇ .
  • the first signal port S1 of the signal transceiving module 5 is connected to the antenna port ANT1 of the scanning antenna 1 through the first amplifying module 9, and the second signal port S2 of the signal transceiving module 5 is connected to the The antenna port ANT2 of the communication antenna 2 is connected;
  • the first amplifying module 9 and the second amplifying module 10 are both composed of a duplexer, an RF power amplifier PA and a low-noise amplifier LNA.
  • the receiving end of the duplexer is electrically connected to the output end of the RF power amplifier PA Connection, the output end of the duplexer is electrically connected to the input end of the low noise amplifier LNA; and, for the first amplification module 9, the antenna port of the duplexer is connected to the antenna of the scanning antenna 1 Port ANT1, the input terminal of the RF power amplifier PA is electrically connected to the output terminal of the first signal port S1, and the output terminal of the low noise amplifier LNA is electrically connected to the input terminal of the first signal port S1;
  • the antenna port of the duplexer is connected to the antenna port ANT2 of the communication antenna 2, and the input terminal of the RF power amplifier PA is electrically connected to the output terminal of the second signal port S2.
  • the output terminal of the low noise amplifier LNA is electrically connected to the input terminal of the second signal port
  • the first amplifying module 9 is used to connect the signal transceiving module 5 and the scanning antenna 1, so that the upstream and downstream feeding paths of the scanning antenna 1 are separated by the duplexer, and independently pass through the RF power amplifier PA and the low noise amplifier LNA. Amplification further increases the scanning distance of the scanning antenna 1 for mobile communication signals, and in the present invention, the second amplifying module 10 is used to connect the signal transceiving module 5 and the communication antenna 2 so that the uplink and downlink feed paths of the communication antenna 2 pass through the dual The tools are separated and independently amplified by the RF power amplifier PA and the low noise amplifier LNA, which further increases the distance that the communication antenna 2 can establish a stable communication link with the base station. Therefore, the present invention can further increase the marine user terminal equipment 7 The mobile communication transmission distance between the shore-side base station and the mobile communication transmission distance between the offshore user terminal equipment 7 and the shore-side base station can reach 40 to 50 kilometers through experiments in this embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Radio Relay Systems (AREA)

Abstract

本发明公开了一种船用超远距离移动通信信号自动跟踪方法和终端,通过控制类型为定向天线的通信天线在任意一个跟踪位置,其信号收发方向均旋转至其能够接收到最强移动通信信号的方向,使得航行在海上的船只所安装的通信天线能够与岸上的基站实现超远距离的移动通信信号通信链接,使得船只上的用户终端设备能够通过通信天线间接使用基站提供的移动通信网络;并且,通过先用扫描天线锁定最强信号基站,再在预设航行里程的航行过程中用通信天线间隔跟踪该最强信号基站的最强移动通信信号,并循环的重复前述过程,使得通信天线能够在每一个预设的航行里程内与一个最强信号基站建立并保持通信链接,确保了通信天线与基站之间的通信稳定性。

Description

船用超远距离移动通信信号自动跟踪方法和终端 技术领域
本发明涉及海上移动通信领域,具体的说一种船用超远距离移动通信信号自动跟踪方法,以及,基于该方法的船用超远距离移动通信信号自动跟踪终端。
背景技术
在调查海上通信市场的过程中,发现海上移动用户目前使用的移动信号接收终端都只能在近海区域(大概离岸8-10公里内)才能比较稳定地使用移动通信网络,在离岸较远的距离外,无法与沿岸移动基站保持通信,不得不处于无信号状态或者使用昂贵的卫星通信方式。
到2018年,市场上移动信号接收终端主要分为两种方案类型。
第一种:使用低增益,全向性天线的移动信号接收终端,这类产品,信号相对比较稳定,但与基站稳定通信的距离短,在移动信号弱的应用场地,无法满足用户移动通信的需求。
第二种:使用静态高增益定向天线的移动信号接收终端,这类产品,对处于静止状态下的应用场地(如城中村),通过手动调整天线的方向,与基站稳定通信的距离相对较远,但对处于运动状态的应用场地(如船只、车辆),信号极其不稳定,无法满足用户移动通信的需求。
发明内容
本发明所要解决的技术问题是:提供一种船用超远距离移动通信信号自动跟踪方法和终端,以解决现有移动信号接收终端无法实现海上远距离移动通信的问题。
解决上述技术问题,本发明所采用的技术方案如下:
一种船用超远距离移动通信信号自动跟踪方法,包括:
步骤一、在船只处于跟踪起始位置时,在所述船只上用类型为定向天线的扫描天线在水平面进行360°旋转扫描,以确定:在该扫描过程中,所述扫描天线接收到最强移动通信信号时的信号收发方向,记为最强扫描信号方向,并将发射所述最强移动通信信号的基站记为最强信号基站;
步骤二、在所述船只从所述跟踪起始位置航行预设的航行里程到达跟踪结束位置的航行过程中:
在所述船只上控制类型为定向天线的通信天线在水平面进行旋转,使得所述船只位于所述航行过程的航行路线中的任意一个跟踪位置时,所述通信天线的信号收发方向旋转至所述通信天线能够接收到所述最强信号基站发射到该跟踪位置的最强移动通信信号的方向,该方向记为最强跟踪信号方向,其中,所述航行路线中具有多个所述跟踪位置,且所述跟踪起始位置和跟踪结束位置分别为所述航行路线的第一个和最后一个跟踪位置,相邻两个所述跟踪位置之间的航行里程小于预设的航行里程阈值;
并且,控制所述通信天线与所述最强信号基站建立并保持通信链接;
步骤三、当所述船只到达所述跟踪结束位置时,将所述船只的当前位置作为新的跟踪起始位置,并将所述船只从当前位置再次航行所述预设的航行里程所到达的位置作为新的跟踪结束位置,重复所述步骤一和步骤二;
步骤四、在所述船只上建立局域网,将所述通信天线接收的移动通信信号转换为适配所述局域网的网络信号,使得接入所述局域网的用户终端设备能够通过所述局域网接收所述通信天线接收到的移动通信信号,并且,将所述用户终端设备向所述局域网发送的网络信号转换为移动通信信号,以通过所述通信天线发射给与该通信天线保持通信链接的最强信号基站。
作为本发明的实施方式之一:所述扫描天线和通信天线为两根定向天线。
作为本发明的实施方式之二:所述扫描天线和通信天线为同一根定向天线,即:该定向天线在所述步骤一时作为所述扫描天线,并在所述步骤二时作为所述通信天线。
作为本发明的优选实施方式:所述步骤一中,确定所述最强扫描信号方向和最强信号基站的方式为:
用第一步进电机作为动力源,驱动所述扫描天线在水平面进行360°旋转扫描,并且,按照预设的旋转角度间隔,对所述扫描天线接收到的移动通信信号进行采样,并将采样得到的各个移动通信信号进行比较,以确定所述最强移动通信信号;
其中,所述预设的旋转角度间隔为所述第一步进电机的一个或多个最小步距角度;
将采样得到的各个移动通信信号进行比较的方式为:先比较各个移动通信信 号的信号强度,选取信号强度最强的移动通信信号为所述最强移动通信信号,如果信号强度最强的移动通信信号存在多个,则再从该多个信号强度最强的移动通信信号中选取信号质量最好的作为所述最强移动通信信号。
作为本发明的优选实施方式:所述步骤二中,在所述航行过程中,用第二步进电机作为动力源,驱动所述通信天线在水平面进行旋转,且控制所述通信天线在水平面进行旋转的方式为:
在所述船只位于所述跟踪起始位置即所述航行路线的第一个跟踪位置时,直接控制所述通信天线的信号收发方向旋转至所述步骤一确定的最强扫描信号方向,该最强扫描信号方向即所述通信天线在所述船只位于所述跟踪起始位置时的最强跟踪信号方向;
在所述船只位于当前的跟踪位置,且该当前的跟踪位置为所述航行路线除所述跟踪起始位置之外的任意一个跟踪位置时,将所述通信天线在所述船只位于前一个跟踪位置时的最强跟踪信号方向称为零点方向,先通过安装在所述船只上的陀螺仪,测得所述通信天线在当前时刻的信号收发方向相对于所述零点方向的偏离角度和偏离方向,再按以下方式控制所述通信天线的信号收发方向在水平面旋转至信号峰值方向:
将所述第二步进电机的步距角度设置为它的一个或多个最小步距角度,控制所述第二步进电机驱动所述通信天线的信号收发方向朝所述偏离方向的反向进行多次旋转,且每一次旋转的角度为所述第二步进电机所设置的步距角度,并且,在每一次旋转的同时,将所述通信天线在每一次旋转后接收到的移动通信信号进行比较,直至比较得出所述通信天线的某一次旋转符合信号峰值条件,则将所述通信天线的信号收发方向在该次旋转的指向记为所述信号峰值方向,并控制所述通信天线的信号收发方向在水平面旋转至所述信号峰值方向,该信号峰值方向即所述通信天线在所述船只位于当前的跟踪位置时的最强跟踪信号方向;其中,所述信号峰值条件为:从某一次旋转分别到前N次旋转和后N次旋转,所述通信天线所接收到的移动通信信号的信号强度均呈逐个减弱的趋势,N为正整数。
一种船用超远距离移动通信信号自动跟踪终端,包括位于在船只上的扫描天线、通信天线和天线控制器,所述扫描天线和通信天线的类型均采用可旋转驱动的定向天线;所述天线控制器控制所述扫描天线和通信天线的跟踪方式为:先用 扫描天线锁定最强信号基站,再在预设航行里程的航行过程中用通信天线间隔跟踪并定向在该最强信号基站的最强移动通信信号的方向;并在每一个预设的航行里程内循环地重复前述过程,使得在每一个预设的航行里程内,所述通信天线只与最强信号基站建立并保持通信链接。
作为本发明的优选实施方式:在每一个预设的航行里程内所述天线控制器控制所述扫描天线和通信天线的具体过程:
在船只处于一个预设的航行里程起始位置时,控制所述扫描天线在水平面进行360°旋转扫描,以确定:在该扫描过程中,所述扫描天线接收到最强移动通信信号时的信号收发方向,记为最强扫描信号方向,并将发射所述最强移动通信信号的基站记为最强信号基站;
在所述船只从跟踪所述起始位置航行预设的航行里程到达跟踪结束位置的航行过程中:
控制所述通信天线在水平面进行旋转,使得所述船只位于所述航行过程的航行路线中的任意一个跟踪位置时,所述通信天线的信号收发方向旋转至所述通信天线能够接收到所述最强信号基站发射到该跟踪位置的最强移动通信信号的方向,该方向记为最强跟踪信号方向,其中,所述航行路线中具有多个所述跟踪位置,且所述跟踪起始位置和跟踪结束位置分别为所述航行路线的第一个和最后一个跟踪位置,相邻两个所述跟踪位置之间的航行里程小于预设的航行里程阈值;并且,控制所述通信天线与所述最强信号基站建立并保持通信链接。
并且,所述天线控制器将其开始工作时所述船只所在的位置作为第一个所述跟踪起始位置。
作为本发明的优选实施方式:所述天线控制器通过旋转驱动机构控制所述扫描天线在水平面的旋转角度;所述旋转驱动机构以第一步进电机作为动力源,驱动所述扫描天线在水平面旋转;
所述天线控制器确定所述最强扫描信号方向和最强信号基站的方式为:
控制所述扫描天线在水平面进行360°旋转扫描,并且,按照预设的旋转角度间隔,对所述扫描天线接收到的移动通信信号进行采样,并将采样得到的各个移动通信信号进行比较,以确定所述最强移动通信信号;
其中,所述预设的旋转角度间隔为所述第一步进电机的一个或多个最小步距 角度;
将采样得到的各个移动通信信号进行比较的方式为:先比较各个移动通信信号的信号强度,选取信号强度最强的移动通信信号为所述最强移动通信信号,如果信号强度最强的移动通信信号存在多个,则再从该多个信号强度最强的移动通信信号中选取信号质量最好的作为所述最强移动通信信号。
作为本发明的优选实施方式:所述天线控制器通过旋转驱动机构控制所述通信天线在水平面的旋转角度;所述旋转驱动机构以第二步进电机作为动力源,驱动所述通信天线在水平面旋转;并且,所述的船用超远距离移动通信信号自动跟踪终端还包括安装在所述船只上的陀螺仪;
在所述航行过程中,所述天线控制器控制所述通信天线在水平面进行旋转的方式为:
在所述船只位于所述跟踪起始位置即所述航行路线的第一个跟踪位置时,直接控制所述通信天线的信号收发方向旋转至所述步骤一确定的最强扫描信号方向,该最强扫描信号方向即所述通信天线在所述船只位于所述跟踪起始位置时的最强跟踪信号方向;
在所述船只位于当前的跟踪位置,且该当前的跟踪位置为所述航行路线除所述跟踪起始位置之外的任意一个跟踪位置时,将所述通信天线在所述船只位于前一个跟踪位置时的最强跟踪信号方向称为零点方向,先通过所述陀螺仪,测得所述通信天线在当前时刻的信号收发方向相对于所述零点方向的偏离角度和偏离方向,再按以下方式控制所述通信天线的信号收发方向在水平面旋转至信号峰值方向:
将所述第二步进电机的步距角度设置为它的一个或多个最小步距角度,控制所述第二步进电机驱动所述通信天线的信号收发方向朝所述偏离方向的反向进行多次旋转,且每一次旋转的角度为所述第二步进电机所设置的步距角度,并且,在每一次旋转的同时,将所述通信天线在每一次旋转后接收到的移动通信信号进行比较,直至比较得出所述通信天线的某一次旋转符合信号峰值条件,则将所述通信天线的信号收发方向在该次旋转的指向记为所述信号峰值方向,并控制所述通信天线的信号收发方向在水平面旋转至所述信号峰值方向,该信号峰值方向即所述通信天线在所述船只位于当前的跟踪位置时的最强跟踪信号方向;其中,所 述信号峰值条件为:从某一次旋转分别到前N次旋转和后N次旋转,所述通信天线所接收到的移动通信信号的信号强度均呈逐个减弱的趋势,N为正整数。
作为本发明的优选实施方式:还包括信号收发模块和路由器,所述信号收发模块设有第一信号端口、第二信号端口、输出端口和网络端口,所述第一信号端口与所述扫描天线的天线端口相连接,所述第二信号端口与所述通信天线的天线端口相连接,所述输出端口与所述天线控制器电性连接,所述网络端口与所述路由器通信连接,且所述路由器能够在所述船只上建立局域网,使得:
所述信号收发模块能够将所述扫描天线接收的移动通信信号经过解调和解码后转换为扫描天线数字信号并输出给所述天线控制器;
并且,所述信号收发模块能够将所述通信天线接收的移动通信信号经过解调和解码后转换为通信天线数字信号并通过所述网络端口输出,所述路由器能够将所述通信天线数字信号转换为适配所述局域网的网络信号,令接入所述局域网的用户终端设备能够通过所述局域网接收所述通信天线接收到的移动通信信号,且所述信号收发模块能够将所述用户终端设备向所述局域网发送的网络信号转换为移动通信信号,以通过所述通信天线发射给与该通信天线保持通信链接的基站。
作为本发明的优选实施方式:所述信号收发模块的第一信号端口通过第一放大模块与所述扫描天线的天线端口连接,所述信号收发模块的第二信号端口通过第二放大模块与所述通信天线的天线端口连接;
所述第一放大模块和第二放大模块均由双工器、射频功率放大器和低噪声放大器组成,所述双工器的接收端与所述射频功率放大器的输出端电性连接,所述双工器的输出端与所述低噪声放大器的输入端电性连接;并且,对于所述第一放大模块,其双工器的天线端口连接所述扫描天线的天线端口,其射频功率放大器的输入端与所述第一信号端口的输出端子电性连接,其低噪声放大器的输出端与所述第一信号端口的输入端子电性连接;对于所述第二放大模块,其双工器的天线端口连接所述通信天线的天线端口,其射频功率放大器的输入端与所述第二信号端口的输出端子电性连接,其低噪声放大器的输出端与所述第二信号端口的输入端子电性连接。
作为本发明的优选实施方式:所述局域网的网络信号为以太网信号、WiFi网络信号、蓝牙信号、Zigbee网络信号中的任意一种。
与现有技术相比,本发明具有以下有益效果:
第一,本发明在船只的航行过程中,通过控制类型为定向天线的通信天线在任意一个跟踪位置,其信号收发方向均旋转至其能够接收到最强移动通信信号的方向,使得航行在海上的船只所安装的通信天线能够与岸上的基站实现超远距离的移动通信信号通信链接,使得船只上的用户终端设备能够通过通信天线间接使用基站提供的移动通信网络,以满足用户的海上移动通信需求,且具有海上用户终端设备与岸上基站之间的移动通信传输距离长的优点;
并且,本发明通过采用“先用扫描天线锁定最强信号基站,再在预设航行里程的航行过程中用通信天线间隔跟踪该最强信号基站的最强移动通信信号,并循环的重复前述过程”的跟踪方式,使得通信天线能够在每一个预设的航行里程内与一个最强信号基站建立并保持通信链接,确保了通信天线与基站之间的通信稳定性,避免“由于基站的信号强度波动,在船只很短的航行里程内,扫描天线360°旋转扫描到的最强移动通信信号来自不同的基站(例如:在船只航行至图1中的位置时,其与图1中的基站S1和基站S2的距离相差不大,在基站信号强度波动的影响下,用扫描天线扫描得到的最强移动通信信号既可能来自基站S1也可能来自基站S2),致使通信天线频繁的切换与其建立通信链接的基站,导致用户终端设备频繁出现掉线、上线的情况,造成用户终端设备的信号稳定性差”的问题。
第二,本发明在步骤二中控制所述通信天线在水平面进行旋转的方式,即:控制通信天线的信号收发方向朝所述偏离方向的反向进行多次旋转,并通过比较得出信号峰值方向的方式,能够使通信天线在每一个跟踪位置跟踪到所述最强跟踪信号方向的速度加快、准确度提高,以进一步提高用户在海上使用移动通信网络的质量。
第三,本发明用第一放大模块连接信号收发模块与扫描天线,使得扫描天线的上行和下行馈路通过双工器分离,并分别独立的经过射频功率放大器和低噪声放大器进行放大,进一步增大了扫描天线对移动通信信号的扫描距离,并且,本发明用第二放大模块连接信号收发模块与通信天线,使得通信天线的上行和下行馈路通过双工器分离,并分别独立的经过射频功率放大器和低噪声放大器进行放大,进一步增大了通信天线能够与基站建立稳定的通信链接的距离,因此,本发 明能够进一步增加海上用户终端设备与岸上基站之间的移动通信传输距离。
附图说明
下面结合附图和具体实施例对本发明作进一步的详细说明:
图1为本发明的船用超远距离移动通信信号自动跟踪方法的示意图;
图2为本发明的船用超远距离移动通信信号自动跟踪终端的示意图。
具体实施方式
下面结合实施例对本发明作进一步说明:
实施例一
如图1和图2所示,本发明公开的是一种船用超远距离移动通信信号自动跟踪方法,包括:
步骤一、在船只处于跟踪起始位置P1时,在所述船只上用类型为定向天线的扫描天线1在水平面进行360°旋转扫描,以确定:在该扫描过程中,所述扫描天线1接收到最强移动通信信号时的信号收发方向,记为最强扫描信号方向D1,并将发射所述最强移动通信信号的基站记为最强信号基站S1;
其中,所述基站可以是2G/3G/4G/5G等所有移动通信基站;所述定向天线可以为八木宇田天线、栅格天线、板状扇形天线、抛物面天线等高增益定向天线。
步骤二、在所述船只从所述跟踪起始位置P1航行预设的航行里程到达跟踪结束位置Pn的航行过程中:
在所述船只上控制类型为定向天线的通信天线2在水平面进行旋转,使得所述船只位于所述航行过程的航行路线L中的任意一个跟踪位置Pi时,所述通信天线2的信号收发方向d旋转至所述通信天线2能够接收到所述最强信号基站S1发射到该跟踪位置的最强移动通信信号的方向,该方向记为最强跟踪信号方向Di,其中,所述航行路线L中具有多个所述跟踪位置Pi,且所述跟踪起始位置P1和跟踪结束位置Pn分别为所述航行路线L的第一个和最后一个跟踪位置Pi,相邻两个所述跟踪位置Pi之间的航行里程小于预设的航行里程阈值,该航行里程阈值的取值取决于船只的航速、船只受风浪的影响程度等因素,用以确保所述通信天线2的信号收发方向d在相邻两个所述跟踪位置Pi之间的变化角度小于180°且越小越好,但航行里程阈值过小的取值会造成控制通信天线2旋转所需的计算量过大的问题,一般来说,航行里程阈值取值可以在1m至3m之间;
并且,控制所述通信天线2与所述最强信号基站S1建立并保持通信链接;
其中,所述跟踪结束位置Pn的下标n表示所述航行过程中的跟踪次数,跟踪位置Pi和最强跟踪信号方向Di的下标i为取值在1至n之间的整数,表示第i次跟踪。
步骤三、当所述船只到达所述跟踪结束位置Pn时,将所述船只的当前位置作为新的跟踪起始位置P1,并将所述船只从当前位置再次航行所述预设的航行里程所到达的位置作为新的跟踪结束位置Pn,重复所述步骤一和步骤二;
步骤四、在所述船只上建立局域网,将所述通信天线2接收的移动通信信号转换为适配所述局域网的网络信号,使得接入所述局域网的用户终端设备7能够通过所述局域网接收所述通信天线2接收到的移动通信信号,并且,将所述用户终端设备7向所述局域网发送的网络信号转换为移动通信信号,以通过所述通信天线2发射给与该通信天线2保持通信链接的最强信号基站S1。其中,所述局域网的网络信号可以是以太网、WiFi、蓝牙、Zigbee等,所述用户终端设备7可以是手机、IPAD、个人电脑等移动通信网络终端设备。
从而,本发明在船只的航行过程中,通过控制类型为定向天线的通信天线2在任意一个跟踪位置Pi,其信号收发方向d均旋转至其能够接收到最强移动通信信号的方向,使得航行在海上的船只所安装的通信天线2能够与岸上的基站实现超远距离的移动通信信号通信链接,使得船只上的用户终端设备7能够通过通信天线2间接使用基站提供的移动通信网络,以满足用户的海上移动通信需求,且具有海上用户终端设备7与岸上基站之间的移动通信传输距离长的优点,经试验,通过本发明,海上用户终端设备7与岸上基站之间的移动通信传输距离可达到30至40公里;
并且,本发明通过采用“先用扫描天线1锁定最强信号基站S1,再在预设航行里程的航行过程中用通信天线2间隔跟踪该最强信号基站S1的最强移动通信信号,并循环的重复前述过程”的跟踪方式,使得通信天线2能够在每一个预设的航行里程内与一个最强信号基站S1建立并保持通信链接,确保了通信天线2与基站之间的通信稳定性,避免“由于基站的信号强度波动,在船只很短的航行里程内,扫描天线1进行360°旋转扫描到的最强移动通信信号来自不同的基站(例如:在船只航行至图1中的位置Pi时,其与图1中的基站S1和基站S2 的距离相差不大,在基站信号强度波动的影响下,用扫描天线1扫描得到的最强移动通信信号既可能来自基站S1也可能来自基站S2),致使通信天线2频繁的切换与其建立通信链接的基站,导致用户终端设备7频繁出现掉线、上线的情况,造成用户终端设备7的信号稳定性差”的问题。
实施例二
在上述实施例一的基础上,本实施例二还采用了以下优选的结构:
所述扫描天线1和通信天线2为两根定向天线,从而,所述扫描天线1可以在所述船只航行的全程进行360°旋转扫描、也可以仅在所述步骤一时进行360°旋转扫描,而所述通信天线2则可以在所述船只航行的全程按照所述步骤二与相应的最强信号基站S1建立并保持通信链接,确保用户终端设备7在船只航行的全程都能够使用移动通信网络。
实施例三
在上述实施例一的基础上,本实施例三还采用了以下优选的结构:
所述扫描天线1和通信天线2为同一根定向天线,即:该定向天线在所述步骤一时作为所述扫描天线1,并在所述步骤二时作为所述通信天线2。从而,所述船只上仅需配备一根定向天线就能够实施本发明,但在执行所述步骤一时,作为扫描天线1的所述定向天线会断开与所述最强信号基站S1的通信链接,造成用户终端设备7在此时掉线。
实施例四
在上述实施例一至实施例三中任意一个实施例的基础上,本实施例四还采用了以下优选的结构:
所述步骤一中,确定所述最强扫描信号方向D1和最强信号基站S1的方式为:
用第一步进电机3-1作为动力源,驱动所述扫描天线1在水平面进行360°旋转扫描,并且,按照预设的旋转角度间隔,对所述扫描天线1接收到的移动通信信号进行采样,并将采样得到的各个移动通信信号进行比较,以确定所述最强移动通信信号,所述最强扫描信号方向D1即接收所述最强移动通信信号时所述第一步进电机3-1驱动所述扫描天线1的旋转角度;
其中,所述预设的旋转角度间隔为所述第一步进电机3-1的一个或多个最小步距角度;
将采样得到的各个移动通信信号进行比较的方式为:先比较各个移动通信信号的信号强度,选取信号强度最强的移动通信信号为所述最强移动通信信号,如果信号强度最强的移动通信信号存在多个,则再从该多个信号强度最强的移动通信信号中选取信号质量最好的作为所述最强移动通信信号。
实施例五
在上述实施例一至实施例四中任意一个实施例的基础上,本实施例五还采用了以下优选的结构:
所述步骤二中,在所述航行过程中,用第二步进电机3-2作为动力源,驱动所述通信天线2在水平面进行旋转,且控制所述通信天线2在水平面进行旋转的方式为:
在所述船只位于所述跟踪起始位置P1即所述航行路线L的第一个跟踪位置Pi时,直接控制所述通信天线2的信号收发方向d旋转至所述步骤一确定的最强扫描信号方向D1,该最强扫描信号方向D1即所述通信天线2在所述船只位于所述跟踪起始位置P1时的最强跟踪信号方向Di;
在所述船只位于当前的跟踪位置Pi,且该当前的跟踪位置Pi为所述航行路线L除所述跟踪起始位置P1之外的任意一个跟踪位置Pi时,将所述通信天线2在所述船只位于前一个跟踪位置Pi-1时的最强跟踪信号方向Di-1称为零点方向,先通过安装在所述船只上的陀螺仪8,测得所述通信天线2在当前时刻的信号收发方向d相对于所述零点方向的偏离角度α和偏离方向,再按以下方式控制所述通信天线2的信号收发方向d在水平面旋转至信号峰值方向:
将所述第二步进电机3-2的步距角度设置为它的一个或多个最小步距角度,控制所述第二步进电机3-2驱动所述通信天线2的信号收发方向d朝所述偏离方向的反向进行多次旋转(例如:图1中,跟踪位置Pi处的信号收发方向d相对于零点方向即最强跟踪信号方向Di-1的偏离方向为逆时针方向,则控制所述通信天线2的信号收发方向d顺时针方向旋转),且每一次旋转的角度为所述第二步进电机3-2所设置的步距角度,并且,在每一次旋转的同时,将所述通信天线2在每一次旋转后接收到的移动通信信号进行比较,直至比较得出所述通信天线2的某一次旋转符合信号峰值条件,则将所述通信天线2的信号收发方向d在该次旋转的指向记为所述信号峰值方向,并控制所述通信天线2的信号收发方向d 在水平面旋转至所述信号峰值方向,该信号峰值方向即所述通信天线2在所述船只位于当前的跟踪位置Pi时的最强跟踪信号方向Di;其中,所述信号峰值条件为:从某一次旋转分别到前N次旋转和后N次旋转,所述通信天线2所接收到的移动通信信号的信号强度均呈逐个减弱的趋势,N为正整数,N的取值越大,则所跟踪到的最强跟踪信号方向Di越准确,但所需的计算量也越大。
另外,所述第二步进电机3-2所设置步距角度的大小,取决于所述偏离角度α,所述偏离角度α越大,则所设置的步距角度越大,以避免“过小的步距角度,致使所述通信天线2的旋转速度过慢,造成所述通信天线2的信号收发方向d未能在所述船只位于当前的跟踪位置Pi时旋转至所述最强跟踪信号方向Di”的问题;但是,所设置的步距角度也不能过大,以避免所跟踪到的最强跟踪信号方向Di的准确性过低。
其中,对于实施例二,所述第一步进电机3-1和第二步进电机3-2为两个步进电机;对于实施例三,所述第一步进电机3-1和第二步进电机3-2为同一个步进电机。
实施例六
如图1和图2所示,本实施例六公开了一种船用超远距离移动通信信号自动跟踪终端,其能够实现实施例一至实施例三所述的方法,其包括:位于在船只上的扫描天线1、通信天线2、旋转驱动机构3、天线控制器4、信号收发模块5和路由器6,其中,所述扫描天线1和通信天线2的类型均为定向天线;所述天线控制器4与所述船只的航行系统通信连接,以接收所述船只的航行里程数据;所述旋转驱动机构3固定在所述船只上,所述扫描天线1和通信天线2均安装在所述旋转驱动机构3上,所述旋转驱动机构3能够分别驱动所述扫描天线1和通信天线2在水平面旋转;所述天线控制器4与所述旋转驱动机构3的控制端电性连接,以通过所述旋转驱动机构3分别控制所述扫描天线1和通信天线2在水平面的旋转角度;所述信号收发模块5设有第一信号端口S1、第二信号端口S2、输出端口和网络端口,所述第一信号端口S1与所述扫描天线1的天线端口ANT1相连接,所述第二信号端口S2与所述通信天线2的天线端口ANT2相连接,所述输出端口与所述天线控制器4电性连接,所述网络端口与所述路由器6通信连接,且所述路由器6能够在所述船只上建立局域网,使得:
所述信号收发模块5能够将所述扫描天线1接收的移动通信信号经过解调和解码后转换为扫描天线数字信号并输出给所述天线控制器4;
并且,所述信号收发模块5能够将所述通信天线2接收的移动通信信号经过解调和解码后转换为通信天线数字信号并通过所述网络端口输出,所述路由器6能够将所述通信天线数字信号转换为适配所述局域网的网络信号,令接入所述局域网的用户终端设备7能够通过所述局域网接收所述通信天线2接收到的移动通信信号,且所述信号收发模块5能够将所述用户终端设备7向所述局域网发送的网络信号转换为移动通信信号,以通过所述通信天线2发射给与该通信天线2保持通信链接的基站;
其中,所述局域网的网络信号可以是以太网、WiFi、蓝牙、Zigbee等,所述用户终端设备7可以是手机、IPAD、个人电脑等移动通信网络终端设备。
所述天线控制器4按以下步骤控制所述扫描天线1和通信天线2:
步骤一、在船只处于跟踪起始位置P1时,控制所述扫描天线1在水平面进行360°旋转扫描,以确定:在该扫描过程中,所述扫描天线1接收到最强移动通信信号时的信号收发方向,记为最强扫描信号方向D1,并将发射所述最强移动通信信号的基站记为最强信号基站S1;
其中,所述基站可以是2G/3G/4G/5G等所有移动通信基站;所述定向天线可以为八木宇田天线、栅格天线、板状扇形天线、抛物面天线等高增益定向天线。
步骤二、在所述船只从所述跟踪起始位置P1航行预设的航行里程到达跟踪结束位置Pn的航行过程中:
控制所述通信天线2在水平面进行旋转,使得所述船只位于所述航行过程的航行路线L中的任意一个跟踪位置Pi时,所述通信天线2的信号收发方向d旋转至所述通信天线2能够接收到所述最强信号基站S1发射到该跟踪位置的最强移动通信信号的方向,该方向记为最强跟踪信号方向Di,其中,所述航行路线L中具有多个所述跟踪位置Pi,且所述跟踪起始位置P1和跟踪结束位置Pn分别为所述航行路线L的第一个和最后一个跟踪位置Pi,相邻两个所述跟踪位置Pi之间的航行里程小于预设的航行里程阈值,该航行里程阈值的取值取决于船只的航速、船只受风浪的影响程度等因素,用以确保所述通信天线2的信号收发方向d在相邻两个所述跟踪位置Pi之间的变化角度小于180°且越小越好,但航行里 程阈值过小的取值会造成控制通信天线2旋转所需的计算量过大的问题,一般来说,航行里程阈值取值可以在1m至3m之间;
并且,控制所述通信天线2与所述最强信号基站S1建立并保持通信链接;
其中,所述跟踪结束位置Pn的下标n表示所述航行过程中的跟踪次数,跟踪位置Pi和最强跟踪信号方向Di的下标i为取值在1至n之间的整数,表示第i次跟踪。
步骤三、当所述船只到达所述跟踪结束位置Pn时,将所述船只的当前位置作为新的跟踪起始位置P1,并将所述船只从当前位置再次航行所述预设的航行里程所到达的位置作为新的跟踪结束位置Pn,重复所述步骤一和步骤二;
并且,所述天线控制器4将其开始工作时所述船只所在的位置作为第一个所述跟踪起始位置P1。
实施例七
在上述实施例六的基础上,本实施例七还采用了以下优选的结构:
所述旋转驱动机构3以第一步进电机3-1作为动力源,驱动所述扫描天线1在水平面旋转;
所述步骤一中,所述天线控制器4确定所述最强扫描信号方向D1和最强信号基站S1的方式为:
控制所述扫描天线1在水平面进行360°旋转扫描,并且,按照预设的旋转角度间隔,对所述扫描天线1接收到的移动通信信号进行采样,并将采样得到的各个移动通信信号进行比较,以确定所述最强移动通信信号,所述最强扫描信号方向D1即接收所述最强移动通信信号时所述第一步进电机3-1驱动所述扫描天线1的旋转角度;
其中,所述预设的旋转角度间隔为所述第一步进电机3-1的一个或多个最小步距角度;
将采样得到的各个移动通信信号进行比较的方式为:先比较各个移动通信信号的信号强度,选取信号强度最强的移动通信信号为所述最强移动通信信号,如果信号强度最强的移动通信信号存在多个,则再从该多个信号强度最强的移动通信信号中选取信号质量最好的作为所述最强移动通信信号。
实施例八
在上述实施例六或实施例七的基础上,本实施例八还采用了以下优选的结构:
所述旋转驱动机构3以第二步进电机3-2作为动力源,驱动所述通信天线2在水平面旋转;并且,所述的船用超远距离移动通信信号自动跟踪终端还包括安装在所述船只上的陀螺仪8;
所述步骤二中,在所述航行过程中,所述天线控制器4控制所述通信天线2在水平面进行旋转的方式为:
在所述船只位于所述跟踪起始位置P1即所述航行路线L的第一个跟踪位置Pi时,直接控制所述通信天线2的信号收发方向d旋转至所述步骤一确定的最强扫描信号方向D1,该最强扫描信号方向D1即所述通信天线2在所述船只位于所述跟踪起始位置P1时的最强跟踪信号方向Di;
在所述船只位于当前的跟踪位置Pi,且该当前的跟踪位置Pi为所述航行路线L除所述跟踪起始位置P1之外的任意一个跟踪位置Pi时,将所述通信天线2在所述船只位于前一个跟踪位置Pi-1时的最强跟踪信号方向Di-1称为零点方向,先通过所述陀螺仪8,测得所述通信天线2在当前时刻的信号收发方向d相对于所述零点方向的偏离角度α和偏离方向,再按以下方式控制所述通信天线2的信号收发方向d在水平面旋转至信号峰值方向:
将所述第二步进电机3-2的步距角度设置为它的一个或多个最小步距角度,控制所述第二步进电机3-2驱动所述通信天线2的信号收发方向d朝所述偏离方向的反向进行多次旋转(例如:图1中,跟踪位置Pi处的信号收发方向d相对于零点方向即最强跟踪信号方向Di-1的偏离方向为逆时针方向,则控制所述通信天线2的信号收发方向d顺时针方向旋转),且每一次旋转的角度为所述第二步进电机3-2所设置的步距角度,并且,在每一次旋转的同时,将所述通信天线2在每一次旋转后接收到的移动通信信号进行比较,直至比较得出所述通信天线2的某一次旋转符合信号峰值条件,则将所述通信天线2的信号收发方向d在该次旋转的指向记为所述信号峰值方向,并控制所述通信天线2的信号收发方向d在水平面旋转至所述信号峰值方向,该信号峰值方向即所述通信天线2在所述船只位于当前的跟踪位置Pi时的最强跟踪信号方向Di;其中,所述信号峰值条件为:从某一次旋转分别到前N次旋转和后N次旋转,所述通信天线2所接收到的移动通信信号的信号强度均呈逐个减弱的趋势,N为正整数,N的取值越大,则 所跟踪到的最强跟踪信号方向Di越准确,但所需的计算量也越大。
另外,所述第二步进电机3-2所设置步距角度的大小,取决于所述偏离角度α,所述偏离角度α越大,则所设置的步距角度越大,以避免“过小的步距角度,致使所述通信天线2的旋转速度过慢,造成所述通信天线2的信号收发方向d未能在所述船只位于当前的跟踪位置Pi时旋转至所述最强跟踪信号方向Di”的问题;但是,所设置的步距角度也不能过大,以避免所跟踪到的最强跟踪信号方向Di的准确性过低。
实施例九
在上述实施例六至实施例八中任意一个实施例的基础上,本实施例九还采用了以下优选的结构:
所述信号收发模块5的第一信号端口S1通过第一放大模块9与所述扫描天线1的天线端口ANT1连接,所述信号收发模块5的第二信号端口S2通过第二放大模块10与所述通信天线2的天线端口ANT2连接;
所述第一放大模块9和第二放大模块10均由双工器、射频功率放大器PA和低噪声放大器LNA组成,所述双工器的接收端与所述射频功率放大器PA的输出端电性连接,所述双工器的输出端与所述低噪声放大器LNA的输入端电性连接;并且,对于所述第一放大模块9,其双工器的天线端口连接所述扫描天线1的天线端口ANT1,其射频功率放大器PA的输入端与所述第一信号端口S1的输出端子电性连接,其低噪声放大器LNA的输出端与所述第一信号端口S1的输入端子电性连接;对于所述第二放大模块10,其双工器的天线端口连接所述通信天线2的天线端口ANT2,其射频功率放大器PA的输入端与所述第二信号端口S2的输出端子电性连接,其低噪声放大器LNA的输出端与所述第二信号端口S2的输入端子电性连接。
从而,本发明用第一放大模块9连接信号收发模块5与扫描天线1,使得扫描天线1的上行和下行馈路通过双工器分离,并分别独立的经过射频功率放大器PA和低噪声放大器LNA进行放大,进一步增大了扫描天线1对移动通信信号的扫描距离,并且,本发明用第二放大模块10连接信号收发模块5与通信天线2,使得通信天线2的上行和下行馈路通过双工器分离,并分别独立的经过射频功率放大器PA和低噪声放大器LNA进行放大,进一步增大了通信天线2能够与基站 建立稳定的通信链接的距离,因此,本发明能够进一步增加海上用户终端设备7与岸上基站之间的移动通信传输距离,经试验,通过本实施例,海上用户终端设备7与岸上基站之间的移动通信传输距离可达到40至50公里。
本发明不局限于上述具体实施方式,根据上述内容,按照本领域的普通技术知识和惯用手段,在不脱离本发明上述基本技术思想前提下,本发明还可以做出其它多种形式的等效修改、替换或变更,均落在本发明的保护范围之中。

Claims (12)

  1. 一种船用超远距离移动通信信号自动跟踪方法,其特征在于,包括:
    步骤一、在船只处于跟踪起始位置(P1)时,在所述船只上用类型为定向天线的扫描天线(1)在水平面进行360°旋转扫描,以确定:在该扫描过程中,所述扫描天线(1)接收到最强移动通信信号时的信号收发方向,记为最强扫描信号方向(D1),并将发射所述最强移动通信信号的基站记为最强信号基站(S1);
    步骤二、在所述船只从所述跟踪起始位置(P1)航行预设的航行里程到达跟踪结束位置(Pn)的航行过程中:
    在所述船只上控制类型为定向天线的通信天线(2)在水平面进行旋转,使得所述船只位于所述航行过程的航行路线(L)中的任意一个跟踪位置(Pi)时,所述通信天线(2)的信号收发方向(d)旋转至所述通信天线(2)能够接收到所述最强信号基站(S1)发射到该跟踪位置的最强移动通信信号的方向,该方向记为最强跟踪信号方向(Di),其中,所述航行路线(L)中具有多个所述跟踪位置(Pi),且所述跟踪起始位置(P1)和跟踪结束位置(Pn)分别为所述航行路线(L)的第一个和最后一个跟踪位置(Pi),相邻两个所述跟踪位置(Pi)之间的航行里程小于预设的航行里程阈值;
    并且,控制所述通信天线(2)与所述最强信号基站(S1)建立并保持通信链接;
    步骤三、当所述船只到达所述跟踪结束位置(Pn)时,将所述船只的当前位置作为新的跟踪起始位置(P1),并将所述船只从当前位置再次航行所述预设的航行里程所到达的位置作为新的跟踪结束位置(Pn),重复所述步骤一和步骤二;
    步骤四、在所述船只上建立局域网,将所述通信天线(2)接收的移动通信信号转换为适配所述局域网的网络信号,使得接入所述局域网的用户终端设备(7)能够通过所述局域网接收所述通信天线(2)接收到的移动通信信号,并且,将所述用户终端设备(7)向所述局域网发送的网络信号转换为移动通信信号,以通过所述通信天线(2)发射给与该通信天线(2)保持通信链接的最强信号基站(S1)。
  2. 根据权利要求1所述的船用超远距离移动通信信号自动跟踪方法,其特征在于:所述扫描天线(1)和通信天线(2)为两根定向天线。
  3. 根据权利要求1所述的船用超远距离移动通信信号自动跟踪方法,其特征在于:所述扫描天线(1)和通信天线(2)为同一根定向天线,即:该定向天线在所述步骤一时作为所述扫描天线(1),并在所述步骤二时作为所述通信天线(2)。
  4. 根据权利要求1至3任意一项所述的船用超远距离移动通信信号自动跟踪方法,其特征在于:所述步骤一中,确定所述最强扫描信号方向(D1)和最强信号基站(S1)的方式为:
    用第一步进电机(3-1)作为动力源,驱动所述扫描天线(1)在水平面进行360°旋转扫描,并且,按照预设的旋转角度间隔,对所述扫描天线(1)接收到的移动通信信号进行采样,并将采样得到的各个移动通信信号进行比较,以确定所述最强移动通信信号;
    其中,所述预设的旋转角度间隔为所述第一步进电机(3-1)的一个或多个最小步距角度;
    将采样得到的各个移动通信信号进行比较的方式为:先比较各个移动通信信号的信号强度,选取信号强度最强的移动通信信号为所述最强移动通信信号,如果信号强度最强的移动通信信号存在多个,则再从该多个信号强度最强的移动通信信号中选取信号质量最好的作为所述最强移动通信信号。
  5. 根据权利要求1至3任意一项所述的船用超远距离移动通信信号自动跟踪方法,其特征在于:所述步骤二中,在所述航行过程中,用第二步进电机(3-2)作为动力源,驱动所述通信天线(2)在水平面进行旋转,且控制所述通信天线(2)在水平面进行旋转的方式为:
    在所述船只位于所述跟踪起始位置(P1)即所述航行路线(L)的第一个跟踪位置(Pi)时,直接控制所述通信天线(2)的信号收发方向(d)旋转至所述步骤一确定的最强扫描信号方向(D1),该最强扫描信号方向(D1)即所述通信天线(2)在所述船只位于所述跟踪起始位置(P1)时的最强跟踪信号方向(Di);
    在所述船只位于当前的跟踪位置(Pi),且该当前的跟踪位置(Pi)为所述航行路线(L)除所述跟踪起始位置(P1)之外的任意一个跟踪位置(Pi)时,将所述通信天线(2)在所述船只位于前一个跟踪位置(Pi-1)时的最强跟踪信号方向(Di-1)称为零点方向,先通过安装在所述船只上的陀螺仪(8),测得所 述通信天线(2)在当前时刻的信号收发方向(d)相对于所述零点方向的偏离角度(α)和偏离方向,再按以下方式控制所述通信天线(2)的信号收发方向(d)在水平面旋转至信号峰值方向:
    将所述第二步进电机(3-2)的步距角度设置为它的一个或多个最小步距角度,控制所述第二步进电机(3-2)驱动所述通信天线(2)的信号收发方向(d)朝所述偏离方向的反向进行多次旋转,且每一次旋转的角度为所述第二步进电机(3-2)所设置的步距角度,并且,在每一次旋转的同时,将所述通信天线(2)在每一次旋转后接收到的移动通信信号进行比较,直至比较得出所述通信天线(2)的某一次旋转符合信号峰值条件,则将所述通信天线(2)的信号收发方向(d)在该次旋转的指向记为所述信号峰值方向,并控制所述通信天线(2)的信号收发方向(d)在水平面旋转至所述信号峰值方向,该信号峰值方向即所述通信天线(2)在所述船只位于当前的跟踪位置(Pi)时的最强跟踪信号方向(Di);其中,所述信号峰值条件为:从某一次旋转分别到前N次旋转和后N次旋转,所述通信天线(2)所接收到的移动通信信号的信号强度均呈逐个减弱的趋势,N为正整数。
  6. 一种船用超远距离移动通信信号自动跟踪终端,包括位于在船只上的扫描天线(1)、通信天线(2)和天线控制器(4),其特征在于,所述扫描天线(1)和通信天线(2)的类型均采用可旋转驱动的定向天线;所述天线控制器(4)控制所述扫描天线(1)和通信天线(2)的跟踪方式为:先用扫描天线锁定最强信号基站,再在预设航行里程的航行过程中用通信天线间隔跟踪并定向在该最强信号基站的最强移动通信信号的方向;并在每一个预设的航行里程内循环地重复前述过程,使得在每一个预设的航行里程内,所述通信天线只与最强信号基站建立并保持通信链接。
  7. 根据权利要求6所述的一种船用超远距离移动通信信号自动跟踪终端,其特征在于,在每一个预设的航行里程内所述天线控制器(4)控制所述扫描天线(1)和通信天线(2)的具体过程:
    在船只处于一个预设的航行里程起始位置(P1)时,控制所述扫描天线(1)在水平面进行360°旋转扫描,以确定:在该扫描过程中,所述扫描天线(1)接收到最强移动通信信号时的信号收发方向,记为最强扫描信号方向(D1),并 将发射所述最强移动通信信号的基站记为最强信号基站(S1);
    在所述船只从跟踪所述起始位置(P1)航行预设的航行里程到达跟踪结束位置(Pn)的一个预设航行过程中,控制所述通信天线(2)在水平面进行旋转,使得所述船只位于所述航行过程的航行路线(L)中的任意一个跟踪位置(Pi)时,所述通信天线(2)的信号收发方向(d)旋转至所述通信天线(2)能够接收到所述最强信号基站(S1)发射到该跟踪位置的最强移动通信信号的方向,该方向记为最强跟踪信号方向(Di),其中,所述航行路线(L)中具有多个所述跟踪位置(Pi),且所述跟踪起始位置(P1)和跟踪结束位置(Pn)分别为所述航行路线(L)的第一个和最后一个跟踪位置(Pi),相邻两个所述跟踪位置(Pi)之间的航行里程小于预设的航行里程阈值;并且,控制所述通信天线(2)与所述最强信号基站(S1)建立并保持通信链接。
  8. 根据权利要求7所述的船用超远距离移动通信信号自动跟踪终端,其特征在于:所述天线控制器(4)通过旋转驱动机构(3)控制所述扫描天线(1)在水平面的旋转角度;
    所述旋转驱动机构(3)以第一步进电机(3-1)作为动力源,驱动所述扫描天线(1)在水平面旋转;
    所述天线控制器(4)确定所述最强扫描信号方向(D1)和最强信号基站(S1)的方式为:
    控制所述扫描天线(1)在水平面进行360°旋转扫描,并且,按照预设的旋转角度间隔,对所述扫描天线(1)接收到的移动通信信号进行采样,并将采样得到的各个移动通信信号进行比较,以确定所述最强移动通信信号;
    其中,所述预设的旋转角度间隔为所述第一步进电机(3-1)的一个或多个最小步距角度;
    将采样得到的各个移动通信信号进行比较的方式为:先比较各个移动通信信号的信号强度,选取信号强度最强的移动通信信号为所述最强移动通信信号,如果信号强度最强的移动通信信号存在多个,则再从该多个信号强度最强的移动通信信号中选取信号质量最好的作为所述最强移动通信信号。
  9. 根据权利要求7所述的船用超远距离移动通信信号自动跟踪终端,其特征在于:所述天线控制器(4)通过旋转驱动机构(3)控制所述通信天线(2) 在水平面的旋转角度;
    所述旋转驱动机构(3)以第二步进电机(3-2)作为动力源,驱动所述通信天线(2)在水平面旋转;并且,所述的船用超远距离移动通信信号自动跟踪终端还包括安装在所述船只上的陀螺仪(8);
    在所述航行过程中,所述天线控制器(4)控制所述通信天线(2)在水平面进行旋转的方式为:
    在所述船只位于所述跟踪起始位置(P1)即所述航行路线(L)的第一个跟踪位置(Pi)时,直接控制所述通信天线(2)的信号收发方向(d)旋转至所述步骤一确定的最强扫描信号方向(D1),该最强扫描信号方向(D1)即所述通信天线(2)在所述船只位于所述跟踪起始位置(P1)时的最强跟踪信号方向(Di);
    在所述船只位于当前的跟踪位置(Pi),且该当前的跟踪位置(Pi)为所述航行路线(L)除所述跟踪起始位置(P1)之外的任意一个跟踪位置(Pi)时,将所述通信天线(2)在所述船只位于前一个跟踪位置(Pi-1)时的最强跟踪信号方向(Di-1)称为零点方向,先通过所述陀螺仪(8),测得所述通信天线(2)在当前时刻的信号收发方向(d)相对于所述零点方向的偏离角度(α)和偏离方向,再按以下方式控制所述通信天线(2)的信号收发方向(d)在水平面旋转至信号峰值方向:
    将所述第二步进电机(3-2)的步距角度设置为它的一个或多个最小步距角度,控制所述第二步进电机(3-2)驱动所述通信天线(2)的信号收发方向(d)朝所述偏离方向的反向进行多次旋转,且每一次旋转的角度为所述第二步进电机(3-2)所设置的步距角度,并且,在每一次旋转的同时,将所述通信天线(2)在每一次旋转后接收到的移动通信信号进行比较,直至比较得出所述通信天线(2)的某一次旋转符合信号峰值条件,则将所述通信天线(2)的信号收发方向(d)在该次旋转的指向记为所述信号峰值方向,并控制所述通信天线(2)的信号收发方向(d)在水平面旋转至所述信号峰值方向,该信号峰值方向即所述通信天线(2)在所述船只位于当前的跟踪位置(Pi)时的最强跟踪信号方向(Di);其中,所述信号峰值条件为:从某一次旋转分别到前N次旋转和后N次旋转,所述通信天线(2)所接收到的移动通信信号的信号强度均呈逐个减弱的趋势,N为正整数。
  10. 根据权利要求6所述的一种船用超远距离移动通信信号自动跟踪终端,其特征在于,还包括信号收发模块(5)和路由器(6),所述信号收发模块(5)设有第一信号端口(S1)、第二信号端口(S2)、输出端口和网络端口,所述第一信号端口(S1)与所述扫描天线(1)的天线端口(ANT1)相连接,所述第二信号端口(S2)与所述通信天线(2)的天线端口(ANT2)相连接,所述输出端口与所述天线控制器(4)电性连接,所述网络端口与路由器(6)通信连接,且所述路由器(6)能够在所述船只上建立局域网,使得:
    所述信号收发模块(5)能够将所述扫描天线(1)接收的移动通信信号经过解调和解码后转换为扫描天线数字信号并输出给所述天线控制器(4);
    并且,所述信号收发模块(5)能够将所述通信天线(2)接收的移动通信信号经过解调和解码后转换为通信天线数字信号并通过所述网络端口输出,所述路由器(6)能够将所述通信天线数字信号转换为适配所述局域网的网络信号,令接入所述局域网的用户终端设备(7)能够通过所述局域网接收所述通信天线(2)接收到的移动通信信号,且所述信号收发模块(5)能够将所述用户终端设备(7)向所述局域网发送的网络信号转换为移动通信信号,以通过所述通信天线(2)发射给与该通信天线(2)保持通信链接的基站。
  11. 根据权利要求10所述的船用超远距离移动通信信号自动跟踪终端,其特征在于:所述信号收发模块(5)的第一信号端口(S1)通过第一放大模块(9)与所述扫描天线(1)的天线端口(ANT1)连接,所述信号收发模块(5)的第二信号端口(S2)通过第二放大模块(10)与所述通信天线(2)的天线端口(ANT2)连接;
    所述第一放大模块(9)和第二放大模块(10)均由双工器、射频功率放大器(PA)和低噪声放大器(LNA)组成,所述双工器的接收端与所述射频功率放大器(PA)的输出端电性连接,所述双工器的输出端与所述低噪声放大器(LNA)的输入端电性连接;并且,对于所述第一放大模块(9),其双工器的天线端口连接所述扫描天线(1)的天线端口(ANT1),其射频功率放大器(PA)的输入端与所述第一信号端口(S1)的输出端子电性连接,其低噪声放大器(LNA)的输出端与所述第一信号端口(S1)的输入端子电性连接;对于所述第二放大模块(10),其双工器的天线端口连接所述通信天线(2)的天线端口(ANT2),其射频功率放 大器(PA)的输入端与所述第二信号端口(S2)的输出端子电性连接,其低噪声放大器(LNA)的输出端与所述第二信号端口(S2)的输入端子电性连接。
  12. 根据权利要求10所述的船用超远距离移动通信信号自动跟踪终端,其特征在于:所述局域网的网络信号为以太网信号、WiFi网络信号、蓝牙信号、Zigbee网络信号中的任意一种。
PCT/CN2019/082817 2018-11-20 2019-04-16 船用超远距离移动通信信号自动跟踪方法和终端 WO2020103391A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201811385300 2018-11-20
CN201811385300.0 2018-11-20
CN201811490174.5 2018-12-06
CN201811490174.5A CN109787694A (zh) 2018-11-20 2018-12-06 船用超远距离移动通信信号自动跟踪方法和终端

Publications (1)

Publication Number Publication Date
WO2020103391A1 true WO2020103391A1 (zh) 2020-05-28

Family

ID=66495725

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/082817 WO2020103391A1 (zh) 2018-11-20 2019-04-16 船用超远距离移动通信信号自动跟踪方法和终端

Country Status (2)

Country Link
CN (2) CN109787694A (zh)
WO (1) WO2020103391A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111355526A (zh) * 2020-03-12 2020-06-30 成都蓉威电子技术有限公司 一种面向作业船队的中远程宽带无线接入系统
CN113232795A (zh) * 2021-06-01 2021-08-10 福州海联星信息科技有限公司 一种船舶避碰方法及终端
CN113471701B (zh) * 2021-07-06 2024-05-14 亚太卫星宽带通信(深圳)有限公司 一种船用卫星天线通信网络系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1653785A (zh) * 2002-03-08 2005-08-10 Ipr特许公司 适合高移动性的天线适应性比较方法
CN104796970A (zh) * 2014-01-17 2015-07-22 四川平安都市通讯科技有限公司 一种终端大范围移动时的数据传输方法
CN106954223A (zh) * 2017-04-17 2017-07-14 京信通信系统(中国)有限公司 一种动中通端站系统及动中通端站系统的通信方法
CN106998593A (zh) * 2017-03-16 2017-08-01 浙江安路海联科技有限公司 一种海上无线通信系统及通信组网方法
US20170230841A1 (en) * 2016-02-09 2017-08-10 Amrita Vishwa Vidyapeetham Mobile Infrastructure for Coastal Region Offshore Communications and Networks

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1653785A (zh) * 2002-03-08 2005-08-10 Ipr特许公司 适合高移动性的天线适应性比较方法
CN104796970A (zh) * 2014-01-17 2015-07-22 四川平安都市通讯科技有限公司 一种终端大范围移动时的数据传输方法
US20170230841A1 (en) * 2016-02-09 2017-08-10 Amrita Vishwa Vidyapeetham Mobile Infrastructure for Coastal Region Offshore Communications and Networks
CN106998593A (zh) * 2017-03-16 2017-08-01 浙江安路海联科技有限公司 一种海上无线通信系统及通信组网方法
CN106954223A (zh) * 2017-04-17 2017-07-14 京信通信系统(中国)有限公司 一种动中通端站系统及动中通端站系统的通信方法

Also Published As

Publication number Publication date
CN209299250U (zh) 2019-08-23
CN109787694A (zh) 2019-05-21

Similar Documents

Publication Publication Date Title
WO2020103391A1 (zh) 船用超远距离移动通信信号自动跟踪方法和终端
CN104679032B (zh) 一种利用岸基基站和船舶位置信息的动态天线调整和通信的方法
CN108365340B (zh) 用于海上无人机的船载天线控制方法及装置
US20090224990A1 (en) Methods and apparatus for supporting communications using a first polarization direction electrical antenna and a second polarization direction magnetic antenna
US20100246476A1 (en) Method for driving smart antennas in a communication network
CN102347791A (zh) 一种基于平板天线的移动卫星通信装置
CN106954223A (zh) 一种动中通端站系统及动中通端站系统的通信方法
CN102122993A (zh) 一种远距离水声通信的方法和装置
CN111628820B (zh) 一种面向作业船队的中远程宽带无线接入系统
KR20150059104A (ko) 해상 광대역 무선통신 시스템에서의 지향성 안테나 트래킹 장치 및 그 방법
JPWO2018216768A1 (ja) 通信システム及び通信ブイ
US9319125B2 (en) Method and apparatus of wireless communication by using multiple directional antennas
WO2009046613A1 (en) Maritime network system, its antennae combination structure and its communication method
CN109429549A (zh) 发射权值选择方法及基站
CN105337039B (zh) 卫星天线极化闭环跟踪方法和装置
CN206790714U (zh) 一种动中通端站系统
CN103067066B (zh) 双天线卫星通信系统下行链路干扰抑制方法
CN110429972B (zh) 一种船载物联网终端及信息传输方法
CN110927728A (zh) 船舶自动靠泊系统
JP2009159453A (ja) 無線通信システム、偏波面調整方法、基地局、及びセンサ局
US20110053607A1 (en) System for connection to mobile phone networks
CN202189894U (zh) 圆锥电子扫描跟踪系统
JP2002141853A (ja) 無線通信装置
CN208350984U (zh) 一种用于ais通信系统的天线测角装置
CN113207154A (zh) 海洋互联网的多岸基基站切换及其与移动船舶建立通信的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19887658

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19887658

Country of ref document: EP

Kind code of ref document: A1