WO2022260206A1 - Biodegradable egg tray having antiviral performance - Google Patents

Biodegradable egg tray having antiviral performance Download PDF

Info

Publication number
WO2022260206A1
WO2022260206A1 PCT/KR2021/008132 KR2021008132W WO2022260206A1 WO 2022260206 A1 WO2022260206 A1 WO 2022260206A1 KR 2021008132 W KR2021008132 W KR 2021008132W WO 2022260206 A1 WO2022260206 A1 WO 2022260206A1
Authority
WO
WIPO (PCT)
Prior art keywords
biodegradable
sheet
antiviral
egg
resin
Prior art date
Application number
PCT/KR2021/008132
Other languages
French (fr)
Korean (ko)
Inventor
정종구
홍정혁
김진우
우성호
Original Assignee
주식회사 비지에프에코바이오
케이비에프(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 비지에프에코바이오, 케이비에프(주) filed Critical 주식회사 비지에프에코바이오
Publication of WO2022260206A1 publication Critical patent/WO2022260206A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D85/00Containers, packaging elements or packages, specially adapted for particular articles or materials
    • B65D85/30Containers, packaging elements or packages, specially adapted for particular articles or materials for articles particularly sensitive to damage by shock or pressure
    • B65D85/32Containers, packaging elements or packages, specially adapted for particular articles or materials for articles particularly sensitive to damage by shock or pressure for eggs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/18Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by features of a layer of foamed material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D65/00Wrappers or flexible covers; Packaging materials of special type or form
    • B65D65/38Packaging materials of special type or form
    • B65D65/46Applications of disintegrable, dissolvable or edible materials
    • B65D65/466Bio- or photodegradable packaging materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/015Biocides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/12Adsorbed ingredients, e.g. ingredients on carriers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/16Compositions of unspecified macromolecular compounds the macromolecular compounds being biodegradable
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L29/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical; Compositions of hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Compositions of derivatives of such polymers
    • C08L29/02Homopolymers or copolymers of unsaturated alcohols
    • C08L29/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L3/00Compositions of starch, amylose or amylopectin or of their derivatives or degradation products
    • C08L3/02Starch; Degradation products thereof, e.g. dextrin
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/63Additives non-macromolecular organic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W90/00Enabling technologies or technologies with a potential or indirect contribution to greenhouse gas [GHG] emissions mitigation
    • Y02W90/10Bio-packaging, e.g. packing containers made from renewable resources or bio-plastics

Definitions

  • the present invention relates to a biodegradable egg seat having antiviral properties, and more particularly, a bottom plate in which one or more concave egg seat grooves are arranged to accommodate eggs, and a detachable lid covering the entire egg seat groove of the bottom plate or the above
  • An egg seat composed of an integral lid connected to the bottom plate and covering the entire egg seat groove of the bottom plate, wherein the base plate or the base plate and the lid are biodegradable polymer resins made of polylactic acid-based polymer; Or a composite degradable polymer resin composed of a biodegradable resin and a petrochemical resin; a biodegradable sheet prepared by dispersing an inorganic antiviral agent alone or two or more agglomerated composite particles in a particle size of 100 to 900 nm in a raw material resin selected from It relates to a biodegradable egg egg locus having excellent antiviral performance.
  • eggs are the most easily ingested protein source and provide not only choline, but also various nutrients such as riboflavin (vitamin B2), vitamin B12, biotin (B7), pantothenic acid (B5), iodine, and selenium to promote muscle and bone health, It helps with brain development, so it is a favorite food ingredient for infants and young children, as well as growing children, regardless of generation.
  • eggs are packaged in small packages for snacks and sold at convenience stores, etc., to types that are provided in 10 or more plates at home, and their materials are also provided in a variety of ways, from transparent to opaque.
  • a typical egg carton is a form in which thick paper is molded or paper pulp is pressed and molded to accommodate eggs, and is formed with a concave portion and a convex portion capable of accommodating eggs.
  • the convex portion formed around the four sides of the portion supports the stored egg.
  • egg cartons manufactured by dissociating pulp using the paper or pulp mold have disadvantages in that strength is lowered when exposed to moisture, mold easily inhabits, and that fluorescent materials may be contained in the case of recycled pulp.
  • Non-Patent Document 1 when office paper is infected with several species of bacteria, as a result of an experiment on how long it survives, it stably survives on paper for more than 72 hours, and even though there is a low probability, from human hands to paper or from paper back to humans. It is reported that it is delivered by hand. In particular, unlike other materials, it is pointed out that once infected, paper is difficult to remove with chemical agents.
  • the egg shell has a cuticle membrane, and this membrane serves to prevent bacterial penetration.
  • washing the egg causes another problem in that the cuticle membrane is removed or damaged, making it easier for bacteria to penetrate. That is, pores in egg shells are 10 to 30 ⁇ m in size, and bacteria and smaller viruses can easily penetrate and infect eggs with pores of this size.
  • microorganisms are life forms that always exist around us. There are beneficial microorganisms that are helpful to humans, but some pathogenic microorganisms such as bacteria, harmful fungi, and viruses cause food spoilage, disease, and odor. causing harm to the human body.
  • the average cell size of humans is about 20 to 100 ⁇ m, and bacteria are smaller than this, about 1 to 10 ⁇ m.
  • the minimum size that can be distinguished with the naked eye is about 0.1 mm, although it is slightly different for each person, so it is impossible to see bacteria with the naked eye, but the presence of bacteria can be sufficiently confirmed using an optical microscope.
  • a virus is an entity with characteristics of both living and non-living things, and is basically a simple structure containing a nucleic acid (DNA or RNA), a genetic material, in an envelope composed of proteins.
  • viruses cannot metabolize on their own and thus cannot perform life activities.
  • viruses when introduced into host cells, viruses become parasitic in the host cell's life activity process, replicating genetic material and protein coats to multiply the population. let it
  • viruses that exist in the form of protein crystals meet a host cell, they combine with the cell membrane of the host cell and enter the interior. After entering the host cell, the virus creates its own genetic material and protein coat using the host cell's genetic material replication function and protein production function, and then reassembles them to proliferate virus cells that resemble itself.
  • Patent Document 1 is an invention related to silver nano antibacterial plastic pellets, in which silver nano in a colloidal state is mixed with pellet-type plastic raw materials (referring to PE, PP, PVC, ABS, AS, PS, etc.) at a certain ratio to form pellets After molding the master batch, the raw material of the plastic product and the master batch are mixed in a certain ratio by the silver nano coating layer formed on the surface of the master batch to re-form the product (for example, plastic film, sheet, molded product, etc.) , it is disclosed that the antibacterial effect is exerted on the surface and material of plastic products.
  • pellet-type plastic raw materials referring to PE, PP, PVC, ABS, AS, PS, etc.
  • Non-Patent Document 2 there is a report on the threatening effect of silver ions or silver nanoparticles on the environment and human health.
  • Silver nanoparticles are useful as antibacterial substances, but in the case of silver nanoparticles at the level of 5 to 50 nm, cells Toxicity is reported.
  • non-patent paper 3 it is revealed that coronaviruses survive on various surfaces for tens of hours to 7 days, and that cleaning with traditional disinfection methods returns to the pre-cleaning state within 2.5 hours, so it is only a temporary alternative. Therefore, in order to cope with the proliferation following the attachment and colonization of viruses, research on active surfaces is introduced, and infection-resistant surfaces are proposed through natural, artificial, or biomimetic coatings.
  • nanoparticles including silver, gold, copper, zinc oxide, titanium dioxide, and bionanoparticles such as carbon-based nanotubes and chitosan, despite controversies regarding the cytotoxicity and biocompatibility of nanoparticles to human cells. It is predicted that the use of particles will be effective by significantly increasing the contact area with microorganisms by viruses of 1-10 nm size.
  • a base plate in which one or more concave egg seat grooves are arranged to accommodate eggs and a detachable lid covering the entire egg seat groove of the base plate or connected to the base plate An egg nest composed of an integral lid covering the entire egg nest groove of the bottom plate, wherein the base plate or the base plate and the lid are made of a polylactic acid-based polymer; a biodegradable polymer resin; Or a composite degradable polymer resin composed of a biodegradable resin and a petrochemical resin; a biodegradable sheet prepared by dispersing an inorganic antiviral agent alone or two or more agglomerated composite particles in a particle size of 100 to 900 nm in a raw material resin selected from
  • the inorganic antiviral agent prevents skin penetration by controlling the particle size of the inorganic antiviral agent, and at the same time, the
  • Patent Document 1 Korean Patent No. 0854730 (published on August 27, 2008)
  • Non-Patent Document 1 "Survival of Bacterial Pathogens on Paper and Bacterial Retrieval from Paper to Hands: Preliminary Results.” , Am. J Nurs., 2011, 111(12), 30-34.
  • Non-Patent Document 2 "Silver or silver nanoparticles: a hazardous threat to the environment and human health", J. Appl. Biomed., 2008, 6, 117-129.
  • Non-Patent Document 3 "A critical evaluation of current protocols for self-sterilizing surfaces designed to reduce viral nosocomial infections", Am. J. Infect. Control, 2020, 48, P1255-1260.
  • An object of the present invention is to provide a biodegradable egg locus having antiviral properties.
  • the present invention provides a bottom plate in which one or more concave egg seat grooves are arranged to accommodate eggs, and a detachable lid covering the entire egg seat groove of the bottom plate or an egg seat groove of the bottom plate while being connected to the bottom plate.
  • a detachable lid covering the entire egg seat groove of the bottom plate or an egg seat groove of the bottom plate while being connected to the bottom plate.
  • the bottom plate or the base plate and the lid is a biodegradable polymer resin made of polylactic acid-based polymer; or a composite degradable polymer resin composed of a biodegradable resin and a petrochemical resin; composed of a biodegradable sheet prepared by dispersing an inorganic antiviral agent alone or a composite particle in which two or more aggregated composite particles are dispersed to a particle size of 100 to 900 nm in a raw material resin selected from Provided is a biodegradable egg locus having antiviral properties.
  • the inorganic antiviral agent is used alone or in a mixture of two or more selected from the group consisting of silver nanoparticle complexes, silver ion-containing nanocomposites, copper monovalent compounds, zinc oxide nanoparticles and ferrite nanoparticles.
  • the silver nanoparticle composite or the silver ion-containing nanocomposite is any one selected from the group consisting of minerals including silica (SiO 2 ), alumina, zeolite, sericite mordenite, cristobalite and bentonite, talc, cellulose derivatives, paraffin and wax It is preferable that silver nanoparticles or silver ion-containing nanoparticles are adsorbed or bonded to.
  • the ferrite nanoparticles are alpha-ferrite ( ⁇ -Fe 2 O 3 ), zinc ferrite (ZnFe 2 O 4 ), manganese ferrite (MnFe 2 O 4 ), nickel ferrite (NiFe 2 O 4 ) and iron hydroxide ( ⁇ -FeOOH) is a combination of one or more selected from the group consisting of.
  • the biodegradable egg locus having antiviral properties of the present invention contains 0.1 to 60 parts by weight of an inorganic antiviral agent based on 100 parts by weight of the biodegradable or composite degradable polymer resin.
  • the biodegradable sheet of the present invention uses a biodegradable polymer resin composed of a polylactic acid polymer or a composite degradable polymer resin composed of a biodegradable resin and a petrochemical resin as a raw material resin.
  • Polylactic acid PHA
  • PHA polyhydroxyalkanoates
  • PBAT polybutylene adipate-co-terephthalate
  • PBSA polybutylene succinate -co-adipate
  • PBSAT polybutylene succinate-co-terephthalate
  • PBS polybutylene succinate
  • PVA polyvinyl alcohol
  • PVA poly glycolic acid
  • PLGA poly lactic-co-glycolic acid
  • PCL polycaprolactone
  • modified starch resin and thermoplastic starch thermoplastic starch ( thermoplastic starch, TPS) alone or in a mixture of two or more.
  • the base plate or the base plate and the lid may include a transparent polylactic acid (PLA) non-foaming sheet; Opaque PLA non-foam sheet; An extruded foam sheet made of a PLA-based polymer; And a multi-layer sheet in which a non-foaming sheet made of a biodegradable polymer resin or a petrochemical resin made of a polylactic acid polymer is laminated on at least one surface of the extruded foam sheet, and is made of any one material selected from the group consisting of The base plate and lid can be combined with the same seat material or different seat materials.
  • PLA polylactic acid
  • the non-foam sheet may be laminated to the inner surface of the base plate made of an extruded foam sheet or to the outer surface of the base plate.
  • the non-foaming sheet preferably contains 0.1 to 60 parts by weight of an inorganic antiviral agent based on 100 parts by weight of the biodegradable polymer resin or petrochemical resin, and the thickness of the non-foaming sheet is 50 to 500 ⁇ m.
  • the biodegradable egg nest having antiviral performance of the present invention includes a bottom plate or a bottom plate and a lid of a transparent polylactic acid (PLA) non-foaming sheet; Opaque PLA non-foam sheet; An extruded foam sheet made of a PLA-based polymer; And on at least one side of the extruded foam sheet, a multi-layer sheet in which a non-foam sheet made of a biodegradable polymer resin or a petrochemical resin made of a polylactic acid polymer is laminated on at least one side of the extruded foam sheet.
  • PLA transparent polylactic acid
  • It may include a form in which an inorganic antiviral active layer is formed by applying an active layer solution including a single or mixed form selected from inorganic antiviral agents and dispersants.
  • the inorganic antiviral active layer is formed by a coating method or a spray method using a mist nozzle, characterized in that the inorganic antiviral agent is dispersed and coated at 0.01 to 5 g / m 2 .
  • the dispersing agent is to use any one selected from the group consisting of polyethylene glycol (PEG), citric acid, lactic acid and polylactic acid (PLA).
  • PEG polyethylene glycol
  • PHA polylactic acid
  • the biodegradable egg ovary having the above antiviral performance has excellent antiviral properties against at least one selected from the group consisting of filine coronavirus (fCoV), influenza A virus (FluA), avian influenza (AI) virus, and swine virus.
  • the present invention relates to 100 parts by weight of an organic solvent, 0.1 to 20 parts by weight of an inorganic antiviral agent and 0.1 to 20 parts by weight of a dispersant selected from the group consisting of polyethylene glycol (PEG), citric acid, lactic acid and polylactic acid (PLA), alone or in a mixed form.
  • a coating composition having antiviral performance containing 20 parts by weight.
  • the inorganic antiviral agent is a single form or a mixture of two or more selected from the group consisting of a silver nanoparticle complex, a silver ion-containing nanocomposite, a copper monovalent compound, zinc oxide nanoparticles and ferrite nanoparticles, wherein the silver nanoparticle complex or silver ion Silver nanoparticles or nanoparticles containing silver ions are selected from the group consisting of silica (SiO 2 ), alumina, zeolite, mordenite, cristobalite, and bentonite-containing nanocomposites, minerals including talc, cellulose derivatives, paraffin, and wax. adsorbed or bound.
  • silica SiO 2
  • zeolite zeolite
  • mordenite mordenite
  • cristobalite cristobalite
  • bentonite-containing nanocomposites minerals including talc, cellulose derivatives, paraffin, and wax. adsorbed or bound.
  • the ferrite nanoparticles are alpha-ferrite ( ⁇ -Fe 2 O 3 ), zinc ferrite (ZnFe 2 O 4 ), manganese ferrite (MnFe 2 O 4 ), nickel ferrite (NiFe 2 O 4 ) and iron hydroxide ( ⁇ -FeOOH) is a combination of one or more selected from the group consisting of.
  • the organic solvent is tetrahydrofuran (THF), chlorinated organic solvents including chloroform, acetonitrile, dioxane and dimethylformamide (DMF), dimethylacetamide (DMAc), ethanol, methanol, normal-propyl alcohol or iso -Alcohols selected from propyl alcohol; At least one from the group consisting of chlorinated organic solvents including chloroform, benzene, toluene, acetonitrile and dioxane is used.
  • THF tetrahydrofuran
  • chlorinated organic solvents including chloroform, acetonitrile, dioxane and dimethylformamide (DMF), dimethylacetamide (DMAc), ethanol, methanol, normal-propyl alcohol or iso -Alcohols selected from propyl alcohol
  • the egg yolk seat of the present invention is a biodegradable polymer resin made of a polylactic acid-based polymer; Or a composite degradable polymer resin composed of a biodegradable resin and a petrochemical resin; composed of a biodegradable sheet prepared by dispersing inorganic antiviral agents alone or composite particles aggregated with two or more at a particle size of 100 to 900 nm in a raw material resin selected from Accordingly, skin penetration is prevented by controlling the particle size of the inorganic antiviral agent, and at the same time, the inorganic antiviral agent inactivates the virus before entering the human body by contact with the virus or inhibits RNA replication even after infection, An egg ovary having excellent antiviral performance can be provided.
  • the biodegradable egg yolk seat having antiviral performance of the present invention can meet the market demand for various viruses such as SARS, bird flu, mass food poisoning, and coronavirus (COVID-19) infection.
  • viruses such as SARS, bird flu, mass food poisoning, and coronavirus (COVID-19) infection.
  • FIG. 1 is a schematic diagram of a cross-section of a biodegradable non-foaming sheet having antiviral properties for producing egg nests of the present invention
  • FIG. 2 is a schematic diagram of a cross-section of a biodegradable foam sheet having antiviral properties for producing egg yolks of the present invention
  • FIG. 3 is a schematic diagram of a cross-section of a biodegradable sheet having antiviral properties for producing egg egg nests of the present invention
  • FIG. 4 is a schematic diagram of a cross-section of a biodegradable sheet having antiviral properties for producing egg egg nests of the present invention
  • Example 5 is a cross-sectional photograph of a PLA (nZnO) biodegradable sheet incorporating ZnO prepared in Example 1 of the present invention
  • Example 6 is a cross-sectional photograph of a PLA (CuZn) biodegradable sheet incorporating ZnO/CuI prepared in Example 2 of the present invention
  • Example 7 is a cross-section of a PLA (AgNP) biodegradable sheet incorporating silver nanoparticle complexes prepared in Example 3 of the present invention
  • Example 8 is a cross-section of a PLA (CuI) biodegradable sheet incorporating CuI prepared in Example 4 of the present invention
  • FIG. 9 is a cross-section of a biodegradable PLA (nZnAgCu) sheet incorporating ZnO/silver nanoparticle composites/CuI prepared in Example 5 of the present invention
  • FIG. 10 is another embodiment of the biodegradable sheet having antiviral properties for egg egg locus production of the present invention, which is a schematic cross-sectional view of a sheet formed with an inorganic antiviral active layer containing one inorganic antiviral agent,
  • FIG. 11 is a schematic cross-sectional view of a sheet formed with an inorganic antiviral active layer containing two inorganic antiviral agents in FIG. 10;
  • FIG. 12 is a schematic cross-sectional view of a sheet as another embodiment of the biodegradable sheet having antiviral properties for producing egg egg locus according to the present invention.
  • FIG. 13 is a schematic cross-sectional view of a sheet of another embodiment of the biodegradable sheet having antiviral properties for egg egg locus production of FIG. 12 .
  • the present invention consists of a bottom plate in which one or more concave egg seat grooves are arranged to accommodate eggs, a detachable lid covering the entire egg seat groove of the bottom plate, or an integral lid connected to the bottom plate and covering the entire egg seat groove of the bottom plate.
  • the bottom plate or the bottom plate and the lid is a biodegradable polymer resin made of polylactic acid-based polymer; or a composite degradable polymer resin composed of a biodegradable resin and a petrochemical resin; composed of a biodegradable sheet prepared by dispersing an inorganic antiviral agent alone or a composite particle in which two or more aggregated composite particles are dispersed to a particle size of 100 to 900 nm in a raw material resin selected from Provided is a biodegradable egg locus having antiviral properties.
  • biodegradable sheet refers to a biodegradable polymer resin made of a polylactic acid-based polymer; Or a composite degradable polymer resin composed of a biodegradable resin and a petrochemical resin; based on a thickness of 0.254 mm, including single-layer, multi-layer, non-foaming and foaming structures formed by T-die, blown and extrusion foaming using raw material resins of It is collectively referred to as a sheet, including a structure defined as a sheet when the thickness is greater than the above or a film when the thickness is less than the above.
  • the base plate or the base plate and the lid are transparent polylactic acid (Polylactic acid, PLA) non-foaming sheets; Opaque PLA non-foam sheet; An extruded foam sheet made of a PLA-based polymer; And a multi-layer sheet in which a non-foaming sheet made of a biodegradable polymer resin or a petrochemical resin made of a polylactic acid polymer is laminated on at least one surface of the extruded foam sheet, and is made of any one material selected from the group consisting of The base plate and lid can be combined with the same seat material or different seat materials.
  • PLA polylactic acid
  • a bottom plate in which one or more concave egg seat grooves are arranged to accommodate eggs and a detachable lid covering the entire egg seat groove of the bottom plate or an egg seat groove of the bottom plate while being connected to the bottom plate It includes a form composed of an integral lid covering the whole and can be employed without being limited to the form of a conventional egg packaging container.
  • the base plate and the lid may be made of a transparent PLA non-foaming sheet.
  • the lid when the lid is a transparent PLA non-foaming sheet, the bottom plate is an opaque PLA non-foaming sheet;
  • a multilayer sheet in which a non-foaming sheet made of a biodegradable polymer resin or a petrochemical resin made of a polylactic acid-based polymer is laminated on at least one surface of the extruded foam sheet; can be selected from.
  • the bottom plate and the lid may be made of an extruded foam sheet made of a PLA-based polymer.
  • the bottom plate and the lid may be made of a multilayer sheet in which a non-foaming sheet made of a biodegradable polymer resin or a petrochemical resin made of a polylactic acid polymer is laminated on at least one surface of the extruded foam sheet.
  • the non-foaming sheet may be laminated to the inner surface of the base plate made of an extruded foam sheet or to the outer surface of the base plate.
  • lamination is not limited to methods such as coating, coating, and co-extrusion, and means that a multi-layer structure is formed using the same.
  • the biodegradable egg yolk seat having antiviral performance of the present invention is obtained by mixing 0.1 to 60 parts by weight of an inorganic antiviral agent with a base plate or a biodegradable sheet constituting the base plate and lid, and then the inorganic antiviral agent alone or two or more kinds are aggregated on the biodegradable sheet. If the composite particles meet the characteristics of being dispersed with a particle size of 100 to 900 nm, the combination of biodegradable sheet materials can be changed and manufactured according to the price, thickness and strength standards required by the market.
  • FIG. 1 is a schematic cross-sectional view of a biodegradable non-foam sheet having antiviral properties for producing egg nests of the present invention
  • FIG. 2 is a schematic cross-sectional view of a biodegradable foam sheet having antiviral properties for producing egg egg nests of the present invention, It shows the shape in which the inorganic antiviral agent is incorporated into the sheet.
  • Figure 3 is a schematic cross-sectional view of a biodegradable sheet having antiviral properties for producing an egg locus of the present invention.
  • an inorganic antiviral agent composition 31 is applied to a polylactic acid polymer. This distributed
  • the non-foaming sheet 30 is laminated.
  • FIG. 4 is a schematic view of a cross section of a biodegradable sheet in which an inorganic antiviral agent 21 is further contained in the biodegradable foam base sheet 11 in FIG. 3 .
  • the non-foam sheet 30 provides antiviral properties by containing 0.1 to 60 parts by weight of an inorganic antiviral agent based on 100 parts by weight of a biodegradable polymer resin or petrochemical resin made of a polylactic acid polymer. while reinforcing the strength of the entire sheet at the same time.
  • the non-foaming sheet 30 preferably has a thickness of 50 to 500 ⁇ m, and may vary depending on the purpose of use, and the thickness and strength specifications may be changed according to the demand of the consumer of the biodegradable sheet.
  • biodegradable sheet 10 is another embodiment of the biodegradable sheet having antiviral properties for producing egg nests of the present invention, wherein at least one surface of the biodegradable foam base sheet 11 contains an inorganic antiviral active layer containing one type of inorganic antiviral agent 41 11 is a schematic cross-sectional view of a sheet formed with an inorganic antiviral active layer 40 containing two types of inorganic antiviral agents 41 and 42 in FIG. 10.
  • the foam base sheet 11 was exemplified, but it will not be limited thereto.
  • biodegradable sheet having antiviral properties for egg egg locus production of the present invention which includes a biodegradable non-foaming base sheet 10 and a biodegradable polymer resin or petrochemical resin made of a polylactic acid-based polymer. It is a multilayer sheet in which the non-foaming sheet 50 is laminated, and an inorganic antiviral active layer 40 containing two types of inorganic antiviral agents 41 and 42 is formed on at least one surface of the multilayer sheet.
  • FIG. 13 is a cross-sectional schematic diagram of another embodiment of the antiviral biodegradable sheet of FIG. 12 .
  • the inorganic antiviral active layer (40 ) is formed, and provides strength to the antiviral biodegradable sheet, and the thickness and strength specifications may be changed depending on the purpose of use.
  • the biodegradable base sheet may be changed to a non-foamed base sheet 10 or a foamed base sheet 11, and in particular, a biodegradable non-foamed sheet 50 on the foamed base sheet 11 shown in FIG. 13
  • the inorganic antiviral active layer 40 is formed on the laminated multilayer sheet, it can provide gas barrier properties as well as strength, and can fundamentally prevent virus penetration into the foamed cells of the foam base sheet 11. .
  • the biodegradable polymer resin made of polylactic acid-based polymer as raw material resin may be crystalline polylactic acid alone or a combination of amorphous polylactic acid and crystalline polylactic acid.
  • it can be achieved by adjusting the mixing ratio of the crystalline polylactic acid and the amorphous polylactic acid.
  • a polylactic acid-based polymer composition may be used. Preferably, it is composed of 60 to 99% by weight of a biodegradable resin and 1 to 40% by weight of a petrochemical resin.
  • the biodegradable resin includes poly L-lactic acid (hereinafter referred to as “PLLA”) and poly D-lactic acid (hereinafter referred to as “PDLA”), and may further include a known biodegradable resin.
  • Preferred biodegradable resins include polyhydroxyalkanoates (PHA), polybutylene adipate-co-terephthalate (PBAT), and polybutylene succinate-co- adipate, PBSA), polybutylene succinate adipate-co-terephthalate (PBSAT), polybutylene succinate (PBS), polyvinyl alcohol (PVA), Poly glycolic acid (PGA), poly lactic-co-glycolic acid (PLGA) and polycaprolactone (PCL), modified starch resin and thermoplastic starch TPS) alone or a mixture of two or more selected from the group consisting of may be further included.
  • PHA polyhydroxyalkanoates
  • PBAT polybutylene adipate-co-terephthalate
  • PBSAT polybutylene succinate adipate-co-terephthalate
  • PBS polyvinyl alcohol
  • PVA Poly glycolic acid
  • PLGA poly lactic-co-glycolic acid
  • PCL polycaprol
  • the composite degradable polymer resin composition is a biodegradable resin It is possible to extend the useful life by shortening the biodegradation period or improving the color fastness in some cases compared to the case of the single composition.
  • Polylactic acid used in the present invention is brittle due to lack of strength when the molecular weight is low even when well dried, making it difficult to proceed with the subsequent process.
  • chain extender For the purpose of increasing the molecular weight of polylactic acid, chain extender ) is used.
  • chain extender used in the present invention include the group consisting of diglycidyl ether, terephthalic acid diglycidyl ether, trimethylolpropane diglycidyl ether and 1,6-hexanediol diglycidyl ether.
  • the chain extender when used in an amount of 0.05 to 4 parts by weight, more preferably 0.1 to 2 parts by weight, based on 100 parts by weight of the polylactic acid, the effect of improving heat resistance is evident. If the content of the chain extender is less than 0.05 parts by weight, the effect of increasing the molecular weight is insufficient, and it is not easy to prepare it in a sheet form. If it exceeds 4 parts by weight, crystallinity and heat resistance are improved, but excessive molecular weight increase and crosslinking As a result, there is a concern that the extruder die may be clogged, resulting in process problems.
  • the foam nucleating agent may be an inorganic foam nucleating agent such as talc or silica or an organic foam nucleating agent such as calcium stearate.
  • the foam nucleating agent may be added in the form of a master batch.
  • dispersing agents, stabilizers, antioxidants, UV stabilizers, lubricants, etc. may be further added to control the dispersibility of the foaming nucleating agent and improve processability.
  • a dispersant may be further added separately instead of adding the dispersant together during preparation of the masterbatch. In this case, stearic acid amide or the like may be used as the dispersant.
  • the foaming nucleating agent is preferably contained in an amount of 0.01 to 4 parts by weight based on 100 parts by weight of the polylactic acid-based polymer composition. At this time, when the content is too small, less than 0.01 parts by weight, the polylactic acid-based resin particles can be sufficiently foamed. If it exceeds 4 parts by weight, no further function of the foaming nucleating agent can be expected, and there is a concern that the expandability and adhesion properties of the obtained expanded particles during molding in the mold may become insufficient.
  • a foaming agent is press-injected together with the polylactic acid-based resin particles and a foaming nucleating agent, and the content of the foaming agent is 1 to 30 parts by weight, preferably 3 to 20 parts by weight.
  • the foaming agent is selected from the group consisting of propane, isobutane, n-butane and cyclobutane alone or a mixture thereof; Isopentane, n-pentane and cyclopentane alone or a mixture selected from the group consisting of; Isohexane, n-hexane, cyclohexane, trichlorofluoromethane, dichlorodifluoromethane, chlorofluoromethane, trifluoromethane, 1,1,1,2-tetrafluoroethane, 1-chloro-1 , 1-difluoroethane, 1,1-difluoroethane, 1-chloro-1,2,2,2-t
  • foaming agents that do not destroy the ozone layer and are inexpensive are preferable, and specifically, nitrogen, air, and carbon dioxide are preferable. Also, carbon dioxide is preferable in that expanded particles having a smaller apparent density can be obtained relative to the amount of the foaming agent used. Also, two or more blowing agents such as carbon dioxide and isobutane may be used in combination.
  • the inorganic antiviral agent of the present invention is to use one or a mixture of two or more selected from the group consisting of silver nanoparticle complexes, silver ion-containing nanocomposites, copper monovalent compounds, zinc oxide nanoparticles and ferrite nanoparticles.
  • Non-Patent Document 2 In the case of silver nanoparticles among the inorganic antiviral agents, activity against bacteria and viruses is known and continuous research is being conducted. However, as a result of research showing activity depending on the particle size, silver nanoparticles with a very small particle size of 5 to 50 nm As problems of skin penetration and toxicity were pointed out, the harmfulness of silver nanoparticles to the human body has been steadily increasing. It is emerging [Non-Patent Document 2].
  • the inorganic antiviral agent of the present invention is one in which inorganic antiviral agents alone or two or more types of agglomerated composite particles are dispersed and included in a particle size of 100 to 900 nm.
  • the particle size of the inorganic antiviral agent By controlling the particle size of the inorganic antiviral agent, skin penetration can be prevented, and excellent antiviral properties can be realized by contact with external viruses.
  • the present invention uses a composite in the form of a carrier having a three-dimensional skeletal structure with fine pores as an example of supporting the antimicrobial metal component.
  • silver nanoparticles or nanoparticles containing silver ions are selected from the group consisting of silica (SiO 2 ), alumina, zeolite, sericite, mordenite, minerals including cristobalite and bentonite, talc, cellulose derivatives, paraffin and wax. Adsorption to either or If it is in the form of a combined complex and can support silver nanoparticles or silver ion-containing nanoparticles, a known carrier may be further included.
  • the particle size of the composite in the form of a support is satisfied with a particle size of 100 to 900 nm
  • the particle size of the silver nanoparticles or silver ion-containing nanoparticles supported on the support may also include a particle size of 1 to 100 nm. .
  • the examples are described using silica particles in which silver ions and zinc ions are combined, but it will not be limited thereto.
  • copper monovalent compounds are effective in implementing antiviral properties, and CuI, CuCl, Cu 2 S, Cu 2 O back desirable.
  • CuI is used as a copper monovalent compound in the embodiment of the present invention, it will not be particularly limited as long as it is an ionic compound bonded to an anion capable of ionic bonding with a copper monovalent cation.
  • zinc oxide nanoparticles are metal oxide particles that are harmless to the human body due to their strong antibacterial power and high stability.
  • the ferrite nanoparticles include alpha-ferrite ( ⁇ -Fe 2 O 3 ), zinc ferrite (ZnFe 2 O 4 ), manganese ferrite (MnFe 2 O 4 ), nickel ferrite (NiFe 2 O 4 ) and iron hydroxide. At least one selected from the group consisting of ( ⁇ -FeOOH) is blended.
  • the inorganic antiviral agent in the form of a mixture of zinc oxide (ZnO) nanoparticles and ferrite nanoparticles used in Examples the ferrite nanoparticles are alpha-ferrite ( ⁇ -Fe 2 O 3 ), zinc ferrite (ZnFe 2 O 4 ) and manganese ferrite (MnFe 2 O 4 ) are mixed.
  • ⁇ -Fe 2 O 3 alpha-ferrite
  • ZnFe 2 O 4 zinc ferrite
  • MnFe 2 O 4 manganese ferrite
  • two or more types of agglomerated composite particles may be variously combined within a range that satisfies the particle size requirements.
  • the inorganic antiviral agent contained in the biodegradable sheet of the present invention is a biodegradable polymer resin made of a polylactic acid polymer; Or a composite degradable polymer resin made of a biodegradable resin and a petrochemical resin; Based on 100 parts by weight, 0.1 to 60 parts by weight of an inorganic antiviral agent, more preferably 1 to 30 parts by weight is included. At this time, if less than 0.1 parts by weight of the inorganic antiviral agent is contained, the expression of antiviral performance is insufficient, and if the inorganic antiviral agent exceeds 60 parts by weight, the economic efficiency compared to the effect is reduced. This is undesirable because there is a problem of a significant decrease.
  • the present invention prevents skin penetration by controlling the particle size of the inorganic antiviral agent by dispersing the particle size of the inorganic antiviral agent alone or the composite particles in which two or more types are aggregated to be dispersed at 100 to 900 nm, and at the same time preventing the inorganic antiviral agent from penetrating into the skin.
  • a biodegradable egg locus having excellent antiviral performance can be provided by inactivating the virus before entering the human body by contact with the virus or by inhibiting RNA replication even after being infected.
  • nanoparticles of an inorganic antiviral agent are adsorbed to RNA and interfere with replication, thereby realizing antiviral performance.
  • biodegradable sheets of the present invention a multilayer sheet in which a non-foaming sheet made of a biodegradable polymer resin or a petrochemical resin is laminated on at least one side of an extruded foam sheet made of a PLA-based polymer may be employed.
  • a biodegradable polymer resin made of a polylactic acid polymer More preferably, based on 100 parts by weight of a biodegradable polymer resin made of a polylactic acid polymer, 0.05 to 4 parts by weight of a chain extender, 0.01 to 4 foaming nucleating agents selected from the group consisting of talc, silica and calcium stearate
  • a biodegradable polymer resin made of a polylactic acid polymer or a petrochemical resin containing an inorganic antiviral agent containing an inorganic antiviral agent is contained.
  • a non-foaming sheet is laminated.
  • a non-foam sheet containing an inorganic antiviral agent is laminated and bonded to a biodegradable polymer resin or petrochemical resin made of a polylactic acid-based polymer, thereby providing strength to the biodegradable sheet.
  • a biodegradable polymer resin or petrochemical resin made of a polylactic acid-based polymer is laminated and bonded to a biodegradable polymer resin or petrochemical resin made of a polylactic acid-based polymer, thereby providing strength to the biodegradable sheet.
  • a biodegradable polymer resin or petrochemical resin made of a polylactic acid-based polymer
  • the non-foam sheet preferably has a thickness of 50 to 500 ⁇ m. If the thickness of the non-foam sheet is less than 50 ⁇ m, there is a problem that the thickness becomes non-uniform in the extrusion lamination process, and if it exceeds 500 ⁇ m, the thickness of the foam layer This is undesirable because the cell structure is unstablely changed.
  • the biodegradable egg nest having antiviral performance of the present invention includes a bottom plate or a transparent polylactic acid (PLA) non-foaming sheet; Opaque PLA non-foaming sheet; An extruded foam sheet made of a PLA-based polymer; And on at least one side of the extruded foam sheet, a multi-layer sheet in which a non-foam sheet made of a biodegradable polymer resin or a petrochemical resin made of a polylactic acid polymer is laminated on at least one side of the extruded foam sheet.
  • PLA polylactic acid
  • An inorganic antiviral active layer may be formed by applying an active layer solution including a single or mixed form selected from inorganic antiviral agents and dispersants.
  • the inorganic antiviral active layer is formed on the multilayer sheet in which the biodegradable non-foaming sheet 50 is laminated on at least one surface of the extruded foam sheet, it is possible to provide strength as well as gas barrier properties, and the foam base sheet Virus penetration into the foam cell of (11) can be fundamentally prevented.
  • the inorganic antiviral agent is the same as described above.
  • the dispersant is usually selected from human body stability materials known as food additives and is employed from components compatible with biodegradable raw resins, especially PLA.
  • the dispersant is usually selected from human body stability materials known as food additives and is employed from components compatible with biodegradable raw resins, especially PLA.
  • PEG polyethylene glycol
  • citric acid citric acid
  • lactic acid and polylactic acid (PLA) use.
  • the polylactic acid (PLA) may be contained as a dispersion medium or vehicle in the undercoat solution.
  • the active layer solution including the single or mixed form selected from the inorganic antiviral agent and dispersant uses a dispersant from a component miscible with PLA, a solvent group capable of dissolving the dispersant and having excellent volatility is used as an alternative.
  • tetrahydrofuran THF
  • chlorinated organic solvents including chloroform, acetonitrile, dioxane and dimethylformamide (DMF), dimethylacetamide (DMAc), ethanol, methanol, normal-propyl alcohol or iso-propyl alcohol Alcohols selected from It is selected from the group consisting of chlorinated organic solvents including chloroform, benzene, toluene, acetonitrile and dioxane, and is dispersed in one or more.
  • the inorganic antiviral active layer may be formed by a coating method using an active layer solution or a spray method using a mist nozzle, and the coating method may use a Mayer bar or a gravure bar, and may be employed in a known method. Any known method of applying a liquid phase to one surface will be applicable.
  • the inorganic antiviral agent is dispersed at 0.01 to 5 g / m 2, and when the dispersion is less than 0.01 g / m 2, the interval between the inorganic antiviral agents is widened compared to the size of the virus, and the antiviral performance is insufficient. Dispersion exceeding / m2 significantly reduces the economic feasibility.
  • the biodegradable egg locus having virus performance of the present invention has antiviral activity against at least one selected from the group consisting of filine coronavirus (fCoV), influenza A virus (FluA), avian influenza (AI) virus, and swine virus. This is implemented
  • the present invention relates to 100 parts by weight of an organic solvent, 0.1 to 20 parts by weight of an inorganic antiviral agent and 0.1 to 20 parts by weight of a dispersant selected from the group consisting of polyethylene glycol (PEG), citric acid, lactic acid and polylactic acid (PLA), alone or in a mixed form.
  • a coating composition having antiviral performance containing 20 parts by weight.
  • the inorganic antiviral agent is used alone or in a mixture of two or more selected from the group consisting of the same silver nanoparticle complex, silver ion-containing nanocomposite, copper monovalent compound, zinc oxide nanoparticle and ferrite nanoparticle as described above.
  • the silver nanoparticle composite or silver ion-containing nanocomposite is any one selected from the group consisting of silica (SiO 2 ), alumina, zeolite, sericite, mordenite, cristobalite, and bentonite, minerals including, talc, cellulose derivatives, paraffin, and wax. Any silver nanoparticles or silver ion-containing nanoparticles adsorbed or bound to one may be used.
  • the ferrite nanoparticles are alpha-ferrite ( ⁇ -Fe 2 O 3 ), zinc ferrite (ZnFe 2 O 4 ), manganese ferrite (MnFe 2 O 4 ), nickel ferrite (NiFe 2 O 4 ) and iron hydroxide ( At least one selected from the group consisting of ⁇ -FeOOH) is blended.
  • the organic solvent can dissolve the inorganic antiviral agent and the dispersing agent and can be used as an alternative to a solvent group having excellent volatility.
  • tetrahydrofuran THF
  • chlorinated organic solvents including chloroform, acetonitrile, dioxane and dimethylformamide (DMF), dimethylacetamide (DMAc), ethanol, methanol, normal-propyl alcohol or iso-propyl alcohol Alcohols selected from At least one from the group consisting of chlorinated organic solvents including chloroform, benzene, toluene, acetonitrile and dioxane is used.
  • 1,4-dioxane and chloroform have been used, but will not be limited thereto.
  • An extruded non-foam sheet was prepared by introducing the pellets into a first extruder having an inner diameter of 90 mm and using a tandem extruder in which a first extruder having an inner diameter of 90 mm and a second extruder having an inner diameter of 120 mm are connected.
  • the polylactic acid resin particles were supplied to the first extruder, melted and kneaded by heating, and then pushed into the first extruder, where the residence time was maintained for 10 minutes. At this time, the heating and melting temperature was maintained at 170 to 230 ° C. based on the resin temperature. Then, in a second extruder connected to the first extruder, the temperature of the molten mixed reactants was slightly decreased to bring the resin temperature to 150°C.
  • nZnO a PLA biodegradable sheet mixed with ZnO having a thickness of 300 ⁇ m was prepared by discharging in an extrusion direction from an annular die having cylindrical slits with a diameter of 110 mm and a slit interval of 0.5 mm.
  • an egg seat was manufactured by injection molding with a bottom plate in which three concave egg seat grooves are arranged to accommodate eggs and a detachable lid covering the entire egg seat groove of the bottom plate.
  • PLA mixed with ZnO/CuI was carried out in the same manner as in Example 1, except that 1 part by weight of ZnO nanoparticles and 1 part by weight of CuI were mixed with 100 parts by weight of PLA resin (Total Corbion's Lumini L175).
  • An egg nest was prepared in the same manner as in Example 1, except that a biodegradable sheet (referred to as “CuZn”) was prepared and injection molded.
  • PLA resin Total Corbion's Lumini L175
  • silica particles silica particles in which silver ions and zinc ions are combined as silver ion-containing nanocomposites are mixed.
  • An egg nest was prepared in the same manner as in Example 1, except that a PLA biodegradable sheet (referred to as "AgNP") in which the silver ion-containing nanoparticle-containing composite was incorporated was prepared and injection molded. .
  • Example 2 With respect to 100 parts by weight of PLA resin (Total Corbion's Lumini L175), except that 1 part by weight of CuI was mixed, the same procedure as in Example 1 was carried out, CuI-incorporated PLA biodegradable sheet (referred to as "CuI") ) was prepared and an egg seat was prepared in the same manner as in Example 1, except that injection molding was performed.
  • CuI CuI-incorporated PLA biodegradable sheet
  • nZnAgCu PLA biodegradable sheet
  • PLA resin Hisun's Revode 190
  • 1.0 parts by weight of an epoxy-based chain extender as a chain extender 1.8 parts by weight of talc having a size of 0.1 to 5 ⁇ m as a foaming nucleating agent
  • a plasticizer Alcohol tributyl citrate
  • An extruded foam sheet was prepared by introducing raw materials into the first extruder and using a tandem type extruder in which a first extruder having an inner diameter of 90 mm and a second extruder having an inner diameter of 120 mm were connected.
  • the polylactic acid resin particles were supplied to the first extruder, melted and kneaded by heating, and then 2.5 parts by weight of butane as a foaming agent was press-injected into the first extruder to maintain a residence time of 10 minutes. Thereafter, the PLA resin mixed with ZnO was extruded on one side of the foam sheet using a separate T-die extruder to form a lamination coating layer having a thickness of 300 ⁇ m.
  • the sheet was manufactured and injection molded to produce an egg seat composed of a bottom plate in which three concave egg seat grooves are arranged to accommodate eggs and an integral lid connected to the base plate and covering the entire egg seat groove of the bottom plate.
  • Example 4 instead of PLA, PLA/PBAT/CaCO 3 (filler) was made of a raw material resin consisting of 25/55/20% by weight, except that a PLA-based non-foaming sheet was manufactured and injection molded. An egg nest was prepared in the same manner as in Example 6.
  • Example 4 instead of PLA, PBS / PBAT / TPS (modified starch), except that a PLA-based non-foaming sheet made of a raw material resin consisting of 15/55/30% by weight was manufactured and injection molded, An egg nest was prepared in the same manner as in Example 6.
  • PBS / PBAT / TPS modified starch
  • ZnOFe PLA biodegradable sheet
  • Example 2 It was carried out in the same manner as in Example 1, except that the inorganic antiviral agent was not mixed with the PLA resin (Total Corbion's Lumini L175) used in Example 1.
  • PLA biodegradable sheet having a thickness of 300 ⁇ m containing the inorganic antiviral agent prepared in Examples 1 to 5 cross-sections of the sheet were photographed using an electron microscope (manufactured by Bruker).
  • 5 to 9 show cross-sectional photographs of the PLA biodegradable sheets prepared in each example, and overall good dispersion of the inorganic antiviral agent and individual particles or two or more aggregated composite particles are dispersed in a size of 100 to 300 nm. result was confirmed.
  • the antiviral performance was evaluated against influenza virus (FluA) or filine coronavirus (fCoV) [government contribution Researcher test evaluation].
  • virus reduction was observed 10 minutes and 2 hours after inoculation of the virus, and in Table 1 below, the virus reduction of the antiviral effect 2 hours after inoculation was expressed as log. At this time, the higher the number, the higher the removal rate.
  • the inorganic antiviral agent contained in the biodegradable sheet of the present invention alone or two or more aggregated composite particles were dispersed in a particle size of 100 to 900 nm, and in Examples 1 to 9, silver
  • egg yolks using a PLA biodegradable sheet are dispersed in a particle size of 100 to 900 nm in which inorganic antiviral agents alone or aggregated composite particles of two or more kinds are dispersed, and the particle size is sufficient to prevent skin penetration of inorganic antiviral agents. While meeting the above, excellent antiviral performance can be realized by inactivating the virus before entering the human body by contact with the external virus or inhibiting RNA replication even after being infected.
  • An inorganic antiviral active layer was formed by applying a coating composition having antiviral performance to one side of a biodegradable base sheet made of biodegradable raw material resin by Mayer bar coating or mist spraying method, and the sheet prepared according to Table 2 below was injection molded. Thus, an egg yolk was prepared.
  • Antiviral biodegradable PLA prepared in Examples 10 to 24 above On the surface of the sheet cut into circles with a diameter of 1 cm, 5 ⁇ l of influenza A virus (FluA) and (Human, H3N2) solutions were repeatedly added, and a reaction time of 30 minutes at room temperature (23 ° C) was used for cell lines using MDCK cells. , virus titration was performed using the CPE/MTT assay method to evaluate antiviral performance.
  • the inorganic antiviral agent alone or two or more aggregated composite particles were dispersed in a particle size of 100 to 900 nm, and influenza A virus (FluA) and filine corona For the virus (fCoV), it showed a virus reduction rate of up to 99.999% within 30 minutes of contact with the virus.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Laminated Bodies (AREA)

Abstract

The present invention relates to a biodegradable egg tray having antiviral performance. The present invention relates to an egg tray including: a base plate having one or more concave egg tray recesses arranged to accommodate eggs; and a detachable lid for covering the entire egg tray recesses in the base plate or an integrated lid connected to the base plate and configured to cover the entire egg tray recesses in the base plate. The base plate or the base plate and the lid are formed of a biodegradable sheet prepared by dispersing composite particles in a raw material resin to a particle size of 100 to 900 nm, the composite particles being obtained by aggregating inorganic antiviral agents alone or two or more types thereof, the raw material resin being selected from: a biodegradable polymer resin formed of polylactic acid-based polymer; or a composite degradable polymer resin formed of a biodegradable resin and a petrochemical resin. Accordingly, the present invention can provide an egg tray having excellent antiviral performance.

Description

항바이러스성능을 가지는 생분해성 계란 난좌Biodegradable egg yolk with antiviral properties
본 발명은 항바이러스성능을 가지는 생분해성 계란 난좌에 관한 발명으로서, 더욱 상세하게는 계란이 수용되도록 오목한 형상의 난좌홈이 1개 이상 배열된 밑판 및 상기 밑판의 난좌홈 전체를 덮는 분리형 뚜껑 또는 상기 밑판에 연결되면서 밑판의 난좌홈 전체를 덮는 일체형 뚜껑으로 구성된 계란 난좌에 있어서, 상기 밑판 또는 상기 밑판 및 뚜껑이 폴리락트산계 중합체로 이루어진 생분해성 고분자 수지; 또는 생분해성 수지 및 석유화학 수지로 이루어진 복합분해성 고분자 수지;에서 선택된 원료수지에, 무기계 항바이러스제 단독 또는 2종 이상 응집된 복합입자가 100 내지 900㎚의 입자크기로 분산되어 제조된 생분해성 시트로 이루어진, 우수한 항바이러스성능을 가지는 생분해성 계란 난좌에 관한 것이다.The present invention relates to a biodegradable egg seat having antiviral properties, and more particularly, a bottom plate in which one or more concave egg seat grooves are arranged to accommodate eggs, and a detachable lid covering the entire egg seat groove of the bottom plate or the above An egg seat composed of an integral lid connected to the bottom plate and covering the entire egg seat groove of the bottom plate, wherein the base plate or the base plate and the lid are biodegradable polymer resins made of polylactic acid-based polymer; Or a composite degradable polymer resin composed of a biodegradable resin and a petrochemical resin; a biodegradable sheet prepared by dispersing an inorganic antiviral agent alone or two or more agglomerated composite particles in a particle size of 100 to 900 nm in a raw material resin selected from It relates to a biodegradable egg egg locus having excellent antiviral performance.
일반적으로 계란은 가장 쉽게 섭취할 수 있는 단백질원으로서 콜린 뿐 아니라 리보플래빈(비타민B2), 비타민B12, 비오틴(B7), 판토텐산(B5), 요오드, 셀레늄 등 다양한 영양소를 공급해 근육과 뼈의 건강, 뇌 발달 등에 도움을 주어 영ㆍ유아를 비롯하여 성장기 어린이를 비롯하여 세대를 불문하고 식생활에 애용되는 식재료이다. In general, eggs are the most easily ingested protein source and provide not only choline, but also various nutrients such as riboflavin (vitamin B2), vitamin B12, biotin (B7), pantothenic acid (B5), iodine, and selenium to promote muscle and bone health, It helps with brain development, so it is a favorite food ingredient for infants and young children, as well as growing children, regardless of generation.
이러한 장점으로 인해 계란은 간식용도로 소포장되어 편의점 등에서 판매되는 형태에서 일반 가정에서는 10개이상의 판으로 제공되는 형태까지 다양하고 그 재질 또한 투명에서 불투명까지 다양하게 제공되고 있다.Due to these advantages, eggs are packaged in small packages for snacks and sold at convenience stores, etc., to types that are provided in 10 or more plates at home, and their materials are also provided in a variety of ways, from transparent to opaque.
일반적인 계란판은 두꺼운 종이를 성형하거나, 또는 종이 펄프(pulp)를 압착 성형시켜 계란을 수납하는 형태로서, 계란을 수납할 수 있는 오목부와 볼록부로 형성되며, 이러한 오목부에 계란이 수납되고 오목부의 사방 주위에 형성되어 있는 볼록부로 수납된 계란을 지지하게 된다. 그러나, 위와 같은 방법은 계란이 수납된 계란판을 다량으로 적재할 때 하부에 위치하는 계란판의 볼록부위에 상부에 위치하는 계란판의 오목부위가 위치하게 되는데, 계란이 외부로 노출되어 있는 관계로 많은 양의 계란판을 적재하거나 운반하게 되면 계란에 충격이 가해져 파손되기 쉬운 문제점이 있다.A typical egg carton is a form in which thick paper is molded or paper pulp is pressed and molded to accommodate eggs, and is formed with a concave portion and a convex portion capable of accommodating eggs. The convex portion formed around the four sides of the portion supports the stored egg. However, in the above method, when a large amount of egg cartons containing eggs are loaded, the concave part of the upper egg carton is located in the convex part of the lower egg carton, and the eggs are exposed to the outside. When loading or transporting a large amount of egg cartons, there is a problem that the eggs are easily damaged due to impact.
그러나 상기 종이 또는 펄프금형을 사용하여 펄프를 해리하여 제조된 계란판은 습기에 노출될 경우 강도가 저하하고, 곰팡이가 쉽게 서식하고, 재활용 펄프의 경우 형광물질이 함유될 가능성이 있다는 단점이 있다. However, egg cartons manufactured by dissociating pulp using the paper or pulp mold have disadvantages in that strength is lowered when exposed to moisture, mold easily inhabits, and that fluorescent materials may be contained in the case of recycled pulp.
특히, 상기 펄프를 해리하여 제조된 계란판의 경우, 종이 또는 펄프가 박테리아 등으로 일단 오염되면, 이를 멸균하기가 매우 어렵다는 문제가 있다. In particular, in the case of an egg carton manufactured by dissociating the pulp, once the paper or pulp is contaminated with bacteria or the like, it is very difficult to sterilize it.
비특허문헌 1에 의하면, 사무용 종이에 여러 종의 박테리아로 감염된 경우, 얼마나 오래 살아남는지 실험한 결과, 72 시간이상 종이에서 안정적으로 생존하고 비록 낮은 확률이나 사람 손에서 종이로, 또는 종이로부터 다시 사람 손으로 전달된다는 점을 보고하고 있다. 특히 다른 재료와 달리, 종이는 일단 감염되면 화학적 제제로 제거하기가 어렵다고 지적하고 있다. According to Non-Patent Document 1, when office paper is infected with several species of bacteria, as a result of an experiment on how long it survives, it stably survives on paper for more than 72 hours, and even though there is a low probability, from human hands to paper or from paper back to humans. It is reported that it is delivered by hand. In particular, unlike other materials, it is pointed out that once infected, paper is difficult to remove with chemical agents.
또한, 계란 껍질에는 큐티클(cuticle) 막이 있고, 이 막이 세균침투를 막는 역할을 수행한다. 그러나 계란을 세척하면 상기 큐티클 막이 제거 또는 손상되어 세균침투가 쉬워지는 또 다른 문제가 발생된다. 즉, 계란 껍질에 있는 숨구멍은 10∼30㎛ 크기이고, 이 정도의 구멍이라면 박테리아 및 더 작은 바이러스가 쉽게 침투하여 계란을 감염시킬 수 있다. In addition, the egg shell has a cuticle membrane, and this membrane serves to prevent bacterial penetration. However, washing the egg causes another problem in that the cuticle membrane is removed or damaged, making it easier for bacteria to penetrate. That is, pores in egg shells are 10 to 30 μm in size, and bacteria and smaller viruses can easily penetrate and infect eggs with pores of this size.
이를 해결하기 위해 합성수지재(폴리스티렌 발포시트 또는 비발포 투명시트, 비발포 PP 시트 등)로 계란의 난좌홈과 뚜껑을 일체로 형성한 계란판을 사용하는 방법이 사용되고 있다. In order to solve this problem, a method of using an egg carton in which an egg seat groove and a lid are integrally formed with a synthetic resin material (polystyrene foam sheet, non-foaming transparent sheet, non-foaming PP sheet, etc.) has been used.
그러나 이는 합성수지의 두께가 얇아 계란이 쉽게 파손되는 문제점을 여전히 해결하지 못할 뿐 아니라 잘 썩지 않아 환경오염의 주된 요인으로 작용하게 되어 또 다른 문제점이 대두된다. 즉, 기존 합성수지제 계란 난좌의 대부분은 친환경 제품이 아니며, 특히 재활용수지를 사용하여 만든다면 중금속 등 이물질 혼입가능성을 완전히 제거할 수 없다.However, this still does not solve the problem that the egg is easily damaged due to the thin thickness of the synthetic resin, and it does not rot well and acts as a major cause of environmental pollution, so another problem emerges. That is, most of the existing egg yolk seats made of synthetic resin are not eco-friendly products, and in particular, if they are made using recycled resin, the possibility of contamination of foreign substances such as heavy metals cannot be completely eliminated.
2000년대 이후 사스(SARS), 신종플루 등의 유행병 발발로 인해 세균과 바이러스 감염방지에 위한 유해 미생물에 대한 관심이 높아지고 있고, 꾸준한 연구가 진행되어 오고 있다. Since the 2000s, due to the outbreak of epidemics such as SARS and swine flu, interest in harmful microorganisms for preventing bacterial and viral infections has increased, and steady research has been conducted.
특히 코로나바이러스(COVID-19) 감염증의 확산세가 수그러들지 않는 상황에서 바이러스 백신연구와 더불어, 접촉에 의해 감염되는 바이러스 특성상 생활방역과 더불어 항바이러스성능을 가지는 제품 개발이 요구되고 있다. In particular, in a situation where the spread of coronavirus (COVID-19) infection does not subside, along with virus vaccine research, development of products with antiviral performance is required along with life quarantine due to the nature of the virus infected by contact.
이중에서 계란 난좌에 항바이러스성능이 부여된다면, 종래의 계란 포장을 하면서도 바이러스에 대한 우려를 없애거나 최소화할 수 있기에, 위생적이고 포장공정에 추가비용 발생이 없고 궁극적으로 계란 소비 위축없이 안정적으로 유통이 지속됨으로써, 국민 생활뿐만 아니라, 양계농장에 도움이 될 것이다. Among them, if antiviral performance is given to the egg ovary, concerns about viruses can be eliminated or minimized while conventional egg packaging, so it is hygienic, there is no additional cost in the packaging process, and ultimately stable distribution without shrinking egg consumption By continuing, it will help not only people's lives, but also poultry farms.
일반적으로 미생물은 우리 주변에 항상 존재하고 있는 생명체로서, 인간에게 도움을 주는 유익한 미생물도 존재하지만, 일부의 세균, 유해곰팡이, 바이러스와 같은 병원성 미생물은 식품의 부패를 일으키고 질병을 유발하고 악취를 발생시키는 등 인체에 해를 끼친다. In general, microorganisms are life forms that always exist around us. There are beneficial microorganisms that are helpful to humans, but some pathogenic microorganisms such as bacteria, harmful fungi, and viruses cause food spoilage, disease, and odor. causing harm to the human body.
19세기 말엽에 이미 바이러스에 대한 존재 가능성은 시사되고 있었지만, 바이러스의 존재가 1930년대 들어서면서 확증되었는데, 이는 바이러스가 지나치게 작기 때문이다. 일반적으로 사람의 세포 크기는 평균 20∼100㎛ 정도이고, 세균은 이보다 작은 1∼10㎛ 수준이다. 육안으로 구분할 수 있는 최소 크기는 사람마다 좀 다르기는 해도, 0.1㎜ 정도 되기 때문에 육안으로는 세균을 볼 수 없지만, 광학현미경을 이용한다면 세균의 존재는 충분히 확인할 수 있다. At the end of the 19th century, the possibility of a virus had already been suggested, but the existence of a virus was confirmed in the 1930s, because the virus is too small. In general, the average cell size of humans is about 20 to 100 μm, and bacteria are smaller than this, about 1 to 10 μm. The minimum size that can be distinguished with the naked eye is about 0.1 mm, although it is slightly different for each person, so it is impossible to see bacteria with the naked eye, but the presence of bacteria can be sufficiently confirmed using an optical microscope.
그러나 바이러스의 평균 크기는 이보다 훨씬 작은 10∼300㎚ 정도이기 때문에 최대 배율이 1000배 수준에 불과한 광학현미경으로는 관측할 수가 없다. 따라서 바이러스의 존재는 이보다 배율이 훨씬 더 큰 전자현미경(최대 배율 100만 배)이 개발된 이후 가능해졌다.However, since the average size of viruses is much smaller, about 10 to 300 nm, they cannot be observed with an optical microscope with a maximum magnification of only 1,000 times. Therefore, the existence of the virus became possible only after the development of an electron microscope with much higher magnification (maximum magnification of 1,000,000 times).
바이러스는 생물과 무생물의 특징을 모두 갖춘 개체로, 기본적으로 단백질로 구성된 외피 안에 유전물질인 핵산(DNA 혹은 RNA)이 든 단순한 구조다. A virus is an entity with characteristics of both living and non-living things, and is basically a simple structure containing a nucleic acid (DNA or RNA), a genetic material, in an envelope composed of proteins.
따라서 바이러스는 세균과 달리, 단독으로는 물질대사를 할 수 없어 생명 활동을 수행하지 못하나, 숙주가 되는 세포에 유입되면 숙주세포의 생명 활동 과정에 기생해 유전물질과 단백질 외피를 복제해 개체수를 증식시킨다.Therefore, unlike bacteria, viruses cannot metabolize on their own and thus cannot perform life activities. However, when introduced into host cells, viruses become parasitic in the host cell's life activity process, replicating genetic material and protein coats to multiply the population. let it
단백질 결정 형태로 존재하던 바이러스들이 숙주세포를 만나면 숙주세포의 세포막과 결합한 뒤, 내부로 유입된다. 숙주세포 안으로 들어간 바이러스는 숙주세포의 유전물질 복제 기능과 단백질 생성 기능을 이용해 자신의 유전물질과 단백질 외피를 만들어낸 후, 이들을 다시 조립해 자신과 닮은 바이러스 세포들을 증식시킨다.When viruses that exist in the form of protein crystals meet a host cell, they combine with the cell membrane of the host cell and enter the interior. After entering the host cell, the virus creates its own genetic material and protein coat using the host cell's genetic material replication function and protein production function, and then reassembles them to proliferate virus cells that resemble itself.
최근 사스(SARS), 조류 독감, 집단 식중독 등 각종 바이러스에 의한 발병이 급증하고 코로나바이러스(COVID-19) 감염증의 확산세로 인해 항바이러스성능을 가지는 개인용품 또는 일회용품에 대한 시장의 요구가 절실한 상황이다. Recently, outbreaks caused by various viruses such as SARS, bird flu, and mass food poisoning are rapidly increasing, and the market demand for personal products or disposable products with antiviral performance is urgent due to the spread of coronavirus (COVID-19) infection. .
특허문헌 1은 은나노 항균 플라스틱 펠렛에 관한 발명으로서, 콜로이드 상태의 은나노를 펠렛 형태의 플라스틱 원료(PE, PP, PVC, ABS, AS, PS 등을 말함)에 일정비율로 혼합하여 펠렛(pellet) 형태의 마스터배치를 성형한 후, 마스터배치 표면에 형성된 은나노 코팅층에 의해 플라스틱제품의 원재료와 마스터배치를 일정비율로 혼합하여 제품(일예로서, 플라스틱 필름, 시트, 성형품 등을 말함)을 재성형할 경우, 플라스틱 제품의 표면 및 소재에서 항균 효과를 발휘하도록 한다고 개시하고 있다. Patent Document 1 is an invention related to silver nano antibacterial plastic pellets, in which silver nano in a colloidal state is mixed with pellet-type plastic raw materials (referring to PE, PP, PVC, ABS, AS, PS, etc.) at a certain ratio to form pellets After molding the master batch, the raw material of the plastic product and the master batch are mixed in a certain ratio by the silver nano coating layer formed on the surface of the master batch to re-form the product (for example, plastic film, sheet, molded product, etc.) , it is disclosed that the antibacterial effect is exerted on the surface and material of plastic products.
그러나 종래 발명에서는 항균 및 항바이러스의 구별없이 혼용하여 효능을 제안하고 있다. 특히, 상기 발명의 경우, 콜로이드 상태의 은나노를 펠렛 형태로 제조하고 이를 함께 넣고 성형하여 펠렛 표면에 은 코팅하는 방법을 개시하고 있으나, 콜로이드 상태의 입자크기는 20∼50nm 수준이다. However, in the prior art, antibacterial and antiviral effects are proposed in combination without distinction. In particular, in the case of the above invention, a method is disclosed in which silver nanoparticles in a colloidal state are prepared in the form of pellets, put together and molded to coat the surface of the pellets with silver, but the particle size in the colloidal state is on the order of 20 to 50nm.
반면, 비특허문헌 2에 의하면, 은이온 또는 은나노입자가 환경과 인체건강에 미치는 위협적인 영향에 대하여 보고하고 있는데, 은나노입자는 항균물질로서 유용하나, 5 내지 50nm 수준의 은나노입자의 경우, 세포독성을 보고하고 있다. On the other hand, according to Non-Patent Document 2, there is a report on the threatening effect of silver ions or silver nanoparticles on the environment and human health. Silver nanoparticles are useful as antibacterial substances, but in the case of silver nanoparticles at the level of 5 to 50 nm, cells Toxicity is reported.
이러한 보고를 기반하여, 상기 나노크기의 은나노입자는 인체 적용시 피부 간극(75nm)를 통과하여 장기에까지 도달할 수 있다는 이유로 안정상의 문제점이 제기되고 있으며, 실제, 유럽(Scientific Committee on Emerging and Newly Identified Health Risks)에서는 100nm보다 작은 물질을 나노 물질로 규정하고 있으며, 인체유해성을 고려하여 적어도 입자의 50% 이상이 100nm 보다 큰 입자를 사용하도록 규제하고 있다. Based on these reports, a safety problem has been raised because the nano-sized silver nanoparticles can pass through skin gaps (75 nm) and reach organs when applied to the human body, and in fact, Europe (Scientific Committee on Emerging and Newly Identified Health Risks) regulates materials smaller than 100nm as nanomaterials, and in consideration of harm to the human body, at least 50% of the particles are regulated to use particles larger than 100nm.
비특허논문 3에서는 다양한 표면에서 코로나바이러스가 수십시간에서 7일간 생존하고, 전통적인 소독으로 세정하는 방법으로는 2.5시간내 세정이전 상태로 되돌아가므로 일시적 대안일 뿐이라고 밝히고 있다. 따라서 바이러스의 부착, 군집화에 이어 증식에 대처하기 위해서는 활성 표면에 대한 연구를 소개하며, 천연 코팅, 인공 코팅 또는 생체모방형 코팅을 통해 감염에 내성 있는 표면을 제안하고 있다. 이러한 접근 방법으로서, 인간 세포에 대한 나노입자의 세포독성과 생체적합성의 논쟁에도 불구하고, 은, 금, 구리, 산화아연, 이산화티타늄과 카본기반의 나노튜브, 키토산과 같은 바이오나노입자를 포함한 나노입자를 이용하면, 1∼10nm 크기 수준의 바이러스에 의한 미생물과의 접촉 면적을 상당히 늘려 효과적일 것이라고 전망하고 있다. In non-patent paper 3, it is revealed that coronaviruses survive on various surfaces for tens of hours to 7 days, and that cleaning with traditional disinfection methods returns to the pre-cleaning state within 2.5 hours, so it is only a temporary alternative. Therefore, in order to cope with the proliferation following the attachment and colonization of viruses, research on active surfaces is introduced, and infection-resistant surfaces are proposed through natural, artificial, or biomimetic coatings. As such an approach, nanoparticles including silver, gold, copper, zinc oxide, titanium dioxide, and bionanoparticles such as carbon-based nanotubes and chitosan, despite controversies regarding the cytotoxicity and biocompatibility of nanoparticles to human cells. It is predicted that the use of particles will be effective by significantly increasing the contact area with microorganisms by viruses of 1-10 nm size.
이에, 본 발명자들은 종래 문제점과 필요성을 면밀한 검토한 결과, 계란이 수용되도록 오목한 형상의 계란 난좌홈이 1개 이상 배열된 밑판 및 상기 밑판의 계란 난좌홈 전체를 덮는 분리형 뚜껑 또는 상기 밑판에 연결되면서 밑판의 계란 난좌홈 전체를 덮는 일체형 뚜껑으로 구성된 계란 난좌에 있어서, 상기 밑판 또는 상기 밑판 및 뚜껑이 폴리락트산계 중합체로 이루어진 생분해성 고분자 수지; 또는 생분해성 수지 및 석유화학 수지로 이루어진 복합분해성 고분자 수지;에서 선택된 원료수지에, 무기계 항바이러스제 단독 또는 2종 이상 응집된 복합입자가 100 내지 900㎚의 입자크기로 분산되어 제조된 생분해성 시트로 이루어진 계란 난좌를 제공하여, 상기 무기계 항바이러스제의 입자크기 제어로 피부침투를 방지함과 동시에 상기 무기계 항바이러스제가 외부 바이러스와 접촉에 의해 인체유입 전에 바이러스를 불활성화시키거나 또는 감염되더라도 RNA가 복제하는 것을 저해하여 항바이러스성능 구현을 확인함으로써, 본 발명을 완성하였다. Therefore, as a result of a close examination of the conventional problems and necessity, the inventors of the present invention have found that a base plate in which one or more concave egg seat grooves are arranged to accommodate eggs and a detachable lid covering the entire egg seat groove of the base plate or connected to the base plate An egg nest composed of an integral lid covering the entire egg nest groove of the bottom plate, wherein the base plate or the base plate and the lid are made of a polylactic acid-based polymer; a biodegradable polymer resin; Or a composite degradable polymer resin composed of a biodegradable resin and a petrochemical resin; a biodegradable sheet prepared by dispersing an inorganic antiviral agent alone or two or more agglomerated composite particles in a particle size of 100 to 900 nm in a raw material resin selected from By providing an egg locus composed of egg locus, the inorganic antiviral agent prevents skin penetration by controlling the particle size of the inorganic antiviral agent, and at the same time, the inorganic antiviral agent inactivates the virus before entering the human body by contact with an external virus or RNA replicates even if infected By inhibiting it to confirm the implementation of antiviral performance, the present invention was completed.
(특허문헌 1) 대한민국특허 제0854730호 (2008.08.27 공고)(Patent Document 1) Korean Patent No. 0854730 (published on August 27, 2008)
(비특허문헌 1)"Survival of Bacterial Pathogens on Paper and Bacterial Retrieval from Paper to Hands: Preliminary Results." , Am. J Nurs., 2011, 111(12), 30-34.(Non-Patent Document 1) "Survival of Bacterial Pathogens on Paper and Bacterial Retrieval from Paper to Hands: Preliminary Results." , Am. J Nurs., 2011, 111(12), 30-34.
(비특허문헌 2)"Silver or silver nanoparticles: a hazardous threat to the environment and human health", J. Appl. Biomed., 2008, 6, 117-129.(Non-Patent Document 2) "Silver or silver nanoparticles: a hazardous threat to the environment and human health", J. Appl. Biomed., 2008, 6, 117-129.
(비특허문헌 3)"A critical evaluation of current protocols for self-sterilizing surfaces designed to reduce viral nosocomial infections", Am. J. Infect. Control, 2020, 48, P1255-1260. (Non-Patent Document 3) "A critical evaluation of current protocols for self-sterilizing surfaces designed to reduce viral nosocomial infections", Am. J. Infect. Control, 2020, 48, P1255-1260.
본 발명의 목적은 항바이러스성능을 가지는 생분해성 계란 난좌를 제공하는 것이다. An object of the present invention is to provide a biodegradable egg locus having antiviral properties.
상기 목적을 달성하기 위하여, 본 발명은 계란이 수용되도록 오목한 형상의 계란 난좌홈이 1개 이상 배열된 밑판 및 상기 밑판의 계란 난좌홈 전체를 덮는 분리형 뚜껑 또는 상기 밑판에 연결되면서 밑판의 계란 난좌홈 전체를 덮는 일체형 뚜껑으로 구성된 계란 난좌에 있어서, In order to achieve the above object, the present invention provides a bottom plate in which one or more concave egg seat grooves are arranged to accommodate eggs, and a detachable lid covering the entire egg seat groove of the bottom plate or an egg seat groove of the bottom plate while being connected to the bottom plate. In the egg yolk seat composed of an integral lid covering the whole,
상기 밑판 또는 상기 밑판 및 뚜껑이 폴리락트산계 중합체로 이루어진 생분해성 고분자 수지; 또는 생분해성 수지 및 석유화학 수지로 이루어진 복합분해성 고분자 수지;에서 선택된 원료수지에, 무기계 항바이러스제 단독 또는 2종 이상 응집된 복합입자가 100 내지 900㎚의 입자크기로 분산되어 제조된 생분해 시트로 이루어진 항바이러스성능을 가지는 생분해성 계란 난좌를 제공한다. The bottom plate or the base plate and the lid is a biodegradable polymer resin made of polylactic acid-based polymer; or a composite degradable polymer resin composed of a biodegradable resin and a petrochemical resin; composed of a biodegradable sheet prepared by dispersing an inorganic antiviral agent alone or a composite particle in which two or more aggregated composite particles are dispersed to a particle size of 100 to 900 nm in a raw material resin selected from Provided is a biodegradable egg locus having antiviral properties.
상기 무기계 항바이러스제가 은나노입자복합체, 은이온함유나노복합체, 구리1가 화합물, 산화아연 나노입자 및 페라이트 나노입자로 이루어진 군에서 선택된 단독 또는 2종이상의 혼합형태를 사용한다. The inorganic antiviral agent is used alone or in a mixture of two or more selected from the group consisting of silver nanoparticle complexes, silver ion-containing nanocomposites, copper monovalent compounds, zinc oxide nanoparticles and ferrite nanoparticles.
상기에서 은나노입자복합체 또는 은이온함유나노복합체는 실리카(SiO2), 알루미나, 제올라이트, 세리사이트 모데나이트, 크리스토발라이트 및 벤토나이트를 포함하는 광물, 탈크, 셀룰로오스 유도체, 파라핀 및 왁스로 이루어진 군에서 선택된 어느 하나에 은나노입자 또는 은이온함유 나노입자가 흡착 또는 결합된 것이 바람직하다. In the above, the silver nanoparticle composite or the silver ion-containing nanocomposite is any one selected from the group consisting of minerals including silica (SiO 2 ), alumina, zeolite, sericite mordenite, cristobalite and bentonite, talc, cellulose derivatives, paraffin and wax It is preferable that silver nanoparticles or silver ion-containing nanoparticles are adsorbed or bonded to.
상기에서 페라이트 나노입자는 알파-페라이트(α-Fe2O3), 아연 페라이트(ZnFe2O4), 망간 페라이트(MnFe2O4), 니켈 페라이트(NiFe2O4) 및 철 하이드로옥사이드(α-FeOOH)로 이루어진 군에서 선택된 하나 이상이 배합된 것이다. In the above, the ferrite nanoparticles are alpha-ferrite (α-Fe 2 O 3 ), zinc ferrite (ZnFe 2 O 4 ), manganese ferrite (MnFe 2 O 4 ), nickel ferrite (NiFe 2 O 4 ) and iron hydroxide (α -FeOOH) is a combination of one or more selected from the group consisting of.
본 발명의 항바이러스성능을 가지는 생분해성 계란 난좌는 상기 생분해성 또는 복합분해성 고분자 수지 100 중량부에 대하여, 무기계 항바이러스제 0.1 내지 60 중량부가 포함된 것이다. The biodegradable egg locus having antiviral properties of the present invention contains 0.1 to 60 parts by weight of an inorganic antiviral agent based on 100 parts by weight of the biodegradable or composite degradable polymer resin.
또한 본 발명의 생분해성 시트는 폴리락트산계 중합체로 이루어진 생분해성 고분자 수지 또는 생분해성 수지 및 석유화학 수지로 이루어진 복합분해성 고분자 수지 생분해성 수지를 원료수지로 사용되는데, 상기 생분해성 수지의 바람직한 일례로는 폴리락트산(Polylactic acid, PLA), 폴리하이드록시알카노에이트(polyhydroxyalkanoates, PHA), 폴리부틸렌아디페이트 테레프탈레이트(polybutylene adipate-co-terephthalate, PBAT) 폴리부틸렌숙시네이트-아디페이트(polybutylene succinate-co-adipate, PBSA), 폴리부틸렌숙시네이트-아디페이트-테레프탈레이트(polybutylene succinate adipate-co-terephthalate, PBSAT), 폴리부틸렌숙시네이트(polybutylene succinate, PBS), 폴리비닐알콜(polyvinyl alcohol, PVA), 폴리글리콜산(poly glycolic acid, PGA), 폴리락트산-글리콜산-공중합물(poly lactic-co-glycolic acid, PLGA) 및 폴리카프로락톤(polycaprolactone, PCL), 변성 전분수지 및 열가소성 전분(thermoplastic starch, TPS)으로 이루어진 군에서 선택되는 단독 또는 2종 이상의 혼합형태인 것이다. In addition, the biodegradable sheet of the present invention uses a biodegradable polymer resin composed of a polylactic acid polymer or a composite degradable polymer resin composed of a biodegradable resin and a petrochemical resin as a raw material resin. Polylactic acid (PLA), polyhydroxyalkanoates (PHA), polybutylene adipate-co-terephthalate (PBAT), polybutylene succinate -co-adipate (PBSA), polybutylene succinate-co-terephthalate (PBSAT), polybutylene succinate (PBS), polyvinyl alcohol, PVA), poly glycolic acid (PGA), poly lactic-co-glycolic acid (PLGA) and polycaprolactone (PCL), modified starch resin and thermoplastic starch ( thermoplastic starch, TPS) alone or in a mixture of two or more.
본 발명의 항바이러스성능을 가지는 생분해성 계란 난좌에 있어서, 상기 밑판 또는 상기 밑판 및 뚜껑은 투명 폴리락트산(Polylactic acid, PLA) 비발포 시트; 불투명 PLA 비발포 시트; PLA계 중합체로 이루어진 압출발포시트; 및 상기 압출발포시트의 적어도 일면에, 폴리락트산계 중합체로 이루어진 생분해성 고분자 수지 또는 석유화학 수지로 이루어진 비발포 시트가 라미네이션된, 다층시트;로 이루어진 군에서 선택된 어느 하나의 소재로 이루어지며, 상기 밑판 및 뚜껑이 동일 시트소재 또는 다른 시트소재로 조합될 수 있다. In the biodegradable egg seat having antiviral performance of the present invention, the base plate or the base plate and the lid may include a transparent polylactic acid (PLA) non-foaming sheet; Opaque PLA non-foam sheet; An extruded foam sheet made of a PLA-based polymer; And a multi-layer sheet in which a non-foaming sheet made of a biodegradable polymer resin or a petrochemical resin made of a polylactic acid polymer is laminated on at least one surface of the extruded foam sheet, and is made of any one material selected from the group consisting of The base plate and lid can be combined with the same seat material or different seat materials.
상기에서 비발포 시트는 압출발포시트로 이루어진 밑판 내부면 또는 상기 밑판 외부면에 라미네이션될 수 있다. In the above, the non-foam sheet may be laminated to the inner surface of the base plate made of an extruded foam sheet or to the outer surface of the base plate.
이때, 상기 비발포 시트는 생분해성 고분자 수지 또는 석유화학 수지 100 중량부에 대하여, 무기계 항바이러스제 0.1 내지 60 중량부가 함유된 것이 바람직하며, 비발포 시트의 두께는 50 내지 500㎛인 것이다. At this time, the non-foaming sheet preferably contains 0.1 to 60 parts by weight of an inorganic antiviral agent based on 100 parts by weight of the biodegradable polymer resin or petrochemical resin, and the thickness of the non-foaming sheet is 50 to 500 μm.
또한, 본 발명의 항바이러스성능을 가지는 생분해성 계란 난좌는 밑판 또는 밑판 및 뚜껑이 투명 폴리락트산(Polylactic acid, PLA) 비발포 시트; 불투명 PLA 비발포 시트; PLA계 중합체로 이루어진 압출발포시트; 및 상기 압출발포시트의 적어도 일면에, 폴리락트산계 중합체로 이루어진 생분해성 고분자 수지 또는 석유화학 수지로 이루어진 비발포 시트가 라미네이션된, 다층시트;의 적어도 일면에, In addition, the biodegradable egg nest having antiviral performance of the present invention includes a bottom plate or a bottom plate and a lid of a transparent polylactic acid (PLA) non-foaming sheet; Opaque PLA non-foam sheet; An extruded foam sheet made of a PLA-based polymer; And on at least one side of the extruded foam sheet, a multi-layer sheet in which a non-foam sheet made of a biodegradable polymer resin or a petrochemical resin made of a polylactic acid polymer is laminated on at least one side of the extruded foam sheet.
무기계 항바이러스제 및 분산제에서 선택된 단독 또는 혼합형태를 포함한 활성층 용액을 도포하여 무기계 항바이러스 활성층이 형성된 형태를 포함할 수 있다. It may include a form in which an inorganic antiviral active layer is formed by applying an active layer solution including a single or mixed form selected from inorganic antiviral agents and dispersants.
상기 무기계 항바이러스 활성층이 코팅방식 또는 미스트 노즐을 이용한 스프레이방식으로 형성되되, 무기계 항바이러스제가 0.01 내지 5g/㎡로 분산 코팅되도록 한 것을 특징으로 한다.The inorganic antiviral active layer is formed by a coating method or a spray method using a mist nozzle, characterized in that the inorganic antiviral agent is dispersed and coated at 0.01 to 5 g / m 2 .
본 발명의 항바이러스성능을 가지는 생분해성 계란 난좌에 있어서, 분산제는 폴리에틸렌글리콜(PEG), 구연산, 젖산 및 폴리락트산(PLA)으로 이루어진 군에서 선택되는 어느 하나를 사용하는 것이다. In the biodegradable egg yolk having antiviral properties of the present invention, the dispersing agent is to use any one selected from the group consisting of polyethylene glycol (PEG), citric acid, lactic acid and polylactic acid (PLA).
이상의 항바이러스성능을 가지는 생분해성 계란 난좌는 필라인 코로나바이러스(fCoV), 인플루엔자 A 바이러스(FluA), 조류 인플루엔자(AI) 바이러스 및 돼지 바이러스로 이루어진 군에서 선택되는 어느 하나 이상에 우수한 항바이러스성이 구현한다.The biodegradable egg ovary having the above antiviral performance has excellent antiviral properties against at least one selected from the group consisting of filine coronavirus (fCoV), influenza A virus (FluA), avian influenza (AI) virus, and swine virus. implement
나아가, 본 발명은 유기용제 100 중량부에 대하여, 무기계 항바이러스제 0.1 내지 20 중량부 및 폴리에틸렌글리콜(PEG), 구연산, 젖산 및 폴리락트산(PLA)으로 이루어진 군에서 선택된 단독 또는 혼합형태의 분산제 0.1 내지 20 중량부가 함유된 항바이러스성능을 가지는 도포 조성물을 제공한다. Furthermore, the present invention relates to 100 parts by weight of an organic solvent, 0.1 to 20 parts by weight of an inorganic antiviral agent and 0.1 to 20 parts by weight of a dispersant selected from the group consisting of polyethylene glycol (PEG), citric acid, lactic acid and polylactic acid (PLA), alone or in a mixed form. Provides a coating composition having antiviral performance containing 20 parts by weight.
상기 무기계 항바이러스제가 은나노입자복합체, 은이온함유나노복합체, 구리1가 화합물, 산화아연 나노입자 및 페라이트 나노입자로 이루어진 군에서 선택된 단독 또는 2종이상의 혼합형태이고, 상기에서 은나노입자복합체 또는 은이온함유나노복합체가 실리카(SiO2), 알루미나, 제올라이트, 모데나이트, 크리스토발라이트 및 벤토나이트를 포함하는 광물, 탈크, 셀룰로오스 유도체, 파라핀 및 왁스로 이루어진 군에서 선택된 어느 하나에 은나노입자 또는 은이온함유 나노입자가 흡착 또는 결합된 것이다. The inorganic antiviral agent is a single form or a mixture of two or more selected from the group consisting of a silver nanoparticle complex, a silver ion-containing nanocomposite, a copper monovalent compound, zinc oxide nanoparticles and ferrite nanoparticles, wherein the silver nanoparticle complex or silver ion Silver nanoparticles or nanoparticles containing silver ions are selected from the group consisting of silica (SiO 2 ), alumina, zeolite, mordenite, cristobalite, and bentonite-containing nanocomposites, minerals including talc, cellulose derivatives, paraffin, and wax. adsorbed or bound.
상기에서 페라이트 나노입자는 알파-페라이트(α-Fe2O3), 아연 페라이트(ZnFe2O4), 망간 페라이트(MnFe2O4), 니켈 페라이트(NiFe2O4) 및 철 하이드로옥사이드(α-FeOOH)로 이루어진 군에서 선택된 하나 이상이 배합된 것이다. In the above, the ferrite nanoparticles are alpha-ferrite (α-Fe 2 O 3 ), zinc ferrite (ZnFe 2 O 4 ), manganese ferrite (MnFe 2 O 4 ), nickel ferrite (NiFe 2 O 4 ) and iron hydroxide (α -FeOOH) is a combination of one or more selected from the group consisting of.
또한, 상기 유기용제는 테트라하이드로퓨란(THF), 클로로포름을 포함하는 염소화 유기용매, 아세토니트릴, 다이옥산 및 디메틸포름아마이드(DMF), 디메틸아세트아마이드(DMAc), 에탄올, 메탄올, 노말-프로필알콜 또는 이소-프로필알콜에서 선택되는 알코올류, 클로로포름을 포함하는 염소화 유기용매, 벤젠, 톨루엔, 아세토니트릴 및 다이옥산으로 이루어진 군에서 어느 하나 이상을 사용하는 것이다. In addition, the organic solvent is tetrahydrofuran (THF), chlorinated organic solvents including chloroform, acetonitrile, dioxane and dimethylformamide (DMF), dimethylacetamide (DMAc), ethanol, methanol, normal-propyl alcohol or iso -Alcohols selected from propyl alcohol; At least one from the group consisting of chlorinated organic solvents including chloroform, benzene, toluene, acetonitrile and dioxane is used.
본 발명에 따르면, 항바이러스성능을 가지는 생분해성 계란 난좌를 제공할 수 있다. According to the present invention, it is possible to provide a biodegradable egg yolk locus having antiviral properties.
본 발명의 계란 난좌는 폴리락트산계 중합체로 이루어진 생분해성 고분자 수지; 또는 생분해성 수지 및 석유화학 수지로 이루어진 복합분해성 고분자 수지;에서 선택된 원료수지에, 무기계 항바이러스제 단독 또는 2종 이상 응집된 복합입자를 100 내지 900㎚의 입자크기로 분산되어 제조된 생분해 시트로 이루어짐에 따라, 상기 무기계 항바이러스제의 입자크기 제어로 피부침투를 방지함과 동시에 상기 무기계 항바이러스제가 바이러스와의 접촉에 의해 인체유입 전에 바이러스를 불활성화시키거나 또는 감염되더라도 RNA가 복제하는 것을 저해함으로써, 우수한 항바이러스성능을 가지는 계란 난좌를 제공할 수 있다. The egg yolk seat of the present invention is a biodegradable polymer resin made of a polylactic acid-based polymer; Or a composite degradable polymer resin composed of a biodegradable resin and a petrochemical resin; composed of a biodegradable sheet prepared by dispersing inorganic antiviral agents alone or composite particles aggregated with two or more at a particle size of 100 to 900 nm in a raw material resin selected from Accordingly, skin penetration is prevented by controlling the particle size of the inorganic antiviral agent, and at the same time, the inorganic antiviral agent inactivates the virus before entering the human body by contact with the virus or inhibits RNA replication even after infection, An egg ovary having excellent antiviral performance can be provided.
본 발명의 항바이러스성능을 가지는 생분해성 계란 난좌는 사스(SARS), 조류 독감, 집단 식중독, 코로나바이러스(COVID-19) 감염증 등의 각종 바이러스에 대한 시장의 요구를 충족시킬 수 있다. The biodegradable egg yolk seat having antiviral performance of the present invention can meet the market demand for various viruses such as SARS, bird flu, mass food poisoning, and coronavirus (COVID-19) infection.
도 1은 본 발명의 계란 난좌 제조용 항바이러스성을 가지는 생분해성 비발포 시트 단면의 모식도이고, 1 is a schematic diagram of a cross-section of a biodegradable non-foaming sheet having antiviral properties for producing egg nests of the present invention;
도 2는 본 발명의 계란 난좌 제조용 항바이러스성을 가지는 생분해성 발포시트 단면의 모식도이고, 2 is a schematic diagram of a cross-section of a biodegradable foam sheet having antiviral properties for producing egg yolks of the present invention;
도 3은 본 발명의 계란 난좌 제조용 항바이러스성을 가지는 생분해성 시트 단면의 모식도이고, 3 is a schematic diagram of a cross-section of a biodegradable sheet having antiviral properties for producing egg egg nests of the present invention;
도 4는 본 발명의 계란 난좌 제조용 항바이러스성을 가지는 생분해성 시트 단면의 모식도이고, 4 is a schematic diagram of a cross-section of a biodegradable sheet having antiviral properties for producing egg egg nests of the present invention;
도 5는 본 발명의 실시예 1에서 제조된 ZnO가 혼입된 PLA(nZnO) 생분해성 시트의 단면 사진이고, 5 is a cross-sectional photograph of a PLA (nZnO) biodegradable sheet incorporating ZnO prepared in Example 1 of the present invention;
도 6은 본 발명의 실시예 2에서 제조된 ZnO/CuI가 혼입된 PLA(CuZn) 생분해성 시트의 단면 사진이고, 6 is a cross-sectional photograph of a PLA (CuZn) biodegradable sheet incorporating ZnO/CuI prepared in Example 2 of the present invention;
도 7은 본 발명의 실시예 3에서 제조된 은나노입자복합체가 혼입된 PLA(AgNP) 생분해성 시트의 단면이고, 7 is a cross-section of a PLA (AgNP) biodegradable sheet incorporating silver nanoparticle complexes prepared in Example 3 of the present invention;
도 8은 본 발명의 실시예 4에서 제조된 CuI가 혼입된 PLA(CuI) 생분해성 시트의 단면이고, 8 is a cross-section of a PLA (CuI) biodegradable sheet incorporating CuI prepared in Example 4 of the present invention;
도 9는 본 발명의 실시예 5에서 제조된 ZnO/은나노입자복합체/CuI가 혼입된 PLA(nZnAgCu) 생분해성 시트의 단면이고, 9 is a cross-section of a biodegradable PLA (nZnAgCu) sheet incorporating ZnO/silver nanoparticle composites/CuI prepared in Example 5 of the present invention;
도 10은 본 발명의 계란 난좌 제조용 항바이러스성을 가지는 생분해성 시트의 다른 실시형태로서, 무기계 항바이러스제 1종이 함유된 무기계 항바이러스 활성층이 형성된 시트의 단면 모식도이고, 10 is another embodiment of the biodegradable sheet having antiviral properties for egg egg locus production of the present invention, which is a schematic cross-sectional view of a sheet formed with an inorganic antiviral active layer containing one inorganic antiviral agent,
도 11은 도 10에서 무기계 항바이러스제 2종이 함유된 무기계 항바이러스 활성층이 형성된 시트의 단면 모식도이고, 11 is a schematic cross-sectional view of a sheet formed with an inorganic antiviral active layer containing two inorganic antiviral agents in FIG. 10;
도 12는 본 발명의 계란 난좌 제조용 항바이러스성을 가지는 생분해성 시트의 또 다른 실시형태로서 시트의 단면 모식도이고, 12 is a schematic cross-sectional view of a sheet as another embodiment of the biodegradable sheet having antiviral properties for producing egg egg locus according to the present invention;
도 13은 도 12의 계란 난좌 제조용 항바이러스성을 가지는 생분해성 시트의 또 다른 실시형태의 시트의 단면 모식도이다. FIG. 13 is a schematic cross-sectional view of a sheet of another embodiment of the biodegradable sheet having antiviral properties for egg egg locus production of FIG. 12 .
이하, 본 발명을 상세히 설명한다. Hereinafter, the present invention will be described in detail.
본 발명은 계란이 수용되도록 오목한 형상의 계란 난좌홈이 1개 이상 배열된 밑판 및 상기 밑판의 계란 난좌홈 전체를 덮는 분리형 뚜껑 또는 상기 밑판에 연결되면서 밑판의 계란 난좌홈 전체를 덮는 일체형 뚜껑으로 구성된 계란 난좌에 있어서, 상기 밑판 또는 상기 밑판 및 뚜껑이 폴리락트산계 중합체로 이루어진 생분해성 고분자 수지; 또는 생분해성 수지 및 석유화학 수지로 이루어진 복합분해성 고분자 수지;에서 선택된 원료수지에, 무기계 항바이러스제 단독 또는 2종 이상 응집된 복합입자가 100 내지 900㎚의 입자크기로 분산되어 제조된 생분해 시트로 이루어진 항바이러스성능을 가지는 생분해성 계란 난좌를 제공한다. The present invention consists of a bottom plate in which one or more concave egg seat grooves are arranged to accommodate eggs, a detachable lid covering the entire egg seat groove of the bottom plate, or an integral lid connected to the bottom plate and covering the entire egg seat groove of the bottom plate. In the egg yolk seat, the bottom plate or the bottom plate and the lid is a biodegradable polymer resin made of polylactic acid-based polymer; or a composite degradable polymer resin composed of a biodegradable resin and a petrochemical resin; composed of a biodegradable sheet prepared by dispersing an inorganic antiviral agent alone or a composite particle in which two or more aggregated composite particles are dispersed to a particle size of 100 to 900 nm in a raw material resin selected from Provided is a biodegradable egg locus having antiviral properties.
상기에서 "생분해성 시트"라 함은 폴리락트산계 중합체로 이루어진 생분해성 고분자 수지; 또는 생분해성 수지 및 석유화학 수지로 이루어진 복합분해성 고분자 수지;의 원료수지를 사용하여, 티다이, 블로운 및 압출발포로 형성된 단층, 다층, 비발포 및 발포 구조를 포함하여, 두께 0.254㎜ 기준으로 상기 두께 이상일 때 시트 또는 상기 두께 미만일 때 필름으로 정의되는 구조를 포함하여 이를 시트로 통칭한다. In the above, "biodegradable sheet" refers to a biodegradable polymer resin made of a polylactic acid-based polymer; Or a composite degradable polymer resin composed of a biodegradable resin and a petrochemical resin; based on a thickness of 0.254 mm, including single-layer, multi-layer, non-foaming and foaming structures formed by T-die, blown and extrusion foaming using raw material resins of It is collectively referred to as a sheet, including a structure defined as a sheet when the thickness is greater than the above or a film when the thickness is less than the above.
구체적으로, 본 발명의 항바이러스성능을 가지는 생분해성 계란 난좌에 있어서, 밑판 또는 상기 밑판 및 뚜껑이 투명 폴리락트산(Polylactic acid, PLA) 비발포 시트; 불투명 PLA 비발포 시트; PLA계 중합체로 이루어진 압출발포시트; 및 상기 압출발포시트의 적어도 일면에, 폴리락트산계 중합체로 이루어진 생분해성 고분자 수지 또는 석유화학 수지로 이루어진 비발포 시트가 라미네이션된, 다층시트;로 이루어진 군에서 선택된 어느 하나의 소재로 이루어지며, 상기 밑판 및 뚜껑이 동일 시트소재 또는 다른 시트소재로 조합될 수 있다. Specifically, in the biodegradable egg nest having antiviral performance of the present invention, the base plate or the base plate and the lid are transparent polylactic acid (Polylactic acid, PLA) non-foaming sheets; Opaque PLA non-foam sheet; An extruded foam sheet made of a PLA-based polymer; And a multi-layer sheet in which a non-foaming sheet made of a biodegradable polymer resin or a petrochemical resin made of a polylactic acid polymer is laminated on at least one surface of the extruded foam sheet, and is made of any one material selected from the group consisting of The base plate and lid can be combined with the same seat material or different seat materials.
그 일례로서 계란 난좌의 형태로는, 계란이 수용되도록 오목한 형상의 계란 난좌홈이 1개 이상 배열된 밑판 및 상기 밑판의 계란 난좌홈 전체를 덮는 분리형 뚜껑 또는 상기 밑판에 연결되면서 밑판의 계란 난좌홈 전체를 덮는 일체형 뚜껑으로 구성된 형태를 포함하며 종래 계란 포장용기 형태에 제한되지 않고 채용될 수 있을 것이다. As an example, in the form of an egg seat, a bottom plate in which one or more concave egg seat grooves are arranged to accommodate eggs and a detachable lid covering the entire egg seat groove of the bottom plate or an egg seat groove of the bottom plate while being connected to the bottom plate It includes a form composed of an integral lid covering the whole and can be employed without being limited to the form of a conventional egg packaging container.
이때, 상기 밑판 및 뚜껑이 투명 PLA 비발포 시트로 이루어질 수 있다. At this time, the base plate and the lid may be made of a transparent PLA non-foaming sheet.
또한, 뚜껑은 투명 PLA 비발포 시트일 때, 밑판이 불투명 PLA 비발포 시트; PLA계 중합체로 이루어진 압출발포시트; 또는 상기 압출발포시트의 적어도 일면에, 폴리락트산계 중합체로 이루어진 생분해성 고분자 수지 또는 석유화학 수지로 이루어진 비발포 시트가 라미네이션된 다층시트; 중에서 선택될 수 있을 것이다. In addition, when the lid is a transparent PLA non-foaming sheet, the bottom plate is an opaque PLA non-foaming sheet; An extruded foam sheet made of a PLA-based polymer; Or a multilayer sheet in which a non-foaming sheet made of a biodegradable polymer resin or a petrochemical resin made of a polylactic acid-based polymer is laminated on at least one surface of the extruded foam sheet; can be selected from.
또 다른 일례로서, 밑판 및 뚜껑이 PLA계 중합체로 이루어진 압출발포시트로 이루어질 수 있다. As another example, the bottom plate and the lid may be made of an extruded foam sheet made of a PLA-based polymer.
또한, 밑판 및 뚜껑이 상기 압출발포시트의 적어도 일면에, 폴리락트산계 중합체로 이루어진 생분해성 고분자 수지 또는 석유화학 수지로 이루어진 비발포 시트가 라미네이션된, 다층시트로 이루어질 수도 있을 것이다. In addition, the bottom plate and the lid may be made of a multilayer sheet in which a non-foaming sheet made of a biodegradable polymer resin or a petrochemical resin made of a polylactic acid polymer is laminated on at least one surface of the extruded foam sheet.
이때, 상기에서 비발포 시트는 압출발포시트로 이루어진 밑판 내부면 또는 상기 밑판 외부면에 라미네이션될 수 있다. In this case, the non-foaming sheet may be laminated to the inner surface of the base plate made of an extruded foam sheet or to the outer surface of the base plate.
상기에서 라미네이션은 코팅, 도포, 공압출 방법 등의 수단에 제한되지 아니하고, 이를 이용하여 다층 구조로 형성됨을 의미한다. In the above, lamination is not limited to methods such as coating, coating, and co-extrusion, and means that a multi-layer structure is formed using the same.
본 발명의 항바이러스성능을 가지는 생분해성 계란 난좌는 밑판 또는 상기 밑판 및 뚜껑을 구성하는 생분해 시트에, 무기계 항바이러스제 0.1 내지 60 중량부를 혼합하여 상기 생분해성 시트에 무기계 항바이러스제 단독 또는 2종 이상 응집된 복합입자가 100 내지 900㎚의 입자크기로 분산되도록 한 특징을 충족한다면, 시장에서 요구하는 가격, 두께 및 강도 규격에 따라 생분해 시트 소재간의 조합은 변경되어 제작될 수 있다. The biodegradable egg yolk seat having antiviral performance of the present invention is obtained by mixing 0.1 to 60 parts by weight of an inorganic antiviral agent with a base plate or a biodegradable sheet constituting the base plate and lid, and then the inorganic antiviral agent alone or two or more kinds are aggregated on the biodegradable sheet. If the composite particles meet the characteristics of being dispersed with a particle size of 100 to 900 nm, the combination of biodegradable sheet materials can be changed and manufactured according to the price, thickness and strength standards required by the market.
도 1은 본 발명의 계란 난좌를 제조하기 위한 항바이러스성을 가지는 생분해성 비발포 시트의 단면 모식도이고, 도 2는 본 발명의 계란 난좌 제조용 항바이러스성을 가지는 생분해성 발포시트 단면의 모식도로서, 상기 시트에 무기계 항바이러스제가 혼입된 형상을 도시한 것이다. 1 is a schematic cross-sectional view of a biodegradable non-foam sheet having antiviral properties for producing egg nests of the present invention, and FIG. 2 is a schematic cross-sectional view of a biodegradable foam sheet having antiviral properties for producing egg egg nests of the present invention, It shows the shape in which the inorganic antiviral agent is incorporated into the sheet.
도 3은 본 발명의 계란 난좌를 제조하기 위한 항바이러스성을 가지는 생분해성 시트의 단면 모식도로서, 생분해성 발포 기재시트(11)의 적어도 일면에, 폴리락트산계 중합체에 무기계 항바이러스제 조성물(31)이 분산된 비발포 시트(30)가 라미네이션되는 것이다. Figure 3 is a schematic cross-sectional view of a biodegradable sheet having antiviral properties for producing an egg locus of the present invention. On at least one surface of a biodegradable foam base sheet 11, an inorganic antiviral agent composition 31 is applied to a polylactic acid polymer. this distributed The non-foaming sheet 30 is laminated.
도 4는 도 3에서 생분해성 발포 기재시트(11)에 무기계 항바이러스제(21)가 더 함유된 생분해성 시트 단면의 모식도로 나타낸 것이다. FIG. 4 is a schematic view of a cross section of a biodegradable sheet in which an inorganic antiviral agent 21 is further contained in the biodegradable foam base sheet 11 in FIG. 3 .
상기 도 3 및 도 4에서 비발포 시트(30)는 폴리락트산계 중합체로 이루어진 생분해성 고분자 수지 또는 석유화학 수지 100 중량부에 대하여, 무기계 항바이러스제 0.1 내지 60 중량부가 함유된 것을 항바이러스성을 제공하면서 동시에 전체 시트의 강도를 보강한다.3 and 4, the non-foam sheet 30 provides antiviral properties by containing 0.1 to 60 parts by weight of an inorganic antiviral agent based on 100 parts by weight of a biodegradable polymer resin or petrochemical resin made of a polylactic acid polymer. while reinforcing the strength of the entire sheet at the same time.
또한, 비발포 시트(30)는 50 내지 500㎛ 두께를 가지는 것이 바람직하며, 사용 용도에 따라 달라질 수 있으며, 생분해성 시트의 수요자 요구에 따라 두께 및 강도 규격이 변경될 수 있다.In addition, the non-foaming sheet 30 preferably has a thickness of 50 to 500 μm, and may vary depending on the purpose of use, and the thickness and strength specifications may be changed according to the demand of the consumer of the biodegradable sheet.
도 10은 본 발명의 계란 난좌 제조용 항바이러스성을 가지는 생분해성 시트의 다른 실시형태로서, 생분해성 발포 기재시트(11)의 적어도 일면에 무기계 항바이러스제 1종(41)이 함유된 무기계 항바이러스 활성층(40)이 형성된 시트의 단면 모식도이고, 도 11은 상기 도 10에서 무기계 항바이러스제 2종(41, 42)이 함유된 무기계 항바이러스 활성층(40)이 형성된 시트의 단면 모식도이다. 10 is another embodiment of the biodegradable sheet having antiviral properties for producing egg nests of the present invention, wherein at least one surface of the biodegradable foam base sheet 11 contains an inorganic antiviral active layer containing one type of inorganic antiviral agent 41 11 is a schematic cross-sectional view of a sheet formed with an inorganic antiviral active layer 40 containing two types of inorganic antiviral agents 41 and 42 in FIG. 10.
상기 도 10 및 도 11에서는 발포 기재시트(11)로 예시하였으나, 이에 한정되지는 아니할 것이다. In FIGS. 10 and 11, the foam base sheet 11 was exemplified, but it will not be limited thereto.
도 12는 본 발명의 계란 난좌 제조용 항바이러스성을 가지는 생분해성 시트의 또 다른 실시형태로서, 생분해성 비발포 기재시트(10) 및 폴리락트산계 중합체로 이루어진 생분해성 고분자 수지 또는 석유화학 수지로 이루어진 비발포 시트(50)가 라미네이션된, 다층시트이고, 상기 다층시트의 적어도 일면에, 무기계 항바이러스제 2종(41, 42)이 함유된 무기계 항바이러스 활성층(40)이 형성된 구조이다. 12 is another embodiment of the biodegradable sheet having antiviral properties for egg egg locus production of the present invention, which includes a biodegradable non-foaming base sheet 10 and a biodegradable polymer resin or petrochemical resin made of a polylactic acid-based polymer. It is a multilayer sheet in which the non-foaming sheet 50 is laminated, and an inorganic antiviral active layer 40 containing two types of inorganic antiviral agents 41 and 42 is formed on at least one surface of the multilayer sheet.
도 13은 도 12의 항바이러스성 생분해 시트의 또 다른 실시형태의 단면 모식도를 예시한 것이다. 13 is a cross-sectional schematic diagram of another embodiment of the antiviral biodegradable sheet of FIG. 12 .
구체적으로, 도 12 및 도 13의 항바이러스성 생분해 시트에 있어서, 생분해성 기재시트(10, 11) 상에 생분해성 비발포 시트(50)가 라미네이션된 다층시트 구조에, 무기계 항바이러스 활성층(40)이 형성된 구조이며, 항바이러스성 생분해 시트에 강도를 제공하며, 사용 용도에 따라 두께 및 강도 규격이 변경될 수 있다. Specifically, in the antiviral biodegradable sheet of FIGS. 12 and 13, the inorganic antiviral active layer (40 ) is formed, and provides strength to the antiviral biodegradable sheet, and the thickness and strength specifications may be changed depending on the purpose of use.
상기 생분해성 기재시트는 비발포 기재시트(10) 또는 발포 기재시트(11)로 변경될 수 있으며, 특히, 도 13에 도시된, 발포 기재시트(11)상에 생분해성 비발포 시트(50)가 라미네이션된 다층시트에 무기계 항바이러스 활성층(40)이 형성됨에 따라, 강도 뿐만 아니라 가스 배리어성을 제공할 수 있으며, 발포 기재시트(11)의 발포 셀 내부에 바이러스 침투를 근본적으로 방지할 수 있다.The biodegradable base sheet may be changed to a non-foamed base sheet 10 or a foamed base sheet 11, and in particular, a biodegradable non-foamed sheet 50 on the foamed base sheet 11 shown in FIG. 13 As the inorganic antiviral active layer 40 is formed on the laminated multilayer sheet, it can provide gas barrier properties as well as strength, and can fundamentally prevent virus penetration into the foamed cells of the foam base sheet 11. .
이하, 본 발명의 항바이러스성능을 가지는 생분해성 계란 난좌의 구성별 특징을 상세히 설명한다. Hereinafter, the characteristics of each component of the biodegradable egg locus having antiviral performance of the present invention will be described in detail.
(1) 생분해 시트의 원료수지(1) Raw material resin of biodegradable sheet
원료수지로서 폴리락트산계 중합체로 이루어진 생분해성 고분자 수지는 결정성 폴리락트산 단독 또는 상기 결정성 폴리락트산에 비결정성 폴리락트산을 조합하는 형태도 가능하다. 이때, 폴리락트산 수지의 내충격성 및 몰드 내 성형 안정성뿐만 아니라, 성형품의 내열 안정성을 구현하고자, 상기 결정성 폴리락트산과 비결정성 폴리락트산의 혼합비율을 조절하여 달성할 수 있다. The biodegradable polymer resin made of polylactic acid-based polymer as raw material resin may be crystalline polylactic acid alone or a combination of amorphous polylactic acid and crystalline polylactic acid. At this time, in order to realize not only the impact resistance and mold stability of the polylactic acid resin but also the heat resistance stability of the molded article, it can be achieved by adjusting the mixing ratio of the crystalline polylactic acid and the amorphous polylactic acid.
또 다른 원료수지로서, 강도 및 생산성을 고려하여 바이오 베이스 플라스틱(Bio-based plastics) 요건을 충족하는 범위 내로 상기 폴리락트산를 포함하는 생분해성 수지에 석유화학 수지를 혼합한 복합분해성 고분자 수지의 소재를 최적화한 폴리락트산계 중합체 조성물을 사용할 수 있다.바람직하게는 생분해성 수지 60 내지 99중량% 및 석유화학 수지 1 내지 40중량%로 이루어진 것이다. 이때, 상기 생분해성 수지는 폴리 L-락트산(이하, “PLLA"라 한다)과 폴리 D-락트산(이하,“PDLA"라 한다)을 포함하되, 공지된 생분해성 수지를 더 포함할 수 있다. 바람직한 생분해성 수지로는 폴리하이드록시알카노에이트(polyhydroxyalkanoates, PHA), 폴리부틸렌아디페이트 테레프탈레이트(polybutylene adipate-co-terephthalate, PBAT), 폴리부틸렌숙시네이트-아디페이트(polybutylene succinate-co-adipate, PBSA), 폴리부틸렌숙시네이트-아디페이트-테레프탈레이트(polybutylene succinate adipate-co-terephthalate, PBSAT), 폴리부틸렌숙시네이트(polybutylene succinate, PBS), 폴리비닐알콜(polyvinyl alcohol, PVA), 폴리글리콜산(poly glycolic acid, PGA), 폴리락트산-글리콜산-공중합물(poly lactic-co-glycolic acid, PLGA) 및 폴리카프로락톤(polycaprolactone, PCL), 변성 전분수지 및 열가소성 전분(thermoplastic starch, TPS)으로 이루어진 군에서 선택되는 단독 또는 2종 이상의 혼합형태가 더 포함될 수 있다.As another raw resin, optimize the material of the composite degradable polymer resin by mixing the petrochemical resin with the biodegradable resin containing the polylactic acid within the scope of meeting the requirements of bio-based plastics in consideration of strength and productivity. A polylactic acid-based polymer composition may be used. Preferably, it is composed of 60 to 99% by weight of a biodegradable resin and 1 to 40% by weight of a petrochemical resin. In this case, the biodegradable resin includes poly L-lactic acid (hereinafter referred to as “PLLA”) and poly D-lactic acid (hereinafter referred to as “PDLA”), and may further include a known biodegradable resin. Preferred biodegradable resins include polyhydroxyalkanoates (PHA), polybutylene adipate-co-terephthalate (PBAT), and polybutylene succinate-co- adipate, PBSA), polybutylene succinate adipate-co-terephthalate (PBSAT), polybutylene succinate (PBS), polyvinyl alcohol (PVA), Poly glycolic acid (PGA), poly lactic-co-glycolic acid (PLGA) and polycaprolactone (PCL), modified starch resin and thermoplastic starch TPS) alone or a mixture of two or more selected from the group consisting of may be further included.
또한, 석유화학 수지로는 폴리스티렌, 폴리에틸렌, 폴리프로필렌, 폴리에스테르, 폴리카보네이트, 아크릴 수지, 에틸렌비닐아세테이트 수지, 폴리비닐알콜 또는 폴리염화비닐의 열가소성 수지 중 선택되는 어느 1종 또는 2종 이상의 혼합물을 사용하는 것이 바람직하나, 상기 제시된 고분자 수지 외에도 고분자 수지라면 특별히 사용에 제한을 두지 않는다. 이때, 석유화학 수지는 1 내지 40중량%로 함유되는데, 이때, 1중량% 미만이면, 생분해성 고분자 수지의 함량이 높아져 분해성은 향상되나 내열성 향상이 미흡하고, 석유화학 수지 혼합으로 기대하는 복합물성의 향상 효과가 개선되지만, 반면에, 석유화학 수지의 함량이 40중량%를 초과하면, PLA가 가진 이산화탄소 풋프린트(footprint)가 감소하는 문제가 있다.상기의 복합분해성 고분자 수지 조성물은 생분해성 수지 단독으로 이루어진 경우에 비하여 생분해기간을 단축 또는 경우에 따라서는 견뢰도를 향상시켜 사용수명을 연장할 수 있다. In addition, as the petrochemical resin, any one or a mixture of two or more selected from thermoplastic resins of polystyrene, polyethylene, polypropylene, polyester, polycarbonate, acrylic resin, ethylene vinyl acetate resin, polyvinyl alcohol or polyvinyl chloride It is preferable to use one, but if it is a polymer resin other than the polymer resin presented above, the use is not particularly limited. At this time, the petrochemical resin is contained in an amount of 1 to 40% by weight. At this time, if it is less than 1% by weight, the content of the biodegradable polymer resin is increased and the decomposition property is improved, but the improvement in heat resistance is insufficient, and the composite physical properties expected by mixing the petrochemical resin However, on the other hand, if the content of the petrochemical resin exceeds 40% by weight, there is a problem that the carbon dioxide footprint of PLA decreases. The composite degradable polymer resin composition is a biodegradable resin It is possible to extend the useful life by shortening the biodegradation period or improving the color fastness in some cases compared to the case of the single composition.
(2) 사슬 연장제(2) chain extender
본 발명에서 사용되는 폴리락트산은 수분건조가 잘 되어도 분자량이 낮으면, 강도가 부족하여 잘 부서지는 문제로 후공정 진행이 어려우므로, 상기 폴리락트산의 분자량 증대를 위한 목적으로 사슬연장제(chain extender)를 사용한다.Polylactic acid used in the present invention is brittle due to lack of strength when the molecular weight is low even when well dried, making it difficult to proceed with the subsequent process. For the purpose of increasing the molecular weight of polylactic acid, chain extender ) is used.
본 발명에서 사용되는 사슬연장제의 바람직한 일례로는 디글리시딜에테르계, 테레프탈산디글리시딜에테르, 트리메틸올프로판디글리시딜에테르 및 1,6-헥산디올디글리시딜에테르로 이루어진 군에서 선택되는 에폭시계 화합물; 헥사메틸렌디이소시아네이트, 톨릴렌디이소시아네이트, 자이릴렌디이소시아네이트, 디페닐메탄디이소시아네이트 및 트리이소시아네이트로 이루어진 군에서 선택되는 이소시아네이트계 화합물; (메타)아크릴계 화합물; 및 라우로일 퍼옥사이드, 벤조일 퍼옥사이드, 아조-비스-이소부틸로 니트릴, 삼중 부틸 하이드로퍼옥사이드, 디큐밀 퍼옥사이드, 디-삼중부틸퍼옥사이드, 2,5 디메틸-2,5 디(티부틸퍼옥시)헥산(2,5-Dimethyl-2,5-di(t-butyl peroxy)hexane), 1,3-비스(티-부틸퍼옥시-이소프로필)벤젠(1,3-Bis(t-buthyl peroxy-isoproplybenzene)을 포함하는 퍼옥사이드계 화합물;로 이루어진 군에서 선택되는 어느 하나 또는 1종 이상을 사용하는 것이다.Preferable examples of the chain extender used in the present invention include the group consisting of diglycidyl ether, terephthalic acid diglycidyl ether, trimethylolpropane diglycidyl ether and 1,6-hexanediol diglycidyl ether. An epoxy-based compound selected from; Isocyanate-based compounds selected from the group consisting of hexamethylene diisocyanate, tolylene diisocyanate, xylylene diisocyanate, diphenylmethane diisocyanate and triisocyanate; (meth)acrylic compounds; and lauroyl peroxide, benzoyl peroxide, azo-bis-isobutylonitrile, tributyl hydroperoxide, dicumyl peroxide, di-tributylperoxide, 2,5 dimethyl-2,5 di(t-butyl Peroxy) hexane (2,5-Dimethyl-2,5-di (t-butyl peroxy) hexane), 1,3-bis (t-butylperoxy-isopropyl) benzene (1,3-Bis (t- buthyl peroxy-isoproplybenzene) and a peroxide-based compound; to use any one or more than one selected from the group consisting of.
이때, 사슬연장제는 상기 폴리락트산 100 중량부에 대하여, 0.05 내지 4 중량부, 더욱 바람직하게는 0.1 내지 2 중량부를 사용할 경우, 내열성 개선효과가 뚜렷하다. 사슬연장제의 함량이 0.05 중량부 미만이면, 분자량 증대효과가 미흡하여, 시트상으로 제조하기가 용이하지 않으며, 4 중량부를 초과하면, 결정성 및 내열성은 향상되나, 과도한 분자량의 증가 및 가교로 인하여 압출기 다이가 막힐 우려가 있으므로 공정상의 문제를 초래한다. At this time, when the chain extender is used in an amount of 0.05 to 4 parts by weight, more preferably 0.1 to 2 parts by weight, based on 100 parts by weight of the polylactic acid, the effect of improving heat resistance is evident. If the content of the chain extender is less than 0.05 parts by weight, the effect of increasing the molecular weight is insufficient, and it is not easy to prepare it in a sheet form. If it exceeds 4 parts by weight, crystallinity and heat resistance are improved, but excessive molecular weight increase and crosslinking As a result, there is a concern that the extruder die may be clogged, resulting in process problems.
(3) 발포 핵제 및 발포제(3) Foaming nucleating agent and foaming agent
본 발명의 생분해 시트 중 압출발포시트의 제조에서 발포핵제는 탈크, 실리카 등의 무기계 발포핵제 또는 스테아린산 칼슘 등의 유기계 발포핵제를 사용할 수 있으며, 특히 상기 발포핵제는 마스터배치 형태로서 첨가될 수 있다. 마스터배치 제조 시에는 분산제, 안정제, 산화방지제, 자외선안정제, 활제 등을 더 첨가하여 발포핵제의 분산성을 조절하는 한편 가공성을 향상시킬 수도 있다. 또한, 마스터배치 제조시에 분산제를 함께 첨가하는 대신에 별도로 분산제를 더 첨가할 수도 있다. 이때 분산제로는 스테아린산 아미드 등을 사용할 수 있다.In the preparation of the extruded foam sheet among the biodegradable sheets of the present invention, the foam nucleating agent may be an inorganic foam nucleating agent such as talc or silica or an organic foam nucleating agent such as calcium stearate. In particular, the foam nucleating agent may be added in the form of a master batch. In preparing the masterbatch, dispersing agents, stabilizers, antioxidants, UV stabilizers, lubricants, etc. may be further added to control the dispersibility of the foaming nucleating agent and improve processability. In addition, a dispersant may be further added separately instead of adding the dispersant together during preparation of the masterbatch. In this case, stearic acid amide or the like may be used as the dispersant.
상기 발포핵제는 폴리락트산계 중합체 조성물 100 중량부에 대하여, 0.01 내지 4 중량부를 함유하는 것이 바람직하며, 이때, 0.01 중량부 미만으로 함유량이 지나치게 적은 경우에는, 폴리락트산계 수지 입자를 충분히 발포시킬 수 없고, 4 중량부를 초과하면 더 이상의 발포핵제의 기능을 기대할 수 없으며, 얻어진 발포 입자의 몰드 내 성형시의 팽창성이나 융착성이 불충분해질 우려가 있다.The foaming nucleating agent is preferably contained in an amount of 0.01 to 4 parts by weight based on 100 parts by weight of the polylactic acid-based polymer composition. At this time, when the content is too small, less than 0.01 parts by weight, the polylactic acid-based resin particles can be sufficiently foamed. If it exceeds 4 parts by weight, no further function of the foaming nucleating agent can be expected, and there is a concern that the expandability and adhesion properties of the obtained expanded particles during molding in the mold may become insufficient.
또한, 제1압출기 상에서는 상기한 폴리락트산계 수지 입자 및 발포핵제와 함께 발포제를 압입하는데, 그 발포제의 함유량은 1 내지 30 중량부, 바람직하게는 3 내지 20 중량부이다. 이때, 발포제로서는 프로판, 이소부탄, n-부탄 및 시클로부탄으로 이루어진 군에서 선택된 단독 또는 그 혼합물; 이소펜탄, n-펜탄 및 시클로펜탄으로 이루어진 군에서 선택된 단독 또는 그 혼합물; 이소헥산, n-헥산, 시클로헥산, 트리클로로플루오로메탄, 디클로로디플루오로메탄, 클로로플루오로메탄, 트리플루오로메탄, 1,1,1,2-테트라플루오로에탄, 1-클로로-1,1-디플루오로에탄, 1,1-디플루오로에탄, 1-클로로-1,2,2,2-테트라플루오로에탄, 질소, 이산화탄소, 아르곤, 공기 등의 물리 발포제를 들 수 있는데, 그 중에서도 오존층의 파괴가 없고 또 저렴한 물리 발포제가 바람직하고, 구체적으로는, 질소, 공기, 이산화탄소가 바람직하다. 또한, 발포제의 사용량에 대하여, 보다 작은 외관밀도의 발포입자가 얻어진다는 점에서 이산화탄소가 바람직하다. 또한, 이산화탄소와 이소부탄과 같이, 2 종 이상의 발포제를 조합하여 사용할 수도 있다.Further, on the first extruder, a foaming agent is press-injected together with the polylactic acid-based resin particles and a foaming nucleating agent, and the content of the foaming agent is 1 to 30 parts by weight, preferably 3 to 20 parts by weight. At this time, the foaming agent is selected from the group consisting of propane, isobutane, n-butane and cyclobutane alone or a mixture thereof; Isopentane, n-pentane and cyclopentane alone or a mixture selected from the group consisting of; Isohexane, n-hexane, cyclohexane, trichlorofluoromethane, dichlorodifluoromethane, chlorofluoromethane, trifluoromethane, 1,1,1,2-tetrafluoroethane, 1-chloro-1 , 1-difluoroethane, 1,1-difluoroethane, 1-chloro-1,2,2,2-tetrafluoroethane, nitrogen, carbon dioxide, argon, and physical blowing agents such as air. Among them, physical foaming agents that do not destroy the ozone layer and are inexpensive are preferable, and specifically, nitrogen, air, and carbon dioxide are preferable. Also, carbon dioxide is preferable in that expanded particles having a smaller apparent density can be obtained relative to the amount of the foaming agent used. Also, two or more blowing agents such as carbon dioxide and isobutane may be used in combination.
(4) 무기계 항바이러스제(4) Inorganic antiviral agent
본 발명의 무기계 항바이러스제는 은나노입자복합체, 은이온함유나노복합체, 구리1가 화합물, 산화아연 나노입자 및 페라이트 나노입자로 이루어진 군에서 선택된 단독 또는 2종이상의 혼합형태를 사용하는 것이다. The inorganic antiviral agent of the present invention is to use one or a mixture of two or more selected from the group consisting of silver nanoparticle complexes, silver ion-containing nanocomposites, copper monovalent compounds, zinc oxide nanoparticles and ferrite nanoparticles.
상기 무기계 항바이러스제 중 은나노입자의 경우, 박테리아, 바이러스에 대한 활성이 알려져 꾸준한 연구가 진행되고 있으나, 그 입자크기에 따라 활성을 나타내는 연구결과, 은나노입자의 5 내지 50㎚의 매우 작은 입자크기의 경우는 피부침투의 문제 및 독성 유발의 문제점이 지적되면서 은나노입자의 인체 유해성이 꾸준히 대두되고 있다[비특허문헌2]. In the case of silver nanoparticles among the inorganic antiviral agents, activity against bacteria and viruses is known and continuous research is being conducted. However, as a result of research showing activity depending on the particle size, silver nanoparticles with a very small particle size of 5 to 50 nm As problems of skin penetration and toxicity were pointed out, the harmfulness of silver nanoparticles to the human body has been steadily increasing. It is emerging [Non-Patent Document 2].
따라서, 본 발명의 무기계 항바이러스제는 무기계 항바이러스 단독 또는 2종 이상 응집된 복합입자가 100 내지 900㎚의 입자크기로 분산되어 포함되는 것이다. 상기 무기계 항바이러스제의 입자크기 제어로 피부침투를 방지함과 동시에 외부 바이러스와 접촉에 의해 우수한 항바이러스성을 구현할 수 있다. Therefore, the inorganic antiviral agent of the present invention is one in which inorganic antiviral agents alone or two or more types of agglomerated composite particles are dispersed and included in a particle size of 100 to 900 nm. By controlling the particle size of the inorganic antiviral agent, skin penetration can be prevented, and excellent antiviral properties can be realized by contact with external viruses.
또 다른 방안으로서, 본 발명은 항균금속성분을 담지하는 일례로서, 미세한 기공을 가진 3차원의 골격구조의 담지체 형태의 복합체를 사용한다. 바람직한 일례로, 은나노입자 또는 은이온함유 나노입자를 실리카(SiO2), 알루미나, 제올라이트, 세리사이트, 모데나이트, 크리스토발라이트 및 벤토나이트를 포함하는 광물, 탈크, 셀룰로오스 유도체, 파라핀 및 왁스로 이루어진 군에서 선택된 어느 하나에 흡착 또는 결합된 복합체 형태이며, 은나노입자 또는 은이온함유 나노입자를 담지할 수 있다면, 공지의 담지체를 더 포함할 수 있다. As another method, the present invention uses a composite in the form of a carrier having a three-dimensional skeletal structure with fine pores as an example of supporting the antimicrobial metal component. As a preferred example, silver nanoparticles or nanoparticles containing silver ions are selected from the group consisting of silica (SiO 2 ), alumina, zeolite, sericite, mordenite, minerals including cristobalite and bentonite, talc, cellulose derivatives, paraffin and wax. Adsorption to either or If it is in the form of a combined complex and can support silver nanoparticles or silver ion-containing nanoparticles, a known carrier may be further included.
이때, 담지체 형태의 복합체의 입자크기가 100 내지 900㎚의 입자크기로 충족된다면, 담지체에 담지되는 은나노입자 또는 은이온함유 나노입자의 입자크기는 1 내지 100㎚ 입자크기도 포함할 수 있다. At this time, if the particle size of the composite in the form of a support is satisfied with a particle size of 100 to 900 nm, the particle size of the silver nanoparticles or silver ion-containing nanoparticles supported on the support may also include a particle size of 1 to 100 nm. .
본 발명의 은이온함유 나노복합체로서 실시예에서는 은이온과 아연이온이 결합된 실리카 입자를 사용하여 설명하고 있으나, 이에 한정되지 아니할 것이다. As the silver ion-containing nanocomposite of the present invention, the examples are described using silica particles in which silver ions and zinc ions are combined, but it will not be limited thereto.
본 발명에서 사용되는 다른 무기계 항바이러스제로서, 항바이러스성 구현에 구리1가 화합물이 효과적이며, CuI, CuCl, Cu2S, Cu2O 등이 바람직하다.As another inorganic antiviral agent used in the present invention, copper monovalent compounds are effective in implementing antiviral properties, and CuI, CuCl, Cu 2 S, Cu 2 O back desirable.
본 발명의 실시예에서는 구리1가 화합물로서 CuI를 사용하고 있으나, 구리1가 양이온과 이온결합 가능한 음이온과 결합된 이온화합물이라면 특별히 한정되지 아니할 것이다. Although CuI is used as a copper monovalent compound in the embodiment of the present invention, it will not be particularly limited as long as it is an ionic compound bonded to an anion capable of ionic bonding with a copper monovalent cation.
또 다른 무기계 항바이러스제로는 산화아연 나노입자는 항균력이 강하고 안정성이 높아 인체 무해한 금속산화물 입자이다. As another inorganic antiviral agent, zinc oxide nanoparticles are metal oxide particles that are harmless to the human body due to their strong antibacterial power and high stability.
본 발명의 실시예에서 상기 산화아연 나노입자 및 페라이트 나노입자가 혼합된 형태일 때, 더욱 바람직한 항바이러스 성능을 확인할 수 있다. 이때, 상기 페라이트 나노입자로는 알파-페라이트(α-Fe2O3), 아연 페라이트(ZnFe2O4), 망간 페라이트(MnFe2O4), 니켈 페라이트(NiFe2O4) 및 철 하이드로옥사이드(α-FeOOH)로 이루어진 군에서 선택된 하나 이상이 배합된 것이다. In the embodiment of the present invention, when the zinc oxide nanoparticles and the ferrite nanoparticles are in a mixed form, more preferable antiviral performance can be confirmed. In this case, the ferrite nanoparticles include alpha-ferrite (α-Fe 2 O 3 ), zinc ferrite (ZnFe 2 O 4 ), manganese ferrite (MnFe 2 O 4 ), nickel ferrite (NiFe 2 O 4 ) and iron hydroxide. At least one selected from the group consisting of (α-FeOOH) is blended.
구체적으로, 실시예에서 사용된 산화아연(ZnO) 나노입자와 페라이트 나노입자의 혼합형태의 무기계 항바이러스제에 있어서, 상기 페라이트 나노입자는 알파-페라이트(α-Fe2O3), 아연 페라이트(ZnFe2O4) 및 망간 페라이트(MnFe2O4)가 배합된 형태이다. 다만, 2종 이상 응집된 복합입자는 입자크기 요건을 충족시키는 범위 이내에서 다양하게 조합될 수 있을 것이다. Specifically, in the inorganic antiviral agent in the form of a mixture of zinc oxide (ZnO) nanoparticles and ferrite nanoparticles used in Examples, the ferrite nanoparticles are alpha-ferrite (α-Fe 2 O 3 ), zinc ferrite (ZnFe 2 O 4 ) and manganese ferrite (MnFe 2 O 4 ) are mixed. However, two or more types of agglomerated composite particles may be variously combined within a range that satisfies the particle size requirements.
본 발명의 생분해 시트에 함유된 무기계 항바이러스제는 폴리락트산계 중합체로 이루어진 생분해성 고분자 수지; 또는 생분해성 수지 및 석유화학 수지로 이루어진 복합분해성 고분자 수지; 100 중량부에 대하여, 무기계 항바이러스제 0.1 내지 60 중량부, 더욱 바람직하게는 1 내지 30중량부가 포함된 것이다. 이때, 무기계 항바이러스제 0.1 중량부 미만으로 함유되면, 항바이러스성능 발현이 미흡하고, 무기계 항바이러스제 60 중량부를 초과하면, 효과대비 경제성이 떨어질 뿐 아니라, 무기계 항바이러스제 과량 사용으로 인하여 고분자 물성과 가공특성이 현저히 감소하는 문제점이 있어 바람직하지 않다.The inorganic antiviral agent contained in the biodegradable sheet of the present invention is a biodegradable polymer resin made of a polylactic acid polymer; Or a composite degradable polymer resin made of a biodegradable resin and a petrochemical resin; Based on 100 parts by weight, 0.1 to 60 parts by weight of an inorganic antiviral agent, more preferably 1 to 30 parts by weight is included. At this time, if less than 0.1 parts by weight of the inorganic antiviral agent is contained, the expression of antiviral performance is insufficient, and if the inorganic antiviral agent exceeds 60 parts by weight, the economic efficiency compared to the effect is reduced. This is undesirable because there is a problem of a significant decrease.
이상을 통해, 본 발명은 무기계 항바이러스제 단독 또는 2종 이상 응집된 복합입자의 입자크기가 100 내지 900㎚로 분산되도록 하여 상기 무기계 항바이러스제의 입자크기 제어로 피부침투를 방지함과 동시에 상기 무기계 항바이러스제가 바이러스와 접촉에 의해 인체유입 전에 바이러스를 불활성화시키거나, 또는 감염되더라도 RNA가 복제하는 것을 저해함으로써, 우수한 항바이러스성능을 가지는 생분해성 계란 난좌를 제공할 수 있다. Through the above, the present invention prevents skin penetration by controlling the particle size of the inorganic antiviral agent by dispersing the particle size of the inorganic antiviral agent alone or the composite particles in which two or more types are aggregated to be dispersed at 100 to 900 nm, and at the same time preventing the inorganic antiviral agent from penetrating into the skin. A biodegradable egg locus having excellent antiviral performance can be provided by inactivating the virus before entering the human body by contact with the virus or by inhibiting RNA replication even after being infected.
또한, 일단 인체를 감염시켰다 하더라도 RNA 형태의 바이러스의 경우, 무기계 항바이러스제의 나노입자가 RNA에 흡착되어 복제를 방해함으로써, 항바이러스성능을 구현할 수 있다.In addition, even if the human body is infected once, in the case of a virus in the form of RNA, nanoparticles of an inorganic antiviral agent are adsorbed to RNA and interfere with replication, thereby realizing antiviral performance.
(5) 비발포 시트(5) non-foam sheet
본 발명의 생분해 시트 중 PLA계 중합체로 이루어진 압출발포시트의 적어도 일면에, 폴리락트산계 중합체로 이루어진 생분해성 고분자 수지 또는 석유화학 수지로 이루어진 비발포 시트가 라미네이션된, 다층시트가 채용될 수 있다. Among the biodegradable sheets of the present invention, a multilayer sheet in which a non-foaming sheet made of a biodegradable polymer resin or a petrochemical resin is laminated on at least one side of an extruded foam sheet made of a PLA-based polymer may be employed.
더욱 바람직하게는, 폴리락트산계 중합체로 이루어진 생분해성 고분자 수지 100 중량부에 대하여, 사슬연장제 0.05 내지 4 중량부, 탈크, 실리카 및 스테아린산 칼슘으로 이루어진 군에서 선택되는 어느 하나의 발포핵제 0.01 내지 4 중량부 및 물리 발포제 1 내지 30 중량부가 혼합되어 압축 발포된 압출발포시트의 적어도 일면에, 폴리락트산계 중합체로 이루어진 생분해성 고분자 수지 또는 석유화학 수지에 무기계 항바이러스제가 함유된 무기계 항바이러스제가 함유된 비발포 시트가 라미네이션된 것이다. More preferably, based on 100 parts by weight of a biodegradable polymer resin made of a polylactic acid polymer, 0.05 to 4 parts by weight of a chain extender, 0.01 to 4 foaming nucleating agents selected from the group consisting of talc, silica and calcium stearate On at least one side of the extruded foam sheet in which parts by weight and 1 to 30 parts by weight of a physical foaming agent are mixed and compressed and foamed, a biodegradable polymer resin made of a polylactic acid polymer or a petrochemical resin containing an inorganic antiviral agent containing an inorganic antiviral agent is contained. A non-foaming sheet is laminated.
상기 압출발포시트의 적어도 일면에, 폴리락트산계 중합체로 이루어진 생분해성 고분자 수지 또는 석유화학 수지에 무기계 항바이러스제가 함유된 비발포 시트가 라미네이션되어 접합됨으로써, 생분해성 시트에 강도를 제공하며, 사용 용도에 따라 두께 및 강도 규격이 변경될 수 있다. On at least one side of the extruded foam sheet, a non-foam sheet containing an inorganic antiviral agent is laminated and bonded to a biodegradable polymer resin or petrochemical resin made of a polylactic acid-based polymer, thereby providing strength to the biodegradable sheet. Depending on the thickness and strength specifications can be changed.
이때, 비발포 시트는 50 내지 500㎛ 두께를 가지는 것이 바람직하며, 상기 비발포 시트의 두께가 50㎛ 미만이면, 압출 라미네이션 공정에서 두께가 불균일하게 되는 문제가 있고, 500㎛를 초과하면 발포층의 셀 구조가 불안정하게 변화되어 바람직하지 않다. At this time, the non-foam sheet preferably has a thickness of 50 to 500 μm. If the thickness of the non-foam sheet is less than 50 μm, there is a problem that the thickness becomes non-uniform in the extrusion lamination process, and if it exceeds 500 μm, the thickness of the foam layer This is undesirable because the cell structure is unstablely changed.
(6) 무기계 항바이러스 활성층(6) Inorganic antiviral active layer
또한, 본 발명의 항바이러스성능을 가지는 생분해성 계란 난좌는 밑판 또는 상기 밑판 및 뚜껑이 투명 폴리락트산(Polylactic acid, PLA) 비발포 시트; 불투명 PLA 비발포 시트; PLA계 중합체로 이루어진 압출발포시트; 및 상기 압출발포시트의 적어도 일면에, 폴리락트산계 중합체로 이루어진 생분해성 고분자 수지 또는 석유화학 수지로 이루어진 비발포 시트가 라미네이션된, 다층시트;의 적어도 일면에, In addition, the biodegradable egg nest having antiviral performance of the present invention includes a bottom plate or a transparent polylactic acid (PLA) non-foaming sheet; Opaque PLA non-foaming sheet; An extruded foam sheet made of a PLA-based polymer; And on at least one side of the extruded foam sheet, a multi-layer sheet in which a non-foam sheet made of a biodegradable polymer resin or a petrochemical resin made of a polylactic acid polymer is laminated on at least one side of the extruded foam sheet.
무기계 항바이러스제 및 분산제에서 선택된 단독 또는 혼합형태를 포함한 활성층 용액을 도포하여 무기계 항바이러스 활성층이 형성된 형태를 제공할 수 있다. An inorganic antiviral active layer may be formed by applying an active layer solution including a single or mixed form selected from inorganic antiviral agents and dispersants.
더욱 바람직하게는 압출발포시트의 적어도 일면 상에 생분해성 비발포 시트(50)가 라미네이션된 다층시트에 무기계 항바이러스 활성층이 형성됨에 따라, 강도뿐만 아니라 가스 배리어성을 제공할 수 있으며, 발포 기재시트(11)의 발포셀 내부에 바이러스 침투를 근본적으로 방지할 수 있다. More preferably, as the inorganic antiviral active layer is formed on the multilayer sheet in which the biodegradable non-foaming sheet 50 is laminated on at least one surface of the extruded foam sheet, it is possible to provide strength as well as gas barrier properties, and the foam base sheet Virus penetration into the foam cell of (11) can be fundamentally prevented.
상기에서, 무기계 항바이러스제는 앞서 설명한 바와 동일하다. In the above, the inorganic antiviral agent is the same as described above.
또한, 분산제는 통상 식품첨가제로 공지된 인체안정성 물질에서 선택되며 생분해성 원료수지, 특히 PLA와 혼화성이 있는 성분에서 채용된다. 바람직하게는 폴리에틸렌글리콜(PEG), 구연산(citric acid), 젖산(lactic acid) 및 폴리락트산(PLA)으로 이루어진 군에서 선택되는 어느 하나 이상을 사용한다. 상기 폴리락트산(PLA)은 하도층 용액에 분산매체 또는 비히클로서 함유될 수 있다. In addition, the dispersant is usually selected from human body stability materials known as food additives and is employed from components compatible with biodegradable raw resins, especially PLA. Preferably, at least one selected from the group consisting of polyethylene glycol (PEG), citric acid, lactic acid and polylactic acid (PLA) use. The polylactic acid (PLA) may be contained as a dispersion medium or vehicle in the undercoat solution.
상기 무기계 항바이러스제 및 분산제에서 선택된 단독 또는 혼합형태를 포함한 활성층 용액은 PLA와 혼화성이 있는 성분에서 분산제가 채용되므로, 상기 분산제를 용해시킬 수 있는 동시에 휘발성이 우수한 용제군에서 택일하여 사용한다. 바람직하게는 테트라하이드로퓨란(THF), 클로로포름을 포함하는 염소화 유기용매, 아세토니트릴, 다이옥산 및 디메틸포름아마이드(DMF), 디메틸아세트아마이드(DMAc), 에탄올, 메탄올, 노말-프로필알콜 또는 이소-프로필알콜에서 선택되는 알코올류, 클로로포름을 포함하는 염소화 유기용매, 벤젠, 톨루엔, 아세토니트릴 및 다이옥산으로 이루어진 용매군에서 선택되며 하나 이상에 분산된 것이다. Since the active layer solution including the single or mixed form selected from the inorganic antiviral agent and dispersant uses a dispersant from a component miscible with PLA, a solvent group capable of dissolving the dispersant and having excellent volatility is used as an alternative. Preferably tetrahydrofuran (THF), chlorinated organic solvents including chloroform, acetonitrile, dioxane and dimethylformamide (DMF), dimethylacetamide (DMAc), ethanol, methanol, normal-propyl alcohol or iso-propyl alcohol Alcohols selected from It is selected from the group consisting of chlorinated organic solvents including chloroform, benzene, toluene, acetonitrile and dioxane, and is dispersed in one or more.
이때, 무기계 항바이러스 활성층은 활성층 용액을 이용한 코팅방식 또는 미스트 노즐을 이용한 스프레이방식으로 형성될 수 있으며, 상기에서 코팅방식은 메이어바, 그라비어바를 사용할 수 있으며 공지방법에서 채용될 수 있다. 일면에 액상을 도포하는 공지의 방법이라면 적용 가능할 것이다. At this time, the inorganic antiviral active layer may be formed by a coating method using an active layer solution or a spray method using a mist nozzle, and the coating method may use a Mayer bar or a gravure bar, and may be employed in a known method. Any known method of applying a liquid phase to one surface will be applicable.
이때, 무기계 항바이러스제가 0.01 내지 5g/㎡로 분산되도록 한 것이 바람직하며, 0.01g/㎡ 이하로 분산되면 무기계 항바이러스제 사이의 간격이 바이러스 크기에 비하여 넓어져 항바이러스성능 발현에 미흡하게 되며, 5g/㎡를 초과하여 분산하면 경제성이 현저히 감소한다.At this time, it is preferable that the inorganic antiviral agent is dispersed at 0.01 to 5 g / m 2, and when the dispersion is less than 0.01 g / m 2, the interval between the inorganic antiviral agents is widened compared to the size of the virus, and the antiviral performance is insufficient. Dispersion exceeding / ㎡ significantly reduces the economic feasibility.
이상 본 발명의 바이러스성능을 가지는 생분해성 계란 난좌는 필라인 코로나바이러스(fCoV), 인플루엔자 A 바이러스(FluA), 조류 인플루엔자(AI) 바이러스 및 돼지 바이러스로 이루어진 군에서 선택되는 어느 하나 이상에 항바이러스성이 구현된다.The biodegradable egg locus having virus performance of the present invention has antiviral activity against at least one selected from the group consisting of filine coronavirus (fCoV), influenza A virus (FluA), avian influenza (AI) virus, and swine virus. this is implemented
나아가, 본 발명은 유기용제 100 중량부에 대하여, 무기계 항바이러스제 0.1 내지 20 중량부 및 폴리에틸렌글리콜(PEG), 구연산, 젖산 및 폴리락트산(PLA)으로 이루어진 군에서 선택된 단독 또는 혼합형태의 분산제 0.1 내지 20 중량부가 함유된 항바이러스성능을 가지는 도포 조성물을 제공한다. Furthermore, the present invention relates to 100 parts by weight of an organic solvent, 0.1 to 20 parts by weight of an inorganic antiviral agent and 0.1 to 20 parts by weight of a dispersant selected from the group consisting of polyethylene glycol (PEG), citric acid, lactic acid and polylactic acid (PLA), alone or in a mixed form. Provides a coating composition having antiviral performance containing 20 parts by weight.
상기 무기계 항바이러스제는 앞서 설명한 바와 동일한 은나노입자복합체, 은이온함유나노복합체, 구리1가 화합물, 산화아연 나노입자 및 페라이트 나노입자로 이루어진 군에서 선택된 단독 또는 2종이상의 혼합형태를 사용하는 것이다. The inorganic antiviral agent is used alone or in a mixture of two or more selected from the group consisting of the same silver nanoparticle complex, silver ion-containing nanocomposite, copper monovalent compound, zinc oxide nanoparticle and ferrite nanoparticle as described above.
상기에서 은나노입자복합체 또는 은이온함유나노복합체가 실리카(SiO2), 알루미나, 제올라이트, 세리사이트, 모데나이트, 크리스토발라이트 및 벤토나이트를 포함하는 광물, 탈크, 셀룰로오스 유도체, 파라핀 및 왁스로 이루어진 군에서 선택된 어느 하나에 은나노입자 또는 은이온함유 나노입자가 흡착 또는 결합된 것이라면 사용될 수 있다. In the above, the silver nanoparticle composite or silver ion-containing nanocomposite is any one selected from the group consisting of silica (SiO 2 ), alumina, zeolite, sericite, mordenite, cristobalite, and bentonite, minerals including, talc, cellulose derivatives, paraffin, and wax. Any silver nanoparticles or silver ion-containing nanoparticles adsorbed or bound to one may be used.
또한, 상기 페라이트 나노입자가 알파-페라이트(α-Fe2O3), 아연 페라이트(ZnFe2O4), 망간 페라이트(MnFe2O4), 니켈 페라이트(NiFe2O4) 및 철 하이드로옥사이드(α-FeOOH)로 이루어진 군에서 선택된 하나 이상이 배합된 것이다. In addition, the ferrite nanoparticles are alpha-ferrite (α-Fe 2 O 3 ), zinc ferrite (ZnFe 2 O 4 ), manganese ferrite (MnFe 2 O 4 ), nickel ferrite (NiFe 2 O 4 ) and iron hydroxide ( At least one selected from the group consisting of α-FeOOH) is blended.
상기 유기용제는 무기계 항바이러스제 및 분산제를 용해시킬 수 있는 동시에 휘발성이 우수한 용매군에서 택일하여 사용할 수 있다. The organic solvent can dissolve the inorganic antiviral agent and the dispersing agent and can be used as an alternative to a solvent group having excellent volatility.
바람직하게는 테트라하이드로퓨란(THF), 클로로포름을 포함하는 염소화 유기용매, 아세토니트릴, 다이옥산 및 디메틸포름아마이드(DMF), 디메틸아세트아마이드(DMAc), 에탄올, 메탄올, 노말-프로필알콜 또는 이소-프로필알콜에서 선택되는 알코올류, 클로로포름을 포함하는 염소화 유기용매, 벤젠, 톨루엔, 아세토니트릴 및 다이옥산으로 이루어진 군에서 어느 하나 이상을 사용하는 것이다. Preferably tetrahydrofuran (THF), chlorinated organic solvents including chloroform, acetonitrile, dioxane and dimethylformamide (DMF), dimethylacetamide (DMAc), ethanol, methanol, normal-propyl alcohol or iso-propyl alcohol Alcohols selected from At least one from the group consisting of chlorinated organic solvents including chloroform, benzene, toluene, acetonitrile and dioxane is used.
본 발명의 실시예에서는 1,4-다이옥산 및 클로로포름을 사용하여 설명하고 있으나 이에 한정되지는 아니할 것이다.In the embodiments of the present invention, 1,4-dioxane and chloroform have been used, but will not be limited thereto.
이하, 실시예를 통하여 본 발명을 보다 상세히 설명하고자 한다. Hereinafter, the present invention will be described in more detail through examples.
본 실시예는 본 발명을 보다 구체적으로 설명하기 위한 것이며, 본 발명의 범위가 이들 실시예에 한정되는 것은 아니다. These examples are intended to explain the present invention in more detail, and the scope of the present invention is not limited to these examples.
<실시예 1> <Example 1>
PLA 수지(Total Corbion사의 Lumini L175) 100 중량부에 대하여, ZnO 나노입자 1 중량부를 혼합하고 텀블링 믹서와 같은 일반 혼합기를 이용하여 잘 혼합한 다음, 내경 65mm의 이축압출기를 이용하여 균일한 조성의 펠렛을 제조하였다. 이때, 호퍼 입구에서 압출 다이 방향으로 260/220/230/230/180/150℃의 온도 프로파일을 설정하여 시트를 압출하였다. 상기 펠렛을 내경 90mm의 제1압출기로 원료를 투입하여 내경 90mm의 제1압출기와 내경 120mm의 제2압출기가 접속된 탠덤 형식의 압출기를 이용하여 압출 비발포시트를 제조하였다. Mix 1 part by weight of ZnO nanoparticles with respect to 100 parts by weight of PLA resin (Total Corbion's Lumini L175), mix well using a general mixer such as a tumbling mixer, and then use a twin-screw extruder with an inner diameter of 65mm to pellet a uniform composition was manufactured. At this time, the sheet was extruded by setting a temperature profile of 260/220/230/230/180/150° C. in the direction of the extrusion die at the hopper inlet. An extruded non-foam sheet was prepared by introducing the pellets into a first extruder having an inner diameter of 90 mm and using a tandem extruder in which a first extruder having an inner diameter of 90 mm and a second extruder having an inner diameter of 120 mm are connected.
상기 폴리락트산 수지 입자를 제1압출기에 공급하여 가열 용융 혼련한 후, 제1압출기 내로 압입하여 체류시간을 10분간 유지하였다. 이때, 가열 용융 온도는 수지 온도를 기준으로 170 내지 230℃로 유지하였다. 그 다음, 제1압출기와 접속된 제2압출기 내에서 상기 용융 혼합 반응물의 온도를 약간 감소시켜 수지 온도가 150℃로 되도록 하였다. The polylactic acid resin particles were supplied to the first extruder, melted and kneaded by heating, and then pushed into the first extruder, where the residence time was maintained for 10 minutes. At this time, the heating and melting temperature was maintained at 170 to 230 ° C. based on the resin temperature. Then, in a second extruder connected to the first extruder, the temperature of the molten mixed reactants was slightly decreased to bring the resin temperature to 150°C.
이후, 직경 110mm, 슬릿 간격 0.5mm의 원통상 세극을 갖는 환상 다이에서 압출 방향으로 토출하여 두께 300㎛의 ZnO가 혼입된 PLA 생분해성 시트("nZnO"라 함)를 제조하였다.Thereafter, a PLA biodegradable sheet mixed with ZnO (referred to as "nZnO") having a thickness of 300 μm was prepared by discharging in an extrusion direction from an annular die having cylindrical slits with a diameter of 110 mm and a slit interval of 0.5 mm.
상기 제조된 PLA 생분해성 시트를 이용하여, 계란이 수용되도록 오목한 형상의 계란 난좌홈이 3개 배열된 밑판 및 상기 밑판의 계란 난좌홈 전체를 덮는 분리형 뚜껑으로 사출 성형하여 계란 난좌를 제작하였다. Using the prepared PLA biodegradable sheet, an egg seat was manufactured by injection molding with a bottom plate in which three concave egg seat grooves are arranged to accommodate eggs and a detachable lid covering the entire egg seat groove of the bottom plate.
<실시예 2> <Example 2>
PLA 수지(Total Corbion사의 Lumini L175) 100 중량부에 대하여, ZnO 나노입자 1 중량부 및 CuI 1 중량부를 혼합한 것을 제외하고는, 상기 실시예 1과 동일하게 수행하여, ZnO/CuI가 혼입된 PLA 생분해성 시트("CuZn"라 함)를 제조하여 사출 성형한 것을 제외하고는, 상기 실시예 1과 동일하게 수행하여 계란 난좌를 제작하였다.PLA mixed with ZnO/CuI was carried out in the same manner as in Example 1, except that 1 part by weight of ZnO nanoparticles and 1 part by weight of CuI were mixed with 100 parts by weight of PLA resin (Total Corbion's Lumini L175). An egg nest was prepared in the same manner as in Example 1, except that a biodegradable sheet (referred to as “CuZn”) was prepared and injection molded.
<실시예 3> <Example 3>
PLA 수지(Total Corbion사의 Lumini L175) 100 중량부에 대하여, 은이온함유 나노복합체로서 은이온과 아연이온이 결합된 실리카 입자(AgNP) 1 중량부를 혼합한 것을 제외하고는, 상기 실시예 1과 동일하게 수행하여, 은이온함유 나노입자 함유 복합체가 혼입된 PLA 생분해성 시트("AgNP"라 함)를 제조하여 사출 성형한 것을 제외하고는, 상기 실시예 1과 동일하게 수행하여 계란 난좌를 제작하였다.With respect to 100 parts by weight of PLA resin (Total Corbion's Lumini L175), 1 part by weight of silica particles (AgNP) in which silver ions and zinc ions are combined as silver ion-containing nanocomposites are mixed. Same as Example 1 above. An egg nest was prepared in the same manner as in Example 1, except that a PLA biodegradable sheet (referred to as "AgNP") in which the silver ion-containing nanoparticle-containing composite was incorporated was prepared and injection molded. .
<실시예 4> <Example 4>
PLA 수지(Total Corbion사의 Lumini L175) 100 중량부에 대하여, CuI 1 중량부를 혼합한 것을 제외하고는, 상기 실시예 1과 동일하게 수행하여, CuI가 혼입된 PLA 생분해성 시트("CuI"라 함)를 제조하여 사출 성형한 것을 제외하고는, 상기 실시예 1과 동일하게 수행하여 계란 난좌를 제작하였다.With respect to 100 parts by weight of PLA resin (Total Corbion's Lumini L175), except that 1 part by weight of CuI was mixed, the same procedure as in Example 1 was carried out, CuI-incorporated PLA biodegradable sheet (referred to as "CuI") ) was prepared and an egg seat was prepared in the same manner as in Example 1, except that injection molding was performed.
<실시예 5> <Example 5>
PLA 수지(Total Corbion사의 Lumini L175) 100 중량부에 대하여, ZnO 나노입자 1 중량부, 은이온과 아연이온이 결합된 실리카 입자(AgNP) 1 중량부 및 CuI 1 중량부를 혼합한 것을 제외하고는, 상기 실시예 1과 동일하게 수행하여, ZnO/은이온함유나노복합체/CuI가 혼입된 PLA 생분해성 시트("nZnAgCu"라 함)를 제조하여 사출 성형한 것을 제외하고는, 상기 실시예 1과 동일하게 수행하여 계란 난좌를 제작하였다.Except for mixing 1 part by weight of ZnO nanoparticles, 1 part by weight of silver ion and zinc ion-bonded silica particles (AgNP) and 1 part by weight of CuI with respect to 100 parts by weight of PLA resin (Total Corbion's Lumini L175), Same as Example 1, except that a PLA biodegradable sheet (referred to as “nZnAgCu”) mixed with ZnO/silver ion-containing nanocomposite/CuI was prepared and injection molded. This was done to produce an egg ovary.
<실시예 6> <Example 6>
PLA 수지(Hisun사의 Revode 190) 100 중량부에 대하여, 사슬연장제로서 에폭시계 사슬연장제 1.0 중량부를 함유하고, 발포핵제로서 0.1∼5㎛ 크기의 탈크 1.8 중량부, 가소제(Acetyl tributyl citrate) 1.0 중량부 및 ZnO 나노입자 1 중량부를 혼합하고, 텀블링 믹서와 같은 일반 혼합기를 이용하여 잘 혼합한 다음, 내경 65mm의 이축압출기를 이용하여 균일한 조성의 펠렛을 제조한 후, 이 펠렛을 내경 90mm의 제1압출기로 원료를 투입하여 내경 90mm의 제1압출기와 내경 120mm의 제2압출기가 접속된 탠덤 형식의 압출기를 이용하여 압출발포시트를 제조하였다. Based on 100 parts by weight of PLA resin (Hisun's Revode 190), 1.0 parts by weight of an epoxy-based chain extender as a chain extender, 1.8 parts by weight of talc having a size of 0.1 to 5 μm as a foaming nucleating agent, and 1.0 parts by weight of a plasticizer (Acetyl tributyl citrate) After mixing parts by weight and 1 part by weight of ZnO nanoparticles, mixing well using a general mixer such as a tumbling mixer, and then using a twin-screw extruder with an inner diameter of 65 mm to prepare pellets of a uniform composition, the pellets have an inner diameter of 90 mm An extruded foam sheet was prepared by introducing raw materials into the first extruder and using a tandem type extruder in which a first extruder having an inner diameter of 90 mm and a second extruder having an inner diameter of 120 mm were connected.
상기 폴리락트산 수지 입자를 제1압출기에 공급하여 가열 용융 혼련한 후, 발포제로서 부탄 2.5 중량부를 제1압출기 내로 압입하여 체류시간을 10분으로 유지하였다. 이후, 별도의 티다이 압출기를 이용하여 ZnO가 혼입된 PLA 수지를 발포시트의 한 면에 압출하여 두께 300㎛의 라미네이션 코팅층을 형성하였다. The polylactic acid resin particles were supplied to the first extruder, melted and kneaded by heating, and then 2.5 parts by weight of butane as a foaming agent was press-injected into the first extruder to maintain a residence time of 10 minutes. Thereafter, the PLA resin mixed with ZnO was extruded on one side of the foam sheet using a separate T-die extruder to form a lamination coating layer having a thickness of 300 μm.
상기 시트를 제조하여 사출 성형하여, 계란이 수용되도록 오목한 형상의 계란 난좌홈이 3개 배열된 밑판 및 상기 밑판에 연결되면서 밑판의 계란 난좌홈 전체를 덮는 일체형 뚜껑으로 구성된 계란 난좌를 제작하였다. The sheet was manufactured and injection molded to produce an egg seat composed of a bottom plate in which three concave egg seat grooves are arranged to accommodate eggs and an integral lid connected to the base plate and covering the entire egg seat groove of the bottom plate.
<실시예 7><Example 7>
상기 실시예 4에서 PLA 대신에, PLA/PBAT/CaCO3(충전제)이 25/55/20중량%로 이루어진 원료수지로 제조된 PLA계 비발포 시트를 제조하여 사출 성형한 것을 제외하고는, 상기 실시예 6과 동일하게 수행하여 계란 난좌를 제작하였다. In Example 4, instead of PLA, PLA/PBAT/CaCO 3 (filler) was made of a raw material resin consisting of 25/55/20% by weight, except that a PLA-based non-foaming sheet was manufactured and injection molded. An egg nest was prepared in the same manner as in Example 6.
<실시예 8><Example 8>
상기 실시예 4에서 PLA 대신에, PBS/PBAT/TPS(변성전분)이 15/55/30중량%로 이루어진 원료수지로 제조된 PLA계 비발포 시트를 제조하여 사출 성형한 것을 제외하고는, 상기 실시예 6과 동일하게 수행하여 계란 난좌를 제작하였다.In Example 4, instead of PLA, PBS / PBAT / TPS (modified starch), except that a PLA-based non-foaming sheet made of a raw material resin consisting of 15/55/30% by weight was manufactured and injection molded, An egg nest was prepared in the same manner as in Example 6.
<실시예 9> <Example 9>
PLA 수지(Total Corbion사의 Lumini L175) 100 중량부에 대하여, ZnO 나노입자 1 중량부 및 페라이트 나노입자 0.01 중량부를 혼합되어, ZnO/페라이트가 혼입된 PLA 생분해성 시트("ZnOFe"라 함)를 제조한 것을 제외하고는, 상기 실시예 1과 동일하게 수행하여 계란 난좌를 제작하였다. 이때, 상기 페라이트 나노입자가 알파-페라이트(α-Fe2O3), 아연 페라이트(ZnFe2O4) 및 망간 페라이트(MnFe2O4)가 배합되었다. With respect to 100 parts by weight of PLA resin (Total Corbion's Lumini L175), 1 part by weight of ZnO nanoparticles and 0.01 part by weight of ferrite nanoparticles were mixed to prepare a PLA biodegradable sheet (referred to as "ZnOFe") incorporating ZnO/ferrite. Egg nests were prepared in the same manner as in Example 1, except for one exception. In this case, alpha-ferrite (α-Fe 2 O 3 ), zinc ferrite (ZnFe 2 O 4 ), and manganese ferrite (MnFe 2 O 4 ) were mixed with the ferrite nanoparticles.
<비교예 1><Comparative Example 1>
상기 실시에 1에서 사용된 PLA 수지(Total Corbion사의 Lumini L175)에 무기계 항바이러스제 혼합없이 수행한 것을 제외하고는, 상기 실시예 1과 동일하게 수행하였다. It was carried out in the same manner as in Example 1, except that the inorganic antiviral agent was not mixed with the PLA resin (Total Corbion's Lumini L175) used in Example 1.
<실험예 1> 시트의 모폴러지(morphology) 평가<Experimental Example 1> Sheet morphology evaluation
상기 실시예 1 내지 실시예 5에서 제조된 무기계 항바이러제를 함유한 두께 300㎛의 PLA 생분해성 시트에 대하여, 전자현미경(Bruker사 제)을 이용하여 시트 단면을 촬영하였다. For the PLA biodegradable sheet having a thickness of 300 μm containing the inorganic antiviral agent prepared in Examples 1 to 5, cross-sections of the sheet were photographed using an electron microscope (manufactured by Bruker).
도 5 내지 도 9에는 각 실시예에서 제조된 PLA 생분해성 시트의 단면 사진을 제시하였으며, 전체적으로 무기계 항바이러제의 양호한 분산과 개별 입자 또는 2종 이상 응집된 복합입자가 100 내지 300㎚ 크기로 분산된 결과를 확인하였다. 5 to 9 show cross-sectional photographs of the PLA biodegradable sheets prepared in each example, and overall good dispersion of the inorganic antiviral agent and individual particles or two or more aggregated composite particles are dispersed in a size of 100 to 300 nm. result was confirmed.
특히, 실시예 3의 은이온함유나노복합체가 혼입된 PLA 생분해성 시트는 개별 입자 또는 2종 이상 응집된 복합입자의 50%이상이 150 내지 200㎚인 것으로 확인되었다. In particular, in the PLA biodegradable sheet incorporating the silver ion-containing nanocomposite of Example 3, it was confirmed that 50% or more of individual particles or composite particles aggregated of two or more kinds were 150 to 200 nm.
<실험예 2> 항바이러스성능 평가<Experimental Example 2> Evaluation of antiviral performance
상기 실시예 1 내지 실시예 9에서 제조된 무기계 항바이러제를 함유한 PLA 생분해성 시트에 대하여, 인플루엔자 바이러스(FluA) 또는 필라인 코로나바이러스(fCoV)을 대상으로 항바이러스성능을 평가하였다[정부출연연구원 시험평가].For the PLA biodegradable sheets containing the inorganic antiviral agent prepared in Examples 1 to 9, the antiviral performance was evaluated against influenza virus (FluA) or filine coronavirus (fCoV) [government contribution Researcher test evaluation].
구체적으로, 상기 해당 바이러스 5㎕ 용액을 상기 시트(1㎝×1㎝) 표면에 2회 도포하고, 바이러스 회수를 위하여 350㎕ MEM을 첨가하고, 반응시간을 30분으로 설정하고 상온(23℃)에서 수행하였다. Specifically, 5 μl of the corresponding virus solution was applied twice to the surface of the sheet (1 cm × 1 cm), 350 μl of MEM was added for virus recovery, the reaction time was set to 30 minutes, and room temperature (23 ° C.) was performed in
평가기준은 해당 바이러스를 접종한 후 10분 및 2시간 후 바이러스 감소를 관찰하였으며, 하기 표 1에는 접종 후 2시간 이후 항바이러스성 효과의 바이러스 감소(Virus Reduction)를 로그(log)로 표시하였다. 이때, 수치가 높을수록 제거율이 높은 것을 의미한다. As for the evaluation criteria, virus reduction was observed 10 minutes and 2 hours after inoculation of the virus, and in Table 1 below, the virus reduction of the antiviral effect 2 hours after inoculation was expressed as log. At this time, the higher the number, the higher the removal rate.
Figure PCTKR2021008132-appb-I000001
Figure PCTKR2021008132-appb-I000001
상기 표 1의 결과로부터, 본 발명의 생분해성 시트에 함유된 무기계 항바이러스제 단독 또는 2종 이상 응집된 복합입자가 100 내지 900㎚의 입자크기로 분산되었으며, 실시예 1 내지 실시예 9에서 각각 은이온함유나노복합체, 구리1가 화합물, 산화아연 나노입자 및 페라이트 나노입자로 이루어진 군에서 선택된 단독 또는 2종이상의 혼합형태의 무기계 항바이러스제를 함유한 PLA 생분해성 시트 경우, 인플루엔자 바이러스(FluA) 또는 필라인 코로나바이러스(fCoV)에 대하여 비교예 1 대비 현저한 항바이러스성능을 보였다. From the results of Table 1, the inorganic antiviral agent contained in the biodegradable sheet of the present invention alone or two or more aggregated composite particles were dispersed in a particle size of 100 to 900 nm, and in Examples 1 to 9, silver In the case of a PLA biodegradable sheet containing an inorganic antiviral agent alone or in a mixture of two or more selected from the group consisting of ion-containing nanocomposites, copper monovalent compounds, zinc oxide nanoparticles and ferrite nanoparticles, influenza virus (FluA) or Fila It showed remarkable antiviral performance compared to Comparative Example 1 against human coronavirus (fCoV).
따라서, PLA 생분해성 시트를 이용한 계란 난좌는 무기계 항바이러스제 단독 또는 2종 이상 응집된 복합입자가 100 내지 900㎚의 입자크기로 분산됨으로써, 무기계 항바이러스제가 피부침투를 방지할 수 있을 정도의 입자크기를 충족하면서, 외부 바이러스와의 접촉에 의해 인체유입 전에 바이러스를 불활성화시키거나 또는 감염되더라도 RNA가 복제하는 것을 저해할 있어, 우수한 항바이러스성능을 구현할 수 있다. Therefore, egg yolks using a PLA biodegradable sheet are dispersed in a particle size of 100 to 900 nm in which inorganic antiviral agents alone or aggregated composite particles of two or more kinds are dispersed, and the particle size is sufficient to prevent skin penetration of inorganic antiviral agents. While meeting the above, excellent antiviral performance can be realized by inactivating the virus before entering the human body by contact with the external virus or inhibiting RNA replication even after being infected.
<실시예 10∼24> <Examples 10 to 24>
생분해성 원료수지로 제조된 생분해 기재시트 일면에, 항바이러스성능을 가지는 도포 조성물을 메이어바 코팅 또는 미스트 스프레이 방식으로 도포하여, 무기계 항바이러스 활성층을 형성하고 하기 표 2에 따라 제조된 시트를 사출 성형하여 계란 난좌를 제조하였다. An inorganic antiviral active layer was formed by applying a coating composition having antiviral performance to one side of a biodegradable base sheet made of biodegradable raw material resin by Mayer bar coating or mist spraying method, and the sheet prepared according to Table 2 below was injection molded. Thus, an egg yolk was prepared.
Figure PCTKR2021008132-appb-I000002
Figure PCTKR2021008132-appb-I000002
<실험예 3> 항바이러스성능 평가<Experimental Example 3> Evaluation of antiviral performance
상기 실시예 10 내지 24에서 제조된 항바이러스성 생분해 PLA 시트를 직경 1㎝ 원형으로 자른 그 표면에, 5㎕ 인플루엔자 A 바이러스(FluA), (Human, H3N2) 용액을 반복해서 첨가하고 세포주는 MDCK 셀을 이용하고 상온(23℃)에서 30분의 반응시간에 대하여, CPE/MTT 에세이법으로 바이러스 적정하여 항바이러스성능을 평가하였다.Antiviral biodegradable PLA prepared in Examples 10 to 24 above On the surface of the sheet cut into circles with a diameter of 1 cm, 5 μl of influenza A virus (FluA) and (Human, H3N2) solutions were repeatedly added, and a reaction time of 30 minutes at room temperature (23 ° C) was used for cell lines using MDCK cells. , virus titration was performed using the CPE/MTT assay method to evaluate antiviral performance.
또한, 항바이러스성 생분해 시트(1㎝×1㎝) 표면에 5㎕ 필라인 코로나바이러스(fCoV) 용액을 반복해서 적가하고 세포주는 CRFK 셀을 이용하고 상온(23℃)에서 30분의 반응시간에 대하여, CPE/MTT 에세이법으로 바이러스 적정하여 항바이러스성능을 평가하였다[정부출연연구원 시험평가].In addition, 5 μl of fill-in coronavirus (fCoV) solution was repeatedly dropwise added to the surface of an antiviral biodegradable sheet (1 cm × 1 cm), and the cell line was prepared using a CRFK cell and at room temperature (23 ° C) for a reaction time of 30 minutes. , virus titration was performed using the CPE/MTT assay method to evaluate antiviral performance [Government-funded research institute test evaluation].
그 결과를 표 3에 기재하였다. The results are shown in Table 3 .
Figure PCTKR2021008132-appb-I000003
Figure PCTKR2021008132-appb-I000003
상기 표 3의 결과로부터, 본 발명의 항바이러스성 생분해 시트는 무기계 항바이러스제 단독 또는 2종 이상 응집된 복합입자가 100 내지 900㎚의 입자크기로 분산되었으며, 인플루엔자 A 바이러스(FluA) 및 필라인 코로나바이러스(fCoV)에 대하여, 바이러스 접촉 30분 이내에 최고 99.999%의 바이러스 감소율을 보였다.From the results of Table 3, in the antiviral biodegradable sheet of the present invention, the inorganic antiviral agent alone or two or more aggregated composite particles were dispersed in a particle size of 100 to 900 nm, and influenza A virus (FluA) and filine corona For the virus (fCoV), it showed a virus reduction rate of up to 99.999% within 30 minutes of contact with the virus.
이상에서 본 발명은 기재된 구체예에 대해서만 상세히 설명되었지만 본 발명의 기술사상 범위 내에서 다양한 변형 및 수정이 가능함은 당업자에게 있어서 명백한 것이며, 이러한 변형 및 수정이 첨부된 특허청구범위에 속함은 당연한 것이다.Although the present invention has been described in detail only with respect to the specific embodiments described above, it is obvious to those skilled in the art that various changes and modifications are possible within the scope of the technical idea of the present invention, and it is natural that such changes and modifications fall within the scope of the appended claims.

Claims (18)

  1. 계란이 수용되도록 오목한 형상의 계란 난좌홈이 1개 이상 배열된 밑판 및 상기 밑판의 계란 난좌홈 전체를 덮는 분리형 뚜껑 또는 상기 밑판에 연결되면서 밑판의 계란 난좌홈 전체를 덮는 일체형 뚜껑으로 구성된 계란 난좌에 있어서, An egg seat composed of a bottom plate in which one or more concave egg seat grooves are arranged to accommodate eggs, a detachable lid covering the entire egg seat groove of the bottom plate, or an integral lid connected to the bottom plate and covering the entire egg seat groove of the bottom plate in
    상기 밑판 또는 상기 밑판 및 뚜껑이 The base plate or the base plate and the lid
    폴리락트산계 중합체로 이루어진 생분해성 고분자 수지; 또는 생분해성 수지 및 석유화학 수지로 이루어진 복합분해성 고분자 수지;에서 선택된 원료수지에, 무기계 항바이러스제 단독 또는 2종 이상 응집된 복합입자가 100 내지 900㎚의 입자크기로 분산되어 제조된 생분해 시트로 이루어진 항바이러스성능을 가지는 생분해성 계란 난좌.A biodegradable polymer resin made of a polylactic acid-based polymer; or a composite degradable polymer resin composed of a biodegradable resin and a petrochemical resin; composed of a biodegradable sheet prepared by dispersing an inorganic antiviral agent alone or a composite particle in which two or more aggregated composite particles are dispersed to a particle size of 100 to 900 nm in a raw material resin selected from A biodegradable egg ovary with antiviral properties.
  2. 제1항에 있어서, 상기 무기계 항바이러스제가 은나노입자복합체, 은이온함유나노복합체, 구리1가 화합물, 산화아연 나노입자 및 페라이트 나노입자로 이루어진 군에서 선택된 단독 또는 2종이상의 혼합형태인 것을 특징으로 하는 항바이러스성능을 가지는 생분해성 계란 난좌.The method of claim 1, wherein the inorganic antiviral agent is selected from the group consisting of silver nanoparticle complexes, silver ion-containing nanocomposites, copper monovalent compounds, zinc oxide nanoparticles and ferrite nanoparticles. A biodegradable egg ovary with antiviral properties.
  3. 제2항에 있어서, 상기 은나노입자복합체 또는 은이온함유나노복합체가 실리카(SiO2), 알루미나, 제올라이트, 세리사이트, 모데나이트, 크리스토발라이트 및 벤토나이트를 포함하는 광물, 탈크, 셀룰로오스 유도체, 파라핀 및 왁스로 이루어진 군에서 선택된 어느 하나에 은나노입자 또는 은이온함유 나노입자가 흡착 또는 결합된 것을 특징으로 하는 항바이러스성능을 가지는 생분해성 계란 난좌. The method of claim 2, wherein the silver nanoparticle composite or silver ion-containing nanocomposite is made of minerals including silica (SiO 2 ), alumina, zeolite, sericite, mordenite, cristobalite, and bentonite, talc, cellulose derivatives, paraffin, and wax. A biodegradable egg egg seat having antiviral performance, characterized in that silver nanoparticles or silver ion-containing nanoparticles are adsorbed or bound to any one selected from the group consisting of.
  4. 제2항에 있어서, 상기 페라이트 나노입자가 알파-페라이트(α-Fe2O3), 아연 페라이트(ZnFe2O4), 망간 페라이트(MnFe2O4), 니켈 페라이트(NiFe2O4) 및 철 하이드로옥사이드(α-FeOOH)로 이루어진 군에서 선택된 하나 이상이 배합된 것을 특징으로 하는 항바이러스성을 가지는 생분해성 시트. The method of claim 2, wherein the ferrite nanoparticles are alpha-ferrite (α-Fe 2 O 3 ), zinc ferrite (ZnFe 2 O 4 ), manganese ferrite (MnFe 2 O 4 ), nickel ferrite (NiFe 2 O 4 ), and A biodegradable sheet having antiviral properties, characterized in that at least one selected from the group consisting of iron hydroxide (α-FeOOH) is blended.
  5. 제1항에 있어서, 상기 생분해성 고분자 수지 또는 복합분해성 고분자 수지 100 중량부에 대하여, 무기계 항바이러스제 0.1 내지 60 중량부가 포함된 것을 특징으로 하는 항바이러스성능을 가지는 생분해성 계란 난좌.The biodegradable egg yolk seat having antiviral properties according to claim 1, wherein 0.1 to 60 parts by weight of an inorganic antiviral agent is included with respect to 100 parts by weight of the biodegradable polymer resin or composite degradable polymer resin.
  6. 제1항에 있어서, 상기 생분해성 수지가 폴리락트산(polylactic acid, PLA), 폴리하이드록시알카노에이트(polyhydroxyalkanoates, PHA), 폴리부틸렌아디페이트 테레프탈레이트(polybutylene adipate-co-terephthalate, PBAT), 폴리부틸렌숙시네이트-아디페이트(polybutylene succinate-co-adipate, PBSA), 폴리부틸렌숙시네이트-아디페이트-테레프탈레이트(polybutylene succinate adipate-co-terephthalate, PBSAT), 폴리부틸렌숙시네이트(polybutylene succinate, PBS), 폴리비닐알콜(polyvinyl alcohol, PVA), 폴리글리콜산(poly glycolic acid, PGA), 폴리락트산-글리콜산-공중합물(poly lactic-co-glycolic acid, PLGA) 및 폴리카프로락톤(polycaprolactone, PCL), 변성 전분수지 및 열가소성 전분(thermoplastic starch, TPS)으로 이루어진 군에서 선택되는 단독 또는 2종 이상의 혼합형태인 것을 특징으로 하는 항바이러스성능을 가지는 생분해성 계란 난좌.The method of claim 1, wherein the biodegradable resin is polylactic acid (PLA), polyhydroxyalkanoates (PHA), polybutylene adipate-co-terephthalate (PBAT), polybutylene succinate-co-adipate (PBSA), polybutylene succinate adipate-co-terephthalate (PBSAT), polybutylene succinate , PBS), polyvinyl alcohol (PVA), poly glycolic acid (PGA), poly lactic-co-glycolic acid (PLGA) and polycaprolactone , PCL), modified starch resin, and thermoplastic starch (thermoplastic starch, TPS).
  7. 제1항에 있어서, 상기 밑판 또는 상기 밑판 및 뚜껑이 The method of claim 1, wherein the base plate or the base plate and the lid
    투명 폴리락트산(Polylactic acid, PLA) 비발포 시트; transparent polylactic acid (PLA) non-foaming sheet;
    불투명 PLA 비발포 시트; Opaque PLA non-foaming sheet;
    PLA계 중합체로 이루어진 압출발포시트; 및 An extruded foam sheet made of a PLA-based polymer; and
    상기 압출발포시트의 적어도 일면에, 폴리락트산계 중합체로 이루어진 생분해성 고분자 수지 또는 석유화학 수지로 이루어진 비발포 시트가 라미네이션된, 다층시트;로 이루어진 군에서 선택된 어느 하나의 소재로 이루어지며, 상기 밑판 및 뚜껑이 동일 시트소재 또는 다른 시트소재로 조합된 것을 특징으로 하는 항바이러스성능을 가지는 생분해성 계란 난좌.It is made of any one material selected from the group consisting of a multilayer sheet in which a non-foaming sheet made of a biodegradable polymer resin or a petrochemical resin is laminated on at least one surface of the extruded foam sheet, and the bottom plate And a biodegradable egg yolk seat having antiviral performance, characterized in that the lid is combined with the same sheet material or another sheet material.
  8. 제7항에 있어서, 상기 다층시트에서 압출발포시트로 이루어진 밑판 내부면 또는 상기 밑판 외부면에 비발포 시트가 라미네이션된 것을 특징으로 하는 항바이러스성능을 가지는 생분해성 계란 난좌.[Claim 8] The biodegradable egg nest having antiviral properties according to claim 7, wherein a non-foaming sheet is laminated on the inner surface of the base plate made of extruded foam sheet or the outer surface of the base plate in the multi-layer sheet.
  9. 제7항에 있어서, 상기 비발포 시트가 생분해성 고분자 수지 또는 석유화학 수지 100 중량부에 대하여, 무기계 항바이러스제 0.1 내지 60 중량부가 함유된 것을 특징으로 하는 항바이러스성능을 가지는 생분해성 계란 난좌.The biodegradable egg seat having antiviral properties according to claim 7, wherein the non-foaming sheet contains 0.1 to 60 parts by weight of an inorganic antiviral agent based on 100 parts by weight of the biodegradable polymer resin or petrochemical resin.
  10. 제7항에 있어서, 상기 비발포 시트가 50 내지 500㎛ 두께를 가지는 것을 특징으로 하는 항바이러스성능을 가지는 생분해성 계란 난좌.The biodegradable egg nest having antiviral properties according to claim 7, wherein the non-foaming sheet has a thickness of 50 to 500 μm.
  11. 제7항에 있어서, 상기 투명 폴리락트산(Polylactic acid, PLA) 비발포 시트; The method of claim 7, wherein the transparent polylactic acid (Polylactic acid, PLA) non-foaming sheet;
    불투명 PLA 비발포 시트; Opaque PLA non-foaming sheet;
    PLA계 중합체로 이루어진 압출발포시트; 및 An extruded foam sheet made of a PLA-based polymer; and
    상기 압출발포시트의 적어도 일면에, 폴리락트산계 중합체로 이루어진 생분해성 고분자 수지 또는 석유화학 수지로 이루어진 비발포 시트가 라미네이션된, 다층시트;의 적어도 일면에, On at least one side of the multi-layer sheet in which a non-foaming sheet made of a biodegradable polymer resin or a petrochemical resin made of a polylactic acid-based polymer is laminated on at least one side of the extruded foam sheet,
    무기계 항바이러스제 및 분산제에서 선택된 단독 또는 혼합형태를 포함한 활성층 용액을 도포하여 무기계 항바이러스 활성층이 형성된 것을 특징으로 하는 항바이러스성능을 가지는 생분해성 계란 난좌.A biodegradable egg yolk seat having antiviral performance, characterized in that an inorganic antiviral active layer is formed by applying an active layer solution including a single or mixed form selected from inorganic antiviral agents and dispersants.
  12. 제11항에 있어서, 상기 무기계 항바이러스 활성층이 코팅방식 또는 미스트 노즐을 이용한 스프레이방식으로 형성되되, The method of claim 11, wherein the inorganic antiviral active layer is formed by a coating method or a spray method using a mist nozzle,
    무기계 항바이러스제가 0.01 내지 5g/㎡로 분산되도록 한 것을 특징으로 하는 항바이러스성능을 가지는 생분해성 계란 난좌.Biodegradable egg yolk with antiviral performance, characterized in that the inorganic antiviral agent is dispersed at 0.01 to 5 g / m 2.
  13. 제1항 내지 제12항 중 어느 한 항에 있어서, 상기 항바이러스성능이 필라인 코로나바이러스(fCoV), 인플루엔자 A 바이러스(FluA), 조류 인플루엔자(AI) 바이러스 및 돼지 바이러스로 이루어진 군에서 선택되는 어느 하나 이상에 항바이러스성이 구현된 항바이러스성능을 가지는 생분해성 계란 난좌.The method according to any one of claims 1 to 12, wherein the antiviral performance is any one selected from the group consisting of filine coronavirus (fCoV), influenza A virus (FluA), avian influenza (AI) virus, and swine virus. A biodegradable egg locus with antiviral properties implemented in one or more.
  14. 유기용제 100 중량부에 대하여, With respect to 100 parts by weight of organic solvent,
    무기계 항바이러스제 0.1 내지 20 중량부 및 0.1 to 20 parts by weight of an inorganic antiviral agent and
    폴리에틸렌글리콜(PEG), 구연산, 젖산 및 폴리락트산(PLA)으로 이루어진 군에서 선택된 단독 또는 혼합형태의 분산제 0.1 내지 20 중량부가 함유된 항바이러스성능을 가지는 도포 조성물.A coating composition having antiviral performance containing 0.1 to 20 parts by weight of a dispersing agent selected from the group consisting of polyethylene glycol (PEG), citric acid, lactic acid and polylactic acid (PLA).
  15. 제14항에 있어서, 상기 무기계 항바이러스제가 은나노입자복합체, 은이온함유나노복합체, 구리1가 화합물, 산화아연 나노입자 및 페라이트 나노입자로 이루어진 군에서 선택된 단독 또는 2종이상의 혼합형태인 것을 특징으로 하는 항바이러스성능을 가지는 도포 조성물.The method of claim 14, wherein the inorganic antiviral agent is selected from the group consisting of silver nanoparticle complexes, silver ion-containing nanocomposites, copper monovalent compounds, zinc oxide nanoparticles and ferrite nanoparticles. A coating composition having antiviral properties.
  16. 제15항에 있어서, 상기 은나노입자복합체 또는 은이온함유나노복합체가 실리카(SiO2), 알루미나, 제올라이트, 세리사이트, 모데나이트, 크리스토발라이트 및 또는 벤토나이트를 포함하는 광물, 탈크, 셀룰로오스 유도체, 파라핀 및 왁스로 이루어진 군에서 선택된 어느 하나에 은나노입자 또는 은이온함유 나노입자가 흡착 또는 결합된 것을 특징으로 하는 항바이러스성능을 가지는 도포 조성물.The method of claim 15, wherein the silver nanoparticle composite or silver ion-containing nanocomposite is a mineral including silica (SiO 2 ), alumina, zeolite, sericite, mordenite, cristobalite, and/or bentonite, talc, cellulose derivative, paraffin, and wax A coating composition having antiviral performance, characterized in that silver nanoparticles or silver ion-containing nanoparticles are adsorbed or bound to any one selected from the group consisting of.
  17. 제15항에 있어서, 상기 페라이트 나노입자가 알파-페라이트(α-Fe2O3), 아연 페라이트(ZnFe2O4), 망간 페라이트(MnFe2O4), 니켈 페라이트(NiFe2O4) 및 철 하이드로옥사이드(α-FeOOH)로 이루어진 군에서 선택된 하나 이상이 배합된 것을 특징으로 하는 항바이러스성을 가지는 생분해성 시트의 제조방법.The method of claim 15, wherein the ferrite nanoparticles are alpha-ferrite (α-Fe 2 O 3 ), zinc ferrite (ZnFe 2 O 4 ), manganese ferrite (MnFe 2 O 4 ), nickel ferrite (NiFe 2 O 4 ) and A method for producing a biodegradable sheet having antiviral properties, characterized in that at least one selected from the group consisting of iron hydroxide (α-FeOOH) is blended.
  18. 제14항에 있어서, 상기 유기용제가 테트라하이드로퓨란(THF), 클로로포름을 포함하는 염소화 유기용매, 아세토니트릴, 다이옥산 및 디메틸포름아마이드(DMF), 디메틸아세트아마이드(DMAc), 에탄올, 메탄올, 노말-프로필알콜 또는 이소-프로필알콜에서 선택되는 알코올류, 클로로포름을 포함하는 염소화 유기용매, 벤젠, 톨루엔, 아세토니트릴 및 다이옥산으로 이루어진 군에서 어느 하나 이상인 것을 특징으로 하는 항바이러스성능을 가지는 도포 조성물.15. The method of claim 14, wherein the organic solvent is tetrahydrofuran (THF), chlorinated organic solvents including chloroform, acetonitrile, dioxane and dimethylformamide (DMF), dimethylacetamide (DMAc), ethanol, methanol, normal- alcohols selected from propyl alcohol or iso-propyl alcohol; A coating composition having antiviral performance, characterized in that it is at least one from the group consisting of chlorinated organic solvents including chloroform, benzene, toluene, acetonitrile and dioxane.
PCT/KR2021/008132 2020-08-13 2021-06-29 Biodegradable egg tray having antiviral performance WO2022260206A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR20200101643 2020-08-13
KR1020210075590A KR102641141B1 (en) 2020-08-13 2021-06-10 Antiviral egg carriers with biodegradability
KR10-2021-0075590 2021-06-10

Publications (1)

Publication Number Publication Date
WO2022260206A1 true WO2022260206A1 (en) 2022-12-15

Family

ID=80493928

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/008132 WO2022260206A1 (en) 2020-08-13 2021-06-29 Biodegradable egg tray having antiviral performance

Country Status (2)

Country Link
KR (1) KR102641141B1 (en)
WO (1) WO2022260206A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100999171B1 (en) * 2010-06-03 2010-12-07 (주) 더몰론코리아 Solvent-soluble antimicrobial composition
JP2012076344A (en) * 2010-09-30 2012-04-19 Dainippon Printing Co Ltd Functional wallpaper having decomposing performance of volatile organic compound and antibacterial performance
KR101637932B1 (en) * 2016-04-04 2016-07-11 김성수 A polylactic acid foam and a method for manufacturing the same
KR101802362B1 (en) * 2016-12-27 2017-11-29 케이비에프(주) Polylactic acid based-foaming extruded sheet containing inorganic antibiotics and biodegradable foam-molding product using the same
KR101830703B1 (en) * 2016-08-16 2018-04-04 김성현 Eco-friendly resin composition for egg package and manufacturing method of egg package using the compsition

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100854730B1 (en) 2006-06-12 2008-08-27 주식회사 국일인토트 plastic pellet of nano silver anti bacteria and method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100999171B1 (en) * 2010-06-03 2010-12-07 (주) 더몰론코리아 Solvent-soluble antimicrobial composition
JP2012076344A (en) * 2010-09-30 2012-04-19 Dainippon Printing Co Ltd Functional wallpaper having decomposing performance of volatile organic compound and antibacterial performance
KR101637932B1 (en) * 2016-04-04 2016-07-11 김성수 A polylactic acid foam and a method for manufacturing the same
KR101830703B1 (en) * 2016-08-16 2018-04-04 김성현 Eco-friendly resin composition for egg package and manufacturing method of egg package using the compsition
KR101802362B1 (en) * 2016-12-27 2017-11-29 케이비에프(주) Polylactic acid based-foaming extruded sheet containing inorganic antibiotics and biodegradable foam-molding product using the same

Also Published As

Publication number Publication date
KR20220021402A (en) 2022-02-22
KR102641141B1 (en) 2024-02-28

Similar Documents

Publication Publication Date Title
EP2319881A1 (en) Active nanocomposite materials and production method thereof
KR100948720B1 (en) Lactic acid polymer composition, molded article made of same, and method for producing such molded article
US10051867B2 (en) Antimicrobial polymer concentrates and compounds
US20140187413A1 (en) Nanocomposite materials based on metal oxides having multi-functional properties
CN110819040B (en) Degradable and disintegrable PVC plastic and application thereof
WO2018186605A1 (en) Antibacterial resin and manufacturing method therefor
KR102486333B1 (en) Antiviral biodegradable sheets and uses thereof
WO2022260206A1 (en) Biodegradable egg tray having antiviral performance
JPWO2007080973A1 (en) Antibacterial molded body, laminate, heat insulating material, and synthetic leather product
WO2022260205A1 (en) Biodegradable sheet having antiviral properties, method for manufacturing same, and use thereof
US20220394980A1 (en) Biodegradable sheet with antiviral properties, manufacturing method thereof, and use thereof
KR102405859B1 (en) Antibacterial film comprising metal nano powder and method for preparing thereof
WO2023277582A1 (en) Polylactic acid powder having antibacterial properties and antibacterial substrate comprising same
JP2024502333A (en) Stabilization of molded polymer articles against degradation caused by artificial UV-C light
JP7229317B2 (en) Biodegradable composition, biodegradable wrap film and method for producing the same
JP2005068346A (en) High functional biodegradable resin composition and method for producing the same
KR102594883B1 (en) Antibacterial film and manufacturing method thereof
WO2017091055A1 (en) Method for preparing zinc carboxylate hydrate, zinc carboxylate hydrate prepared thereby, and antibacterial plastic material containing zinc carboxylate hydrate
KR102661420B1 (en) Anti-microbial banded glove
WO2022108294A1 (en) Microcapsule for treating shellfish diseases, method for producing same, and composition for treating shellfish diseases comprising same
JP4022298B2 (en) Antibacterial film
JP2006063301A (en) Biodegradable resin composition derived from vegetable polymer starch and method for producing the same
JP2022083929A (en) POLYOLEFIN-BASED EXTRUDED RESIN LAMINATE FOAM HAVING RESIN FILM CONTAINING ANTIVIRAL AGENT PARTICLE CONTAINING HEAVY METAL OF Ag OR Cu AND HAVING ANTIVIRAL PROPERTY LAMINATED ON AT LEAST ONE FOAM SURFACE, AND METHOD FOR PRODUCING THE POLYOLEFIN-BASED EXTRUDED RESIN LAMINATE FOAM
KR20230004288A (en) Polylactic acid powder having antibacterial properties and antibacterial substrate comprising the same
JP2014094520A (en) Polylactic acid-based biaxially stretched film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21945273

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE