WO2022260189A1 - Method and device for transmitting and receiving signal in wireless communication system - Google Patents

Method and device for transmitting and receiving signal in wireless communication system Download PDF

Info

Publication number
WO2022260189A1
WO2022260189A1 PCT/KR2021/007065 KR2021007065W WO2022260189A1 WO 2022260189 A1 WO2022260189 A1 WO 2022260189A1 KR 2021007065 W KR2021007065 W KR 2021007065W WO 2022260189 A1 WO2022260189 A1 WO 2022260189A1
Authority
WO
WIPO (PCT)
Prior art keywords
irs
base station
channel information
terminal
reference signal
Prior art date
Application number
PCT/KR2021/007065
Other languages
French (fr)
Korean (ko)
Inventor
오재기
김성진
박재용
하업성
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to PCT/KR2021/007065 priority Critical patent/WO2022260189A1/en
Priority to KR1020237033970A priority patent/KR20240017776A/en
Publication of WO2022260189A1 publication Critical patent/WO2022260189A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/04013Intelligent reflective surfaces
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • G06N3/092Reinforcement learning
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/0006Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0417Feedback systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0626Channel coefficients, e.g. channel state information [CSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • H04B7/06952Selecting one or more beams from a plurality of beams, e.g. beam training, management or sweeping
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition

Definitions

  • the following description relates to a wireless communication system, and relates to a method and apparatus for transmitting and receiving signals between a terminal and a base station in a wireless communication system.
  • a terminal and a base station may provide a method and apparatus for transmitting and receiving signals by controlling a radio channel environment through an intelligent reflect surface (IRS).
  • IIRS intelligent reflect surface
  • a wireless access system is widely deployed to provide various types of communication services such as voice and data.
  • a wireless access system is a multiple access system capable of supporting communication with multiple users by sharing available system resources (bandwidth, transmission power, etc.).
  • Examples of the multiple access system include a code division multiple access (CDMA) system, a frequency division multiple access (FDMA) system, a time division multiple access (TDMA) system, an orthogonal frequency division multiple access (OFDMA) system, and a single carrier frequency (SC-FDMA) system. division multiple access) system.
  • CDMA code division multiple access
  • FDMA frequency division multiple access
  • TDMA time division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • eMBB enhanced mobile broadband
  • RAT radio access technology
  • MTC massive Machine Type Communications
  • the present disclosure may provide a method and apparatus for transmitting and receiving signals in a wireless communication system.
  • the present disclosure may provide a method for transmitting and receiving signals between a terminal and a base station using an intelligent reflector in a wireless communication system.
  • the present disclosure may provide a method for transmitting and receiving signals between a terminal and a base station based on an intelligent radio channel environment in a wireless communication system.
  • the present disclosure may provide a method for controlling an intelligent reflector based on an artificial intelligence system in a wireless communication system.
  • the present disclosure may provide a method for transmitting and receiving signals between a terminal and a base station by controlling an intelligent reflector in a wireless communication system.
  • a method for operating a base station in a wireless communication system may be provided.
  • transmitting a first reference signal to an intelligent reflector receiving channel information between the base station and the IRS and channel information between the IRS and the terminal measured based on the first reference signal from the IRS, and Determining beamforming based on inter-IRS channel information, deriving an IRS control value based on channel information between the base station and the IRS and channel information between the IRS and the terminal, and applying the determined beamforming to convert the second reference signal to the IRS It may include transmitting to the terminal through.
  • a method of operating a terminal in a wireless communication system includes transmitting a first reference signal to an IRS and receiving a second reference signal to which beamforming is applied from a base station through the IRS, , IRS is adjusted based on the IRS control value, channel information between the IRS and the terminal is measured based on the first reference signal, and the base station receives channel information between the base station and the IRS and channel information between the IRS and the terminal from the IRS, Beamforming may be determined based on channel information between the base station and the IRS, and an IRS control value may be derived based on channel information between the base station and the IRS and channel information between the IRS and the terminal.
  • a base station of a wireless communication system includes a transceiver and a processor connected to the transceiver, the processor transmits a first reference signal to an IRS through the transceiver, and transmits a first reference signal from the IRS through the transceiver.
  • Channel information between the base station and the IRS and channel information between the IRS and the terminal measured based on the reference signal are received, beamforming is determined based on the channel information between the base station and the IRS, and channel information between the base station and the IRS and between the IRS and the terminal are determined.
  • An IRS control value may be derived based on the channel information, and the second reference signal may be transmitted to the terminal through the IRS by applying beamforming determined through the transceiver.
  • a terminal of a wireless communication system may include a transceiver and a processor connected to the transceiver.
  • the processor transmits the first reference signal to the IRS through the transceiver and receives the second reference signal to which beamforming is applied through the transceiver through the IRS, the IRS is adjusted based on the IRS control value, and the first reference signal Channel information between the IRS and the terminal is measured based on the signal, the base station receives channel information between the base station and the IRS and channel information between the IRS and the terminal from the IRS, and determines beamforming based on the channel information between the base station and the IRS, An IRS control value may be derived based on channel information between the base station and the IRS and channel information between the IRS and the terminal.
  • the at least one processor is controlled by the IRS through a transceiver.
  • the at least one processor is controlled by the IRS through a transceiver. 1 Transmits a reference signal, receives channel information between the base station and the IRS and channel information between the IRS and the terminal measured based on the first reference signal from the IRS through the transceiver, and performs beamforming based on the channel information between the base station and the IRS. determine, derive an IRS control value based on the channel information between the base station and the IRS and the channel information between the IRS and the terminal, and apply the beamforming determined through the transceiver to transmit the second reference signal to the terminal through the IRS.
  • At least one executable by a processor includes a command of, at least one command, the device transmits the first reference signal to the IRS through the transceiver, channel information between the base station and the IRS measured based on the first reference signal from the IRS through the transceiver and the IRS and Receiving channel information between terminals, determining beamforming based on channel information between the base station and the IRS, deriving an IRS control value based on channel information between the base station and the IRS and channel information between the IRS and the terminal, and through the transceiver
  • the second reference signal may be transmitted to the terminal through the IRS by applying the determined beamforming.
  • the following items may be commonly applied to the above-described base station, terminal, device, and computer recording medium.
  • the base station may derive an IRS control value through an artificial intelligence system and transmit the derived IRS control value to the IRS to control the phase value of each element in the IRS.
  • the artificial intelligence system may derive an IRS control value by further considering channel information formed by the base station, the IRS, and the terminal.
  • the IRS may include an active sensor, and based on the active sensor, measurement of the first reference signal may be performed to estimate channel information between the base station and the IRS.
  • the terminal may transmit a third reference signal to the IRS, and channel information between the IRS and the terminal may be measured based on the third reference signal.
  • each element in the IRS may be used as either an active sensor or a reflective element.
  • the active sensor may be provided in the IRS independently of each element in the IRS.
  • the terminal when the terminal receives the second reference signal from the base station through the IRS, compensation value information for the IRS control value is generated based on the second reference signal, and the generated compensation value information can be transmitted to the base station.
  • the base station updates the IRS control value through the artificial intelligence system based on the compensation value received from the terminal, updates the beamforming based on the updated IRS control value, and updates the updated beamforming Based on, the third reference signal may be transmitted to the terminal through the IRS.
  • compensation value information may be configured in the form of channel related information.
  • Embodiments based on the present disclosure may provide a method for transmitting and receiving signals between a terminal and a base station using an intelligent reflector.
  • Embodiments based on the present disclosure may provide a method for transmitting and receiving signals between a terminal and a base station based on an intelligent radio channel environment.
  • a method for controlling an intelligent reflector based on an artificial intelligence system may be provided.
  • Embodiments based on the present disclosure may provide a method for transmitting and receiving signals between a terminal and a base station by controlling an intelligent reflector.
  • Effects obtainable in the embodiments of the present disclosure are not limited to the above-mentioned effects, and other effects not mentioned are technical fields to which the technical configuration of the present disclosure is applied from the description of the following embodiments of the present disclosure. can be clearly derived and understood by those skilled in the art. That is, unintended effects according to implementing the configuration described in the present disclosure may also be derived by those skilled in the art from the embodiments of the present disclosure.
  • FIG. 1 is a diagram illustrating an example of a communication system applicable to the present disclosure.
  • FIG. 2 is a diagram illustrating an example of a wireless device applicable to the present disclosure.
  • FIG. 3 is a diagram illustrating another example of a wireless device applicable to the present disclosure.
  • FIG. 4 is a diagram illustrating an example of a portable device applicable to the present disclosure.
  • FIG. 5 is a diagram illustrating an example of a vehicle or autonomous vehicle applicable to the present disclosure.
  • AI Artificial Intelligence
  • FIG. 7 is a diagram showing an example of a communication structure that can be provided in a 6G system applicable to the present disclosure.
  • FIG. 8 is a diagram showing an electromagnetic spectrum applicable to the present disclosure.
  • FIG. 9 is a diagram illustrating a radio channel environment according to an embodiment of the present disclosure.
  • FIG. 10 is a diagram illustrating an intelligent wireless environment according to an embodiment of the present disclosure.
  • FIG. 11 is a diagram illustrating an existing radio channel environment and an intelligent radio channel environment according to an embodiment of the present disclosure.
  • FIG. 12 is a diagram illustrating a method of performing optimization in an intelligent radio channel environment according to an embodiment of the present disclosure.
  • FIG. 13 is a diagram illustrating a confidence interval according to an embodiment of the present disclosure.
  • FIG. 14 is a diagram illustrating a method of performing optimization in an intelligent radio channel environment according to an embodiment of the present disclosure.
  • 15 is a diagram illustrating signal flows of a base station, an IRS, and a terminal to configure an intelligent wireless environment according to an embodiment of the present disclosure.
  • 16 is a flowchart illustrating a method of performing optimization in an intelligent radio channel environment according to an embodiment of the present disclosure.
  • 17 is a diagram illustrating a method of performing reinforcement learning based on an artificial intelligence system in an intelligent wireless channel environment according to an embodiment of the present disclosure.
  • 18 is a diagram showing total regret based on reinforcement learning according to an embodiment of the present disclosure.
  • 19 is a diagram showing the structure of an artificial intelligence system operating by selecting a model based on channel information obtained through an active sensor according to an embodiment of the present disclosure.
  • 21 is a diagram illustrating an IRS according to an embodiment of the present disclosure.
  • FIG 22 shows the structure of an IRS performance measurer according to an embodiment of the present invention.
  • FIG. 23 is a diagram illustrating a method of performing optimization based on an artificial intelligence system according to an embodiment of the present disclosure.
  • each component or feature may be considered optional unless explicitly stated otherwise.
  • Each component or feature may be implemented in a form not combined with other components or features.
  • an embodiment of the present disclosure may be configured by combining some elements and/or features. The order of operations described in the embodiments of the present disclosure may be changed. Some components or features of one embodiment may be included in another embodiment, or may be replaced with corresponding components or features of another embodiment.
  • a base station has meaning as a terminal node of a network that directly communicates with a mobile station.
  • a specific operation described as being performed by a base station in this document may be performed by an upper node of the base station in some cases.
  • the 'base station' is a term such as a fixed station, Node B, eNode B, gNode B, ng-eNB, advanced base station (ABS), or access point. can be replaced by
  • a terminal includes a user equipment (UE), a mobile station (MS), a subscriber station (SS), a mobile subscriber station (MSS), It may be replaced with terms such as mobile terminal or advanced mobile station (AMS).
  • UE user equipment
  • MS mobile station
  • SS subscriber station
  • MSS mobile subscriber station
  • AMS advanced mobile station
  • the transmitting end refers to a fixed and/or mobile node providing data service or voice service
  • the receiving end refers to a fixed and/or mobile node receiving data service or voice service. Therefore, in the case of uplink, the mobile station can be a transmitter and the base station can be a receiver. Similarly, in the case of downlink, the mobile station may be a receiving end and the base station may be a transmitting end.
  • Embodiments of the present disclosure are wireless access systems, such as an IEEE 802.xx system, a 3rd Generation Partnership Project (3GPP) system, a 3GPP Long Term Evolution (LTE) system, a 3GPP 5G (5th generation) NR (New Radio) system, and a 3GPP2 system. It may be supported by at least one disclosed standard document, and in particular, the embodiments of the present disclosure are supported by 3GPP technical specification (TS) 38.211, 3GPP TS 38.212, 3GPP TS 38.213, 3GPP TS 38.321 and 3GPP TS 38.331 documents It can be.
  • 3GPP technical specification TS 38.211, 3GPP TS 38.212, 3GPP TS 38.213, 3GPP TS 38.321 and 3GPP TS 38.331 documents It can be.
  • embodiments of the present disclosure may be applied to other wireless access systems, and are not limited to the above-described systems.
  • it may also be applicable to a system applied after the 3GPP 5G NR system, and is not limited to a specific system.
  • CDMA code division multiple access
  • FDMA frequency division multiple access
  • TDMA time division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • LTE is 3GPP TS 36.xxx Release 8 or later
  • LTE technology after 3GPP TS 36.xxx Release 10 is referred to as LTE-A
  • xxx Release 13 may be referred to as LTE-A pro.
  • 3GPP NR may mean technology after TS 38.xxx Release 15.
  • 3GPP 6G may mean technology after TS Release 17 and/or Release 18.
  • "xxx" means a standard document detail number.
  • LTE/NR/6G may be collectively referred to as a 3GPP system.
  • FIG. 1 is a diagram illustrating an example of a communication system applied to the present disclosure.
  • a communication system 100 applied to the present disclosure includes a wireless device, a base station, and a network.
  • the wireless device means a device that performs communication using a radio access technology (eg, 5G NR, LTE), and may be referred to as a communication/wireless/5G device.
  • the wireless device includes a robot 100a, a vehicle 100b-1 and 100b-2, an extended reality (XR) device 100c, a hand-held device 100d, and a home appliance. appliance) 100e, Internet of Thing (IoT) device 100f, and artificial intelligence (AI) device/server 100g.
  • a radio access technology eg, 5G NR, LTE
  • XR extended reality
  • IoT Internet of Thing
  • AI artificial intelligence
  • the vehicle may include a vehicle equipped with a wireless communication function, an autonomous vehicle, a vehicle capable of performing inter-vehicle communication, and the like.
  • the vehicles 100b-1 and 100b-2 may include an unmanned aerial vehicle (UAV) (eg, a drone).
  • UAV unmanned aerial vehicle
  • the XR device 100c includes augmented reality (AR)/virtual reality (VR)/mixed reality (MR) devices, and includes a head-mounted device (HMD), a head-up display (HUD) installed in a vehicle, a television, It may be implemented in the form of smart phones, computers, wearable devices, home appliances, digital signage, vehicles, robots, and the like.
  • the mobile device 100d may include a smart phone, a smart pad, a wearable device (eg, a smart watch, a smart glass), a computer (eg, a laptop computer), and the like.
  • the home appliance 100e may include a TV, a refrigerator, a washing machine, and the like.
  • the IoT device 100f may include a sensor, a smart meter, and the like.
  • the base station 120 and the network 130 may also be implemented as a wireless device, and a specific wireless device 120a may operate as a base station/network node to other wireless devices.
  • the wireless devices 100a to 100f may be connected to the network 130 through the base station 120 .
  • AI technology may be applied to the wireless devices 100a to 100f, and the wireless devices 100a to 100f may be connected to the AI server 100g through the network 130.
  • the network 130 may be configured using a 3G network, a 4G (eg LTE) network, or a 5G (eg NR) network.
  • the wireless devices 100a to 100f may communicate with each other through the base station 120/network 130, but communicate directly without going through the base station 120/network 130 (e.g., sidelink communication). You may.
  • the vehicles 100b-1 and 100b-2 may perform direct communication (eg, vehicle to vehicle (V2V)/vehicle to everything (V2X) communication).
  • the IoT device 100f eg, sensor
  • the IoT device 100f may directly communicate with other IoT devices (eg, sensor) or other wireless devices 100a to 100f.
  • FIG. 2 is a diagram illustrating an example of a wireless device applicable to the present disclosure.
  • a first wireless device 200a and a second wireless device 200b may transmit and receive radio signals through various wireless access technologies (eg, LTE and NR).
  • ⁇ the first wireless device 200a, the second wireless device 200b ⁇ denotes the ⁇ wireless device 100x and the base station 120 ⁇ of FIG. 1 and/or the ⁇ wireless device 100x and the wireless device 100x.
  • can correspond.
  • the first wireless device 200a includes one or more processors 202a and one or more memories 204a, and may further include one or more transceivers 206a and/or one or more antennas 208a.
  • the processor 202a controls the memory 204a and/or the transceiver 206a and may be configured to implement the descriptions, functions, procedures, suggestions, methods and/or operational flow diagrams disclosed herein.
  • the processor 202a may process information in the memory 204a to generate first information/signal, and transmit a radio signal including the first information/signal through the transceiver 206a.
  • the processor 202a may receive a radio signal including the second information/signal through the transceiver 206a and store information obtained from signal processing of the second information/signal in the memory 204a.
  • the memory 204a may be connected to the processor 202a and may store various information related to the operation of the processor 202a.
  • memory 204a may perform some or all of the processes controlled by processor 202a, or instructions for performing the descriptions, functions, procedures, suggestions, methods, and/or flowcharts of operations disclosed herein. It may store software codes including them.
  • the processor 202a and the memory 204a may be part of a communication modem/circuit/chip designed to implement a wireless communication technology (eg, LTE, NR).
  • the transceiver 206a may be coupled to the processor 202a and may transmit and/or receive wireless signals through one or more antennas 208a.
  • the transceiver 206a may include a transmitter and/or a receiver.
  • the transceiver 206a may be used interchangeably with a radio frequency (RF) unit.
  • RF radio frequency
  • a wireless device may mean a communication modem/circuit/chip.
  • the second wireless device 200b includes one or more processors 202b, one or more memories 204b, and may further include one or more transceivers 206b and/or one or more antennas 208b.
  • the processor 202b controls the memory 204b and/or the transceiver 206b and may be configured to implement the descriptions, functions, procedures, suggestions, methods and/or operational flow diagrams disclosed herein.
  • the processor 202b may process information in the memory 204b to generate third information/signal, and transmit a radio signal including the third information/signal through the transceiver 206b.
  • the processor 202b may receive a radio signal including the fourth information/signal through the transceiver 206b and store information obtained from signal processing of the fourth information/signal in the memory 204b.
  • the memory 204b may be connected to the processor 202b and may store various information related to the operation of the processor 202b.
  • the memory 204b may perform some or all of the processes controlled by the processor 202b, or instructions for performing the descriptions, functions, procedures, suggestions, methods, and/or flowcharts of operations disclosed herein. It may store software codes including them.
  • the processor 202b and the memory 204b may be part of a communication modem/circuit/chip designed to implement a wireless communication technology (eg, LTE, NR).
  • the transceiver 206b may be coupled to the processor 202b and may transmit and/or receive wireless signals through one or more antennas 208b.
  • the transceiver 206b may include a transmitter and/or a receiver.
  • the transceiver 206b may be used interchangeably with an RF unit.
  • a wireless device may mean a communication modem/circuit/chip.
  • one or more protocol layers may be implemented by one or more processors 202a, 202b.
  • the one or more processors 202a and 202b may include one or more layers (eg, PHY (physical), MAC (media access control), RLC (radio link control), PDCP (packet data convergence protocol), RRC (radio resource) control) and functional layers such as service data adaptation protocol (SDAP).
  • One or more processors 202a, 202b may generate one or more protocol data units (PDUs) and/or one or more service data units (SDUs) according to the descriptions, functions, procedures, proposals, methods, and/or operational flow charts disclosed herein.
  • PDUs protocol data units
  • SDUs service data units
  • processors 202a, 202b may generate messages, control information, data or information according to the descriptions, functions, procedures, proposals, methods and/or operational flow diagrams disclosed herein.
  • One or more processors 202a, 202b generate PDUs, SDUs, messages, control information, data or signals (eg, baseband signals) containing information according to the functions, procedures, proposals and/or methods disclosed herein , may be provided to one or more transceivers 206a and 206b.
  • One or more processors 202a, 202b may receive signals (eg, baseband signals) from one or more transceivers 206a, 206b, and descriptions, functions, procedures, suggestions, methods, and/or flowcharts of operations disclosed herein PDUs, SDUs, messages, control information, data or information can be obtained according to these.
  • signals eg, baseband signals
  • One or more processors 202a, 202b may be referred to as a controller, microcontroller, microprocessor or microcomputer.
  • One or more processors 202a, 202b may be implemented by hardware, firmware, software, or a combination thereof.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGAs field programmable gate arrays
  • firmware or software may be implemented using firmware or software, and the firmware or software may be implemented to include modules, procedures, functions, and the like.
  • Firmware or software configured to perform the descriptions, functions, procedures, proposals, methods and/or operational flow charts disclosed in this document may be included in one or more processors 202a or 202b or stored in one or more memories 204a or 204b. It can be driven by the above processors 202a and 202b.
  • the descriptions, functions, procedures, suggestions, methods and/or operational flow charts disclosed in this document may be implemented using firmware or software in the form of codes, instructions and/or sets of instructions.
  • One or more memories 204a, 204b may be coupled to one or more processors 202a, 202b and may store various types of data, signals, messages, information, programs, codes, instructions and/or instructions.
  • One or more memories 204a, 204b may include read only memory (ROM), random access memory (RAM), erasable programmable read only memory (EPROM), flash memory, hard drive, registers, cache memory, computer readable storage media, and/or It may consist of a combination of these.
  • One or more memories 204a, 204b may be located internally and/or externally to one or more processors 202a, 202b.
  • one or more memories 204a, 204b may be connected to one or more processors 202a, 202b through various technologies such as wired or wireless connections.
  • One or more transceivers 206a, 206b may transmit user data, control information, radio signals/channels, etc. referred to in the methods and/or operational flow charts of this document to one or more other devices.
  • One or more transceivers 206a, 206b may receive user data, control information, radio signals/channels, etc. referred to in descriptions, functions, procedures, proposals, methods and/or operational flow charts, etc. disclosed herein from one or more other devices. have.
  • one or more transceivers 206a and 206b may be connected to one or more processors 202a and 202b and transmit and receive radio signals.
  • one or more processors 202a, 202b may control one or more transceivers 206a, 206b to transmit user data, control information, or radio signals to one or more other devices.
  • one or more processors 202a, 202b may control one or more transceivers 206a, 206b to receive user data, control information, or radio signals from one or more other devices.
  • one or more transceivers 206a, 206b may be coupled to one or more antennas 208a, 208b, and one or more transceivers 206a, 206b may be connected to one or more antennas 208a, 208b to achieve the descriptions, functions disclosed in this document.
  • one or more antennas may be a plurality of physical antennas or a plurality of logical antennas (eg, antenna ports).
  • One or more transceivers (206a, 206b) in order to process the received user data, control information, radio signal / channel, etc. using one or more processors (202a, 202b), the received radio signal / channel, etc. in the RF band signal It can be converted into a baseband signal.
  • One or more transceivers 206a and 206b may convert user data, control information, and radio signals/channels processed by one or more processors 202a and 202b from baseband signals to RF band signals.
  • one or more transceivers 206a, 206b may include (analog) oscillators and/or filters.
  • FIG. 3 is a diagram illustrating another example of a wireless device applied to the present disclosure.
  • a wireless device 300 corresponds to the wireless devices 200a and 200b of FIG. 2, and includes various elements, components, units/units, and/or modules. ) can be configured.
  • the wireless device 300 may include a communication unit 310, a control unit 320, a memory unit 330, and an additional element 340.
  • the communication unit may include communication circuitry 312 and transceiver(s) 314 .
  • communication circuitry 312 may include one or more processors 202a, 202b of FIG. 2 and/or one or more memories 204a, 204b.
  • transceiver(s) 314 may include one or more transceivers 206a, 206b of FIG.
  • the control unit 320 is electrically connected to the communication unit 310, the memory unit 330, and the additional element 340 and controls overall operations of the wireless device. For example, the control unit 320 may control electrical/mechanical operations of the wireless device based on programs/codes/commands/information stored in the memory unit 330. In addition, the control unit 320 transmits the information stored in the memory unit 330 to the outside (eg, another communication device) through the communication unit 310 through a wireless/wired interface, or transmits the information stored in the memory unit 330 to the outside (eg, another communication device) through the communication unit 310. Information received through a wireless/wired interface from other communication devices) may be stored in the memory unit 330 .
  • the additional element 340 may be configured in various ways according to the type of wireless device.
  • the additional element 340 may include at least one of a power unit/battery, an input/output unit, a driving unit, and a computing unit.
  • the wireless device 300 may be a robot (FIG. 1, 100a), a vehicle (FIG. 1, 100b-1, 100b-2), an XR device (FIG. 1, 100c), a mobile device (FIG. 1, 100d) ), home appliances (FIG. 1, 100e), IoT devices (FIG.
  • Wireless devices can be mobile or used in a fixed location depending on the use-case/service.
  • various elements, components, units/units, and/or modules in the wireless device 300 may be entirely interconnected through a wired interface or at least partially connected wirelessly through the communication unit 310 .
  • the control unit 320 and the communication unit 310 are connected by wire, and the control unit 320 and the first units (eg, 130 and 140) are connected wirelessly through the communication unit 310.
  • each element, component, unit/unit, and/or module within wireless device 300 may further include one or more elements.
  • the control unit 320 may be composed of one or more processor sets.
  • control unit 320 may include a set of a communication control processor, an application processor, an electronic control unit (ECU), a graphic processing processor, a memory control processor, and the like.
  • memory unit 330 may include RAM, dynamic RAM (DRAM), ROM, flash memory, volatile memory, non-volatile memory, and/or combinations thereof. can be configured.
  • FIG. 4 is a diagram illustrating an example of a portable device applied to the present disclosure.
  • a portable device may include a smart phone, a smart pad, a wearable device (eg, smart watch, smart glasses), and a portable computer (eg, a laptop computer).
  • a mobile device may be referred to as a mobile station (MS), a user terminal (UT), a mobile subscriber station (MSS), a subscriber station (SS), an advanced mobile station (AMS), or a wireless terminal (WT).
  • MS mobile station
  • UT user terminal
  • MSS mobile subscriber station
  • SS subscriber station
  • AMS advanced mobile station
  • WT wireless terminal
  • a portable device 400 includes an antenna unit 408, a communication unit 410, a control unit 420, a memory unit 430, a power supply unit 440a, an interface unit 440b, and an input/output unit 440c. ) may be included.
  • the antenna unit 408 may be configured as part of the communication unit 410 .
  • Blocks 410 to 430/440a to 440c respectively correspond to blocks 310 to 330/340 of FIG. 3 .
  • the communication unit 410 may transmit/receive signals (eg, data, control signals, etc.) with other wireless devices and base stations.
  • the controller 420 may perform various operations by controlling components of the portable device 400 .
  • the controller 420 may include an application processor (AP).
  • the memory unit 430 may store data/parameters/programs/codes/commands necessary for driving the portable device 400 . Also, the memory unit 430 may store input/output data/information.
  • the power supply unit 440a supplies power to the portable device 400 and may include a wired/wireless charging circuit, a battery, and the like.
  • the interface unit 440b may support connection between the mobile device 400 and other external devices.
  • the interface unit 440b may include various ports (eg, audio input/output ports and video input/output ports) for connection with external devices.
  • the input/output unit 440c may receive or output image information/signal, audio information/signal, data, and/or information input from a user.
  • the input/output unit 440c may include a camera, a microphone, a user input unit, a display unit 440d, a speaker, and/or a haptic module.
  • the input/output unit 440c acquires information/signals (eg, touch, text, voice, image, video) input from the user, and the acquired information/signals are stored in the memory unit 430.
  • the communication unit 410 may convert the information/signal stored in the memory into a wireless signal, and directly transmit the converted wireless signal to another wireless device or to a base station.
  • the communication unit 410 may receive a radio signal from another wireless device or base station and then restore the received radio signal to original information/signal. After the restored information/signal is stored in the memory unit 430, it may be output in various forms (eg, text, voice, image, video, or haptic) through the input/output unit 440c.
  • FIG. 5 is a diagram illustrating an example of a vehicle or autonomous vehicle to which the present disclosure applies.
  • a vehicle or an autonomous vehicle may be implemented as a mobile robot, vehicle, train, manned/unmanned aerial vehicle (AV), ship, etc., and is not limited to a vehicle type.
  • AV unmanned aerial vehicle
  • a vehicle or autonomous vehicle 500 includes an antenna unit 508, a communication unit 510, a control unit 520, a driving unit 540a, a power supply unit 540b, a sensor unit 540c, and an autonomous driving unit.
  • a portion 540d may be included.
  • the antenna unit 550 may be configured as a part of the communication unit 510 .
  • Blocks 510/530/540a to 540d respectively correspond to blocks 410/430/440 of FIG. 4 .
  • the communication unit 510 may transmit/receive signals (eg, data, control signals, etc.) with external devices such as other vehicles, base stations (eg, base stations, roadside base units, etc.), servers, and the like.
  • the controller 520 may perform various operations by controlling elements of the vehicle or autonomous vehicle 500 .
  • the controller 520 may include an electronic control unit (ECU).
  • ECU electronice control unit
  • AI devices include TVs, projectors, smartphones, PCs, laptops, digital broadcasting terminals, tablet PCs, wearable devices, set-top boxes (STBs), radios, washing machines, refrigerators, digital signage, robots, vehicles, etc. It may be implemented as a device or a movable device.
  • the AI device 600 includes a communication unit 610, a control unit 620, a memory unit 630, an input/output unit 640a/640b, a running processor unit 640c, and a sensor unit 640d.
  • a communication unit 610 can include a communication unit 610, a control unit 620, a memory unit 630, an input/output unit 640a/640b, a running processor unit 640c, and a sensor unit 640d.
  • Blocks 910 to 930/940a to 940d may respectively correspond to blocks 310 to 330/340 of FIG. 3 .
  • the communication unit 610 communicates wired and wireless signals (eg, sensor information, user data) with external devices such as other AI devices (eg, FIG. 1, 100x, 120, and 140) or AI servers (Fig. input, learning model, control signal, etc.) can be transmitted and received. To this end, the communication unit 610 may transmit information in the memory unit 630 to an external device or transmit a signal received from the external device to the memory unit 630 .
  • external devices eg, sensor information, user data
  • AI devices eg, FIG. 1, 100x, 120, and 140
  • AI servers Fig. input, learning model, control signal, etc.
  • the controller 620 may determine at least one executable operation of the AI device 600 based on information determined or generated using a data analysis algorithm or a machine learning algorithm. And, the controller 620 may perform the determined operation by controlling components of the AI device 600 . For example, the control unit 620 may request, retrieve, receive, or utilize data from the learning processor unit 640c or the memory unit 630, and may perform a predicted operation among at least one feasible operation or one determined to be desirable. Components of the AI device 600 may be controlled to execute an operation. In addition, the control unit 920 collects history information including user feedback on the operation contents or operation of the AI device 600 and stores it in the memory unit 630 or the running processor unit 640c, or the AI server ( 1, 140) can be transmitted to an external device. The collected history information can be used to update the learning model.
  • the memory unit 630 may store data supporting various functions of the AI device 600 .
  • the memory unit 630 may store data obtained from the input unit 640a, data obtained from the communication unit 610, output data of the learning processor unit 640c, and data obtained from the sensing unit 640.
  • the memory unit 930 may store control information and/or software codes required for operation/execution of the control unit 620 .
  • the input unit 640a may obtain various types of data from the outside of the AI device 600.
  • the input unit 620 may obtain learning data for model learning and input data to which the learning model is to be applied.
  • the input unit 640a may include a camera, a microphone, and/or a user input unit.
  • the output unit 640b may generate an output related to sight, hearing, or touch.
  • the output unit 640b may include a display unit, a speaker, and/or a haptic module.
  • the sensing unit 640 may obtain at least one of internal information of the AI device 600, surrounding environment information of the AI device 600, and user information by using various sensors.
  • the sensing unit 640 may include a proximity sensor, an illuminance sensor, an acceleration sensor, a magnetic sensor, a gyro sensor, an inertial sensor, an RGB sensor, an IR sensor, a fingerprint recognition sensor, an ultrasonic sensor, an optical sensor, a microphone, and/or a radar. have.
  • the learning processor unit 640c may learn a model composed of an artificial neural network using learning data.
  • the running processor unit 640c may perform AI processing together with the running processor unit of the AI server (FIG. 1, 140).
  • the learning processor unit 640c may process information received from an external device through the communication unit 610 and/or information stored in the memory unit 630 .
  • the output value of the learning processor unit 940c may be transmitted to an external device through the communication unit 610 and/or stored in the memory unit 630.
  • 6G (radio communications) systems are characterized by (i) very high data rates per device, (ii) very large number of connected devices, (iii) global connectivity, (iv) very low latency, (v) battery- It aims to lower energy consumption of battery-free IoT devices, (vi) ultra-reliable connectivity, and (vii) connected intelligence with machine learning capabilities.
  • the vision of the 6G system can be four aspects such as “intelligent connectivity”, “deep connectivity”, “holographic connectivity”, and “ubiquitous connectivity”, and the 6G system can satisfy the requirements shown in Table 1 below. That is, Table 1 is a table showing the requirements of the 6G system.
  • the 6G system is enhanced mobile broadband (eMBB), ultra-reliable low latency communications (URLLC), mMTC (massive machine type communications), AI integrated communication, tactile Internet (tactile internet), high throughput, high network capacity, high energy efficiency, low backhaul and access network congestion and improved data security ( can have key factors such as enhanced data security.
  • eMBB enhanced mobile broadband
  • URLLC ultra-reliable low latency communications
  • mMTC massive machine type communications
  • AI integrated communication e.g., AI integrated communication
  • tactile Internet tactile internet
  • high throughput high network capacity
  • high energy efficiency high backhaul and access network congestion
  • improved data security can have key factors such as enhanced data security.
  • FIG. 7 is a diagram illustrating an example of a communication structure that can be provided in a 6G system applicable to the present disclosure.
  • a 6G system is expected to have 50 times higher simultaneous wireless communication connectivity than a 5G wireless communication system.
  • URLLC a key feature of 5G, is expected to become a more mainstream technology by providing end-to-end latency of less than 1 ms in 6G communications.
  • the 6G system will have much better volume spectral efficiency, unlike the frequently used area spectral efficiency.
  • 6G systems can provide very long battery life and advanced battery technology for energy harvesting, so mobile devices in 6G systems may not need to be charged separately.
  • AI The most important and newly introduced technology for the 6G system is AI.
  • AI was not involved in the 4G system.
  • 5G systems will support partial or very limited AI.
  • the 6G system will be AI-enabled for full automation.
  • Advances in machine learning will create more intelligent networks for real-time communication in 6G.
  • Introducing AI in communications can simplify and enhance real-time data transmission.
  • AI can use a plethora of analytics to determine how complex target tasks are performed. In other words, AI can increase efficiency and reduce processing delays.
  • AI can also play an important role in machine-to-machine, machine-to-human and human-to-machine communications.
  • AI can be a rapid communication in the brain computer interface (BCI).
  • BCI brain computer interface
  • AI-based communication systems can be supported by metamaterials, intelligent structures, intelligent networks, intelligent devices, intelligent cognitive radios, self-sustaining wireless networks, and machine learning.
  • AI-based physical layer transmission means applying a signal processing and communication mechanism based on an AI driver rather than a traditional communication framework in fundamental signal processing and communication mechanisms. For example, deep learning-based channel coding and decoding, deep learning-based signal estimation and detection, deep learning-based multiple input multiple output (MIMO) mechanism, It may include AI-based resource scheduling and allocation.
  • MIMO multiple input multiple output
  • Machine learning may be used for channel estimation and channel tracking, and may be used for power allocation, interference cancellation, and the like in a downlink (DL) physical layer. Machine learning can also be used for antenna selection, power control, symbol detection, and the like in a MIMO system.
  • DL downlink
  • AI algorithms based on deep learning require a lot of training data to optimize training parameters.
  • a lot of training data is used offline. This is because static training on training data in a specific channel environment may cause a contradiction between dynamic characteristics and diversity of a radio channel.
  • Machine learning refers to a set of actions that train a machine to create a machine that can do tasks that humans can or cannot do.
  • Machine learning requires data and a running model.
  • data learning methods can be largely classified into three types: supervised learning, unsupervised learning, and reinforcement learning.
  • Neural network training is aimed at minimizing errors in the output.
  • Neural network learning repeatedly inputs training data to the neural network, calculates the output of the neural network for the training data and the error of the target, and backpropagates the error of the neural network from the output layer of the neural network to the input layer in a direction to reduce the error. ) to update the weight of each node in the neural network.
  • Supervised learning uses training data in which correct answers are labeled in the learning data, and unsupervised learning may not have correct answers labeled in the learning data. That is, for example, learning data in the case of supervised learning related to data classification may be data in which each learning data is labeled with a category. Labeled training data is input to the neural network, and an error may be calculated by comparing the output (category) of the neural network and the label of the training data. The calculated error is back-propagated in a reverse direction (ie, from the output layer to the input layer) in the neural network, and the connection weight of each node of each layer of the neural network may be updated according to the back-propagation.
  • a reverse direction ie, from the output layer to the input layer
  • the amount of change in the connection weight of each updated node may be determined according to a learning rate.
  • the neural network's computation of input data and backpropagation of errors can constitute a learning cycle (epoch).
  • the learning rate may be applied differently according to the number of iterations of the learning cycle of the neural network. For example, a high learning rate is used in the early stages of neural network learning to increase efficiency by allowing the neural network to quickly achieve a certain level of performance, and a low learning rate can be used in the late stage to increase accuracy.
  • the learning method may vary depending on the characteristics of the data. For example, in a case where the purpose of the receiver is to accurately predict data transmitted by the transmitter in a communication system, it is preferable to perform learning using supervised learning rather than unsupervised learning or reinforcement learning.
  • the learning model corresponds to the human brain, and the most basic linear model can be considered. ) is called
  • the neural network cord used as a learning method is largely divided into deep neural networks (DNN), convolutional deep neural networks (CNN), and recurrent boltzmann machine (RNN). and this learning model can be applied.
  • DNN deep neural networks
  • CNN convolutional deep neural networks
  • RNN recurrent boltzmann machine
  • THz communication can be applied in 6G systems.
  • the data transmission rate can be increased by increasing the bandwidth. This can be done using sub-THz communication with wide bandwidth and applying advanced massive MIMO technology.
  • THz waves also known as sub-millimeter radiation
  • THz waves generally represent a frequency band between 0.1 THz and 10 THz with corresponding wavelengths in the range of 0.03 mm-3 mm.
  • the 100 GHz-300 GHz band range (sub THz band) is considered a major part of the THz band for cellular communications. Adding to the sub-THz band mmWave band will increase 6G cellular communications capacity.
  • 300 GHz-3 THz is in the far infrared (IR) frequency band.
  • the 300 GHz-3 THz band is part of the broad band, but is at the border of the wide band, just behind the RF band. Thus, this 300 GHz-3 THz band exhibits similarities to RF.
  • THz communications include (i) widely available bandwidth to support very high data rates, and (ii) high path loss at high frequencies (highly directional antennas are indispensable).
  • the narrow beamwidth produced by the highly directional antenna reduces interference.
  • the small wavelength of the THz signal allows a much larger number of antenna elements to be incorporated into devices and BSs operating in this band. This enables advanced adaptive array technology to overcome range limitations.
  • the artificial intelligence system can be used to adjust the radio channel environment using the IRS, which will also be described later.
  • the current wireless communication technology can be controlled through end-point optimization that adapts to the channel environment (H). For example, when optimization is performed in a transmitter and a receiver, the transmitter and receiver adjust at least one of beamforming, power control, and adaptive modulation according to the channel environment (H) between the transmitter and the receiver to increase transmission efficiency.
  • H channel environment
  • the channel environment may be random, uncontrolled, and naturally fixed. That is, in the existing communication system, a method of controlling each end point to be optimized for the channel environment while the channel environment is fixed may be performed. Therefore, the transmitter and the receiver have no choice but to perform optimization to adapt to the channel and transmit/receive data through this optimization.
  • NLOS non-line of sight
  • 6G THz 6G THz
  • an intelligent reflector can be used as a factor capable of controlling a wireless channel like a transceiver.
  • awareness of a radio channel may be added as a factor used to optimize radio communication transmission. Through this, it is possible to reset the channel as an unsolvable problem in the existing communication system or to overcome the channel capacity limitation of Shannon.
  • the optimization process may be complicated.
  • AO alternating optimization
  • a new communication system e.g. 6G
  • MBRLLC Mobile Broadband Reliable Low Latency Communication
  • mURLLC Massive Ultra-Reliable, Low Latency communications
  • HCS Human-Centric Services
  • 3CLS Convergence of Communications, Computing, Control, Localization, and Sensing
  • relays are currently used to increase coverage of base station cells and support for shadow areas.
  • the method using a repeater may increase transmission efficiency, but may additionally generate interference signals for other users. Therefore, a limitation may occur in terms of overall communication resource efficiency.
  • the use of a relay requires high additional cost and energy, and it may not be easy to manage complex and mixed interference signals.
  • spectrum efficiency may be reduced by using a half duplex method, and space utilization and aesthetics may also be affected.
  • the wireless channel environment can be adjusted using an intelligent reflector (IRS).
  • IIRS intelligent reflector
  • the transmitter and receiver can perform optimization together to provide a solution that can overcome Shannon's channel capacity limit in a smart radio environment, which will be described later.
  • the value may have a dependency on the optimization of the transceiver, and thus complexity may increase.
  • the AO (Alternating Optimization) algorithm used for optimization may be repeatedly performed until convergence, and may impose a burden on all channels to be measured.
  • a method for performing optimization in an intelligent wireless environment with an intelligent reflector having an active sensor and an artificial intelligence system will be described in consideration of the above points.
  • Table 2 may be terms in consideration of the following and above, and based on this, a method of performing optimization in an intelligent wireless environment with an intelligent reflector having an active sensor and an artificial intelligence system are described.
  • a radio channel environment H is naturally fixed and may be in a random state that cannot be controlled. Accordingly, the transmitter 910 and the receiver 920 can find an optimized transmission/reception method by adapting to the channel.
  • the transmitter 910 and the receiver 920 may measure a channel state through a signal (eg, a reference signal), and may be controlled to perform optimization based on the measured channel state.
  • a signal eg, a reference signal
  • Equation 1 may represent the capacity limit of Shannon. At this time, even if the transmission signal P is increased by applying precoding and processing in Equation 1, there may be a limit to increasing the channel capacity if the size of the channel
  • Equation 1 In a state where the radio channel environment is fixed, there may be a limit to increasing the channel capacity based on Equation 1.
  • an intelligent reflector IMS
  • multiple paths can be secured between the transmitter 910 and the receiver 920, and the aforementioned channel
  • FIG. 10 is a diagram illustrating an intelligent wireless environment according to an embodiment of the present disclosure.
  • may be a factor for optimization. More specifically, in FIG. 9 described above, optimization may be performed in the transmitter 910 and the receiver 920 based on “max ⁇ f(Tx, Rx) ⁇ ” as the end point optimization, which is as described above. . However, in FIG. 10 , optimization may be performed in the transmitter 1010 and the receiver 1020 based on “max ⁇ f(Tx, Rx, H) ⁇ ” as the end point optimization. That is, in an intelligent wireless environment, a channel
  • the existing radio channel environment may be P1.
  • the intelligent wireless channel environment may be P2.
  • the receiving end may receive the y signal.
  • the probability of P1 is fixed in the existing radio channel environment, and the receiving end (Decoder) can transmit feedback to the transmitting end through measurement of the transmitted signal.
  • the transmitting end may perform optimization to adapt to the radio channel environment through the feedback of the receiving end.
  • the receiving end may measure a channel quality indicator (CQI) of the transmission signal based on the reference signal transmitted by the transmitting end and provide feedback thereof.
  • the transmitting end may perform communication by adjusting a modulation coding scheme (MCS) based on the feedbacked information and providing information about the modulation coding scheme to the receiving end.
  • CQI channel quality indicator
  • MCS modulation coding scheme
  • the radio channel environment P2 is recognized and the radio channel environment can be changed through IRS control.
  • the receiving end may measure the received transmission signal and transmit a feedback thereof to the transmitting end. That is, the transmitter may perform optimization by receiving feedback information based on IRS control and feedback information of the receiver. At this time, the transmitter may change the radio channel environment by adjusting the IRS, and optimization may be performed in consideration of the radio channel environment and the transmitter.
  • FIG. 12 is a diagram illustrating a method of performing optimization in an intelligent radio channel environment according to an embodiment of the present disclosure.
  • an IRS 1220 may exist between a base station 1210 and a terminal 1230 in an intelligent radio channel environment.
  • a signal transmitted by the base station 1210 may have a path directly transmitted to the terminal 1230 and a path reflected by the IRS 1220 and transmitted. That is, in an intelligent radio channel environment, a radio channel (G) between the base station 1210 and the IRS 1220 and a radio channel between the IRS 1220 and the terminal 1230 ( ) and a direct radio channel between the base station 1210 and the terminal 1230 ( ) may exist.
  • G radio channel
  • a radio channel (G) between the base station 1210 and the IRS 1220 and a radio channel between the IRS 1220 and the terminal 1230 ( ) can be changed. Accordingly, optimization in an intelligent radio channel environment may be performed in consideration of the above-described radio channel environment.
  • the base station 1210 transmits a signal to terminal k 1230
  • the base station transmission beamforming vector for terminal k 1230 is , the signal transmitted to the terminal k (1230) is and receive noise can be
  • the signal received from the base station 1210 based on the environment in which the terminal k 1230 uses the IRS 1220 may be as shown in Equation 2 below, and each channel may be as shown in Table 3 below.
  • the signal-to-noise ratio (SNR) received by terminal k 1230 may be expressed as Equation 3 below.
  • transmit beamforming of terminal k 1230 in consideration of maximum-rate transmission in MIMO May be the same as Equation 5 below.
  • the IRS control value ⁇ can be determined by arithmetic.
  • an alternating optimization (AO) algorithm may be used to solve the aforementioned optimization problem.
  • the AO algorithm uses channel information ( ) may be used to determine a trust region for each IRS element, and may be the same as in FIG. 13.
  • a binary decision is repeatedly performed until the value of the objective function converges. can be obtained.
  • the upper bound of the convergence value is the Ideal IRS, can be At this time, as an example, in FIG. 12, the IRS may repeat the above-described operation to find an optimized value for each of the above-described IRS elements.
  • the AO (Alternating Optimization) algorithm needs to be repeated until convergence.
  • complexity and computational complexity may increase.
  • the complexity and amount of calculation may increase according to the number M of antennas of the base station and the number N of IRS elements, and there may be limitations in calculating them.
  • measurement values of all channels including IRS may be required, and considering the above, there may be limitations in optimization.
  • FIG. 14 is a diagram illustrating a method of performing optimization in an intelligent radio channel environment according to an embodiment of the present disclosure.
  • the amount of computation may increase exponentially according to the repeatability of an alternating optimization (AO) algorithm and IRS elements.
  • AO alternating optimization
  • IRS elements For example, in an intelligent wireless channel environment, there is a need to measure all channel information including IRS, and thus complexity may increase.
  • the IRS 1420 having an active sensor is a channel between the base station 1410 and the IRS 1420 through the active sensor ( ) and the channel between the terminal 1430 and the IRS 1420 ( ) can be measured.
  • the base station 1410 is measured
  • the reference signal may be transferred to the IRS 1420.
  • the artificial intelligence system agent described above and serial channel information through BS-IRS-UE
  • the optimized IRS control value ⁇ can be obtained by using as state information.
  • the artificial intelligence system agent can perform learning of the artificial intelligence system using the reward due to the IRS control value ⁇ and the measured BS-IRS-UE channel information.
  • the artificial intelligence system agent indirectly indicates the reward due to the IRS control value ⁇ and the measured BS-IRS-UE channel information ( ), learning may be performed, and may not be limited to a specific form.
  • the artificial intelligence system agent may operate based on the IRS controller.
  • the artificial intelligence system agent may be connected to the IRS in the form of a cloud, obtain the above-described information, and perform learning.
  • the artificial intelligence system agent may be located in the base station 1410, acquire the above-described information through feedback, and then perform learning.
  • the artificial intelligence system agent may be located in the terminal 1430. At this time, the terminal 1430 may perform channel measurement in consideration of the relationship with the IRS 1420 or may perform learning by receiving the above-described information from the base station 1410, and is not limited to a specific form.
  • the artificial intelligence system agent may not be limited to a specific subject, may be implemented in various forms, and is not limited to the above-described embodiment.
  • the artificial intelligence system agent may perform learning based on artificial intelligence, and through this, an optimized IRS control value ⁇ may be obtained.
  • the artificial intelligence system agent may be a name for convenience of explanation, and may not be limited to a specific name.
  • the artificial intelligence system agent may acquire the above-described IRS control value ⁇ by performing learning based on at least one of supervised learning, unsupervised learning, and reinforcement learning based on the above-described artificial intelligence, and in a specific form. Not limited. However, in the following, for convenience of explanation, it is described as an artificial intelligence system agent, but may not be limited thereto.
  • the initial setting of the optimized IRS control value ⁇ based on the artificial intelligence system agent may be completed. That is, the base station 1410, the IRS 1420, and the terminal 1430 may complete the configuration based on the learning of the above-described IRS control value ⁇ during the initial connection process.
  • the base station performs transmit beamforming optimized in the above-described radio channel environment. can be computed and applied. For example, can be computed through an artificial intelligence system. As another example, may be determined based on a beam management method, and may not be limited to a specific form.
  • FIG. 15 is a diagram illustrating signal flows of a base station, an IRS, and a terminal to set an intelligent wireless environment according to an embodiment of the present disclosure.
  • the base station 1510 sends a reference signal to an intelligent reflector (IRS) 1520. can transmit.
  • the terminal 1530 transmits the reference signal to the IRS 1520. can transmit.
  • the reference signal and reference signal may be an orthogonal relationship, through which mutual interference may be reduced.
  • the IRS 1520 may include an active sensor, through which the reference signal may be sensed.
  • the IRS 1520 receives the reference signal and uses the BS-IRS measurement channel and UE-IRS measurement channel information can be obtained.
  • the IRS 1520 is a BS-IRS measurement channel Information may be forwarded to the base station 1510.
  • base station 1510 is Beamforming of signals transmitted to the IRS 1520 based on information It can be calculated, applied to the reference signal, and transmitted to the IRS 1520.
  • Equation 7 Equation 7
  • the IRS 1520 may provide CSI feedback to allow the base station 1510 to select a specific beam.
  • the artificial intelligence system agent information and The control value ⁇ may be acquired by performing learning based on the information.
  • the artificial intelligence system agent measures the channel information Wow Based on the phase change value for each element of the intelligent judge board (IRS) can predict
  • the artificial intelligence system agent measures the channel for the BS-IRS-UE
  • a phase change value for each element of the IRS may be predicted by further considering the information, and the above-described embodiment is not limited.
  • phase change value predicted by the artificial intelligence system agent may be delivered to the IRS controller.
  • the IRS controller may control the IRS 1520 based on the phase change value.
  • the base station 1510 The reference signal to which is applied ( ) to the IRS 1520, the terminal 1530 transmits the above-described reference signal via the IRS 1520. can receive At this time, the terminal 1530 receives the reference signal Based on , the reward value (Reward) can be measured.
  • the compensation value is the signal-to-noise ratio of the IRS channel ?SNR?_IRS or the mean square error can be used However, this is just one example and other compensation values may be applied.
  • the artificial intelligence system agent may perform an update based on the IRS phase shift value, reward value, and measured channel information.
  • the artificial intelligence system agent may derive a final convergence value by performing learning according to the convergence of the reward value or the predicted phase change value.
  • the artificial intelligence system agent may use a model learned through initial transfer learning, thereby removing repetition. However, it may not be limited to a specific form.
  • an environment change completion signal may be transmitted to the base station 1510 based on the artificial intelligence system agent.
  • the base station 1510 may communicate with the terminal 1530 by transmitting a reference signal to the terminal 1530, acquiring channel state information, determining and applying beamforming optimized in a changed environment.
  • FIG. 16 is a flowchart illustrating a method of performing optimization in an intelligent radio channel environment according to an embodiment of the present disclosure.
  • optimization of a radio channel environment can be divided into a channel estimation step, an environment change step, and an environment adaptation step.
  • the channel information of the BS-IRS is identified, and the beamforming vector transmitted from the base station to the IRS It may be a step of calculating , and simultaneously obtaining channel information between the UE and the IRS through a reference signal from the terminal.
  • the base station and the terminal may transmit each reference signal to the IRS.
  • the IRS uses an active sensor to obtain channel information for the BS-IRS and channel information for UE-IRS (S1630)
  • the IRS channel information for the BS-IRS to the base station, and the base station transmits beamforming Can be calculated.
  • the channel estimation step can be completed.
  • the information obtained in the channel estimation step may be used as a reference value for IRS control in the environment change step.
  • the signal of the base station in order for the IRS performance measurer of the UE to properly operate, the signal of the base station must first be transmitted to the IRS, and thus beamforming in the IRS direction may be essential.
  • the artificial intelligence system agent can derive the optimal IRS control value.
  • the artificial intelligence system agent provides channel information for BS-IRS and channel information for UE-IRS It is possible to obtain the control value ⁇ of the IRS through. (S1640)
  • the artificial intelligence system agent measures the channel for the BS-IRS-UE
  • the IRS control value ⁇ can be obtained by further considering the information, and is not limited to the above-described embodiment. Then, the aforementioned IRS control value ⁇ may be applied to the IRS (S1650). After that, the base station performs the calculated transmission beamforming. The reference signal may be transmitted to the terminal based on (S1660). The terminal may obtain a compensation value through measurement through the reference signal to which beamforming is applied, and transmit it to the artificial intelligence system agent. After that, the artificial intelligence system agent may perform learning based on the reward value. (S1670) At this time, for example, when the artificial intelligence system agent performs learning, in supervisor learning, the pre-learned model Through this, it is possible to quickly estimate the predicted value. However, it may not be easy to update the learning model.
  • reinforcement learning which is unsupervised learning, can continue learning the model by executing the predicted value and obtaining a corresponding reward value. At this time, it may be repeated until the compensation value or prediction value converges.
  • the number of iterations may be reduced through transfer learning or updating a learning model.
  • the artificial intelligence system agent may perform learning based on the above-described supervised learning or unsupervised learning, and may not be limited to a specific form.
  • the base station may acquire an environment change completion signal based on the above-described update (S1680). Through this, the environment change step may be completed.
  • the base station transmits a reference signal to the terminal to optimize the new environment. It may be a step to find .
  • the base station sends a reference signal to the terminal, and the terminal transmits the measured effective channel state information can be fed back to the base station.
  • the base station optimizes a given environment based on the received feedback information. may be determined and applied.
  • the base station may communicate with the terminal.
  • beamforming of the base station may be applied as it is to the beam management method of the existing system, and may not be limited to a specific form.
  • FIG. 17 is a diagram illustrating a method of performing reinforcement learning based on an artificial intelligence system in an intelligent wireless channel environment according to an embodiment of the present disclosure.
  • the artificial intelligence system agent may perform learning based on the reward value obtained by the terminal.
  • the agent of the artificial intelligence system may perform learning based on reinforcement learning.
  • reinforcement learning may consist of two inputs and one output.
  • the two inputs may be state information and a compensation value.
  • the state information may be a factor obtained based on a radio channel environment.
  • the state information is the BS-IRS estimated channel (acquired in the channel estimation step) ) and the UE-IRS estimated channel ( ) can be set based on.
  • the status information includes BS-IRS-UE channel information ( ), and may not be limited to a specific form.
  • the BS-IRS-UE channel information may be measured information.
  • the BS-IRS-UE channel information is an indirect indicator representing a channel through the IRS ( ), and is not limited to a specific form. Based on the above, state information may be set as shown in Equation 8 below.
  • the action may be defined as selecting phase shift values of each element of the IRS, and may be as shown in Equation 9 below.
  • the phase shift values may be displayed as continuous phase values according to the usability of the device and may be as shown in Equation 10.
  • the phase shift values may be expressed by protonating with predetermined bits, and may not be limited to a specific form. Alternatively, it may be expressed by being quantized with a predetermined bit.
  • the phase shift value may be set in the form of a codebook to reduce computation.
  • a case where the size of the codebook is
  • may be considered.
  • the action represents an index pointing to the codebook, and the IRS controller corresponds to the codebook.
  • a steering vector according to an angle may be set, and an action may be as shown in Equation 11 below.
  • the reward value may be a value transmitted from the terminal to the artificial intelligence system.
  • the compensation value may be the result of the control value selected by the IRS, as described above. For example, when a block for receiving a compensation value from the terminal is added to the IRS, the IRS may directly receive the compensation value. However, considering the cost of the IRS, the IRS may receive a compensation value from the terminal via the base station.
  • the terminal may directly deliver the above-described compensation value to the AI system agent.
  • the terminal transmits a compensation value to the base station, and the transmitted compensation value may be applied to the artificial intelligence system agent, and is not limited to a specific embodiment.
  • the reward value may be a value processed by the terminal.
  • the UE may add an IRS performance measurer to the UE in order to utilize the compensation value in various ways.
  • a compensation value based on the above may be as shown in Equation 12 below.
  • an issue regarding Exploration and Exploitation control may occur in reinforcement learning.
  • Exploration may utilize a behavior sampled from multiple behaviors to obtain a better reward value.
  • Exploitation can utilize already recognized information based on repetitive actions.
  • reinforcement learning proper control of Exploration and Exploitation may be required to achieve optimal performance, and an e-greedy method may be performed, which may be as shown in FIG. 18 .
  • e-greedy may be a method of executing Exploration with a predetermined probability. For example, referring to FIG. 18 , Total Regret can be improved by e-greedy compared to the greedy method that only exploits, as shown in 17 .
  • decaying e-greedy may be used as a method of approaching Total Regret logarithmically over time, but may not be limited to a specific form.
  • Equation 13 is an equation representing decaying e-greedy, where c is a constant, and
  • Exploration and Exploitation control can be further optimized using MAB (Multi Arm Bandit).
  • MAB Multi Arm Bandit
  • UMB Upper Confidence Bound
  • TS Thompson Sampling
  • Equation 14 below may be an expression for an action based on UCB
  • Equation 15 may be Upper Confidence.
  • Upper Confidence is the number of actions It is set to be inversely proportional to , so that more opportunities are given to actions that are not selected. Based on the foregoing, the opportunity may be halved over time.
  • Thompson sampling is implemented through a beta distribution based on the above, and is simpler than UCB and can easily control Exploration and Exploitation.
  • FIG. 19 is a diagram illustrating a structure of an artificial intelligence system that operates by selecting a model based on channel information obtained through an active sensor according to an embodiment of the present disclosure.
  • the artificial intelligence system agent obtains channel information through an active sensor. , Choose a suitable model based on the weight of the model You can initialize the weights you want to use.
  • the operation of the artificial intelligence system agent may be the same as that of FIG. 17, and the state information may be as shown in Equation 16 below.
  • the IRS-related channel estimate ( , ) and the phase shift value ⁇ of the element are the angles of the steering vector, respectively. can be treated as may also be replaced by SNR.
  • the wireless channel setting is completed, and the selected and learned model is the reference compensation value ( ) or more, the learned weight can be updated with the model weight selector.
  • an artificial intelligence system may apply various algorithms during reinforcement learning, but may require a model capable of processing a continuous space or a large discrete space, stable, and having a fast convergence speed.
  • DDPG Deep Deterministic Policy Gradient
  • DDPG has the advantages of both Policy Gradient and DQN. Therefore, DDPG is stable and can be used in continuous space.
  • convergence is possible quickly and it may be a relatively lightweight algorithm.
  • FIG. 20 illustrates reinforcement learning using DDPG according to an embodiment of the present disclosure.
  • the characteristics of both the Actor-Critic algorithm and the DQN algorithm may be included.
  • Q Value Action Function
  • behavior can be predicted through Actor network and Critic network, respectively.
  • the Critic network can be learned in the direction of reducing TD-Error (Temporal Difference) using Experience Replay Memory.
  • the learned Critic Network can be used for Policy Gradient calculation and learning.
  • the Bellman equation can be expressed as Equation 17 below through ⁇ instead of ⁇ .
  • the expected value is Transitions stored in Relay Buffer R ( ) can be expressed by minibatching and taking the average value.
  • the Actor Network may update the policy in the direction of maximizing the expected return, and may be as shown in Equation 21 below.
  • the expected value may be approximated using a Relay Buffer as shown in Equation 22 below.
  • DDPG may be easy to add Exploration as an off-policy model.
  • the Exploration policy may be generated by adding a noise distribution, and Equation 23 below may be considered.
  • the exploration rate can be adjusted using , and it can be adjusted adaptively using the aforementioned decaying e-greedy or UCB.
  • FIG. 21 is a diagram illustrating an IRS according to an embodiment of the present disclosure.
  • the IRS may include an active sensor.
  • the active sensor and the reflective element may be commonly used in the IRS.
  • an active sensor 2110 may operate at a specific location in the IRS.
  • the structure diagram of FIG. 21 is illustrated with an antenna and a phase shifter, but may not be limited thereto.
  • the IRS may be in the form of a PCB in which a copper plate is controlled by a diode or a varactor.
  • the form of the IRS Meta Surface may also be supported, and may not be limited to a specific form.
  • each element of the IRS may be selectable as a switch for use as a reflector and active sensor. More specifically, when an element of the IRS is used as a reflector, a switch in the corresponding element may disconnect the RF chain and be connected to a phase shifter. In this case, the phase shifter may be controlled by the phase value controlled by the IRS controller. On the other hand, when a corresponding element is used as an active sensor, switches in the corresponding element may be connected in an RF chain. At this time, the corresponding element demodulates the reference signal from the base station and the terminal through the baseband unit, and each channel information described above. , can be extracted.
  • FIG. 21 (b) may be an IRS structure using an independent active sensor.
  • the active sensor 2120 may be separately separated from the reflector. Therefore, differently from FIG. 21(a), the path of the active sensor and the path of the reflector controlled by the IRS controller can be distinguished.
  • the IRS performance measurer used by the terminal measures the performance of the control value set by the artificial intelligence system applied to the intelligent radio channel environment based on the reference signal transmitted from the base station and transmits it to the IRS. have. At this time, it may play a role of generating and processing a reward value (Reward) in consideration of performance learning for the control value set by the artificial intelligence system, as described above.
  • Reward a reward value
  • FIG. 22 illustrates the structure of an IRS performance measurer according to an embodiment of the present disclosure.
  • the IRS performance measurer may perform at least one of standardization/normalization, batching, and weight applicator functions.
  • the IRS performance measurer can calculate SNR, channel gain, MSE, and spectral efficiency based on the reference signal from the base station, as well as measure energy charging using other monitoring systems.
  • each piece of measurement information may be an area of various values.
  • the standardization/normalization block may standardize or normalize values of various areas of measurement information in consideration of respective weights.
  • the batching block plays a role of accumulating such measurement information at regular intervals, and can also perform normalization for each accumulation.
  • the weight application block may express the final output value by applying a weight to each metric. For example, in a receiver in which spectral efficiency is important, a weight of spectral efficiency measurement may be set high.
  • the IRS performance measurer may generate a compensation value in the form of integrating measurement information after processing.
  • the IRS performance measurer may generate a compensation value by individually separating measurement information, and may not be limited to a specific embodiment.
  • FIG. 23 is a diagram illustrating a method of performing optimization based on an artificial intelligence system according to an embodiment of the present disclosure.
  • a method of operating a base station in a wireless communication system may be provided.
  • the artificial intelligence system may be located in a base station, but may not be limited thereto.
  • the artificial intelligence system may be located in a separate cloud or terminal.
  • the base station may transmit the first reference signal to the IRS (S2310).
  • the IRS may include an active sensor.
  • each of the IRS elements may be used as any one of the above-described active sensor or reflective element, as described above.
  • the active sensor may be provided in the IRS independently of each element in the IRS, and is not limited to a specific embodiment.
  • the base station may receive channel information between the base station and the IRS and channel information between the IRS and the terminal measured based on the first reference signal from the IRS (S2320).
  • the base station can derive an IRS control value based on channel information between the base station and the IRS and channel information between the IRS and the terminal.
  • the base station may transmit the second reference signal to the terminal through the IRS by applying the determined beamforming.
  • the base station derives the IRS control value through the artificial intelligence system and derives it. It is possible to control the phase value of each element in the IRS by transmitting the IRS control value to the IRS, as described above.
  • the artificial intelligence system may derive the IRS control value by further considering channel information formed by the base station, the IRS, and the terminal, which is as described above. same.
  • the active sensor of the IRS can measure each channel information based on the above-described first reference signal transmitted from the base station and the third reference signal transmitted from the terminal, as described above.
  • the terminal when the base station transmits the second reference signal to the signal beamformed through the IRS based on the derived control value, the terminal generates a compensation value for the IRS control value based on the second reference signal.
  • the artificial intelligence system may perform learning based on the above-described compensation value, through which the IRS control value may be updated.
  • the base station may update beamforming based on the updated IRS control value and transmit the third reference signal to the terminal through the IRS based on the updated beamforming.
  • the compensation value information may be configured in the form of channel related information, but may not be limited to a specific form.
  • Embodiments of the present disclosure may be applied to various wireless access systems.
  • various wireless access systems there is a 3rd Generation Partnership Project (3GPP) or 3GPP2 system.
  • 3GPP 3rd Generation Partnership Project
  • 3GPP2 3rd Generation Partnership Project2
  • Embodiments of the present disclosure may be applied not only to the various wireless access systems, but also to all technical fields to which the various wireless access systems are applied. Furthermore, the proposed method can be applied to mmWave and THz communication systems using ultra-high frequency bands.
  • embodiments of the present disclosure may be applied to various applications such as free-running vehicles and drones.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Data Mining & Analysis (AREA)
  • Computing Systems (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Computational Linguistics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Evolutionary Computation (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Artificial Intelligence (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Health & Medical Sciences (AREA)
  • Power Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

The present disclosure may provide an operation method of a base station in a wireless communication system. An example of the present disclosure may comprise the steps of: transmitting a first reference signal to an intelligent reflecting surface; receiving, from the IRS, channel information between a base station and the IRS and channel information between the IRS and a terminal, the channel information being measured on the basis of the first reference signal; determining beamforming on the basis of the channel information between the base station and the IRS; deriving an IRS control value on the basis of the channel information between the base station and the IRS and the channel information between the IRS and the terminal; and applying the determined beamforming to transmit a second reference signal to the terminal through the IRS.

Description

무선 통신 시스템에서 신호를 송수신하는 방법 및 장치 Method and apparatus for transmitting and receiving signals in a wireless communication system
이하의 설명은 무선 통신 시스템에 대한 것으로, 무선 통신 시스템에서 단말 및 기지국이 신호를 송수신하는 방법 및 장치에 대한 것이다. The following description relates to a wireless communication system, and relates to a method and apparatus for transmitting and receiving signals between a terminal and a base station in a wireless communication system.
특히, 단말과 기지국은 지능형 반사판(Intelligent Reflect Surface, IRS)을 통해 무선 채널 환경을 제어하여 신호를 송수신하는 방법 및 장치를 제공할 수 있다.In particular, a terminal and a base station may provide a method and apparatus for transmitting and receiving signals by controlling a radio channel environment through an intelligent reflect surface (IRS).
무선 접속 시스템이 음성이나 데이터 등과 같은 다양한 종류의 통신 서비스를 제공하기 위해 광범위하게 전개되고 있다. 일반적으로 무선 접속 시스템은 가용한 시스템 자원(대역폭, 전송 파워 등)을 공유하여 다중 사용자와의 통신을 지원할 수 있는 다중 접속(multiple access) 시스템이다. 다중 접속 시스템의 예들로는 CDMA(code division multiple access) 시스템, FDMA(frequency division multiple access) 시스템, TDMA(time division multiple access) 시스템, OFDMA(orthogonal frequency division multiple access) 시스템, SC-FDMA(single carrier frequency division multiple access) 시스템 등이 있다.A wireless access system is widely deployed to provide various types of communication services such as voice and data. In general, a wireless access system is a multiple access system capable of supporting communication with multiple users by sharing available system resources (bandwidth, transmission power, etc.). Examples of the multiple access system include a code division multiple access (CDMA) system, a frequency division multiple access (FDMA) system, a time division multiple access (TDMA) system, an orthogonal frequency division multiple access (OFDMA) system, and a single carrier frequency (SC-FDMA) system. division multiple access) system.
특히, 많은 통신 기기들이 큰 통신 용량을 요구하게 됨에 따라 기존 RAT (radio access technology)에 비해 향상된 모바일 브로드밴드(enhanced mobile broadband, eMBB) 통신 기술이 제안되고 있다. 또한 다수의 기기 및 사물들을 연결하여 언제 어디서나 다양한 서비스를 제공하는 매시브 MTC (Machine Type Communications) 뿐만 아니라 신뢰성 (reliability) 및 지연(latency) 민감한 서비스/UE를 고려한 통신 시스템이 제안되고 있다. 이를 위한 다양한 기술 구성들이 제안되고 있다.In particular, as many communication devices require large communication capacity, an enhanced mobile broadband (eMBB) communication technology compared to existing radio access technology (RAT) has been proposed. In addition, communication systems considering reliability and latency sensitive services/UEs as well as massive Machine Type Communications (MTC) providing various services anytime and anywhere by connecting multiple devices and objects have been proposed. Various technical configurations for this have been proposed.
본 개시는 무선 통신 시스템에서 신호를 송수신하는 방법 및 장치를 제공할 수 있다. The present disclosure may provide a method and apparatus for transmitting and receiving signals in a wireless communication system.
본 개시는 무선 통신 시스템에서 지능형 반사판을 이용하여 단말과 기지국이 신호를 송수신하는 방법을 제공할 수 있다.The present disclosure may provide a method for transmitting and receiving signals between a terminal and a base station using an intelligent reflector in a wireless communication system.
본 개시는 무선 통신 시스템에서 지능형 무선 채널 환경에 기초하여 단말과 기지국이 신호를 송수신하는 방법을 제공할 수 있다.The present disclosure may provide a method for transmitting and receiving signals between a terminal and a base station based on an intelligent radio channel environment in a wireless communication system.
본 개시는 무선 통신 시스템에서 인공지능 시스템에 기초하여 지능형 반사판을 제어하는 방법을 제공할 수 있다.The present disclosure may provide a method for controlling an intelligent reflector based on an artificial intelligence system in a wireless communication system.
본 개시는 무선 통신 시스템에서 지능형 반사판을 제어하여 단말과 기지국이 신호를 송수신하는 방법을 제공할 수 있다.The present disclosure may provide a method for transmitting and receiving signals between a terminal and a base station by controlling an intelligent reflector in a wireless communication system.
본 개시에서 이루고자 하는 기술적 목적들은 이상에서 언급한 사항들로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 이하 설명할 본 개시의 실시 예들로부터 본 개시의 기술 구성이 적용되는 기술분야에서 통상의 지식을 가진 자에 의해 고려될 수 있다.The technical objects to be achieved in the present disclosure are not limited to the above-mentioned matters, and other technical problems not mentioned above are common knowledge in the art to which the technical configuration of the present disclosure is applied from the embodiments of the present disclosure to be described below. can be considered by those who have
본 개시의 일 예로서, 무선 통신 시스템에서 기지국 동작 방법을 제공할 수 있다. 본 개시의 일 예로서, 지능형 반사판으로 제 1 참조신호를 전송하는 단계, IRS로부터 제 1 참조신호에 기초하여 측정된 기지국과 IRS간 채널 정보 및 IRS와 단말 간 채널 정보를 수신하는 단계, 기지국과 IRS간 채널 정보에 기초하여 빔포밍을 결정하는 단계, 기지국과 IRS간 채널 정보 및 IRS와 단말 간 채널 정보에 기초하여 IRS 제어 값을 도출하는 단계 및 결정된 빔포밍을 적용하여 제 2 참조신호를 IRS를 통해 단말로 전송하는 단계를 포함할 수 있다.As an example of the present disclosure, a method for operating a base station in a wireless communication system may be provided. As an example of the present disclosure, transmitting a first reference signal to an intelligent reflector, receiving channel information between the base station and the IRS and channel information between the IRS and the terminal measured based on the first reference signal from the IRS, and Determining beamforming based on inter-IRS channel information, deriving an IRS control value based on channel information between the base station and the IRS and channel information between the IRS and the terminal, and applying the determined beamforming to convert the second reference signal to the IRS It may include transmitting to the terminal through.
또한, 본 개시의 일 예로서, 무선 통신 시스템에서 단말 동작 방법에 있어서, IRS로 제 1 참조신호를 전송하는 단계 및 기지국으로부터 빔포밍이 적용된 제 2 참조신호를 IRS를 통해 수신하는 단계를 포함하되, IRS는 IRS 제어 값에 기초하여 조정되고, 제 1 참조신호에 기초하여 IRS와 단말 간 채널 정보가 측정되고, 기지국은 IRS로부터 기지국과 IRS간 채널 정보 및 IRS와 단말 간 채널 정보를 수신하고, 기지국과 IRS간 채널 정보에 기초하여 빔포밍을 결정하고, 기지국과 IRS간 채널 정보 및 IRS와 단말 간 채널 정보에 기초하여 IRS 제어 값을 도출할 수 있다.In addition, as an example of the present disclosure, a method of operating a terminal in a wireless communication system includes transmitting a first reference signal to an IRS and receiving a second reference signal to which beamforming is applied from a base station through the IRS, , IRS is adjusted based on the IRS control value, channel information between the IRS and the terminal is measured based on the first reference signal, and the base station receives channel information between the base station and the IRS and channel information between the IRS and the terminal from the IRS, Beamforming may be determined based on channel information between the base station and the IRS, and an IRS control value may be derived based on channel information between the base station and the IRS and channel information between the IRS and the terminal.
또한, 본 개시의 일 예로서, 무선 통신 시스템의 기지국에 있어서, 송수신기 및 송수신기와 연결된 프로세서를 포함하고, 프로세서는, 송수신기를 통해 IRS로 제 1 참조신호를 전송하고, 송수신기를 통해 IRS로부터 제 1 참조신호에 기초하여 측정된 기지국과 IRS간 채널 정보 및 IRS와 단말 간 채널 정보를 수신하고, 기지국과 IRS간 채널 정보에 기초하여 빔포밍을 결정하고, 기지국과 IRS간 채널 정보 및 IRS와 단말 간 채널 정보에 기초하여 IRS 제어 값을 도출하고, 및 송수신기를 통해 결정된 빔포밍을 적용하여 제 2 참조신호를 IRS를 통해 단말로 전송할 수 있다.In addition, as an example of the present disclosure, a base station of a wireless communication system includes a transceiver and a processor connected to the transceiver, the processor transmits a first reference signal to an IRS through the transceiver, and transmits a first reference signal from the IRS through the transceiver. Channel information between the base station and the IRS and channel information between the IRS and the terminal measured based on the reference signal are received, beamforming is determined based on the channel information between the base station and the IRS, and channel information between the base station and the IRS and between the IRS and the terminal are determined. An IRS control value may be derived based on the channel information, and the second reference signal may be transmitted to the terminal through the IRS by applying beamforming determined through the transceiver.
또한, 본 개시의 일 예로서, 무선 통신 시스템의 단말에 있어서, 송수신기 및 송수신기와 연결된 프로세서를 포함할 수 있다. 이때, 프로세서는 송수신기를 통해 IRS로 제 1 참조신호를 전송하고, 및 송수신기를 통해 빔포밍이 적용된 제 2 참조신호를 IRS를 통해 수신하되, IRS는 IRS 제어 값에 기초하여 조정되고, 제 1 참조신호에 기초하여 IRS와 단말 간 채널 정보가 측정되고, 기지국은 IRS로부터 기지국과 IRS간 채널 정보 및 IRS와 단말 간 채널 정보를 수신하고, 기지국과 IRS간 채널 정보에 기초하여 빔포밍을 결정하고, 기지국과 IRS간 채널 정보 및 IRS와 단말 간 채널 정보에 기초하여 IRS 제어 값을 도출할 수 있다.In addition, as an example of the present disclosure, in a terminal of a wireless communication system, it may include a transceiver and a processor connected to the transceiver. At this time, the processor transmits the first reference signal to the IRS through the transceiver and receives the second reference signal to which beamforming is applied through the transceiver through the IRS, the IRS is adjusted based on the IRS control value, and the first reference signal Channel information between the IRS and the terminal is measured based on the signal, the base station receives channel information between the base station and the IRS and channel information between the IRS and the terminal from the IRS, and determines beamforming based on the channel information between the base station and the IRS, An IRS control value may be derived based on channel information between the base station and the IRS and channel information between the IRS and the terminal.
또한, 본 개시의 일 예로서, 적어도 하나의 메모리 및 적어도 하나의 메모리들과 기능적으로 연결되어 있는 적어도 하나의 프로세서를 포함하는 장치에 있어서, 적어도 하나의 프로세서는 장치가, 송수신기를 통해 IRS로 제 1 참조신호를 전송하고, 송수신기를 통해 IRS로부터 제 1 참조신호에 기초하여 측정된 기지국과 IRS간 채널 정보 및 IRS와 단말 간 채널 정보를 수신하고, 기지국과 IRS간 채널 정보에 기초하여 빔포밍을 결정하고, 기지국과 IRS간 채널 정보 및 IRS와 단말 간 채널 정보에 기초하여 IRS 제어 값을 도출하고, 및 송수신기를 통해 결정된 빔포밍을 적용하여 제 2 참조신호를 IRS를 통해 단말로 전송할 수 있다.In addition, as an example of the present disclosure, in an apparatus including at least one memory and at least one processor functionally connected to the at least one memory, the at least one processor is controlled by the IRS through a transceiver. 1 Transmits a reference signal, receives channel information between the base station and the IRS and channel information between the IRS and the terminal measured based on the first reference signal from the IRS through the transceiver, and performs beamforming based on the channel information between the base station and the IRS. determine, derive an IRS control value based on the channel information between the base station and the IRS and the channel information between the IRS and the terminal, and apply the beamforming determined through the transceiver to transmit the second reference signal to the terminal through the IRS.
또한, 본 개시의 일 예로서, 적어도 하나의 명령어(instructions)을 저장하는 비-일시적인(non-transitory) 컴퓨터 판독 가능 매체(computer-readable medium)에 있어서, 프로세서에 의해 실행 가능한(executable) 적어도 하나의 명령어를 포함하며, 적어도 하나의 명령어는, 장치가 송수신기를 통해 IRS로 제 1 참조신호를 전송하고, 송수신기를 통해 IRS로부터 제 1 참조신호에 기초하여 측정된 기지국과 IRS간 채널 정보 및 IRS와 단말 간 채널 정보를 수신하고, 기지국과 IRS간 채널 정보에 기초하여 빔포밍을 결정하고, 기지국과 IRS간 채널 정보 및 IRS와 단말 간 채널 정보에 기초하여 IRS 제어 값을 도출하고, 및 송수신기를 통해 결정된 빔포밍을 적용하여 제 2 참조신호를 IRS를 통해 단말로 전송할 수 있다.In addition, as an example of the present disclosure, in a non-transitory computer-readable medium storing at least one instruction, at least one executable by a processor Includes a command of, at least one command, the device transmits the first reference signal to the IRS through the transceiver, channel information between the base station and the IRS measured based on the first reference signal from the IRS through the transceiver and the IRS and Receiving channel information between terminals, determining beamforming based on channel information between the base station and the IRS, deriving an IRS control value based on channel information between the base station and the IRS and channel information between the IRS and the terminal, and through the transceiver The second reference signal may be transmitted to the terminal through the IRS by applying the determined beamforming.
다음의 사항들은 상술한 기지국, 단말, 장치 및 컴퓨터 기록 매체에 공통으로 적용될 수 있다.The following items may be commonly applied to the above-described base station, terminal, device, and computer recording medium.
본 개시의 일 예로서, 기지국은 인공지능 시스템을 통해 IRS 제어 값을 도출하고, 도출된 IRS 제어 값을 IRS로 전송하여 IRS 내의 각각의 요소에 대한 위상 값을 제어할 수 있다.As an example of the present disclosure, the base station may derive an IRS control value through an artificial intelligence system and transmit the derived IRS control value to the IRS to control the phase value of each element in the IRS.
또한, 본 개시의 일 예로서, 인공지능 시스템은 기지국, IRS 및 단말로 형성되는 채널 정보를 더 고려하여 IRS 제어 값을 도출할 수 있다.In addition, as an example of the present disclosure, the artificial intelligence system may derive an IRS control value by further considering channel information formed by the base station, the IRS, and the terminal.
또한, 본 개시의 일 예로서, IRS는 능동센서를 포함하고, 능동센서에 기초하여 제 1 참조신호에 대한 측정이 수행되어 기지국과 IRS 간의 채널 정보가 추정될 수 있다.In addition, as an example of the present disclosure, the IRS may include an active sensor, and based on the active sensor, measurement of the first reference signal may be performed to estimate channel information between the base station and the IRS.
또한, 본 개시의 일 예로서, 단말은 IRS로 제 3 참조신호를 전송하고, IRS와 단말 간 채널 정보는 제 3 참조신호에 기초하여 측정될 수 있다.In addition, as an example of the present disclosure, the terminal may transmit a third reference signal to the IRS, and channel information between the IRS and the terminal may be measured based on the third reference signal.
또한, 본 개시의 일 예로서, IRS 내의 각각의 요소는 능동센서 또는 반사소자 중 어느 하나로 사용될 수 있다.Also, as an example of the present disclosure, each element in the IRS may be used as either an active sensor or a reflective element.
또한, 본 개시의 일 예로서, 능동센서는 IRS 내의 각각의 요소와 독립적으로 IRS 내에 구비될 수 있다.In addition, as an example of the present disclosure, the active sensor may be provided in the IRS independently of each element in the IRS.
또한, 본 개시의 일 예로서, 단말이 제 2 참조신호를 IRS를 통해 기지국으로부터 수신하는 경우, 제 2 참조신호에 기초하여 IRS 제어 값에 대한 보상 값 정보를 생성하고, 생성된 보상 값 정보를 기지국으로 전송할 수 있다.In addition, as an example of the present disclosure, when the terminal receives the second reference signal from the base station through the IRS, compensation value information for the IRS control value is generated based on the second reference signal, and the generated compensation value information can be transmitted to the base station.
또한, 본 개시의 일 예로서, 기지국은 단말로부터 수신한 보상 값에 기초하여 인공지능 시스템을 통해 IRS 제어 값을 업데이트하고, 업데이트된 IRS 제어 값에 기초하여 빔포밍을 업데이트하고, 업데이트된 빔포밍에 기초하여 IRS를 통해 단말로 제 3 참조신호를 전송할 수 있다.In addition, as an example of the present disclosure, the base station updates the IRS control value through the artificial intelligence system based on the compensation value received from the terminal, updates the beamforming based on the updated IRS control value, and updates the updated beamforming Based on, the third reference signal may be transmitted to the terminal through the IRS.
또한, 본 개시의 일 예로서, 보상 값 정보는 채널 관련 정보 형태로 구성될 수 있다.Also, as an example of the present disclosure, compensation value information may be configured in the form of channel related information.
상술한 본 개시의 양태들은 본 개시의 바람직한 실시예들 중 일부에 불과하며, 본 개시의 기술적 특징들이 반영된 다양한 실시예들이 당해 기술분야의 통상적인 지식을 가진 자에 의해 이하 상술할 본 개시의 상세한 설명을 기반으로 도출되고 이해될 수 있다.The above-described aspects of the present disclosure are only some of the preferred embodiments of the present disclosure, and various embodiments in which the technical features of the present disclosure are reflected are the detailed descriptions of the present disclosure to be detailed below by those of ordinary skill in the art. It can be derived and understood based on the description.
본 개시에 기초한 실시예들에 의해 하기와 같은 효과가 있을 수 있다.The following effects may be obtained by embodiments based on the present disclosure.
본 개시에 기초한 실시예들에서 지능형 반사판을 이용하여 단말과 기지국이 신호를 송수신하는 방법을 제공할 수 있다.Embodiments based on the present disclosure may provide a method for transmitting and receiving signals between a terminal and a base station using an intelligent reflector.
본 개시에 기초한 실시예들에서 지능형 무선 채널 환경에 기초하여 단말과 기지국이 신호를 송수신하는 방법을 제공할 수 있다.Embodiments based on the present disclosure may provide a method for transmitting and receiving signals between a terminal and a base station based on an intelligent radio channel environment.
본 개시에 기초한 실시예들에서 인공지능 시스템에 기초하여 지능형 반사판을 제어하는 방법을 제공할 수 있다.In embodiments based on the present disclosure, a method for controlling an intelligent reflector based on an artificial intelligence system may be provided.
본 개시에 기초한 실시예들에서 지능형 반사판을 제어하여 단말과 기지국이 신호를 송수신하는 방법을 제공할 수 있다.Embodiments based on the present disclosure may provide a method for transmitting and receiving signals between a terminal and a base station by controlling an intelligent reflector.
본 개시의 실시 예들에서 얻을 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 이하의 본 개시의 실시 예들에 대한 기재로부터 본 개시의 기술 구성이 적용되는 기술분야에서 통상의 지식을 가진 자에게 명확하게 도출되고 이해될 수 있다. 즉, 본 개시에서 서술하는 구성을 실시함에 따른 의도하지 않은 효과들 역시 본 개시의 실시 예들로부터 당해 기술분야의 통상의 지식을 가진 자에 의해 도출될 수 있다.Effects obtainable in the embodiments of the present disclosure are not limited to the above-mentioned effects, and other effects not mentioned are technical fields to which the technical configuration of the present disclosure is applied from the description of the following embodiments of the present disclosure. can be clearly derived and understood by those skilled in the art. That is, unintended effects according to implementing the configuration described in the present disclosure may also be derived by those skilled in the art from the embodiments of the present disclosure.
이하에 첨부되는 도면들은 본 개시에 관한 이해를 돕기 위한 것으로, 상세한 설명과 함께 본 개시에 대한 실시 예들을 제공할 수 있다. 다만, 본 개시의 기술적 특징이 특정 도면에 한정되는 것은 아니며, 각 도면에서 개시하는 특징들은 서로 조합되어 새로운 실시 예로 구성될 수 있다. 각 도면에서의 참조 번호(reference numerals)들은 구조적 구성요소(structural elements)를 의미할 수 있다.The accompanying drawings are provided to aid understanding of the present disclosure, and may provide embodiments of the present disclosure together with a detailed description. However, the technical features of the present disclosure are not limited to specific drawings, and features disclosed in each drawing may be combined with each other to form a new embodiment. Reference numerals in each drawing may mean structural elements.
도 1은 본 개시에 적용 가능한 통신 시스템 예시를 나타낸 도면이다.1 is a diagram illustrating an example of a communication system applicable to the present disclosure.
도 2는 본 개시에 적용 가능한 무선 기기의 예시를 나타낸 도면이다.2 is a diagram illustrating an example of a wireless device applicable to the present disclosure.
도 3은 본 개시에 적용 가능한 무선 기기의 다른 예시를 나타낸 도면이다.3 is a diagram illustrating another example of a wireless device applicable to the present disclosure.
도 4는 본 개시에 적용 가능한 휴대 기기의 예시를 나타낸 도면이다.4 is a diagram illustrating an example of a portable device applicable to the present disclosure.
도 5는 본 개시에 적용 가능한 차량 또는 자율 주행 차량의 예시를 나타낸 도면이다.5 is a diagram illustrating an example of a vehicle or autonomous vehicle applicable to the present disclosure.
도 6은 본 개시에 적용 가능한 AI(Artificial Intelligence)의 예시를 나타낸 도면이다.6 is a diagram showing an example of AI (Artificial Intelligence) applicable to the present disclosure.
도 7은 본 개시에 적용 가능한 6G 시스템에서 제공 가능한 통신 구조의 일례를 나타낸 도면이다.7 is a diagram showing an example of a communication structure that can be provided in a 6G system applicable to the present disclosure.
도 8은 본 개시에 적용 가능한 전자기 스펙트럼을 나타낸 도면이다.8 is a diagram showing an electromagnetic spectrum applicable to the present disclosure.
도 9는 본 개시의 일 실시예에 따라 무선 채널 환경을 나타낸 도면이다.9 is a diagram illustrating a radio channel environment according to an embodiment of the present disclosure.
도 10은 본 개시의 일 실시예에 따라 지능형 무선 환경을 나타낸 도면이다. 10 is a diagram illustrating an intelligent wireless environment according to an embodiment of the present disclosure.
도 11은 본 개시의 일 실시예에 따라, 기존 무선 채널 환경 및 지능형 무선 채널 환경을 나타낸 도면이다. 11 is a diagram illustrating an existing radio channel environment and an intelligent radio channel environment according to an embodiment of the present disclosure.
도 12는 본 개시의 일 실시예에 따라 지능형 무선 채널 환경에서 최적화를 수행하는 방법을 나타낸 도면이다.12 is a diagram illustrating a method of performing optimization in an intelligent radio channel environment according to an embodiment of the present disclosure.
도 13은 본 개시의 일 실시예에 따라 신뢰 구간을 나타낸 도면이다.13 is a diagram illustrating a confidence interval according to an embodiment of the present disclosure.
도 14는 본 개시의 일 실시예에 따라 지능형 무선 채널 환경에서 최적화를 수행하는 방법을 나타낸 도면이다.14 is a diagram illustrating a method of performing optimization in an intelligent radio channel environment according to an embodiment of the present disclosure.
도 15는 본 개시의 일 실시예에 따라 지능형 무선 환경을 설정하기 위해 기지국, IRS 및 단말의 신호 흐름을 나타낸 도면이다.15 is a diagram illustrating signal flows of a base station, an IRS, and a terminal to configure an intelligent wireless environment according to an embodiment of the present disclosure.
도 16은 본 개시의 일 실시예에 따라 지능형 무선 채널 환경에서 최적화를 수행하는 방법을 나타낸 순서도이다. 16 is a flowchart illustrating a method of performing optimization in an intelligent radio channel environment according to an embodiment of the present disclosure.
도 17은 본 개시의 일 실시예에 따라 지능형 무선채널 환경에서 인공지능 시스템에 기초하여 강화학습을 수행하는 방법을 나타낸 도면이다. 17 is a diagram illustrating a method of performing reinforcement learning based on an artificial intelligence system in an intelligent wireless channel environment according to an embodiment of the present disclosure.
도 18은 본 개시의 일 실시예에 따라 강화학습에 기초하여 total regret을 나타낸 도면이다.18 is a diagram showing total regret based on reinforcement learning according to an embodiment of the present disclosure.
도 19는 본 개시의 일 실시예에 따라 능동센서를 통해서 얻은 채널정보를 기반으로 모델을 선택하여 동작하는 인공지능 시스템 구조를 나타낸 도면이다. 19 is a diagram showing the structure of an artificial intelligence system operating by selecting a model based on channel information obtained through an active sensor according to an embodiment of the present disclosure.
도 20은 본 개시의 일 실시예에 따라 DDPG를 사용한 강화학습을 나타내고 있다. 20 illustrates reinforcement learning using DDPG according to an embodiment of the present disclosure.
도 21은 본 개시의 일 실시예에 따라 IRS를 나타낸 도면이다. 21 is a diagram illustrating an IRS according to an embodiment of the present disclosure.
도 22는 본 개의 일 실시예에 따라, IRS 성능 측정기의 구조를 나타내고 있다. 22 shows the structure of an IRS performance measurer according to an embodiment of the present invention.
도 23은 본 개시의 일 실시예에 따라 인공지능 시스템에 기초하여 최적화를 수행하는 방법을 나타낸 도면이다.23 is a diagram illustrating a method of performing optimization based on an artificial intelligence system according to an embodiment of the present disclosure.
이하의 실시 예들은 본 개시의 구성요소들과 특징들을 소정 형태로 결합한 것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고려될 수 있다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결합되지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및/또는 특징들을 결합하여 본 개시의 실시 예를 구성할 수도 있다. 본 개시의 실시 예들에서 설명되는 동작들의 순서는 변경될 수 있다. 어느 실시 예의 일부 구성이나 특징은 다른 실시 예에 포함될 수 있고, 또는 다른 실시 예의 대응하는 구성 또는 특징과 교체될 수 있다.The following embodiments are those that combine elements and features of the present disclosure in a predetermined form. Each component or feature may be considered optional unless explicitly stated otherwise. Each component or feature may be implemented in a form not combined with other components or features. In addition, an embodiment of the present disclosure may be configured by combining some elements and/or features. The order of operations described in the embodiments of the present disclosure may be changed. Some components or features of one embodiment may be included in another embodiment, or may be replaced with corresponding components or features of another embodiment.
도면에 대한 설명에서, 본 개시의 요지를 흐릴 수 있는 절차 또는 단계 등은 기술하지 않았으며, 당업자의 수준에서 이해할 수 있을 정도의 절차 또는 단계는 또한 기술하지 아니하였다.In the description of the drawings, procedures or steps that may obscure the gist of the present disclosure have not been described, and procedures or steps that can be understood by those skilled in the art have not been described.
명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함(comprising 또는 including)"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다. 또한, 명세서에 기재된 "...부", "...기", "모듈" 등의 용어는 적어도 하나의 기능이나 동작을 처리하는 단위를 의미하며, 이는 하드웨어나 소프트웨어 또는 하드웨어 및 소프트웨어의 결합으로 구현될 수 있다. 또한, "일(a 또는 an)", "하나(one)", "그(the)" 및 유사 관련어는 본 개시를 기술하는 문맥에 있어서(특히, 이하의 청구항의 문맥에서) 본 명세서에 달리 지시되거나 문맥에 의해 분명하게 반박되지 않는 한, 단수 및 복수 모두를 포함하는 의미로 사용될 수 있다.Throughout the specification, when a part is said to "comprising" or "including" a certain element, it means that it may further include other elements, not excluding other elements, unless otherwise stated. do. In addition, terms such as “… unit”, “… unit”, and “module” described in the specification mean a unit that processes at least one function or operation, which is hardware or software or a combination of hardware and software. can be implemented as Also, "a or an", "one", "the" and similar related words in the context of describing the present disclosure (particularly in the context of the claims below) Unless indicated or otherwise clearly contradicted by context, both the singular and the plural can be used.
본 명세서에서 본 개시의 실시예들은 기지국과 이동국 간의 데이터 송수신 관계를 중심으로 설명되었다. 여기서, 기지국은 이동국과 직접적으로 통신을 수행하는 네트워크의 종단 노드(terminal node)로서의 의미가 있다. 본 문서에서 기지국에 의해 수행되는 것으로 설명된 특정 동작은 경우에 따라서는 기지국의 상위 노드(upper node)에 의해 수행될 수도 있다.Embodiments of the present disclosure in this specification have been described with a focus on a data transmission/reception relationship between a base station and a mobile station. Here, a base station has meaning as a terminal node of a network that directly communicates with a mobile station. A specific operation described as being performed by a base station in this document may be performed by an upper node of the base station in some cases.
즉, 기지국을 포함하는 다수의 네트워크 노드들(network nodes)로 이루어지는 네트워크에서 이동국과의 통신을 위해 수행되는 다양한 동작들은 기지국 또는 기지국 이외의 다른 네트워크 노드들에 의해 수행될 수 있다. 이때, '기지국'은 고정국(fixed station), Node B, eNB(eNode B), gNB(gNode B), ng-eNB, 발전된 기지국(advanced base station, ABS) 또는 억세스 포인트(access point) 등의 용어에 의해 대체될 수 있다.That is, in a network composed of a plurality of network nodes including a base station, various operations performed for communication with a mobile station may be performed by the base station or network nodes other than the base station. At this time, the 'base station' is a term such as a fixed station, Node B, eNode B, gNode B, ng-eNB, advanced base station (ABS), or access point. can be replaced by
또한, 본 개시의 실시 예들에서 단말(terminal)은 사용자 기기(user equipment, UE), 이동국(mobile station, MS), 가입자국(subscriber station, SS), 이동 가입자 단말(mobile subscriber station, MSS), 이동 단말(mobile terminal) 또는 발전된 이동 단말(advanced mobile station, AMS) 등의 용어로 대체될 수 있다.In addition, in the embodiments of the present disclosure, a terminal includes a user equipment (UE), a mobile station (MS), a subscriber station (SS), a mobile subscriber station (MSS), It may be replaced with terms such as mobile terminal or advanced mobile station (AMS).
또한, 송신단은 데이터 서비스 또는 음성 서비스를 제공하는 고정 및/또는 이동 노드를 말하고, 수신단은 데이터 서비스 또는 음성 서비스를 수신하는 고정 및/또는 이동 노드를 의미한다. 따라서, 상향링크의 경우, 이동국이 송신단이 되고, 기지국이 수신단이 될 수 있다. 마찬가지로, 하향링크의 경우, 이동국이 수신단이 되고, 기지국이 송신단이 될 수 있다.In addition, the transmitting end refers to a fixed and/or mobile node providing data service or voice service, and the receiving end refers to a fixed and/or mobile node receiving data service or voice service. Therefore, in the case of uplink, the mobile station can be a transmitter and the base station can be a receiver. Similarly, in the case of downlink, the mobile station may be a receiving end and the base station may be a transmitting end.
본 개시의 실시 예들은 무선 접속 시스템들인 IEEE 802.xx 시스템, 3GPP(3rd Generation Partnership Project) 시스템, 3GPP LTE(Long Term Evolution) 시스템, 3GPP 5G(5th generation) NR(New Radio) 시스템 및 3GPP2 시스템 중 적어도 하나에 개시된 표준 문서들에 의해 뒷받침될 수 있으며, 특히, 본 개시의 실시 예들은 3GPP TS(technical specification) 38.211, 3GPP TS 38.212, 3GPP TS 38.213, 3GPP TS 38.321 및 3GPP TS 38.331 문서들에 의해 뒷받침 될 수 있다. Embodiments of the present disclosure are wireless access systems, such as an IEEE 802.xx system, a 3rd Generation Partnership Project (3GPP) system, a 3GPP Long Term Evolution (LTE) system, a 3GPP 5G (5th generation) NR (New Radio) system, and a 3GPP2 system. It may be supported by at least one disclosed standard document, and in particular, the embodiments of the present disclosure are supported by 3GPP technical specification (TS) 38.211, 3GPP TS 38.212, 3GPP TS 38.213, 3GPP TS 38.321 and 3GPP TS 38.331 documents It can be.
또한, 본 개시의 실시 예들은 다른 무선 접속 시스템에도 적용될 수 있으며, 상술한 시스템으로 한정되는 것은 아니다. 일 예로, 3GPP 5G NR 시스템 이후에 적용되는 시스템에 대해서도 적용 가능할 수 있으며, 특정 시스템에 한정되지 않는다.In addition, embodiments of the present disclosure may be applied to other wireless access systems, and are not limited to the above-described systems. For example, it may also be applicable to a system applied after the 3GPP 5G NR system, and is not limited to a specific system.
즉, 본 개시의 실시 예들 중 설명하지 않은 자명한 단계들 또는 부분들은 상기 문서들을 참조하여 설명될 수 있다. 또한, 본 문서에서 개시하고 있는 모든 용어들은 상기 표준 문서에 의해 설명될 수 있다.That is, obvious steps or parts not described in the embodiments of the present disclosure may be described with reference to the above documents. In addition, all terms disclosed in this document can be explained by the standard document.
이하, 본 개시에 따른 바람직한 실시 형태를 첨부된 도면을 참조하여 상세하게 설명한다. 첨부된 도면과 함께 이하에 개시될 상세한 설명은 본 개시의 예시적인 실시 형태를 설명하고자 하는 것이며, 본 개시의 기술 구성이 실시될 수 있는 유일한 실시형태를 나타내고자 하는 것이 아니다.Hereinafter, preferred embodiments according to the present disclosure will be described in detail with reference to the accompanying drawings. The detailed description set forth below in conjunction with the accompanying drawings is intended to describe exemplary embodiments of the present disclosure, and is not intended to represent the only embodiments in which the technical configurations of the present disclosure may be practiced.
또한, 본 개시의 실시 예들에서 사용되는 특정 용어들은 본 개시의 이해를 돕기 위해서 제공된 것이며, 이러한 특정 용어의 사용은 본 개시의 기술적 사상을 벗어나지 않는 범위에서 다른 형태로 변경될 수 있다.In addition, specific terms used in the embodiments of the present disclosure are provided to aid understanding of the present disclosure, and the use of these specific terms may be changed in other forms without departing from the technical spirit of the present disclosure.
이하의 기술은 CDMA(code division multiple access), FDMA(frequency division multiple access), TDMA(time division multiple access), OFDMA(orthogonal frequency division multiple access), SC-FDMA(single carrier frequency division multiple access) 등과 같은 다양한 무선 접속 시스템에 적용될 수 있다.The following technologies include code division multiple access (CDMA), frequency division multiple access (FDMA), time division multiple access (TDMA), orthogonal frequency division multiple access (OFDMA), single carrier frequency division multiple access (SC-FDMA), and the like. It can be applied to various wireless access systems.
하기에서는 이하 설명을 명확하게 하기 위해, 3GPP 통신 시스템(e.g.(예, LTE, NR 등)을 기반으로 설명하지만 본 발명의 기술적 사상이 이에 제한되는 것은 아니다. LTE는 3GPP TS 36.xxx Release 8 이후의 기술을 의미할 수 있다. 세부적으로, 3GPP TS 36.xxx Release 10 이후의 LTE 기술은 LTE-A로 지칭되고, 3GPP TS 36.xxx Release 13 이후의 LTE 기술은 LTE-A pro로 지칭될 수 있다. 3GPP NR은 TS 38.xxx Release 15 이후의 기술을 의미할 수 있다. 3GPP 6G는 TS Release 17 및/또는 Release 18 이후의 기술을 의미할 수 있다. "xxx"는 표준 문서 세부 번호를 의미한다. LTE/NR/6G는 3GPP 시스템으로 통칭될 수 있다.In the following, in order to clarify the following description, the description is based on the 3GPP communication system (e.g. (eg, LTE, NR, etc.), but the technical spirit of the present invention is not limited thereto. LTE is 3GPP TS 36.xxx Release 8 or later In detail, LTE technology after 3GPP TS 36.xxx Release 10 is referred to as LTE-A, and LTE technology after 3GPP TS 36.xxx Release 13 may be referred to as LTE-A pro. 3GPP NR may mean technology after TS 38.xxx Release 15. 3GPP 6G may mean technology after TS Release 17 and/or Release 18. "xxx" means a standard document detail number. LTE/NR/6G may be collectively referred to as a 3GPP system.
본 개시에 사용된 배경기술, 용어, 약어 등에 관해서는 본 발명 이전에 공개된 표준 문서에 기재된 사항을 참조할 수 있다. 일 예로, 36.xxx 및 38.xxx 표준 문서를 참조할 수 있다.For background art, terms, abbreviations, etc. used in the present disclosure, reference may be made to matters described in standard documents published prior to the present invention. As an example, 36.xxx and 38.xxx standard documents may be referred to.
본 개시에 적용 가능한 통신 시스템Communication systems applicable to the present disclosure
이로 제한되는 것은 아니지만, 본 문서에 개시된 본 개시의 다양한 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들은 기기들 간에 무선 통신/연결(예, 5G)을 필요로 하는 다양한 분야에 적용될 수 있다.Although not limited thereto, various descriptions, functions, procedures, proposals, methods and / or operational flowcharts of the present disclosure disclosed in this document may be applied to various fields requiring wireless communication / connection (eg, 5G) between devices. have.
이하, 도면을 참조하여 보다 구체적으로 예시한다. 이하의 도면/설명에서 동일한 도면 부호는 다르게 기술하지 않는 한, 동일하거나 대응되는 하드웨어 블록, 소프트웨어 블록 또는 기능 블록을 예시할 수 있다.Hereinafter, it will be exemplified in more detail with reference to the drawings. In the following drawings/description, the same reference numerals may represent the same or corresponding hardware blocks, software blocks or functional blocks unless otherwise specified.
도 1은 본 개시에 적용되는 통신 시스템 예시를 도시한 도면이다.1 is a diagram illustrating an example of a communication system applied to the present disclosure.
도 1을 참조하면, 본 개시에 적용되는 통신 시스템(100)은 무선 기기, 기지국 및 네트워크를 포함한다. 여기서, 무선 기기는 무선 접속 기술(예, 5G NR, LTE)을 이용하여 통신을 수행하는 기기를 의미하며, 통신/무선/5G 기기로 지칭될 수 있다. 이로 제한되는 것은 아니지만, 무선 기기는 로봇(100a), 차량(100b-1, 100b-2), XR(extended reality) 기기(100c), 휴대 기기(hand-held device)(100d), 가전(home appliance)(100e), IoT(Internet of Thing) 기기(100f), AI(artificial intelligence) 기기/서버(100g)를 포함할 수 있다. 예를 들어, 차량은 무선 통신 기능이 구비된 차량, 자율 주행 차량, 차량간 통신을 수행할 수 있는 차량 등을 포함할 수 있다. 여기서, 차량(100b-1, 100b-2)은 UAV(unmanned aerial vehicle)(예, 드론)를 포함할 수 있다. XR 기기(100c)는 AR(augmented reality)/VR(virtual reality)/MR(mixed reality) 기기를 포함하며, HMD(head-mounted device), 차량에 구비된 HUD(head-up display), 텔레비전, 스마트폰, 컴퓨터, 웨어러블 디바이스, 가전 기기, 디지털 사이니지(signage), 차량, 로봇 등의 형태로 구현될 수 있다. 휴대 기기(100d)는 스마트폰, 스마트패드, 웨어러블 기기(예, 스마트워치, 스마트글래스), 컴퓨터(예, 노트북 등) 등을 포함할 수 있다. 가전(100e)은 TV, 냉장고, 세탁기 등을 포함할 수 있다. IoT 기기(100f)는 센서, 스마트 미터 등을 포함할 수 있다. 예를 들어, 기지국(120), 네트워크(130)는 무선 기기로도 구현될 수 있으며, 특정 무선 기기(120a)는 다른 무선 기기에게 기지국/네트워크 노드로 동작할 수도 있다.Referring to FIG. 1 , a communication system 100 applied to the present disclosure includes a wireless device, a base station, and a network. Here, the wireless device means a device that performs communication using a radio access technology (eg, 5G NR, LTE), and may be referred to as a communication/wireless/5G device. Although not limited thereto, the wireless device includes a robot 100a, a vehicle 100b-1 and 100b-2, an extended reality (XR) device 100c, a hand-held device 100d, and a home appliance. appliance) 100e, Internet of Thing (IoT) device 100f, and artificial intelligence (AI) device/server 100g. For example, the vehicle may include a vehicle equipped with a wireless communication function, an autonomous vehicle, a vehicle capable of performing inter-vehicle communication, and the like. Here, the vehicles 100b-1 and 100b-2 may include an unmanned aerial vehicle (UAV) (eg, a drone). The XR device 100c includes augmented reality (AR)/virtual reality (VR)/mixed reality (MR) devices, and includes a head-mounted device (HMD), a head-up display (HUD) installed in a vehicle, a television, It may be implemented in the form of smart phones, computers, wearable devices, home appliances, digital signage, vehicles, robots, and the like. The mobile device 100d may include a smart phone, a smart pad, a wearable device (eg, a smart watch, a smart glass), a computer (eg, a laptop computer), and the like. The home appliance 100e may include a TV, a refrigerator, a washing machine, and the like. The IoT device 100f may include a sensor, a smart meter, and the like. For example, the base station 120 and the network 130 may also be implemented as a wireless device, and a specific wireless device 120a may operate as a base station/network node to other wireless devices.
무선 기기(100a~100f)는 기지국(120)을 통해 네트워크(130)와 연결될 수 있다. 무선 기기(100a~100f)에는 AI 기술이 적용될 수 있으며, 무선 기기(100a~100f)는 네트워크(130)를 통해 AI 서버(100g)와 연결될 수 있다. 네트워크(130)는 3G 네트워크, 4G(예, LTE) 네트워크 또는 5G(예, NR) 네트워크 등을 이용하여 구성될 수 있다. 무선 기기(100a~100f)는 기지국(120)/네트워크(130)를 통해 서로 통신할 수도 있지만, 기지국(120)/네트워크(130)를 통하지 않고 직접 통신(예, 사이드링크 통신(sidelink communication))할 수도 있다. 예를 들어, 차량들(100b-1, 100b-2)은 직접 통신(예, V2V(vehicle to vehicle)/V2X(vehicle to everything) communication)을 할 수 있다. 또한, IoT 기기(100f)(예, 센서)는 다른 IoT 기기(예, 센서) 또는 다른 무선 기기(100a~100f)와 직접 통신을 할 수 있다.The wireless devices 100a to 100f may be connected to the network 130 through the base station 120 . AI technology may be applied to the wireless devices 100a to 100f, and the wireless devices 100a to 100f may be connected to the AI server 100g through the network 130. The network 130 may be configured using a 3G network, a 4G (eg LTE) network, or a 5G (eg NR) network. The wireless devices 100a to 100f may communicate with each other through the base station 120/network 130, but communicate directly without going through the base station 120/network 130 (e.g., sidelink communication). You may. For example, the vehicles 100b-1 and 100b-2 may perform direct communication (eg, vehicle to vehicle (V2V)/vehicle to everything (V2X) communication). In addition, the IoT device 100f (eg, sensor) may directly communicate with other IoT devices (eg, sensor) or other wireless devices 100a to 100f.
본 개시에 적용 가능한 통신 시스템Communication systems applicable to the present disclosure
도 2는 본 개시에 적용될 수 있는 무선 기기의 예시를 도시한 도면이다.2 is a diagram illustrating an example of a wireless device applicable to the present disclosure.
도 2를 참조하면, 제1 무선 기기(200a)와 제2 무선 기기(200b)는 다양한 무선 접속 기술(예, LTE, NR)을 통해 무선 신호를 송수신할 수 있다. 여기서, {제1 무선 기기(200a), 제2 무선 기기(200b)}은 도 1의 {무선 기기(100x), 기지국(120)} 및/또는 {무선 기기(100x), 무선 기기(100x)}에 대응할 수 있다.Referring to FIG. 2 , a first wireless device 200a and a second wireless device 200b may transmit and receive radio signals through various wireless access technologies (eg, LTE and NR). Here, {the first wireless device 200a, the second wireless device 200b} denotes the {wireless device 100x and the base station 120} of FIG. 1 and/or the {wireless device 100x and the wireless device 100x. } can correspond.
제1 무선 기기(200a)는 하나 이상의 프로세서(202a) 및 하나 이상의 메모리(204a)를 포함하며, 추가적으로 하나 이상의 송수신기(206a) 및/또는 하나 이상의 안테나(208a)을 더 포함할 수 있다. 프로세서(202a)는 메모리(204a) 및/또는 송수신기(206a)를 제어하며, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들을 구현하도록 구성될 수 있다. 예를 들어, 프로세서(202a)는 메모리(204a) 내의 정보를 처리하여 제1 정보/신호를 생성한 뒤, 송수신기(206a)을 통해 제1 정보/신호를 포함하는 무선 신호를 전송할 수 있다. 또한, 프로세서(202a)는 송수신기(206a)를 통해 제2 정보/신호를 포함하는 무선 신호를 수신한 뒤, 제2 정보/신호의 신호 처리로부터 얻은 정보를 메모리(204a)에 저장할 수 있다. 메모리(204a)는 프로세서(202a)와 연결될 수 있고, 프로세서(202a)의 동작과 관련한 다양한 정보를 저장할 수 있다. 예를 들어, 메모리(204a)는 프로세서(202a)에 의해 제어되는 프로세스들 중 일부 또는 전부를 수행하거나, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들을 수행하기 위한 명령들을 포함하는 소프트웨어 코드를 저장할 수 있다. 여기서, 프로세서(202a)와 메모리(204a)는 무선 통신 기술(예, LTE, NR)을 구현하도록 설계된 통신 모뎀/회로/칩의 일부일 수 있다. 송수신기(206a)는 프로세서(202a)와 연결될 수 있고, 하나 이상의 안테나(208a)를 통해 무선 신호를 송신 및/또는 수신할 수 있다. 송수신기(206a)는 송신기 및/또는 수신기를 포함할 수 있다. 송수신기(206a)는 RF(radio frequency) 유닛과 혼용될 수 있다. 본 개시에서 무선 기기는 통신 모뎀/회로/칩을 의미할 수도 있다.The first wireless device 200a includes one or more processors 202a and one or more memories 204a, and may further include one or more transceivers 206a and/or one or more antennas 208a. The processor 202a controls the memory 204a and/or the transceiver 206a and may be configured to implement the descriptions, functions, procedures, suggestions, methods and/or operational flow diagrams disclosed herein. For example, the processor 202a may process information in the memory 204a to generate first information/signal, and transmit a radio signal including the first information/signal through the transceiver 206a. In addition, the processor 202a may receive a radio signal including the second information/signal through the transceiver 206a and store information obtained from signal processing of the second information/signal in the memory 204a. The memory 204a may be connected to the processor 202a and may store various information related to the operation of the processor 202a. For example, memory 204a may perform some or all of the processes controlled by processor 202a, or instructions for performing the descriptions, functions, procedures, suggestions, methods, and/or flowcharts of operations disclosed herein. It may store software codes including them. Here, the processor 202a and the memory 204a may be part of a communication modem/circuit/chip designed to implement a wireless communication technology (eg, LTE, NR). The transceiver 206a may be coupled to the processor 202a and may transmit and/or receive wireless signals through one or more antennas 208a. The transceiver 206a may include a transmitter and/or a receiver. The transceiver 206a may be used interchangeably with a radio frequency (RF) unit. In the present disclosure, a wireless device may mean a communication modem/circuit/chip.
제2 무선 기기(200b)는 하나 이상의 프로세서(202b), 하나 이상의 메모리(204b)를 포함하며, 추가적으로 하나 이상의 송수신기(206b) 및/또는 하나 이상의 안테나(208b)를 더 포함할 수 있다. 프로세서(202b)는 메모리(204b) 및/또는 송수신기(206b)를 제어하며, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들을 구현하도록 구성될 수 있다. 예를 들어, 프로세서(202b)는 메모리(204b) 내의 정보를 처리하여 제3 정보/신호를 생성한 뒤, 송수신기(206b)를 통해 제3 정보/신호를 포함하는 무선 신호를 전송할 수 있다. 또한, 프로세서(202b)는 송수신기(206b)를 통해 제4 정보/신호를 포함하는 무선 신호를 수신한 뒤, 제4 정보/신호의 신호 처리로부터 얻은 정보를 메모리(204b)에 저장할 수 있다. 메모리(204b)는 프로세서(202b)와 연결될 수 있고, 프로세서(202b)의 동작과 관련한 다양한 정보를 저장할 수 있다. 예를 들어, 메모리(204b)는 프로세서(202b)에 의해 제어되는 프로세스들 중 일부 또는 전부를 수행하거나, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들을 수행하기 위한 명령들을 포함하는 소프트웨어 코드를 저장할 수 있다. 여기서, 프로세서(202b)와 메모리(204b)는 무선 통신 기술(예, LTE, NR)을 구현하도록 설계된 통신 모뎀/회로/칩의 일부일 수 있다. 송수신기(206b)는 프로세서(202b)와 연결될 수 있고, 하나 이상의 안테나(208b)를 통해 무선 신호를 송신 및/또는 수신할 수 있다. 송수신기(206b)는 송신기 및/또는 수신기를 포함할 수 있다 송수신기(206b)는 RF 유닛과 혼용될 수 있다. 본 개시에서 무선 기기는 통신 모뎀/회로/칩을 의미할 수도 있다.The second wireless device 200b includes one or more processors 202b, one or more memories 204b, and may further include one or more transceivers 206b and/or one or more antennas 208b. The processor 202b controls the memory 204b and/or the transceiver 206b and may be configured to implement the descriptions, functions, procedures, suggestions, methods and/or operational flow diagrams disclosed herein. For example, the processor 202b may process information in the memory 204b to generate third information/signal, and transmit a radio signal including the third information/signal through the transceiver 206b. In addition, the processor 202b may receive a radio signal including the fourth information/signal through the transceiver 206b and store information obtained from signal processing of the fourth information/signal in the memory 204b. The memory 204b may be connected to the processor 202b and may store various information related to the operation of the processor 202b. For example, the memory 204b may perform some or all of the processes controlled by the processor 202b, or instructions for performing the descriptions, functions, procedures, suggestions, methods, and/or flowcharts of operations disclosed herein. It may store software codes including them. Here, the processor 202b and the memory 204b may be part of a communication modem/circuit/chip designed to implement a wireless communication technology (eg, LTE, NR). The transceiver 206b may be coupled to the processor 202b and may transmit and/or receive wireless signals through one or more antennas 208b. The transceiver 206b may include a transmitter and/or a receiver. The transceiver 206b may be used interchangeably with an RF unit. In the present disclosure, a wireless device may mean a communication modem/circuit/chip.
이하, 무선 기기(200a, 200b)의 하드웨어 요소에 대해 보다 구체적으로 설명한다. 이로 제한되는 것은 아니지만, 하나 이상의 프로토콜 계층이 하나 이상의 프로세서(202a, 202b)에 의해 구현될 수 있다. 예를 들어, 하나 이상의 프로세서(202a, 202b)는 하나 이상의 계층(예, PHY(physical), MAC(media access control), RLC(radio link control), PDCP(packet data convergence protocol), RRC(radio resource control), SDAP(service data adaptation protocol)와 같은 기능적 계층)을 구현할 수 있다. 하나 이상의 프로세서(202a, 202b)는 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들에 따라 하나 이상의 PDU(Protocol Data Unit) 및/또는 하나 이상의 SDU(service data unit)를 생성할 수 있다. 하나 이상의 프로세서(202a, 202b)는 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들에 따라 메시지, 제어정보, 데이터 또는 정보를 생성할 수 있다. 하나 이상의 프로세서(202a, 202b)는 본 문서에 개시된 기능, 절차, 제안 및/또는 방법에 따라 PDU, SDU, 메시지, 제어정보, 데이터 또는 정보를 포함하는 신호(예, 베이스밴드 신호)를 생성하여, 하나 이상의 송수신기(206a, 206b)에게 제공할 수 있다. 하나 이상의 프로세서(202a, 202b)는 하나 이상의 송수신기(206a, 206b)로부터 신호(예, 베이스밴드 신호)를 수신할 수 있고, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들에 따라 PDU, SDU, 메시지, 제어정보, 데이터 또는 정보를 획득할 수 있다.Hereinafter, hardware elements of the wireless devices 200a and 200b will be described in more detail. Although not limited to this, one or more protocol layers may be implemented by one or more processors 202a, 202b. For example, the one or more processors 202a and 202b may include one or more layers (eg, PHY (physical), MAC (media access control), RLC (radio link control), PDCP (packet data convergence protocol), RRC (radio resource) control) and functional layers such as service data adaptation protocol (SDAP). One or more processors 202a, 202b may generate one or more protocol data units (PDUs) and/or one or more service data units (SDUs) according to the descriptions, functions, procedures, proposals, methods, and/or operational flow charts disclosed herein. can create One or more processors 202a, 202b may generate messages, control information, data or information according to the descriptions, functions, procedures, proposals, methods and/or operational flow diagrams disclosed herein. One or more processors 202a, 202b generate PDUs, SDUs, messages, control information, data or signals (eg, baseband signals) containing information according to the functions, procedures, proposals and/or methods disclosed herein , may be provided to one or more transceivers 206a and 206b. One or more processors 202a, 202b may receive signals (eg, baseband signals) from one or more transceivers 206a, 206b, and descriptions, functions, procedures, suggestions, methods, and/or flowcharts of operations disclosed herein PDUs, SDUs, messages, control information, data or information can be obtained according to these.
하나 이상의 프로세서(202a, 202b)는 컨트롤러, 마이크로 컨트롤러, 마이크로 프로세서 또는 마이크로 컴퓨터로 지칭될 수 있다. 하나 이상의 프로세서(202a, 202b)는 하드웨어, 펌웨어, 소프트웨어, 또는 이들의 조합에 의해 구현될 수 있다. 일 예로, 하나 이상의 ASIC(application specific integrated circuit), 하나 이상의 DSP(digital signal processor), 하나 이상의 DSPD(digital signal processing device), 하나 이상의 PLD(programmable logic device) 또는 하나 이상의 FPGA(field programmable gate arrays)가 하나 이상의 프로세서(202a, 202b)에 포함될 수 있다. 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들은 펌웨어 또는 소프트웨어를 사용하여 구현될 수 있고, 펌웨어 또는 소프트웨어는 모듈, 절차, 기능 등을 포함하도록 구현될 수 있다. 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들은 수행하도록 설정된 펌웨어 또는 소프트웨어는 하나 이상의 프로세서(202a, 202b)에 포함되거나, 하나 이상의 메모리(204a, 204b)에 저장되어 하나 이상의 프로세서(202a, 202b)에 의해 구동될 수 있다. 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들은 코드, 명령어 및/또는 명령어의 집합 형태로 펌웨어 또는 소프트웨어를 사용하여 구현될 수 있다. One or more processors 202a, 202b may be referred to as a controller, microcontroller, microprocessor or microcomputer. One or more processors 202a, 202b may be implemented by hardware, firmware, software, or a combination thereof. For example, one or more application specific integrated circuits (ASICs), one or more digital signal processors (DSPs), one or more digital signal processing devices (DSPDs), one or more programmable logic devices (PLDs), or one or more field programmable gate arrays (FPGAs). may be included in one or more processors 202a and 202b. The descriptions, functions, procedures, proposals, methods and/or operational flowcharts disclosed in this document may be implemented using firmware or software, and the firmware or software may be implemented to include modules, procedures, functions, and the like. Firmware or software configured to perform the descriptions, functions, procedures, proposals, methods and/or operational flow charts disclosed in this document may be included in one or more processors 202a or 202b or stored in one or more memories 204a or 204b. It can be driven by the above processors 202a and 202b. The descriptions, functions, procedures, suggestions, methods and/or operational flow charts disclosed in this document may be implemented using firmware or software in the form of codes, instructions and/or sets of instructions.
하나 이상의 메모리(204a, 204b)는 하나 이상의 프로세서(202a, 202b)와 연결될 수 있고, 다양한 형태의 데이터, 신호, 메시지, 정보, 프로그램, 코드, 지시 및/또는 명령을 저장할 수 있다. 하나 이상의 메모리(204a, 204b)는 ROM(read only memory), RAM(random access memory), EPROM(erasable programmable read only memory), 플래시 메모리, 하드 드라이브, 레지스터, 캐쉬 메모리, 컴퓨터 판독 저장 매체 및/또는 이들의 조합으로 구성될 수 있다. 하나 이상의 메모리(204a, 204b)는 하나 이상의 프로세서(202a, 202b)의 내부 및/또는 외부에 위치할 수 있다. 또한, 하나 이상의 메모리(204a, 204b)는 유선 또는 무선 연결과 같은 다양한 기술을 통해 하나 이상의 프로세서(202a, 202b)와 연결될 수 있다.One or more memories 204a, 204b may be coupled to one or more processors 202a, 202b and may store various types of data, signals, messages, information, programs, codes, instructions and/or instructions. One or more memories 204a, 204b may include read only memory (ROM), random access memory (RAM), erasable programmable read only memory (EPROM), flash memory, hard drive, registers, cache memory, computer readable storage media, and/or It may consist of a combination of these. One or more memories 204a, 204b may be located internally and/or externally to one or more processors 202a, 202b. In addition, one or more memories 204a, 204b may be connected to one or more processors 202a, 202b through various technologies such as wired or wireless connections.
하나 이상의 송수신기(206a, 206b)는 하나 이상의 다른 장치에게 본 문서의 방법들 및/또는 동작 순서도 등에서 언급되는 사용자 데이터, 제어 정보, 무선 신호/채널 등을 전송할 수 있다. 하나 이상의 송수신기(206a, 206b)는 하나 이상의 다른 장치로부터 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도 등에서 언급되는 사용자 데이터, 제어 정보, 무선 신호/채널 등을 수신할 수 있다. 예를 들어, 하나 이상의 송수신기(206a, 206b)는 하나 이상의 프로세서(202a, 202b)와 연결될 수 있고, 무선 신호를 송수신할 수 있다. 예를 들어, 하나 이상의 프로세서(202a, 202b)는 하나 이상의 송수신기(206a, 206b)가 하나 이상의 다른 장치에게 사용자 데이터, 제어 정보 또는 무선 신호를 전송하도록 제어할 수 있다. 또한, 하나 이상의 프로세서(202a, 202b)는 하나 이상의 송수신기(206a, 206b)가 하나 이상의 다른 장치로부터 사용자 데이터, 제어 정보 또는 무선 신호를 수신하도록 제어할 수 있다. 또한, 하나 이상의 송수신기(206a, 206b)는 하나 이상의 안테나(208a, 208b)와 연결될 수 있고, 하나 이상의 송수신기(206a, 206b)는 하나 이상의 안테나(208a, 208b)를 통해 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도 등에서 언급되는 사용자 데이터, 제어 정보, 무선 신호/채널 등을 송수신하도록 설정될 수 있다. 본 문서에서, 하나 이상의 안테나는 복수의 물리 안테나이거나, 복수의 논리 안테나(예, 안테나 포트)일 수 있다. 하나 이상의 송수신기(206a, 206b)는 수신된 사용자 데이터, 제어 정보, 무선 신호/채널 등을 하나 이상의 프로세서(202a, 202b)를 이용하여 처리하기 위해, 수신된 무선 신호/채널 등을 RF 밴드 신호에서 베이스밴드 신호로 변환(Convert)할 수 있다. 하나 이상의 송수신기(206a, 206b)는 하나 이상의 프로세서(202a, 202b)를 이용하여 처리된 사용자 데이터, 제어 정보, 무선 신호/채널 등을 베이스밴드 신호에서 RF 밴드 신호로 변환할 수 있다. 이를 위하여, 하나 이상의 송수신기(206a, 206b)는 (아날로그) 오실레이터 및/또는 필터를 포함할 수 있다.One or more transceivers 206a, 206b may transmit user data, control information, radio signals/channels, etc. referred to in the methods and/or operational flow charts of this document to one or more other devices. One or more transceivers 206a, 206b may receive user data, control information, radio signals/channels, etc. referred to in descriptions, functions, procedures, proposals, methods and/or operational flow charts, etc. disclosed herein from one or more other devices. have. For example, one or more transceivers 206a and 206b may be connected to one or more processors 202a and 202b and transmit and receive radio signals. For example, one or more processors 202a, 202b may control one or more transceivers 206a, 206b to transmit user data, control information, or radio signals to one or more other devices. In addition, one or more processors 202a, 202b may control one or more transceivers 206a, 206b to receive user data, control information, or radio signals from one or more other devices. In addition, one or more transceivers 206a, 206b may be coupled to one or more antennas 208a, 208b, and one or more transceivers 206a, 206b may be connected to one or more antennas 208a, 208b to achieve the descriptions, functions disclosed in this document. , procedures, proposals, methods and / or operation flowcharts, etc. can be set to transmit and receive user data, control information, radio signals / channels, etc. In this document, one or more antennas may be a plurality of physical antennas or a plurality of logical antennas (eg, antenna ports). One or more transceivers (206a, 206b) in order to process the received user data, control information, radio signal / channel, etc. using one or more processors (202a, 202b), the received radio signal / channel, etc. in the RF band signal It can be converted into a baseband signal. One or more transceivers 206a and 206b may convert user data, control information, and radio signals/channels processed by one or more processors 202a and 202b from baseband signals to RF band signals. To this end, one or more transceivers 206a, 206b may include (analog) oscillators and/or filters.
본 개시에 적용 가능한 무선 기기 구조Wireless device structure applicable to the present disclosure
도 3은 본 개시에 적용되는 무선 기기의 다른 예시를 도시한 도면이다.3 is a diagram illustrating another example of a wireless device applied to the present disclosure.
도 3을 참조하면, 무선 기기(300)는 도 2의 무선 기기(200a, 200b)에 대응하며, 다양한 요소(element), 성분(component), 유닛/부(unit), 및/또는 모듈(module)로 구성될 수 있다. 예를 들어, 무선 기기(300)는 통신부(310), 제어부(320), 메모리부(330) 및 추가 요소(340)를 포함할 수 있다. 통신부는 통신 회로(312) 및 송수신기(들)(314)을 포함할 수 있다. 예를 들어, 통신 회로(312)는 도 2의 하나 이상의 프로세서(202a, 202b) 및/또는 하나 이상의 메모리(204a, 204b)를 포함할 수 있다. 예를 들어, 송수신기(들)(314)는 도 2의 하나 이상의 송수신기(206a, 206b) 및/또는 하나 이상의 안테나(208a, 208b)을 포함할 수 있다. 제어부(320)는 통신부(310), 메모리부(330) 및 추가 요소(340)와 전기적으로 연결되며 무선 기기의 제반 동작을 제어한다. 예를 들어, 제어부(320)는 메모리부(330)에 저장된 프로그램/코드/명령/정보에 기반하여 무선 기기의 전기적/기계적 동작을 제어할 수 있다. 또한, 제어부(320)는 메모리부(330)에 저장된 정보를 통신부(310)을 통해 외부(예, 다른 통신 기기)로 무선/유선 인터페이스를 통해 전송하거나, 통신부(310)를 통해 외부(예, 다른 통신 기기)로부터 무선/유선 인터페이스를 통해 수신된 정보를 메모리부(330)에 저장할 수 있다.Referring to FIG. 3, a wireless device 300 corresponds to the wireless devices 200a and 200b of FIG. 2, and includes various elements, components, units/units, and/or modules. ) can be configured. For example, the wireless device 300 may include a communication unit 310, a control unit 320, a memory unit 330, and an additional element 340. The communication unit may include communication circuitry 312 and transceiver(s) 314 . For example, communication circuitry 312 may include one or more processors 202a, 202b of FIG. 2 and/or one or more memories 204a, 204b. For example, transceiver(s) 314 may include one or more transceivers 206a, 206b of FIG. 2 and/or one or more antennas 208a, 208b. The control unit 320 is electrically connected to the communication unit 310, the memory unit 330, and the additional element 340 and controls overall operations of the wireless device. For example, the control unit 320 may control electrical/mechanical operations of the wireless device based on programs/codes/commands/information stored in the memory unit 330. In addition, the control unit 320 transmits the information stored in the memory unit 330 to the outside (eg, another communication device) through the communication unit 310 through a wireless/wired interface, or transmits the information stored in the memory unit 330 to the outside (eg, another communication device) through the communication unit 310. Information received through a wireless/wired interface from other communication devices) may be stored in the memory unit 330 .
추가 요소(340)는 무선 기기의 종류에 따라 다양하게 구성될 수 있다. 예를 들어, 추가 요소(340)는 파워 유닛/배터리, 입출력부(input/output unit), 구동부 및 컴퓨팅부 중 적어도 하나를 포함할 수 있다. 이로 제한되는 것은 아니지만, 무선 기기(300)는 로봇(도 1, 100a), 차량(도 1, 100b-1, 100b-2), XR 기기(도 1, 100c), 휴대 기기(도 1, 100d), 가전(도 1, 100e), IoT 기기(도 1, 100f), 디지털 방송용 단말, 홀로그램 장치, 공공 안전 장치, MTC 장치, 의료 장치, 핀테크 장치(또는 금융 장치), 보안 장치, 기후/환경 장치, AI 서버/기기(도 1, 140), 기지국(도 1, 120), 네트워크 노드 등의 형태로 구현될 수 있다. 무선 기기는 사용-예/서비스에 따라 이동 가능하거나 고정된 장소에서 사용될 수 있다.The additional element 340 may be configured in various ways according to the type of wireless device. For example, the additional element 340 may include at least one of a power unit/battery, an input/output unit, a driving unit, and a computing unit. Although not limited thereto, the wireless device 300 may be a robot (FIG. 1, 100a), a vehicle (FIG. 1, 100b-1, 100b-2), an XR device (FIG. 1, 100c), a mobile device (FIG. 1, 100d) ), home appliances (FIG. 1, 100e), IoT devices (FIG. 1, 100f), digital broadcasting terminals, hologram devices, public safety devices, MTC devices, medical devices, fintech devices (or financial devices), security devices, climate/ It may be implemented in the form of an environment device, an AI server/device (FIG. 1, 140), a base station (FIG. 1, 120), a network node, and the like. Wireless devices can be mobile or used in a fixed location depending on the use-case/service.
도 3에서 무선 기기(300) 내의 다양한 요소, 성분, 유닛/부, 및/또는 모듈은 전체가 유선 인터페이스를 통해 상호 연결되거나, 적어도 일부가 통신부(310)를 통해 무선으로 연결될 수 있다. 예를 들어, 무선 기기(300) 내에서 제어부(320)와 통신부(310)는 유선으로 연결되며, 제어부(320)와 제1 유닛(예, 130, 140)은 통신부(310)를 통해 무선으로 연결될 수 있다. 또한, 무선 기기(300) 내의 각 요소, 성분, 유닛/부, 및/또는 모듈은 하나 이상의 요소를 더 포함할 수 있다. 예를 들어, 제어부(320)는 하나 이상의 프로세서 집합으로 구성될 수 있다. 예를 들어, 제어부(320)는 통신 제어 프로세서, 어플리케이션 프로세서(application processor), ECU(electronic control unit), 그래픽 처리 프로세서, 메모리 제어 프로세서 등의 집합으로 구성될 수 있다. 다른 예로, 메모리부(330)는 RAM, DRAM(dynamic RAM), ROM, 플래시 메모리(flash memory), 휘발성 메모리(volatile memory), 비-휘발성 메모리(non-volatile memory) 및/또는 이들의 조합으로 구성될 수 있다.In FIG. 3 , various elements, components, units/units, and/or modules in the wireless device 300 may be entirely interconnected through a wired interface or at least partially connected wirelessly through the communication unit 310 . For example, in the wireless device 300, the control unit 320 and the communication unit 310 are connected by wire, and the control unit 320 and the first units (eg, 130 and 140) are connected wirelessly through the communication unit 310. can be connected Additionally, each element, component, unit/unit, and/or module within wireless device 300 may further include one or more elements. For example, the control unit 320 may be composed of one or more processor sets. For example, the control unit 320 may include a set of a communication control processor, an application processor, an electronic control unit (ECU), a graphic processing processor, a memory control processor, and the like. As another example, the memory unit 330 may include RAM, dynamic RAM (DRAM), ROM, flash memory, volatile memory, non-volatile memory, and/or combinations thereof. can be configured.
본 개시가 적용 가능한 휴대 기기Mobile device to which the present disclosure is applicable
도 4는 본 개시에 적용되는 휴대 기기의 예시를 도시한 도면이다.4 is a diagram illustrating an example of a portable device applied to the present disclosure.
도 4는 본 개시에 적용되는 휴대 기기를 예시한다. 휴대 기기는 스마트폰, 스마트패드, 웨어러블 기기(예, 스마트 워치, 스마트 글래스), 휴대용 컴퓨터(예, 노트북 등)을 포함할 수 있다. 휴대 기기는 MS(mobile station), UT(user terminal), MSS(mobile subscriber station), SS(subscriber station), AMS(advanced mobile station) 또는 WT(wireless terminal)로 지칭될 수 있다.4 illustrates a portable device applied to the present disclosure. A portable device may include a smart phone, a smart pad, a wearable device (eg, smart watch, smart glasses), and a portable computer (eg, a laptop computer). A mobile device may be referred to as a mobile station (MS), a user terminal (UT), a mobile subscriber station (MSS), a subscriber station (SS), an advanced mobile station (AMS), or a wireless terminal (WT).
도 4를 참조하면, 휴대 기기(400)는 안테나부(408), 통신부(410), 제어부(420), 메모리부(430), 전원공급부(440a), 인터페이스부(440b) 및 입출력부(440c)를 포함할 수 있다. 안테나부(408)는 통신부(410)의 일부로 구성될 수 있다. 블록 410~430/440a~440c는 각각 도 3의 블록 310~330/340에 대응한다.Referring to FIG. 4 , a portable device 400 includes an antenna unit 408, a communication unit 410, a control unit 420, a memory unit 430, a power supply unit 440a, an interface unit 440b, and an input/output unit 440c. ) may be included. The antenna unit 408 may be configured as part of the communication unit 410 . Blocks 410 to 430/440a to 440c respectively correspond to blocks 310 to 330/340 of FIG. 3 .
통신부(410)는 다른 무선 기기, 기지국들과 신호(예, 데이터, 제어 신호 등)를 송수신할 수 있다. 제어부(420)는 휴대 기기(400)의 구성 요소들을 제어하여 다양한 동작을 수행할 수 있다. 제어부(420)는 AP(application processor)를 포함할 수 있다. 메모리부(430)는 휴대 기기(400)의 구동에 필요한 데이터/파라미터/프로그램/코드/명령을 저장할 수 있다. 또한, 메모리부(430)는 입/출력되는 데이터/정보 등을 저장할 수 있다. 전원공급부(440a)는 휴대 기기(400)에게 전원을 공급하며, 유/무선 충전 회로, 배터리 등을 포함할 수 있다. 인터페이스부(440b)는 휴대 기기(400)와 다른 외부 기기의 연결을 지원할 수 있다. 인터페이스부(440b)는 외부 기기와의 연결을 위한 다양한 포트(예, 오디오 입/출력 포트, 비디오 입/출력 포트)를 포함할 수 있다. 입출력부(440c)는 영상 정보/신호, 오디오 정보/신호, 데이터, 및/또는 사용자로부터 입력되는 정보를 입력 받거나 출력할 수 있다. 입출력부(440c)는 카메라, 마이크로폰, 사용자 입력부, 디스플레이부(440d), 스피커 및/또는 햅틱 모듈 등을 포함할 수 있다.The communication unit 410 may transmit/receive signals (eg, data, control signals, etc.) with other wireless devices and base stations. The controller 420 may perform various operations by controlling components of the portable device 400 . The controller 420 may include an application processor (AP). The memory unit 430 may store data/parameters/programs/codes/commands necessary for driving the portable device 400 . Also, the memory unit 430 may store input/output data/information. The power supply unit 440a supplies power to the portable device 400 and may include a wired/wireless charging circuit, a battery, and the like. The interface unit 440b may support connection between the mobile device 400 and other external devices. The interface unit 440b may include various ports (eg, audio input/output ports and video input/output ports) for connection with external devices. The input/output unit 440c may receive or output image information/signal, audio information/signal, data, and/or information input from a user. The input/output unit 440c may include a camera, a microphone, a user input unit, a display unit 440d, a speaker, and/or a haptic module.
일 예로, 데이터 통신의 경우, 입출력부(440c)는 사용자로부터 입력된 정보/신호(예, 터치, 문자, 음성, 이미지, 비디오)를 획득하며, 획득된 정보/신호는 메모리부(430)에 저장될 수 있다. 통신부(410)는 메모리에 저장된 정보/신호를 무선 신호로 변환하고, 변환된 무선 신호를 다른 무선 기기에게 직접 전송하거나 기지국에게 전송할 수 있다. 또한, 통신부(410)는 다른 무선 기기 또는 기지국으로부터 무선 신호를 수신한 뒤, 수신된 무선 신호를 원래의 정보/신호로 복원할 수 있다. 복원된 정보/신호는 메모리부(430)에 저장된 뒤, 입출력부(440c)를 통해 다양한 형태(예, 문자, 음성, 이미지, 비디오, 햅틱)로 출력될 수 있다. For example, in the case of data communication, the input/output unit 440c acquires information/signals (eg, touch, text, voice, image, video) input from the user, and the acquired information/signals are stored in the memory unit 430. can be stored The communication unit 410 may convert the information/signal stored in the memory into a wireless signal, and directly transmit the converted wireless signal to another wireless device or to a base station. In addition, the communication unit 410 may receive a radio signal from another wireless device or base station and then restore the received radio signal to original information/signal. After the restored information/signal is stored in the memory unit 430, it may be output in various forms (eg, text, voice, image, video, or haptic) through the input/output unit 440c.
본 개시가 적용 가능한 무선 기기 종류Types of wireless devices to which this disclosure is applicable
도 5는 본 개시에 적용되는 차량 또는 자율 주행 차량의 예시를 도시한 도면이다.5 is a diagram illustrating an example of a vehicle or autonomous vehicle to which the present disclosure applies.
도 5는 본 개시에 적용되는 차량 또는 자율 주행 차량을 예시한다. 차량 또는 자율 주행 차량은 이동형 로봇, 차량, 기차, 유/무인 비행체(aerial vehicle, AV), 선박 등으로 구현될 수 있으며, 차량의 형태로 한정되는 것은 아니다.5 illustrates a vehicle or autonomous vehicle to which the present disclosure is applied. A vehicle or an autonomous vehicle may be implemented as a mobile robot, vehicle, train, manned/unmanned aerial vehicle (AV), ship, etc., and is not limited to a vehicle type.
도 5를 참조하면, 차량 또는 자율 주행 차량(500)은 안테나부(508), 통신부(510), 제어부(520), 구동부(540a), 전원공급부(540b), 센서부(540c) 및 자율 주행부(540d)를 포함할 수 있다. 안테나부(550)는 통신부(510)의 일부로 구성될 수 있다. 블록 510/530/540a~540d는 각각 도 4의 블록 410/430/440에 대응한다.Referring to FIG. 5 , a vehicle or autonomous vehicle 500 includes an antenna unit 508, a communication unit 510, a control unit 520, a driving unit 540a, a power supply unit 540b, a sensor unit 540c, and an autonomous driving unit. A portion 540d may be included. The antenna unit 550 may be configured as a part of the communication unit 510 . Blocks 510/530/540a to 540d respectively correspond to blocks 410/430/440 of FIG. 4 .
통신부(510)는 다른 차량, 기지국(예, 기지국, 노변 기지국(road side unit) 등), 서버 등의 외부 기기들과 신호(예, 데이터, 제어 신호 등)를 송수신할 수 있다. 제어부(520)는 차량 또는 자율 주행 차량(500)의 요소들을 제어하여 다양한 동작을 수행할 수 있다. 제어부(520)는 ECU(electronic control unit)를 포함할 수 있다. The communication unit 510 may transmit/receive signals (eg, data, control signals, etc.) with external devices such as other vehicles, base stations (eg, base stations, roadside base units, etc.), servers, and the like. The controller 520 may perform various operations by controlling elements of the vehicle or autonomous vehicle 500 . The controller 520 may include an electronic control unit (ECU).
도 6은 본 개시에 적용되는 AI 기기의 예시를 도시한 도면이다. 일 예로, AI 기기는 TV, 프로젝터, 스마트폰, PC, 노트북, 디지털방송용 단말기, 태블릿 PC, 웨어러블 장치, 셋톱박스(STB), 라디오, 세탁기, 냉장고, 디지털 사이니지, 로봇, 차량 등과 같은, 고정형 기기 또는 이동 가능한 기기 등으로 구현될 수 있다.6 is a diagram illustrating an example of an AI device applied to the present disclosure. As an example, AI devices include TVs, projectors, smartphones, PCs, laptops, digital broadcasting terminals, tablet PCs, wearable devices, set-top boxes (STBs), radios, washing machines, refrigerators, digital signage, robots, vehicles, etc. It may be implemented as a device or a movable device.
도 6을 참조하면, AI 기기(600)는 통신부(610), 제어부(620), 메모리부(630), 입/출력부(640a/640b), 러닝 프로세서부(640c) 및 센서부(640d)를 포함할 수 있다. 블록 910~930/940a~940d는 각각 도 3의 블록 310~330/340에 대응할 수 있다.Referring to FIG. 6, the AI device 600 includes a communication unit 610, a control unit 620, a memory unit 630, an input/output unit 640a/640b, a running processor unit 640c, and a sensor unit 640d. can include Blocks 910 to 930/940a to 940d may respectively correspond to blocks 310 to 330/340 of FIG. 3 .
통신부(610)는 유무선 통신 기술을 이용하여 다른 AI 기기(예, 도 1, 100x, 120, 140)나 AI 서버(도 1, 140) 등의 외부 기기들과 유무선 신호(예, 센서 정보, 사용자 입력, 학습 모델, 제어 신호 등)를 송수신할 수 있다. 이를 위해, 통신부(610)는 메모리부(630) 내의 정보를 외부 기기로 전송하거나, 외부 기기로부터 수신된 신호를 메모리부(630)로 전달할 수 있다.The communication unit 610 communicates wired and wireless signals (eg, sensor information, user data) with external devices such as other AI devices (eg, FIG. 1, 100x, 120, and 140) or AI servers (Fig. input, learning model, control signal, etc.) can be transmitted and received. To this end, the communication unit 610 may transmit information in the memory unit 630 to an external device or transmit a signal received from the external device to the memory unit 630 .
제어부(620)는 데이터 분석 알고리즘 또는 머신 러닝 알고리즘을 사용하여 결정되거나 생성된 정보에 기초하여, AI 기기(600)의 적어도 하나의 실행 가능한 동작을 결정할 수 있다. 그리고, 제어부(620)는 AI 기기(600)의 구성 요소들을 제어하여 결정된 동작을 수행할 수 있다. 예를 들어, 제어부(620)는 러닝 프로세서부(640c) 또는 메모리부(630)의 데이터를 요청, 검색, 수신 또는 활용할 수 있고, 적어도 하나의 실행 가능한 동작 중 예측되는 동작이나, 바람직한 것으로 판단되는 동작을 실행하도록 AI 기기(600)의 구성 요소들을 제어할 수 있다. 또한, 제어부(920)는 AI 장치(600)의 동작 내용이나 동작에 대한 사용자의 피드백 등을 포함하는 이력 정보를 수집하여 메모리부(630) 또는 러닝 프로세서부(640c)에 저장하거나, AI 서버(도 1, 140) 등의 외부 장치에 전송할 수 있다. 수집된 이력 정보는 학습 모델을 갱신하는데 이용될 수 있다.The controller 620 may determine at least one executable operation of the AI device 600 based on information determined or generated using a data analysis algorithm or a machine learning algorithm. And, the controller 620 may perform the determined operation by controlling components of the AI device 600 . For example, the control unit 620 may request, retrieve, receive, or utilize data from the learning processor unit 640c or the memory unit 630, and may perform a predicted operation among at least one feasible operation or one determined to be desirable. Components of the AI device 600 may be controlled to execute an operation. In addition, the control unit 920 collects history information including user feedback on the operation contents or operation of the AI device 600 and stores it in the memory unit 630 or the running processor unit 640c, or the AI server ( 1, 140) can be transmitted to an external device. The collected history information can be used to update the learning model.
메모리부(630)는 AI 기기(600)의 다양한 기능을 지원하는 데이터를 저장할 수 있다. 예를 들어, 메모리부(630)는 입력부(640a)로부터 얻은 데이터, 통신부(610)로부터 얻은 데이터, 러닝 프로세서부(640c)의 출력 데이터, 및 센싱부(640)로부터 얻은 데이터를 저장할 수 있다. 또한, 메모리부(930)는 제어부(620)의 동작/실행에 필요한 제어 정보 및/또는 소프트웨어 코드를 저장할 수 있다.The memory unit 630 may store data supporting various functions of the AI device 600 . For example, the memory unit 630 may store data obtained from the input unit 640a, data obtained from the communication unit 610, output data of the learning processor unit 640c, and data obtained from the sensing unit 640. Also, the memory unit 930 may store control information and/or software codes required for operation/execution of the control unit 620 .
입력부(640a)는 AI 기기(600)의 외부로부터 다양한 종류의 데이터를 획득할 수 있다. 예를 들어, 입력부(620)는 모델 학습을 위한 학습 데이터, 및 학습 모델이 적용될 입력 데이터 등을 획득할 수 있다. 입력부(640a)는 카메라, 마이크로폰 및/또는 사용자 입력부 등을 포함할 수 있다. 출력부(640b)는 시각, 청각 또는 촉각 등과 관련된 출력을 발생시킬 수 있다. 출력부(640b)는 디스플레이부, 스피커 및/또는 햅틱 모듈 등을 포함할 수 있다. 센싱부(640)는 다양한 센서들을 이용하여 AI 기기(600)의 내부 정보, AI 기기(600)의 주변 환경 정보 및 사용자 정보 중 적어도 하나를 얻을 수 있다. 센싱부(640)는 근접 센서, 조도 센서, 가속도 센서, 자기 센서, 자이로 센서, 관성 센서, RGB 센서, IR 센서, 지문 인식 센서, 초음파 센서, 광 센서, 마이크로폰 및/또는 레이더 등을 포함할 수 있다.The input unit 640a may obtain various types of data from the outside of the AI device 600. For example, the input unit 620 may obtain learning data for model learning and input data to which the learning model is to be applied. The input unit 640a may include a camera, a microphone, and/or a user input unit. The output unit 640b may generate an output related to sight, hearing, or touch. The output unit 640b may include a display unit, a speaker, and/or a haptic module. The sensing unit 640 may obtain at least one of internal information of the AI device 600, surrounding environment information of the AI device 600, and user information by using various sensors. The sensing unit 640 may include a proximity sensor, an illuminance sensor, an acceleration sensor, a magnetic sensor, a gyro sensor, an inertial sensor, an RGB sensor, an IR sensor, a fingerprint recognition sensor, an ultrasonic sensor, an optical sensor, a microphone, and/or a radar. have.
러닝 프로세서부(640c)는 학습 데이터를 이용하여 인공 신경망으로 구성된 모델을 학습시킬 수 있다. 러닝 프로세서부(640c)는 AI 서버(도 1, 140)의 러닝 프로세서부와 함께 AI 프로세싱을 수행할 수 있다. 러닝 프로세서부(640c)는 통신부(610)를 통해 외부 기기로부터 수신된 정보, 및/또는 메모리부(630)에 저장된 정보를 처리할 수 있다. 또한, 러닝 프로세서부(940c)의 출력 값은 통신부(610)를 통해 외부 기기로 전송되거나/되고, 메모리부(630)에 저장될 수 있다.The learning processor unit 640c may learn a model composed of an artificial neural network using learning data. The running processor unit 640c may perform AI processing together with the running processor unit of the AI server (FIG. 1, 140). The learning processor unit 640c may process information received from an external device through the communication unit 610 and/or information stored in the memory unit 630 . In addition, the output value of the learning processor unit 940c may be transmitted to an external device through the communication unit 610 and/or stored in the memory unit 630.
6G 통신 시스템 6G communication system
6G (무선통신) 시스템은 (i) 디바이스 당 매우 높은 데이터 속도, (ii) 매우 많은 수의 연결된 디바이스들, (iii) 글로벌 연결성(global connectivity), (iv) 매우 낮은 지연, (v) 배터리-프리(battery-free) IoT 디바이스들의 에너지 소비를 낮추고, (vi) 초고신뢰성 연결, (vii) 머신 러닝 능력을 가지는 연결된 지능 등에 목적이 있다. 6G 시스템의 비젼은 “intelligent connectivity”, “deep connectivity”, “holographic connectivity”, “ubiquitous connectivity”와 같은 4가지 측면일 수 있으며, 6G 시스템은 하기 표 1과 같은 요구 사항을 만족시킬 수 있다. 즉, 표 1은 6G 시스템의 요구 사항을 나타낸 표이다.6G (radio communications) systems are characterized by (i) very high data rates per device, (ii) very large number of connected devices, (iii) global connectivity, (iv) very low latency, (v) battery- It aims to lower energy consumption of battery-free IoT devices, (vi) ultra-reliable connectivity, and (vii) connected intelligence with machine learning capabilities. The vision of the 6G system can be four aspects such as “intelligent connectivity”, “deep connectivity”, “holographic connectivity”, and “ubiquitous connectivity”, and the 6G system can satisfy the requirements shown in Table 1 below. That is, Table 1 is a table showing the requirements of the 6G system.
Figure PCTKR2021007065-appb-T000001
Figure PCTKR2021007065-appb-T000001
이때, 6G 시스템은 향상된 모바일 브로드밴드(enhanced mobile broadband, eMBB), 초-저지연 통신(ultra-reliable low latency communications, URLLC), mMTC (massive machine type communications), AI 통합 통신(AI integrated communication), 촉각 인터넷(tactile internet), 높은 스루풋(high throughput), 높은 네트워크 능력(high network capacity), 높은 에너지 효율(high energy efficiency), 낮은 백홀 및 접근 네트워크 혼잡(low backhaul and access network congestion) 및 향상된 데이터 보안(enhanced data security)과 같은 핵심 요소(key factor)들을 가질 수 있다.At this time, the 6G system is enhanced mobile broadband (eMBB), ultra-reliable low latency communications (URLLC), mMTC (massive machine type communications), AI integrated communication, tactile Internet (tactile internet), high throughput, high network capacity, high energy efficiency, low backhaul and access network congestion and improved data security ( can have key factors such as enhanced data security.
도 7은 본 개시에 적용 가능한 6G 시스템에서 제공 가능한 통신 구조의 일례를 도시한 도면이다.7 is a diagram illustrating an example of a communication structure that can be provided in a 6G system applicable to the present disclosure.
도 7을 참조하면, 6G 시스템은 5G 무선통신 시스템보다 50배 더 높은 동시 무선통신 연결성을 가질 것으로 예상된다. 5G의 핵심 요소(key feature)인 URLLC는 6G 통신에서 1ms보다 적은 단-대-단(end-to-end) 지연을 제공함으로써 보다 더 주요한 기술이 될 것으로 예상된다. 이때, 6G 시스템은 자주 사용되는 영역 스펙트럼 효율과 달리 체적 스펙트럼 효율이 훨씬 우수할 것이다. 6G 시스템은 매우 긴 배터리 수명과 에너지 수확을 위한 고급 배터리 기술을 제공할 수 있어, 6G 시스템에서 모바일 디바이스들은 별도로 충전될 필요가 없을 수 있다. Referring to FIG. 7 , a 6G system is expected to have 50 times higher simultaneous wireless communication connectivity than a 5G wireless communication system. URLLC, a key feature of 5G, is expected to become a more mainstream technology by providing end-to-end latency of less than 1 ms in 6G communications. At this time, the 6G system will have much better volume spectral efficiency, unlike the frequently used area spectral efficiency. 6G systems can provide very long battery life and advanced battery technology for energy harvesting, so mobile devices in 6G systems may not need to be charged separately.
6G 시스템의 핵심 구현 기술Core implementation technology of 6G system
- 인공 지능(artificial Intelligence, AI)- Artificial Intelligence (AI)
6G 시스템에 가장 중요하며, 새로 도입될 기술은 AI이다. 4G 시스템에는 AI가 관여하지 않았다. 5G 시스템은 부분 또는 매우 제한된 AI를 지원할 것이다. 그러나, 6G 시스템은 완전히 자동화를 위해 AI가 지원될 것이다. 머신 러닝의 발전은 6G에서 실시간 통신을 위해 보다 지능적인 네트워크를 만들 것이다. 통신에 AI를 도입하면 실시간 데이터 전송이 간소화되고 향상될 수 있다. AI는 수많은 분석을 사용하여 복잡한 대상 작업이 수행되는 방식을 결정할 수 있다. 즉, AI는 효율성을 높이고 처리 지연을 줄일 수 있다.The most important and newly introduced technology for the 6G system is AI. AI was not involved in the 4G system. 5G systems will support partial or very limited AI. However, the 6G system will be AI-enabled for full automation. Advances in machine learning will create more intelligent networks for real-time communication in 6G. Introducing AI in communications can simplify and enhance real-time data transmission. AI can use a plethora of analytics to determine how complex target tasks are performed. In other words, AI can increase efficiency and reduce processing delays.
핸드 오버, 네트워크 선택, 자원 스케줄링과 같은 시간 소모적인 작업은 AI를 사용함으로써 즉시 수행될 수 있다. AI는 M2M, 기계-대-인간 및 인간-대-기계 통신에서도 중요한 역할을 할 수 있다. 또한, AI는 BCI(brain computer interface)에서 신속한 통신이 될 수 있다. AI 기반 통신 시스템은 메타 물질, 지능형 구조, 지능형 네트워크, 지능형 장치, 지능형 인지 라디오(radio), 자체 유지 무선 네트워크 및 머신 러닝에 의해 지원될 수 있다.Time-consuming tasks such as handover, network selection, and resource scheduling can be performed instantly by using AI. AI can also play an important role in machine-to-machine, machine-to-human and human-to-machine communications. In addition, AI can be a rapid communication in the brain computer interface (BCI). AI-based communication systems can be supported by metamaterials, intelligent structures, intelligent networks, intelligent devices, intelligent cognitive radios, self-sustaining wireless networks, and machine learning.
최근 AI를 무선 통신 시스템과 통합하려고 하는 시도들이 나타나고 있으나, 이는 어플리케이션 계층(application layer), 네트워크 계층(network layer) 특히, 딥 러닝은 무선 자원 관리 및 할당(wireless resource management and allocation) 분야에 집중되어 왔다. 그러나, 이러한 연구는 점점 MAC 계층 및 물리 계층으로 발전하고 있으며, 특히 물리계층에서 딥 러닝을 무선 전송(wireless transmission)과 결합하고자 하는 시도들이 나타나고 있다. AI 기반의 물리계층 전송은, 근본적인 신호 처리 및 통신 메커니즘에 있어서, 전통적인 통신 프레임워크가 아니라 AI 드라이버에 기초한 신호 처리 및 통신 메커니즘을 적용하는 것을 의미한다. 예를 들어, 딥러닝 기반의 채널 코딩 및 디코딩(channel coding and decoding), 딥러닝 기반의 신호 추정(estimation) 및 검출(detection), 딥러닝 기반의 MIMO(multiple input multiple output) 매커니즘(mechanism), AI 기반의 자원 스케줄링(scheduling) 및 할당(allocation) 등을 포함할 수 있다.Recently, there have been attempts to integrate AI with wireless communication systems, but these are focused on the application layer, network layer, and especially deep learning, wireless resource management and allocation. come. However, such research is gradually developing into the MAC layer and the physical layer, and in particular, attempts to combine deep learning with wireless transmission are appearing in the physical layer. AI-based physical layer transmission means applying a signal processing and communication mechanism based on an AI driver rather than a traditional communication framework in fundamental signal processing and communication mechanisms. For example, deep learning-based channel coding and decoding, deep learning-based signal estimation and detection, deep learning-based multiple input multiple output (MIMO) mechanism, It may include AI-based resource scheduling and allocation.
머신 러닝은 채널 추정 및 채널 트래킹을 위해 사용될 수 있으며, DL(downlink)의 물리 계층(physical layer)에서 전력 할당(power allocation), 간섭 제거(interference cancellation) 등에 사용될 수 있다. 또한, 머신 러닝은 MIMO 시스템에서 안테나 선택, 전력 제어(power control), 심볼 검출(symbol detection) 등에도 사용될 수 있다.Machine learning may be used for channel estimation and channel tracking, and may be used for power allocation, interference cancellation, and the like in a downlink (DL) physical layer. Machine learning can also be used for antenna selection, power control, symbol detection, and the like in a MIMO system.
그러나 물리계층에서의 전송을 위한 DNN의 적용은 아래와 같은 문제점이 있을 수 있다.However, the application of DNN for transmission in the physical layer may have the following problems.
딥러닝 기반의 AI 알고리즘은 훈련 파라미터를 최적화하기 위해 수많은 훈련 데이터가 필요하다. 그러나 특정 채널 환경에서의 데이터를 훈련 데이터로 획득하는데 있어서의 한계로 인해, 오프라인 상에서 많은 훈련 데이터를 사용한다. 이는 특정 채널 환경에서 훈련 데이터에 대한 정적 훈련(static training)은, 무선 채널의 동적 특성 및 다이버시티(diversity) 사이에 모순(contradiction)이 생길 수 있다.AI algorithms based on deep learning require a lot of training data to optimize training parameters. However, due to limitations in acquiring data in a specific channel environment as training data, a lot of training data is used offline. This is because static training on training data in a specific channel environment may cause a contradiction between dynamic characteristics and diversity of a radio channel.
또한, 현재 딥 러닝은 주로 실제 신호(real signal)을 대상으로 한다. 그러나, 무선 통신의 물리 계층의 신호들은 복소 신호(complex signal)이다. 무선 통신 신호의 특성을 매칭시키기 위해 복소(complex) 도메인 신호의 검출하는 신경망(neural network)에 대한 연구가 더 필요하다.In addition, current deep learning mainly targets real signals. However, the signals of the physical layer of wireless communication are complex signals. In order to match the characteristics of a wireless communication signal, further research is needed on a neural network that detects a complex domain signal.
이하, 머신 러닝에 대해 보다 구체적으로 살펴본다.Hereinafter, machine learning will be described in more detail.
머신 러닝은 사람이 할 수 있거나 혹은 하기 어려운 작업을 대신해낼 수 있는 기계를 만들어 내기 위해 기계를 학습시키는 일련의 동작을 의미한다. 머신 러닝을 위해서는 데이터와 러닝 모델이 필요하다. 머신 러닝에서 데이터의 학습 방법은 크게 3가지 즉, 지도 학습(supervised learning), 비지도 학습(unsupervised learning) 그리고 강화 학습(reinforcement learning)으로 구분될 수 있다.Machine learning refers to a set of actions that train a machine to create a machine that can do tasks that humans can or cannot do. Machine learning requires data and a running model. In machine learning, data learning methods can be largely classified into three types: supervised learning, unsupervised learning, and reinforcement learning.
신경망 학습은 출력의 오류를 최소화하기 위한 것이다. 신경망 학습은 반복적으로 학습 데이터를 신경망에 입력시키고 학습 데이터에 대한 신경망의 출력과 타겟의 에러를 계산하고, 에러를 줄이기 위한 방향으로 신경망의 에러를 신경망의 출력 레이어에서부터 입력 레이어 방향으로 역전파(backpropagation) 하여 신경망의 각 노드의 가중치를 업데이트하는 과정이다.Neural network training is aimed at minimizing errors in the output. Neural network learning repeatedly inputs training data to the neural network, calculates the output of the neural network for the training data and the error of the target, and backpropagates the error of the neural network from the output layer of the neural network to the input layer in a direction to reduce the error. ) to update the weight of each node in the neural network.
지도 학습은 학습 데이터에 정답이 라벨링된 학습 데이터를 사용하며 비지도 학습은 학습 데이터에 정답이 라벨링되어 있지 않을 수 있다. 즉, 예를 들어 데이터 분류에 관한 지도 학습의 경우의 학습 데이터는 학습 데이터 각각에 카테고리가 라벨링된 데이터 일 수 있다. 라벨링된 학습 데이터가 신경망에 입력되고 신경망의 출력(카테고리)과 학습 데이터의 라벨을 비교하여 오차(error)가 계산될 수 있다. 계산된 오차는 신경망에서 역방향(즉, 출력 레이어에서 입력 레이어 방향)으로 역전파 되며, 역전파에 따라 신경망의 각 레이어의 각 노드들의 연결 가중치가 업데이트 될 수 있다. 업데이트 되는 각 노드의 연결 가중치는 학습률(learning rate)에 따라 변화량이 결정될 수 있다. 입력 데이터에 대한 신경망의 계산과 에러의 역전파는 학습 사이클(epoch)을 구성할 수 있다. 학습률은 신경망의 학습 사이클의 반복 횟수에 따라 상이하게 적용될 수 있다. 예를 들어, 신경망의 학습 초기에는 높은 학습률을 사용하여 신경망이 빠르게 일정 수준의 성능을 확보하도록 하여 효율성을 높이고, 학습 후기에는 낮은 학습률을 사용하여 정확도를 높일 수 있다Supervised learning uses training data in which correct answers are labeled in the learning data, and unsupervised learning may not have correct answers labeled in the learning data. That is, for example, learning data in the case of supervised learning related to data classification may be data in which each learning data is labeled with a category. Labeled training data is input to the neural network, and an error may be calculated by comparing the output (category) of the neural network and the label of the training data. The calculated error is back-propagated in a reverse direction (ie, from the output layer to the input layer) in the neural network, and the connection weight of each node of each layer of the neural network may be updated according to the back-propagation. The amount of change in the connection weight of each updated node may be determined according to a learning rate. The neural network's computation of input data and backpropagation of errors can constitute a learning cycle (epoch). The learning rate may be applied differently according to the number of iterations of the learning cycle of the neural network. For example, a high learning rate is used in the early stages of neural network learning to increase efficiency by allowing the neural network to quickly achieve a certain level of performance, and a low learning rate can be used in the late stage to increase accuracy.
데이터의 특징에 따라 학습 방법은 달라질 수 있다. 예를 들어, 통신 시스템 상에서 송신단에서 전송한 데이터를 수신단에서 정확하게 예측하는 것을 목적으로 하는 경우, 비지도 학습 또는 강화 학습 보다는 지도 학습을 이용하여 학습을 수행하는 것이 바람직하다.The learning method may vary depending on the characteristics of the data. For example, in a case where the purpose of the receiver is to accurately predict data transmitted by the transmitter in a communication system, it is preferable to perform learning using supervised learning rather than unsupervised learning or reinforcement learning.
러닝 모델은 인간의 뇌에 해당하는 것으로서, 가장 기본적인 선형 모델을 생각할 수 있으나, 인공 신경망(artificial neural networks)와 같은 복잡성이 높은 신경망 구조를 러닝 모델로 사용하는 머신 러닝의 패러다임을 딥러닝(deep learning)이라 한다.The learning model corresponds to the human brain, and the most basic linear model can be considered. ) is called
학습(learning) 방식으로 사용하는 신경망 코어(neural network cord)는 크게 심층 신경망(deep neural networks, DNN), 합성곱 신경망(convolutional deep neural networks, CNN), 순환 신경망(recurrent boltzmann machine, RNN) 방식이 있으며, 이러한 러닝 모델이 적용될 수 있다.The neural network cord used as a learning method is largely divided into deep neural networks (DNN), convolutional deep neural networks (CNN), and recurrent boltzmann machine (RNN). and this learning model can be applied.
THz(Terahertz) 통신Terahertz (THz) communication
6G 시스템에서 THz 통신이 적용될 수 있다. 일 예로, 데이터 전송률은 대역폭을 늘려 높일 수 있다. 이것은 넓은 대역폭으로 sub-THz 통신을 사용하고, 진보된 대규모 MIMO 기술을 적용하여 수행될 수 있다. THz communication can be applied in 6G systems. For example, the data transmission rate can be increased by increasing the bandwidth. This can be done using sub-THz communication with wide bandwidth and applying advanced massive MIMO technology.
도 8은 본 개시에 적용 가능한 전자기 스펙트럼을 도시한 도면이다. 일 예로, 도 8을 참조하면, 밀리미터 이하의 방사선으로도 알려진 THz파는 일반적으로 0.03mm-3mm 범위의 해당 파장을 가진 0.1THz와 10THz 사이의 주파수 대역을 나타낸다. 100GHz-300GHz 대역 범위(Sub THz 대역)는 셀룰러 통신을 위한 THz 대역의 주요 부분으로 간주된다. Sub-THz 대역 mmWave 대역에 추가하면 6G 셀룰러 통신 용량은 늘어난다. 정의된 THz 대역 중 300GHz-3THz는 원적외선 (IR) 주파수 대역에 있다. 300GHz-3THz 대역은 광 대역의 일부이지만 광 대역의 경계에 있으며, RF 대역 바로 뒤에 있다. 따라서, 이 300 GHz?3 THz 대역은 RF와 유사성을 나타낸다.8 is a diagram showing an electromagnetic spectrum applicable to the present disclosure. As an example, referring to FIG. 8 , THz waves, also known as sub-millimeter radiation, generally represent a frequency band between 0.1 THz and 10 THz with corresponding wavelengths in the range of 0.03 mm-3 mm. The 100 GHz-300 GHz band range (sub THz band) is considered a major part of the THz band for cellular communications. Adding to the sub-THz band mmWave band will increase 6G cellular communications capacity. Among the defined THz bands, 300 GHz-3 THz is in the far infrared (IR) frequency band. The 300 GHz-3 THz band is part of the broad band, but is at the border of the wide band, just behind the RF band. Thus, this 300 GHz-3 THz band exhibits similarities to RF.
THz 통신의 주요 특성은 (i) 매우 높은 데이터 전송률을 지원하기 위해 광범위하게 사용 가능한 대역폭, (ii) 고주파에서 발생하는 높은 경로 손실 (고 지향성 안테나는 필수 불가결)을 포함한다. 높은 지향성 안테나에서 생성된 좁은 빔 폭은 간섭을 줄인다. THz 신호의 작은 파장은 훨씬 더 많은 수의 안테나 소자가 이 대역에서 동작하는 장치 및 BS에 통합될 수 있게 한다. 이를 통해 범위 제한을 극복할 수 있는 고급 적응형 배열 기술을 사용할 수 있다. The main characteristics of THz communications include (i) widely available bandwidth to support very high data rates, and (ii) high path loss at high frequencies (highly directional antennas are indispensable). The narrow beamwidth produced by the highly directional antenna reduces interference. The small wavelength of the THz signal allows a much larger number of antenna elements to be incorporated into devices and BSs operating in this band. This enables advanced adaptive array technology to overcome range limitations.
하기에서는 능동센서를 가진 지능형 반사판(Intelligent Reflect Surface, IRS)을 사용하여 무선 채널 환경을 조절하는 방법에 대해 서술한다. 여기서, 인공지능 시스템은 IRS를 이용하는 무선 채널 환경을 조절하기 위해 사용될 수 있으며, 이에 대해서도 후술한다.In the following, a method of controlling a wireless channel environment using an intelligent reflect surface (IRS) having an active sensor will be described. Here, the artificial intelligence system can be used to adjust the radio channel environment using the IRS, which will also be described later.
일 예로, 현재의 무선 통신기술은 채널 환경(H)에 적응하는 앤드 포인트 최적화를 통해 제어될 수 있다. 일 예로, 송신기 및 수신기에서 최적화를 수생하는 경우, 송신기 및 수신기는 빔포밍, 전력 제어 및 적응적 모듈레이션 중 적어도 어느 하나를 송신기와 수신기 사이의 채널 환경(H)에 맞춰서 조절하여 전송 효율을 증대시킬 수 있다. For example, the current wireless communication technology can be controlled through end-point optimization that adapts to the channel environment (H). For example, when optimization is performed in a transmitter and a receiver, the transmitter and receiver adjust at least one of beamforming, power control, and adaptive modulation according to the channel environment (H) between the transmitter and the receiver to increase transmission efficiency. can
이때, 채널 환경은 랜덤하고 제어되지 않으며 자연적으로 고정된 상태일 수 있다. 즉, 기존 통신 시스템에서는 채널 환경은 고정된 상태에서 채널 환경에 최적화되도록 각각의 앤드 포인트를 제어하는 방식을 수행될 수 있었다. 따라서, 송신기 및 수신기는 채널에 적응하도록 최적화를 수행하고, 이를 통해 데이터를 송수신할 수 밖에 없다. 이때, 음영지역에서의 NLOS(non-line of sight)의 환경이나 6G THz와 같이 신호 손실이 크고 다중경로가 존재하기 어려운 환경에서는 앤드포인트의 최적화만으로는 샤논의 채널용량 한계(Shannon’s Capacity Limit)를 극복하기 어려울 수 있으며, 이를 통해 원하는 요구사항만큼의 스루풋을 기대하기 어려울 수 있다.At this time, the channel environment may be random, uncontrolled, and naturally fixed. That is, in the existing communication system, a method of controlling each end point to be optimized for the channel environment while the channel environment is fixed may be performed. Therefore, the transmitter and the receiver have no choice but to perform optimization to adapt to the channel and transmit/receive data through this optimization. At this time, in an environment of NLOS (non-line of sight) in a shaded area or an environment where signal loss is high and multipath is difficult to exist, such as 6G THz, Shannon's capacity limit is overcome only by optimizing the endpoint. It can be difficult to do, and it can be difficult to expect the desired throughput.
상술한 점을 고려하여, 새로운 통신 시스템에서는 지능형 무선환경(Smart Radio Environment)에 기초하여 통신이 수행될 수 있다. 이때, 지능형 무선 환경에서는 지능형 반사판(IRS)를 사용하여 무선 채널을 송수신기와 같이 제어할 수 있는 인자로 사용할 수 있다.Considering the above points, communication can be performed based on a smart radio environment in a new communication system. At this time, in an intelligent wireless environment, an intelligent reflector (IRS) can be used as a factor capable of controlling a wireless channel like a transceiver.
즉, 무선 통신 전송을 최적화하기 위해 사용되는 인자로 무선 채널에 대한 인지가 추가될 수 있다. 이를 통해, 기존 통신 시스템에서 해결 불가능한 문제로써 채널을 재설정하거나 샤논의 채널용량 한계의 극복이 가능할 수 있다. 다만, 지능형 무선환경에서 지능형 반사판(IRS)으로 인해 추가된 채널의 측정과 지능형 반사판(IRS)을 송수신기와 같이 동시에 고려해서 최적화 할 필요성이 있으며, 이에 따라 최적화 과정이 복잡해질 수 있다.That is, awareness of a radio channel may be added as a factor used to optimize radio communication transmission. Through this, it is possible to reset the channel as an unsolvable problem in the existing communication system or to overcome the channel capacity limitation of Shannon. However, in an intelligent wireless environment, it is necessary to optimize by simultaneously considering the measurement of channels added by the intelligent reflector (IRS) and the intelligent reflector (IRS) as a transceiver, and accordingly, the optimization process may be complicated.
일 예로, 현재의 무선통신기술 한계와 함께 지능형 무선환경에서 적용되는 AO(Alternating Optimization) 알고리즘을 사용하여 IRS를 제어하는데 한계가 존재할 수 있다. 이때, 상술한 한계점들을 해결하기 위해 지능형 반사판에 능동센서를 활용하여 채널정보 획득에 한계를 보완할 수 있다. 또한, 일 예로, 상술한 한계점들은 인공지능을 활용하여 무선 채널환경을 최적화하도록 함으로써 극복될 수 있다. For example, there may be limitations in controlling the IRS using an alternating optimization (AO) algorithm applied in an intelligent wireless environment together with limitations of current wireless communication technology. At this time, in order to solve the above-mentioned limitations, it is possible to supplement the limitations in acquiring channel information by utilizing an active sensor in an intelligent reflector. Also, as an example, the aforementioned limitations can be overcome by optimizing a radio channel environment using artificial intelligence.
보다 상세하게는, 기존 통신 시스템에서는 고정된 무선 채널 환경에서 송신기 및 수신기의 제어를 통해 샤논의 채널용량 한계에 근접하는 방식을 통해 동작할 수 있었다. 다만, 음영지역과 같이 열악한 NLOS 환경에서는 채널 용량의 한계로 인해 송수신이 거의 불가능할 수 있다. 일 예로, NLOS 채널환경에서 송신기는 전력을 증가시켜 채널 용량의 한계를 개선할 수 있지만, 그만큼 잡음과 간섭의 크기도 같이 증가할 수 있다. 이때, 6G THz 환경처럼 신호 손실이 크고 다중 경로가 존재하기 어려운 환경에서는 송신기 및 수신기의 최적화만으로는 샤논의 채널용량 한계를 극복하는데 한계가 존재할 수 있다.More specifically, in a conventional communication system, it is possible to operate in a manner approaching the limit of Shannon's channel capacity through control of a transmitter and a receiver in a fixed wireless channel environment. However, in a poor NLOS environment such as a shadow area, transmission and reception may be almost impossible due to limitations in channel capacity. For example, in the NLOS channel environment, the transmitter can improve the limit of the channel capacity by increasing the power, but the size of noise and interference can also increase accordingly. At this time, in an environment where signal loss is high and multipath is difficult to exist, such as in a 6G THz environment, there may be limitations in overcoming the channel capacity limit of Shannon only by optimizing the transmitter and receiver.
여기서, 일 예로, 새로운 통신 시스템(e.g. 6G)에서는 새로운 서비스로써 MBRLLC(Mobile Broadband Reliable Low Latency Communication), mURLLC(Massive Ultra-Reliable, Low Latency communications), HCS(Human-Centric Services) 및 3CLS(Convergence of Communications, Computing, Control, Localization, and Sensing)의 서비스를 제공하기 위한 요구사항이 만족될 필요성이 있으며, 이를 위해 지능형 무선환경에 기초한 통신이 필요할 수 있다.Here, as an example, in a new communication system (e.g. 6G), MBRLLC (Mobile Broadband Reliable Low Latency Communication), mURLLC (Massive Ultra-Reliable, Low Latency communications), HCS (Human-Centric Services) and 3CLS (Convergence of Communications, Computing, Control, Localization, and Sensing) needs to be satisfied, and communication based on an intelligent wireless environment may be required for this purpose.
또한, 일 예로, 기지국 셀의 커버리지 증대 및 음영지역에 대한 지원을 위해 현재 많은 중계기(Relay)를 사용하고 있다. 다만, 중계기를 이용하는 방식은 전송 효율을 증대시킬 수 있으나, 다른 사용자에 대한 간섭신호를 추가적으로 발생 시킬 수 있다. 따라서, 전체적인 통신자원 효율면에서 한계가 발생할 수 있다. 또한, 중계기(Relay)의 사용은 또한 높은 추가비용과 에너지가 필요하고, 복잡하고 혼재된 간섭 신호 관리가 용이하지 않을 수 있다. 또한, 일 예로, 반 이중 방식(Half Duplex)을 사용함으로써 스펙트럼 효율성이 감소할 수 있으며, 공간 활용면이나 심미적으로도 영향을 줄 수 있다.In addition, as an example, many relays are currently used to increase coverage of base station cells and support for shadow areas. However, the method using a repeater may increase transmission efficiency, but may additionally generate interference signals for other users. Therefore, a limitation may occur in terms of overall communication resource efficiency. In addition, the use of a relay requires high additional cost and energy, and it may not be easy to manage complex and mixed interference signals. In addition, as an example, spectrum efficiency may be reduced by using a half duplex method, and space utilization and aesthetics may also be affected.
반면, 지능형 무선환경에서는 지능형 반사판(IRS)를 사용하여 무선채널환경을 조절할 수 있다. 동시에 송신기 및 수신기는 최적화를 함께 수행하여 지능형 무선환경(Smart Radio Environment)에서 샤논의 채널용량 한계의 극복할 수 있는 해결책을 제공할 수 있으며, 이에 대해서는 후술한다.On the other hand, in an intelligent wireless environment, the wireless channel environment can be adjusted using an intelligent reflector (IRS). At the same time, the transmitter and receiver can perform optimization together to provide a solution that can overcome Shannon's channel capacity limit in a smart radio environment, which will be described later.
다만, 기존에 기지국과 단말 간의 채널 이외에, 기지국-지능형반사판(IRS), 지능형반사판(IRS)-단말간의 채널도 고려할 필요성이 있다. 또한, 기존에는 송수신기만 환경에 맞춰 최적화하면 충분하지만, 지능형 무선환경(Smart Radio Environment)에서는 지능형 반사판(IRS)도 같이 제어해야 될 필요성이 있다. However, in addition to the conventional channel between the base station and the terminal, there is a need to consider the channel between the base station-intelligent reflector (IRS) and the intelligent reflector (IRS)-terminal. In addition, in the past, it is sufficient to optimize only the transceiver according to the environment, but in the smart radio environment, there is a need to control the intelligent reflector (IRS) as well.
또한, 해당 값은 송수신기의 최적화와 의존성를 가질 수 있으며, 이에 따라 복잡성이 증가할 수 있다. 여기서, 최적화를 위해 사용되는 AO(Alternating Optimization) 알고리즘은 수렴될 때가지 반복적으로 수행될 수 있으며, 모든 채널들이 측정되어야 하는 부담을 줄 수 있다. 하기에서는 상술한 점을 고려하여 능동센서를 가진 지능형 반사판으로 지능형 무선환경에서 최적화를 수행하는 방법 및 인공지능 시스템에 대해 서술한다.In addition, the value may have a dependency on the optimization of the transceiver, and thus complexity may increase. Here, the AO (Alternating Optimization) algorithm used for optimization may be repeatedly performed until convergence, and may impose a burden on all channels to be measured. In the following, a method for performing optimization in an intelligent wireless environment with an intelligent reflector having an active sensor and an artificial intelligence system will be described in consideration of the above points.
또한, 일 예로, 표 2는 하기 및 상술한 바를 고려한 용어일 수 있으며, 하기에서는 이에 기초하여 능동센서를 가진 지능형 반사판으로 지능형 무선환경에서 최적화를 수행하는 방법 및 인공지능 시스템에 대해 서술한다.In addition, as an example, Table 2 may be terms in consideration of the following and above, and based on this, a method of performing optimization in an intelligent wireless environment with an intelligent reflector having an active sensor and an artificial intelligence system are described.
Figure PCTKR2021007065-appb-T000002
Figure PCTKR2021007065-appb-T000002
도 9는 본 개시의 일 실시예에 따라 무선 채널 환경을 나타낸 도면이다. 도 9를 참조하면, 기존 통신 시스템에서 무선 채널 환경(H)는 자연적으로 고정되어 있고, 제어할 수 없는 랜덤한 상태일 수 있다. 따라서, 송신기(910) 및 수신기(920)는 채널에 적응하여 최적화된 송수신 방법을 찾을 수 있다. 송신기(910)와 수신기(920)는 신호(e.g. 참조신호)를 통해 채널 상태를 측정하고, 측정된 채널 상태에 기초하여 최적화가 수행되도록 제어될 수 있다. 다만, 상술한 바와 같이 테라헤르츠 환경과 같이 신호 손실이 크고 다중 경로 적용이 어려운 경우 및 음영지역과 같이 NLOS 환경에서는 데이터 전송에 한계가 존재할 수 있다. 일 예로, 하기 수학식 1은 샤논의 용량 한계를 나타낼 수 있다. 이때, 수학식 1에서 송신 신호 P에 프리코딩 및 가공을 적용하여 증대 시키더라도 채널 |H|의 크기가 작으면 채널 용량을 증대시키는 것에 한계가 존재할 수 있다.9 is a diagram illustrating a radio channel environment according to an embodiment of the present disclosure. Referring to FIG. 9 , in an existing communication system, a radio channel environment H is naturally fixed and may be in a random state that cannot be controlled. Accordingly, the transmitter 910 and the receiver 920 can find an optimized transmission/reception method by adapting to the channel. The transmitter 910 and the receiver 920 may measure a channel state through a signal (eg, a reference signal), and may be controlled to perform optimization based on the measured channel state. However, as described above, there may be limitations in data transmission in a case where signal loss is high and multipath application is difficult, such as in a terahertz environment, and in an NLOS environment, such as in a shadow area. As an example, Equation 1 below may represent the capacity limit of Shannon. At this time, even if the transmission signal P is increased by applying precoding and processing in Equation 1, there may be a limit to increasing the channel capacity if the size of the channel |H| is small.
무선 채널 환경이 고정된 상태에서는 수학식 1에 기초하여 채널 용량을 증대시키는데 한계가 존재할 수 있다. 이때, 지능형 반사판(IRS)을 사용하면 송신기(910)와 수신기(920) 사이에서 다중 경로를 확보할 수 있으며, 상술한 채널 |H|를 증대시킬 수 있다. 즉, 지능형 무선환경에서 지능현 반사판에 기초하여 무선 채널 환경은 조절 가능한 인자일 수 있으며, 이를 통해 채널 용량을 증대시킬 수 있다.In a state where the radio channel environment is fixed, there may be a limit to increasing the channel capacity based on Equation 1. At this time, if an intelligent reflector (IRS) is used, multiple paths can be secured between the transmitter 910 and the receiver 920, and the aforementioned channel |H| can be increased. That is, in an intelligent wireless environment, the wireless channel environment can be an adjustable factor based on the intelligent current reflector, and through this, the channel capacity can be increased.
Figure PCTKR2021007065-appb-M000001
Figure PCTKR2021007065-appb-M000001
일 예로, 도 10은 본 개시의 일 실시예에 따라 지능형 무선 환경을 나타낸 도면이다. 도 10을 참조하면, 지능형 무선 채널 환경에서 무선 채널 |H|는 최적화를 위한 인자일 수 있다. 보다 상세하게는, 상술한 도 9에서는 앤드 포인트 최적화로써 “max{f(Tx, Rx)}”에 기초하여 송신기(910) 및 수신기(920)에서 최적화가 수행될 수 있으며, 이는 상술한 바와 같다. 다만, 도 10에서는 앤드 포인트 최적화로써 “max{f(Tx, Rx, H)}”에 기초하여 송신기(1010) 및 수신기(1020)에서 최적화가 수행될 수 있다. 즉, 지능형 무선 환경에서는 지능형 반사판에 기초하여 채널 |H|가 최적화를 위한 인자로써 사용될 수 있다.As an example, FIG. 10 is a diagram illustrating an intelligent wireless environment according to an embodiment of the present disclosure. Referring to FIG. 10 , in an intelligent radio channel environment, a radio channel |H| may be a factor for optimization. More specifically, in FIG. 9 described above, optimization may be performed in the transmitter 910 and the receiver 920 based on “max{f(Tx, Rx)}” as the end point optimization, which is as described above. . However, in FIG. 10 , optimization may be performed in the transmitter 1010 and the receiver 1020 based on “max{f(Tx, Rx, H)}” as the end point optimization. That is, in an intelligent wireless environment, a channel |H| may be used as a factor for optimization based on an intelligent reflector.
도 11은 본 개시의 일 실시예에 따라, 기존 무선 채널 환경 및 지능형 무선 채널 환경을 나타낸 도면이다. 일 예로, 도 11(a)를 참조하면, 기존 무선 채널 환경은 P1일 수 있다. 또한, 도 11(b)를 참조하면, 지능형 무선 채널 환경은 P2일 수 있다. 이때, 도 11(a) 및 도 11(b)에서 각각 x 신호가 송신단에서 무선 채널을 통해 전송되는 경우, 수신단은 y 신호를 수신할 수 있다. 이때, 기존 무선 채널 환경에서 P1의 확률은 고정되어 있으며 수신단(Decoder)은 송신 신호에 대한 측정을 통해 송신단으로 피드백을 전송할 수 있다. 송신단은 수신단의 피드백을 통해 무선 채널 환경에 적응할 수 있도록 최적화를 수행할 수 있다. 보다 구체적인 일 예로, 수신단은 송신단이 전송한 참조신호에 기초하여 송신신호에 대한 CQI(Channel Quality Indicator)를 측정하고, 이를 피드백 할 수 있다. 송신단은 피드백된 정보에 기초하여 MCS(modulation coding scheme)을 조절하고, 이에 대한 정보를 수신단에 제공하여 통신을 수행할 수 있다.11 is a diagram illustrating an existing radio channel environment and an intelligent radio channel environment according to an embodiment of the present disclosure. For example, referring to FIG. 11(a), the existing radio channel environment may be P1. Also, referring to FIG. 11(b), the intelligent wireless channel environment may be P2. In this case, when the x signal is transmitted through the radio channel at the transmitting end in FIGS. 11(a) and 11(b), the receiving end may receive the y signal. At this time, the probability of P1 is fixed in the existing radio channel environment, and the receiving end (Decoder) can transmit feedback to the transmitting end through measurement of the transmitted signal. The transmitting end may perform optimization to adapt to the radio channel environment through the feedback of the receiving end. As a more specific example, the receiving end may measure a channel quality indicator (CQI) of the transmission signal based on the reference signal transmitted by the transmitting end and provide feedback thereof. The transmitting end may perform communication by adjusting a modulation coding scheme (MCS) based on the feedbacked information and providing information about the modulation coding scheme to the receiving end.
반면, 도 11(b)를 참조하면, 지능형 무선 채널 환경에서는 무선 채널 환경 P2가 인식되고, IRS 제어를 통해 무선 채널 환경을 변경시킬 수 있다. 이와 동시에, 수신단은 수신한 송신 신호에 대한 측정을 수행하고, 이에 대한 피드백을 송신단으로 전송할 수 있다. 즉, 송신단은 IRS 제어에 기초한 피드백 정보 및 수신단의 피드백 정보를 수신하여 최적화를 수행할 수 있다. 이때, 송신단은 IRS를 조절하여 무선 채널 환경을 변경시킬 수 있으며, 무선 채널 환경과 송신단을 고려한 최적화가 수행될 수 있다.On the other hand, referring to FIG. 11(b), in the intelligent radio channel environment, the radio channel environment P2 is recognized and the radio channel environment can be changed through IRS control. At the same time, the receiving end may measure the received transmission signal and transmit a feedback thereof to the transmitting end. That is, the transmitter may perform optimization by receiving feedback information based on IRS control and feedback information of the receiver. At this time, the transmitter may change the radio channel environment by adjusting the IRS, and optimization may be performed in consideration of the radio channel environment and the transmitter.
보다 상세하게는, 도 12는 본 개시의 일 실시예에 따라 지능형 무선 채널 환경에서 최적화를 수행하는 방법을 나타낸 도면이다. 도 12를 참조하면, 지능형 무선 채널 환경에서 기지국(1210) 및 단말(1230) 사이에는 IRS(1220)가 존재할 수 있다. 일 예로, 기지국(1210)이 전송하는 신호는 단말(1230)로 직접 전송되는 경로 및 IRS(1220)에 반사되어 전송되는 경로가 존재할 수 있다. 즉, 지능형 무선 채널 환경에서는 기지국(1210)과 IRS(1220) 간 무선 채널(G), IRS(1220)와 단말(1230) 간 무선 채널(
Figure PCTKR2021007065-appb-I000001
) 및 기지국(1210)과 단말(1230) 간 직접 무선 채널(
Figure PCTKR2021007065-appb-I000002
)이 존재할 수 있다. 여기서, IRS(1220)의 제어에 기초하여 기지국(1210)과 IRS(1220) 간 무선 채널(G) 및 IRS(1220)와 단말(1230) 간 무선 채널(
Figure PCTKR2021007065-appb-I000003
)이 변경될 수 있다. 따라서, 지능형 무선 채널 환경에서 최적화는 상술한 무선 채널 환경을 고려하여 최적화가 수행될 수 있다.
More specifically, FIG. 12 is a diagram illustrating a method of performing optimization in an intelligent radio channel environment according to an embodiment of the present disclosure. Referring to FIG. 12 , an IRS 1220 may exist between a base station 1210 and a terminal 1230 in an intelligent radio channel environment. For example, a signal transmitted by the base station 1210 may have a path directly transmitted to the terminal 1230 and a path reflected by the IRS 1220 and transmitted. That is, in an intelligent radio channel environment, a radio channel (G) between the base station 1210 and the IRS 1220 and a radio channel between the IRS 1220 and the terminal 1230 (
Figure PCTKR2021007065-appb-I000001
) and a direct radio channel between the base station 1210 and the terminal 1230 (
Figure PCTKR2021007065-appb-I000002
) may exist. Here, based on the control of the IRS 1220, a radio channel (G) between the base station 1210 and the IRS 1220 and a radio channel between the IRS 1220 and the terminal 1230 (
Figure PCTKR2021007065-appb-I000003
) can be changed. Accordingly, optimization in an intelligent radio channel environment may be performed in consideration of the above-described radio channel environment.
보다 상세하게는, 기지국(1210)이 단말 k(1230)에게 신호를 전송하는 경우, 단말 k(1230)를 위한 기지국 송신 빔포밍 벡터는
Figure PCTKR2021007065-appb-I000004
, 단말 k(1230)에게 전송하는 신호는
Figure PCTKR2021007065-appb-I000005
및 수신 잡음이
Figure PCTKR2021007065-appb-I000006
일 수 있다. 이때, 단말 k(1230)가 IRS(1220)를 사용하는 환경에 기초하여 기지국(1210)으로부터 수신하는 신호는 하기 수학식 2와 같을 수 있으며, 각각의 채널에 대해서는 하기 표 3과 같을 수 있다.
More specifically, when the base station 1210 transmits a signal to terminal k 1230, the base station transmission beamforming vector for terminal k 1230 is
Figure PCTKR2021007065-appb-I000004
, the signal transmitted to the terminal k (1230) is
Figure PCTKR2021007065-appb-I000005
and receive noise
Figure PCTKR2021007065-appb-I000006
can be At this time, the signal received from the base station 1210 based on the environment in which the terminal k 1230 uses the IRS 1220 may be as shown in Equation 2 below, and each channel may be as shown in Table 3 below.
Figure PCTKR2021007065-appb-M000002
Figure PCTKR2021007065-appb-M000002
Figure PCTKR2021007065-appb-T000003
Figure PCTKR2021007065-appb-T000003
여기서, 단말 k(1230)가 수신한 신호 대 잡음비(signal noise ratio, SNR)은 하기 수학식 3과 같을 수 있다.Here, the signal-to-noise ratio (SNR) received by terminal k 1230 may be expressed as Equation 3 below.
Figure PCTKR2021007065-appb-M000003
Figure PCTKR2021007065-appb-M000003
따라서 수신 SNR을 최적화하기 위한 지능형 무선환경(SRE)을 구성하는 경우, 하기 수학식 4와 같이 IRS의 제어와 전송 빔포밍(Transmit Beamforming)을 설정하는 경우일 수 있다.Therefore, when configuring an intelligent radio environment (SRE) for optimizing the received SNR, it may be a case of setting IRS control and transmit beamforming as shown in Equation 4 below.
Figure PCTKR2021007065-appb-M000004
Figure PCTKR2021007065-appb-M000004
이때, MIMO에서 최대율 전송(Maximum-Rate Transmit)을 고려하여 단말 k(1230)의 전송 빔포밍(Transmit Beamforming)
Figure PCTKR2021007065-appb-I000007
는 하기 수학식 5와 같을 수 있다.
At this time, transmit beamforming of terminal k 1230 in consideration of maximum-rate transmission in MIMO
Figure PCTKR2021007065-appb-I000007
May be the same as Equation 5 below.
Figure PCTKR2021007065-appb-M000005
Figure PCTKR2021007065-appb-M000005
여기서,
Figure PCTKR2021007065-appb-I000008
는 IRS에서 최대 전송 파워일 수 있고,
Figure PCTKR2021007065-appb-I000009
및 Φ 를 최적화하는 수식에
Figure PCTKR2021007065-appb-I000010
를 대입하면 최적화는 하기 수학식 6과 같을 수 있다.
here,
Figure PCTKR2021007065-appb-I000008
May be the maximum transmission power in the IRS,
Figure PCTKR2021007065-appb-I000009
and to the formulas that optimize Φ
Figure PCTKR2021007065-appb-I000010
Substituting , optimization may be as shown in Equation 6 below.
Figure PCTKR2021007065-appb-M000006
Figure PCTKR2021007065-appb-M000006
이때, IRS 제어 값 Φ 를 결정하면,
Figure PCTKR2021007065-appb-I000011
를 연산에 의해 결정할 수 있다. 여기서, 상술한 최적화 문제를 해결하기 위한 AO(Alternating Optimization) 알고리즘이 사용될 수 있다. 일 예로, AO 알고리즘은 채널정보(
Figure PCTKR2021007065-appb-I000012
) 를 이용하여 IRS 요소 별로 신뢰 구간(Trust region)을 결정하는 방법일 수 있으며, 도 13과 같을 수 있다. 또한, 목적 함수의 값(Objective Value)이 수렴할 때까지 반복적으로 바이너리 결정(binary decision)을 수행하고, 이를 통해
Figure PCTKR2021007065-appb-I000013
을 구할 수 있다. 여기서, 수렴 값의 상위 한계 값(upper bound)은 이상적인 IRS(Ideal IRS)인 경우,
Figure PCTKR2021007065-appb-I000014
일 수 있다. 이때, 일 예로, 도 12에서 IRS는 상술한 IRS 요소별로 최적화된 값을 찾기 위해 상술한 동작을 반복할 수 있다.
At this time, if the IRS control value Φ is determined,
Figure PCTKR2021007065-appb-I000011
can be determined by arithmetic. Here, an alternating optimization (AO) algorithm may be used to solve the aforementioned optimization problem. For example, the AO algorithm uses channel information (
Figure PCTKR2021007065-appb-I000012
) may be used to determine a trust region for each IRS element, and may be the same as in FIG. 13. In addition, a binary decision is repeatedly performed until the value of the objective function converges.
Figure PCTKR2021007065-appb-I000013
can be obtained. Here, if the upper bound of the convergence value is the Ideal IRS,
Figure PCTKR2021007065-appb-I000014
can be At this time, as an example, in FIG. 12, the IRS may repeat the above-described operation to find an optimized value for each of the above-described IRS elements.
여기서, AO(Alternating Optimization) 알고리즘은 수렴할 때까지 반복할 필요성이 있다. 또한, IRS 요소별로 각각의 최적화 값을 도출해야 하므로 복잡도가 커지고 연산량이 증가할 수 있다. 이때, 기지국의 안테나 수 M 및 IRS 요수 수 N 에 따라 복잡도 및 연산량이 증가할 수 있으며, 이를 계산하는데 한계가 존재할 수 있다. 또한, AO(Alternating Optimization) 알고리즘을 최적화하는 경우, IRS가 포함된 모든 채널들의 측정 값이 필요할 수 있으며, 상술한 바를 고려하면 최적화에 한계가 존재할 수 있다.Here, the AO (Alternating Optimization) algorithm needs to be repeated until convergence. In addition, since each optimization value must be derived for each IRS element, complexity and computational complexity may increase. In this case, the complexity and amount of calculation may increase according to the number M of antennas of the base station and the number N of IRS elements, and there may be limitations in calculating them. In addition, when optimizing an Alternating Optimization (AO) algorithm, measurement values of all channels including IRS may be required, and considering the above, there may be limitations in optimization.
도 14는 본 개시의 일 실시예에 따라 지능형 무선 채널 환경에서 최적화를 수행하는 방법을 나타낸 도면이다.14 is a diagram illustrating a method of performing optimization in an intelligent radio channel environment according to an embodiment of the present disclosure.
상술한 바와 같이, 지능형 무선 채널 환경에서 IRS에 기초하여 채널에 대한 최적화를 수행하는 경우, AO(Alternating Optimization) 알고리즘의 반복성과 IRS 요소(Element)에 따라 연산량이 기하급수적으로 증가할 수 있다. 또한, 일 예로, 지능형 무선 채널 환경에서는 IRS가 포함된 모든 채널 정보를 측정해야 할 필요성이 있으며, 이에 따라 복잡성이 증가할 수 있다.As described above, when channel optimization is performed based on IRS in an intelligent radio channel environment, the amount of computation may increase exponentially according to the repeatability of an alternating optimization (AO) algorithm and IRS elements. Also, for example, in an intelligent wireless channel environment, there is a need to measure all channel information including IRS, and thus complexity may increase.
하기에서는 상술한 점을 고려하여, 능동센서를 구비한 IRS에 기초하여 최적화를 수행하는 방법에 대해 서술한다. 이때, 능동센서를 구비한 IRS를 통해 채널정보 획득의 부담을 줄일 수 있다. 또한, 일 예로, 전체 채널정보 대비 부족한 채널정보는 인공지능 시스템에 기초하여 보완될 수 있다. 이를 통해, 기지국의 안테나 수 M과 IRS 요소 수 N이 증가하는 경우라도 최적화된 IRS 제어 값을 생성하는데 복잡도를 줄일 수 있다.In the following, a method of performing optimization based on an IRS with an active sensor will be described in consideration of the above points. At this time, the burden of channel information acquisition can be reduced through the IRS equipped with an active sensor. Also, as an example, channel information that is insufficient compared to total channel information may be supplemented based on an artificial intelligence system. Through this, even when the number M of antennas and the number N of IRS elements of the base station increase, complexity in generating an optimized IRS control value can be reduced.
보다 상세하게는, 도 14를 참조하면, 능동센서를 구비한 IRS(1420)는 능동센서를 통해서 기지국(1410)과 IRS(1420) 사이의 채널(
Figure PCTKR2021007065-appb-I000015
)와 단말(1430)과 IRS(1420) 사이의 채널(
Figure PCTKR2021007065-appb-I000016
)를 측정할 수 있다. 이때, 기지국(1410)은 측정된
Figure PCTKR2021007065-appb-I000017
에 기초하여 참조신호를 IRS(1420)으로 전달할 수 있다. 여기서, 인공 지능 시스템 에이전트는 상술한
Figure PCTKR2021007065-appb-I000018
,
Figure PCTKR2021007065-appb-I000019
와 BS-IRS-UE를 거친 직렬채널정보
Figure PCTKR2021007065-appb-I000020
를 상태정보로 활용하여 최적화된 IRS 제어 값 Φ를 획득할 수 있다. 그 후, 인공 지능 시스템 에이전트는 IRS 제어 값 Φ 로 인한 보상(Reward)과 측정된 BS-IRS-UE 채널정보를 이용하여 인공지능 시스템의 학습을 수행할 수 있다. 또한, 일 예로, 인공 지능 시스템 에이전트는 IRS 제어 값 Φ 로 인한 보상(Reward)과 측정된 BS-IRS-UE 채널정보를 간접적으로 나타나는 지표(
Figure PCTKR2021007065-appb-I000021
)를 통해 학습을 수행할 수 있으며, 특정 형태로 한정되는 것은 아닐 수 있다.
More specifically, referring to FIG. 14, the IRS 1420 having an active sensor is a channel between the base station 1410 and the IRS 1420 through the active sensor (
Figure PCTKR2021007065-appb-I000015
) and the channel between the terminal 1430 and the IRS 1420 (
Figure PCTKR2021007065-appb-I000016
) can be measured. At this time, the base station 1410 is measured
Figure PCTKR2021007065-appb-I000017
Based on, the reference signal may be transferred to the IRS 1420. Here, the artificial intelligence system agent described above
Figure PCTKR2021007065-appb-I000018
,
Figure PCTKR2021007065-appb-I000019
and serial channel information through BS-IRS-UE
Figure PCTKR2021007065-appb-I000020
The optimized IRS control value Φ can be obtained by using as state information. After that, the artificial intelligence system agent can perform learning of the artificial intelligence system using the reward due to the IRS control value Φ and the measured BS-IRS-UE channel information. In addition, as an example, the artificial intelligence system agent indirectly indicates the reward due to the IRS control value Φ and the measured BS-IRS-UE channel information (
Figure PCTKR2021007065-appb-I000021
), learning may be performed, and may not be limited to a specific form.
이때, 일 예로, 인공 지능 시스템 에이전트는 IRS 컨트롤러에 기초하여 동작할 수 있다. 또 다른 일 예로, 인공 지능 시스템 에이전트는 클라우드 형태로 IRS에 연결되고, 상술한 정보를 획득하여 학습을 수행할 수 있다. 또 다른 일 예로, 인공지능 시스템 에이전트는 기지국(1410)에 위치하고, 상술한 정보들을 피드백을 통해 획득한 후 학습을 수행할 수 있다. 또 다른 일 예로, 인공지능 시스템 에이전트는 단말(1430)에 위치할 수 있다. 이때, 단말(1430)은 IRS(1420)와의 관계를 고려하여 채널 측정을 수행하거나 기지국(1410)으로부터 상술한 정보를 수신하여 학습을 수행할 수 있으며, 특정 형태로 한정되지 않는다.At this time, as an example, the artificial intelligence system agent may operate based on the IRS controller. As another example, the artificial intelligence system agent may be connected to the IRS in the form of a cloud, obtain the above-described information, and perform learning. As another example, the artificial intelligence system agent may be located in the base station 1410, acquire the above-described information through feedback, and then perform learning. As another example, the artificial intelligence system agent may be located in the terminal 1430. At this time, the terminal 1430 may perform channel measurement in consideration of the relationship with the IRS 1420 or may perform learning by receiving the above-described information from the base station 1410, and is not limited to a specific form.
즉, 인공지능 시스템 에이전트는 특정 주체로 한정되는 것은 아닐 수 있으며, 다양한 형태로 구현될 수 있으며, 상술한 실시예로 한정되지 않는다. 또한, 일 예로, 인공지능 시스템 에이전트는 인공지능에 기초하여 학습을 수행할 수 있으며, 이를 통해 최적화된 IRS 제어 값 Φ를 획득할 수 있다. 여기서, 인공지능 시스템 에이전트는 설명의 편의를 위한 명칭일 수 있으며, 특정 명칭으로 한정되는 것은 아닐 수 있다. 일 예로, 인공지능 시스템 에이전트는 상술한 인공지능에 기초하여 지도 학습, 비지도 학습 및 강화 학습 중 적어도 어느 하나에 기초하여 학습을 수행하여 상술한 IRS 제어 값 Φ를 획득할 수 있으며, 특정 형태로 한정되지 않는다. 다만, 하기에서는 설명의 편의를 위해 인공지능 시스템 에이전트로 서술하지만, 이에 한정되는 것은 아닐 수 있다.That is, the artificial intelligence system agent may not be limited to a specific subject, may be implemented in various forms, and is not limited to the above-described embodiment. Also, as an example, the artificial intelligence system agent may perform learning based on artificial intelligence, and through this, an optimized IRS control value Φ may be obtained. Here, the artificial intelligence system agent may be a name for convenience of explanation, and may not be limited to a specific name. For example, the artificial intelligence system agent may acquire the above-described IRS control value Φ by performing learning based on at least one of supervised learning, unsupervised learning, and reinforcement learning based on the above-described artificial intelligence, and in a specific form. Not limited. However, in the following, for convenience of explanation, it is described as an artificial intelligence system agent, but may not be limited thereto.
일 예로, 인공지능 시스템 에이전트에 기초하여 최적화된 IRS 제어 값 Φ의 초기 설정이 완료될 수 있다. 즉, 기지국(1410), IRS(1420) 및 단말(1430)은 초기 연결을 수행하는 과정에서 상술한 IRS 제어 값 Φ에 대한 학습에 기초하여 설정을 완료할 수 있다. 그 후, 기지국은 상술한 무선 채널 환경에서 최적화된 전송 빔포밍(Transmit Beamforming)
Figure PCTKR2021007065-appb-I000022
를 연산하고, 적용할 수 있다. 일 예로,
Figure PCTKR2021007065-appb-I000023
는 인공지능 시스템을 통해 연산될 수 있다. 또 다른 일 예로,
Figure PCTKR2021007065-appb-I000024
는 빔 관리(Beam Management) 방식에 기초하여 결정될 수 있으며, 특정 형태로 한정되는 것은 아닐 수 있다.
For example, the initial setting of the optimized IRS control value Φ based on the artificial intelligence system agent may be completed. That is, the base station 1410, the IRS 1420, and the terminal 1430 may complete the configuration based on the learning of the above-described IRS control value Φ during the initial connection process. After that, the base station performs transmit beamforming optimized in the above-described radio channel environment.
Figure PCTKR2021007065-appb-I000022
can be computed and applied. For example,
Figure PCTKR2021007065-appb-I000023
can be computed through an artificial intelligence system. As another example,
Figure PCTKR2021007065-appb-I000024
may be determined based on a beam management method, and may not be limited to a specific form.
보다 구체적인 일 예로, 도 15는 본 개시의 일 실시예에 따라 지능형 무선 환경을 설정하기 위해 기지국, IRS 및 단말의 신호 흐름을 나타낸 도면이다.As a more specific example, FIG. 15 is a diagram illustrating signal flows of a base station, an IRS, and a terminal to set an intelligent wireless environment according to an embodiment of the present disclosure.
도 15를 참조하면, 기지국(1510)은 지능형 반사판(IRS, 1520)에 참조신호
Figure PCTKR2021007065-appb-I000025
를 전송할 수 있다. 동시에, 단말(1530)은 IRS(1520)로 참조신호
Figure PCTKR2021007065-appb-I000026
를 전송할 수 있다. 이때, 일 예로, 참조신호
Figure PCTKR2021007065-appb-I000027
와 참조신호
Figure PCTKR2021007065-appb-I000028
는 직교관계일 수 있으며, 이를 통해 상호 간의 간섭을 줄일 수 있다. 여기서, IRS(1520)는 능동센서를 구비할 수 있으며, 이를 통해 참조신호를 센싱할 수 있다. 이때, IRS(1520)는 참조신호를 수신하여 BS-IRS 측정 채널
Figure PCTKR2021007065-appb-I000029
와 UE-IRS 측정채널
Figure PCTKR2021007065-appb-I000030
정보를 획득할 수 있다. 그 후, IRS(1520)는 BS-IRS 측정채널
Figure PCTKR2021007065-appb-I000031
정보를 기지국(1510)으로 전달할 수 있다. 기지국 (1510)은
Figure PCTKR2021007065-appb-I000032
정보를 기반으로 IRS(1520)로 전송하는 신호의 빔포밍
Figure PCTKR2021007065-appb-I000033
를 연산하고, 이를 참조신호에 적용하여 IRS(1520)으로 전송할 수 있다.
Referring to FIG. 15, the base station 1510 sends a reference signal to an intelligent reflector (IRS) 1520.
Figure PCTKR2021007065-appb-I000025
can transmit. At the same time, the terminal 1530 transmits the reference signal to the IRS 1520.
Figure PCTKR2021007065-appb-I000026
can transmit. At this time, for example, the reference signal
Figure PCTKR2021007065-appb-I000027
and reference signal
Figure PCTKR2021007065-appb-I000028
may be an orthogonal relationship, through which mutual interference may be reduced. Here, the IRS 1520 may include an active sensor, through which the reference signal may be sensed. At this time, the IRS 1520 receives the reference signal and uses the BS-IRS measurement channel
Figure PCTKR2021007065-appb-I000029
and UE-IRS measurement channel
Figure PCTKR2021007065-appb-I000030
information can be obtained. After that, the IRS 1520 is a BS-IRS measurement channel
Figure PCTKR2021007065-appb-I000031
Information may be forwarded to the base station 1510. base station 1510 is
Figure PCTKR2021007065-appb-I000032
Beamforming of signals transmitted to the IRS 1520 based on information
Figure PCTKR2021007065-appb-I000033
It can be calculated, applied to the reference signal, and transmitted to the IRS 1520.
여기서, MRT를 위한
Figure PCTKR2021007065-appb-I000034
는 하기 수학식 7과 같을 수 있다.
Here, for the MRT
Figure PCTKR2021007065-appb-I000034
May be the same as Equation 7 below.
Figure PCTKR2021007065-appb-M000007
Figure PCTKR2021007065-appb-M000007
이때, 일 예로,
Figure PCTKR2021007065-appb-I000035
는 빔 스위핑 형태로 지원이 가능할 수 있다. IRS(1520)는 CSI 피드백을 제공하여 기지국(1510)이 특정 빔을 선택하도록 할 수 있다.
In this case, for example,
Figure PCTKR2021007065-appb-I000035
may be supported in the form of beam sweeping. The IRS 1520 may provide CSI feedback to allow the base station 1510 to select a specific beam.
또한, 일 예로, 인공지능 시스템 에이전트는
Figure PCTKR2021007065-appb-I000036
정보 및
Figure PCTKR2021007065-appb-I000037
정보에 기초하여 학습을 수행하여 제어 값 Φ를 획득할 수 있다. 즉, 인공지능 시스템 에이전트는 측정한 채널정보
Figure PCTKR2021007065-appb-I000038
Figure PCTKR2021007065-appb-I000039
를 기반으로 지능형판사판(IRS)의 소자(Element)별 위상 변화값
Figure PCTKR2021007065-appb-I000040
를 예측할 수 있다. 이때, 일 예로, 인공지능 시스템 에이젠트는 BS-IRS-UE에 대한 채널에 대한 측정값
Figure PCTKR2021007065-appb-I000041
정보를 더 고려하여 IRS의 소자별 위상 변화 값을 예측할 수 있으며, 상술한 실시옐 한정되지 않는다.
Also, as an example, the artificial intelligence system agent
Figure PCTKR2021007065-appb-I000036
information and
Figure PCTKR2021007065-appb-I000037
The control value Φ may be acquired by performing learning based on the information. In other words, the artificial intelligence system agent measures the channel information
Figure PCTKR2021007065-appb-I000038
Wow
Figure PCTKR2021007065-appb-I000039
Based on the phase change value for each element of the intelligent judge board (IRS)
Figure PCTKR2021007065-appb-I000040
can predict At this time, as an example, the artificial intelligence system agent measures the channel for the BS-IRS-UE
Figure PCTKR2021007065-appb-I000041
A phase change value for each element of the IRS may be predicted by further considering the information, and the above-described embodiment is not limited.
그 후, 인공지능 시스템 에이젠트에 의해 예측된 위상 변화 값
Figure PCTKR2021007065-appb-I000042
은 IRS 제어기에 전달될 수 있다. IRS 제어기는 위상 변화 값에 기초하여 IRS(1520)를 제어할 수 있다.
After that, the phase change value predicted by the artificial intelligence system agent
Figure PCTKR2021007065-appb-I000042
may be delivered to the IRS controller. The IRS controller may control the IRS 1520 based on the phase change value.
그 후, 기지국(1510)이
Figure PCTKR2021007065-appb-I000043
가 적용된 참조신호(
Figure PCTKR2021007065-appb-I000044
)를 IRS(1520)에 전송한 경우, 단말(1530)은 IRS(1520)를 경유한 상술한 참조신호
Figure PCTKR2021007065-appb-I000045
를 수신할 수 있다. 이때, 단말(1530)은 수신한 참조신호
Figure PCTKR2021007065-appb-I000046
를 기반으로 보상 값(Reward)을 측정할 수 있다. 일 예로, 보상 값은 IRS 채널의 신호대 잡음비 ?SNR?_IRS나 평균 제곱 에러
Figure PCTKR2021007065-appb-I000047
가 사용될 수 있다. 다만, 이는 하나의 일 예일 뿐 다른 보상 값이 적용되는 것도 가능할 수 있다.
After that, the base station 1510
Figure PCTKR2021007065-appb-I000043
The reference signal to which is applied (
Figure PCTKR2021007065-appb-I000044
) to the IRS 1520, the terminal 1530 transmits the above-described reference signal via the IRS 1520.
Figure PCTKR2021007065-appb-I000045
can receive At this time, the terminal 1530 receives the reference signal
Figure PCTKR2021007065-appb-I000046
Based on , the reward value (Reward) can be measured. For example, the compensation value is the signal-to-noise ratio of the IRS channel ?SNR?_IRS or the mean square error
Figure PCTKR2021007065-appb-I000047
can be used However, this is just one example and other compensation values may be applied.
그 후, 인공지능 시스템 에이전트는 IRS 위상 변화 값과 보상 값(Reward) 및 측정한 채널정보에 기초하여 업데이트를 수행할 수 있다. 이때, 일 예로, 인공지능 시스템 에이전트는 보상 값(Reward)이나 예측된 위상 변화 값의 수렴여부에 따라 학습을 수행하여 최종 수렴 값을 도출할 수 있다. 또한, 일 예로, 인공지능 시스템 에이전트는 초기 전이학습을 통해 학습된 모델을 사용할 수 있으며, 이를 통해 반복성을 제거할 수 있다. 다만, 특정 형태로 한정되는 것은 아닐 수 있다. 그 후, 인공지능 시스템 에이전트에 기초하여 환경변경 완료신호가 기지국(1510)으로 전달될 수 있다. 기지국(1510)은 단말(1530)에 참조신호를 전송하고, 채널상태정보를 획득하여 변경된 환경에서 최적화된 빔포밍(Transmit Beamforming) 결정하고 적용하여 단말(1530)과 통신을 수행할 수 있다. After that, the artificial intelligence system agent may perform an update based on the IRS phase shift value, reward value, and measured channel information. At this time, as an example, the artificial intelligence system agent may derive a final convergence value by performing learning according to the convergence of the reward value or the predicted phase change value. Also, as an example, the artificial intelligence system agent may use a model learned through initial transfer learning, thereby removing repetition. However, it may not be limited to a specific form. After that, an environment change completion signal may be transmitted to the base station 1510 based on the artificial intelligence system agent. The base station 1510 may communicate with the terminal 1530 by transmitting a reference signal to the terminal 1530, acquiring channel state information, determining and applying beamforming optimized in a changed environment.
도 16은 본 개시의 일 실시예에 따라 지능형 무선 채널 환경에서 최적화를 수행하는 방법을 나타낸 순서도이다. 도 16을 참조하면, 무선 채널 환경의 최적화는 채널추정 단계, 환경변경 단계 및 환경적응 단계로 구분될 수 있다.16 is a flowchart illustrating a method of performing optimization in an intelligent radio channel environment according to an embodiment of the present disclosure. Referring to FIG. 16, optimization of a radio channel environment can be divided into a channel estimation step, an environment change step, and an environment adaptation step.
보다 상세하게는, 채널추정 단계는 BS-IRS의 채널정보를 파악하여, 기지국에서 IRS로 전달 빔포밍 벡터
Figure PCTKR2021007065-appb-I000048
를 계산하고, 동시에 단말로 부터 참조신호를 통해서 UE-IRS간의 채널정보를 얻는 단계일 수 있다. 이를 위해, 기지국과 단말은 각각의 참조신호를 IRS로 전송할 수 있다.(S1610) 이때, IRS는 능동센서를 이용하여 BS-IRS에 대한 채널정보
Figure PCTKR2021007065-appb-I000049
와 UE-IRS에 대한 채널정보
Figure PCTKR2021007065-appb-I000050
를 확인할 수 있다.(S1630) 그 후, IRS는 BS-IRS에 대한 채널정보
Figure PCTKR2021007065-appb-I000051
를 기지국으로 전송하고, 기지국은 전송 빔포밍
Figure PCTKR2021007065-appb-I000052
를 계산할 수 있다.(S1630) 상술한 바를 통해 채널추정 단계가 완료될 수 있다.
More specifically, in the channel estimation step, the channel information of the BS-IRS is identified, and the beamforming vector transmitted from the base station to the IRS
Figure PCTKR2021007065-appb-I000048
It may be a step of calculating , and simultaneously obtaining channel information between the UE and the IRS through a reference signal from the terminal. To this end, the base station and the terminal may transmit each reference signal to the IRS. (S1610) At this time, the IRS uses an active sensor to obtain channel information for the BS-IRS
Figure PCTKR2021007065-appb-I000049
and channel information for UE-IRS
Figure PCTKR2021007065-appb-I000050
(S1630) Then, the IRS channel information for the BS-IRS
Figure PCTKR2021007065-appb-I000051
to the base station, and the base station transmits beamforming
Figure PCTKR2021007065-appb-I000052
Can be calculated. (S1630) Through the above, the channel estimation step can be completed.
그 후, 채널추정 단계에서 획득한 정보들은 환경변경 단계에서 IRS 제어를 위한 기준 값으로 사용될 수 있다. 일 예로, 단말의 IRS 성능 측정기가 제대로 동작하기 위해서는 먼저 기지국의 신호가 IRS까지 전달되어야 하며, 따라서 IRS 방향으로 빔포밍이 필수적일 수 있다. 보다 상세하게는, 환경변경 단계에서 인공지능 시스템 에이전트는 최적의 IRS 제어 값을 도출할 수 있다. 일 예로, 인공지능 시스템 에이전트는 BS-IRS에 대한 채널정보
Figure PCTKR2021007065-appb-I000053
와 UE-IRS에 대한 채널정보
Figure PCTKR2021007065-appb-I000054
를 통해 IRS의 제어 값 Φ를 획득할 수 있다.(S1640)
After that, the information obtained in the channel estimation step may be used as a reference value for IRS control in the environment change step. For example, in order for the IRS performance measurer of the UE to properly operate, the signal of the base station must first be transmitted to the IRS, and thus beamforming in the IRS direction may be essential. More specifically, in the environment change step, the artificial intelligence system agent can derive the optimal IRS control value. For example, the artificial intelligence system agent provides channel information for BS-IRS
Figure PCTKR2021007065-appb-I000053
and channel information for UE-IRS
Figure PCTKR2021007065-appb-I000054
It is possible to obtain the control value Φ of the IRS through. (S1640)
또 다른 일 예로, 인공지능 시스템 에이전트는 BS-IRS-UE에 대한 채널에 대한 측정 값
Figure PCTKR2021007065-appb-I000055
정보를 더 고려하여 IRS의 제어 값 Φ를 획득할 수 있으며, 상술한 실시예로 한정되지 않는다. 그 후, 상술한 IRS 제어 값 Φ는 IRS에 적용될 수 있다.(S1650) 그 후, 기지국은 계산된 전송 빔포밍
Figure PCTKR2021007065-appb-I000056
에 기초하여 참조신호를 단말로 전송할 수 있다.(S1660) 단말은 빔포밍이 적용된 참조신호를 통해 측정을 통해 보상 값을 획득하고, 이를 인공지능 시스템 에이전트로 전달할 수 있다. 그 후, 인공지능 시스템 에이전트는 보상 값에 기초하여 학습을 수행할 수 있다.(S1670) 이때, 일 예로, 인공지능 시스템 에이전트가 학습을 수행하는 경우, 지도학습(Supervisor Learning)에서는 기 학습된 모델을 통해서 빠르게 예측 값을 추정할 수 있다. 다만, 학습모델의 업데이트가 용이하지 않을 수 있다.
As another example, the artificial intelligence system agent measures the channel for the BS-IRS-UE
Figure PCTKR2021007065-appb-I000055
The IRS control value Φ can be obtained by further considering the information, and is not limited to the above-described embodiment. Then, the aforementioned IRS control value Φ may be applied to the IRS (S1650). After that, the base station performs the calculated transmission beamforming.
Figure PCTKR2021007065-appb-I000056
The reference signal may be transmitted to the terminal based on (S1660). The terminal may obtain a compensation value through measurement through the reference signal to which beamforming is applied, and transmit it to the artificial intelligence system agent. After that, the artificial intelligence system agent may perform learning based on the reward value. (S1670) At this time, for example, when the artificial intelligence system agent performs learning, in supervisor learning, the pre-learned model Through this, it is possible to quickly estimate the predicted value. However, it may not be easy to update the learning model.
반면, 비지도학습인 강화학습은 예측 값을 실행하고 그에 따른 보상 값(Reward)을 얻어서 모델을 계속 학습해 나갈 수 있다. 이때, 보상 값 또는 예측 값이 수렴 될때까지 반복될 수 있다. 다만, 일 예로, 전이학습이나 학습모델의 업데이트를 통해서 반복횟수를 줄일 수 있다. 일 예로, 인공지능 시스템 에이전트는 상술한 지도학습 또는 비지도학습에 기초하여 학습을 수행할 수 있으며, 특정 형태로 한정되는 것은 아닐 수 있다. 그 후, 기지국은 상술한 업데이트에 기초하여 환경변경완료 신호를 획득할 수 있다.(S1680) 이를 통해 환경변경 단계가 완료될 수 있다.On the other hand, reinforcement learning, which is unsupervised learning, can continue learning the model by executing the predicted value and obtaining a corresponding reward value. At this time, it may be repeated until the compensation value or prediction value converges. However, as an example, the number of iterations may be reduced through transfer learning or updating a learning model. For example, the artificial intelligence system agent may perform learning based on the above-described supervised learning or unsupervised learning, and may not be limited to a specific form. Thereafter, the base station may acquire an environment change completion signal based on the above-described update (S1680). Through this, the environment change step may be completed.
그 후, 환경적응 단계는 기지국이 단말에 참조신호를 전달하여 새로운 환경에서 최적화된
Figure PCTKR2021007065-appb-I000057
를 찾는 단계일 수 있다. 일 예로, 기지국은 단말에 참조신호를 보내고, 단말은 측정한 효과 채널상태정보(effective channel state information)인
Figure PCTKR2021007065-appb-I000058
를 기지국으로 피드백 할 수 있다. 기지국은 전달받은 피드백 정보에 기초하여 주어진 환경을 최적화하는
Figure PCTKR2021007065-appb-I000059
를 결정하고 적용할 수 있다.(S1690) 그 후, 기지국은 단말과 통신을 수행할 수 있다. 여기서, 일 예로, 기지국의 빔포밍은 기존 시스템의 빔 관리 방식이 그대로 적용될 수 있으며, 특정 형태로 한정되는 것은 아닐 수 있다.
After that, in the environment adaptation step, the base station transmits a reference signal to the terminal to optimize the new environment.
Figure PCTKR2021007065-appb-I000057
It may be a step to find . For example, the base station sends a reference signal to the terminal, and the terminal transmits the measured effective channel state information
Figure PCTKR2021007065-appb-I000058
can be fed back to the base station. The base station optimizes a given environment based on the received feedback information.
Figure PCTKR2021007065-appb-I000059
may be determined and applied. (S1690) After that, the base station may communicate with the terminal. Here, as an example, beamforming of the base station may be applied as it is to the beam management method of the existing system, and may not be limited to a specific form.
일 예로, 도 17은 본 개시의 일 실시예에 따라 지능형 무선채널 환경에서 인공지능 시스템에 기초하여 강화학습을 수행하는 방법을 나타낸 도면이다. 상술한 바와 같이, 인공지능 시스템 에이전트는 단말에 의해 획득된 보상 값에 기초하여 학습을 수행할 수 있다. 여기서, 인공지능 시스템의 에이전트는 강화학습에 기초하여 학습을 수행할 수 있다. 일 예로, 강화학습은 두 개의 입력과 한 개의 출력으로 구성될 수 있다. As an example, FIG. 17 is a diagram illustrating a method of performing reinforcement learning based on an artificial intelligence system in an intelligent wireless channel environment according to an embodiment of the present disclosure. As described above, the artificial intelligence system agent may perform learning based on the reward value obtained by the terminal. Here, the agent of the artificial intelligence system may perform learning based on reinforcement learning. For example, reinforcement learning may consist of two inputs and one output.
보다 상세하게는, 두 개의 입력은 상태(state) 정보와 보상 값일 수 있다. 이때, 상태(State) 정보는 무선 채널 환경에 기초하여 획득되는 인자일 수 있다. 일 예로, 상태 정보는 채널추정단계에서 획득한 BS-IRS 추정채널(
Figure PCTKR2021007065-appb-I000060
) 와 UE-IRS 추정채널(
Figure PCTKR2021007065-appb-I000061
)에 기초하여 설정될 수 있다.
More specifically, the two inputs may be state information and a compensation value. In this case, the state information may be a factor obtained based on a radio channel environment. As an example, the state information is the BS-IRS estimated channel (acquired in the channel estimation step)
Figure PCTKR2021007065-appb-I000060
) and the UE-IRS estimated channel (
Figure PCTKR2021007065-appb-I000061
) can be set based on.
이때, 추정 채널은 인공지능 시스템에서 현재 상태를 구분하기 위한 것으로 완전한 채널일 필요는 없기 때문에, 채널복원에 대한 부담을 감소시킬 수 있다. 또 다른 일 예로, IRS에 대한 제어 값에 대한 무선 채널 환경의 변화를 상태 정보에 반영하기 위해서 상태 정보는 BS-IRS-UE 채널정보(
Figure PCTKR2021007065-appb-I000062
)를 더 고려하여 설정될 수 있으며, 특정 형태로 한정되는 것은 아닐 수 있다. 이때 BS-IRS-UE 채널정보는 측정된 정보일 수 있다. 또 다른 일 예로, BS-IRS-UE 채널정보는 IRS를 통한 채널을 나타내는 간접적인 지표(
Figure PCTKR2021007065-appb-I000063
)로 대체될 수 있으며, 특정 형태로 한정되지 않는다. 상술한 바에 기초하여 상태 정보는 하기 수학식 8과 같이 설정될 수 있다.
At this time, since the estimated channel is for distinguishing the current state in the artificial intelligence system and does not have to be a complete channel, the burden of channel restoration can be reduced. As another example, in order to reflect changes in the radio channel environment for the control value for the IRS to the status information, the status information includes BS-IRS-UE channel information (
Figure PCTKR2021007065-appb-I000062
), and may not be limited to a specific form. At this time, the BS-IRS-UE channel information may be measured information. As another example, the BS-IRS-UE channel information is an indirect indicator representing a channel through the IRS (
Figure PCTKR2021007065-appb-I000063
), and is not limited to a specific form. Based on the above, state information may be set as shown in Equation 8 below.
Figure PCTKR2021007065-appb-M000008
Figure PCTKR2021007065-appb-M000008
이때, 행동(Action)은 IRS의 각 요소(Element)의 위상 천이 값들을 선택하는 것으로 정의될 수 있으며, 하기 수학식 9와 같을 수 있다.At this time, the action may be defined as selecting phase shift values of each element of the IRS, and may be as shown in Equation 9 below.
Figure PCTKR2021007065-appb-M000009
Figure PCTKR2021007065-appb-M000009
이때, 일 예로, 위상 천이 값들은 위상 천이 값들은 장치의 사용능력에 따라 연속적인 위상 값으로 표시될 수 있으며 수학식 10과 같을 수 있다. 또 다른 일 예로, 위상 천이 값들은 정해진 비트로 양자회되어 표현될 수 있으며, 특정 형태로 한정되는 것은 아닐 수 있다. 되거나 혹은 정해진 비트로 양자화 되어 표현될 수 있다. At this time, as an example, the phase shift values may be displayed as continuous phase values according to the usability of the device and may be as shown in Equation 10. As another example, the phase shift values may be expressed by protonating with predetermined bits, and may not be limited to a specific form. Alternatively, it may be expressed by being quantized with a predetermined bit.
Figure PCTKR2021007065-appb-M000010
Figure PCTKR2021007065-appb-M000010
또 다른 일 예로, 위상 천이 값은 연산을 줄이기 위해 코드북 형태로 설정될 수 있다. 일 예로, 코드북의 크기가 |P|인 경우를 고려할 수 있다. 이때, 행동(Action)은 코드북을 가리키는 인덱스를 나타내고, IRS 제어기에는 코드북에 해당되는
Figure PCTKR2021007065-appb-I000064
이 할당될 수 있다. 여기서, 각도에 따른 스티어링(Steering) 벡터가 설정될 수 있으며, 행동은 하기 수학식 11과 같을 수 있다.
As another example, the phase shift value may be set in the form of a codebook to reduce computation. As an example, a case where the size of the codebook is |P| may be considered. At this time, the action represents an index pointing to the codebook, and the IRS controller corresponds to the codebook.
Figure PCTKR2021007065-appb-I000064
can be assigned. Here, a steering vector according to an angle may be set, and an action may be as shown in Equation 11 below.
Figure PCTKR2021007065-appb-M000011
Figure PCTKR2021007065-appb-M000011
이때, 보상 값(Reward)은 단말로부터 인공지능 시스템에 전달되는 값일 수 있다. 보상 값은 IRS가 선택한 제어 값에 대한 결과일 수 있으며, 이는 상술한 바와 같다. 일 예로, IRS에 단말로부터 보상 값을 수신하는 블록이 추가된 경우, IRS는 보상 값을 직접 수신할 수 있다. 다만, IRS의 비용을 고려하여 IRS는 단말로부터 기지국을 거쳐서 보상 값을 수신할 수 있다. In this case, the reward value (Reward) may be a value transmitted from the terminal to the artificial intelligence system. The compensation value may be the result of the control value selected by the IRS, as described above. For example, when a block for receiving a compensation value from the terminal is added to the IRS, the IRS may directly receive the compensation value. However, considering the cost of the IRS, the IRS may receive a compensation value from the terminal via the base station.
또 다른 일 예로, 단말에 상술한 인공지능 시스템 에이전트가 위치하는 경우라면 단말은 인공지능 시스템 에이전트로 상술한 보상 값을 직접 전달할 수 있다. 또 다른 일 예로, 기지국에 상술한 인공지능 시스템 에이전트가 위치하는 경우라면 단말이 보상 값을 기지국으로 전송하고, 전송된 보상 값이 인공지능 시스템 에이전트에 적용될 수 있으며, 특정 실시예로 한정되지 않는다.As another example, if the AI system agent described above is located in the terminal, the terminal may directly deliver the above-described compensation value to the AI system agent. As another example, if the above-described artificial intelligence system agent is located in the base station, the terminal transmits a compensation value to the base station, and the transmitted compensation value may be applied to the artificial intelligence system agent, and is not limited to a specific embodiment.
이때, 일 예로, 보상 값(Reward)은 단말로부터 프로세싱된 값일 수 있다. 단말은 보상 값을 다양하게 활용하기 위해 단말에 IRS 성능측정기를 추가할 수 있다. 상술한 바에 기초한 보상 값은 하기 수학식 12와 같을 수 있다.At this time, as an example, the reward value (Reward) may be a value processed by the terminal. The UE may add an IRS performance measurer to the UE in order to utilize the compensation value in various ways. A compensation value based on the above may be as shown in Equation 12 below.
Figure PCTKR2021007065-appb-M000012
Figure PCTKR2021007065-appb-M000012
또한, 일 예로, 강화학습에는 Exploration과 Exploitation에 조절에 대한 이슈가 발생할 수 있다. 이때, Exploration은 더 나은 보상 값을 획득하기 위해 복수의 행동들에서 샘플링된 동작을 활용할 수 있다. 반면, Exploitation은 반복적인 행동에 기초하여 이미 인지하고 있는 정보를 활용할 수 있다. 이때, 일 예로, 강화학습에서는 최적의 성능을 발휘하기 위해서는 Exploration과 Exploitation의 적절한 조절이 필요할 수 있으며, e-greedy 방법을 수행할 수 있으며, 이는 도 18과 같을 수 있다. 이때, e-greedy는 정해진 확률로 Exploration을 실행하는 방법일 수 있다. 일 예로, 도 18을 참조하면, e-greedy에 의해 17에서처럼 Exploitation만 하는 greedy 방법보다 Total Regret이 개선될 수 있다. 또한, 시간에 따라 대수적(logarithm)으로 Total Regret을 근접시키는 방법으로 decaying e-greedy를 사용할 수 있으나, 특정 형태로 한정되는 것은 아닐 수 있다. Also, as an example, an issue regarding Exploration and Exploitation control may occur in reinforcement learning. At this time, Exploration may utilize a behavior sampled from multiple behaviors to obtain a better reward value. On the other hand, Exploitation can utilize already recognized information based on repetitive actions. At this time, as an example, in reinforcement learning, proper control of Exploration and Exploitation may be required to achieve optimal performance, and an e-greedy method may be performed, which may be as shown in FIG. 18 . At this time, e-greedy may be a method of executing Exploration with a predetermined probability. For example, referring to FIG. 18 , Total Regret can be improved by e-greedy compared to the greedy method that only exploits, as shown in 17 . In addition, decaying e-greedy may be used as a method of approaching Total Regret logarithmically over time, but may not be limited to a specific form.
일 예로, 하기 수학식 13은 decaying e-greedy를 나타낸 수식으로 c는 상수이고, |A| 는 Action Space의 크기이고,
Figure PCTKR2021007065-appb-I000065
는 시간에 따른 e-greedy로서 시간에 따라 그리고 최소 Regret의 제곱에 반비례하여 감소되어질 수 있다.
As an example, Equation 13 below is an equation representing decaying e-greedy, where c is a constant, and |A| is the size of the action space,
Figure PCTKR2021007065-appb-I000065
can be reduced with time as e-greedy over time and inversely proportional to the square of the minimum Regret.
Figure PCTKR2021007065-appb-M000013
Figure PCTKR2021007065-appb-M000013
또한, 일 예로, Exploration과 Exploitation에 조절은 MAB(Multi Arm Bandit)를 사용하여 좀더 최적화 될 수 있다. 일 예로, UCB(Upper Confidence Bound)이나 TS(Thompson Sampling)이 적용될 수 있으며, 특정 형태로 한정되는 것은 아닐 수 있다.Also, for example, Exploration and Exploitation control can be further optimized using MAB (Multi Arm Bandit). For example, Upper Confidence Bound (UCB) or Thompson Sampling (TS) may be applied, and may not be limited to a specific form.
이때, 하기 수학식 14는 UCB에 기초하여 행동에 대한 식일 수 있으며, 수학식 15는 Upper Confidence일 수 있다. 이때, Upper Confidence는 Action이 나온 횟수
Figure PCTKR2021007065-appb-I000066
와 반비례하도록 설정되어 선택되지 못한 행동들에 대해서 더 많은 기회가 주어지도록 할 수 있다. 상술한 바에 기초하여 기회는 시간에 따라 반감될 수 있다.
In this case, Equation 14 below may be an expression for an action based on UCB, and Equation 15 may be Upper Confidence. At this time, Upper Confidence is the number of actions
Figure PCTKR2021007065-appb-I000066
It is set to be inversely proportional to , so that more opportunities are given to actions that are not selected. Based on the foregoing, the opportunity may be halved over time.
일 예로, 톰슨 샘플링(Thompson Sampling)은 상술한 바에 기초하여 베타 분포를 통해서 구현된 것으로 UCB보다 더 간단하고, 쉽게 Exploration과 Exploitation을 조절할 수 있다.For example, Thompson sampling is implemented through a beta distribution based on the above, and is simpler than UCB and can easily control Exploration and Exploitation.
Figure PCTKR2021007065-appb-M000014
Figure PCTKR2021007065-appb-M000014
Figure PCTKR2021007065-appb-M000015
Figure PCTKR2021007065-appb-M000015
또한, 일 예로, 도 19는 본 개시의 일 실시예에 따라 능동센서를 통해서 얻은 채널정보를 기반으로 모델을 선택하여 동작하는 인공지능 시스템 구조를 나타낸 도면이다. 일 예로, 도 19를 참조하면, 상술한 도 17과 비교하여 보다 적은 상태(State) 정보를 사용할 수 있다. 이에 따라, 연산 속도 및 수렴 속도가 빠를 수 있다. 일 예로, 인공지능 시스템 에이전트는 능동센서를 통해서 얻은 채널정보
Figure PCTKR2021007065-appb-I000067
,
Figure PCTKR2021007065-appb-I000068
를 기반으로 적합한 모델을 선택하고 모델의 가중치
Figure PCTKR2021007065-appb-I000069
를 사용하려는 가중치를 초기화할 수 있다. 여기서, 인공지능 시스템 에이전트의 동작은 도 17과 동일할 수 있으며, 상태 정보는 하기 수학식 16과 같을 수 있다.
Also, as an example, FIG. 19 is a diagram illustrating a structure of an artificial intelligence system that operates by selecting a model based on channel information obtained through an active sensor according to an embodiment of the present disclosure. For example, referring to FIG. 19 , less state information may be used compared to FIG. 17 described above. Accordingly, the calculation speed and convergence speed may be fast. For example, the artificial intelligence system agent obtains channel information through an active sensor.
Figure PCTKR2021007065-appb-I000067
,
Figure PCTKR2021007065-appb-I000068
Choose a suitable model based on the weight of the model
Figure PCTKR2021007065-appb-I000069
You can initialize the weights you want to use. Here, the operation of the artificial intelligence system agent may be the same as that of FIG. 17, and the state information may be as shown in Equation 16 below.
Figure PCTKR2021007065-appb-M000016
Figure PCTKR2021007065-appb-M000016
즉, 간단한 모델을 만들기 위해서 IRS 관련 채널 추정값(
Figure PCTKR2021007065-appb-I000070
,
Figure PCTKR2021007065-appb-I000071
)과 요소의 위상 천이값 Φ는 각각 스티어링 벡터의 각도
Figure PCTKR2021007065-appb-I000072
로 처리할 수 있으며, 마찬가지로
Figure PCTKR2021007065-appb-I000073
도 SNR로 대체 가능할 수 있다. 상술한 바에 기초하여 무선채널 설정이 완료되고, 선택 및 학습된 모델이 기준 보상값 (
Figure PCTKR2021007065-appb-I000074
) 이상을 얻었을 경우에는 학습한 가중치
Figure PCTKR2021007065-appb-I000075
를 모델 가중치 선택기로 갱신할 수 있다.
That is, in order to make a simple model, the IRS-related channel estimate (
Figure PCTKR2021007065-appb-I000070
,
Figure PCTKR2021007065-appb-I000071
) and the phase shift value Φ of the element are the angles of the steering vector, respectively.
Figure PCTKR2021007065-appb-I000072
can be treated as
Figure PCTKR2021007065-appb-I000073
may also be replaced by SNR. Based on the above, the wireless channel setting is completed, and the selected and learned model is the reference compensation value (
Figure PCTKR2021007065-appb-I000074
) or more, the learned weight
Figure PCTKR2021007065-appb-I000075
can be updated with the model weight selector.
또한, 일 예로, 지능형 무선채널 환경에서 인공지능 시스템은 강화학습 중 다양한 알고리즘을 적용할 수 있지만, 연속 공간이나 큰 이산공간을 처리할 수 있고, 안정적이며, 수렴속도가 빠른 모델을 필요로 할 수 있다. 일 예로, DDPG(Deep Deterministic Policy Gradient)는 Policy gradient 와DQN의 장점을 모두 가지고 있다. 따라서, DDPG는 안정적이고, 연속공간에서 사용이 가능할 수 있다. 또한, 일 예로, 결정론적인(Deterministic) 정책을 사용하기 때문에 빠르게 수렴이 가능하며, 비교적 가벼운 알고리즘일 수 있다.In addition, as an example, in an intelligent wireless channel environment, an artificial intelligence system may apply various algorithms during reinforcement learning, but may require a model capable of processing a continuous space or a large discrete space, stable, and having a fast convergence speed. have. For example, DDPG (Deep Deterministic Policy Gradient) has the advantages of both Policy Gradient and DQN. Therefore, DDPG is stable and can be used in continuous space. In addition, as an example, since a deterministic policy is used, convergence is possible quickly and it may be a relatively lightweight algorithm.
일 예로, 도 20은 본 개시의 일 실시예에 따라 DDPG를 사용한 강화학습을 나타내고 있다. 도 20을 참조하면, Actor-Critic 알고리즘과 DQN 알고리즘의 특징을 모두 포함할 수 있다. Actor 네트워크와 Critic네트워크를 통해 각각 Q(Value Action Function)와 행동을 예측할 수 있다. 이때, Critic네트워크는 Experience Replay Memory를 사용하여 TD-Error(Temporal Difference)를 줄이는 방향으로 학습될 수 있다. 또한, 학습된 Critic네트워크는 Policy Gradient 계산 및 학습에 사용될 수 있다. 일 예로, 타겟 정책(Target Policy)은 결정론적이기 때문에 π 대신 μ 를 통해서 하기 수학식 17과 같이 Bellman equation 을 표현할 수 있다.As an example, FIG. 20 illustrates reinforcement learning using DDPG according to an embodiment of the present disclosure. Referring to FIG. 20, the characteristics of both the Actor-Critic algorithm and the DQN algorithm may be included. Q (Value Action Function) and behavior can be predicted through Actor network and Critic network, respectively. At this time, the Critic network can be learned in the direction of reducing TD-Error (Temporal Difference) using Experience Replay Memory. In addition, the learned Critic Network can be used for Policy Gradient calculation and learning. For example, since the target policy is deterministic, the Bellman equation can be expressed as Equation 17 below through μ instead of π.
Figure PCTKR2021007065-appb-M000017
Figure PCTKR2021007065-appb-M000017
이때, 상태(State)와 행동(Action)을 각각
Figure PCTKR2021007065-appb-I000076
Figure PCTKR2021007065-appb-I000077
이고, E는 환경(Environment)로 추출된 것을 나타내고 있다.
Figure PCTKR2021007065-appb-I000078
는 policy μ를 위한 action-value function이고, γ 는 discount factor이며, r은 보상 값(Reward)일 수 있다. 또한, Critic Network의 Weight를 각각
Figure PCTKR2021007065-appb-I000079
로 표현하고, 다양한 확률분포를 가진 행동 policy를 β 라고 할 때 Critic Network의 Loss는 하기 수학식 18 및 19와 같을 수 있다.
At this time, State and Action are respectively
Figure PCTKR2021007065-appb-I000076
Wow
Figure PCTKR2021007065-appb-I000077
, and E indicates that it is extracted to the environment.
Figure PCTKR2021007065-appb-I000078
is an action-value function for policy μ, γ is a discount factor, and r may be a reward value. In addition, the weight of the Critic Network
Figure PCTKR2021007065-appb-I000079
, and when an action policy with various probability distributions is referred to as β, the loss of the Critic Network may be as shown in Equations 18 and 19 below.
Figure PCTKR2021007065-appb-M000018
Figure PCTKR2021007065-appb-M000018
Figure PCTKR2021007065-appb-M000019
Figure PCTKR2021007065-appb-M000019
이때, 일 예로, 상술한 수학식 18 및 19에서 기대값은 Relay Buffer R 에 저장된 Transitions (
Figure PCTKR2021007065-appb-I000080
)을 Minibatching 하여 평균값을 취함으로서 표현될 수 있다.
At this time, for example, in the above-described Equations 18 and 19, the expected value is Transitions stored in Relay Buffer R (
Figure PCTKR2021007065-appb-I000080
) can be expressed by minibatching and taking the average value.
Figure PCTKR2021007065-appb-M000020
Figure PCTKR2021007065-appb-M000020
또한,
Figure PCTKR2021007065-appb-I000081
는 TD(Temporal Differnece)가 되며 Critic Network는 TD Error를 줄이는 방향으로 학습될 수 있다. 이때, Actor Network는 기대보상값(Expected Return)을 최대화하는 방향으로 정책을 업데이트할 수 있으며, 하기 수학식 21과 같을 수 있다.
In addition,
Figure PCTKR2021007065-appb-I000081
becomes TD (Temporal Difference), and the Critic Network can be learned in the direction of reducing TD Error. At this time, the Actor Network may update the policy in the direction of maximizing the expected return, and may be as shown in Equation 21 below.
Figure PCTKR2021007065-appb-M000021
Figure PCTKR2021007065-appb-M000021
또한, 기대 값은 하기 수학식 22와 같이 Relay Buffer를 사용하여 근사화될 수 있다.In addition, the expected value may be approximated using a Relay Buffer as shown in Equation 22 below.
Figure PCTKR2021007065-appb-M000022
Figure PCTKR2021007065-appb-M000022
이때, DDPG는 Off-policy 모델로서 Exploration을 추가 하기가 용이G할 수 있다. 일 예로, Exploration policy 는 노이즈 분포를 추가하여 생성할 수 있으며, 하기 수학식 23을 고려할 수 있다.At this time, DDPG may be easy to add Exploration as an off-policy model. For example, the Exploration policy may be generated by adding a noise distribution, and Equation 23 below may be considered.
Figure PCTKR2021007065-appb-M000023
Figure PCTKR2021007065-appb-M000023
이때, 일 예로, 정규분포의 분산
Figure PCTKR2021007065-appb-I000082
을 이용하여 Exploration의 비율을 조절할 수 있으며, 앞서 언급한 decaying e-greedy 나 UCB를 이용하여 Adaptive하게 조절이 가능할 수 있다.
At this time, for example, the variance of the normal distribution
Figure PCTKR2021007065-appb-I000082
The exploration rate can be adjusted using , and it can be adjusted adaptively using the aforementioned decaying e-greedy or UCB.
또한, 일 예로, 도 21은 본 개시의 일 실시예에 따라 IRS를 나타낸 도면이다. 상술한 바와 같이, IRS는 능동센서를 구비할 수 있다. 이때, 도 21(a)를 참조하면, IRS 내에서 능동센서와 반사소자를 공용으로 사용될 수 있다. 일 예로, IRS 내의 특정 위치에는 능동센서(2110)로 동작하도록 할 수 있다. 여기서, IRS의 동작 특성을 나타내기 위해서 도 21의 구조도에는 안테나와 위상 천이기(Phase Shifter)로 도식하지만, 이에 한정되는 것은 아닐 수 있다. 일 예로, IRS는 동판을 다이오드(Diode)나 버렉터(Varactor)로 제아하는 PCB형태일 수 있다. 또 다른 일 예로, IRS Meta Surface의 형태도 지원할 수 있으며, 특정 형태로 한정되는 것은 아닐 수 있다. 이때, IRS의 각각의 요소(Element)는 반사판으로 사용할 경우와 능동센서로 사용하는 경우에 대한 스위치로 선택이 가능할 수 있다. 보다 상세하게는, IRS의 요소가 반사판으로 사용되는 경우, 해당 요소에서 스위치는 RF 체인의 연결을 단절하고 위상 천이기로 연결될 수 있다. 이때, 위상 천이기는 IRS 제어기가 제어하는 위상 값으로 제어될 수 있다. 반면, 해당 요소가 능동센서로 사용되는 경우, 해당 요소에서 스위치는 RF 체인으로 연결될 수 있다. 이때, 해당 요소는 베이스밴드 유닛(Baseband Unit)을 통해 기지국과 단말로부터 참조신호를 복조하여 상술한 각각의 채널정보
Figure PCTKR2021007065-appb-I000083
,
Figure PCTKR2021007065-appb-I000084
추출할 수 있다.
Also, as an example, FIG. 21 is a diagram illustrating an IRS according to an embodiment of the present disclosure. As described above, the IRS may include an active sensor. At this time, referring to FIG. 21 (a), the active sensor and the reflective element may be commonly used in the IRS. For example, an active sensor 2110 may operate at a specific location in the IRS. Here, in order to show the operating characteristics of the IRS, the structure diagram of FIG. 21 is illustrated with an antenna and a phase shifter, but may not be limited thereto. For example, the IRS may be in the form of a PCB in which a copper plate is controlled by a diode or a varactor. As another example, the form of the IRS Meta Surface may also be supported, and may not be limited to a specific form. At this time, each element of the IRS may be selectable as a switch for use as a reflector and active sensor. More specifically, when an element of the IRS is used as a reflector, a switch in the corresponding element may disconnect the RF chain and be connected to a phase shifter. In this case, the phase shifter may be controlled by the phase value controlled by the IRS controller. On the other hand, when a corresponding element is used as an active sensor, switches in the corresponding element may be connected in an RF chain. At this time, the corresponding element demodulates the reference signal from the base station and the terminal through the baseband unit, and each channel information described above.
Figure PCTKR2021007065-appb-I000083
,
Figure PCTKR2021007065-appb-I000084
can be extracted.
또 다른 일 예로, 도 21(b)는 독립된 능동센서를 사용하는 IRS 구조일 수 있다. 일 예로, 능동센서(2120)는 반사판과 별로로 분리될 수 있다. 따라서, 도 21(a)와 상이하게 능동센서의 경로와 IRS 제어기로 제어하는 반사판의 경로가 구분될 수 있다. 일 예로, 단말에서 사용하는 IRS 성능 측정기는 기지국에서 전달하는 참조신호를 바탕으로 지능형 무선 채널 환경에 적용되는 인공지능 시스템이 설정한 제어 값에 대한 성능을 측정하여 IRS에 전달하는 역할을 수행할 수 있다. 이때, 인공지능 시스템이 설정한 제어 값에 대한 성능 학습을 고려하여 보상 값(Reward)를 생성 및 가공하는 역할을 수행할 수 있으며, 이는 상술한 바와 같다.As another example, FIG. 21 (b) may be an IRS structure using an independent active sensor. For example, the active sensor 2120 may be separately separated from the reflector. Therefore, differently from FIG. 21(a), the path of the active sensor and the path of the reflector controlled by the IRS controller can be distinguished. For example, the IRS performance measurer used by the terminal measures the performance of the control value set by the artificial intelligence system applied to the intelligent radio channel environment based on the reference signal transmitted from the base station and transmits it to the IRS. have. At this time, it may play a role of generating and processing a reward value (Reward) in consideration of performance learning for the control value set by the artificial intelligence system, as described above.
또 다른 일 예로, 도 22는 본 개의 일 실시예에 따라, IRS 성능 측정기의 구조를 나타내고 있다. 일 예로, IRS 성능 측정기는 표준화/정규화, Batching 및 가중치 적용기 기능 중 적어도 어느 하나를 수행할 수 있다. 이때, IRS 성능 측정기는 기지국으로부터 참조신호를 바탕으로 SNR, Channel Gain, MSE, Spectral Efficiency를 계산할 뿐만 아니라, 다른 모니터링 시스템을 이용하여 Energy Charging 등을 측정할 수 있다. 여기서, 각각의 측정 정보들은 다양한 값의 영역일 수 있다. As another example, FIG. 22 illustrates the structure of an IRS performance measurer according to an embodiment of the present disclosure. For example, the IRS performance measurer may perform at least one of standardization/normalization, batching, and weight applicator functions. At this time, the IRS performance measurer can calculate SNR, channel gain, MSE, and spectral efficiency based on the reference signal from the base station, as well as measure energy charging using other monitoring systems. Here, each piece of measurement information may be an area of various values.
따라서, 표준화/정규화 블록은 각각의 가중치를 고려하여 측정 정보들의 다양한 영역의 값을 표준화하거나 정규화 할 수 있다. 또한, Batching 블록은 이러한 측정 정보들을 일정한 주기로 누적하는 역할을 수행하고, 각 누적에 대한 정규화도 같이 수행할 수 있다. 또한, 일 예로, 가중치 적용 블록은 각 측정지표들에 대한 가중치를 적용하여 최충 출력 값을 표현할 수 있다. 일 예로, Spectral Efficiency가 중요한 수신기에서는 Spectral Efficiency 측정의 가중치를 높게 설정할 수 있다. 이때, IRS 성능 측정기는 측정 정보들을 가공 후 통합한 형태로 보상 값을 생성할 수 있다. 또 다른 일 예로, IRS 성능 측정기는 측정 정보들을 개별적으로 분리해서 보상 값을 생성할 수 있으며, 특정 실시예로 한정되는 것은 아닐 수 있다.Accordingly, the standardization/normalization block may standardize or normalize values of various areas of measurement information in consideration of respective weights. In addition, the batching block plays a role of accumulating such measurement information at regular intervals, and can also perform normalization for each accumulation. Also, as an example, the weight application block may express the final output value by applying a weight to each metric. For example, in a receiver in which spectral efficiency is important, a weight of spectral efficiency measurement may be set high. At this time, the IRS performance measurer may generate a compensation value in the form of integrating measurement information after processing. As another example, the IRS performance measurer may generate a compensation value by individually separating measurement information, and may not be limited to a specific embodiment.
도 23은 본 개시의 일 실시예에 따라 인공지능 시스템에 기초하여 최적화를 수행하는 방법을 나타낸 도면이다.23 is a diagram illustrating a method of performing optimization based on an artificial intelligence system according to an embodiment of the present disclosure.
도 23을 참조하면, 무선 통신 시스템에서 기지국 동작 방법을 제공할 수 있다. 일 예로, 인공지능 시스템은 기지국에 위치할 수 있으나, 이에 한정되지 않을 수 있다. 일 예로, 상술한 바처럼 인공지능 시스템은 별도의 클라우드나 단말에 위치하는 것도 가능할 수 있다.Referring to FIG. 23, a method of operating a base station in a wireless communication system may be provided. For example, the artificial intelligence system may be located in a base station, but may not be limited thereto. For example, as described above, the artificial intelligence system may be located in a separate cloud or terminal.
도 23을 참조하면, 기지국은 IRS로 제 1 참조신호를 전송할 수 있다.(S2310) 이때, IRS는 능동센서를 구비할 수 있다. 이때, 일 예로, IRS 요소 각각은 상술한 능동센서 또는 반사소자 중 어느 하나로 사용될 수 있으며, 이는 상술한 바와 같다. 또 다른 일 예로, 능동센서는 IRS 내의 각각의 요소와 독립적으로 IRS 내에 구비될 수 있으며, 특정 실시예로 한정되지 않는다.Referring to FIG. 23, the base station may transmit the first reference signal to the IRS (S2310). At this time, the IRS may include an active sensor. At this time, as an example, each of the IRS elements may be used as any one of the above-described active sensor or reflective element, as described above. As another example, the active sensor may be provided in the IRS independently of each element in the IRS, and is not limited to a specific embodiment.
다음으로, 기지국은 IRS로부터 제 1 참조신호에 기초하여 측정된 기지국과 IRS간 채널 정보 및 IRS와 단말 간 채널 정보를 수신할 수 있다.(S2320) 그 후, 기지국은 기지국과 IRS간 채널 정보에 기초하여 빔포밍을 결정할 수 있다.(S2330) 또한, 기지국에 인공지능 시스템이 위치하므로 기지국은 기지국과 IRS간 채널 정보 및 IRS와 단말 간 채널 정보에 기초하여 IRS 제어 값을 도출할 수 있다.(S2340) 다음으로, 기지국은 결정된 빔포밍을 적용하여 제 2 참조신호를 IRS를 통해 단말로 전송할 수 있다.(S2350) 이때, 일 예로, 기지국은 인공지능 시스템을 통해 IRS 제어 값을 도출하고, 도출된 IRS 제어 값을 IRS로 전송하여 IRS 내의 각각의 요소에 대한 위상 값을 제어할 수 있으며, 이는 상술한 바와 같다. 또한, 일 예로, 인공지능 시스템에 기초하여 IRS 제어 값이 도출되는 경우, 인공지능 시스템은 기지국, IRS 및 단말로 형성되는 채널 정보를 더 고려하여 IRS 제어 값을 도출할 수 있으며, 이는 상술한 바와 같다. 또한, IRS의 능동센서는 기지국으로부터 전송되는 상술한 제 1 참조신호 및 단말로부터 전송되는 제 3 참조신호에 기초하여 각각의 채널 정보를 측정할 수 있으며, 이는 상술한 바와 같다.Next, the base station may receive channel information between the base station and the IRS and channel information between the IRS and the terminal measured based on the first reference signal from the IRS (S2320). (S2330) In addition, since the artificial intelligence system is located in the base station, the base station can derive an IRS control value based on channel information between the base station and the IRS and channel information between the IRS and the terminal. ( S2340) Next, the base station may transmit the second reference signal to the terminal through the IRS by applying the determined beamforming. (S2350) At this time, as an example, the base station derives the IRS control value through the artificial intelligence system and derives it. It is possible to control the phase value of each element in the IRS by transmitting the IRS control value to the IRS, as described above. In addition, for example, when the IRS control value is derived based on the artificial intelligence system, the artificial intelligence system may derive the IRS control value by further considering channel information formed by the base station, the IRS, and the terminal, which is as described above. same. In addition, the active sensor of the IRS can measure each channel information based on the above-described first reference signal transmitted from the base station and the third reference signal transmitted from the terminal, as described above.
또한, 일 예로, 기지국이 도출된 제어 값에 기초하여 IRS를 통해 빔포밍된 신호에 제 2 참조신호를 전송하는 경우, 단말은 제 2 참조신호에 기초하여 IRS 제어 값에 대한 보상 값을 생성할 수 있다. 이때, 인공지능 시스템은 상술한 보상 값에 기초하여 학습을 수행할 수 있으며, 이를 통해 IRS 제어 값을 업데이트할 수 있다.Also, as an example, when the base station transmits the second reference signal to the signal beamformed through the IRS based on the derived control value, the terminal generates a compensation value for the IRS control value based on the second reference signal. can At this time, the artificial intelligence system may perform learning based on the above-described compensation value, through which the IRS control value may be updated.
또한, 일 예로, 기지국은 업데이트된 IRS 제어 값에 기초하여 빔포밍을 업데이트하고, 업데이트된 빔포밍에 기초하여 IRS를 통해 단말로 제 3 참조신호를 전송할 수 있다. 여기서, 보상 값 정보는 채널 관련 정보 형태로 구성될 수 있으나, 특정 형태로 한정되는 것은 아닐 수 있다.Also, as an example, the base station may update beamforming based on the updated IRS control value and transmit the third reference signal to the terminal through the IRS based on the updated beamforming. Here, the compensation value information may be configured in the form of channel related information, but may not be limited to a specific form.
상기 설명한 제안 방식에 대한 일례들 또한 본 개시의 구현 방법들 중 하나로 포함될 수 있으므로, 일종의 제안 방식들로 간주될 수 있음은 명백한 사실이다. 또한, 상기 설명한 제안 방식들은 독립적으로 구현될 수도 있지만, 일부 제안 방식들의 조합 (또는 병합) 형태로 구현될 수도 있다. 상기 제안 방법들의 적용 여부 정보 (또는 상기 제안 방법들의 규칙들에 대한 정보)는 기지국이 단말에게 사전에 정의된 시그널 (예: 물리 계층 시그널 또는 상위 계층 시그널)을 통해서 알려주도록 규칙이 정의될 수 가 있다.It is obvious that examples of the proposed schemes described above may also be included as one of the implementation methods of the present disclosure, and thus may be regarded as a kind of proposed schemes. In addition, the above-described proposed schemes may be implemented independently, but may also be implemented in a combination (or merged) form of some proposed schemes. Information on whether the proposed methods are applied (or information on the rules of the proposed methods) may be defined so that the base station informs the terminal through a predefined signal (eg, a physical layer signal or a higher layer signal). have.
본 개시는 본 개시에서 서술하는 기술적 아이디어 및 필수적 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구체화될 수 있다. 따라서, 상기의 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니되고 예시적인 것으로 고려되어야 한다. 본 개시의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 개시의 등가적 범위 내에서의 모든 변경은 본 개시의 범위에 포함된다. 또한, 특허청구범위에서 명시적인 인용 관계가 있지 않은 청구항들을 결합하여 실시 예를 구성하거나 출원 후의 보정에 의해 새로운 청구항으로 포함할 수 있다.The present disclosure may be embodied in other specific forms without departing from the technical ideas and essential characteristics described in the present disclosure. Accordingly, the above detailed description should not be construed as limiting in all respects and should be considered illustrative. The scope of the present disclosure should be determined by reasonable interpretation of the appended claims, and all changes within the equivalent range of the present disclosure are included in the scope of the present disclosure. In addition, claims that do not have an explicit citation relationship in the claims may be combined to form an embodiment or may be included as new claims by amendment after filing.
본 개시의 실시 예들은 다양한 무선접속 시스템에 적용될 수 있다. 다양한 무선접속 시스템들의 일례로서, 3GPP(3rd Generation Partnership Project) 또는 3GPP2 시스템 등이 있다. Embodiments of the present disclosure may be applied to various wireless access systems. As an example of various wireless access systems, there is a 3rd Generation Partnership Project (3GPP) or 3GPP2 system.
본 개시의 실시 예들은 상기 다양한 무선접속 시스템뿐 아니라, 상기 다양한 무선접속 시스템을 응용한 모든 기술 분야에 적용될 수 있다. 나아가, 제안한 방법은 초고주파 대역을 이용하는 mmWave, THz 통신 시스템에도 적용될 수 있다. Embodiments of the present disclosure may be applied not only to the various wireless access systems, but also to all technical fields to which the various wireless access systems are applied. Furthermore, the proposed method can be applied to mmWave and THz communication systems using ultra-high frequency bands.
추가적으로, 본 개시의 실시예들은 자유 주행 차량, 드론 등 다양한 애플리케이션에도 적용될 수 있다.Additionally, embodiments of the present disclosure may be applied to various applications such as free-running vehicles and drones.

Claims (15)

  1. 무선 통신 시스템에서 기지국 동작 방법에 있어서,In the method of operating a base station in a wireless communication system,
    지능형 반사판(Intelligent Reflect Surface, IRS)로 제 1 참조신호를 전송하는 단계;Transmitting a first reference signal to an intelligent reflect surface (IRS);
    상기 IRS로부터 상기 제 1 참조신호에 기초하여 측정된 상기 기지국과 상기 IRS간 채널 정보 및 상기 IRS와 단말 간 채널 정보를 수신하는 단계;Receiving channel information between the base station and the IRS and channel information between the IRS and the terminal measured based on the first reference signal from the IRS;
    상기 기지국과 상기 IRS간 상기 채널 정보에 기초하여 빔포밍을 결정하는 단계;Determining beamforming based on the channel information between the base station and the IRS;
    상기 기지국과 상기 IRS간 상기 채널 정보 및 상기 IRS와 상기 단말 간 채널 정보에 기초하여 IRS 제어 값을 도출하는 단계; 및Deriving an IRS control value based on the channel information between the base station and the IRS and the channel information between the IRS and the terminal; and
    상기 결정된 빔포밍을 적용하여 제 2 참조신호를 상기 IRS를 통해 상기 단말로 전송하는 단계;를 포함하는, 기지국 동작 방법.and transmitting a second reference signal to the terminal through the IRS by applying the determined beamforming.
  2. 제 1 항에 있어서,According to claim 1,
    상기 기지국은 인공지능 시스템을 통해 상기 IRS 제어 값을 도출하고, 상기 도출된 IRS 제어 값을 상기 IRS로 전송하여 상기 IRS 내의 각각의 요소에 대한 위상 값을 제어하는, 기지국 동작 방법.wherein the base station derives the IRS control value through an artificial intelligence system, and transmits the derived IRS control value to the IRS to control a phase value for each element in the IRS.
  3. 제 2 항에 있어서,According to claim 2,
    인공지능 시스템은 상기 기지국, 상기 IRS 및 상기 단말로 형성되는 채널 정보를 더 고려하여 상기 IRS 제어 값을 도출하는, 기지국 동작 방법.The artificial intelligence system further considers channel information formed by the base station, the IRS, and the terminal to derive the IRS control value.
  4. 제 2 항에 있어서,According to claim 2,
    상기 IRS는 능동센서를 포함하고, 상기 능동센서에 기초하여 상기 제 1 참조신호에 대한 측정이 수행되어 상기 기지국과 상기 IRS 간의 상기 채널 정보가 추정되는, 기지국 동작 방법. The IRS includes an active sensor, and based on the active sensor, measurement of the first reference signal is performed to estimate the channel information between the base station and the IRS.
  5. 제 4 항에 있어서,According to claim 4,
    상기 단말은 상기 IRS로 제 3 참조신호를 전송하고, 상기 IRS와 상기 단말 간 상기 채널 정보는 상기 제 3 참조신호에 기초하여 측정되는, 기지국 동작 방법.The terminal transmits a third reference signal to the IRS, and the channel information between the IRS and the terminal is measured based on the third reference signal.
  6. 제 4 항에 있어서,According to claim 4,
    상기 IRS 내의 상기 각각의 요소는 상기 능동센서 또는 반사소자 중 어느 하나로 사용되는, 기지국 동작 방법.Wherein each of the elements in the IRS is used as one of the active sensor or the reflective element.
  7. 제 4 항에 있어서,According to claim 4,
    상기 능동센서는 상기 IRS 내의 상기 각각의 요소와 독립적으로 상기 IRS 내에 구비되는, 기지국 동작 방법.The active sensor is provided in the IRS independently of each element in the IRS, the base station operating method.
  8. 제 1 항에 있어서,According to claim 1,
    상기 단말이 상기 제 2 참조신호를 상기 IRS를 통해 상기 기지국으로부터 수신하는 경우, 상기 제 2 참조신호에 기초하여 상기 IRS 제어 값에 대한 보상 값 정보를 생성하고, When the terminal receives the second reference signal from the base station through the IRS, generating compensation value information for the IRS control value based on the second reference signal,
    상기 생성된 보상 값 정보를 상기 기지국으로 전송하는, 기지국 동작 방법.Transmitting the generated compensation value information to the base station, a base station operating method.
  9. 제 8 항에 있어서,According to claim 8,
    상기 기지국은 상기 단말로부터 수신한 상기 보상 값에 기초하여 상기 인공지능 시스템을 통해 상기 IRS 제어 값을 업데이트하고,The base station updates the IRS control value through the artificial intelligence system based on the compensation value received from the terminal,
    업데이트된 상기 IRS 제어 값에 기초하여 상기 빔포밍을 업데이트하고,Updating the beamforming based on the updated IRS control value;
    상기 업데이트된 빔포밍에 기초하여 상기 IRS를 통해 상기 단말로 제 3 참조신호를 전송하는, 기지국 동작 방법.Transmitting a third reference signal to the terminal through the IRS based on the updated beamforming, the base station operating method.
  10. 제 8 항에 있어서,According to claim 8,
    상기 보상 값 정보는 채널 관련 정보 형태로 구성되는, 기지국 동작 방법.The compensation value information is configured in the form of channel-related information, the base station operating method.
  11. 무선 통신 시스템에서 단말 동작 방법에 있어서,In a terminal operating method in a wireless communication system,
    IRS로 제 1 참조신호를 전송하는 단계; 및Transmitting a first reference signal to the IRS; and
    기지국으로부터 빔포밍이 적용된 제 2 참조신호를 상기 IRS를 통해 수신하는 단계;를 포함하되, Receiving a second reference signal to which beamforming is applied from a base station through the IRS; Including,
    상기 IRS는 IRS 제어 값에 기초하여 조정되고,The IRS is adjusted based on an IRS control value,
    상기 제 1 참조신호에 기초하여 상기 IRS와 상기 단말 간 채널 정보가 측정되고,Based on the first reference signal, channel information between the IRS and the terminal is measured,
    상기 기지국은 상기 IRS로부터 상기 기지국과 상기 IRS간 채널 정보 및 상기 IRS와 단말 간 채널 정보를 수신하고, 상기 기지국과 상기 IRS간 상기 채널 정보에 기초하여 상기 빔포밍을 결정하고, The base station receives channel information between the base station and the IRS and channel information between the IRS and the terminal from the IRS, and determines the beamforming based on the channel information between the base station and the IRS,
    상기 기지국과 상기 IRS간 상기 채널 정보 및 상기 IRS와 상기 단말 간 채널 정보에 기초하여 상기 IRS 제어 값을 도출하는, 단말 동작 방법.The terminal operation method of deriving the IRS control value based on the channel information between the base station and the IRS and the channel information between the IRS and the terminal.
  12. 무선 통신 시스템의 기지국에 있어서,In a base station of a wireless communication system,
    송수신기; 및transceiver; and
    상기 송수신기와 연결된 프로세서를 포함하고,A processor connected to the transceiver;
    상기 프로세서는,the processor,
    상기 송수신기를 통해 IRS로 제 1 참조신호를 전송하고,Transmitting a first reference signal to an IRS through the transceiver;
    상기 송수신기를 통해 상기 IRS로부터 상기 제 1 참조신호에 기초하여 측정된 상기 기지국과 상기 IRS간 채널 정보 및 상기 IRS와 단말 간 채널 정보를 수신하고,Receiving channel information between the base station and the IRS and channel information between the IRS and the terminal measured based on the first reference signal from the IRS through the transceiver;
    상기 기지국과 상기 IRS간 상기 채널 정보에 기초하여 빔포밍을 결정하고,Determining beamforming based on the channel information between the base station and the IRS;
    상기 기지국과 상기 IRS간 상기 채널 정보 및 상기 IRS와 상기 단말 간 채널 정보에 기초하여 IRS 제어 값을 도출하고, 및An IRS control value is derived based on the channel information between the base station and the IRS and the channel information between the IRS and the terminal, and
    상기 송수신기를 통해 상기 결정된 빔포밍을 적용하여 제 2 참조신호를 상기 IRS를 통해 상기 단말로 전송하는, 기지국.The base station transmits the second reference signal to the terminal through the IRS by applying the determined beamforming through the transceiver.
  13. 무선 통신 시스템의 단말에 있어서,In the terminal of the wireless communication system,
    송수신기; 및transceiver; and
    상기 송수신기와 연결된 프로세서를 포함하고,A processor connected to the transceiver;
    상기 프로세서는,the processor,
    상기 송수신기를 통해 IRS로 제 1 참조신호를 전송하고, 및Transmitting a first reference signal to an IRS through the transceiver, and
    상기 송수신기를 통해 빔포밍이 적용된 제 2 참조신호를 상기 IRS를 통해 수신하되, Receiving a second reference signal to which beamforming is applied through the transceiver through the IRS,
    상기 IRS는 IRS 제어 값에 기초하여 조정되고,The IRS is adjusted based on an IRS control value,
    상기 제 1 참조신호에 기초하여 상기 IRS와 상기 단말 간 채널 정보가 측정되고,Based on the first reference signal, channel information between the IRS and the terminal is measured,
    상기 기지국은 상기 IRS로부터 상기 기지국과 상기 IRS간 채널 정보 및 상기 IRS와 단말 간 채널 정보를 수신하고, 상기 기지국과 상기 IRS간 상기 채널 정보에 기초하여 상기 빔포밍을 결정하고, The base station receives channel information between the base station and the IRS and channel information between the IRS and the terminal from the IRS, and determines the beamforming based on the channel information between the base station and the IRS,
    상기 기지국과 상기 IRS간 상기 채널 정보 및 상기 IRS와 상기 단말 간 채널 정보에 기초하여 상기 IRS 제어 값을 도출하는, 단말.Deriving the IRS control value based on the channel information between the base station and the IRS and the channel information between the IRS and the terminal.
  14. 적어도 하나의 메모리 및 상기 적어도 하나의 메모리들과 기능적으로 연결되어 있는 적어도 하나의 프로세서를 포함하는 장치에 있어서,An apparatus comprising at least one memory and at least one processor functionally connected to the at least one memory, comprising:
    상기 적어도 하나의 프로세서는 상기 장치가,The at least one processor is the device,
    상기 송수신기를 통해 IRS로 제 1 참조신호를 전송하고,Transmitting a first reference signal to an IRS through the transceiver;
    상기 송수신기를 통해 상기 IRS로부터 상기 제 1 참조신호에 기초하여 측정된 상기 기지국과 상기 IRS간 채널 정보 및 상기 IRS와 단말 간 채널 정보를 수신하고,Receiving channel information between the base station and the IRS and channel information between the IRS and the terminal measured based on the first reference signal from the IRS through the transceiver;
    상기 기지국과 상기 IRS간 상기 채널 정보에 기초하여 빔포밍을 결정하고,Determining beamforming based on the channel information between the base station and the IRS;
    상기 기지국과 상기 IRS간 상기 채널 정보 및 상기 IRS와 상기 단말 간 채널 정보에 기초하여 IRS 제어 값을 도출하고, 및An IRS control value is derived based on the channel information between the base station and the IRS and the channel information between the IRS and the terminal, and
    상기 송수신기를 통해 상기 결정된 빔포밍을 적용하여 제 2 참조신호를 상기 IRS를 통해 상기 단말로 전송하는, 장치.Apparatus for transmitting a second reference signal to the terminal through the IRS by applying the determined beamforming through the transceiver.
  15. 적어도 하나의 명령어(instructions)을 저장하는 비-일시적인(non-transitory) 컴퓨터 판독 가능 매체(computer-readable medium)에 있어서, In a non-transitory computer-readable medium storing at least one instruction,
    프로세서에 의해 실행 가능한(executable) 상기 적어도 하나의 명령어를 포함하며,comprising the at least one instruction executable by a processor;
    상기 적어도 하나의 명령어는,The at least one command,
    상기 장치가 상기 송수신기를 통해 IRS로 제 1 참조신호를 전송하고,The device transmits a first reference signal to an IRS through the transceiver,
    상기 송수신기를 통해 상기 IRS로부터 상기 제 1 참조신호에 기초하여 측정된 상기 기지국과 상기 IRS간 채널 정보 및 상기 IRS와 단말 간 채널 정보를 수신하고,Receiving channel information between the base station and the IRS and channel information between the IRS and the terminal measured based on the first reference signal from the IRS through the transceiver,
    상기 기지국과 상기 IRS간 상기 채널 정보에 기초하여 빔포밍을 결정하고,Determining beamforming based on the channel information between the base station and the IRS;
    상기 기지국과 상기 IRS간 상기 채널 정보 및 상기 IRS와 상기 단말 간 채널 정보에 기초하여 IRS 제어 값을 도출하고, 및An IRS control value is derived based on the channel information between the base station and the IRS and the channel information between the IRS and the terminal, and
    상기 송수신기를 통해 상기 결정된 빔포밍을 적용하여 제 2 참조신호를 상기 IRS를 통해 상기 단말로 전송하는, 컴퓨터 판독 가능 매체.The computer readable medium for transmitting the second reference signal to the terminal through the IRS by applying the determined beamforming through the transceiver.
PCT/KR2021/007065 2021-06-07 2021-06-07 Method and device for transmitting and receiving signal in wireless communication system WO2022260189A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/KR2021/007065 WO2022260189A1 (en) 2021-06-07 2021-06-07 Method and device for transmitting and receiving signal in wireless communication system
KR1020237033970A KR20240017776A (en) 2021-06-07 2021-06-07 Method and device for transmitting and receiving signals in a wireless communication system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2021/007065 WO2022260189A1 (en) 2021-06-07 2021-06-07 Method and device for transmitting and receiving signal in wireless communication system

Publications (1)

Publication Number Publication Date
WO2022260189A1 true WO2022260189A1 (en) 2022-12-15

Family

ID=84425111

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/007065 WO2022260189A1 (en) 2021-06-07 2021-06-07 Method and device for transmitting and receiving signal in wireless communication system

Country Status (2)

Country Link
KR (1) KR20240017776A (en)
WO (1) WO2022260189A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200350693A1 (en) * 2019-04-30 2020-11-05 Massachusetts Institute Of Technology Surface for controlled radio frequency signal propagation
US20210013619A1 (en) * 2019-07-12 2021-01-14 Arizona Board Of Regents On Behalf Of Arizona State University Large intelligent surfaces with sparse channel sensors
US20210126359A1 (en) * 2019-10-28 2021-04-29 Research & Business Foundation Sungkyunkwan University Data processing method and apparatus with wireless communication system including intelligent reflecting surface

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200350693A1 (en) * 2019-04-30 2020-11-05 Massachusetts Institute Of Technology Surface for controlled radio frequency signal propagation
US20210013619A1 (en) * 2019-07-12 2021-01-14 Arizona Board Of Regents On Behalf Of Arizona State University Large intelligent surfaces with sparse channel sensors
US20210126359A1 (en) * 2019-10-28 2021-04-29 Research & Business Foundation Sungkyunkwan University Data processing method and apparatus with wireless communication system including intelligent reflecting surface

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ABDELRAHMAN TAHA; YU ZHANG; FARIS B. MISMAR; AHMED ALKHATEEB: "Deep Reinforcement Learning for Intelligent Reflecting Surfaces: Towards Standalone Operation", ARXIV.ORG, CORNELL UNIVERSITY LIBRARY, 201 OLIN LIBRARY CORNELL UNIVERSITY ITHACA, NY 14853, 25 February 2020 (2020-02-25), 201 Olin Library Cornell University Ithaca, NY 14853 , XP081607790 *
YOU CHANGSHENG, ZHENG BEIXIONG, ZHANG RUI: "Channel Estimation and Passive Beamforming for Intelligent Reflecting Surface: Discrete Phase Shift and Progressive Refinement", IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 24 March 2020 (2020-03-24), pages 1 - 16, XP055922073, Retrieved from the Internet <URL:https://arxiv.org/pdf/1912.10646v2.pdf> [retrieved on 20220517], DOI: 10.1109/JSAC.2020.3007056 *

Also Published As

Publication number Publication date
KR20240017776A (en) 2024-02-08

Similar Documents

Publication Publication Date Title
WO2022250221A1 (en) Method and device for transmitting signal in wireless communication system
WO2022050468A1 (en) Method for performing federated learning in wireless communication system, and apparatus therefor
WO2022039295A1 (en) Method for preprocessing downlink in wireless communication system and apparatus therefor
WO2022045399A1 (en) Federated learning method based on selective weight transmission and terminal therefor
WO2022139230A1 (en) Method and device for adjusting split point in wireless communication system
WO2022260189A1 (en) Method and device for transmitting and receiving signal in wireless communication system
WO2022092859A1 (en) Method and device for adjusting split point in wireless communication system
WO2022050565A1 (en) Apparatus and method for handover in wireless communication system
WO2022050444A1 (en) Communication method for federated learning and device for performing same
WO2022045377A1 (en) Method by which terminal and base station transmit/receive signals in wireless communication system, and apparatus
WO2023286884A1 (en) Method and device for transmitting and receiving signal in wireless communication system
WO2022039302A1 (en) Method for controlling calculations of deep neural network in wireless communication system, and apparatus therefor
WO2023027321A1 (en) Method and device for transmitting and receiving signal in wireless communication system
WO2024071459A1 (en) Method and device for transmitting/receiving signal in wireless communication system
WO2023042938A1 (en) Method and device for transmitting signal through reflection plate in wireless communication system
WO2023113282A1 (en) Apparatus and method for performing online learning of transceiver model in wireless communication system
WO2023008614A1 (en) Method and device for transmitting signal through spatial phase-shift beam in wireless communication system
WO2022231084A1 (en) Method and device for transmitting signal in wireless communication system
WO2024010112A1 (en) Device and method for estimating channel in wireless communication system
WO2023042937A1 (en) Method and device for transmitting/receiving signal on basis of meta-lens artificial intelligence system in wireless communication system
WO2023277218A1 (en) Method and device for transmitting signal through reflecting plate in wireless communication system
WO2024034694A1 (en) Method and device for transmitting and receiving signal in wireless communication system
WO2023224148A1 (en) Device and method for estimating channel related to reflecting intelligent surface in wireless communication system
WO2023042941A1 (en) Signal transmitting method and apparatus in wireless communication system
WO2024034707A1 (en) Device and method for performing online training with respect to receiver model in wireless communication system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21945257

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE