WO2022045377A1 - Method by which terminal and base station transmit/receive signals in wireless communication system, and apparatus - Google Patents

Method by which terminal and base station transmit/receive signals in wireless communication system, and apparatus Download PDF

Info

Publication number
WO2022045377A1
WO2022045377A1 PCT/KR2020/011234 KR2020011234W WO2022045377A1 WO 2022045377 A1 WO2022045377 A1 WO 2022045377A1 KR 2020011234 W KR2020011234 W KR 2020011234W WO 2022045377 A1 WO2022045377 A1 WO 2022045377A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
terminals
mcs
compression
data
Prior art date
Application number
PCT/KR2020/011234
Other languages
French (fr)
Korean (ko)
Inventor
오재기
김성진
김일환
박재용
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to KR1020227034789A priority Critical patent/KR20230056622A/en
Priority to PCT/KR2020/011234 priority patent/WO2022045377A1/en
Publication of WO2022045377A1 publication Critical patent/WO2022045377A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/20Arrangements for detecting or preventing errors in the information received using signal quality detector
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M7/00Conversion of a code where information is represented by a given sequence or number of digits to a code where the same, similar or subset of information is represented by a different sequence or number of digits
    • H03M7/30Compression; Expansion; Suppression of unnecessary data, e.g. redundancy reduction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/336Signal-to-interference ratio [SIR] or carrier-to-interference ratio [CIR]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0002Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
    • H04L1/0003Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate by switching between different modulation schemes

Definitions

  • the following description relates to a wireless communication system, and relates to a method and apparatus for transmitting and receiving signals between a terminal and a base station in a wireless communication system.
  • a wireless access system is a multiple access system that can support communication with multiple users by sharing available system resources (bandwidth, transmission power, etc.).
  • Examples of the multiple access system include a code division multiple access (CDMA) system, a frequency division multiple access (FDMA) system, a time division multiple access (TDMA) system, an orthogonal frequency division multiple access (OFDMA) system, and a single carrier frequency (SC-FDMA) system. division multiple access) systems.
  • CDMA code division multiple access
  • FDMA frequency division multiple access
  • TDMA time division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • an enhanced mobile broadband (eMBB) communication technology has been proposed compared to the existing radio access technology (RAT).
  • eMBB enhanced mobile broadband
  • RAT radio access technology
  • MTC Massive Machine Type Communications
  • the present disclosure relates to a method for transmitting and receiving signals between a terminal and a base station in a wireless communication system.
  • the present disclosure relates to a method for a terminal and a base station to determine a compression ratio in order to perform communication based on joint learning in a wireless communication system.
  • the present disclosure may provide a method of operating a base station in a wireless communication system.
  • the base station operating method includes transmitting a first global parameter to a plurality of terminals, receiving respective reference signals from the plurality of terminals, and a signal noise ratio (SNR) based on each of the received reference signals. ), determining a compression rate and a modulation coding scheme (MCS) based on the measured SNR, instructing the determined compression rate and information on the MCS to the plurality of terminals, respectively, the plurality of terminals Receiving data from the determined compression ratio and MCS based on the MCS and updating the first global parameter to a second global parameter based on the data received from each of the plurality of terminals.
  • SNR signal noise ratio
  • MCS modulation coding scheme
  • a base station operating in a wireless communication system may include at least one transmitter, at least one receiver, and at least one processor.
  • the at least one memory is operably connected to the at least one processor and includes at least one memory storing instructions that, when executed, cause the at least one processor to perform a specific operation, wherein the specific operation includes: Transmitting a first global parameter to terminals, receiving respective reference signals from the plurality of terminals, measuring a signal noise ratio (SNR) based on each of the received reference signals, and measuring the measured SNR determines a compression rate and MCS (Modulation Coding Scheme) based on received, and the first global parameter may be updated with a second global parameter based on data received from each of the plurality of terminals.
  • SNR signal noise ratio
  • MCS Modulation Coding Scheme
  • the base station may determine the MCS from the measured SNR based on a preset MCS table.
  • the base station determines the MCS from the measured SNR based on reinforcement learning, wherein the reinforcement learning is a reward in consideration of frequency efficiency (Spectral Efficiency) and the measured SNR may be used as an input value, and the MCS may be derived as an output value based on the input value.
  • the reinforcement learning is a reward in consideration of frequency efficiency (Spectral Efficiency) and the measured SNR may be used as an input value, and the MCS may be derived as an output value based on the input value.
  • the base station determines the MCS through the measured SNR, and the determined MCS, original data size (Data Size, DS), terminal performance ( ) and base station performance ( ) may be determined based on at least one of the compression ratio.
  • the base station may determine the compression rate at which transmission delay is minimized based on a full connected layer method.
  • the base station determines the compression rate at which transmission delay is minimized based on reinforcement learning, wherein the reinforcement learning is a reward in consideration of delay, the determined MCS, and the original data Size (Data Size, DS), the terminal performance ( ) and the base station performance ( ) may be used as an input value, and the compression ratio may be determined based on the input value.
  • reinforcement learning is a reward in consideration of delay, the determined MCS, and the original data Size (Data Size, DS)
  • the terminal performance ( ) and the base station performance ( ) may be used as an input value
  • the compression ratio may be determined based on the input value.
  • the terminal performance ( ) transmitting a message requesting information and each terminal capability from the plurality of terminals ( ) may further include the step of receiving the information.
  • the base station may determine the MCS through the measured SNR, and determine the compression ratio based on the number of the plurality of terminals.
  • the base station determines the compression rate at which the transmission capacity is minimized based on reinforcement learning, wherein the reinforcement learning receives a reward in consideration of a target compression loss rate and the number of the plurality of terminals as an input value , and the compression ratio may be determined based on the input value.
  • the target compression loss ratio may be set differently based on the number of the plurality of terminals.
  • the method may further include, by the base station, confirming the number of the plurality of terminals.
  • the base station when the base station determines the transmission method based on the pre-stored plurality of terminal information, the base station calculates threshold number of terminals information, and based on the calculated threshold number of terminals information to determine the transmission method.
  • the terminal may transmit a signal in consideration of a federated learning method.
  • the terminal can flexibly set the transmission method in consideration of the wireless environment.
  • the terminal and the base station may determine a modulation coding scheme (MCS) and a compression rate based on joint learning.
  • MCS modulation coding scheme
  • FIG. 1 is a diagram illustrating an example of a communication system applicable to the present disclosure.
  • FIG. 2 is a diagram illustrating an example of a wireless device applicable to the present disclosure.
  • FIG. 3 is a diagram illustrating another example of a wireless device applicable to the present disclosure.
  • FIG. 4 is a diagram illustrating an example of a portable device applicable to the present disclosure.
  • FIG. 5 is a diagram illustrating an example of a vehicle or autonomous driving vehicle applicable to the present disclosure.
  • FIG. 6 is a view showing an example of a movable body applicable to the present disclosure.
  • FIG. 7 is a diagram illustrating an example of an XR device applicable to the present disclosure.
  • FIG. 8 is a view showing an example of a robot applicable to the present disclosure.
  • AI Artificial Intelligence
  • FIG. 10 is a diagram illustrating physical channels applicable to the present disclosure and a signal transmission method using the same.
  • FIG. 11 is a diagram illustrating a control plane and a user plane structure of a radio interface protocol applicable to the present disclosure.
  • FIG. 12 is a diagram illustrating a method of processing a transmission signal applicable to the present disclosure.
  • FIG. 13 is a diagram illustrating a structure of a radio frame applicable to the present disclosure.
  • FIG. 14 is a diagram illustrating a slot structure applicable to the present disclosure.
  • 15 is a diagram illustrating an example of a communication structure that can be provided in a 6G system applicable to the present disclosure.
  • 16 is a diagram illustrating an electromagnetic spectrum applicable to the present disclosure.
  • 17 is a diagram illustrating a THz communication method applicable to the present disclosure.
  • FIG. 18 is a diagram illustrating a THz wireless communication transceiver applicable to the present disclosure.
  • FIG. 19 is a diagram illustrating a method for generating a THz signal applicable to the present disclosure.
  • 20 is a diagram illustrating a wireless communication transceiver applicable to the present disclosure.
  • 21 is a diagram illustrating a structure of a transmitter applicable to the present disclosure.
  • 22 is a diagram illustrating a modulator structure applicable to the present disclosure.
  • FIG. 23 is a diagram illustrating a neural network applicable to the present disclosure.
  • 24 is a diagram illustrating an activation node in a neural network applicable to the present disclosure.
  • 25 is a diagram illustrating a method of calculating a gradient using a chain rule applicable to the present disclosure.
  • 26 is a diagram illustrating a learning model based on RNN applicable to the present disclosure.
  • 27 is a view showing an autoencoder applicable to the present disclosure.
  • FIG. 28 is a diagram illustrating a federated learning method based on a compression rate applicable to the present disclosure.
  • 29 is a diagram illustrating a processing time and a transmission time according to a compression rate applicable to the present disclosure.
  • FIG. 30 is a diagram illustrating a method of determining a compression rate and MCS for low-latency joint learning applicable to the present disclosure.
  • 31 is a flowchart for a method of determining a compression ratio and MCS for low-latency joint learning applicable to the present disclosure.
  • AMC adaptive modulation and coding
  • 33 is a diagram illustrating a method of predicting a compression rate based on a fully connected layer in order to minimize transmission delay applicable to the present disclosure.
  • 34 is a diagram illustrating a method of controlling a compression rate to minimize transmission delay applicable to the present disclosure.
  • 35 is a diagram illustrating a flow for a method of controlling a compression rate and MCS to minimize transmission delay applicable to the present disclosure.
  • 36 is a diagram illustrating a method of controlling a compression rate to minimize a transmission capacity applicable to the present disclosure.
  • FIG. 37 is a diagram illustrating a flow for a method of controlling a compression rate and MCS in order to minimize a transmission capacity applicable to the present disclosure.
  • 38 is a diagram illustrating a method of operating a base station applicable to the present disclosure.
  • each component or feature may be considered optional unless explicitly stated otherwise.
  • Each component or feature may be implemented in a form that is not combined with other components or features.
  • some components and/or features may be combined to configure an embodiment of the present disclosure.
  • the order of operations described in embodiments of the present disclosure may be changed. Some configurations or features of one embodiment may be included in other embodiments, or may be replaced with corresponding configurations or features of other embodiments.
  • the base station has a meaning as a terminal node of a network that directly communicates with the mobile station.
  • a specific operation described as being performed by the base station in this document may be performed by an upper node of the base station in some cases.
  • the 'base station' is a term such as a fixed station, a Node B, an eNB (eNode B), a gNB (gNode B), an ng-eNB, an advanced base station (ABS) or an access point (access point).
  • eNode B eNode B
  • gNode B gNode B
  • ng-eNB ng-eNB
  • ABS advanced base station
  • access point access point
  • a terminal includes a user equipment (UE), a mobile station (MS), a subscriber station (SS), a mobile subscriber station (MSS), It may be replaced by terms such as a mobile terminal or an advanced mobile station (AMS).
  • UE user equipment
  • MS mobile station
  • SS subscriber station
  • MSS mobile subscriber station
  • AMS advanced mobile station
  • a transmitting end refers to a fixed and/or mobile node that provides a data service or a voice service
  • a receiving end refers to a fixed and/or mobile node that receives a data service or a voice service.
  • the mobile station may be a transmitting end, and the base station may be a receiving end.
  • the mobile station may be the receiving end, and the base station may be the transmitting end.
  • Embodiments of the present disclosure are wireless access systems IEEE 802.xx system, 3rd Generation Partnership Project (3GPP) system, 3GPP Long Term Evolution (LTE) system, 3GPP 5G (5th generation) NR (New Radio) system, and 3GPP2 system among It may be supported by standard documents disclosed in at least one, and in particular, embodiments of the present disclosure are supported by 3GPP TS (technical specification) 38.211, 3GPP TS 38.212, 3GPP TS 38.213, 3GPP TS 38.321 and 3GPP TS 38.331 documents. can be
  • embodiments of the present disclosure may be applied to other wireless access systems, and are not limited to the above-described system. As an example, it may be applicable to a system applied after the 3GPP 5G NR system, and is not limited to a specific system.
  • CDMA code division multiple access
  • FDMA frequency division multiple access
  • TDMA time division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • LTE is 3GPP TS 36.xxx Release 8 or later
  • LTE technology after 3GPP TS 36.xxx Release 10 may be referred to as LTE-A
  • xxx Release 13 may be referred to as LTE-A pro.
  • 3GPP NR may mean technology after TS 38.xxx Release 15.
  • 3GPP 6G may mean technology after TS Release 17 and/or Release 18.
  • "xxx" means standard document detail number LTE/NR/6G may be collectively referred to as a 3GPP system.
  • a communication system 100 applied to the present disclosure includes a wireless device, a base station, and a network.
  • the wireless device means a device that performs communication using a wireless access technology (eg, 5G NR, LTE), and may be referred to as a communication/wireless/5G device.
  • the wireless device may include a robot 100a, a vehicle 100b-1, 100b-2, an extended reality (XR) device 100c, a hand-held device 100d, and a home appliance. appliance) 100e, an Internet of Things (IoT) device 100f, and an artificial intelligence (AI) device/server 100g.
  • a wireless access technology eg, 5G NR, LTE
  • XR extended reality
  • AI artificial intelligence
  • the vehicle may include a vehicle equipped with a wireless communication function, an autonomous driving vehicle, a vehicle capable of performing inter-vehicle communication, and the like.
  • the vehicles 100b-1 and 100b-2 may include an unmanned aerial vehicle (UAV) (eg, a drone).
  • UAV unmanned aerial vehicle
  • the XR device 100c includes augmented reality (AR)/virtual reality (VR)/mixed reality (MR) devices, and includes a head-mounted device (HMD), a head-up display (HUD) provided in a vehicle, a television, It may be implemented in the form of a smartphone, a computer, a wearable device, a home appliance, a digital signage, a vehicle, a robot, and the like.
  • the portable device 100d may include a smart phone, a smart pad, a wearable device (eg, smart watch, smart glasses), and a computer (eg, a laptop computer).
  • the home appliance 100e may include a TV, a refrigerator, a washing machine, and the like.
  • the IoT device 100f may include a sensor, a smart meter, and the like.
  • the base station 120 and the network 130 may be implemented as a wireless device, and a specific wireless device 120a may operate as a base station/network node to other wireless devices.
  • the wireless devices 100a to 100f may be connected to the network 130 through the base station 120 .
  • AI technology may be applied to the wireless devices 100a to 100f , and the wireless devices 100a to 100f may be connected to the AI server 100g through the network 130 .
  • the network 130 may be configured using a 3G network, a 4G (eg, LTE) network, or a 5G (eg, NR) network.
  • the wireless devices 100a to 100f may communicate with each other through the base station 120/network 130, but communicate directly without going through the base station 120/network 130 (eg, sidelink communication) You may.
  • the vehicles 100b-1 and 100b-2 may perform direct communication (eg, vehicle to vehicle (V2V)/vehicle to everything (V2X) communication).
  • the IoT device 100f eg, a sensor
  • Wireless communication/connection 150a, 150b, and 150c may be performed between the wireless devices 100a to 100f/base station 120 and the base station 120/base station 120 .
  • wireless communication/connection includes uplink/downlink communication 150a and sidelink communication 150b (or D2D communication), and communication between base stations 150c (eg, relay, integrated access backhaul (IAB)). This may be achieved through radio access technology (eg, 5G NR).
  • IAB integrated access backhaul
  • the wireless device and the base station/wireless device, and the base station and the base station may transmit/receive wireless signals to each other.
  • the wireless communication/connection 150a , 150b , 150c may transmit/receive signals through various physical channels.
  • various configuration information setting processes for transmission/reception of wireless signals various signal processing processes (eg, channel encoding/decoding, modulation/demodulation, resource mapping/demapping, etc.) , at least a part of a resource allocation process may be performed.
  • signal processing processes eg, channel encoding/decoding, modulation/demodulation, resource mapping/demapping, etc.
  • FIG. 2 is a diagram illustrating an example of a wireless device applicable to the present disclosure.
  • a first wireless device 200a and a second wireless device 200b may transmit/receive wireless signals through various wireless access technologies (eg, LTE, NR).
  • ⁇ first wireless device 200a, second wireless device 200b ⁇ is ⁇ wireless device 100x, base station 120 ⁇ of FIG. 1 and/or ⁇ wireless device 100x, wireless device 100x) ⁇ can be matched.
  • the first wireless device 200a includes one or more processors 202a and one or more memories 204a, and may further include one or more transceivers 206a and/or one or more antennas 208a.
  • the processor 202a controls the memory 204a and/or the transceiver 206a and may be configured to implement the descriptions, functions, procedures, suggestions, methods, and/or operational flowcharts disclosed herein.
  • the processor 202a may process information in the memory 204a to generate first information/signal, and then transmit a wireless signal including the first information/signal through the transceiver 206a.
  • the processor 202a may receive the radio signal including the second information/signal through the transceiver 206a, and then store the information obtained from the signal processing of the second information/signal in the memory 204a.
  • the memory 204a may be connected to the processor 202a and may store various information related to the operation of the processor 202a.
  • the memory 204a may provide instructions for performing some or all of the processes controlled by the processor 202a, or for performing the descriptions, functions, procedures, suggestions, methods, and/or operational flowcharts disclosed herein. may store software code including
  • the processor 202a and the memory 204a may be part of a communication modem/circuit/chip designed to implement a wireless communication technology (eg, LTE, NR).
  • a wireless communication technology eg, LTE, NR
  • the transceiver 206a may be coupled to the processor 202a and may transmit and/or receive wireless signals via one or more antennas 208a.
  • the transceiver 206a may include a transmitter and/or a receiver.
  • the transceiver 206a may be used interchangeably with a radio frequency (RF) unit.
  • RF radio frequency
  • a wireless device may refer to a communication modem/circuit/chip.
  • the second wireless device 200b includes one or more processors 202b, one or more memories 204b, and may further include one or more transceivers 206b and/or one or more antennas 208b.
  • the processor 202b controls the memory 204b and/or the transceiver 206b and may be configured to implement the descriptions, functions, procedures, proposals, methods, and/or operational flowcharts disclosed herein.
  • the processor 202b may process information in the memory 204b to generate third information/signal, and then transmit a wireless signal including the third information/signal through the transceiver 206b.
  • the processor 202b may receive the radio signal including the fourth information/signal through the transceiver 206b, and then store information obtained from signal processing of the fourth information/signal in the memory 204b.
  • the memory 204b may be connected to the processor 202b and may store various information related to the operation of the processor 202b.
  • the memory 204b may provide instructions for performing some or all of the processes controlled by the processor 202b, or for performing the descriptions, functions, procedures, suggestions, methods, and/or operational flowcharts disclosed herein. may store software code including
  • the processor 202b and the memory 204b may be part of a communication modem/circuit/chip designed to implement a wireless communication technology (eg, LTE, NR).
  • a wireless communication technology eg, LTE, NR
  • the transceiver 206b may be coupled to the processor 202b and may transmit and/or receive wireless signals via one or more antennas 208b.
  • Transceiver 206b may include a transmitter and/or receiver.
  • Transceiver 206b may be used interchangeably with an RF unit.
  • a wireless device may refer to a communication modem/circuit/chip.
  • one or more protocol layers may be implemented by one or more processors 202a, 202b.
  • one or more processors 202a, 202b may include one or more layers (eg, PHY (physical), MAC (media access control), RLC (radio link control), PDCP (packet data convergence protocol), RRC (radio resource) control) and a functional layer such as service data adaptation protocol (SDAP)).
  • layers eg, PHY (physical), MAC (media access control), RLC (radio link control), PDCP (packet data convergence protocol), RRC (radio resource) control
  • SDAP service data adaptation protocol
  • the one or more processors 202a, 202b may be configured to process one or more protocol data units (PDUs) and/or one or more service data units (SDUs) according to the descriptions, functions, procedures, proposals, methods, and/or operational flowcharts disclosed herein. can create The one or more processors 202a, 202b may generate messages, control information, data, or information according to the description, function, procedure, proposal, method, and/or flow charts disclosed herein. The one or more processors 202a, 202b generate a signal (eg, a baseband signal) including a PDU, SDU, message, control information, data or information according to the functions, procedures, proposals and/or methods disclosed herein.
  • a signal eg, a baseband signal
  • processors 202a, 202b may receive signals (eg, baseband signals) from one or more transceivers 206a, 206b, and the descriptions, functions, procedures, proposals, methods, and/or flowcharts of operation disclosed herein.
  • PDUs, SDUs, messages, control information, data, or information may be acquired according to the fields.
  • One or more processors 202a, 202b may be referred to as a controller, microcontroller, microprocessor, or microcomputer.
  • One or more processors 202a, 202b may be implemented by hardware, firmware, software, or a combination thereof.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGAs field programmable gate arrays
  • firmware or software may be implemented using firmware or software, and the firmware or software may be implemented to include modules, procedures, functions, and the like.
  • the descriptions, functions, procedures, proposals, methods, and/or flow charts disclosed in this document provide that firmware or software configured to perform is included in one or more processors 202a, 202b, or stored in one or more memories 204a, 204b. It may be driven by the above processors 202a and 202b.
  • the descriptions, functions, procedures, proposals, methods, and/or flowcharts of operations disclosed herein may be implemented using firmware or software in the form of code, instructions, and/or a set of instructions.
  • One or more memories 204a, 204b may be coupled to one or more processors 202a, 202b and may store various types of data, signals, messages, information, programs, codes, instructions, and/or instructions.
  • One or more memories 204a, 204b may include read only memory (ROM), random access memory (RAM), erasable programmable read only memory (EPROM), flash memory, hard drives, registers, cache memory, computer readable storage media and/or It may be composed of a combination of these.
  • One or more memories 204a, 204b may be located inside and/or external to one or more processors 202a, 202b. Additionally, one or more memories 204a, 204b may be coupled to one or more processors 202a, 202b through various technologies, such as wired or wireless connections.
  • the one or more transceivers 206a, 206b may transmit user data, control information, radio signals/channels, etc. referred to in the methods and/or operational flowcharts of this document to one or more other devices.
  • the one or more transceivers 206a, 206b may receive user data, control information, radio signals/channels, etc. referred to in the descriptions, functions, procedures, suggestions, methods and/or flow charts, etc. disclosed herein, from one or more other devices. there is.
  • one or more transceivers 206a , 206b may be coupled to one or more processors 202a , 202b and may transmit and receive wireless signals.
  • one or more processors 202a, 202b may control one or more transceivers 206a, 206b to transmit user data, control information, or wireless signals to one or more other devices. Additionally, one or more processors 202a, 202b may control one or more transceivers 206a, 206b to receive user data, control information, or wireless signals from one or more other devices. Further, one or more transceivers 206a, 206b may be coupled with one or more antennas 208a, 208b, and the one or more transceivers 206a, 206b may be connected via one or more antennas 208a, 208b. , may be set to transmit and receive user data, control information, radio signals/channels, etc.
  • one or more antennas may be a plurality of physical antennas or a plurality of logical antennas (eg, antenna ports).
  • the one or more transceivers 206a, 206b converts the received radio signal/channel, etc. from the RF band signal to process the received user data, control information, radio signal/channel, etc. using the one or more processors 202a, 202b. It can be converted into a baseband signal.
  • One or more transceivers 206a, 206b may convert user data, control information, radio signals/channels, etc. processed using one or more processors 202a, 202b from baseband signals to RF band signals.
  • one or more transceivers 206a, 206b may include (analog) oscillators and/or filters.
  • FIG. 3 is a diagram illustrating another example of a wireless device applied to the present disclosure.
  • a wireless device 300 corresponds to the wireless devices 200a and 200b of FIG. 2 , and includes various elements, components, units/units, and/or modules. ) can be composed of
  • the wireless device 300 may include a communication unit 310 , a control unit 320 , a memory unit 330 , and an additional element 340 .
  • the communication unit may include communication circuitry 312 and transceiver(s) 314 .
  • communication circuitry 312 may include one or more processors 202a, 202b and/or one or more memories 204a, 204b of FIG. 2 .
  • the transceiver(s) 314 may include one or more transceivers 206a , 206b and/or one or more antennas 208a , 208b of FIG. 2 .
  • the control unit 320 is electrically connected to the communication unit 310 , the memory unit 330 , and the additional element 340 and controls general operations of the wireless device.
  • the controller 320 may control the electrical/mechanical operation of the wireless device based on the program/code/command/information stored in the memory unit 330 .
  • control unit 320 transmits the information stored in the memory unit 330 to the outside (eg, another communication device) through the communication unit 310 through a wireless/wired interface, or externally (eg, through the communication unit 310) Information received through a wireless/wired interface from another communication device) may be stored in the memory unit 330 .
  • the additional element 340 may be configured in various ways according to the type of the wireless device.
  • the additional element 340 may include at least one of a power unit/battery, an input/output unit, a driving unit, and a computing unit.
  • the wireless device 300 may include a robot ( FIGS. 1 and 100a ), a vehicle ( FIGS. 1 , 100b-1 , 100b-2 ), an XR device ( FIGS. 1 and 100c ), and a mobile device ( FIGS. 1 and 100d ). ), home appliances (FIG. 1, 100e), IoT device (FIG.
  • the wireless device may be mobile or used in a fixed location depending on the use-example/service.
  • various elements, components, units/units, and/or modules in the wireless device 300 may be all interconnected through a wired interface, or at least some may be wirelessly connected through the communication unit 310 .
  • the control unit 320 and the communication unit 310 are connected by wire, and the control unit 320 and the first unit (eg, 130 , 140 ) are connected wirelessly through the communication unit 310 .
  • each element, component, unit/unit, and/or module within the wireless device 300 may further include one or more elements.
  • the controller 320 may include one or more processor sets.
  • control unit 320 may be configured as a set of a communication control processor, an application processor, an electronic control unit (ECU), a graphic processing processor, a memory control processor, and the like.
  • memory unit 330 may include RAM, dynamic RAM (DRAM), ROM, flash memory, volatile memory, non-volatile memory, and/or a combination thereof. can be configured.
  • FIG. 4 is a diagram illustrating an example of a mobile device applied to the present disclosure.
  • the portable device may include a smart phone, a smart pad, a wearable device (eg, a smart watch, smart glasses), and a portable computer (eg, a laptop computer).
  • the mobile device may be referred to as a mobile station (MS), a user terminal (UT), a mobile subscriber station (MSS), a subscriber station (SS), an advanced mobile station (AMS), or a wireless terminal (WT).
  • MS mobile station
  • UT user terminal
  • MSS mobile subscriber station
  • SS subscriber station
  • AMS advanced mobile station
  • WT wireless terminal
  • the mobile device 400 includes an antenna unit 408 , a communication unit 410 , a control unit 420 , a memory unit 430 , a power supply unit 440a , an interface unit 440b , and an input/output unit 440c .
  • the antenna unit 408 may be configured as a part of the communication unit 410 .
  • Blocks 410 to 430/440a to 440c respectively correspond to blocks 310 to 330/340 of FIG. 3 .
  • the communication unit 410 may transmit and receive signals (eg, data, control signals, etc.) with other wireless devices and base stations.
  • the controller 420 may control components of the portable device 400 to perform various operations.
  • the controller 420 may include an application processor (AP).
  • the memory unit 430 may store data/parameters/programs/codes/commands necessary for driving the portable device 400 . Also, the memory unit 430 may store input/output data/information.
  • the power supply unit 440a supplies power to the portable device 400 and may include a wired/wireless charging circuit, a battery, and the like.
  • the interface unit 440b may support a connection between the portable device 400 and other external devices.
  • the interface unit 440b may include various ports (eg, an audio input/output port and a video input/output port) for connection with an external device.
  • the input/output unit 440c may receive or output image information/signal, audio information/signal, data, and/or information input from a user.
  • the input/output unit 440c may include a camera, a microphone, a user input unit, a display unit 440d, a speaker, and/or a haptic module.
  • the input/output unit 440c obtains information/signals (eg, touch, text, voice, image, video) input from the user, and the obtained information/signals are stored in the memory unit 430 . can be saved.
  • the communication unit 410 may convert the information/signal stored in the memory into a wireless signal, and transmit the converted wireless signal directly to another wireless device or to a base station. Also, after receiving a radio signal from another radio device or base station, the communication unit 410 may restore the received radio signal to original information/signal.
  • the restored information/signal may be stored in the memory unit 430 and output in various forms (eg, text, voice, image, video, haptic) through the input/output unit 440c.
  • FIG. 5 is a diagram illustrating an example of a vehicle or autonomous driving vehicle applied to the present disclosure.
  • the vehicle or autonomous driving vehicle may be implemented as a mobile robot, a vehicle, a train, an aerial vehicle (AV), a ship, and the like, but is not limited to the shape of the vehicle.
  • AV aerial vehicle
  • the vehicle or autonomous driving vehicle 500 includes an antenna unit 508 , a communication unit 510 , a control unit 520 , a driving unit 540a , a power supply unit 540b , a sensor unit 540c and autonomous driving.
  • a unit 540d may be included.
  • the antenna unit 550 may be configured as a part of the communication unit 510 .
  • Blocks 510/530/540a to 540d respectively correspond to blocks 410/430/440 of FIG. 4 .
  • the communication unit 510 may transmit/receive signals (eg, data, control signals, etc.) to and from external devices such as other vehicles, base stations (eg, base stations, roadside units, etc.), and servers.
  • the controller 520 may control elements of the vehicle or the autonomous driving vehicle 500 to perform various operations.
  • the controller 520 may include an electronic control unit (ECU).
  • the driving unit 540a may cause the vehicle or the autonomous driving vehicle 500 to run on the ground.
  • the driving unit 540a may include an engine, a motor, a power train, a wheel, a brake, a steering device, and the like.
  • the power supply unit 540b supplies power to the vehicle or the autonomous driving vehicle 500 , and may include a wired/wireless charging circuit, a battery, and the like.
  • the sensor unit 540c may obtain vehicle state, surrounding environment information, user information, and the like.
  • the sensor unit 540c includes an inertial measurement unit (IMU) sensor, a collision sensor, a wheel sensor, a speed sensor, an inclination sensor, a weight sensor, a heading sensor, a position module, and a vehicle forward movement.
  • IMU inertial measurement unit
  • a collision sensor a wheel sensor
  • a speed sensor a speed sensor
  • an inclination sensor a weight sensor
  • a heading sensor a position module
  • a vehicle forward movement / may include a reverse sensor, a battery sensor, a fuel sensor, a tire sensor, a steering sensor, a temperature sensor, a humidity sensor, an ultrasonic sensor, an illuminance sensor, a pedal position sensor, and the like.
  • the autonomous driving unit 540d includes a technology for maintaining a driving lane, a technology for automatically adjusting speed such as adaptive cruise control, a technology for automatically driving along a predetermined route, and a technology for automatically setting a route when a destination is set. technology can be implemented.
  • the communication unit 510 may receive map data, traffic information data, and the like from an external server.
  • the autonomous driving unit 540d may generate an autonomous driving route and a driving plan based on the acquired data.
  • the controller 520 may control the driving unit 540a to move the vehicle or the autonomous driving vehicle 500 along the autonomous driving path (eg, speed/direction adjustment) according to the driving plan.
  • the communication unit 510 may obtain the latest traffic information data from an external server non/periodically, and may acquire surrounding traffic information data from surrounding vehicles.
  • the sensor unit 540c may acquire vehicle state and surrounding environment information.
  • the autonomous driving unit 540d may update the autonomous driving route and driving plan based on the newly acquired data/information.
  • the communication unit 510 may transmit information about a vehicle location, an autonomous driving route, a driving plan, and the like to an external server.
  • the external server may predict traffic information data in advance using AI technology or the like based on information collected from the vehicle or autonomous vehicles, and may provide the predicted traffic information data to the vehicle or autonomous vehicles.
  • FIG. 6 is a diagram illustrating an example of a movable body applied to the present disclosure.
  • the moving object applied to the present disclosure may be implemented as at least any one of means of transport, train, aircraft, and ship.
  • the movable body applied to the present disclosure may be implemented in other forms, and is not limited to the above-described embodiment.
  • the mobile unit 600 may include a communication unit 610 , a control unit 620 , a memory unit 630 , an input/output unit 640a , and a position measurement unit 640b .
  • blocks 610 to 630/640a to 640b correspond to blocks 310 to 330/340 of FIG. 3 , respectively.
  • the communication unit 610 may transmit/receive signals (eg, data, control signals, etc.) with other mobile devices or external devices such as a base station.
  • the controller 620 may perform various operations by controlling the components of the movable body 600 .
  • the memory unit 630 may store data/parameters/programs/codes/commands supporting various functions of the mobile unit 600 .
  • the input/output unit 640a may output an AR/VR object based on information in the memory unit 630 .
  • the input/output unit 640a may include a HUD.
  • the position measuring unit 640b may acquire position information of the moving object 600 .
  • the location information may include absolute location information of the moving object 600 , location information within a driving line, acceleration information, and location information with a surrounding vehicle.
  • the position measuring unit 640b may include a GPS and various sensors.
  • the communication unit 610 of the mobile unit 600 may receive map information, traffic information, and the like from an external server and store it in the memory unit 630 .
  • the position measurement unit 640b may obtain information about the location of the moving object through GPS and various sensors and store it in the memory unit 630 .
  • the controller 620 may generate a virtual object based on map information, traffic information, and location information of a moving object, and the input/output unit 640a may display the generated virtual object on a window inside the moving object (651, 652). Also, the control unit 620 may determine whether the moving object 600 is normally operating within the driving line based on the moving object location information.
  • the control unit 620 may display a warning on the glass window of the moving object through the input/output unit 640a. Also, the control unit 620 may broadcast a warning message regarding the driving abnormality to surrounding moving objects through the communication unit 610 . Depending on the situation, the control unit 620 may transmit the location information of the moving object and information on the driving/moving object abnormality to the related organization through the communication unit 610 .
  • the XR device may be implemented as an HMD, a head-up display (HUD) provided in a vehicle, a television, a smart phone, a computer, a wearable device, a home appliance, a digital signage, a vehicle, a robot, and the like.
  • HMD head-up display
  • a television a smart phone
  • a computer a wearable device
  • a home appliance a digital signage
  • a vehicle a robot, and the like.
  • the XR device 700a may include a communication unit 710 , a control unit 720 , a memory unit 730 , an input/output unit 740a , a sensor unit 740b , and a power supply unit 740c .
  • blocks 710 to 730/740a to 740c may correspond to blocks 310 to 330/340 of FIG. 3 , respectively.
  • the communication unit 710 may transmit/receive signals (eg, media data, control signals, etc.) to/from external devices such as other wireless devices, portable devices, or media servers.
  • Media data may include images, images, and sounds.
  • the controller 720 may perform various operations by controlling the components of the XR device 700a.
  • the controller 720 may be configured to control and/or perform procedures such as video/image acquisition, (video/image) encoding, and metadata generation and processing.
  • the memory unit 730 may store data/parameters/programs/codes/commands necessary for driving the XR device 700a/creating an XR object.
  • the input/output unit 740a may obtain control information, data, etc. from the outside, and may output the generated XR object.
  • the input/output unit 740a may include a camera, a microphone, a user input unit, a display unit, a speaker, and/or a haptic module.
  • the sensor unit 740b may obtain an XR device state, surrounding environment information, user information, and the like.
  • the sensor unit 740b includes a proximity sensor, an illuminance sensor, an acceleration sensor, a magnetic sensor, a gyro sensor, an inertial sensor, a red green blue (RGB) sensor, an infrared (IR) sensor, a fingerprint recognition sensor, an ultrasonic sensor, an optical sensor, a microphone and / or radar or the like.
  • the power supply unit 740c supplies power to the XR device 700a, and may include a wired/wireless charging circuit, a battery, and the like.
  • the memory unit 730 of the XR device 700a may include information (eg, data, etc.) necessary for generating an XR object (eg, AR/VR/MR object).
  • the input/output unit 740a may obtain a command to operate the XR device 700a from the user, and the controller 720 may drive the XR device 700a according to the user's driving command. For example, when the user intends to watch a movie or news through the XR device 700a, the controller 720 transmits the content request information through the communication unit 730 to another device (eg, the mobile device 700b) or can be sent to the media server.
  • another device eg, the mobile device 700b
  • the communication unit 730 may download/stream contents such as movies and news from another device (eg, the portable device 700b) or a media server to the memory unit 730 .
  • the controller 720 controls and/or performs procedures such as video/image acquisition, (video/image) encoding, and metadata generation/processing for the content, and is acquired through the input/output unit 740a/sensor unit 740b It is possible to generate/output an XR object based on information about one surrounding space or a real object.
  • the XR device 700a is wirelessly connected to the portable device 700b through the communication unit 710 , and the operation of the XR device 700a may be controlled by the portable device 700b.
  • the portable device 700b may operate as a controller for the XR device 700a.
  • the XR device 700a may obtain 3D location information of the portable device 700b, and then generate and output an XR object corresponding to the portable device 700b.
  • the robot 800 may include a communication unit 810 , a control unit 820 , a memory unit 830 , an input/output unit 840a , a sensor unit 840b , and a driving unit 840c .
  • blocks 810 to 830/840a to 840c may correspond to blocks 310 to 330/340 of FIG. 3 , respectively.
  • the communication unit 810 may transmit and receive signals (eg, driving information, control signals, etc.) with external devices such as other wireless devices, other robots, or control servers.
  • the controller 820 may control components of the robot 800 to perform various operations.
  • the memory unit 830 may store data/parameters/programs/codes/commands supporting various functions of the robot 800 .
  • the input/output unit 840a may obtain information from the outside of the robot 800 and may output information to the outside of the robot 800 .
  • the input/output unit 840a may include a camera, a microphone, a user input unit, a display unit, a speaker, and/or a haptic module.
  • the sensor unit 840b may obtain internal information, surrounding environment information, user information, and the like of the robot 800 .
  • the sensor unit 840b may include a proximity sensor, an illumination sensor, an acceleration sensor, a magnetic sensor, a gyro sensor, an inertial sensor, an IR sensor, a fingerprint recognition sensor, an ultrasonic sensor, an optical sensor, a microphone, a radar, and the like.
  • the driving unit 840c may perform various physical operations, such as moving a robot joint. Also, the driving unit 840c may cause the robot 800 to travel on the ground or to fly in the air.
  • the driving unit 840c may include an actuator, a motor, a wheel, a brake, a propeller, and the like.
  • AI devices include TVs, projectors, smartphones, PCs, laptops, digital broadcasting terminals, tablet PCs, wearable devices, set-top boxes (STBs), radios, washing machines, refrigerators, digital signage, robots, vehicles, etc. It may be implemented as a device or a mobile device.
  • the AI device 900 includes a communication unit 910 , a control unit 920 , a memory unit 930 , input/output units 940a/940b , a learning processor unit 940c and a sensor unit 940d.
  • the communication unit 910 uses wired/wireless communication technology to communicate with external devices such as other AI devices (eg, FIGS. 1, 100x, 120, 140) or an AI server ( FIGS. 1 and 140 ) and wired/wireless signals (eg, sensor information, user input, learning model, control signal, etc.). To this end, the communication unit 910 may transmit information in the memory unit 930 to an external device or transmit a signal received from the external device to the memory unit 930 .
  • AI devices eg, FIGS. 1, 100x, 120, 140
  • an AI server FIGS. 1 and 140
  • wired/wireless signals eg, sensor information, user input, learning model, control signal, etc.
  • the controller 920 may determine at least one executable operation of the AI device 900 based on information determined or generated using a data analysis algorithm or a machine learning algorithm. In addition, the controller 920 may control the components of the AI device 900 to perform the determined operation. For example, the control unit 920 may request, search, receive, or utilize the data of the learning processor unit 940c or the memory unit 930, and may be a predicted operation among at least one executable operation or determined to be preferable. Components of the AI device 900 may be controlled to execute the operation.
  • control unit 920 collects history information including user feedback on the operation contents or operation of the AI device 900 and stores it in the memory unit 930 or the learning processor unit 940c, or the AI server ( 1 and 140), and the like may be transmitted to an external device.
  • the collected historical information may be used to update the learning model.
  • the memory unit 930 may store data supporting various functions of the AI device 900 .
  • the memory unit 930 may store data obtained from the input unit 940a , data obtained from the communication unit 910 , output data of the learning processor unit 940c , and data obtained from the sensing unit 940 .
  • the memory unit 930 may store control information and/or software codes necessary for the operation/execution of the control unit 920 .
  • the input unit 940a may acquire various types of data from the outside of the AI device 900 .
  • the input unit 920 may obtain training data for model learning, input data to which the learning model is applied, and the like.
  • the input unit 940a may include a camera, a microphone, and/or a user input unit.
  • the output unit 940b may generate an output related to sight, hearing, or touch.
  • the output unit 940b may include a display unit, a speaker, and/or a haptic module.
  • the sensing unit 940 may obtain at least one of internal information of the AI device 900 , surrounding environment information of the AI device 900 , and user information by using various sensors.
  • the sensing unit 940 may include a proximity sensor, an illumination sensor, an acceleration sensor, a magnetic sensor, a gyro sensor, an inertial sensor, an RGB sensor, an IR sensor, a fingerprint recognition sensor, an ultrasonic sensor, an optical sensor, a microphone, and/or a radar. there is.
  • the learning processor unit 940c may train a model composed of an artificial neural network by using the training data.
  • the learning processor unit 940c may perform AI processing together with the learning processor unit of the AI server ( FIGS. 1 and 140 ).
  • the learning processor unit 940c may process information received from an external device through the communication unit 910 and/or information stored in the memory unit 930 . Also, the output value of the learning processor unit 940c may be transmitted to an external device through the communication unit 910 and/or stored in the memory unit 930 .
  • a terminal may receive information from a base station through downlink (DL) and transmit information to a base station through uplink (UL).
  • Information transmitted and received between the base station and the terminal includes general data information and various control information, and various physical channels exist according to the type/use of the information they transmit and receive.
  • FIG. 10 is a diagram illustrating physical channels applied to the present disclosure and a signal transmission method using the same.
  • the terminal receives a primary synchronization channel (P-SCH) and a secondary synchronization channel (S-SCH) from the base station, synchronizes with the base station, and can obtain information such as cell ID. .
  • P-SCH primary synchronization channel
  • S-SCH secondary synchronization channel
  • the terminal may receive a physical broadcast channel (PBCH) signal from the base station to obtain intra-cell broadcast information.
  • the UE may receive a downlink reference signal (DL RS) in the initial cell search step to check the downlink channel state.
  • DL RS downlink reference signal
  • the UE receives a physical downlink control channel (PDCCH) and a physical downlink control channel (PDSCH) according to physical downlink control channel information in step S1012 and receives a little more Specific system information can be obtained.
  • PDCCH physical downlink control channel
  • PDSCH physical downlink control channel
  • the terminal may perform a random access procedure, such as steps S1013 to S1016, to complete access to the base station.
  • the UE transmits a preamble through a physical random access channel (PRACH) (S1013), and RAR for the preamble through a physical downlink control channel and a corresponding physical downlink shared channel (S1013). random access response) may be received (S1014).
  • the UE transmits a physical uplink shared channel (PUSCH) using scheduling information in the RAR (S1015), and a contention resolution procedure such as reception of a physical downlink control channel signal and a corresponding physical downlink shared channel signal. ) can be performed (S1016).
  • PUSCH physical uplink shared channel
  • S1015 scheduling information in the RAR
  • a contention resolution procedure such as reception of a physical downlink control channel signal and a corresponding physical downlink shared channel signal.
  • the UE After performing the above procedure, the UE receives a physical downlink control channel signal and/or a physical downlink shared channel signal (S1017) and a physical uplink shared channel as a general uplink/downlink signal transmission procedure.
  • channel, PUSCH) signal and/or a physical uplink control channel (PUCCH) signal may be transmitted ( S1018 ).
  • UCI uplink control information
  • HARQ-ACK / NACK hybrid automatic repeat and request acknowledgment / negative-ACK
  • SR scheduling request
  • CQI channel quality indication
  • PMI precoding matrix indication
  • RI rank indication
  • BI beam indication
  • the UCI is generally transmitted periodically through the PUCCH, but may be transmitted through the PUSCH according to an embodiment (eg, when control information and traffic data are to be transmitted at the same time).
  • the UE may aperiodically transmit the UCI through the PUSCH.
  • FIG. 11 is a diagram illustrating a control plane and a user plane structure of a radio interface protocol applied to the present disclosure.
  • entity 1 may be a user equipment (UE).
  • the term "terminal" may be at least one of a wireless device, a portable device, a vehicle, a mobile body, an XR device, a robot, and an AI to which the present disclosure is applied in FIGS. 1 to 9 described above.
  • the terminal refers to a device to which the present disclosure can be applied and may not be limited to a specific device or device.
  • Entity 2 may be a base station.
  • the base station may be at least one of an eNB, a gNB, and an ng-eNB.
  • the base station may refer to an apparatus for transmitting a downlink signal to the terminal, and may not be limited to a specific type or apparatus. That is, the base station may be implemented in various forms or types, and may not be limited to a specific form.
  • Entity 3 may be a network device or a device performing a network function.
  • the network device may be a core network node (eg, a mobility management entity (MME), an access and mobility management function (AMF), etc.) that manages mobility.
  • the network function may mean a function implemented to perform a network function
  • entity 3 may be a device to which the function is applied. That is, the entity 3 may refer to a function or device that performs a network function, and is not limited to a specific type of device.
  • the control plane may refer to a path through which control messages used by a user equipment (UE) and a network to manage a call are transmitted.
  • the user plane may mean a path through which data generated in the application layer, for example, voice data or Internet packet data, is transmitted.
  • the physical layer which is the first layer, may provide an information transfer service to a higher layer by using a physical channel.
  • the physical layer is connected to the upper medium access control layer through a transport channel.
  • data may be moved between the medium access control layer and the physical layer through the transport channel.
  • Data can be moved between the physical layers of the transmitting side and the receiving side through a physical channel.
  • the physical channel uses time and frequency as radio resources.
  • a medium access control (MAC) layer of the second layer provides a service to a radio link control (RLC) layer, which is an upper layer, through a logical channel.
  • the RLC layer of the second layer may support reliable data transmission.
  • the function of the RLC layer may be implemented as a function block inside the MAC.
  • the packet data convergence protocol (PDCP) layer of the second layer may perform a header compression function that reduces unnecessary control information in order to efficiently transmit IP packets such as IPv4 or IPv6 in a narrow-bandwidth air interface.
  • PDCP packet data convergence protocol
  • a radio resource control (RRC) layer located at the bottom of the third layer is defined only in the control plane.
  • the RRC layer may be in charge of controlling logical channels, transport channels and physical channels in relation to configuration, re-configuration, and release of radio bearers (RBs).
  • RB may mean a service provided by the second layer for data transfer between the terminal and the network.
  • the UE and the RRC layer of the network may exchange RRC messages with each other.
  • a non-access stratum (NAS) layer above the RRC layer may perform functions such as session management and mobility management.
  • One cell constituting the base station may be set to one of various bandwidths to provide downlink or uplink transmission services to multiple terminals. Different cells may be configured to provide different bandwidths.
  • the downlink transmission channel for transmitting data from the network to the terminal includes a broadcast channel (BCH) for transmitting system information, a paging channel (PCH) for transmitting a paging message, and a downlink shared channel (SCH) for transmitting user traffic or control messages.
  • BCH broadcast channel
  • PCH paging channel
  • SCH downlink shared channel
  • a downlink multicast or broadcast service traffic or control message it may be transmitted through a downlink SCH or may be transmitted through a separate downlink multicast channel (MCH).
  • RACH random access channel
  • SCH uplink shared channel
  • a logical channel that is located above the transport channel and is mapped to the transport channel includes a broadcast control channel (BCCH), a paging control channel (PCCH), a common control channel (CCCH), a multicast control channel (MCCH), and a multicast (MTCH) channel. traffic channels), etc.
  • BCCH broadcast control channel
  • PCCH paging control channel
  • CCCH common control channel
  • MCCH multicast control channel
  • MTCH multicast
  • the transmission signal may be processed by a signal processing circuit.
  • the signal processing circuit 1200 may include a scrambler 1210 , a modulator 1220 , a layer mapper 1230 , a precoder 1240 , a resource mapper 1250 , and a signal generator 1260 .
  • the operation/function of FIG. 12 may be performed by the processors 202a and 202b and/or the transceivers 206a and 206b of FIG. 2 .
  • blocks 1010 to 1060 may be implemented in the processors 202a and 202b of FIG. 2 .
  • blocks 1210 to 1250 may be implemented in the processors 202a and 202b of FIG. 2
  • block 1260 may be implemented in the transceivers 206a and 206b of FIG. 2 , and the embodiment is not limited thereto.
  • the codeword may be converted into a wireless signal through the signal processing circuit 1200 of FIG. 12 .
  • the codeword is a coded bit sequence of an information block.
  • the information block may include a transport block (eg, a UL-SCH transport block, a DL-SCH transport block).
  • the radio signal may be transmitted through various physical channels (eg, PUSCH, PDSCH) of FIG. 10 .
  • the codeword may be converted into a scrambled bit sequence by the scrambler 1210 .
  • a scramble sequence used for scrambling is generated based on an initialization value, and the initialization value may include ID information of a wireless device, and the like.
  • the scrambled bit sequence may be modulated by a modulator 1220 into a modulation symbol sequence.
  • the modulation method may include pi/2-binary phase shift keying (pi/2-BPSK), m-phase shift keying (m-PSK), m-quadrature amplitude modulation (m-QAM), and the like.
  • the complex modulation symbol sequence may be mapped to one or more transport layers by a layer mapper 1230 .
  • Modulation symbols of each transport layer may be mapped to corresponding antenna port(s) by the precoder 1240 (precoding).
  • the output z of the precoder 1240 may be obtained by multiplying the output y of the layer mapper 1230 by the precoding matrix W of N*M.
  • N is the number of antenna ports
  • M is the number of transport layers.
  • the precoder 1240 may perform precoding after performing transform precoding (eg, discrete fourier transform (DFT) transform) on the complex modulation symbols. Also, the precoder 1240 may perform precoding without performing transform precoding.
  • transform precoding eg, discrete fourier transform (DFT) transform
  • the resource mapper 1250 may map modulation symbols of each antenna port to a time-frequency resource.
  • the time-frequency resource may include a plurality of symbols (eg, a CP-OFDMA symbol, a DFT-s-OFDMA symbol) in the time domain and a plurality of subcarriers in the frequency domain.
  • the signal generator 1260 generates a radio signal from the mapped modulation symbols, and the generated radio signal may be transmitted to another device through each antenna.
  • the signal generator 1260 may include an inverse fast fourier transform (IFFT) module and a cyclic prefix (CP) inserter, a digital-to-analog converter (DAC), a frequency uplink converter, and the like. .
  • IFFT inverse fast fourier transform
  • CP cyclic prefix
  • DAC digital-to-analog converter
  • the signal processing process for the received signal in the wireless device may be configured in reverse of the signal processing process 1210 to 1260 of FIG. 12 .
  • the wireless device eg, 200a or 200b of FIG. 2
  • the received radio signal may be converted into a baseband signal through a signal restorer.
  • the signal restorer may include a frequency downlink converter, an analog-to-digital converter (ADC), a CP remover, and a fast fourier transform (FFT) module.
  • ADC analog-to-digital converter
  • FFT fast fourier transform
  • the baseband signal may be restored to a codeword through a resource de-mapper process, a postcoding process, a demodulation process, and a descrambling process.
  • the codeword may be restored to the original information block through decoding.
  • the signal processing circuit (not shown) for the received signal may include a signal restorer, a resource de-mapper, a post coder, a demodulator, a descrambler, and a decoder.
  • FIG. 13 is a diagram illustrating a structure of a radio frame applicable to the present disclosure.
  • Uplink and downlink transmission based on the NR system may be based on a frame as shown in FIG. 13 .
  • one radio frame has a length of 10 ms and may be defined as two 5 ms half-frames (HF).
  • One half-frame may be defined as 5 1ms subframes (subframe, SF).
  • One subframe is divided into one or more slots, and the number of slots in a subframe may depend on subcarrier spacing (SCS).
  • SCS subcarrier spacing
  • each slot may include 12 or 14 OFDM(A) symbols according to a cyclic prefix (CP).
  • CP cyclic prefix
  • each slot When a normal CP (normal CP) is used, each slot may include 14 symbols.
  • each slot may include 12 symbols.
  • the symbol may include an OFDM symbol (or a CP-OFDM symbol) and an SC-FDMA symbol (or a DFT-s-OFDM symbol).
  • Table 1 shows the number of symbols per slot, the number of slots per frame, and the number of slots per subframe according to the SCS when the normal CP is used
  • Table 2 shows the number of slots per slot according to the SCS when the extended CSP is used. Indicates the number of symbols, the number of slots per frame, and the number of slots per subframe.
  • OFDM(A) numerology eg, SCS, CP length, etc.
  • OFDM(A) numerology eg, SCS, CP length, etc.
  • an (absolute time) interval of a time resource eg, SF, slot, or TTI
  • a TU time unit
  • NR may support multiple numerology (or subcarrier spacing (SCS)) to support various 5G services. For example, when SCS is 15kHz, it supports a wide area in traditional cellular bands, and when SCS is 30kHz/60kHz, dense-urban, lower latency and a wider carrier bandwidth, and when the SCS is 60 kHz or higher, it can support a bandwidth greater than 24.25 GHz to overcome phase noise.
  • SCS subcarrier spacing
  • the NR frequency band is defined as a frequency range of two types (FR1, FR2).
  • FR1 and FR2 may be configured as shown in the table below.
  • FR2 may mean a millimeter wave (mmW).
  • 6G (wireless) systems have (i) very high data rates per device, (ii) very large number of connected devices, (iii) global connectivity, (iv) very low latency, (v) battery- It aims to reduce energy consumption of battery-free IoT devices, (vi) ultra-reliable connections, and (vii) connected intelligence with machine learning capabilities.
  • the vision of the 6G system may have four aspects such as “intelligent connectivity”, “deep connectivity”, “holographic connectivity”, and “ubiquitous connectivity”, and the 6G system can satisfy the requirements shown in Table 4 below. That is, Table 4 is a table showing the requirements of the 6G system.
  • the above-described pneumatic numerology may be set differently.
  • a terahertz wave (THz) band may be used as a higher frequency band than the above-described FR2.
  • the SCS may be set to be larger than that of the NR system, and the number of slots may be set differently, and it is not limited to the above-described embodiment.
  • the THz band will be described later.
  • FIG. 14 is a diagram illustrating a slot structure applicable to the present disclosure.
  • One slot includes a plurality of symbols in the time domain. For example, in the case of a normal CP, one slot may include 7 symbols, but in the case of an extended CP, one slot may include 6 symbols.
  • a carrier includes a plurality of subcarriers (subcarrier) in the frequency domain.
  • a resource block may be defined as a plurality of (eg, 12) consecutive subcarriers in the frequency domain.
  • a bandwidth part is defined as a plurality of consecutive (P)RBs in the frequency domain, and may correspond to one numerology (eg, SCS, CP length, etc.).
  • a carrier may include a maximum of N (eg, 5) BWPs. Data communication is performed through the activated BWP, and only one BWP can be activated for one terminal.
  • N e.g. 5
  • Each element in the resource grid is referred to as a resource element (RE), and one complex symbol may be mapped.
  • RE resource element
  • the 6G system includes enhanced mobile broadband (eMBB), ultra-reliable low latency communications (URLLC), massive machine type communications (mmTC), AI integrated communication, and tactile Internet (tactile internet), high throughput (high throughput), high network capacity (high network capacity), high energy efficiency (high energy efficiency), low backhaul and access network congestion (low backhaul and access network congestion) and improved data security ( It may have key factors such as enhanced data security.
  • eMBB enhanced mobile broadband
  • URLLC ultra-reliable low latency communications
  • mmTC massive machine type communications
  • AI integrated communication e.g., eMBB
  • tactile Internet e internet
  • high throughput high network capacity
  • high energy efficiency high energy efficiency
  • low backhaul and access network congestion low backhaul and access network congestion
  • improved data security It may have key factors such as enhanced data security.
  • 15 is a diagram illustrating an example of a communication structure that can be provided in a 6G system applicable to the present disclosure.
  • the 6G system is expected to have 50 times higher simultaneous wireless communication connectivity than the 5G wireless communication system.
  • URLLC a key feature of 5G, is expected to become an even more important technology by providing an end-to-end delay of less than 1 ms in 6G communication.
  • the 6G system will have much better volumetric spectral efficiency, unlike the frequently used area spectral efficiency.
  • 6G systems can provide very long battery life and advanced battery technology for energy harvesting, so mobile devices in 6G systems may not need to be charged separately.
  • new network characteristics in 6G may be as follows.
  • 6G is expected to be integrated with satellites to provide a global mobile population.
  • the integration of terrestrial, satellite and public networks into one wireless communication system could be very important for 6G.
  • AI may be applied in each step of a communication procedure (or each procedure of signal processing to be described later).
  • the 6G wireless network will deliver power to charge the batteries of devices such as smartphones and sensors. Therefore, wireless information and energy transfer (WIET) will be integrated.
  • WIET wireless information and energy transfer
  • Small cell networks The idea of small cell networks was introduced to improve the received signal quality as a result of improved throughput, energy efficiency and spectral efficiency in cellular systems. As a result, small cell networks are essential characteristics for communication systems beyond 5G and Beyond 5G (5GB). Accordingly, the 6G communication system also adopts the characteristics of the small cell network.
  • Ultra-dense heterogeneous networks will be another important characteristic of 6G communication system.
  • a multi-tier network composed of heterogeneous networks improves overall QoS and reduces costs.
  • the backhaul connection is characterized as a high-capacity backhaul network to support high-capacity traffic.
  • High-speed fiber optics and free-space optics (FSO) systems may be possible solutions to this problem.
  • High-precision localization (or location-based service) through communication is one of the functions of the 6G wireless communication system. Therefore, the radar system will be integrated with the 6G network.
  • Softening and virtualization are two important functions that underlie the design process in 5GB networks to ensure flexibility, reconfigurability and programmability. In addition, billions of devices can be shared in a shared physical infrastructure.
  • AI The most important and newly introduced technology for 6G systems is AI.
  • AI was not involved in the 4G system.
  • 5G systems will support partial or very limited AI.
  • the 6G system will be AI-enabled for full automation.
  • Advances in machine learning will create more intelligent networks for real-time communication in 6G.
  • Incorporating AI into communications can simplify and enhance real-time data transmission.
  • AI can use numerous analytics to determine how complex target tasks are performed. In other words, AI can increase efficiency and reduce processing delays.
  • AI can also play an important role in M2M, machine-to-human and human-to-machine communication.
  • AI can be a rapid communication in the BCI (brain computer interface).
  • BCI brain computer interface
  • AI-based communication systems can be supported by metamaterials, intelligent structures, intelligent networks, intelligent devices, intelligent cognitive radios, self-sustaining wireless networks, and machine learning.
  • AI-based physical layer transmission means applying a signal processing and communication mechanism based on an AI driver rather than a traditional communication framework in a fundamental signal processing and communication mechanism.
  • a signal processing and communication mechanism based on an AI driver rather than a traditional communication framework in a fundamental signal processing and communication mechanism.
  • deep learning-based channel coding and decoding, deep learning-based signal estimation and detection, deep learning-based multiple input multiple output (MIMO) mechanism It may include AI-based resource scheduling and allocation.
  • Machine learning may be used for channel estimation and channel tracking, and may be used for power allocation, interference cancellation, and the like in a physical layer of a downlink (DL). In addition, machine learning may be used for antenna selection, power control, symbol detection, and the like in a MIMO system.
  • DL downlink
  • machine learning may be used for antenna selection, power control, symbol detection, and the like in a MIMO system.
  • Deep learning-based AI algorithms require large amounts of training data to optimize training parameters.
  • a lot of training data is used offline. This is because static training on training data in a specific channel environment may cause a contradiction between dynamic characteristics and diversity of a wireless channel.
  • signals of a physical layer of wireless communication may be expressed as complex signals.
  • further research on a neural network for detecting a complex domain signal is needed.
  • Machine learning refers to a set of operations that trains a machine to create a machine that can perform tasks that humans can or cannot do.
  • Machine learning requires data and a learning model.
  • data learning methods can be roughly divided into three types: supervised learning, unsupervised learning, and reinforcement learning.
  • Neural network learning is to minimize output errors. Neural network learning repeatedly inputs training data into the neural network, calculates the output and target errors of the neural network for the training data, and backpropagates the neural network error from the output layer of the neural network to the input layer in the direction to reduce the error. ) to update the weight of each node in the neural network.
  • Supervised learning uses training data in which the correct answer is labeled in the training data, and in unsupervised learning, the correct answer may not be labeled in the training data. That is, for example, learning data in the case of supervised learning related to data classification may be data in which categories are labeled for each of the training data.
  • the labeled training data is input to the neural network, and an error can be calculated by comparing the output (category) of the neural network with the label of the training data.
  • the calculated error is back propagated in the reverse direction (ie, from the output layer to the input layer) in the neural network, and the connection weight of each node of each layer of the neural network may be updated according to the back propagation.
  • the change amount of the connection weight of each node to be updated may be determined according to a learning rate.
  • the computation of the neural network on the input data and the backpropagation of errors can constitute a learning cycle (epoch).
  • the learning rate may be applied differently depending on the number of repetitions of the learning cycle of the neural network. For example, in the early stage of learning a neural network, a high learning rate can be used to increase the efficiency by allowing the neural network to quickly obtain a certain level of performance, and in the late learning period, a low learning rate can be used to increase the accuracy.
  • the learning method may vary depending on the characteristics of the data. For example, when the purpose of accurately predicting data transmitted from a transmitter in a communication system is at a receiver, it is preferable to perform learning using supervised learning rather than unsupervised learning or reinforcement learning.
  • the learning model corresponds to the human brain, and the most basic linear model can be considered. ) is called
  • the neural network cord used as a learning method is largely divided into deep neural networks (DNN), convolutional deep neural networks (CNN), and recurrent boltzmann machine (RNN) methods. and such a learning model can be applied.
  • DNN deep neural networks
  • CNN convolutional deep neural networks
  • RNN recurrent boltzmann machine
  • THz communication may be applied in the 6G system.
  • the data rate may be increased by increasing the bandwidth. This can be accomplished by using sub-THz communication with a wide bandwidth and applying advanced large-scale MIMO technology.
  • a THz wave also known as sub-millimeter radiation, generally represents a frequency band between 0.1 THz and 10 THz with a corresponding wavelength in the range of 0.03 mm-3 mm.
  • the 100GHz-300GHz band range (Sub THz band) is considered a major part of the THz band for cellular communication.
  • Sub-THz band Addition to mmWave band increases 6G cellular communication capacity.
  • 300GHz-3THz is in the far-infrared (IR) frequency band.
  • the 300GHz-3THz band is part of the broadband, but at the edge of the wideband, just behind the RF band. Thus, this 300 GHz-3THz band shows similarities to RF.
  • THz communication The main characteristics of THz communication include (i) widely available bandwidth to support very high data rates, and (ii) high path loss occurring at high frequencies (high directional antennas are indispensable).
  • the narrow beamwidth produced by the highly directional antenna reduces interference.
  • the small wavelength of the THz signal allows a much larger number of antenna elements to be integrated into devices and BSs operating in this band. This allows the use of advanced adaptive nesting techniques that can overcome range limitations.
  • Optical wireless communication (OWC) technology is envisaged for 6G communication in addition to RF-based communication for all possible device-to-access networks. These networks connect to network-to-backhaul/fronthaul network connections.
  • OWC technology has already been used since the 4G communication system, but will be used more widely to meet the needs of the 6G communication system.
  • OWC technologies such as light fidelity, visible light communication, optical camera communication, and free space optical (FSO) communication based on a light band are well known technologies. Communication based on optical radio technology can provide very high data rates, low latency and secure communication.
  • Light detection and ranging (LiDAR) can also be used for ultra-high-resolution 3D mapping in 6G communication based on a wide band.
  • FSO The transmitter and receiver characteristics of an FSO system are similar to those of a fiber optic network.
  • data transmission in an FSO system is similar to that of a fiber optic system. Therefore, FSO can be a good technology to provide backhaul connectivity in 6G systems along with fiber optic networks.
  • FSO supports high-capacity backhaul connections for remote and non-remote areas such as sea, space, underwater, and isolated islands.
  • FSO also supports cellular base station connectivity.
  • MIMO technology improves, so does the spectral efficiency. Therefore, large-scale MIMO technology will be important in 6G systems. Since the MIMO technology uses multiple paths, a multiplexing technique and a beam generation and operation technique suitable for the THz band should also be considered important so that a data signal can be transmitted through one or more paths.
  • Blockchain will become an important technology for managing large amounts of data in future communication systems.
  • Blockchain is a form of distributed ledger technology, which is a database distributed across numerous nodes or computing devices. Each node replicates and stores an identical copy of the ledger.
  • the blockchain is managed as a peer-to-peer (P2P) network. It can exist without being managed by a centralized authority or server. Data on the blockchain is collected together and organized into blocks. Blocks are linked together and protected using encryption.
  • Blockchain in nature perfectly complements IoT at scale with improved interoperability, security, privacy, reliability and scalability. Therefore, blockchain technology provides several features such as interoperability between devices, traceability of large amounts of data, autonomous interaction of different IoT systems, and large-scale connection stability of 6G communication systems.
  • the 6G system integrates terrestrial and public networks to support vertical expansion of user communications.
  • 3D BS will be provided via low orbit satellites and UAVs. Adding a new dimension in terms of elevation and associated degrees of freedom makes 3D connections significantly different from traditional 2D networks.
  • Unmanned aerial vehicles or drones will become an important element in 6G wireless communications.
  • UAVs Unmanned aerial vehicles
  • a base station entity is installed in the UAV to provide cellular connectivity.
  • UAVs have certain features not found in fixed base station infrastructure, such as easy deployment, strong line-of-sight links, and degrees of freedom with controlled mobility.
  • the deployment of terrestrial communications infrastructure is not economically feasible and sometimes cannot provide services in volatile environments.
  • a UAV can easily handle this situation.
  • UAV will become a new paradigm in the field of wireless communication. This technology facilitates the three basic requirements of wireless networks: eMBB, URLLC and mMTC.
  • UAVs can also serve several purposes, such as improving network connectivity, fire detection, disaster emergency services, security and surveillance, pollution monitoring, parking monitoring, incident monitoring, and more. Therefore, UAV technology is recognized as one of the most important technologies for 6G communication.
  • Tight integration of multiple frequencies and heterogeneous communication technologies is very important in 6G systems. As a result, users can seamlessly move from one network to another without having to make any manual configuration on the device. The best network is automatically selected from the available communication technologies. This will break the limitations of the cell concept in wireless communication. Currently, user movement from one cell to another causes too many handovers in high-density networks, causing handover failures, handover delays, data loss and ping-pong effects. 6G cell-free communication will overcome all of this and provide better QoS. Cell-free communication will be achieved through multi-connectivity and multi-tier hybrid technologies and different heterogeneous radios of devices.
  • WIET Wireless information and energy transfer
  • WIET uses the same fields and waves as wireless communication systems.
  • the sensor and smartphone will be charged using wireless power transfer during communication.
  • WIET is a promising technology for extending the life of battery-charging wireless systems. Therefore, devices without batteries will be supported in 6G communication.
  • Autonomous wireless network is a function that can continuously detect dynamically changing environmental conditions and exchange information between different nodes.
  • sensing will be tightly integrated with communications to support autonomous systems.
  • the density of access networks in 6G will be enormous.
  • Each access network is connected by backhaul connections such as fiber optic and FSO networks.
  • backhaul connections such as fiber optic and FSO networks.
  • Beamforming is a signal processing procedure that adjusts an antenna array to transmit a radio signal in a specific direction.
  • Beamforming technology has several advantages, such as high signal-to-noise ratio, interference prevention and rejection, and high network efficiency.
  • Hologram beamforming (HBF) is a new beamforming method that is significantly different from MIMO systems because it uses a software-defined antenna. HBF will be a very effective approach for efficient and flexible transmission and reception of signals in multi-antenna communication devices in 6G.
  • Big data analytics is a complex process for analyzing various large data sets or big data. This process ensures complete data management by finding information such as hidden data, unknown correlations and customer propensity. Big data is gathered from a variety of sources such as videos, social networks, images and sensors. This technology is widely used to process massive amounts of data in 6G systems.
  • the LIS is an artificial surface made of electromagnetic materials, and can change the propagation of incoming and outgoing radio waves.
  • LIS can be viewed as an extension of massive MIMO, but has a different array structure and operation mechanism from that of massive MIMO.
  • LIS is low in that it operates as a reconfigurable reflector with passive elements, that is, only passively reflects the signal without using an active RF chain. It has the advantage of having power consumption.
  • each of the passive reflectors of the LIS must independently adjust the phase shift of the incoming signal, it can be advantageous for a wireless communication channel.
  • the reflected signal can be gathered at the target receiver to boost the received signal power.
  • THz Terahertz
  • 17 is a diagram illustrating a THz communication method applicable to the present disclosure.
  • THz wave is located between RF (Radio Frequency)/millimeter (mm) and infrared band, (i) It transmits non-metal/non-polar material better than visible light/infrared light, and has a shorter wavelength than RF/millimeter wave, so it has high straightness. Beam focusing may be possible.
  • the frequency band expected to be used for THz wireless communication may be a D-band (110 GHz to 170 GHz) or H-band (220 GHz to 325 GHz) band with low propagation loss due to absorption of molecules in the air.
  • Standardization discussion on THz wireless communication is being discussed centered on IEEE 802.15 THz working group (WG) in addition to 3GPP, and standard documents issued by TG (task group) (eg, TG3d, TG3e) of IEEE 802.15 are described in this specification. It can be specified or supplemented.
  • THz wireless communication may be applied to wireless recognition, sensing, imaging, wireless communication, THz navigation, and the like.
  • a THz wireless communication scenario may be classified into a macro network, a micro network, and a nanoscale network.
  • THz wireless communication can be applied to a vehicle-to-vehicle (V2V) connection and a backhaul/fronthaul connection.
  • V2V vehicle-to-vehicle
  • THz wireless communication in micro networks is applied to indoor small cells, fixed point-to-point or multi-point connections such as wireless connections in data centers, and near-field communication such as kiosk downloading.
  • Table 5 below is a table showing an example of a technique that can be used in the THz wave.
  • FIG. 18 is a diagram illustrating a THz wireless communication transceiver applicable to the present disclosure.
  • THz wireless communication may be classified based on a method for generating and receiving THz.
  • the THz generation method can be classified into an optical device or an electronic device-based technology.
  • the method of generating THz using an electronic device is a method using a semiconductor device such as a resonant tunneling diode (RTD), a method using a local oscillator and a multiplier, a compound semiconductor HEMT (high electron mobility transistor) based
  • a monolithic microwave integrated circuit (MMIC) method using an integrated circuit a method using a Si-CMOS-based integrated circuit, and the like.
  • MMIC monolithic microwave integrated circuit
  • a doubler, tripler, or multiplier is applied to increase the frequency, and it is radiated by the antenna through the sub-harmonic mixer. Since the THz band forms a high frequency, a multiplier is essential.
  • the multiplier is a circuit that has an output frequency that is N times that of the input, matches the desired harmonic frequency, and filters out all other frequencies.
  • an array antenna or the like may be applied to the antenna of FIG. 18 to implement beamforming.
  • IF denotes an intermediate frequency
  • tripler and multiplier denote a multiplier
  • PA denotes a power amplifier
  • LNA denotes a low noise amplifier.
  • PLL represents a phase-locked loop.
  • FIG. 19 is a diagram illustrating a method for generating a THz signal applicable to the present disclosure.
  • FIG. 20 is a diagram illustrating a wireless communication transceiver applicable to the present disclosure.
  • the optical device-based THz wireless communication technology refers to a method of generating and modulating a THz signal using an optical device.
  • the optical element-based THz signal generation technology is a technology that generates a high-speed optical signal using a laser and an optical modulator, and converts it into a THz signal using an ultra-high-speed photodetector. In this technology, it is easier to increase the frequency compared to the technology using only electronic devices, it is possible to generate a high-power signal, and it is possible to obtain a flat response characteristic in a wide frequency band. As shown in FIG.
  • a laser diode, a broadband optical modulator, and a high-speed photodetector are required to generate a THz signal based on an optical device.
  • a THz signal corresponding to a difference in wavelength between the lasers is generated by multiplexing the light signals of two lasers having different wavelengths.
  • an optical coupler refers to a semiconductor device that transmits electrical signals using light waves to provide coupling with electrical insulation between circuits or systems
  • UTC-PD uni-travelling carrier photo- The detector
  • UTC-PD uni-travelling carrier photo- The detector
  • UTC-PD is capable of photodetection above 150GHz.
  • an erbium-doped fiber amplifier indicates an erbium-doped optical fiber amplifier
  • a photo detector indicates a semiconductor device capable of converting an optical signal into an electrical signal
  • the OSA indicates various optical communication functions (eg, , photoelectric conversion, electro-optical conversion, etc.) represents an optical module modularized into one component
  • DSO represents a digital storage oscilloscope.
  • FIG. 21 is a diagram illustrating a structure of a transmitter applicable to the present disclosure.
  • FIG. 22 is a diagram illustrating a modulator structure applicable to the present disclosure.
  • a phase of a signal may be changed by passing an optical source of a laser through an optical wave guide.
  • data is loaded by changing electrical characteristics through microwave contact or the like.
  • an optical modulator output is formed as a modulated waveform.
  • the photoelectric modulator (O/E converter) is an optical rectification operation by a nonlinear crystal (nonlinear crystal), photoelectric conversion (O / E conversion) by a photoconductive antenna (photoconductive antenna), a bunch of electrons in the light beam (bunch of) THz pulses can be generated by, for example, emission from relativistic electrons.
  • a terahertz pulse (THz pulse) generated in the above manner may have a length in units of femtoseconds to picoseconds.
  • An O/E converter performs down conversion by using non-linearity of a device.
  • a number of contiguous GHz bands for fixed or mobile service use for the terahertz system are used. likely to use
  • available bandwidth may be classified based on oxygen attenuation of 10 ⁇ 2 dB/km in a spectrum up to 1 THz. Accordingly, a framework in which the available bandwidth is composed of several band chunks may be considered.
  • the bandwidth (BW) becomes about 20 GHz.
  • Effective down conversion from the infrared band to the THz band depends on how the nonlinearity of the O/E converter is exploited. That is, in order to down-convert to a desired terahertz band (THz band), the O/E converter having the most ideal non-linearity for transfer to the terahertz band (THz band) is design is required. If an O/E converter that does not fit the target frequency band is used, there is a high possibility that an error may occur with respect to the amplitude and phase of the corresponding pulse.
  • a terahertz transmission/reception system may be implemented using one photoelectric converter. Although it depends on the channel environment, in a far-carrier system, as many photoelectric converters as the number of carriers may be required. In particular, in the case of a multi-carrier system using several broadbands according to the above-described spectrum usage-related scheme, the phenomenon will become conspicuous. In this regard, a frame structure for the multi-carrier system may be considered.
  • the down-frequency-converted signal based on the photoelectric converter may be transmitted in a specific resource region (eg, a specific frame).
  • the frequency domain of the specific resource region may include a plurality of chunks. Each chunk may be composed of at least one component carrier (CC).
  • FIG. 23 is a diagram illustrating a neural network applicable to the present disclosure.
  • artificial intelligence technology may be introduced in a new communication system (e.g. 6G system).
  • artificial intelligence can utilize a neural network as a machine learning model modeled after the human brain.
  • the device may process the arithmetic operation consisting of 0 and 1, and may perform operations and communication based on this.
  • the device can process many arithmetic operations in a faster time and using less power than before.
  • humans cannot perform arithmetic operations as fast as devices.
  • the human brain may not be built to process only fast arithmetic operations.
  • humans can perform operations such as recognition and natural language processing.
  • the above-described operation is an operation for processing something more than arithmetic operation, and the current device may not be able to process to a level that a human brain can do. Therefore, it may be considered to make a system so that the device can achieve performance similar to that of a human in areas such as natural language processing and computer vision.
  • the neural network may be a model created based on the idea of mimicking the human brain.
  • the neural network may be a simple mathematical model made with the above-described motivation.
  • the human brain can consist of a huge number of neurons and synapses connecting them.
  • an action may be taken by selecting whether other neurons are also activated.
  • the neural network may define a mathematical model based on the above facts.
  • neurons are nodes, and it may be possible to create a network in which a synapse connecting neurons is an edge.
  • the importance of each synapse may be different. That is, it is necessary to separately define a weight for each edge.
  • the neural network may be a directed graph. That is, information propagation may be fixed in one direction. For example, when a non-directed edge is provided or the same direct edge is given in both directions, information propagation may occur recursively. Therefore, the result by the neural network can be complicated.
  • the neural network as described above may be a recurrent neural network (RNN). At this time, since RNN has the effect of storing past data, it is recently used a lot when processing sequential data such as voice recognition.
  • the multi-layer perceptron (MLP) structure may be a directed simple graph.
  • the MLP may be the above-described MLP unless there is a special mention of the layer below, but the present invention is not limited thereto.
  • the above-described network may be a feed-forward network, but is not limited thereto.
  • different neurons may be activated in an actual brain, and the result may be transmitted to the next neuron.
  • the result value can be activated by the neuron that makes the final decision, and the information is processed through it.
  • the above-described method is changed to a mathematical model, it may be possible to express an activation condition for input data as a function.
  • the above-described function may be referred to as an activate function.
  • the simplest activation function may be a function that sums all input data and compares it with a threshold value. For example, when the sum of all input data exceeds a specific value, the device may process information as activation. On the other hand, when the sum of all input data does not exceed a specific value, the device may process information as deactivation.
  • the activation function may have various forms.
  • Equation 1 may be defined for convenience of description. In this case, in Equation 1, it is necessary to consider not only the weight w but also the bias, and when this is taken into consideration, it can be expressed as Equation 2 below. However, since the vise (b) and the weight (w) are almost the same, only the weight is considered and described below. However, the present invention is not limited thereto. For example, the value is always 1 if you add Since is a vise, it is possible to assume a virtual input, and through this, the weight and the vise can be treated equally, and the present invention is not limited to the above-described embodiment.
  • a model based on the above can initially define the shape of a network composed of nodes and edges. After that, the model can define an activation function for each node.
  • the role of the parameter that adjusts the model takes on the weight of the edge, and finding the most appropriate weight may be a training goal of the mathematical model.
  • the following Equations 3 to 6 may be one form of the above-described activation function, and are not limited to a specific form.
  • the neural network may first determine activation of the next layer with respect to a given input, and may determine activation of the next layer according to the determined activation. Based on the above-described method, the interface may be determined by looking at the result of the last decision layer.
  • FIG. 24 is a diagram illustrating an activation node in a neural network applicable to the present disclosure.
  • as many decision nodes as the number of classes to be classified in the last layer may be created, and then a value may be selected by activating one of them.
  • a case in which activation functions of a neural network are non-linear and the functions are complexly configured while forming layers with each other may be considered.
  • weight optimization of the neural network may be non-convex optimization. Therefore, it may be impossible to find a global optimization of parameters of a neural network.
  • a method of convergence to an appropriate value using a gradient descent method may be used. For example, all optimization problems can be solved only when a target function is defined.
  • a method of minimizing a corresponding value by calculating a loss function between a target output actually desired in the final decision layer and an estimated output generated by the current network may be calculated.
  • the loss function may be as shown in Equations 7 to 9 below, but is not limited thereto.
  • Equations 7 to 9 may be loss functions for optimization.
  • the back propagation algorithm may be an algorithm capable of simply performing gradient calculation using a chain rule.
  • parallelization may also be easy.
  • memory can be saved through algorithm design. Therefore, the neural network update may use a backpropagation algorithm.
  • the backpropagation algorithm a loss is first calculated using the current parameters, and how much each parameter affects the corresponding loss can be calculated through the chain rule. An update may be performed based on the calculated value.
  • the backpropagation algorithm may be divided into two phases.
  • One may be a propagation phase, and the other may be a weight update phase.
  • an error or a change amount of each neuron may be calculated from a training input pattern.
  • the weight in the weight update phase, the weight may be updated using the previously calculated value.
  • specific phases may be as shown in Table 6 below.
  • FIG. 25 is a diagram illustrating a method of calculating a gradient using a chain rule applicable to the present disclosure.
  • a method for obtaining instead of calculating the corresponding value, it is a derivative value already calculated in the y-layer. with y-layers and only relevant to x can be used to calculate the desired value. If a parameter called x' exists under x, Wow using can be calculated. Therefore, what is required in the backpropagation algorithm may be only two values of a derivative of a variable immediately preceding the parameter to be updated and a value obtained by differentiating the immediately preceding variable with the current parameter.
  • SDG stochastic gradient descent
  • a neural network that processes a complex number may have a number of advantages, such as a neural network description or a parameter expression.
  • a complex value neural network there may be points to be considered compared to a real neural network that processes real numbers.
  • the activation function As an example, for example, the “sigmoid function of Equation 3 ”, if t is a complex number, In the case of , f(t) becomes 0, so it is not differentiable. Therefore, activation functions generally used in real neural networks cannot be applied to complex neural networks without restrictions.
  • Equation 10 may be derived by “Liouville’s theorem” based on Table 7.
  • Equation 11 the form of the plurality of activation functions
  • Activation functions such as “sigmoid function” and “hyperbolic tangent function” used in real neural networks can be used.
  • CNNs Convolution neural networks
  • CNN may be a type of neural network mainly used in speech recognition or image recognition, but is not limited thereto.
  • CNN is configured to process multi-dimensional array data, and is specialized in multi-dimensional array processing such as color images. Therefore, most techniques using deep learning in the image recognition field can be performed based on CNN.
  • image data is processed as it is. That is, since the entire image is considered as one data and received as input, the correct performance may not be obtained if the image position is slightly changed or distorted as above without finding the characteristics of the image.
  • CNN can process an image by dividing it into several pieces, not one piece of data. As described above, even if the image is distorted, the CNN can extract the partial characteristics of the image, so that the correct performance can be achieved. CNN may be defined in terms as shown in Table 9 below.
  • RNNs Recurrent neural networks
  • the RNN may be a type of artificial neural network in which hidden nodes are connected by directional edges to form a directed cycle.
  • the RNN may be a model suitable for processing data that appears sequentially, such as voice and text. Since RNN is a network structure that can accept input and output regardless of sequence length, it has the advantage of being able to create various and flexible structures according to needs.
  • a structure proposed to solve the “vanishing gradient” problem may be a long-short term memory (LSTM) and a gated recurrent unit (GRU). That is, the RNN may have a structure in which feedback exists compared to CNN.
  • LSTM long-short term memory
  • GRU gated recurrent unit
  • FIG. 27 is a view showing an autoencoder applicable to the present disclosure.
  • 28 to 30 are views showing a turbo autoencoder applicable to the present disclosure.
  • various attempts are being made to apply a neural network to a communication system.
  • an attempt to apply a neural network to a physical layer may mainly focus on optimizing a specific function of a receiver.
  • the channel decoder is configured as a neural network, the performance of the channel decoder may be improved.
  • a MIMO detector is implemented as a neural network in a MIMO system having a plurality of transmit/receive antennas, the performance of the MIMO system may be improved.
  • an autoencoder method may be applied.
  • the autoencoder configures both the transmitter and the receiver as a neural network, and performs optimization from an end-to-end point of view to improve performance. and may be configured as shown in FIG. 27 .
  • FIG. 28 is a diagram illustrating a federated learning method based on a compression method applicable to the present disclosure.
  • model parameter of Federated Learning may be applied to a new communication system.
  • a method and system in which the model parameters of federated learning are adapted to the communication environment and signals are transmitted will be described.
  • federated learning may be applied to any one of the cases of protecting personal privacy, reducing the load of the base station through distributed processing, and reducing traffic between the base station and the terminal.
  • traffic of local model parameters e.g. weight, information of the deep neural network
  • techniques for reducing traffic through compression of local model parameters or aircomp are being developed.
  • the wireless communication environment in the communication system may be diverse.
  • the number of terminals requiring learning in the communication system may be set in various ways.
  • the communication system may require a flexible operating method and system rather than a fixed specific technology in consideration of the above-described environment. Through this, it is possible to increase the resource efficiency of the communication system.
  • a method of applying the federated learning method in consideration of the above points will be described.
  • a federated learning method through terminal model parameter compression may be applied to the communication system.
  • the federated learning through compression may be a method in which each terminal performs compression on data in consideration of the characteristics of the parameters and transmits the data to the base station. Therefore, when the base station receives a signal based on the federated learning method, the base station needs to perform an operation of decompressing the received signal based on the received signal and summing the collected parameters. Accordingly, the load of the base station may increase. Also, for example, since a communication channel must be allocated for each number of terminals, communication traffic may increase in proportion to the number of terminals used. Therefore, when there are a plurality of terminals, the method through compression may reduce efficiency.
  • compression may cause delay in data processing. That is, the terminal may need time to process the compressed data, and delay may occur based on this.
  • the modulation method may be changed according to the channel environment.
  • the terminal may use a modulation scheme such as 256QAM (Quadrature Amplitude Modulation). That is, since the terminal can transmit more data in the same time period, data throughput may increase. Accordingly, low-delay communication can be performed.
  • 256QAM Quadrature Amplitude Modulation
  • the UE may use a modulation scheme such as Quadrature Phase Shift Keying (QPSK). That is, since the terminal can transmit a small amount of data in the same time period, data throughput is reduced, which may cause delay in transmission and processing of federated learning.
  • QPSK Quadrature Phase Shift Keying
  • the compression-based method and the method of changing the modulation method according to the channel environment may have different delay rates.
  • the compression-based method may have a different delay speed depending on the compression rate. For example, when the compression rate increases, the delay time increases because the processing time for compression increases, and when the compression rate decreases, the delay time may be shortened because the processing time for compression may decrease. Also, for example, a change in a modulation method according to a communication environment may affect a delay rate because data throughput is changed.
  • the compression method can minimize the transmission capacity, but if the compression rate is increased, a loss of model parameters may occur. Accordingly, when the terminal compresses data based on a high compression rate, a problem may occur. Accordingly, the terminal needs to select a compression rate that minimizes the transmission capacity in consideration of the target loss rate.
  • the target loss rate may be applied differently based on the number of users (or the number of terminals). For example, when the number of users is small, the influence of an individual terminal loss rate may be large. On the other hand, when the number of users is large, the influence of the individual terminal loss rate may be reduced. That is, since the number of users may affect the loss ratio, using a fixed compression ratio regardless of the number of users may reduce transmission efficiency compared to the performance improvement ratio.
  • efficiency when a weight signaling method between a terminal and a base station is fixedly used in a federated learning method, efficiency may be different based on a wireless environment. For example, the efficiency may be high in a specific environment, but in the opposite case, the efficiency may be inhibited. In this case, since the wireless environment can change dynamically, it is necessary to recognize the dynamically changing wireless environment and select a technology based on the recognized wireless environment.
  • each terminal may transmit the parameters (e.g. weights and information of the deep neural network) of the model learned based on the federated learning method to the base station.
  • each terminal transmits compressed parameters, and the base station may update the global model based on Equation 12 below.
  • c may be information compression and modulation processing
  • d may be demodulation and information restoration processing. Thereafter, the base station may transmit the updated global model to each terminal.
  • each terminal may perform compression based on a method of minimizing the amount of model parameters.
  • the respective terminals use the same compression algorithm in FIG. 28 , the present invention is not limited thereto.
  • compression may be performed based on at least one of weight pruning, quantization, and weight sharing.
  • compression may be performed based on another method, and is not limited to the above-described embodiment.
  • a value necessary for actual inference among weights may have resistance to small values. That is, a weight value necessary for actual inference may have a small effect on small values.
  • all small weight values may be set to 0. Through this, the neural network can reduce the network model size.
  • quantization may be a method of calculating data by reducing data to a specific number of bits. That is, data can be expressed only as a specific quantized value.
  • weight sharing may be a method of adjusting weight values based on an approximate value (e.g. codebook) and sharing the weight values.
  • an approximate value e.g. codebook
  • each terminal may perform data compression, and may transmit compressed information to the base station.
  • the base station compresses can be received from each terminal, and the received information can be decompressed to calculate and update parameters of the global model.
  • each terminal may set local model parameters having individual characteristics. Accordingly, when each terminal performs compression, compression efficiency may be different for each terminal. Also, as an example, each terminal may have different hardware resources. Here, compression efficiency may be affected by hardware resources. Accordingly, the compression efficiency may be different for each terminal.
  • the terminal when the terminal performs quantization with 8 bits, the terminal equipped with a 64-bit arithmetic processing function can obtain high compression efficiency.
  • a terminal equipped with a 16-bit arithmetic processing function may have low compression efficiency.
  • the terminal when the terminal has low-spec hardware, the terminal may receive a large compression load. Therefore, it may be advantageous for the above-described terminal to use a simple compression method. For example, since Internet of Thing (IoT) terminals or low-power terminals may have relatively low-spec hardware, a simple compression technique may be used.
  • IoT Internet of Thing
  • a terminal operating based on AI or a terminal processing a large amount of data may have high-spec hardware, it is possible to increase the compression efficiency by using a complex compression technique. That is, different compression methods may be used for each terminal, and it may be necessary to use a compression method suitable for each.
  • each terminal may use a compression method suitable for individual characteristics of local model parameters and hardware resources.
  • the terminals need to transmit information on the compression method to the base station.
  • the base station may restore compressed data and model parameters received from each terminal based on the information received from the terminal.
  • 29 is a diagram illustrating a processing time and a transmission time according to a compression rate applicable to the present disclosure.
  • the terminal and the base station may minimize the final delivery time of the model parameter in order to reduce the delay.
  • the total delay time of the model parameter may be determined based on Equation 13 below. That is, the total delay time may be expressed as the sum of the delay time based on the compression rate (or the release rate) and the transmission delay time.
  • the compression delay ( ) may mean the sum of the processing time of the terminal used for compression and the processing time of the base station for reconstructing it.
  • the transmission delay ( ) may be the transmission time it takes to transmit all of the model parameters. That is, the total delay time ( ) can be expressed as the sum of the time required for compression and decompression and the transmission time.
  • propagation delay for a wireless environment or other system delay may not be considered. However, this is only one example, and it may be possible to reflect the above-described configuration.
  • the compression delay ( ) may change depending on the compression rate, the performance of the terminal/base station, and the size of the original data to be compressed, and may be determined based on Equation 14 below.
  • the delay for restoration (Decompression Delay)
  • compression Delay may be a delay for compression
  • CR is a compression ratio and may be a size before compression/size after compression.
  • index indicating the performance of the base station may be an indicator indicating the performance of the terminal.
  • DS may be a data size. That is, based on Equation 14, the delay for compression When the compression ratio (CR) is high, the terminal performance ( ) is low and DS is large.
  • D_d which is a delay for restoration
  • CR compression ratio
  • base station performance ( ) is low
  • DS DS
  • the processing time for compression/decompression may increase as the compression rate increases because it takes a lot of load on the terminal and the base station.
  • the performance of the terminal and the base station is also affected, as described above.
  • the larger the size of the original data to be compressed the more memory read/write (Read/Write) processing and calculation amount is used, so the processing time may increase as well.
  • transmission delay ( ) may be affected by the Modulation and Coding Scheme (MCS) set based on the radio channel environment and the compressed data size (a specific compression rate is applied).
  • MCS Modulation and Coding Scheme
  • the transmission time may decrease as the MCS increases.
  • the transmission time may decrease as the compression rate increases, which may be expressed by Equation 15 below. here, may be the MCS of the minimum transmission rate.
  • Is When it may be bits per modulation symbol
  • Is It may be a coding rate when .
  • Is It may be bits per second for the coding rate when . That is, the transmission delay ( ) may increase when the data size DS is large.
  • transmission delay ( ) may increase when the compression ratio is small and the MCS is small.
  • the total delay ( ) is the compression delay ( ) and transmission delay ( ) can be determined according to For example, referring to FIG. 29, when the compression rate increases, the compression delay ( ) increases, and the transmission delay ( ) can be reduced. That is, the compression delay ( ) and transmission delay ( ) may be inversely proportional to the compression ratio (CR).
  • the terminal and the base station can achieve the optimal communication with the total delay ( ), there is a need to determine the compression ratio (CR), and a method for this is described below.
  • FIG. 30 is a diagram illustrating a method of determining a compression rate and a Modulation Coding Scheme (MCS) for low-latency joint learning applicable to the present disclosure.
  • MCS Modulation Coding Scheme
  • the total delay ( ) is the compression delay ( ) and transmission delay ( ) can be the sum of
  • the total delay ( ) is selected, the overall delay can be minimized.
  • the base station may measure a signal noise ratio (SNR) through a reference signal (or reference signal) received from the terminal, and estimate the MCS and compression ratio values based thereon.
  • SNR signal noise ratio
  • the base station is at least one of an Adaptive Modulation and Coding (AMC) agent (AMC Agent, 3010), an MCS instruction generator 3020, a compression rate predictor 3030, and a compression rate indication generator 3040.
  • AMC Adaptive Modulation and Coding
  • the above-described configuration included in the base station may be an example, and the above-described name may also be an example.
  • the base station may include other components that perform the same function as the above-described components.
  • the base station may perform a function based on a configuration having a name different from the above-mentioned name, and is not limited to the above-described embodiment.
  • related content will be described based on the above-described configuration for convenience of description, but may not be limited thereto.
  • the AMC agent 3010 may perform MCS prediction based on SNR information measured based on a reference signal received from the terminal. Thereafter, the AMC agent 3010 may transmit information on the predicted MSC to the MCS indication generator 3020 . In this case, the MCS indication generator 3020 may generate information indicating the MCS and transmit it to the terminal.
  • the compression rate predictor 3030 includes the MCS predicted by the AMC agent 3010 and the original size (DS) of transmission data, the base station performance index ( ) and terminal performance indicators ( ) can predict the compression ratio, which will be described later. Thereafter, the compression ratio predictor 3030 may transmit the generated compression ratio value to the compression ratio indication generator 3040 .
  • FIG. 31 is a diagram illustrating a method of determining a compression ratio and an MCS based on the aforementioned 30.
  • the base station may receive a reference signal (or reference signal) from the terminal and measure the SNR based on the received signal (S3110). Then, the base station provides the measured SNR information to the AMC agent, The AMC agent may predict the MCS suitable for the SNR based on the SNR information. (S3120) Then, the compression rate predictor of the base station determines the predicted MCS, the transmission size (DS), and the base station performance index (S3120).
  • the base station may instruct the instruction generator to transmit the predicted MCS and compression rate values to the terminal.
  • the base station is the predicted MCS and compression rate values may be transmitted to the terminal.
  • AMC adaptive modulation and coding
  • the AMC agent 3210 is a state (state, ) can be used as input.
  • state( ) may be expressed as a quantized value of the SNR measured in the uplink reference signal transmitted through the radio channel 3220 .
  • the action of the AMC agent 3210 is can be defined as here, may be an index of the MCS.
  • the AMC agent 3210 may select an MCS that maximizes a reward based on the SNR information of the radio channel.
  • the reward (Reward, R) of the AMC agent 3210 may be expressed based on the frequency efficiency (Spectral Efficiency), and may be expressed as Equation 16 below.
  • BLER may be a block error rate
  • v may be a coding rate.
  • the AMC agent 3210 may be trained to determine the MCS that maximizes the frequency efficiency (Spectral Efficiency) in the radio channel environment 3220 .
  • learning for MCS may be implemented through “Q-Learning,” which is a type of reinforcement learning, but is not limited thereto.
  • the action value (Action-Value) learned by the AMC agent 3210 may be as shown in Equation 17 below. here, is the learning rate, may be a discount factor.
  • the base station does not use the AMC agent 3210, and it may be possible to link a compression rate predictor with a method of selecting an MCS based on a table form like the existing communication system. That is, the base station may select a corresponding index from the MCS table based on the SNR and link it with the compression rate predictor based on this, and is not limited to the above-described embodiment.
  • the base station may derive an MCS value through learning based on the AMC agent 3210 or may derive an MCS value based on an existing table, and is not limited to the above-described embodiment.
  • the compression rate predictor is given a condition For all cases (step-by-step) of , the optimal compression ratio can be calculated in advance.
  • the compression rate predictor may calculate the compression rate in the form of a look-up table. That is, the compression rate predictor may perform a complex operation in advance based on a corresponding condition and derive a compression rate through a lookup table corresponding thereto, and through this, the operation may be performed quickly.
  • the compression rate predictor may use artificial intelligence (AI) for more accurate and detailed prediction.
  • AI artificial intelligence
  • the compressor predictor may perform learning based on reinforcement learning.
  • reinforcement learning it may be possible to update in real time.
  • the compression rate predictor can perform adaptive prediction on delays occurring other than the given conditions.
  • this is only one example and is not limited to the above-described embodiment.
  • the AMC agent may predict the MCS based on the above description, and the predicted MCS may instruct the UE to select the corresponding MCS through the MCS indication generator.
  • the compression rate predictor includes the MCS predicted by the AMC agent, the original size (DS) of the transmitted data, and the base station performance index ( ) and terminal performance indicators ( ), it is possible to predict the compression ratio through at least one. Then, the compression ratio predictor may pass the predicted compression ratio value to the compression ratio indication generator. The compression ratio indication generator may instruct the terminal to transmit by applying the corresponding compression ratio based on the received compression ratio value.
  • FIG. 33 is a diagram illustrating a method of predicting a compression rate to minimize transmission delay based on a fully connected layer applicable to the present disclosure.
  • the compression ratio predictor may predict the compression ratio based on a full connected layer.
  • the compression rate predictor includes the original size (DS) of transmitted data, the base station performance index ( ), terminal performance index ( ) and the optimal compression ratio calculated from the MCS value can be configured as training data.
  • all layers in the compression rate predictor may be connected, and through this, learning reflecting each element may be performed.
  • the compression ratio predictor may derive a compression ratio providing the shortest delay as an output value based on the above-described input value.
  • FIG. 34 is a diagram illustrating a method of controlling a compression rate to minimize transmission delay applicable to the present disclosure.
  • the compression rate predictor may predict the compression rate based on reinforcement learning. More specifically, referring to FIG. 34 , the compression rate predictor may include at least one of a CR Agent 3410 , a delay calculator 3420 , and a compression rate adjuster 3430 for reinforcement learning.
  • the above-described configuration included in the compression rate predictor may be an example, and the above-described name may also be an example.
  • the compression rate predictor may include other components that perform the same function as the above-described components.
  • the compression rate predictor may perform a function based on a configuration having a name different from the above-mentioned name, and is not limited to the above-described embodiment.
  • related content will be described based on the above-described configuration for convenience of description, but may not be limited thereto.
  • the state of the CR agent 3410 ( )Is can be That is, the CR agent 3410 is the original data size (DS), MCS, base station performance indicators ( ) and terminal performance indicators ( ) can be considered.
  • the action of the CR agent 3410 may serve to increase or decrease the unit step of the compression rate.
  • the step of the adjustable compression ratio is n
  • the output value of the compression ratio adjuster 3430 is may be within the range of
  • the compression ratio adjuster 3430 may increase or decrease the current compression ratio value based on the action of the CR agent 3410 .
  • the compression ratio adjuster 3430 may transmit information on the adjustment value to the CR agent 3410 as a next state value.
  • the delay calculator 3420 may calculate a compensation (Reward, R) corresponding to the output value of the compression ratio adjuster, and the compensation may be as shown in Equation 18 below.
  • the delay value at the previous compression rate may be a delay value at the current compression rate.
  • the reward may be increased when the delay due to the action is further reduced. Accordingly, the CR agent 3410 may select an action in the direction of reducing the delay.
  • the compression rate predictor using reinforcement learning repeatedly calculates the delay value based on the compression rate adjuster 3430 and provides it to the CR agent 3410, and the CR agent 3410 is based on the repeated value.
  • a converged compression ratio (CR, Compression Ratio) can be used.
  • the base station may measure the delay based on the difference from the compression and restoration completion time.
  • the compression rate predictor may derive a compression rate value by further reflecting the above-described information, and through this, accuracy may be increased, but the present invention is not limited thereto.
  • 35 is a diagram illustrating a flow for a method of controlling a compression rate and MCS to minimize transmission delay applicable to the present disclosure.
  • terminals 3510 , 3520 , and 3530 each perform performance indicators ( ) can be transmitted.
  • the base station 3540 may transmit a message requesting transmission of a terminal performance indicator to each of the terminals 3510 , 3520 , and 3530 .
  • each of the terminals (3510, 3520, 3530) based on the request message received from the base station each performance indicator ( ) may be transmitted to the base station 3540 .
  • the base station 3540 is a global model ( ) can be transmitted.
  • each of the terminals (3510, 3520, 3530) receives the global model (3540) from the base station (3540). ) to perform local learning.
  • each of the terminals 3510 , 3520 , and 3530 may prepare to transmit the model parameter.
  • each of the terminals 3510 , 3520 , and 3530 may transmit each reference signal to the base station.
  • the base station 3540 may measure each SNR based on each reference signal received from each of the terminals 3510 , 3520 , and 3530 .
  • the base station 3540 may determine the MCS based on the SNR based on the above description.
  • the MCS may be determined through learning based on artificial intelligence.
  • the MCS may be determined based on a table value like the existing communication system, and is not limited to the above-described embodiment.
  • the base station 3540 determines the MCS and the base station performance indicator ( ) and the performance index of each terminal ( ) and the original data size (DS) may be used to predict the compression ratio for low delay.
  • the base station 3540 may predict the compression ratio based on the pre-combination method as shown in FIG. 33 or the reinforcement learning method as shown in FIG. 34 .
  • the base station may derive the compression ratio based on the compression ratio adjuster and the delay calculator based on FIG.
  • the base station 3540 may transmit an operation instruction to each of the terminals 3510 , 3520 , and 3530 .
  • each operation instruction may include a compression rate and MCS information for the corresponding terminal.
  • each of the terminals 3510 , 3520 , and 3530 may perform compression on data based on the received information.
  • each of the terminals (3510, 3520, 3530) is each compressed data ( ) may be transmitted to the base station 3540 .
  • the base station 3540 may generate and update global model parameters based on the received data. Thereafter, the base station 3540 may transmit the updated global model parameter to the respective terminals 3510 , 3520 , and 3530 .
  • the terminal performance index ( ) and base station performance indicators ( ) may be an index indicating performance related to the compression capability of the terminal and the base station.
  • the performance index of the terminal and the base station may be defined as a standardized score according to a benchmarking tool or a product specification (CPU, GPU, Memory), but is not limited thereto.
  • the base station may deliver a benchmarking tool to the terminal.
  • the terminal may perform measurement based on the received benchmarking tool, and transmit the measured score to the base station.
  • the base station may check the terminal performance indicator based on the measured score, but this is only an example and is not limited to the above-described embodiment.
  • FIGS. 36 and 37 may be diagrams illustrating a method of controlling a compression rate to minimize transmission capacity.
  • the above-described compression rate predictor may be designed to minimize transmission capacity.
  • the transmission capacity can be minimized.
  • the compression rate for data is high, data loss may increase. Therefore, a method for maximally increasing the compression ratio within the target compression loss value may be required, and a compression ratio predictor may be implemented based on this.
  • the compression rate predictor is a CR agent 3610, At least one of a comparator 3620 and a compression ratio adjuster 3630 may be included.
  • the above-described configuration included in the compression rate predictor may be an example, and the above-described name may also be an example.
  • the compression rate predictor may include other components that perform the same function as the above-described components.
  • the compression rate predictor may perform a function based on a configuration having a name different from the above-mentioned name, and is not limited to the above-described embodiment.
  • related content will be described based on the above-described configuration for convenience of description, but may not be limited thereto.
  • the state of the CR agent 3610 ( )Is can be That is, the CR agent 3610 may perform learning in consideration of the compression rate and the number of users (the number of terminals), which will be described later. Also, as an example, the action of the CR agent 3610 may serve to increase or decrease the unit step of the compression rate.
  • the output value of the compression ratio adjuster 3630 is may be within the range of The compression ratio adjuster 3460 may increase or decrease the current compression ratio value based on the action of the CR agent 3610 . Thereafter, the compression rate adjuster 3630 may transmit information on the adjustment value to the CR agent 3610 as a next state value.
  • the comparator 3620 may calculate a compensation (Reward, R) corresponding to the output value of the compression ratio adjuster, and the compensation may be as shown in Equation 19 below.
  • R Reward
  • CR may be a current compression ratio (ie, an output value of the compression ratio adjuster).
  • target compression loss ratio may be the current compression loss ratio.
  • the compensation may be increased when the compression loss rate due to the action is further reduced. Accordingly, the CR agent 3610 may select an action in the direction of reducing the compression loss rate.
  • the compression rate predictor using reinforcement learning repeatedly calculates the compression loss rate based on the compression rate adjuster 3630 and provides it to the CR agent 3610, and the CR agent 3610 is based on the repeated value.
  • a converged compression ratio (CR, Compression Ratio) can be used.
  • a loss rate caused by data compression may decrease as the number of users increases. That is, the smaller the number of users, the greater the effect on the compression loss rate may be.
  • the state of the CR agent 3610 is determined by considering the compression ratio (CR) and the number of users (n). can be set to
  • the compression loss rate may greatly affect each user.
  • the compression loss ratio may not have a large effect on each user.
  • a different part of compression may be performed for each user.
  • the number of users (n) may have a large influence on the compression loss in the overall compression loss ratio.
  • the number of users (n) may have a small influence on the compression loss in the overall compression loss ratio.
  • the state of the CR agent 3610 may consider the compression ratio (CR) and the number of users (n).
  • the target compression loss ratio ( ) when the number of users increases in Equation 19 above, the target compression loss ratio ( ) can be set high. Through this, compensation may be designed so that the current compression ratio (ie, the output value of the compression ratio adjuster) increases.
  • the base station checks the number of users (or the number of terminals) to determine the target compression loss rate ( ) can be determined.
  • the target compression loss ratio corresponding to the number of users ( ) may be preset in advance. The base station checks the number of users, and the target compression loss ratio ( ) value can be used, and it is not limited to the above-described embodiment. That is, the compression rate predictor may learn the compression rate value in consideration of the number of users.
  • FIG. 37 is a diagram illustrating a flow for a method of controlling a compression rate and MCS to minimize a transmission capacity applicable to the present disclosure.
  • the base station 3740 may transmit the global model g_pre to the respective terminals 3710 , 3720 , and 3730 .
  • each of the terminals 3710, 3720, 3730 receives the global model ( ) to perform local learning.
  • each of the terminals 3710, 3720, and 3730 may prepare to transmit the model parameter.
  • each of the terminals 3710 , 3720 , and 3730 may transmit each reference signal to the base station.
  • the base station 3740 may measure each SNR based on each reference signal received from each of the terminals 3710 , 3720 , and 3730 .
  • the base station 3740 may determine the MCS based on the SNR based on the above description.
  • the base station 3740 may further confirm the number of terminals (or the number of users). As a specific example, the base station 3740 may check the number of terminals connected to the base station 3740 and use it as the above-described number of users (n). As another example, when the base station 3740 receives a reference signal from each of the terminals 3710, 3720, and 3730, the base station 3740 identifies the terminal from which the reference signal is received, and based on this, the number of users ( n) the value can be determined. For example, when the base station 3740 does not receive the reference signal transmitted by a specific terminal, the base station 3740 may exclude the corresponding terminal when counting the number of users n described above. That is, the base station 3740 may receive a reference signal from each of the terminals 3710 , 3720 , and 3730 to measure the SNR as well as determine the number of users n, and is not limited to the above-described embodiment.
  • the MCS may be determined through learning based on artificial intelligence.
  • the MCS may be determined based on a table value like the existing communication system, and is not limited to the above-described embodiment.
  • the base station 3740 may predict a compression rate that minimizes the transmission capacity by using at least one of the determined MCS and the number of users.
  • the base station 3740 may predict the compression ratio based on the reinforcement learning method shown in FIG. 36 described above.
  • the base station has a compression ratio adjuster and The compression ratio may be derived based on the comparator, and the present invention is not limited to the above-described embodiment.
  • each operation instruction may include a compression rate and MCS information for the corresponding terminal.
  • each of the terminals 3710 , 3720 , and 3730 may perform compression on data based on the received information. After that, each of the terminals 3710 , 3720 , 3730 receives the compressed data may be transmitted to the base station 3740 .
  • the base station 3740 may generate and update global model parameters based on the received data. Thereafter, the base station 3740 may transmit the updated global model parameter to the respective terminals 3710 , 3720 , and 3730 .
  • the terminal's performance index ( ) may not include request and response operations, and unnecessary signal exchange may be omitted through this.
  • the compression rate can be determined based on the number of users (or the number of terminals), so the prediction operation of the base station can be performed simply. For example, when the number of users (or the number of terminals) increases, the terminal The influence of the loss ratio of the star compression ratio can be reduced. Accordingly, as the number of users increases, more compression can be performed, and a compression rate that minimizes transmission capacity can be determined based on this, as described above.
  • 38 is a diagram illustrating a method of operating a base station applicable to the present disclosure.
  • the base station may transmit the first global parameter to a plurality of terminals.
  • the base station may transmit a global parameter in consideration of joint learning to a plurality of terminals, as described above.
  • the base station may receive each reference signal from a plurality of terminals.
  • the base station may measure a signal noise ratio (SNR) based on each received reference signal.
  • the base station may determine the compression ratio and MCS based on the measured SNR.
  • the base station may determine the MCS from the measured SNR based on a preset MCS table.
  • the base station may determine the MCS from the measured SNR based on reinforcement learning.
  • reinforcement learning may use a reward in consideration of spectral efficiency and the measured SNR as input values, and through this, the MCS may be derived as an output value. That is, the base station may determine the MCS through reinforcement learning.
  • the base station may determine a compression rate based on the determined MCS.
  • the base station may determine a compression rate that minimizes transmission delay.
  • the base station determines the MCS, the original data size (Data Size, DS), the terminal performance ( ) and base station performance ( ), the compression rate can be determined based on at least any one of them, and through this, the transmission delay can be minimized.
  • the base station may determine a compression rate at which transmission delay is minimized based on a Full Connected Layer scheme, which may be as shown in FIG. 33 .
  • the base station may determine a compression rate at which transmission delay is minimized based on reinforcement learning.
  • reinforcement learning is a reward in consideration of delay, determined MCS, original data size (Data Size, DS), and terminal performance ( ) and base station performance ( ) can be used as an input value.
  • the base station can determine a compression rate that minimizes the transmission delay, which may be as shown in FIG. 34 .
  • the base station uses a plurality of terminals to predict the compression rate as described above. ) to send a message requesting information. Thereafter, the base station receives each terminal capability ( ) to receive information. Through this, the base station can determine the compression ratio as described above.
  • the base station may determine a compression rate that minimizes the transmission capacity.
  • the base station may determine the MCS through the measured SNR, as described above. Thereafter, the base station may determine the compression rate in consideration of the number of the plurality of terminals.
  • the compression loss rate may have a large effect.
  • the influence of the compression loss rate may be small, as described above.
  • the base station may determine a compression rate at which the transmission capacity is minimized based on reinforcement learning.
  • the compensation may be determined in consideration of the target compression loss rate, which may be as shown in FIG. 36 .
  • reinforcement learning may use a compensation in consideration of a target compression loss rate and the number of the plurality of terminals as input values.
  • the base station may determine the compression rate based on the input value.
  • the target compression loss ratio may be set differently based on the number of a plurality of terminals. For example, the target compression loss rate may be set higher as the number of the plurality of terminals increases.
  • the base station may perform the operation of checking the number of terminals to determine the compression rate that minimizes the transmission capacity as described above, as described above.
  • the base station may indicate to each of the plurality of terminals information on the compression ratio and MCS determined based on the above description.
  • the base station may receive data based on the MCS and the compression ratio determined from the plurality of terminals.
  • the base station may update the first global parameter to the second global parameter based on data received from each of the plurality of terminals.
  • the base station may transmit the updated global parameter to a plurality of terminals.
  • examples of the above-described proposed method may also be included as one of the implementation methods of the present disclosure, it is clear that they may be regarded as a kind of proposed method.
  • the above-described proposed methods may be implemented independently, or may be implemented in the form of a combination (or merge) of some of the proposed methods.
  • Rules can be defined so that the base station informs the terminal of whether the proposed methods are applied or not (or information about the rules of the proposed methods) through a predefined signal (eg, a physical layer signal or a higher layer signal). there is.
  • Embodiments of the present disclosure may be applied to various wireless access systems.
  • various radio access systems there is a 3rd Generation Partnership Project (3GPP) or a 3GPP2 system.
  • 3GPP 3rd Generation Partnership Project
  • 3GPP2 3rd Generation Partnership Project2
  • Embodiments of the present disclosure may be applied not only to the various radio access systems, but also to all technical fields to which the various radio access systems are applied. Furthermore, the proposed method can be applied to mmWave and THz communication systems using very high frequency bands.
  • embodiments of the present disclosure may be applied to various applications such as free-running vehicles and drones.

Abstract

Disclosed are a method by which a terminal and a base station transmit/receive signals in a wireless communication system, and an apparatus for supporting same. According to one embodiment applicable to the present disclosure, a method by which a base station transmits a signal may comprise the steps of: transmitting a first global parameter to a plurality of terminals; receiving respective reference signals from the plurality of terminals; measuring signal noise ratios (SNRs) on the basis of the received respective reference signals and determining a compression ratio and a modulation coding scheme (MCS) on the basis of the measured SNRs; indicating information about the determined compression ratio and MCS to each of the plurality of terminals; receiving data from the plurality of terminals on the basis of the determined compression ratio and MCS; and updating the first global parameter to a second global parameter on the basis of the data received from the plurality of terminals.

Description

무선 통신 시스템에서 단말 및 기지국의 신호 송수신 방법 및 장치Method and apparatus for transmitting and receiving signals of a terminal and a base station in a wireless communication system
이하의 설명은 무선 통신 시스템에 대한 것으로, 무선 통신 시스템에서 단말 및 기지국이 신호를 송수신하는 방법 및 장치에 대한 것이다. The following description relates to a wireless communication system, and relates to a method and apparatus for transmitting and receiving signals between a terminal and a base station in a wireless communication system.
특히, 단말 및 기지국이 적응형 연합학습 전송기법에 기초하여 신호를 송수신하는 방법 및 장치를 제공할 수 있다.In particular, it is possible to provide a method and apparatus for a terminal and a base station to transmit and receive a signal based on an adaptive federated learning transmission technique.
무선 접속 시스템이 음성이나 데이터 등과 같은 다양한 종류의 통신 서비스를 제공하기 위해 광범위하게 전개되고 있다. 일반적으로 무선 접속 시스템은 가용한 시스템 자원(대역폭, 전송 파워 등)을 공유하여 다중 사용자와의 통신을 지원할 수 있는 다중 접속(multiple access) 시스템이다. 다중 접속 시스템의 예들로는 CDMA(code division multiple access) 시스템, FDMA(frequency division multiple access) 시스템, TDMA(time division multiple access) 시스템, OFDMA(orthogonal frequency division multiple access) 시스템, SC-FDMA(single carrier frequency division multiple access) 시스템 등이 있다.Wireless access systems are being widely deployed to provide various types of communication services such as voice and data. In general, a wireless access system is a multiple access system that can support communication with multiple users by sharing available system resources (bandwidth, transmission power, etc.). Examples of the multiple access system include a code division multiple access (CDMA) system, a frequency division multiple access (FDMA) system, a time division multiple access (TDMA) system, an orthogonal frequency division multiple access (OFDMA) system, and a single carrier frequency (SC-FDMA) system. division multiple access) systems.
특히, 많은 통신 기기들이 큰 통신 용량을 요구하게 됨에 따라 기존 RAT (radio access technology)에 비해 향상된 모바일 브로드밴드(enhanced mobile broadband, eMBB) 통신 기술이 제안되고 있다. 또한 다수의 기기 및 사물들을 연결하여 언제 어디서나 다양한 서비스를 제공하는 매시브 MTC (Machine Type Communications) 뿐만 아니라 신뢰성 (reliability) 및 지연(latency) 민감한 서비스/UE를 고려한 통신 시스템이 제안되고 있다. 이를 위한 다양한 기술 구성들이 제안되고 있다.In particular, as many communication devices require a large communication capacity, an enhanced mobile broadband (eMBB) communication technology has been proposed compared to the existing radio access technology (RAT). In addition, a communication system considering reliability and latency sensitive service/UE as well as Massive Machine Type Communications (MTC) that provides various services anytime, anywhere by connecting a plurality of devices and things has been proposed. For this purpose, various technical configurations have been proposed.
본 개시는 무선 통신 시스템에서 단말 및 기지국이 신호를 송수신하는 방법에 대한 것이다. The present disclosure relates to a method for transmitting and receiving signals between a terminal and a base station in a wireless communication system.
본 개시는 무선 통신 시스템에서 단말 및 기지국이 연합학습에 기초하여 통신을 수행하기 위해 압축률(Compression Ratio)를 결정하는 방법에 대한 것이다.The present disclosure relates to a method for a terminal and a base station to determine a compression ratio in order to perform communication based on joint learning in a wireless communication system.
본 개시에서 이루고자 하는 기술적 목적들은 이상에서 언급한 사항들로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 이하 설명할 본 개시의 실시 예들로부터 본 개시의 기술 구성이 적용되는 기술분야에서 통상의 지식을 가진 자에 의해 고려될 수 있다.The technical objects to be achieved in the present disclosure are not limited to the matters mentioned above, and other technical problems not mentioned are common knowledge in the technical field to which the technical configuration of the present disclosure is applied from the embodiments of the present disclosure to be described below. can be considered by those with
본 개시는 무선 통신 시스템에서 기지국의 동작 방법을 제공할 수 있다. 이때, 기지국 동작 방법은 복수 개의 단말들로 제 1 글로벌 파라미터를 전송하는 단계, 상기 복수 개의 단말들로부터 각각의 기준신호를 수신하는 단계, 상기 수신된 각각의 기준신호에 기초하여 SNR(Signal Noise Ratio)을 측정하고, 상기 측정된 SNR에 기초하여 압축률 및 MCS(Modulation Coding Scheme)를 결정하는 단계, 상기 결정된 압축률 및 MCS에 대한 정보를 상기 복수 개의 단말들에게 각각 지시하는 단계, 상기 복수 개의 단말들로부터 상기 결정된 압축률 및 MCS에 기초하여 데이터를 수신하는 단계 및 상기 복수 개의 단말들 각각으로부터 수신한 데이터에 기초하여 상기 제 1 글로벌 파라미터를 제 2 글로벌 파라미터로 업데이트하는 단계를 포함할 수 있다.The present disclosure may provide a method of operating a base station in a wireless communication system. In this case, the base station operating method includes transmitting a first global parameter to a plurality of terminals, receiving respective reference signals from the plurality of terminals, and a signal noise ratio (SNR) based on each of the received reference signals. ), determining a compression rate and a modulation coding scheme (MCS) based on the measured SNR, instructing the determined compression rate and information on the MCS to the plurality of terminals, respectively, the plurality of terminals Receiving data from the determined compression ratio and MCS based on the MCS and updating the first global parameter to a second global parameter based on the data received from each of the plurality of terminals.
또한, 본 개시의 일 예로서, 무선 통신 시스템에서 동작하는 기지국은 적어도 하나의 송신기, 적어도 하나의 수신기 및 적어도 하나의 프로세서를 포함할 수 있다. 이때, 상기 적어도 하나의 프로세서에 동작 가능하도록 연결되고, 실행될 경우 상기 적어도 하나의 프로세서가 특정 동작을 수행하도록 하는 명령들(instructions)을 저장하는 적어도 하나의 메모리를 포함하고, 상기 특정 동작은: 복수 개의 단말들로 제 1 글로벌 파라미터를 전송하고, 상기 복수 개의 단말들로부터 각각의 기준신호를 수신하고, 상기 수신된 각각의 기준신호에 기초하여 SNR(Signal Noise Ratio)을 측정하고, 상기 측정된 SNR에 기초하여 압축률 및 MCS(Modulation Coding Scheme)를 결정하고, 상기 결정된 압축률 및 MCS에 대한 정보를 상기 복수 개의 단말들에게 각각 지시하고, 상기 복수 개의 단말들로부터 상기 결정된 압축률 및 MCS에 기초하여 데이터를 수신하고, 및 상기 복수 개의 단말들 각각으로부터 수신한 데이터에 기초하여 상기 제 1 글로벌 파라미터를 제 2 글로벌 파라미터로 업데이트할 수 있다. Also, as an example of the present disclosure, a base station operating in a wireless communication system may include at least one transmitter, at least one receiver, and at least one processor. In this case, the at least one memory is operably connected to the at least one processor and includes at least one memory storing instructions that, when executed, cause the at least one processor to perform a specific operation, wherein the specific operation includes: Transmitting a first global parameter to terminals, receiving respective reference signals from the plurality of terminals, measuring a signal noise ratio (SNR) based on each of the received reference signals, and measuring the measured SNR determines a compression rate and MCS (Modulation Coding Scheme) based on received, and the first global parameter may be updated with a second global parameter based on data received from each of the plurality of terminals.
또한, 본 개시가 적용되는 단말 및 기지국의 신호 송수신 방법 및 장치에서 하기의 사항들이 공통으로 적용될 수 있다.In addition, the following matters may be commonly applied to a method and apparatus for transmitting and receiving a signal of a terminal and a base station to which the present disclosure is applied.
본 개시의 일 예로서, 상기 기지국은 기 설정된 MCS 테이블에 기초하여 상기 측정된 SNR로부터 상기 MCS를 결정할 수 있다.As an example of the present disclosure, the base station may determine the MCS from the measured SNR based on a preset MCS table.
또한, 본 개시의 일 예로서, 상기 기지국은, 강화학습에 기초하여 상기 측정된 SNR로부터 상기 MCS를 결정하되, 상기 강화학습은 주파수 효율(Spectral Efficiency)을 고려한 보상(Reward) 및 상기 측정된 SNR을 입력 값으로 이용하고, 상기 입력 값에 기초하여 상기 MCS를 출력 값으로 도출할 수 있다.In addition, as an example of the present disclosure, the base station determines the MCS from the measured SNR based on reinforcement learning, wherein the reinforcement learning is a reward in consideration of frequency efficiency (Spectral Efficiency) and the measured SNR may be used as an input value, and the MCS may be derived as an output value based on the input value.
또한, 본 개시의 일 예로서, 상기 기지국이 상기 측정된 SNR을 통해 상기 MCS를 결정하고, 상기 결정된 MCS, 원본 데이터 크기(Data Size, DS), 단말 성능(
Figure PCTKR2020011234-appb-I000001
) 및 기지국 성능(
Figure PCTKR2020011234-appb-I000002
) 중 적어도 어느 하나에 기초하여 상기 압축률을 결정할 수 있다.
In addition, as an example of the present disclosure, the base station determines the MCS through the measured SNR, and the determined MCS, original data size (Data Size, DS), terminal performance (
Figure PCTKR2020011234-appb-I000001
) and base station performance (
Figure PCTKR2020011234-appb-I000002
) may be determined based on at least one of the compression ratio.
또한, 본 개시의 일 예로서, 상기 기지국은 전 결합 레이어(Full Connected Layer) 방식에 기초하여 전송지연이 최소화되는 상기 압축률을 결정할 수 있다.In addition, as an example of the present disclosure, the base station may determine the compression rate at which transmission delay is minimized based on a full connected layer method.
이때, 본 개시의 일 예로서, 상기 기지국은 강화학습에 기초하여 전송지연이 최소화되는 상기 압축률을 결정하되, 상기 강화학습은 지연(Delay)을 고려한 보상(Reward), 상기 결정된 MCS, 상기 원본 데이터 크기(Data Size, DS), 상기 단말 성능(
Figure PCTKR2020011234-appb-I000003
) 및 상기 기지국 성능(
Figure PCTKR2020011234-appb-I000004
)을 입력 값으로 이용하고, 상기 입력 값에 기초하여 상기 압축률을 결정할 수 있다.
In this case, as an example of the present disclosure, the base station determines the compression rate at which transmission delay is minimized based on reinforcement learning, wherein the reinforcement learning is a reward in consideration of delay, the determined MCS, and the original data Size (Data Size, DS), the terminal performance (
Figure PCTKR2020011234-appb-I000003
) and the base station performance (
Figure PCTKR2020011234-appb-I000004
) may be used as an input value, and the compression ratio may be determined based on the input value.
또한, 본 개시의 일 예로서, 상기 복수 개의 단말들로 단말 성능(
Figure PCTKR2020011234-appb-I000005
) 정보를 요청하는 메시지를 전송하는 단계 및 상기 복수 개의 단말들로부터 각각의 단말 성능(
Figure PCTKR2020011234-appb-I000006
) 정보를 수신하는 단계를 더 포함할 수 있다.
In addition, as an example of the present disclosure, the terminal performance (
Figure PCTKR2020011234-appb-I000005
) transmitting a message requesting information and each terminal capability from the plurality of terminals (
Figure PCTKR2020011234-appb-I000006
) may further include the step of receiving the information.
또한, 본 개시의 일 예로서, 상기 기지국이 상기 측정된 SNR을 통해 상기 MCS를 결정하고, 상기 복수 개의 단말 수에 기초하여 상기 압축률을 결정할 수 있다.In addition, as an example of the present disclosure, the base station may determine the MCS through the measured SNR, and determine the compression ratio based on the number of the plurality of terminals.
또한, 본 개시의 일 예로서, 상기 기지국은 강화학습에 기초하여 전송용량이 최소화되는 상기 압축률을 결정하되, 상기 강화학습은 목표 압축 손실률을 고려한 보상(Reward) 및 상기 복수 개의 단말 수를 입력 값으로 이용하고, 상기 입력 값에 기초하여 상기 압축률을 결정할 수 있다.In addition, as an example of the present disclosure, the base station determines the compression rate at which the transmission capacity is minimized based on reinforcement learning, wherein the reinforcement learning receives a reward in consideration of a target compression loss rate and the number of the plurality of terminals as an input value , and the compression ratio may be determined based on the input value.
또한, 본 개시의 일 예로서, 상기 목표 압축 손실률은 상기 복수 개의 단말 수에 기초하여 다르게 설정될 수 있다.In addition, as an example of the present disclosure, the target compression loss ratio may be set differently based on the number of the plurality of terminals.
또한, 본 개시의 일 예로서, 상기 기지국이 상기 복수 개의 단말 수를 확인하는 단계를 더 포함할 수 있다.In addition, as an example of the present disclosure, the method may further include, by the base station, confirming the number of the plurality of terminals.
또한, 본 개시의 일 예로서, 상기 기지국이 상기 기 저장된 상기 복수 개의 단말 정보에 기초하여 상기 전송 방식을 결정하는 경우, 상기 기지국은 임계 단말 수 정보를 산출하고, 산출된 임계 단말 수 정보에 기초하여 상기 전송 방식을 결정할 수 있다.In addition, as an example of the present disclosure, when the base station determines the transmission method based on the pre-stored plurality of terminal information, the base station calculates threshold number of terminals information, and based on the calculated threshold number of terminals information to determine the transmission method.
본 개시에 기초한 실시예들에 의해 하기와 같은 효과가 있을 수 있다.The following effects may be obtained by the embodiments based on the present disclosure.
본 개시에 따르면, 단말은 연합학습(Federated Learning) 방식을 고려하여 신호를 전송할 수 있다.According to the present disclosure, the terminal may transmit a signal in consideration of a federated learning method.
본 개시에 따르면, 단말은 무선환경을 고려하여 전송기법을 유연하게 설정할 수 있다. According to the present disclosure, the terminal can flexibly set the transmission method in consideration of the wireless environment.
본 개시에 따르면, 단말 및 기지국은 연합학습에 기초하여 MCS(Modulation Coding Scheme) 및 압축률을 결정할 수 있다.According to the present disclosure, the terminal and the base station may determine a modulation coding scheme (MCS) and a compression rate based on joint learning.
본 개시의 실시 예들에서 얻을 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 이하의 본 개시의 실시 예들에 대한 기재로부터 본 개시의 기술 구성이 적용되는 기술분야에서 통상의 지식을 가진 자에게 명확하게 도출되고 이해될 수 있다. 즉, 본 개시에서 서술하는 구성을 실시함에 따른 의도하지 않은 효과들 역시 본 개시의 실시 예들로부터 당해 기술분야의 통상의 지식을 가진 자에 의해 도출될 수 있다.Effects that can be obtained in the embodiments of the present disclosure are not limited to the above-mentioned effects, and other effects not mentioned are the technical fields to which the technical configuration of the present disclosure is applied from the description of the embodiments of the present disclosure below. It can be clearly derived and understood by those of ordinary skill in the art. That is, unintended effects of implementing the configuration described in the present disclosure may also be derived by those of ordinary skill in the art from the embodiments of the present disclosure.
이하에 첨부되는 도면들은 본 개시에 관한 이해를 돕기 위한 것으로, 상세한 설명과 함께 본 개시에 대한 실시 예들을 제공할 수 있다. 다만, 본 개시의 기술적 특징이 특정 도면에 한정되는 것은 아니며, 각 도면에서 개시하는 특징들은 서로 조합되어 새로운 실시 예로 구성될 수 있다. 각 도면에서의 참조 번호(reference numerals)들은 구조적 구성요소(structural elements)를 의미할 수 있다.The accompanying drawings below are provided to help understanding of the present disclosure, and together with the detailed description, may provide embodiments of the present disclosure. However, the technical features of the present disclosure are not limited to specific drawings, and features disclosed in each drawing may be combined with each other to constitute a new embodiment. Reference numerals in each drawing may refer to structural elements.
도 1은 본 개시에 적용 가능한 통신 시스템 예시를 나타낸 도면이다.1 is a diagram illustrating an example of a communication system applicable to the present disclosure.
도 2는 본 개시에 적용 가능한 무선 기기의 예시를 나타낸 도면이다.2 is a diagram illustrating an example of a wireless device applicable to the present disclosure.
도 3은 본 개시에 적용 가능한 무선 기기의 다른 예시를 나타낸 도면이다.3 is a diagram illustrating another example of a wireless device applicable to the present disclosure.
도 4는 본 개시에 적용 가능한 휴대 기기의 예시를 나타낸 도면이다.4 is a diagram illustrating an example of a portable device applicable to the present disclosure.
도 5는 본 개시에 적용 가능한 차량 또는 자율 주행 차량의 예시를 나타낸 도면이다.5 is a diagram illustrating an example of a vehicle or autonomous driving vehicle applicable to the present disclosure.
도 6은 본 개시에 적용 가능한 이동체의 예시를 나타낸 도면이다.6 is a view showing an example of a movable body applicable to the present disclosure.
도 7은 본 개시에 적용 가능한 XR 기기의 예시를 나타낸 도면이다.7 is a diagram illustrating an example of an XR device applicable to the present disclosure.
도 8은 본 개시에 적용 가능한 로봇의 예시를 나타낸 도면이다.8 is a view showing an example of a robot applicable to the present disclosure.
도 9는 본 개시에 적용 가능한 AI(Artificial Intelligence)의 예시를 나타낸 도면이다.9 is a diagram illustrating an example of AI (Artificial Intelligence) applicable to the present disclosure.
도 10은 본 개시에 적용 가능한 물리 채널들 및 이들을 이용한 신호 전송 방법을 나타낸 도면이다.10 is a diagram illustrating physical channels applicable to the present disclosure and a signal transmission method using the same.
도 11은 본 개시에 적용 가능한 무선 인터페이스 프로토콜(Radio Interface Protocol)의 제어평면(Control Plane) 및 사용자 평면(User Plane) 구조를 나타낸 도면이다.11 is a diagram illustrating a control plane and a user plane structure of a radio interface protocol applicable to the present disclosure.
도 12는 본 개시에 적용 가능한 전송 신호를 처리하는 방법을 나타낸 도면이다.12 is a diagram illustrating a method of processing a transmission signal applicable to the present disclosure.
도 13은 본 개시에 적용 가능한 무선 프레임의 구조를 나타낸 도면이다.13 is a diagram illustrating a structure of a radio frame applicable to the present disclosure.
도 14는 본 개시에 적용 가능한 슬롯 구조를 나타낸 도면이다.14 is a diagram illustrating a slot structure applicable to the present disclosure.
도 15는 본 개시에 적용 가능한 6G 시스템에서 제공 가능한 통신 구조의 일례를 나타낸 도면이다.15 is a diagram illustrating an example of a communication structure that can be provided in a 6G system applicable to the present disclosure.
도 16은 본 개시에 적용 가능한 전자기 스펙트럼을 나타낸 도면이다.16 is a diagram illustrating an electromagnetic spectrum applicable to the present disclosure.
도 17은 본 개시에 적용 가능한 THz 통신 방법을 나타낸 도면이다.17 is a diagram illustrating a THz communication method applicable to the present disclosure.
도 18은 본 개시에 적용 가능한 THz 무선 통신 송수신기를 나타낸 도면이다.18 is a diagram illustrating a THz wireless communication transceiver applicable to the present disclosure.
도 19는 본 개시에 적용 가능한 THz 신호 생성 방법을 나타낸 도면이다.19 is a diagram illustrating a method for generating a THz signal applicable to the present disclosure.
도 20은 본 개시에 적용 가능한 무선 통신 송수신기를 나타낸 도면이다.20 is a diagram illustrating a wireless communication transceiver applicable to the present disclosure.
도 21은 본 개시에 적용 가능한 송신기 구조를 나타낸 도면이다.21 is a diagram illustrating a structure of a transmitter applicable to the present disclosure.
도 22는 본 개시에 적용 가능한 변조기 구조를 나타낸 도면이다.22 is a diagram illustrating a modulator structure applicable to the present disclosure.
도 23은 본 개시에 적용 가능한 신경망을 나타낸 도면이다.23 is a diagram illustrating a neural network applicable to the present disclosure.
도 24는 본 개시에 적용 가능한 신경망에서 활성화 노드를 나타낸 도면이다. 24 is a diagram illustrating an activation node in a neural network applicable to the present disclosure.
도 25는 본 개시에 적용 가능한 체인 룰을 이용하여 그라디언트를 계산하는 방법을 나타낸 도면이다. 25 is a diagram illustrating a method of calculating a gradient using a chain rule applicable to the present disclosure.
도 26은 본 개시에 적용 가능한 RNN에 기초한 학습 모델을 나타낸 도면이다.26 is a diagram illustrating a learning model based on RNN applicable to the present disclosure.
도 27은 본 개시에 적용 가능한 오토인코더를 나타낸 도면이다. 27 is a view showing an autoencoder applicable to the present disclosure.
도 28은 본 개시에 적용 가능한 압축률에 기초한 연합학습 방식을 나타낸 도면이다. 28 is a diagram illustrating a federated learning method based on a compression rate applicable to the present disclosure.
도 29는 본 개시에 적용 가능한 압축률에 따른 처리시간 및 전송시간을 나타낸 도면이다. 29 is a diagram illustrating a processing time and a transmission time according to a compression rate applicable to the present disclosure.
도 30은 본 개시에 적용 가능한 저 지연 연합학습을 위해 압축률과 MCS를 결정하는 방법을 나타낸 도면이다.30 is a diagram illustrating a method of determining a compression rate and MCS for low-latency joint learning applicable to the present disclosure.
도 31은 본 개시에 적용 가능한 저 지연 연합학습을 위해 압축률과 MCS를 결정하는 방법에 대한 순서도이다.31 is a flowchart for a method of determining a compression ratio and MCS for low-latency joint learning applicable to the present disclosure.
도 32는 본 개시에 적용 가능한 강화학습에 기초하여 AMC(Adaptive Modulation and Coding) 에이전트의 동작 방법을 나타낸 도면이다.32 is a diagram illustrating an operation method of an adaptive modulation and coding (AMC) agent based on reinforcement learning applicable to the present disclosure.
도 33은 본 개시에 적용 가능한 전송지연을 최소화하기 위해 전결합 레이어(Full Connected Layer)에 기초하여 압축률을 예측하는 방법을 나타낸 도면이다.33 is a diagram illustrating a method of predicting a compression rate based on a fully connected layer in order to minimize transmission delay applicable to the present disclosure.
도 34는 본 개시에 적용 가능한 전송지연을 최소화하기 위해 압축률을 제어하는 방법을 나타낸 도면이다.34 is a diagram illustrating a method of controlling a compression rate to minimize transmission delay applicable to the present disclosure.
도 35는 본 개시에 적용 가능한 전송지연을 최소화하기 위해 압축률 및 MCS를 제어하는 방법에 대한 플로우를 나타낸 도면이다.35 is a diagram illustrating a flow for a method of controlling a compression rate and MCS to minimize transmission delay applicable to the present disclosure.
도 36은 본 개시에 적용 가능한 전송용량을 최소화하기 위해 압축률을 제어하는 방법을 나타낸 도면이다.36 is a diagram illustrating a method of controlling a compression rate to minimize a transmission capacity applicable to the present disclosure.
도 37은 본 개시에 적용 가능한 전송용량을 최소화하기 위해 압축률 및 MCS를 제어하는 방법에 대한 플로우를 나타낸 도면이다.37 is a diagram illustrating a flow for a method of controlling a compression rate and MCS in order to minimize a transmission capacity applicable to the present disclosure.
도 38은 본 개시에 적용 가능한 기지국 동작 방법을 나타낸 도면이다.38 is a diagram illustrating a method of operating a base station applicable to the present disclosure.
이하의 실시 예들은 본 개시의 구성요소들과 특징들을 소정 형태로 결합한 것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고려될 수 있다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결합되지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및/또는 특징들을 결합하여 본 개시의 실시 예를 구성할 수도 있다. 본 개시의 실시 예들에서 설명되는 동작들의 순서는 변경될 수 있다. 어느 실시 예의 일부 구성이나 특징은 다른 실시 예에 포함될 수 있고, 또는 다른 실시 예의 대응하는 구성 또는 특징과 교체될 수 있다.The following embodiments combine elements and features of the present disclosure in a predetermined form. Each component or feature may be considered optional unless explicitly stated otherwise. Each component or feature may be implemented in a form that is not combined with other components or features. In addition, some components and/or features may be combined to configure an embodiment of the present disclosure. The order of operations described in embodiments of the present disclosure may be changed. Some configurations or features of one embodiment may be included in other embodiments, or may be replaced with corresponding configurations or features of other embodiments.
도면에 대한 설명에서, 본 개시의 요지를 흐릴 수 있는 절차 또는 단계 등은 기술하지 않았으며, 당업자의 수준에서 이해할 수 있을 정도의 절차 또는 단계는 또한 기술하지 아니하였다.In the description of the drawings, procedures or steps that may obscure the gist of the present disclosure are not described, and procedures or steps that can be understood at the level of a person skilled in the art are also not described.
명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함(comprising 또는 including)"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다. 또한, 명세서에 기재된 "...부", "...기", "모듈" 등의 용어는 적어도 하나의 기능이나 동작을 처리하는 단위를 의미하며, 이는 하드웨어나 소프트웨어 또는 하드웨어 및 소프트웨어의 결합으로 구현될 수 있다. 또한, "일(a 또는 an)", "하나(one)", "그(the)" 및 유사 관련어는 본 개시를 기술하는 문맥에 있어서(특히, 이하의 청구항의 문맥에서) 본 명세서에 달리 지시되거나 문맥에 의해 분명하게 반박되지 않는 한, 단수 및 복수 모두를 포함하는 의미로 사용될 수 있다.Throughout the specification, when a part is said to "comprising or including" a certain component, it does not exclude other components unless otherwise stated, meaning that other components may be further included. do. In addition, terms such as "...unit", "...group", and "module" described in the specification mean a unit that processes at least one function or operation, which is hardware or software or a combination of hardware and software. can be implemented as Also, "a or an", "one", "the" and like related terms are used differently herein in the context of describing the present disclosure (especially in the context of the following claims). Unless indicated or clearly contradicted by context, it may be used in a sense including both the singular and the plural.
본 명세서에서 본 개시의 실시예들은 기지국과 이동국 간의 데이터 송수신 관계를 중심으로 설명되었다. 여기서, 기지국은 이동국과 직접적으로 통신을 수행하는 네트워크의 종단 노드(terminal node)로서의 의미가 있다. 본 문서에서 기지국에 의해 수행되는 것으로 설명된 특정 동작은 경우에 따라서는 기지국의 상위 노드(upper node)에 의해 수행될 수도 있다.In the present specification, embodiments of the present disclosure have been described focusing on a data transmission/reception relationship between a base station and a mobile station. Here, the base station has a meaning as a terminal node of a network that directly communicates with the mobile station. A specific operation described as being performed by the base station in this document may be performed by an upper node of the base station in some cases.
즉, 기지국을 포함하는 다수의 네트워크 노드들(network nodes)로 이루어지는 네트워크에서 이동국과의 통신을 위해 수행되는 다양한 동작들은 기지국 또는 기지국 이외의 다른 네트워크 노드들에 의해 수행될 수 있다. 이때, '기지국'은 고정국(fixed station), Node B, eNB(eNode B), gNB(gNode B), ng-eNB, 발전된 기지국(advanced base station, ABS) 또는 억세스 포인트(access point) 등의 용어에 의해 대체될 수 있다.That is, various operations performed for communication with a mobile station in a network including a plurality of network nodes including the base station may be performed by the base station or other network nodes other than the base station. In this case, the 'base station' is a term such as a fixed station, a Node B, an eNB (eNode B), a gNB (gNode B), an ng-eNB, an advanced base station (ABS) or an access point (access point). can be replaced by
또한, 본 개시의 실시 예들에서 단말(terminal)은 사용자 기기(user equipment, UE), 이동국(mobile station, MS), 가입자국(subscriber station, SS), 이동 가입자 단말(mobile subscriber station, MSS), 이동 단말(mobile terminal) 또는 발전된 이동 단말(advanced mobile station, AMS) 등의 용어로 대체될 수 있다.In addition, in embodiments of the present disclosure, a terminal includes a user equipment (UE), a mobile station (MS), a subscriber station (SS), a mobile subscriber station (MSS), It may be replaced by terms such as a mobile terminal or an advanced mobile station (AMS).
또한, 송신단은 데이터 서비스 또는 음성 서비스를 제공하는 고정 및/또는 이동 노드를 말하고, 수신단은 데이터 서비스 또는 음성 서비스를 수신하는 고정 및/또는 이동 노드를 의미한다. 따라서, 상향링크의 경우, 이동국이 송신단이 되고, 기지국이 수신단이 될 수 있다. 마찬가지로, 하향링크의 경우, 이동국이 수신단이 되고, 기지국이 송신단이 될 수 있다.In addition, a transmitting end refers to a fixed and/or mobile node that provides a data service or a voice service, and a receiving end refers to a fixed and/or mobile node that receives a data service or a voice service. Accordingly, in the case of uplink, the mobile station may be a transmitting end, and the base station may be a receiving end. Similarly, in the case of downlink, the mobile station may be the receiving end, and the base station may be the transmitting end.
본 개시의 실시 예들은 무선 접속 시스템들인 IEEE 802.xx 시스템, 3GPP(3rd Generation Partnership Project) 시스템, 3GPP LTE(Long Term Evolution) 시스템, 3GPP 5G(5th generation) NR(New Radio) 시스템 및 3GPP2 시스템 중 적어도 하나에 개시된 표준 문서들에 의해 뒷받침될 수 있으며, 특히, 본 개시의 실시 예들은 3GPP TS(technical specification) 38.211, 3GPP TS 38.212, 3GPP TS 38.213, 3GPP TS 38.321 및 3GPP TS 38.331 문서들에 의해 뒷받침 될 수 있다. Embodiments of the present disclosure are wireless access systems IEEE 802.xx system, 3rd Generation Partnership Project (3GPP) system, 3GPP Long Term Evolution (LTE) system, 3GPP 5G (5th generation) NR (New Radio) system, and 3GPP2 system among It may be supported by standard documents disclosed in at least one, and in particular, embodiments of the present disclosure are supported by 3GPP TS (technical specification) 38.211, 3GPP TS 38.212, 3GPP TS 38.213, 3GPP TS 38.321 and 3GPP TS 38.331 documents. can be
또한, 본 개시의 실시 예들은 다른 무선 접속 시스템에도 적용될 수 있으며, 상술한 시스템으로 한정되는 것은 아니다. 일 예로, 3GPP 5G NR 시스템 이후에 적용되는 시스템에 대해서도 적용 가능할 수 있으며, 특정 시스템에 한정되지 않는다.Also, embodiments of the present disclosure may be applied to other wireless access systems, and are not limited to the above-described system. As an example, it may be applicable to a system applied after the 3GPP 5G NR system, and is not limited to a specific system.
즉, 본 개시의 실시 예들 중 설명하지 않은 자명한 단계들 또는 부분들은 상기 문서들을 참조하여 설명될 수 있다. 또한, 본 문서에서 개시하고 있는 모든 용어들은 상기 표준 문서에 의해 설명될 수 있다.That is, obvious steps or parts not described in the embodiments of the present disclosure may be described with reference to the above documents. In addition, all terms disclosed in this document may be described by the standard document.
이하, 본 개시에 따른 바람직한 실시 형태를 첨부된 도면을 참조하여 상세하게 설명한다. 첨부된 도면과 함께 이하에 개시될 상세한 설명은 본 개시의 예시적인 실시 형태를 설명하고자 하는 것이며, 본 개시의 기술 구성이 실시될 수 있는 유일한 실시형태를 나타내고자 하는 것이 아니다.Hereinafter, preferred embodiments according to the present disclosure will be described in detail with reference to the accompanying drawings. DETAILED DESCRIPTION The detailed description set forth below in conjunction with the appended drawings is intended to describe exemplary embodiments of the present disclosure, and is not intended to represent the only embodiments in which the technical constructions of the present disclosure may be practiced.
또한, 본 개시의 실시 예들에서 사용되는 특정 용어들은 본 개시의 이해를 돕기 위해서 제공된 것이며, 이러한 특정 용어의 사용은 본 개시의 기술적 사상을 벗어나지 않는 범위에서 다른 형태로 변경될 수 있다.In addition, specific terms used in the embodiments of the present disclosure are provided to help the understanding of the present disclosure, and the use of these specific terms may be changed to other forms without departing from the technical spirit of the present disclosure.
이하의 기술은 CDMA(code division multiple access), FDMA(frequency division multiple access), TDMA(time division multiple access), OFDMA(orthogonal frequency division multiple access), SC-FDMA(single carrier frequency division multiple access) 등과 같은 다양한 무선 접속 시스템에 적용될 수 있다.The following technologies include code division multiple access (CDMA), frequency division multiple access (FDMA), time division multiple access (TDMA), orthogonal frequency division multiple access (OFDMA), single carrier frequency division multiple access (SC-FDMA), etc. It can be applied to various wireless access systems.
하기에서는 이하 설명을 명확하게 하기 위해, 3GPP 통신 시스템(e.g.(예, LTE, NR 등)을 기반으로 설명하지만 본 발명의 기술적 사상이 이에 제한되는 것은 아니다. LTE는 3GPP TS 36.xxx Release 8 이후의 기술을 의미할 수 있다. 세부적으로, 3GPP TS 36.xxx Release 10 이후의 LTE 기술은 LTE-A로 지칭되고, 3GPP TS 36.xxx Release 13 이후의 LTE 기술은 LTE-A pro로 지칭될 수 있다. 3GPP NR은 TS 38.xxx Release 15 이후의 기술을 의미할 수 있다. 3GPP 6G는 TS Release 17 및/또는 Release 18 이후의 기술을 의미할 수 있다. "xxx"는 표준 문서 세부 번호를 의미한다. LTE/NR/6G는 3GPP 시스템으로 통칭될 수 있다.In the following, in order to clarify the following description, it is described based on a 3GPP communication system (eg (eg, LTE, NR, etc.), but the technical spirit of the present invention is not limited thereto. LTE is 3GPP TS 36.xxx Release 8 or later Specifically, LTE technology after 3GPP TS 36.xxx Release 10 may be referred to as LTE-A, and LTE technology after 3GPP TS 36.xxx Release 13 may be referred to as LTE-A pro. 3GPP NR may mean technology after TS 38.xxx Release 15. 3GPP 6G may mean technology after TS Release 17 and/or Release 18. "xxx" means standard document detail number LTE/NR/6G may be collectively referred to as a 3GPP system.
본 개시에 사용된 배경기술, 용어, 약어 등에 관해서는 본 발명 이전에 공개된 표준 문서에 기재된 사항을 참조할 수 있다. 일 예로, 36.xxx 및 38.xxx 표준 문서를 참조할 수 있다.For backgrounds, terms, abbreviations, etc. used in the present disclosure, reference may be made to matters described in standard documents published before the present invention. As an example, reference may be made to the 36.xxx and 38.xxx standard documents.
본 개시에 적용 가능한 통신 시스템Communication system applicable to the present disclosure
이로 제한되는 것은 아니지만, 본 문서에 개시된 본 개시의 다양한 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들은 기기들 간에 무선 통신/연결(예, 5G)을 필요로 하는 다양한 분야에 적용될 수 있다.Although not limited thereto, the various descriptions, functions, procedures, suggestions, methods and/or operation flowcharts of the present disclosure disclosed in this document may be applied to various fields requiring wireless communication/connection (eg, 5G) between devices. there is.
이하, 도면을 참조하여 보다 구체적으로 예시한다. 이하의 도면/설명에서 동일한 도면 부호는 다르게 기술하지 않는 한, 동일하거나 대응되는 하드웨어 블록, 소프트웨어 블록 또는 기능 블록을 예시할 수 있다.Hereinafter, it will be exemplified in more detail with reference to the drawings. In the following drawings/descriptions, the same reference numerals may represent the same or corresponding hardware blocks, software blocks, or functional blocks, unless otherwise indicated.
도 1은 본 개시에 적용되는 통신 시스템 예시를 도시한 도면이다. 도 1을 참조하면, 본 개시에 적용되는 통신 시스템(100)은 무선 기기, 기지국 및 네트워크를 포함한다. 여기서, 무선 기기는 무선 접속 기술(예, 5G NR, LTE)을 이용하여 통신을 수행하는 기기를 의미하며, 통신/무선/5G 기기로 지칭될 수 있다. 이로 제한되는 것은 아니지만, 무선 기기는 로봇(100a), 차량(100b-1, 100b-2), XR(extended reality) 기기(100c), 휴대 기기(hand-held device)(100d), 가전(home appliance)(100e), IoT(Internet of Thing) 기기(100f), AI(artificial intelligence) 기기/서버(100g)를 포함할 수 있다. 예를 들어, 차량은 무선 통신 기능이 구비된 차량, 자율 주행 차량, 차량간 통신을 수행할 수 있는 차량 등을 포함할 수 있다. 여기서, 차량(100b-1, 100b-2)은 UAV(unmanned aerial vehicle)(예, 드론)를 포함할 수 있다. XR 기기(100c)는 AR(augmented reality)/VR(virtual reality)/MR(mixed reality) 기기를 포함하며, HMD(head-mounted device), 차량에 구비된 HUD(head-up display), 텔레비전, 스마트폰, 컴퓨터, 웨어러블 디바이스, 가전 기기, 디지털 사이니지(signage), 차량, 로봇 등의 형태로 구현될 수 있다. 휴대 기기(100d)는 스마트폰, 스마트패드, 웨어러블 기기(예, 스마트워치, 스마트글래스), 컴퓨터(예, 노트북 등) 등을 포함할 수 있다. 가전(100e)은 TV, 냉장고, 세탁기 등을 포함할 수 있다. IoT 기기(100f)는 센서, 스마트 미터 등을 포함할 수 있다. 예를 들어, 기지국(120), 네트워크(130)는 무선 기기로도 구현될 수 있으며, 특정 무선 기기(120a)는 다른 무선 기기에게 기지국/네트워크 노드로 동작할 수도 있다.1 is a diagram illustrating an example of a communication system applied to the present disclosure. Referring to FIG. 1 , a communication system 100 applied to the present disclosure includes a wireless device, a base station, and a network. Here, the wireless device means a device that performs communication using a wireless access technology (eg, 5G NR, LTE), and may be referred to as a communication/wireless/5G device. Although not limited thereto, the wireless device may include a robot 100a, a vehicle 100b-1, 100b-2, an extended reality (XR) device 100c, a hand-held device 100d, and a home appliance. appliance) 100e, an Internet of Things (IoT) device 100f, and an artificial intelligence (AI) device/server 100g. For example, the vehicle may include a vehicle equipped with a wireless communication function, an autonomous driving vehicle, a vehicle capable of performing inter-vehicle communication, and the like. Here, the vehicles 100b-1 and 100b-2 may include an unmanned aerial vehicle (UAV) (eg, a drone). The XR device 100c includes augmented reality (AR)/virtual reality (VR)/mixed reality (MR) devices, and includes a head-mounted device (HMD), a head-up display (HUD) provided in a vehicle, a television, It may be implemented in the form of a smartphone, a computer, a wearable device, a home appliance, a digital signage, a vehicle, a robot, and the like. The portable device 100d may include a smart phone, a smart pad, a wearable device (eg, smart watch, smart glasses), and a computer (eg, a laptop computer). The home appliance 100e may include a TV, a refrigerator, a washing machine, and the like. The IoT device 100f may include a sensor, a smart meter, and the like. For example, the base station 120 and the network 130 may be implemented as a wireless device, and a specific wireless device 120a may operate as a base station/network node to other wireless devices.
무선 기기(100a~100f)는 기지국(120)을 통해 네트워크(130)와 연결될 수 있다. 무선 기기(100a~100f)에는 AI 기술이 적용될 수 있으며, 무선 기기(100a~100f)는 네트워크(130)를 통해 AI 서버(100g)와 연결될 수 있다. 네트워크(130)는 3G 네트워크, 4G(예, LTE) 네트워크 또는 5G(예, NR) 네트워크 등을 이용하여 구성될 수 있다. 무선 기기(100a~100f)는 기지국(120)/네트워크(130)를 통해 서로 통신할 수도 있지만, 기지국(120)/네트워크(130)를 통하지 않고 직접 통신(예, 사이드링크 통신(sidelink communication))할 수도 있다. 예를 들어, 차량들(100b-1, 100b-2)은 직접 통신(예, V2V(vehicle to vehicle)/V2X(vehicle to everything) communication)을 할 수 있다. 또한, IoT 기기(100f)(예, 센서)는 다른 IoT 기기(예, 센서) 또는 다른 무선 기기(100a~100f)와 직접 통신을 할 수 있다.The wireless devices 100a to 100f may be connected to the network 130 through the base station 120 . AI technology may be applied to the wireless devices 100a to 100f , and the wireless devices 100a to 100f may be connected to the AI server 100g through the network 130 . The network 130 may be configured using a 3G network, a 4G (eg, LTE) network, or a 5G (eg, NR) network. The wireless devices 100a to 100f may communicate with each other through the base station 120/network 130, but communicate directly without going through the base station 120/network 130 (eg, sidelink communication) You may. For example, the vehicles 100b-1 and 100b-2 may perform direct communication (eg, vehicle to vehicle (V2V)/vehicle to everything (V2X) communication). Also, the IoT device 100f (eg, a sensor) may communicate directly with another IoT device (eg, a sensor) or other wireless devices 100a to 100f.
무선 기기(100a~100f)/기지국(120), 기지국(120)/기지국(120) 간에는 무선 통신/연결(150a, 150b, 150c)이 이뤄질 수 있다. 여기서, 무선 통신/연결은 상향/하향링크 통신(150a)과 사이드링크 통신(150b)(또는, D2D 통신), 기지국간 통신(150c)(예, relay, IAB(integrated access backhaul))과 같은 다양한 무선 접속 기술(예, 5G NR)을 통해 이뤄질 수 있다. 무선 통신/연결(150a, 150b, 150c)을 통해 무선 기기와 기지국/무선 기기, 기지국과 기지국은 서로 무선 신호를 송신/수신할 수 있다. 예를 들어, 무선 통신/연결(150a, 150b, 150c)은 다양한 물리 채널을 통해 신호를 송신/수신할 수 있다. 이를 위해, 본 개시의 다양한 제안들에 기반하여, 무선 신호의 송신/수신을 위한 다양한 구성정보 설정 과정, 다양한 신호 처리 과정(예, 채널 인코딩/디코딩, 변조/복조, 자원 매핑/디매핑 등), 자원 할당 과정 등 중 적어도 일부가 수행될 수 있다.Wireless communication/ connection 150a, 150b, and 150c may be performed between the wireless devices 100a to 100f/base station 120 and the base station 120/base station 120 . Here, wireless communication/connection includes uplink/downlink communication 150a and sidelink communication 150b (or D2D communication), and communication between base stations 150c (eg, relay, integrated access backhaul (IAB)). This may be achieved through radio access technology (eg, 5G NR). Through the wireless communication/ connection 150a, 150b, and 150c, the wireless device and the base station/wireless device, and the base station and the base station may transmit/receive wireless signals to each other. For example, the wireless communication/ connection 150a , 150b , 150c may transmit/receive signals through various physical channels. To this end, based on various proposals of the present disclosure, various configuration information setting processes for transmission/reception of wireless signals, various signal processing processes (eg, channel encoding/decoding, modulation/demodulation, resource mapping/demapping, etc.) , at least a part of a resource allocation process may be performed.
본 개시에 적용 가능한 통신 시스템Communication system applicable to the present disclosure
도 2는 본 개시에 적용될 수 있는 무선 기기의 예시를 도시한 도면이다.2 is a diagram illustrating an example of a wireless device applicable to the present disclosure.
도 2를 참조하면, 제1 무선 기기(200a)와 제2 무선 기기(200b)는 다양한 무선 접속 기술(예, LTE, NR)을 통해 무선 신호를 송수신할 수 있다. 여기서, {제1 무선 기기(200a), 제2 무선 기기(200b)}은 도 1의 {무선 기기(100x), 기지국(120)} 및/또는 {무선 기기(100x), 무선 기기(100x)}에 대응할 수 있다.Referring to FIG. 2 , a first wireless device 200a and a second wireless device 200b may transmit/receive wireless signals through various wireless access technologies (eg, LTE, NR). Here, {first wireless device 200a, second wireless device 200b} is {wireless device 100x, base station 120} of FIG. 1 and/or {wireless device 100x, wireless device 100x) } can be matched.
제1 무선 기기(200a)는 하나 이상의 프로세서(202a) 및 하나 이상의 메모리(204a)를 포함하며, 추가적으로 하나 이상의 송수신기(206a) 및/또는 하나 이상의 안테나(208a)을 더 포함할 수 있다. 프로세서(202a)는 메모리(204a) 및/또는 송수신기(206a)를 제어하며, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들을 구현하도록 구성될 수 있다. 예를 들어, 프로세서(202a)는 메모리(204a) 내의 정보를 처리하여 제1 정보/신호를 생성한 뒤, 송수신기(206a)을 통해 제1 정보/신호를 포함하는 무선 신호를 전송할 수 있다. 또한, 프로세서(202a)는 송수신기(206a)를 통해 제2 정보/신호를 포함하는 무선 신호를 수신한 뒤, 제2 정보/신호의 신호 처리로부터 얻은 정보를 메모리(204a)에 저장할 수 있다. 메모리(204a)는 프로세서(202a)와 연결될 수 있고, 프로세서(202a)의 동작과 관련한 다양한 정보를 저장할 수 있다. 예를 들어, 메모리(204a)는 프로세서(202a)에 의해 제어되는 프로세스들 중 일부 또는 전부를 수행하거나, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들을 수행하기 위한 명령들을 포함하는 소프트웨어 코드를 저장할 수 있다. 여기서, 프로세서(202a)와 메모리(204a)는 무선 통신 기술(예, LTE, NR)을 구현하도록 설계된 통신 모뎀/회로/칩의 일부일 수 있다. 송수신기(206a)는 프로세서(202a)와 연결될 수 있고, 하나 이상의 안테나(208a)를 통해 무선 신호를 송신 및/또는 수신할 수 있다. 송수신기(206a)는 송신기 및/또는 수신기를 포함할 수 있다. 송수신기(206a)는 RF(radio frequency) 유닛과 혼용될 수 있다. 본 개시에서 무선 기기는 통신 모뎀/회로/칩을 의미할 수도 있다.The first wireless device 200a includes one or more processors 202a and one or more memories 204a, and may further include one or more transceivers 206a and/or one or more antennas 208a. The processor 202a controls the memory 204a and/or the transceiver 206a and may be configured to implement the descriptions, functions, procedures, suggestions, methods, and/or operational flowcharts disclosed herein. For example, the processor 202a may process information in the memory 204a to generate first information/signal, and then transmit a wireless signal including the first information/signal through the transceiver 206a. In addition, the processor 202a may receive the radio signal including the second information/signal through the transceiver 206a, and then store the information obtained from the signal processing of the second information/signal in the memory 204a. The memory 204a may be connected to the processor 202a and may store various information related to the operation of the processor 202a. For example, the memory 204a may provide instructions for performing some or all of the processes controlled by the processor 202a, or for performing the descriptions, functions, procedures, suggestions, methods, and/or operational flowcharts disclosed herein. may store software code including Here, the processor 202a and the memory 204a may be part of a communication modem/circuit/chip designed to implement a wireless communication technology (eg, LTE, NR). The transceiver 206a may be coupled to the processor 202a and may transmit and/or receive wireless signals via one or more antennas 208a. The transceiver 206a may include a transmitter and/or a receiver. The transceiver 206a may be used interchangeably with a radio frequency (RF) unit. In the present disclosure, a wireless device may refer to a communication modem/circuit/chip.
제2 무선 기기(200b)는 하나 이상의 프로세서(202b), 하나 이상의 메모리(204b)를 포함하며, 추가적으로 하나 이상의 송수신기(206b) 및/또는 하나 이상의 안테나(208b)를 더 포함할 수 있다. 프로세서(202b)는 메모리(204b) 및/또는 송수신기(206b)를 제어하며, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들을 구현하도록 구성될 수 있다. 예를 들어, 프로세서(202b)는 메모리(204b) 내의 정보를 처리하여 제3 정보/신호를 생성한 뒤, 송수신기(206b)를 통해 제3 정보/신호를 포함하는 무선 신호를 전송할 수 있다. 또한, 프로세서(202b)는 송수신기(206b)를 통해 제4 정보/신호를 포함하는 무선 신호를 수신한 뒤, 제4 정보/신호의 신호 처리로부터 얻은 정보를 메모리(204b)에 저장할 수 있다. 메모리(204b)는 프로세서(202b)와 연결될 수 있고, 프로세서(202b)의 동작과 관련한 다양한 정보를 저장할 수 있다. 예를 들어, 메모리(204b)는 프로세서(202b)에 의해 제어되는 프로세스들 중 일부 또는 전부를 수행하거나, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들을 수행하기 위한 명령들을 포함하는 소프트웨어 코드를 저장할 수 있다. 여기서, 프로세서(202b)와 메모리(204b)는 무선 통신 기술(예, LTE, NR)을 구현하도록 설계된 통신 모뎀/회로/칩의 일부일 수 있다. 송수신기(206b)는 프로세서(202b)와 연결될 수 있고, 하나 이상의 안테나(208b)를 통해 무선 신호를 송신 및/또는 수신할 수 있다. 송수신기(206b)는 송신기 및/또는 수신기를 포함할 수 있다 송수신기(206b)는 RF 유닛과 혼용될 수 있다. 본 개시에서 무선 기기는 통신 모뎀/회로/칩을 의미할 수도 있다.The second wireless device 200b includes one or more processors 202b, one or more memories 204b, and may further include one or more transceivers 206b and/or one or more antennas 208b. The processor 202b controls the memory 204b and/or the transceiver 206b and may be configured to implement the descriptions, functions, procedures, proposals, methods, and/or operational flowcharts disclosed herein. For example, the processor 202b may process information in the memory 204b to generate third information/signal, and then transmit a wireless signal including the third information/signal through the transceiver 206b. In addition, the processor 202b may receive the radio signal including the fourth information/signal through the transceiver 206b, and then store information obtained from signal processing of the fourth information/signal in the memory 204b. The memory 204b may be connected to the processor 202b and may store various information related to the operation of the processor 202b. For example, the memory 204b may provide instructions for performing some or all of the processes controlled by the processor 202b, or for performing the descriptions, functions, procedures, suggestions, methods, and/or operational flowcharts disclosed herein. may store software code including Here, the processor 202b and the memory 204b may be part of a communication modem/circuit/chip designed to implement a wireless communication technology (eg, LTE, NR). The transceiver 206b may be coupled to the processor 202b and may transmit and/or receive wireless signals via one or more antennas 208b. Transceiver 206b may include a transmitter and/or receiver. Transceiver 206b may be used interchangeably with an RF unit. In the present disclosure, a wireless device may refer to a communication modem/circuit/chip.
이하, 무선 기기(200a, 200b)의 하드웨어 요소에 대해 보다 구체적으로 설명한다. 이로 제한되는 것은 아니지만, 하나 이상의 프로토콜 계층이 하나 이상의 프로세서(202a, 202b)에 의해 구현될 수 있다. 예를 들어, 하나 이상의 프로세서(202a, 202b)는 하나 이상의 계층(예, PHY(physical), MAC(media access control), RLC(radio link control), PDCP(packet data convergence protocol), RRC(radio resource control), SDAP(service data adaptation protocol)와 같은 기능적 계층)을 구현할 수 있다. 하나 이상의 프로세서(202a, 202b)는 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들에 따라 하나 이상의 PDU(Protocol Data Unit) 및/또는 하나 이상의 SDU(service data unit)를 생성할 수 있다. 하나 이상의 프로세서(202a, 202b)는 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들에 따라 메시지, 제어정보, 데이터 또는 정보를 생성할 수 있다. 하나 이상의 프로세서(202a, 202b)는 본 문서에 개시된 기능, 절차, 제안 및/또는 방법에 따라 PDU, SDU, 메시지, 제어정보, 데이터 또는 정보를 포함하는 신호(예, 베이스밴드 신호)를 생성하여, 하나 이상의 송수신기(206a, 206b)에게 제공할 수 있다. 하나 이상의 프로세서(202a, 202b)는 하나 이상의 송수신기(206a, 206b)로부터 신호(예, 베이스밴드 신호)를 수신할 수 있고, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들에 따라 PDU, SDU, 메시지, 제어정보, 데이터 또는 정보를 획득할 수 있다.Hereinafter, hardware elements of the wireless devices 200a and 200b will be described in more detail. Although not limited thereto, one or more protocol layers may be implemented by one or more processors 202a, 202b. For example, one or more processors 202a, 202b may include one or more layers (eg, PHY (physical), MAC (media access control), RLC (radio link control), PDCP (packet data convergence protocol), RRC (radio resource) control) and a functional layer such as service data adaptation protocol (SDAP)). The one or more processors 202a, 202b may be configured to process one or more protocol data units (PDUs) and/or one or more service data units (SDUs) according to the descriptions, functions, procedures, proposals, methods, and/or operational flowcharts disclosed herein. can create The one or more processors 202a, 202b may generate messages, control information, data, or information according to the description, function, procedure, proposal, method, and/or flow charts disclosed herein. The one or more processors 202a, 202b generate a signal (eg, a baseband signal) including a PDU, SDU, message, control information, data or information according to the functions, procedures, proposals and/or methods disclosed herein. , may be provided to one or more transceivers 206a and 206b. One or more processors 202a, 202b may receive signals (eg, baseband signals) from one or more transceivers 206a, 206b, and the descriptions, functions, procedures, proposals, methods, and/or flowcharts of operation disclosed herein. PDUs, SDUs, messages, control information, data, or information may be acquired according to the fields.
하나 이상의 프로세서(202a, 202b)는 컨트롤러, 마이크로 컨트롤러, 마이크로 프로세서 또는 마이크로 컴퓨터로 지칭될 수 있다. 하나 이상의 프로세서(202a, 202b)는 하드웨어, 펌웨어, 소프트웨어, 또는 이들의 조합에 의해 구현될 수 있다. 일 예로, 하나 이상의 ASIC(application specific integrated circuit), 하나 이상의 DSP(digital signal processor), 하나 이상의 DSPD(digital signal processing device), 하나 이상의 PLD(programmable logic device) 또는 하나 이상의 FPGA(field programmable gate arrays)가 하나 이상의 프로세서(202a, 202b)에 포함될 수 있다. 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들은 펌웨어 또는 소프트웨어를 사용하여 구현될 수 있고, 펌웨어 또는 소프트웨어는 모듈, 절차, 기능 등을 포함하도록 구현될 수 있다. 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들은 수행하도록 설정된 펌웨어 또는 소프트웨어는 하나 이상의 프로세서(202a, 202b)에 포함되거나, 하나 이상의 메모리(204a, 204b)에 저장되어 하나 이상의 프로세서(202a, 202b)에 의해 구동될 수 있다. 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들은 코드, 명령어 및/또는 명령어의 집합 형태로 펌웨어 또는 소프트웨어를 사용하여 구현될 수 있다. One or more processors 202a, 202b may be referred to as a controller, microcontroller, microprocessor, or microcomputer. One or more processors 202a, 202b may be implemented by hardware, firmware, software, or a combination thereof. For example, one or more application specific integrated circuits (ASICs), one or more digital signal processors (DSPs), one or more digital signal processing devices (DSPDs), one or more programmable logic devices (PLDs), or one or more field programmable gate arrays (FPGAs) may be included in one or more processors 202a, 202b. The descriptions, functions, procedures, suggestions, methods, and/or flowcharts of operations disclosed in this document may be implemented using firmware or software, and the firmware or software may be implemented to include modules, procedures, functions, and the like. The descriptions, functions, procedures, proposals, methods, and/or flow charts disclosed in this document provide that firmware or software configured to perform is included in one or more processors 202a, 202b, or stored in one or more memories 204a, 204b. It may be driven by the above processors 202a and 202b. The descriptions, functions, procedures, proposals, methods, and/or flowcharts of operations disclosed herein may be implemented using firmware or software in the form of code, instructions, and/or a set of instructions.
하나 이상의 메모리(204a, 204b)는 하나 이상의 프로세서(202a, 202b)와 연결될 수 있고, 다양한 형태의 데이터, 신호, 메시지, 정보, 프로그램, 코드, 지시 및/또는 명령을 저장할 수 있다. 하나 이상의 메모리(204a, 204b)는 ROM(read only memory), RAM(random access memory), EPROM(erasable programmable read only memory), 플래시 메모리, 하드 드라이브, 레지스터, 캐쉬 메모리, 컴퓨터 판독 저장 매체 및/또는 이들의 조합으로 구성될 수 있다. 하나 이상의 메모리(204a, 204b)는 하나 이상의 프로세서(202a, 202b)의 내부 및/또는 외부에 위치할 수 있다. 또한, 하나 이상의 메모리(204a, 204b)는 유선 또는 무선 연결과 같은 다양한 기술을 통해 하나 이상의 프로세서(202a, 202b)와 연결될 수 있다.One or more memories 204a, 204b may be coupled to one or more processors 202a, 202b and may store various types of data, signals, messages, information, programs, codes, instructions, and/or instructions. One or more memories 204a, 204b may include read only memory (ROM), random access memory (RAM), erasable programmable read only memory (EPROM), flash memory, hard drives, registers, cache memory, computer readable storage media and/or It may be composed of a combination of these. One or more memories 204a, 204b may be located inside and/or external to one or more processors 202a, 202b. Additionally, one or more memories 204a, 204b may be coupled to one or more processors 202a, 202b through various technologies, such as wired or wireless connections.
하나 이상의 송수신기(206a, 206b)는 하나 이상의 다른 장치에게 본 문서의 방법들 및/또는 동작 순서도 등에서 언급되는 사용자 데이터, 제어 정보, 무선 신호/채널 등을 전송할 수 있다. 하나 이상의 송수신기(206a, 206b)는 하나 이상의 다른 장치로부터 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도 등에서 언급되는 사용자 데이터, 제어 정보, 무선 신호/채널 등을 수신할 수 있다. 예를 들어, 하나 이상의 송수신기(206a, 206b)는 하나 이상의 프로세서(202a, 202b)와 연결될 수 있고, 무선 신호를 송수신할 수 있다. 예를 들어, 하나 이상의 프로세서(202a, 202b)는 하나 이상의 송수신기(206a, 206b)가 하나 이상의 다른 장치에게 사용자 데이터, 제어 정보 또는 무선 신호를 전송하도록 제어할 수 있다. 또한, 하나 이상의 프로세서(202a, 202b)는 하나 이상의 송수신기(206a, 206b)가 하나 이상의 다른 장치로부터 사용자 데이터, 제어 정보 또는 무선 신호를 수신하도록 제어할 수 있다. 또한, 하나 이상의 송수신기(206a, 206b)는 하나 이상의 안테나(208a, 208b)와 연결될 수 있고, 하나 이상의 송수신기(206a, 206b)는 하나 이상의 안테나(208a, 208b)를 통해 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도 등에서 언급되는 사용자 데이터, 제어 정보, 무선 신호/채널 등을 송수신하도록 설정될 수 있다. 본 문서에서, 하나 이상의 안테나는 복수의 물리 안테나이거나, 복수의 논리 안테나(예, 안테나 포트)일 수 있다. 하나 이상의 송수신기(206a, 206b)는 수신된 사용자 데이터, 제어 정보, 무선 신호/채널 등을 하나 이상의 프로세서(202a, 202b)를 이용하여 처리하기 위해, 수신된 무선 신호/채널 등을 RF 밴드 신호에서 베이스밴드 신호로 변환(Convert)할 수 있다. 하나 이상의 송수신기(206a, 206b)는 하나 이상의 프로세서(202a, 202b)를 이용하여 처리된 사용자 데이터, 제어 정보, 무선 신호/채널 등을 베이스밴드 신호에서 RF 밴드 신호로 변환할 수 있다. 이를 위하여, 하나 이상의 송수신기(206a, 206b)는 (아날로그) 오실레이터 및/또는 필터를 포함할 수 있다.The one or more transceivers 206a, 206b may transmit user data, control information, radio signals/channels, etc. referred to in the methods and/or operational flowcharts of this document to one or more other devices. The one or more transceivers 206a, 206b may receive user data, control information, radio signals/channels, etc. referred to in the descriptions, functions, procedures, suggestions, methods and/or flow charts, etc. disclosed herein, from one or more other devices. there is. For example, one or more transceivers 206a , 206b may be coupled to one or more processors 202a , 202b and may transmit and receive wireless signals. For example, one or more processors 202a, 202b may control one or more transceivers 206a, 206b to transmit user data, control information, or wireless signals to one or more other devices. Additionally, one or more processors 202a, 202b may control one or more transceivers 206a, 206b to receive user data, control information, or wireless signals from one or more other devices. Further, one or more transceivers 206a, 206b may be coupled with one or more antennas 208a, 208b, and the one or more transceivers 206a, 206b may be connected via one or more antennas 208a, 208b. , may be set to transmit and receive user data, control information, radio signals/channels, etc. mentioned in procedures, proposals, methods and/or operation flowcharts. In this document, one or more antennas may be a plurality of physical antennas or a plurality of logical antennas (eg, antenna ports). The one or more transceivers 206a, 206b converts the received radio signal/channel, etc. from the RF band signal to process the received user data, control information, radio signal/channel, etc. using the one or more processors 202a, 202b. It can be converted into a baseband signal. One or more transceivers 206a, 206b may convert user data, control information, radio signals/channels, etc. processed using one or more processors 202a, 202b from baseband signals to RF band signals. To this end, one or more transceivers 206a, 206b may include (analog) oscillators and/or filters.
본 개시에 적용 가능한 무선 기기 구조Wireless device structure applicable to the present disclosure
도 3은 본 개시에 적용되는 무선 기기의 다른 예시를 도시한 도면이다.3 is a diagram illustrating another example of a wireless device applied to the present disclosure.
도 3을 참조하면, 무선 기기(300)는 도 2의 무선 기기(200a, 200b)에 대응하며, 다양한 요소(element), 성분(component), 유닛/부(unit), 및/또는 모듈(module)로 구성될 수 있다. 예를 들어, 무선 기기(300)는 통신부(310), 제어부(320), 메모리부(330) 및 추가 요소(340)를 포함할 수 있다. 통신부는 통신 회로(312) 및 송수신기(들)(314)을 포함할 수 있다. 예를 들어, 통신 회로(312)는 도 2의 하나 이상의 프로세서(202a, 202b) 및/또는 하나 이상의 메모리(204a, 204b)를 포함할 수 있다. 예를 들어, 송수신기(들)(314)는 도 2의 하나 이상의 송수신기(206a, 206b) 및/또는 하나 이상의 안테나(208a, 208b)을 포함할 수 있다. 제어부(320)는 통신부(310), 메모리부(330) 및 추가 요소(340)와 전기적으로 연결되며 무선 기기의 제반 동작을 제어한다. 예를 들어, 제어부(320)는 메모리부(330)에 저장된 프로그램/코드/명령/정보에 기반하여 무선 기기의 전기적/기계적 동작을 제어할 수 있다. 또한, 제어부(320)는 메모리부(330)에 저장된 정보를 통신부(310)을 통해 외부(예, 다른 통신 기기)로 무선/유선 인터페이스를 통해 전송하거나, 통신부(310)를 통해 외부(예, 다른 통신 기기)로부터 무선/유선 인터페이스를 통해 수신된 정보를 메모리부(330)에 저장할 수 있다.Referring to FIG. 3 , a wireless device 300 corresponds to the wireless devices 200a and 200b of FIG. 2 , and includes various elements, components, units/units, and/or modules. ) can be composed of For example, the wireless device 300 may include a communication unit 310 , a control unit 320 , a memory unit 330 , and an additional element 340 . The communication unit may include communication circuitry 312 and transceiver(s) 314 . For example, communication circuitry 312 may include one or more processors 202a, 202b and/or one or more memories 204a, 204b of FIG. 2 . For example, the transceiver(s) 314 may include one or more transceivers 206a , 206b and/or one or more antennas 208a , 208b of FIG. 2 . The control unit 320 is electrically connected to the communication unit 310 , the memory unit 330 , and the additional element 340 and controls general operations of the wireless device. For example, the controller 320 may control the electrical/mechanical operation of the wireless device based on the program/code/command/information stored in the memory unit 330 . In addition, the control unit 320 transmits the information stored in the memory unit 330 to the outside (eg, another communication device) through the communication unit 310 through a wireless/wired interface, or externally (eg, through the communication unit 310) Information received through a wireless/wired interface from another communication device) may be stored in the memory unit 330 .
추가 요소(340)는 무선 기기의 종류에 따라 다양하게 구성될 수 있다. 예를 들어, 추가 요소(340)는 파워 유닛/배터리, 입출력부(input/output unit), 구동부 및 컴퓨팅부 중 적어도 하나를 포함할 수 있다. 이로 제한되는 것은 아니지만, 무선 기기(300)는 로봇(도 1, 100a), 차량(도 1, 100b-1, 100b-2), XR 기기(도 1, 100c), 휴대 기기(도 1, 100d), 가전(도 1, 100e), IoT 기기(도 1, 100f), 디지털 방송용 단말, 홀로그램 장치, 공공 안전 장치, MTC 장치, 의료 장치, 핀테크 장치(또는 금융 장치), 보안 장치, 기후/환경 장치, AI 서버/기기(도 1, 140), 기지국(도 1, 120), 네트워크 노드 등의 형태로 구현될 수 있다. 무선 기기는 사용-예/서비스에 따라 이동 가능하거나 고정된 장소에서 사용될 수 있다.The additional element 340 may be configured in various ways according to the type of the wireless device. For example, the additional element 340 may include at least one of a power unit/battery, an input/output unit, a driving unit, and a computing unit. Although not limited thereto, the wireless device 300 may include a robot ( FIGS. 1 and 100a ), a vehicle ( FIGS. 1 , 100b-1 , 100b-2 ), an XR device ( FIGS. 1 and 100c ), and a mobile device ( FIGS. 1 and 100d ). ), home appliances (FIG. 1, 100e), IoT device (FIG. 1, 100f), digital broadcasting terminal, hologram device, public safety device, MTC device, medical device, fintech device (or financial device), security device, climate/ It may be implemented in the form of an environmental device, an AI server/device ( FIGS. 1 and 140 ), a base station ( FIGS. 1 and 120 ), and a network node. The wireless device may be mobile or used in a fixed location depending on the use-example/service.
도 3에서 무선 기기(300) 내의 다양한 요소, 성분, 유닛/부, 및/또는 모듈은 전체가 유선 인터페이스를 통해 상호 연결되거나, 적어도 일부가 통신부(310)를 통해 무선으로 연결될 수 있다. 예를 들어, 무선 기기(300) 내에서 제어부(320)와 통신부(310)는 유선으로 연결되며, 제어부(320)와 제1 유닛(예, 130, 140)은 통신부(310)를 통해 무선으로 연결될 수 있다. 또한, 무선 기기(300) 내의 각 요소, 성분, 유닛/부, 및/또는 모듈은 하나 이상의 요소를 더 포함할 수 있다. 예를 들어, 제어부(320)는 하나 이상의 프로세서 집합으로 구성될 수 있다. 예를 들어, 제어부(320)는 통신 제어 프로세서, 어플리케이션 프로세서(application processor), ECU(electronic control unit), 그래픽 처리 프로세서, 메모리 제어 프로세서 등의 집합으로 구성될 수 있다. 다른 예로, 메모리부(330)는 RAM, DRAM(dynamic RAM), ROM, 플래시 메모리(flash memory), 휘발성 메모리(volatile memory), 비-휘발성 메모리(non-volatile memory) 및/또는 이들의 조합으로 구성될 수 있다.In FIG. 3 , various elements, components, units/units, and/or modules in the wireless device 300 may be all interconnected through a wired interface, or at least some may be wirelessly connected through the communication unit 310 . For example, in the wireless device 300 , the control unit 320 and the communication unit 310 are connected by wire, and the control unit 320 and the first unit (eg, 130 , 140 ) are connected wirelessly through the communication unit 310 . can be connected In addition, each element, component, unit/unit, and/or module within the wireless device 300 may further include one or more elements. For example, the controller 320 may include one or more processor sets. For example, the control unit 320 may be configured as a set of a communication control processor, an application processor, an electronic control unit (ECU), a graphic processing processor, a memory control processor, and the like. As another example, the memory unit 330 may include RAM, dynamic RAM (DRAM), ROM, flash memory, volatile memory, non-volatile memory, and/or a combination thereof. can be configured.
본 개시가 적용 가능한 휴대 기기Mobile device to which the present disclosure is applicable
도 4는 본 개시에 적용되는 휴대 기기의 예시를 도시한 도면이다.4 is a diagram illustrating an example of a mobile device applied to the present disclosure.
도 4는 본 개시에 적용되는 휴대 기기를 예시한다. 휴대 기기는 스마트폰, 스마트패드, 웨어러블 기기(예, 스마트 워치, 스마트 글래스), 휴대용 컴퓨터(예, 노트북 등)을 포함할 수 있다. 휴대 기기는 MS(mobile station), UT(user terminal), MSS(mobile subscriber station), SS(subscriber station), AMS(advanced mobile station) 또는 WT(wireless terminal)로 지칭될 수 있다.4 illustrates a portable device applied to the present disclosure. The portable device may include a smart phone, a smart pad, a wearable device (eg, a smart watch, smart glasses), and a portable computer (eg, a laptop computer). The mobile device may be referred to as a mobile station (MS), a user terminal (UT), a mobile subscriber station (MSS), a subscriber station (SS), an advanced mobile station (AMS), or a wireless terminal (WT).
도 4를 참조하면, 휴대 기기(400)는 안테나부(408), 통신부(410), 제어부(420), 메모리부(430), 전원공급부(440a), 인터페이스부(440b) 및 입출력부(440c)를 포함할 수 있다. 안테나부(408)는 통신부(410)의 일부로 구성될 수 있다. 블록 410~430/440a~440c는 각각 도 3의 블록 310~330/340에 대응한다.Referring to FIG. 4 , the mobile device 400 includes an antenna unit 408 , a communication unit 410 , a control unit 420 , a memory unit 430 , a power supply unit 440a , an interface unit 440b , and an input/output unit 440c . ) may be included. The antenna unit 408 may be configured as a part of the communication unit 410 . Blocks 410 to 430/440a to 440c respectively correspond to blocks 310 to 330/340 of FIG. 3 .
통신부(410)는 다른 무선 기기, 기지국들과 신호(예, 데이터, 제어 신호 등)를 송수신할 수 있다. 제어부(420)는 휴대 기기(400)의 구성 요소들을 제어하여 다양한 동작을 수행할 수 있다. 제어부(420)는 AP(application processor)를 포함할 수 있다. 메모리부(430)는 휴대 기기(400)의 구동에 필요한 데이터/파라미터/프로그램/코드/명령을 저장할 수 있다. 또한, 메모리부(430)는 입/출력되는 데이터/정보 등을 저장할 수 있다. 전원공급부(440a)는 휴대 기기(400)에게 전원을 공급하며, 유/무선 충전 회로, 배터리 등을 포함할 수 있다. 인터페이스부(440b)는 휴대 기기(400)와 다른 외부 기기의 연결을 지원할 수 있다. 인터페이스부(440b)는 외부 기기와의 연결을 위한 다양한 포트(예, 오디오 입/출력 포트, 비디오 입/출력 포트)를 포함할 수 있다. 입출력부(440c)는 영상 정보/신호, 오디오 정보/신호, 데이터, 및/또는 사용자로부터 입력되는 정보를 입력 받거나 출력할 수 있다. 입출력부(440c)는 카메라, 마이크로폰, 사용자 입력부, 디스플레이부(440d), 스피커 및/또는 햅틱 모듈 등을 포함할 수 있다.The communication unit 410 may transmit and receive signals (eg, data, control signals, etc.) with other wireless devices and base stations. The controller 420 may control components of the portable device 400 to perform various operations. The controller 420 may include an application processor (AP). The memory unit 430 may store data/parameters/programs/codes/commands necessary for driving the portable device 400 . Also, the memory unit 430 may store input/output data/information. The power supply unit 440a supplies power to the portable device 400 and may include a wired/wireless charging circuit, a battery, and the like. The interface unit 440b may support a connection between the portable device 400 and other external devices. The interface unit 440b may include various ports (eg, an audio input/output port and a video input/output port) for connection with an external device. The input/output unit 440c may receive or output image information/signal, audio information/signal, data, and/or information input from a user. The input/output unit 440c may include a camera, a microphone, a user input unit, a display unit 440d, a speaker, and/or a haptic module.
일 예로, 데이터 통신의 경우, 입출력부(440c)는 사용자로부터 입력된 정보/신호(예, 터치, 문자, 음성, 이미지, 비디오)를 획득하며, 획득된 정보/신호는 메모리부(430)에 저장될 수 있다. 통신부(410)는 메모리에 저장된 정보/신호를 무선 신호로 변환하고, 변환된 무선 신호를 다른 무선 기기에게 직접 전송하거나 기지국에게 전송할 수 있다. 또한, 통신부(410)는 다른 무선 기기 또는 기지국으로부터 무선 신호를 수신한 뒤, 수신된 무선 신호를 원래의 정보/신호로 복원할 수 있다. 복원된 정보/신호는 메모리부(430)에 저장된 뒤, 입출력부(440c)를 통해 다양한 형태(예, 문자, 음성, 이미지, 비디오, 햅틱)로 출력될 수 있다. For example, in the case of data communication, the input/output unit 440c obtains information/signals (eg, touch, text, voice, image, video) input from the user, and the obtained information/signals are stored in the memory unit 430 . can be saved. The communication unit 410 may convert the information/signal stored in the memory into a wireless signal, and transmit the converted wireless signal directly to another wireless device or to a base station. Also, after receiving a radio signal from another radio device or base station, the communication unit 410 may restore the received radio signal to original information/signal. The restored information/signal may be stored in the memory unit 430 and output in various forms (eg, text, voice, image, video, haptic) through the input/output unit 440c.
본 개시가 적용 가능한 무선 기기 종류Types of wireless devices to which the present disclosure is applicable
도 5는 본 개시에 적용되는 차량 또는 자율 주행 차량의 예시를 도시한 도면이다.5 is a diagram illustrating an example of a vehicle or autonomous driving vehicle applied to the present disclosure.
도 5는 본 개시에 적용되는 차량 또는 자율 주행 차량을 예시한다. 차량 또는 자율 주행 차량은 이동형 로봇, 차량, 기차, 유/무인 비행체(aerial vehicle, AV), 선박 등으로 구현될 수 있으며, 차량의 형태로 한정되는 것은 아니다.5 illustrates a vehicle or an autonomous driving vehicle applied to the present disclosure. The vehicle or autonomous driving vehicle may be implemented as a mobile robot, a vehicle, a train, an aerial vehicle (AV), a ship, and the like, but is not limited to the shape of the vehicle.
도 5를 참조하면, 차량 또는 자율 주행 차량(500)은 안테나부(508), 통신부(510), 제어부(520), 구동부(540a), 전원공급부(540b), 센서부(540c) 및 자율 주행부(540d)를 포함할 수 있다. 안테나부(550)는 통신부(510)의 일부로 구성될 수 있다. 블록 510/530/540a~540d는 각각 도 4의 블록 410/430/440에 대응한다.Referring to FIG. 5 , the vehicle or autonomous driving vehicle 500 includes an antenna unit 508 , a communication unit 510 , a control unit 520 , a driving unit 540a , a power supply unit 540b , a sensor unit 540c and autonomous driving. A unit 540d may be included. The antenna unit 550 may be configured as a part of the communication unit 510 . Blocks 510/530/540a to 540d respectively correspond to blocks 410/430/440 of FIG. 4 .
통신부(510)는 다른 차량, 기지국(예, 기지국, 노변 기지국(road side unit) 등), 서버 등의 외부 기기들과 신호(예, 데이터, 제어 신호 등)를 송수신할 수 있다. 제어부(520)는 차량 또는 자율 주행 차량(500)의 요소들을 제어하여 다양한 동작을 수행할 수 있다. 제어부(520)는 ECU(electronic control unit)를 포함할 수 있다. 구동부(540a)는 차량 또는 자율 주행 차량(500)을 지상에서 주행하게 할 수 있다. 구동부(540a)는 엔진, 모터, 파워 트레인, 바퀴, 브레이크, 조향 장치 등을 포함할 수 있다. 전원공급부(540b)는 차량 또는 자율 주행 차량(500)에게 전원을 공급하며, 유/무선 충전 회로, 배터리 등을 포함할 수 있다. 센서부(540c)는 차량 상태, 주변 환경 정보, 사용자 정보 등을 얻을 수 있다. 센서부(540c)는 IMU(inertial measurement unit) 센서, 충돌 센서, 휠 센서(wheel sensor), 속도 센서, 경사 센서, 중량 감지 센서, 헤딩 센서(heading sensor), 포지션 모듈(position module), 차량 전진/후진 센서, 배터리 센서, 연료 센서, 타이어 센서, 스티어링 센서, 온도 센서, 습도 센서, 초음파 센서, 조도 센서, 페달 포지션 센서 등을 포함할 수 있다. 자율 주행부(540d)는 주행중인 차선을 유지하는 기술, 어댑티브 크루즈 컨트롤과 같이 속도를 자동으로 조절하는 기술, 정해진 경로를 따라 자동으로 주행하는 기술, 목적지가 설정되면 자동으로 경로를 설정하여 주행하는 기술 등을 구현할 수 있다.The communication unit 510 may transmit/receive signals (eg, data, control signals, etc.) to and from external devices such as other vehicles, base stations (eg, base stations, roadside units, etc.), and servers. The controller 520 may control elements of the vehicle or the autonomous driving vehicle 500 to perform various operations. The controller 520 may include an electronic control unit (ECU). The driving unit 540a may cause the vehicle or the autonomous driving vehicle 500 to run on the ground. The driving unit 540a may include an engine, a motor, a power train, a wheel, a brake, a steering device, and the like. The power supply unit 540b supplies power to the vehicle or the autonomous driving vehicle 500 , and may include a wired/wireless charging circuit, a battery, and the like. The sensor unit 540c may obtain vehicle state, surrounding environment information, user information, and the like. The sensor unit 540c includes an inertial measurement unit (IMU) sensor, a collision sensor, a wheel sensor, a speed sensor, an inclination sensor, a weight sensor, a heading sensor, a position module, and a vehicle forward movement. / may include a reverse sensor, a battery sensor, a fuel sensor, a tire sensor, a steering sensor, a temperature sensor, a humidity sensor, an ultrasonic sensor, an illuminance sensor, a pedal position sensor, and the like. The autonomous driving unit 540d includes a technology for maintaining a driving lane, a technology for automatically adjusting speed such as adaptive cruise control, a technology for automatically driving along a predetermined route, and a technology for automatically setting a route when a destination is set. technology can be implemented.
일 예로, 통신부(510)는 외부 서버로부터 지도 데이터, 교통 정보 데이터 등을 수신할 수 있다. 자율 주행부(540d)는 획득된 데이터를 기반으로 자율 주행 경로와 드라이빙 플랜을 생성할 수 있다. 제어부(520)는 드라이빙 플랜에 따라 차량 또는 자율 주행 차량(500)이 자율 주행 경로를 따라 이동하도록 구동부(540a)를 제어할 수 있다(예, 속도/방향 조절). 자율 주행 도중에 통신부(510)는 외부 서버로부터 최신 교통 정보 데이터를 비/주기적으로 획득하며, 주변 차량으로부터 주변 교통 정보 데이터를 획득할 수 있다. 또한, 자율 주행 도중에 센서부(540c)는 차량 상태, 주변 환경 정보를 획득할 수 있다. 자율 주행부(540d)는 새로 획득된 데이터/정보에 기반하여 자율 주행 경로와 드라이빙 플랜을 갱신할 수 있다. 통신부(510)는 차량 위치, 자율 주행 경로, 드라이빙 플랜 등에 관한 정보를 외부 서버로 전달할 수 있다. 외부 서버는 차량 또는 자율 주행 차량들로부터 수집된 정보에 기반하여, AI 기술 등을 이용하여 교통 정보 데이터를 미리 예측할 수 있고, 예측된 교통 정보 데이터를 차량 또는 자율 주행 차량들에게 제공할 수 있다.For example, the communication unit 510 may receive map data, traffic information data, and the like from an external server. The autonomous driving unit 540d may generate an autonomous driving route and a driving plan based on the acquired data. The controller 520 may control the driving unit 540a to move the vehicle or the autonomous driving vehicle 500 along the autonomous driving path (eg, speed/direction adjustment) according to the driving plan. During autonomous driving, the communication unit 510 may obtain the latest traffic information data from an external server non/periodically, and may acquire surrounding traffic information data from surrounding vehicles. Also, during autonomous driving, the sensor unit 540c may acquire vehicle state and surrounding environment information. The autonomous driving unit 540d may update the autonomous driving route and driving plan based on the newly acquired data/information. The communication unit 510 may transmit information about a vehicle location, an autonomous driving route, a driving plan, and the like to an external server. The external server may predict traffic information data in advance using AI technology or the like based on information collected from the vehicle or autonomous vehicles, and may provide the predicted traffic information data to the vehicle or autonomous vehicles.
도 6은 본 개시에 적용되는 이동체의 예시를 도시한 도면이다.6 is a diagram illustrating an example of a movable body applied to the present disclosure.
도 6을 참조하면, 본 개시에 적용되는 이동체는 운송수단, 기차, 비행체 및 선박 중 적어도 어느 하나로 구현될 수 있다. 또한, 본 개시에 적용되는 이동체는 다른 형태로 구현될 수 있으며, 상술한 실시 예로 한정되지 않는다.Referring to FIG. 6 , the moving object applied to the present disclosure may be implemented as at least any one of means of transport, train, aircraft, and ship. In addition, the movable body applied to the present disclosure may be implemented in other forms, and is not limited to the above-described embodiment.
이때, 도 6을 참조하면, 이동체( 600)은 통신부(610), 제어부(620), 메모리부(630), 입출력부(640a) 및 위치 측정부(640b)를 포함할 수 있다. 여기서, 블록 610~630/640a~640b는 각각 도 3의 블록 310~330/340에 대응한다.At this time, referring to FIG. 6 , the mobile unit 600 may include a communication unit 610 , a control unit 620 , a memory unit 630 , an input/output unit 640a , and a position measurement unit 640b . Here, blocks 610 to 630/640a to 640b correspond to blocks 310 to 330/340 of FIG. 3 , respectively.
통신부(610)는 다른 이동체, 또는 기지국 등의 외부 기기들과 신호(예, 데이터, 제어 신호 등)를 송수신할 수 있다. 제어부(620)는 이동체(600)의 구성 요소들을 제어하여 다양한 동작을 수행할 수 있다. 메모리부(630)는 이동체(600)의 다양한 기능을 지원하는 데이터/파라미터/프로그램/코드/명령을 저장할 수 있다. 입출력부(640a)는 메모리부(630) 내의 정보에 기반하여 AR/VR 오브젝트를 출력할 수 있다. 입출력부(640a)는 HUD를 포함할 수 있다. 위치 측정부(640b)는 이동체(600)의 위치 정보를 획득할 수 있다. 위치 정보는 이동체(600)의 절대 위치 정보, 주행선 내에서의 위치 정보, 가속도 정보, 주변 차량과의 위치 정보 등을 포함할 수 있다. 위치 측정부(640b)는 GPS 및 다양한 센서들을 포함할 수 있다.The communication unit 610 may transmit/receive signals (eg, data, control signals, etc.) with other mobile devices or external devices such as a base station. The controller 620 may perform various operations by controlling the components of the movable body 600 . The memory unit 630 may store data/parameters/programs/codes/commands supporting various functions of the mobile unit 600 . The input/output unit 640a may output an AR/VR object based on information in the memory unit 630 . The input/output unit 640a may include a HUD. The position measuring unit 640b may acquire position information of the moving object 600 . The location information may include absolute location information of the moving object 600 , location information within a driving line, acceleration information, and location information with a surrounding vehicle. The position measuring unit 640b may include a GPS and various sensors.
일 예로, 이동체(600)의 통신부(610)는 외부 서버로부터 지도 정보, 교통 정보 등을 수신하여 메모리부(630)에 저장할 수 있다. 위치 측정부(640b)는 GPS 및 다양한 센서를 통하여 이동체 위치 정보를 획득하여 메모리부(630)에 저장할 수 있다. 제어부(620)는 지도 정보, 교통 정보 및 이동체 위치 정보 등에 기반하여 가상 오브젝트를 생성하고, 입출력부(640a)는 생성된 가상 오브젝트를 이동체 내 유리창에 표시할 수 있다(651, 652). 또한, 제어부(620)는 이동체 위치 정보에 기반하여 이동체(600)가 주행선 내에서 정상적으로 운행되고 있는지 판단할 수 있다. 이동체(600)가 주행선을 비정상적으로 벗어나는 경우, 제어부(620)는 입출력부(640a)를 통해 이동체 내 유리창에 경고를 표시할 수 있다. 또한, 제어부(620)는 통신부(610)를 통해 주변 이동체들에게 주행 이상에 관한 경고 메세지를 방송할 수 있다. 상황에 따라, 제어부(620)는 통신부(610)를 통해 관계 기관에게 이동체의 위치 정보와, 주행/이동체 이상에 관한 정보를 전송할 수 있다.For example, the communication unit 610 of the mobile unit 600 may receive map information, traffic information, and the like from an external server and store it in the memory unit 630 . The position measurement unit 640b may obtain information about the location of the moving object through GPS and various sensors and store it in the memory unit 630 . The controller 620 may generate a virtual object based on map information, traffic information, and location information of a moving object, and the input/output unit 640a may display the generated virtual object on a window inside the moving object (651, 652). Also, the control unit 620 may determine whether the moving object 600 is normally operating within the driving line based on the moving object location information. When the moving object 600 abnormally deviates from the travel line, the control unit 620 may display a warning on the glass window of the moving object through the input/output unit 640a. Also, the control unit 620 may broadcast a warning message regarding the driving abnormality to surrounding moving objects through the communication unit 610 . Depending on the situation, the control unit 620 may transmit the location information of the moving object and information on the driving/moving object abnormality to the related organization through the communication unit 610 .
도 7은 본 개시에 적용되는 XR 기기의 예시를 도시한 도면이다. XR 기기는 HMD, 차량에 구비된 HUD(head-up display), 텔레비전, 스마트폰, 컴퓨터, 웨어러블 디바이스, 가전 기기, 디지털 사이니지(signage), 차량, 로봇 등으로 구현될 수 있다.7 is a diagram illustrating an example of an XR device applied to the present disclosure. The XR device may be implemented as an HMD, a head-up display (HUD) provided in a vehicle, a television, a smart phone, a computer, a wearable device, a home appliance, a digital signage, a vehicle, a robot, and the like.
도 7을 참조하면, XR 기기(700a)는 통신부(710), 제어부(720), 메모리부(730), 입출력부(740a), 센서부(740b) 및 전원 공급부(740c)를 포함할 수 있다. 여기서, 블록 710~730/740a~740c은 각각 도 3의 블록 310~330/340에 대응할 수 있다.Referring to FIG. 7 , the XR device 700a may include a communication unit 710 , a control unit 720 , a memory unit 730 , an input/output unit 740a , a sensor unit 740b , and a power supply unit 740c . . Here, blocks 710 to 730/740a to 740c may correspond to blocks 310 to 330/340 of FIG. 3 , respectively.
통신부(710)는 다른 무선 기기, 휴대 기기, 또는 미디어 서버 등의 외부 기기들과 신호(예, 미디어 데이터, 제어 신호 등)를 송수신할 수 있다. 미디어 데이터는 영상, 이미지, 소리 등을 포함할 수 있다. 제어부(720)는 XR 기기(700a)의 구성 요소들을 제어하여 다양한 동작을 수행할 수 있다. 예를 들어, 제어부(720)는 비디오/이미지 획득, (비디오/이미지) 인코딩, 메타데이터 생성 및 처리 등의 절차를 제어 및/또는 수행하도록 구성될 수 있다. 메모리부(730)는 XR 기기(700a)의 구동/XR 오브젝트의 생성에 필요한 데이터/파라미터/프로그램/코드/명령을 저장할 수 있다. The communication unit 710 may transmit/receive signals (eg, media data, control signals, etc.) to/from external devices such as other wireless devices, portable devices, or media servers. Media data may include images, images, and sounds. The controller 720 may perform various operations by controlling the components of the XR device 700a. For example, the controller 720 may be configured to control and/or perform procedures such as video/image acquisition, (video/image) encoding, and metadata generation and processing. The memory unit 730 may store data/parameters/programs/codes/commands necessary for driving the XR device 700a/creating an XR object.
입출력부(740a)는 외부로부터 제어 정보, 데이터 등을 획득하며, 생성된 XR 오브젝트를 출력할 수 있다. 입출력부(740a)는 카메라, 마이크로폰, 사용자 입력부, 디스플레이부, 스피커 및/또는 햅틱 모듈 등을 포함할 수 있다. 센서부(740b)는 XR 기기 상태, 주변 환경 정보, 사용자 정보 등을 얻을 수 있다. 센서부(740b)는 근접 센서, 조도 센서, 가속도 센서, 자기 센서, 자이로 센서, 관성 센서, RGB(red green blue) 센서, IR(infrared) 센서, 지문 인식 센서, 초음파 센서, 광 센서, 마이크로폰 및/또는 레이더 등을 포함할 수 있다. 전원공급부(740c)는 XR 기기(700a)에게 전원을 공급하며, 유/무선 충전 회로, 배터리 등을 포함할 수 있다.The input/output unit 740a may obtain control information, data, etc. from the outside, and may output the generated XR object. The input/output unit 740a may include a camera, a microphone, a user input unit, a display unit, a speaker, and/or a haptic module. The sensor unit 740b may obtain an XR device state, surrounding environment information, user information, and the like. The sensor unit 740b includes a proximity sensor, an illuminance sensor, an acceleration sensor, a magnetic sensor, a gyro sensor, an inertial sensor, a red green blue (RGB) sensor, an infrared (IR) sensor, a fingerprint recognition sensor, an ultrasonic sensor, an optical sensor, a microphone and / or radar or the like. The power supply unit 740c supplies power to the XR device 700a, and may include a wired/wireless charging circuit, a battery, and the like.
일 예로, XR 기기(700a)의 메모리부(730)는 XR 오브젝트(예, AR/VR/MR 오브젝트)의 생성에 필요한 정보(예, 데이터 등)를 포함할 수 있다. 입출력부(740a)는 사용자로부터 XR 기기(700a)를 조작하는 명령을 획득할 수 있으며, 제어부(720)는 사용자의 구동 명령에 따라 XR 기기(700a)를 구동시킬 수 있다. 예를 들어, 사용자가 XR 기기(700a)를 통해 영화, 뉴스 등을 시청하려고 하는 경우, 제어부(720)는 통신부(730)를 통해 컨텐츠 요청 정보를 다른 기기(예, 휴대 기기(700b)) 또는 미디어 서버에 전송할 수 있다. 통신부(730)는 다른 기기(예, 휴대 기기(700b)) 또는 미디어 서버로부터 영화, 뉴스 등의 컨텐츠를 메모리부(730)로 다운로드/스트리밍 받을 수 있다. 제어부(720)는 컨텐츠에 대해 비디오/이미지 획득, (비디오/이미지) 인코딩, 메타데이터 생성/처리 등의 절차를 제어 및/또는 수행하며, 입출력부(740a)/센서부(740b)를 통해 획득한 주변 공간 또는 현실 오브젝트에 대한 정보에 기반하여 XR 오브젝트를 생성/출력할 수 있다.For example, the memory unit 730 of the XR device 700a may include information (eg, data, etc.) necessary for generating an XR object (eg, AR/VR/MR object). The input/output unit 740a may obtain a command to operate the XR device 700a from the user, and the controller 720 may drive the XR device 700a according to the user's driving command. For example, when the user intends to watch a movie or news through the XR device 700a, the controller 720 transmits the content request information through the communication unit 730 to another device (eg, the mobile device 700b) or can be sent to the media server. The communication unit 730 may download/stream contents such as movies and news from another device (eg, the portable device 700b) or a media server to the memory unit 730 . The controller 720 controls and/or performs procedures such as video/image acquisition, (video/image) encoding, and metadata generation/processing for the content, and is acquired through the input/output unit 740a/sensor unit 740b It is possible to generate/output an XR object based on information about one surrounding space or a real object.
또한, XR 기기(700a)는 통신부(710)를 통해 휴대 기기(700b)와 무선으로 연결되며, XR 기기(700a)의 동작은 휴대 기기(700b)에 의해 제어될 수 있다. 예를 들어, 휴대 기기(700b)는 XR 기기(700a)에 대한 콘트롤러로 동작할 수 있다. 이를 위해, XR 기기(700a)는 휴대 기기(700b)의 3차원 위치 정보를 획득한 뒤, 휴대 기기(700b)에 대응하는 XR 개체를 생성하여 출력할 수 있다.Also, the XR device 700a is wirelessly connected to the portable device 700b through the communication unit 710 , and the operation of the XR device 700a may be controlled by the portable device 700b. For example, the portable device 700b may operate as a controller for the XR device 700a. To this end, the XR device 700a may obtain 3D location information of the portable device 700b, and then generate and output an XR object corresponding to the portable device 700b.
도 8은 본 개시에 적용되는 로봇의 예시를 도시한 도면이다. 일 예로, 로봇은 사용 목적이나 분야에 따라 산업용, 의료용, 가정용, 군사용 등으로 분류될 수 있다. 이때, 도 8을 참조하면, 로봇(800)은 통신부(810), 제어부(820), 메모리부(830), 입출력부(840a), 센서부(840b) 및 구동부(840c)를 포함할 수 있다. 여기서, 블록 810~830/840a~840c은 각각 도 3의 블록 310~330/340에 대응할 수 있다.8 is a diagram illustrating an example of a robot applied to the present disclosure. For example, the robot may be classified into industrial, medical, home, military, etc. according to the purpose or field of use. In this case, referring to FIG. 8 , the robot 800 may include a communication unit 810 , a control unit 820 , a memory unit 830 , an input/output unit 840a , a sensor unit 840b , and a driving unit 840c . . Here, blocks 810 to 830/840a to 840c may correspond to blocks 310 to 330/340 of FIG. 3 , respectively.
통신부(810)는 다른 무선 기기, 다른 로봇, 또는 제어 서버 등의 외부 기기들과 신호(예, 구동 정보, 제어 신호 등)를 송수신할 수 있다. 제어부(820)는 로봇(800)의 구성 요소들을 제어하여 다양한 동작을 수행할 수 있다. 메모리부(830)는 로봇(800)의 다양한 기능을 지원하는 데이터/파라미터/프로그램/코드/명령을 저장할 수 있다. 입출력부(840a)는 로봇(800)의 외부로부터 정보를 획득하며, 로봇(800)의 외부로 정보를 출력할 수 있다. 입출력부(840a)는 카메라, 마이크로폰, 사용자 입력부, 디스플레이부, 스피커 및/또는 햅틱 모듈 등을 포함할 수 있다. The communication unit 810 may transmit and receive signals (eg, driving information, control signals, etc.) with external devices such as other wireless devices, other robots, or control servers. The controller 820 may control components of the robot 800 to perform various operations. The memory unit 830 may store data/parameters/programs/codes/commands supporting various functions of the robot 800 . The input/output unit 840a may obtain information from the outside of the robot 800 and may output information to the outside of the robot 800 . The input/output unit 840a may include a camera, a microphone, a user input unit, a display unit, a speaker, and/or a haptic module.
센서부(840b)는 로봇(800)의 내부 정보, 주변 환경 정보, 사용자 정보 등을 얻을 수 있다. 센서부(840b)는 근접 센서, 조도 센서, 가속도 센서, 자기 센서, 자이로 센서, 관성 센서, IR 센서, 지문 인식 센서, 초음파 센서, 광 센서, 마이크로폰, 레이더 등을 포함할 수 있다. The sensor unit 840b may obtain internal information, surrounding environment information, user information, and the like of the robot 800 . The sensor unit 840b may include a proximity sensor, an illumination sensor, an acceleration sensor, a magnetic sensor, a gyro sensor, an inertial sensor, an IR sensor, a fingerprint recognition sensor, an ultrasonic sensor, an optical sensor, a microphone, a radar, and the like.
구동부(840c)는 로봇 관절을 움직이는 등의 다양한 물리적 동작을 수행할 수 있다. 또한, 구동부(840c)는 로봇(800)을 지상에서 주행하거나 공중에서 비행하게 할 수 있다. 구동부(840c)는 액츄에이터, 모터, 바퀴, 브레이크, 프로펠러 등을 포함할 수 있다.The driving unit 840c may perform various physical operations, such as moving a robot joint. Also, the driving unit 840c may cause the robot 800 to travel on the ground or to fly in the air. The driving unit 840c may include an actuator, a motor, a wheel, a brake, a propeller, and the like.
도 9는 본 개시에 적용되는 AI 기기의 예시를 도시한 도면이다. 일 예로, AI 기기는 TV, 프로젝터, 스마트폰, PC, 노트북, 디지털방송용 단말기, 태블릿 PC, 웨어러블 장치, 셋톱박스(STB), 라디오, 세탁기, 냉장고, 디지털 사이니지, 로봇, 차량 등과 같은, 고정형 기기 또는 이동 가능한 기기 등으로 구현될 수 있다.9 is a diagram illustrating an example of an AI device applied to the present disclosure. For example, AI devices include TVs, projectors, smartphones, PCs, laptops, digital broadcasting terminals, tablet PCs, wearable devices, set-top boxes (STBs), radios, washing machines, refrigerators, digital signage, robots, vehicles, etc. It may be implemented as a device or a mobile device.
도 9를 참조하면, AI 기기(900)는 통신부(910), 제어부(920), 메모리부(930), 입/출력부(940a/940b), 러닝 프로세서부(940c) 및 센서부(940d)를 포함할 수 있다. 블록 910~930/940a~940d는 각각 도 3의 블록 310~330/340에 대응할 수 있다.Referring to FIG. 9 , the AI device 900 includes a communication unit 910 , a control unit 920 , a memory unit 930 , input/output units 940a/940b , a learning processor unit 940c and a sensor unit 940d. may include Blocks 910 to 930/940a to 940d may correspond to blocks 310 to 330/340 of FIG. 3 , respectively.
통신부(910)는 유무선 통신 기술을 이용하여 다른 AI 기기(예, 도 1, 100x, 120, 140)나 AI 서버(도 1, 140) 등의 외부 기기들과 유무선 신호(예, 센서 정보, 사용자 입력, 학습 모델, 제어 신호 등)를 송수신할 수 있다. 이를 위해, 통신부(910)는 메모리부(930) 내의 정보를 외부 기기로 전송하거나, 외부 기기로부터 수신된 신호를 메모리부(930)로 전달할 수 있다.The communication unit 910 uses wired/wireless communication technology to communicate with external devices such as other AI devices (eg, FIGS. 1, 100x, 120, 140) or an AI server ( FIGS. 1 and 140 ) and wired/wireless signals (eg, sensor information, user input, learning model, control signal, etc.). To this end, the communication unit 910 may transmit information in the memory unit 930 to an external device or transmit a signal received from the external device to the memory unit 930 .
제어부(920)는 데이터 분석 알고리즘 또는 머신 러닝 알고리즘을 사용하여 결정되거나 생성된 정보에 기초하여, AI 기기(900)의 적어도 하나의 실행 가능한 동작을 결정할 수 있다. 그리고, 제어부(920)는 AI 기기(900)의 구성 요소들을 제어하여 결정된 동작을 수행할 수 있다. 예를 들어, 제어부(920)는 러닝 프로세서부(940c) 또는 메모리부(930)의 데이터를 요청, 검색, 수신 또는 활용할 수 있고, 적어도 하나의 실행 가능한 동작 중 예측되는 동작이나, 바람직한 것으로 판단되는 동작을 실행하도록 AI 기기(900)의 구성 요소들을 제어할 수 있다. 또한, 제어부(920)는 AI 장치(900)의 동작 내용이나 동작에 대한 사용자의 피드백 등을 포함하는 이력 정보를 수집하여 메모리부(930) 또는 러닝 프로세서부(940c)에 저장하거나, AI 서버(도 1, 140) 등의 외부 장치에 전송할 수 있다. 수집된 이력 정보는 학습 모델을 갱신하는데 이용될 수 있다.The controller 920 may determine at least one executable operation of the AI device 900 based on information determined or generated using a data analysis algorithm or a machine learning algorithm. In addition, the controller 920 may control the components of the AI device 900 to perform the determined operation. For example, the control unit 920 may request, search, receive, or utilize the data of the learning processor unit 940c or the memory unit 930, and may be a predicted operation among at least one executable operation or determined to be preferable. Components of the AI device 900 may be controlled to execute the operation. In addition, the control unit 920 collects history information including user feedback on the operation contents or operation of the AI device 900 and stores it in the memory unit 930 or the learning processor unit 940c, or the AI server ( 1 and 140), and the like may be transmitted to an external device. The collected historical information may be used to update the learning model.
메모리부(930)는 AI 기기(900)의 다양한 기능을 지원하는 데이터를 저장할 수 있다. 예를 들어, 메모리부(930)는 입력부(940a)로부터 얻은 데이터, 통신부(910)로부터 얻은 데이터, 러닝 프로세서부(940c)의 출력 데이터, 및 센싱부(940)로부터 얻은 데이터를 저장할 수 있다. 또한, 메모리부(930)는 제어부(920)의 동작/실행에 필요한 제어 정보 및/또는 소프트웨어 코드를 저장할 수 있다.The memory unit 930 may store data supporting various functions of the AI device 900 . For example, the memory unit 930 may store data obtained from the input unit 940a , data obtained from the communication unit 910 , output data of the learning processor unit 940c , and data obtained from the sensing unit 940 . Also, the memory unit 930 may store control information and/or software codes necessary for the operation/execution of the control unit 920 .
입력부(940a)는 AI 기기(900)의 외부로부터 다양한 종류의 데이터를 획득할 수 있다. 예를 들어, 입력부(920)는 모델 학습을 위한 학습 데이터, 및 학습 모델이 적용될 입력 데이터 등을 획득할 수 있다. 입력부(940a)는 카메라, 마이크로폰 및/또는 사용자 입력부 등을 포함할 수 있다. 출력부(940b)는 시각, 청각 또는 촉각 등과 관련된 출력을 발생시킬 수 있다. 출력부(940b)는 디스플레이부, 스피커 및/또는 햅틱 모듈 등을 포함할 수 있다. 센싱부(940)는 다양한 센서들을 이용하여 AI 기기(900)의 내부 정보, AI 기기(900)의 주변 환경 정보 및 사용자 정보 중 적어도 하나를 얻을 수 있다. 센싱부(940)는 근접 센서, 조도 센서, 가속도 센서, 자기 센서, 자이로 센서, 관성 센서, RGB 센서, IR 센서, 지문 인식 센서, 초음파 센서, 광 센서, 마이크로폰 및/또는 레이더 등을 포함할 수 있다.The input unit 940a may acquire various types of data from the outside of the AI device 900 . For example, the input unit 920 may obtain training data for model learning, input data to which the learning model is applied, and the like. The input unit 940a may include a camera, a microphone, and/or a user input unit. The output unit 940b may generate an output related to sight, hearing, or touch. The output unit 940b may include a display unit, a speaker, and/or a haptic module. The sensing unit 940 may obtain at least one of internal information of the AI device 900 , surrounding environment information of the AI device 900 , and user information by using various sensors. The sensing unit 940 may include a proximity sensor, an illumination sensor, an acceleration sensor, a magnetic sensor, a gyro sensor, an inertial sensor, an RGB sensor, an IR sensor, a fingerprint recognition sensor, an ultrasonic sensor, an optical sensor, a microphone, and/or a radar. there is.
러닝 프로세서부(940c)는 학습 데이터를 이용하여 인공 신경망으로 구성된 모델을 학습시킬 수 있다. 러닝 프로세서부(940c)는 AI 서버(도 1, 140)의 러닝 프로세서부와 함께 AI 프로세싱을 수행할 수 있다. 러닝 프로세서부(940c)는 통신부(910)를 통해 외부 기기로부터 수신된 정보, 및/또는 메모리부(930)에 저장된 정보를 처리할 수 있다. 또한, 러닝 프로세서부(940c)의 출력 값은 통신부(910)를 통해 외부 기기로 전송되거나/되고, 메모리부(930)에 저장될 수 있다.The learning processor unit 940c may train a model composed of an artificial neural network by using the training data. The learning processor unit 940c may perform AI processing together with the learning processor unit of the AI server ( FIGS. 1 and 140 ). The learning processor unit 940c may process information received from an external device through the communication unit 910 and/or information stored in the memory unit 930 . Also, the output value of the learning processor unit 940c may be transmitted to an external device through the communication unit 910 and/or stored in the memory unit 930 .
물리 채널들 및 일반적인 신호 전송Physical channels and general signal transmission
무선 접속 시스템에서 단말은 하향링크(downlink, DL)를 통해 기지국으로부터 정보를 수신하고, 상향링크(uplink, UL)를 통해 기지국으로 정보를 전송할 수 있다. 기지국과 단말이 송수신하는 정보는 일반 데이터 정보 및 다양한 제어 정보를 포함하고, 이들이 송수신 하는 정보의 종류/용도에 따라 다양한 물리 채널이 존재한다.In a radio access system, a terminal may receive information from a base station through downlink (DL) and transmit information to a base station through uplink (UL). Information transmitted and received between the base station and the terminal includes general data information and various control information, and various physical channels exist according to the type/use of the information they transmit and receive.
도 10은 본 개시에 적용되는 물리 채널들 및 이들을 이용한 신호 전송 방법을 도시한 도면이다.10 is a diagram illustrating physical channels applied to the present disclosure and a signal transmission method using the same.
전원이 꺼진 상태에서 다시 전원이 켜지거나, 새로이 셀에 진입한 단말은 S1011 단계에서 기지국과 동기를 맞추는 등의 초기 셀 탐색(initial cell search) 작업을 수행한다. 이를 위해 단말은 기지국으로부터 주 동기 채널(primary synchronization channel, P-SCH) 및 부 동기 채널(secondary synchronization channel, S-SCH)을 수신하여 기지국과 동기를 맞추고, 셀 ID 등의 정보를 획득할 수 있다. In a state in which the power is turned off, the power is turned on again, or a terminal newly entering a cell performs an initial cell search operation such as synchronizing with the base station in step S1011. To this end, the terminal receives a primary synchronization channel (P-SCH) and a secondary synchronization channel (S-SCH) from the base station, synchronizes with the base station, and can obtain information such as cell ID. .
그 후, 단말은 기지국으로부터 물리 방송 채널(physical broadcast channel, PBCH) 신호를 수신하여 셀 내 방송 정보를 획득할 수 있다. 한편, 단말은 초기 셀 탐색 단계에서 하향링크 참조 신호 (DL RS: Downlink Reference Signal)를 수신하여 하향링크 채널 상태를 확인할 수 있다. 초기 셀 탐색을 마친 단말은 S1012 단계에서 물리 하향링크 제어 채널(physical downlink control channel, PDCCH) 및 물리 하향링크 제어 채널 정보에 따른 물리 하향링크 공유 채널(physical downlink control channel, PDSCH)을 수신하여 조금 더 구체적인 시스템 정보를 획득할 수 있다. Thereafter, the terminal may receive a physical broadcast channel (PBCH) signal from the base station to obtain intra-cell broadcast information. Meanwhile, the UE may receive a downlink reference signal (DL RS) in the initial cell search step to check the downlink channel state. After completing the initial cell search, the UE receives a physical downlink control channel (PDCCH) and a physical downlink control channel (PDSCH) according to physical downlink control channel information in step S1012 and receives a little more Specific system information can be obtained.
이후, 단말은 기지국에 접속을 완료하기 위해 이후 단계 S1013 내지 단계 S1016과 같은 임의 접속 과정(random access procedure)을 수행할 수 있다. 이를 위해 단말은 물리 임의 접속 채널(physical random access channel, PRACH)을 통해 프리앰블 (preamble)을 전송하고(S1013), 물리 하향링크 제어 채널 및 이에 대응하는 물리 하향링크 공유 채널을 통해 프리앰블에 대한 RAR(random access response)를 수신할 수 있다(S1014). 단말은 RAR 내의 스케줄링 정보를 이용하여 PUSCH(physical uplink shared channel)을 전송하고(S1015), 물리 하향링크 제어채널 신호 및 이에 대응하는 물리 하향링크 공유 채널 신호의 수신과 같은 충돌 해결 절차(contention resolution procedure)를 수행할 수 있다(S1016).Thereafter, the terminal may perform a random access procedure, such as steps S1013 to S1016, to complete access to the base station. To this end, the UE transmits a preamble through a physical random access channel (PRACH) (S1013), and RAR for the preamble through a physical downlink control channel and a corresponding physical downlink shared channel (S1013). random access response) may be received (S1014). The UE transmits a physical uplink shared channel (PUSCH) using scheduling information in the RAR (S1015), and a contention resolution procedure such as reception of a physical downlink control channel signal and a corresponding physical downlink shared channel signal. ) can be performed (S1016).
상술한 바와 같은 절차를 수행한 단말은 이후 일반적인 상/하향링크 신호 전송 절차로서 물리 하향링크 제어 채널 신호 및/또는 물리 하향링크 공유 채널 신호의 수신(S1017) 및 물리 상향링크 공유 채널(physical uplink shared channel, PUSCH) 신호 및/또는 물리 상향링크 제어 채널(physical uplink control channel, PUCCH) 신호의 전송(S1018)을 수행할 수 있다.After performing the above procedure, the UE receives a physical downlink control channel signal and/or a physical downlink shared channel signal (S1017) and a physical uplink shared channel as a general uplink/downlink signal transmission procedure. channel, PUSCH) signal and/or a physical uplink control channel (PUCCH) signal may be transmitted ( S1018 ).
단말이 기지국으로 전송하는 제어정보를 통칭하여 상향링크 제어정보(uplink control information, UCI)라고 지칭한다. UCI는 HARQ-ACK/NACK(hybrid automatic repeat and request acknowledgement/negative-ACK), SR(scheduling request), CQI(channel quality indication), PMI(precoding matrix indication), RI(rank indication), BI(beam indication) 정보 등을 포함한다. 이때, UCI는 일반적으로 PUCCH를 통해 주기적으로 전송되지만, 실시 예에 따라(예, 제어정보와 트래픽 데이터가 동시에 전송되어야 할 경우) PUSCH를 통해 전송될 수 있다. 또한, 네트워크의 요청/지시에 의해 단말은 PUSCH를 통해 UCI를 비주기적으로 전송할 수 있다.Control information transmitted by the terminal to the base station is collectively referred to as uplink control information (UCI). UCI is HARQ-ACK / NACK (hybrid automatic repeat and request acknowledgment / negative-ACK), SR (scheduling request), CQI (channel quality indication), PMI (precoding matrix indication), RI (rank indication), BI (beam indication) ) information, etc. In this case, the UCI is generally transmitted periodically through the PUCCH, but may be transmitted through the PUSCH according to an embodiment (eg, when control information and traffic data are to be transmitted at the same time). In addition, according to a request/instruction of the network, the UE may aperiodically transmit the UCI through the PUSCH.
도 11은 본 개시에 적용되는 무선 인터페이스 프로토콜(radio interface protocol)의 제어평면(control plane) 및 사용자 평면(user plane) 구조를 도시한 도면이다.11 is a diagram illustrating a control plane and a user plane structure of a radio interface protocol applied to the present disclosure.
도 11 을 참조하면, 엔티티 1(Entity 1)은 단말(user equipment, UE)일 수 있다. 이때, 단말이라 함은 상술한 도 1 내지 도 9에서 본 개시가 적용되는 무선 기기, 휴대 기기, 차량, 이동체, XR 기기, 로봇 및 AI 중 적어도 어느 하나일 수 있다. 또한, 단말은 본 개시가 적용될 수 있는 장치를 지칭하는 것으로 특정 장치나 기기로 한정되지 않을 수 있다. Referring to FIG. 11 , entity 1 may be a user equipment (UE). In this case, the term "terminal" may be at least one of a wireless device, a portable device, a vehicle, a mobile body, an XR device, a robot, and an AI to which the present disclosure is applied in FIGS. 1 to 9 described above. In addition, the terminal refers to a device to which the present disclosure can be applied and may not be limited to a specific device or device.
엔티티 2(Entity 2)는 기지국일 수 있다. 이때, 기지국은 eNB, gNB 및 ng-eNB 중 적어도 어느 하나일 수 있다. 또한, 기지국은 단말로 하향링크 신호를 전송하는 장치를 지칭할 수 있으며, 특정 타입이나 장치로 한정되지 않을 수 있다. 즉, 기지국은 다양한 형태나 타입으로 구현될 수 있으며, 특정 형태로 한정되지 않을 수 있다. Entity 2 may be a base station. In this case, the base station may be at least one of an eNB, a gNB, and an ng-eNB. In addition, the base station may refer to an apparatus for transmitting a downlink signal to the terminal, and may not be limited to a specific type or apparatus. That is, the base station may be implemented in various forms or types, and may not be limited to a specific form.
엔티티 3(Entity 3)은 네트워크 장치 또는 네트워크 펑션을 수행하는 기기일 수 있다. 이때, 네트워크 장치는 이동성을 관리하는 코어망 노드(core network node)(e.g. MME(mobility management entity), AMF(access and mobility management function) 등)일 수 있다. 또한, 네트워크 펑션은 네트워크 기능을 수행하기 위해 구현되는 펑션(function)을 의미할 수 있으며, 엔티티 3은 펑션이 적용된 기기일 수 있다. 즉, 엔티티 3은 네트워크 기능을 수행하는 펑션이나 기기를 지칭할 수 있으며, 특정 형태의 기기로 한정되지 않는다. Entity 3 may be a network device or a device performing a network function. In this case, the network device may be a core network node (eg, a mobility management entity (MME), an access and mobility management function (AMF), etc.) that manages mobility. In addition, the network function may mean a function implemented to perform a network function, and entity 3 may be a device to which the function is applied. That is, the entity 3 may refer to a function or device that performs a network function, and is not limited to a specific type of device.
제어평면은 단말(user equipment, UE)과 네트워크가 호를 관리하기 위해서 이용하는 제어 메시지들이 전송되는 통로를 의미할 수 있다. 또한, 사용자평면은 애플리케이션 계층에서 생성된 데이터, 예를 들어, 음성 데이터 또는 인터넷 패킷 데이터 등이 전송되는 통로를 의미할 수 있다. 이때, 제1 계층인 물리계층은 물리채널(physical channel)을 이용하여 상위 계층에게 정보 전송 서비스(information transfer service)를 제공할 수 있다. 물리계층은 상위에 있는 매체접속제어(medium access control) 계층과는 전송채널을 통해 연결되어 있다. 이때, 전송채널을 통해 매체접속제어 계층과 물리계층 사이에 데이터가 이동할 수 있다. 송신 측과 수신 측의 물리계층 사이는 물리채널을 통해 데이터가 이동할 수 있다. 이때, 물리채널은 시간과 주파수를 무선 자원으로 활용한다.The control plane may refer to a path through which control messages used by a user equipment (UE) and a network to manage a call are transmitted. In addition, the user plane may mean a path through which data generated in the application layer, for example, voice data or Internet packet data, is transmitted. In this case, the physical layer, which is the first layer, may provide an information transfer service to a higher layer by using a physical channel. The physical layer is connected to the upper medium access control layer through a transport channel. In this case, data may be moved between the medium access control layer and the physical layer through the transport channel. Data can be moved between the physical layers of the transmitting side and the receiving side through a physical channel. In this case, the physical channel uses time and frequency as radio resources.
제2 계층의 매체접속제어(medium access control, MAC) 계층은 논리채널(logical channel)을 통해 상위계층인 무선링크제어(radio link control, RLC) 계층에 서비스를 제공한다. 제2 계층의 RLC 계층은 신뢰성 있는 데이터 전송을 지원할 수 있다. RLC 계층의 기능은 MAC 내부의 기능 블록으로 구현될 수도 있다. 제2 계층의 PDCP(packet data convergence protocol) 계층은 대역폭이 좁은 무선 인터페이스에서 IPv4 나 IPv6 와 같은 IP 패킷을 효율적으로 전송하기 위해 불필요한 제어정보를 줄여주는 헤더 압축(header compression) 기능을 수행할 수 있다. 제3 계층의 최하부에 위치한 무선 자원제어(radio resource control, RRC) 계층은 제어평면에서만 정의된다. RRC 계층은 무선 베어러(radio bearer, RB)들의 설정(configuration), 재설정(re-configuration) 및 해제(release)와 관련되어 논리채널, 전송채널 및 물리채널들의 제어를 담당할 수 있다. RB는 단말과 네트워크 간의 데이터 전달을 위해 제2 계층에 의해 제공되는 서비스를 의미할 수 있다. 이를 위해, 단말과 네트워크의 RRC 계층은 서로 RRC 메시지를 교환할 수 있다. RRC 계층의 상위에 있는 NAS(non-access stratum) 계층은 세션 관리(session management)와 이동성 관리(mobility management) 등의 기능을 수행할 수 있다. 기지국을 구성하는 하나의 셀은 다양한 대역폭 중 하나로 설정되어 여러 단말에게 하향 또는 상향 전송 서비스를 제공할 수 있다. 서로 다른 셀은 서로 다른 대역폭을 제공하도록 설정될 수 있다. 네트워크에서 단말로 데이터를 전송하는 하향 전송채널은 시스템 정보를 전송하는 BCH(broadcast channel), 페이징 메시지를 전송하는 PCH(paging channel), 사용자 트래픽이나 제어 메시지를 전송하는 하향 SCH(shared channel) 등이 있다. 하향 멀티캐스트 또는 방송 서비스의 트래픽 또는 제어 메시지의 경우, 하향 SCH를 통해 전송될 수도 있고, 또는 별도의 하향 MCH(Multicast Channel)을 통해 전송될 수도 있다. 한편, 단말에서 네트워크로 데이터를 전송하는 상향 전송채널로는 초기 제어 메시지를 전송하는 RACH(random access channel), 사용자 트래픽이나 제어 메시지를 전송하는 상향 SCH(shared channel)가 있다. 전송채널의 상위에 있으며, 전송채널에 매핑되는 논리채널(logical channel)로는 BCCH(broadcast control channel), PCCH(paging control channel), CCCH(common control channel), MCCH(multicast control channel) 및 MTCH(multicast traffic channel) 등이 있다.A medium access control (MAC) layer of the second layer provides a service to a radio link control (RLC) layer, which is an upper layer, through a logical channel. The RLC layer of the second layer may support reliable data transmission. The function of the RLC layer may be implemented as a function block inside the MAC. The packet data convergence protocol (PDCP) layer of the second layer may perform a header compression function that reduces unnecessary control information in order to efficiently transmit IP packets such as IPv4 or IPv6 in a narrow-bandwidth air interface. . A radio resource control (RRC) layer located at the bottom of the third layer is defined only in the control plane. The RRC layer may be in charge of controlling logical channels, transport channels and physical channels in relation to configuration, re-configuration, and release of radio bearers (RBs). RB may mean a service provided by the second layer for data transfer between the terminal and the network. To this end, the UE and the RRC layer of the network may exchange RRC messages with each other. A non-access stratum (NAS) layer above the RRC layer may perform functions such as session management and mobility management. One cell constituting the base station may be set to one of various bandwidths to provide downlink or uplink transmission services to multiple terminals. Different cells may be configured to provide different bandwidths. The downlink transmission channel for transmitting data from the network to the terminal includes a broadcast channel (BCH) for transmitting system information, a paging channel (PCH) for transmitting a paging message, and a downlink shared channel (SCH) for transmitting user traffic or control messages. there is. In the case of a downlink multicast or broadcast service traffic or control message, it may be transmitted through a downlink SCH or may be transmitted through a separate downlink multicast channel (MCH). Meanwhile, as an uplink transmission channel for transmitting data from the terminal to the network, there are a random access channel (RACH) for transmitting an initial control message and an uplink shared channel (SCH) for transmitting user traffic or a control message. A logical channel that is located above the transport channel and is mapped to the transport channel includes a broadcast control channel (BCCH), a paging control channel (PCCH), a common control channel (CCCH), a multicast control channel (MCCH), and a multicast (MTCH) channel. traffic channels), etc.
도 12는 본 개시에 적용되는 전송 신호를 처리하는 방법을 도시한 도면이다. 일 예로, 전송 신호는 신호 처리 회로에 의해 처리될 수 있다. 이때, 신호 처리 회로(1200)는 스크램블러(1210), 변조기(1220), 레이어 매퍼(1230), 프리코더(1240), 자원 매퍼(1250), 신호 생성기(1260)를 포함할 수 있다. 이때, 일 예로, 도 12의 동작/기능은 도 2의 프로세서(202a, 202b) 및/또는 송수신기(206a, 206b)에서 수행될 수 있다. 또한, 일 예로, 도 12의 하드웨어 요소는 도 2의 프로세서(202a, 202b) 및/또는 송수신기(206a, 206b)에서 구현될 수 있다. 일 예로, 블록 1010~1060은 도 2의 프로세서(202a, 202b)에서 구현될 수 있다. 또한, 블록 1210~1250은 도 2의 프로세서(202a, 202b)에서 구현되고, 블록 1260은 도 2의 송수신기(206a, 206b)에서 구현될 수 있으며, 상술한 실시 예로 한정되지 않는다.12 is a diagram illustrating a method of processing a transmission signal applied to the present disclosure. As an example, the transmission signal may be processed by a signal processing circuit. In this case, the signal processing circuit 1200 may include a scrambler 1210 , a modulator 1220 , a layer mapper 1230 , a precoder 1240 , a resource mapper 1250 , and a signal generator 1260 . In this case, as an example, the operation/function of FIG. 12 may be performed by the processors 202a and 202b and/or the transceivers 206a and 206b of FIG. 2 . Also, as an example, the hardware elements of FIG. 12 may be implemented in the processors 202a and 202b and/or the transceivers 206a and 206b of FIG. 2 . As an example, blocks 1010 to 1060 may be implemented in the processors 202a and 202b of FIG. 2 . In addition, blocks 1210 to 1250 may be implemented in the processors 202a and 202b of FIG. 2 , and block 1260 may be implemented in the transceivers 206a and 206b of FIG. 2 , and the embodiment is not limited thereto.
코드워드는 도 12의 신호 처리 회로(1200)를 거쳐 무선 신호로 변환될 수 있다. 여기서, 코드워드는 정보블록의 부호화된 비트 시퀀스이다. 정보블록은 전송블록(예, UL-SCH 전송블록, DL-SCH 전송블록)을 포함할 수 있다. 무선 신호는 도 10의 다양한 물리 채널(예, PUSCH, PDSCH)을 통해 전송될 수 있다. 구체적으로, 코드워드는 스크램블러(1210)에 의해 스크램블된 비트 시퀀스로 변환될 수 있다. 스크램블에 사용되는 스크램블 시퀀스는 초기화 값에 기반하여 생성되며, 초기화 값은 무선 기기의 ID 정보 등이 포함될 수 있다. 스크램블된 비트 시퀀스는 변조기(1220)에 의해 변조 심볼 시퀀스로 변조될 수 있다. 변조 방식은 pi/2-BPSK(pi/2-binary phase shift keying), m-PSK(m-phase shift keying), m-QAM(m-quadrature amplitude modulation) 등을 포함할 수 있다. The codeword may be converted into a wireless signal through the signal processing circuit 1200 of FIG. 12 . Here, the codeword is a coded bit sequence of an information block. The information block may include a transport block (eg, a UL-SCH transport block, a DL-SCH transport block). The radio signal may be transmitted through various physical channels (eg, PUSCH, PDSCH) of FIG. 10 . Specifically, the codeword may be converted into a scrambled bit sequence by the scrambler 1210 . A scramble sequence used for scrambling is generated based on an initialization value, and the initialization value may include ID information of a wireless device, and the like. The scrambled bit sequence may be modulated by a modulator 1220 into a modulation symbol sequence. The modulation method may include pi/2-binary phase shift keying (pi/2-BPSK), m-phase shift keying (m-PSK), m-quadrature amplitude modulation (m-QAM), and the like.
복소 변조 심볼 시퀀스는 레이어 매퍼(1230)에 의해 하나 이상의 전송 레이어로 매핑될 수 있다. 각 전송 레이어의 변조 심볼들은 프리코더(1240)에 의해 해당 안테나 포트(들)로 매핑될 수 있다(프리코딩). 프리코더(1240)의 출력 z는 레이어 매퍼(1230)의 출력 y를 N*M의 프리코딩 행렬 W와 곱해 얻을 수 있다. 여기서, N은 안테나 포트의 개수, M은 전송 레이어의 개수이다. 여기서, 프리코더(1240)는 복소 변조 심볼들에 대한 트랜스폼(transform) 프리코딩(예, DFT(discrete fourier transform) 변환)을 수행한 이후에 프리코딩을 수행할 수 있다. 또한, 프리코더(1240)는 트랜스폼 프리코딩을 수행하지 않고 프리코딩을 수행할 수 있다.The complex modulation symbol sequence may be mapped to one or more transport layers by a layer mapper 1230 . Modulation symbols of each transport layer may be mapped to corresponding antenna port(s) by the precoder 1240 (precoding). The output z of the precoder 1240 may be obtained by multiplying the output y of the layer mapper 1230 by the precoding matrix W of N*M. Here, N is the number of antenna ports, and M is the number of transport layers. Here, the precoder 1240 may perform precoding after performing transform precoding (eg, discrete fourier transform (DFT) transform) on the complex modulation symbols. Also, the precoder 1240 may perform precoding without performing transform precoding.
자원 매퍼(1250)는 각 안테나 포트의 변조 심볼들을 시간-주파수 자원에 매핑할 수 있다. 시간-주파수 자원은 시간 도메인에서 복수의 심볼(예, CP-OFDMA 심볼, DFT-s-OFDMA 심볼)을 포함하고, 주파수 도메인에서 복수의 부반송파를 포함할 수 있다. 신호 생성기(1260)는 매핑된 변조 심볼들로부터 무선 신호를 생성하며, 생성된 무선 신호는 각 안테나를 통해 다른 기기로 전송될 수 있다. 이를 위해, 신호 생성기(1260)는 IFFT(inverse fast fourier transform) 모듈 및 CP(cyclic prefix) 삽입기, DAC(digital-to-analog converter), 주파수 상향 변환기(frequency uplink converter) 등을 포함할 수 있다.The resource mapper 1250 may map modulation symbols of each antenna port to a time-frequency resource. The time-frequency resource may include a plurality of symbols (eg, a CP-OFDMA symbol, a DFT-s-OFDMA symbol) in the time domain and a plurality of subcarriers in the frequency domain. The signal generator 1260 generates a radio signal from the mapped modulation symbols, and the generated radio signal may be transmitted to another device through each antenna. To this end, the signal generator 1260 may include an inverse fast fourier transform (IFFT) module and a cyclic prefix (CP) inserter, a digital-to-analog converter (DAC), a frequency uplink converter, and the like. .
무선 기기에서 수신 신호를 위한 신호 처리 과정은 도 12의 신호 처리 과정(1210~1260)의 역으로 구성될 수 있다. 일 예로, 무선 기기(예, 도 2의 200a, 200b)는 안테나 포트/송수신기를 통해 외부로부터 무선 신호를 수신할 수 있다. 수신된 무선 신호는 신호 복원기를 통해 베이스밴드 신호로 변환될 수 있다. 이를 위해, 신호 복원기는 주파수 하향 변환기(frequency downlink converter), ADC(analog-to-digital converter), CP 제거기, FFT(fast fourier transform) 모듈을 포함할 수 있다. 이후, 베이스밴드 신호는 자원 디-매퍼 과정, 포스트코딩(postcoding) 과정, 복조 과정 및 디-스크램블 과정을 거쳐 코드워드로 복원될 수 있다. 코드워드는 복호(decoding)를 거쳐 원래의 정보블록으로 복원될 수 있다. 따라서, 수신 신호를 위한 신호 처리 회로(미도시)는 신호 복원기, 자원 디-매퍼, 포스트코더, 복조기, 디-스크램블러 및 복호기를 포함할 수 있다.The signal processing process for the received signal in the wireless device may be configured in reverse of the signal processing process 1210 to 1260 of FIG. 12 . For example, the wireless device (eg, 200a or 200b of FIG. 2 ) may receive a wireless signal from the outside through an antenna port/transceiver. The received radio signal may be converted into a baseband signal through a signal restorer. To this end, the signal restorer may include a frequency downlink converter, an analog-to-digital converter (ADC), a CP remover, and a fast fourier transform (FFT) module. Thereafter, the baseband signal may be restored to a codeword through a resource de-mapper process, a postcoding process, a demodulation process, and a descrambling process. The codeword may be restored to the original information block through decoding. Accordingly, the signal processing circuit (not shown) for the received signal may include a signal restorer, a resource de-mapper, a post coder, a demodulator, a descrambler, and a decoder.
도 13은 본 개시에 적용 가능한 무선 프레임의 구조를 도시한 도면이다.13 is a diagram illustrating a structure of a radio frame applicable to the present disclosure.
NR 시스템에 기초한 상향링크 및 하향링크 전송은 도 13과 같은 프레임에 기초할 수 있다. 이때, 하나의 무선 프레임은 10ms의 길이를 가지며, 2개의 5ms 하프-프레임(half-frame, HF)으로 정의될 수 있다. 하나의 하프-프레임은 5개의 1ms 서브프레임(subframe, SF)으로 정의될 수 있다. 하나의 서브프레임은 하나 이상의 슬롯으로 분할되며, 서브프레임 내 슬롯 개수는 SCS(subcarrier spacing)에 의존할 수 있다. 이때, 각 슬롯은 CP(cyclic prefix)에 따라 12개 또는 14개의 OFDM(A) 심볼들을 포함할 수 있다. 일반 CP(normal CP)가 사용되는 경우, 각 슬롯은 14개의 심볼들을 포함할 수 있다. 확장 CP(extended CP)가 사용되는 경우, 각 슬롯은 12개의 심볼들을 포함할 수 있다. 여기서, 심볼은 OFDM 심볼(또는, CP-OFDM 심볼), SC-FDMA 심볼(또는, DFT-s-OFDM 심볼)을 포함할 수 있다.Uplink and downlink transmission based on the NR system may be based on a frame as shown in FIG. 13 . In this case, one radio frame has a length of 10 ms and may be defined as two 5 ms half-frames (HF). One half-frame may be defined as 5 1ms subframes (subframe, SF). One subframe is divided into one or more slots, and the number of slots in a subframe may depend on subcarrier spacing (SCS). In this case, each slot may include 12 or 14 OFDM(A) symbols according to a cyclic prefix (CP). When a normal CP (normal CP) is used, each slot may include 14 symbols. When an extended CP (CP) is used, each slot may include 12 symbols. Here, the symbol may include an OFDM symbol (or a CP-OFDM symbol) and an SC-FDMA symbol (or a DFT-s-OFDM symbol).
표 1은 일반 CP가 사용되는 경우, SCS에 따른 슬롯 별 심볼의 개수, 프레임 별 슬롯의 개수 및 서브프레임 별 슬롯의 개수를 나타내고, 표 2는 확장된 CSP가 사용되는 경우, SCS에 따른 슬롯 별 심볼의 개수, 프레임 별 슬롯의 개수 및 서브프레임 별 슬롯의 개수를 나타낸다.Table 1 shows the number of symbols per slot, the number of slots per frame, and the number of slots per subframe according to the SCS when the normal CP is used, and Table 2 shows the number of slots per slot according to the SCS when the extended CSP is used. Indicates the number of symbols, the number of slots per frame, and the number of slots per subframe.
[표 1][Table 1]
Figure PCTKR2020011234-appb-I000007
Figure PCTKR2020011234-appb-I000007
[표 2][Table 2]
Figure PCTKR2020011234-appb-I000008
Figure PCTKR2020011234-appb-I000008
상기 표 1 및 표 2에서,
Figure PCTKR2020011234-appb-I000009
는 슬롯 내 심볼의 개수를 나타내고,
Figure PCTKR2020011234-appb-I000010
는 프레임 내 슬롯의 개수를 나타내고,
Figure PCTKR2020011234-appb-I000011
는 서브프레임 내 슬롯의 개수를 나타낼 수 있다.
In Tables 1 and 2 above,
Figure PCTKR2020011234-appb-I000009
represents the number of symbols in the slot,
Figure PCTKR2020011234-appb-I000010
represents the number of slots in the frame,
Figure PCTKR2020011234-appb-I000011
may indicate the number of slots in a subframe.
또한, 본 개시가 적용 가능한 시스템에서, 하나의 단말에게 병합되는 복수의 셀들간에 OFDM(A) 뉴모놀로지(numerology)(예, SCS, CP 길이 등)가 상이하게 설정될 수 있다. 이에 따라, 동일한 개수의 심볼로 구성된 시간 자원(예, SF, 슬롯 또는 TTI)(편의상, TU(time unit)로 통칭)의 (절대 시간) 구간이 병합된 셀들 간에 상이하게 설정될 수 있다.In addition, in a system to which the present disclosure is applicable, OFDM(A) numerology (eg, SCS, CP length, etc.) may be set differently between a plurality of cells merged into one UE. Accordingly, an (absolute time) interval of a time resource (eg, SF, slot, or TTI) (commonly referred to as a TU (time unit) for convenience) composed of the same number of symbols may be set differently between the merged cells.
NR은 다양한 5G 서비스들을 지원하기 위한 다수의 numerology(또는 SCS(subcarrier spacing))를 지원할 수 있다. 예를 들어, SCS가 15kHz인 경우, 전통적인 셀룰러 밴드들에서의 넓은 영역(wide area)를 지원하며, SCS가 30kHz/60kHz인 경우, 밀집한-도시(dense-urban), 더 낮은 지연(lower latency) 및 더 넓은 캐리어 대역폭(wider carrier bandwidth)를 지원하며, SCS가 60kHz 또는 그보다 높은 경우, 위상 잡음(phase noise)를 극복하기 위해 24.25GHz보다 큰 대역폭을 지원할 수 있다.NR may support multiple numerology (or subcarrier spacing (SCS)) to support various 5G services. For example, when SCS is 15kHz, it supports a wide area in traditional cellular bands, and when SCS is 30kHz/60kHz, dense-urban, lower latency and a wider carrier bandwidth, and when the SCS is 60 kHz or higher, it can support a bandwidth greater than 24.25 GHz to overcome phase noise.
NR 주파수 밴드(frequency band)는 2가지 type(FR1, FR2)의 주파수 범위(frequency range)로 정의된다. FR1, FR2는 아래 표와 같이 구성될 수 있다. 또한, FR2는 밀리미터 웨이브(millimeter wave, mmW)를 의미할 수 있다.The NR frequency band is defined as a frequency range of two types (FR1, FR2). FR1 and FR2 may be configured as shown in the table below. In addition, FR2 may mean a millimeter wave (mmW).
[표 3][Table 3]
Figure PCTKR2020011234-appb-I000012
Figure PCTKR2020011234-appb-I000012
6G (무선통신) 시스템은 (i) 디바이스 당 매우 높은 데이터 속도, (ii) 매우 많은 수의 연결된 디바이스들, (iii) 글로벌 연결성(global connectivity), (iv) 매우 낮은 지연, (v) 배터리-프리(battery-free) IoT 디바이스들의 에너지 소비를 낮추고, (vi) 초고신뢰성 연결, (vii) 머신 러닝 능력을 가지는 연결된 지능 등에 목적이 있다. 6G 시스템의 비젼은 “intelligent connectivity”, “deep connectivity”, “holographic connectivity”, “ubiquitous connectivity”와 같은 4가지 측면일 수 있으며, 6G 시스템은 하기 표 4와 같은 요구 사항을 만족시킬 수 있다. 즉, 표 4는 6G 시스템의 요구 사항을 나타낸 표이다.6G (wireless) systems have (i) very high data rates per device, (ii) very large number of connected devices, (iii) global connectivity, (iv) very low latency, (v) battery- It aims to reduce energy consumption of battery-free IoT devices, (vi) ultra-reliable connections, and (vii) connected intelligence with machine learning capabilities. The vision of the 6G system may have four aspects such as “intelligent connectivity”, “deep connectivity”, “holographic connectivity”, and “ubiquitous connectivity”, and the 6G system can satisfy the requirements shown in Table 4 below. That is, Table 4 is a table showing the requirements of the 6G system.
[표 4][Table 4]
Figure PCTKR2020011234-appb-I000013
Figure PCTKR2020011234-appb-I000013
또한, 일 예로, 본 개시가 적용 가능한 통신 시스템에서 상술한 뉴모놀로지(numerology)가 다르게 설정될 수 있다. 일 예로, 상술한 FR2보다 높은 주파수 대역으로 테라헤르츠 웨이브(Terahertz wave, THz) 대역이 사용될 수 있다. THz 대역에서 SCS는 NR 시스템보다 더 크게 설정될 수 있으며, 슬롯 수도 상이하게 설정될 수 있으며, 상술한 실시 예로 한정되지 않는다. THz 대역에 대해서는 하기에서 후술한다.Also, as an example, in a communication system to which the present disclosure is applicable, the above-described pneumatic numerology may be set differently. For example, a terahertz wave (THz) band may be used as a higher frequency band than the above-described FR2. In the THz band, the SCS may be set to be larger than that of the NR system, and the number of slots may be set differently, and it is not limited to the above-described embodiment. The THz band will be described later.
도 14는 본 개시에 적용 가능한 슬롯 구조를 도시한 도면이다.14 is a diagram illustrating a slot structure applicable to the present disclosure.
하나의 슬롯은 시간 도메인에서 복수의 심볼을 포함한다. 예를 들어, 보통 CP의 경우 하나의 슬롯이 7개의 심볼을 포함하나, 확장 CP의 경우 하나의 슬롯이 6개의 심볼을 포함할 수 있다. 반송파(carrier)는 주파수 도메인에서 복수의 부반송파(subcarrier)를 포함한다. RB(Resource Block)는 주파수 도메인에서 복수(예, 12)의 연속한 부반송파로 정의될 수 있다. One slot includes a plurality of symbols in the time domain. For example, in the case of a normal CP, one slot may include 7 symbols, but in the case of an extended CP, one slot may include 6 symbols. A carrier (carrier) includes a plurality of subcarriers (subcarrier) in the frequency domain. A resource block (RB) may be defined as a plurality of (eg, 12) consecutive subcarriers in the frequency domain.
또한, BWP(Bandwidth Part)는 주파수 도메인에서 복수의 연속한 (P)RB로 정의되며, 하나의 뉴모놀로지(numerology)(예, SCS, CP 길이 등)에 대응될 수 있다.In addition, a bandwidth part (BWP) is defined as a plurality of consecutive (P)RBs in the frequency domain, and may correspond to one numerology (eg, SCS, CP length, etc.).
반송파는 최대 N개(예, 5개)의 BWP를 포함할 수 있다. 데이터 통신은 활성화된 BWP를 통해서 수행되며, 하나의 단말한테는 하나의 BWP만 활성화될 수 있다. 자원 그리드에서 각각의 요소는 자원요소(Resource Element, RE)로 지칭되며, 하나의 복소 심볼이 매핑될 수 있다.A carrier may include a maximum of N (eg, 5) BWPs. Data communication is performed through the activated BWP, and only one BWP can be activated for one terminal. Each element in the resource grid is referred to as a resource element (RE), and one complex symbol may be mapped.
6G 통신 시스템6G communication system
이때, 6G 시스템은 향상된 모바일 브로드밴드(enhanced mobile broadband, eMBB), 초-저지연 통신(ultra-reliable low latency communications, URLLC), mMTC (massive machine type communications), AI 통합 통신(AI integrated communication), 촉각 인터넷(tactile internet), 높은 스루풋(high throughput), 높은 네트워크 능력(high network capacity), 높은 에너지 효율(high energy efficiency), 낮은 백홀 및 접근 네트워크 혼잡(low backhaul and access network congestion) 및 향상된 데이터 보안(enhanced data security)과 같은 핵심 요소(key factor)들을 가질 수 있다.At this time, the 6G system includes enhanced mobile broadband (eMBB), ultra-reliable low latency communications (URLLC), massive machine type communications (mmTC), AI integrated communication, and tactile Internet (tactile internet), high throughput (high throughput), high network capacity (high network capacity), high energy efficiency (high energy efficiency), low backhaul and access network congestion (low backhaul and access network congestion) and improved data security ( It may have key factors such as enhanced data security.
도 15는 본 개시에 적용 가능한 6G 시스템에서 제공 가능한 통신 구조의 일례를 도시한 도면이다.15 is a diagram illustrating an example of a communication structure that can be provided in a 6G system applicable to the present disclosure.
도 15를 참조하면, 6G 시스템은 5G 무선통신 시스템보다 50배 더 높은 동시 무선통신 연결성을 가질 것으로 예상된다. 5G의 핵심 요소(key feature)인 URLLC는 6G 통신에서 1ms보다 적은 단-대-단(end-to-end) 지연을 제공함으로써 보다 더 주요한 기술이 될 것으로 예상된다. 이때, 6G 시스템은 자주 사용되는 영역 스펙트럼 효율과 달리 체적 스펙트럼 효율이 훨씬 우수할 것이다. 6G 시스템은 매우 긴 배터리 수명과 에너지 수확을 위한 고급 배터리 기술을 제공할 수 있어, 6G 시스템에서 모바일 디바이스들은 별도로 충전될 필요가 없을 수 있다. 또한, 6G에서 새로운 네트워크 특성들은 다음과 같을 수 있다.Referring to FIG. 15 , the 6G system is expected to have 50 times higher simultaneous wireless communication connectivity than the 5G wireless communication system. URLLC, a key feature of 5G, is expected to become an even more important technology by providing an end-to-end delay of less than 1 ms in 6G communication. At this time, the 6G system will have much better volumetric spectral efficiency, unlike the frequently used area spectral efficiency. 6G systems can provide very long battery life and advanced battery technology for energy harvesting, so mobile devices in 6G systems may not need to be charged separately. In addition, new network characteristics in 6G may be as follows.
- 위성 통합 네트워크(Satellites integrated network): 글로벌 모바일 집단을 제공하기 위해 6G는 위성과 통합될 것으로 예상된다. 지상파, 위성 및 공중 네트워크를 하나의 무선통신 시스템으로 통합은 6G에 매우 중요할 수 있다.- Satellites integrated network: 6G is expected to be integrated with satellites to provide a global mobile population. The integration of terrestrial, satellite and public networks into one wireless communication system could be very important for 6G.
- 연결된 인텔리전스(connected intelligence): 이전 세대의 무선 통신 시스템과 달리 6G는 혁신적이며, “연결된 사물”에서 "연결된 지능"으로 무선 진화가 업데이트될 것이다. AI는 통신 절차의 각 단계(또는 후술할 신호 처리의 각 절차)에서 적용될 수 있다.- Connected intelligence: Unlike previous generations of wireless communication systems, 6G is revolutionary and will update the evolution of wireless from “connected things” to “connected intelligence”. AI may be applied in each step of a communication procedure (or each procedure of signal processing to be described later).
- 무선 정보 및 에너지 전달의 완벽한 통합(seamless integration wireless information and energy transfer): 6G 무선 네트워크는 스마트폰들과 센서들과 같이 디바이스들의 배터리를 충전하기 위해 전력을 전달할 것이다. 그러므로, 무선 정보 및 에너지 전송 (WIET)은 통합될 것이다.- Seamless integration wireless information and energy transfer: The 6G wireless network will deliver power to charge the batteries of devices such as smartphones and sensors. Therefore, wireless information and energy transfer (WIET) will be integrated.
- 유비쿼터스 슈퍼 3D 연결(ubiquitous super 3-dimemtion connectivity): 드론 및 매우 낮은 지구 궤도 위성의 네트워크 및 핵심 네트워크 기능에 접속은 6G 유비쿼터스에서 슈퍼 3D 연결을 만들 것이다.- Ubiquitous super 3-dimemtion connectivity: access to networks and core network functions of drones and very low-Earth orbit satellites will create super 3D connectivity in 6G ubiquitous.
위와 같은 6G의 새로운 네트워크 특성들에서 몇 가지 일반적인 요구 사항은 다음과 같을 수 있다.In the above new network characteristics of 6G, some general requirements may be as follows.
- 스몰 셀 네트워크(small cell networks): 스몰 셀 네트워크의 아이디어는 셀룰러 시스템에서 처리량, 에너지 효율 및 스펙트럼 효율 향상의 결과로 수신 신호 품질을 향상시키기 위해 도입되었다. 결과적으로, 스몰 셀 네트워크는 5G 및 비욘드 5G (5GB) 이상의 통신 시스템에 필수적인 특성이다. 따라서, 6G 통신 시스템 역시 스몰 셀 네트워크의 특성을 채택한다.- Small cell networks: The idea of small cell networks was introduced to improve the received signal quality as a result of improved throughput, energy efficiency and spectral efficiency in cellular systems. As a result, small cell networks are essential characteristics for communication systems beyond 5G and Beyond 5G (5GB). Accordingly, the 6G communication system also adopts the characteristics of the small cell network.
- 초 고밀도 이기종 네트워크(ultra-dense heterogeneous network): 초 고밀도 이기종 네트워크들은 6G 통신 시스템의 또 다른 중요한 특성이 될 것이다. 이기종 네트워크로 구성된 멀티-티어 네트워크는 전체 QoS를 개선하고 비용을 줄인다.- Ultra-dense heterogeneous network: Ultra-dense heterogeneous networks will be another important characteristic of 6G communication system. A multi-tier network composed of heterogeneous networks improves overall QoS and reduces costs.
- 대용량 백홀(high-capacity backhaul): 백홀 연결은 대용량 트래픽을 지원하기 위해 대용량 백홀 네트워크로 특징 지어진다. 고속 광섬유 및 자유 공간 광학 (FSO) 시스템이 이 문제에 대한 가능한 솔루션일 수 있다.- high-capacity backhaul: The backhaul connection is characterized as a high-capacity backhaul network to support high-capacity traffic. High-speed fiber optics and free-space optics (FSO) systems may be possible solutions to this problem.
- 모바일 기술과 통합된 레이더 기술: 통신을 통한 고정밀 지역화(또는 위치 기반 서비스)는 6G 무선통신 시스템의 기능 중 하나이다. 따라서, 레이더 시스템은 6G 네트워크와 통합될 것이다.- Radar technology integrated with mobile technology: High-precision localization (or location-based service) through communication is one of the functions of the 6G wireless communication system. Therefore, the radar system will be integrated with the 6G network.
- 소프트화 및 가상화(softwarization and virtualization): 소프트화 및 가상화는 유연성, 재구성성 및 프로그래밍 가능성을 보장하기 위해 5GB 네트워크에서 설계 프로세스의 기초가 되는 두 가지 중요한 기능이다. 또한, 공유 물리적 인프라에서 수십억 개의 장치가 공유될 수 있다.- Softwarization and virtualization: Softening and virtualization are two important functions that underlie the design process in 5GB networks to ensure flexibility, reconfigurability and programmability. In addition, billions of devices can be shared in a shared physical infrastructure.
6G 시스템의 핵심 구현 기술Core implementation technology of 6G system
- 인공 지능(artificial Intelligence, AI)- Artificial Intelligence (AI)
6G 시스템에 가장 중요하며, 새로 도입될 기술은 AI이다. 4G 시스템에는 AI가 관여하지 않았다. 5G 시스템은 부분 또는 매우 제한된 AI를 지원할 것이다. 그러나, 6G 시스템은 완전히 자동화를 위해 AI가 지원될 것이다. 머신 러닝의 발전은 6G에서 실시간 통신을 위해 보다 지능적인 네트워크를 만들 것이다. 통신에 AI를 도입하면 실시간 데이터 전송이 간소화되고 향상될 수 있다. AI는 수많은 분석을 사용하여 복잡한 대상 작업이 수행되는 방식을 결정할 수 있다. 즉, AI는 효율성을 높이고 처리 지연을 줄일 수 있다.The most important and newly introduced technology for 6G systems is AI. AI was not involved in the 4G system. 5G systems will support partial or very limited AI. However, the 6G system will be AI-enabled for full automation. Advances in machine learning will create more intelligent networks for real-time communication in 6G. Incorporating AI into communications can simplify and enhance real-time data transmission. AI can use numerous analytics to determine how complex target tasks are performed. In other words, AI can increase efficiency and reduce processing delays.
핸드 오버, 네트워크 선택, 자원 스케줄링과 같은 시간 소모적인 작업은 AI를 사용함으로써 즉시 수행될 수 있다. AI는 M2M, 기계-대-인간 및 인간-대-기계 통신에서도 중요한 역할을 할 수 있다. 또한, AI는 BCI(brain computer interface)에서 신속한 통신이 될 수 있다. AI 기반 통신 시스템은 메타 물질, 지능형 구조, 지능형 네트워크, 지능형 장치, 지능형 인지 라디오(radio), 자체 유지 무선 네트워크 및 머신 러닝에 의해 지원될 수 있다.Time-consuming tasks such as handovers, network selection, and resource scheduling can be performed instantly by using AI. AI can also play an important role in M2M, machine-to-human and human-to-machine communication. In addition, AI can be a rapid communication in the BCI (brain computer interface). AI-based communication systems can be supported by metamaterials, intelligent structures, intelligent networks, intelligent devices, intelligent cognitive radios, self-sustaining wireless networks, and machine learning.
최근 AI를 무선 통신 시스템과 통합하려고 하는 시도들이 나타나고 있으나, 이는 어플리케이션 계층(application layer), 네트워크 계층(network layer) 특히, 딥 러닝은 무선 자원 관리 및 할당(wireless resource management and allocation) 분야에 집중되어 왔다. 그러나, 이러한 연구는 점점 MAC 계층 및 물리 계층으로 발전하고 있으며, 특히 물리계층에서 딥 러닝을 무선 전송(wireless transmission)과 결합하고자 하는 시도들이 나타나고 있다. AI 기반의 물리계층 전송은, 근본적인 신호 처리 및 통신 메커니즘에 있어서, 전통적인 통신 프레임워크가 아니라 AI 드라이버에 기초한 신호 처리 및 통신 메커니즘을 적용하는 것을 의미한다. 예를 들어, 딥러닝 기반의 채널 코딩 및 디코딩(channel coding and decoding), 딥러닝 기반의 신호 추정(estimation) 및 검출(detection), 딥러닝 기반의 MIMO(multiple input multiple output) 매커니즘(mechanism), AI 기반의 자원 스케줄링(scheduling) 및 할당(allocation) 등을 포함할 수 있다.Recently, attempts have been made to integrate AI with wireless communication systems, but these are the application layer, network layer, and especially deep learning focused on wireless resource management and allocation. come. However, these studies are gradually developing into the MAC layer and the physical layer, and attempts are being made to combine deep learning with wireless transmission, particularly in the physical layer. AI-based physical layer transmission means applying a signal processing and communication mechanism based on an AI driver rather than a traditional communication framework in a fundamental signal processing and communication mechanism. For example, deep learning-based channel coding and decoding, deep learning-based signal estimation and detection, deep learning-based multiple input multiple output (MIMO) mechanism, It may include AI-based resource scheduling and allocation.
머신 러닝은 채널 추정 및 채널 트래킹을 위해 사용될 수 있으며, DL(downlink)의 물리 계층(physical layer)에서 전력 할당(power allocation), 간섭 제거(interference cancellation) 등에 사용될 수 있다. 또한, 머신 러닝은 MIMO 시스템에서 안테나 선택, 전력 제어(power control), 심볼 검출(symbol detection) 등에도 사용될 수 있다.Machine learning may be used for channel estimation and channel tracking, and may be used for power allocation, interference cancellation, and the like in a physical layer of a downlink (DL). In addition, machine learning may be used for antenna selection, power control, symbol detection, and the like in a MIMO system.
그러나 물리계층에서의 전송을 위한 DNN의 적용은 아래와 같은 문제점이 있을 수 있다.However, the application of DNN for transmission in the physical layer may have the following problems.
딥러닝 기반의 AI 알고리즘은 훈련 파라미터를 최적화하기 위해 수많은 훈련 데이터가 필요하다. 그러나 특정 채널 환경에서의 데이터를 훈련 데이터로 획득하는데 있어서의 한계로 인해, 오프라인 상에서 많은 훈련 데이터를 사용한다. 이는 특정 채널 환경에서 훈련 데이터에 대한 정적 훈련(static training)은, 무선 채널의 동적 특성 및 다이버시티(diversity) 사이에 모순(contradiction)이 생길 수 있다.Deep learning-based AI algorithms require large amounts of training data to optimize training parameters. However, due to a limitation in acquiring data in a specific channel environment as training data, a lot of training data is used offline. This is because static training on training data in a specific channel environment may cause a contradiction between dynamic characteristics and diversity of a wireless channel.
또한, 현재 딥 러닝은 주로 실제 신호(real signal)을 대상으로 한다. 그러나, 무선 통신의 물리 계층의 신호들은 복소 신호(complex signal)로 표현될 수 있다. 무선 통신 신호의 특성을 매칭시키기 위해 복소(complex) 도메인 신호를 검출하는 신경망(neural network)에 대한 연구가 더 필요하다.In addition, current deep learning mainly targets real signals. However, signals of a physical layer of wireless communication may be expressed as complex signals. In order to match the characteristics of a wireless communication signal, further research on a neural network for detecting a complex domain signal is needed.
이하, 머신 러닝에 대해 보다 구체적으로 살펴본다.Hereinafter, machine learning will be described in more detail.
머신 러닝은 사람이 할 수 있거나 혹은 하기 어려운 작업을 대신해낼 수 있는 기계를 만들어 내기 위해 기계를 학습시키는 일련의 동작을 의미한다. 머신 러닝을 위해서는 데이터와 러닝 모델이 필요하다. 머신 러닝에서 데이터의 학습 방법은 크게 3가지 즉, 지도 학습(supervised learning), 비지도 학습(unsupervised learning) 그리고 강화 학습(reinforcement learning)으로 구분될 수 있다.Machine learning refers to a set of operations that trains a machine to create a machine that can perform tasks that humans can or cannot do. Machine learning requires data and a learning model. In machine learning, data learning methods can be roughly divided into three types: supervised learning, unsupervised learning, and reinforcement learning.
신경망 학습은 출력의 오류를 최소화하기 위한 것이다. 신경망 학습은 반복적으로 학습 데이터를 신경망에 입력시키고 학습 데이터에 대한 신경망의 출력과 타겟의 에러를 계산하고, 에러를 줄이기 위한 방향으로 신경망의 에러를 신경망의 출력 레이어에서부터 입력 레이어 방향으로 역전파(backpropagation) 하여 신경망의 각 노드의 가중치를 업데이트하는 과정이다.Neural network learning is to minimize output errors. Neural network learning repeatedly inputs training data into the neural network, calculates the output and target errors of the neural network for the training data, and backpropagates the neural network error from the output layer of the neural network to the input layer in the direction to reduce the error. ) to update the weight of each node in the neural network.
지도 학습은 학습 데이터에 정답이 라벨링된 학습 데이터를 사용하며 비지도 학습은 학습 데이터에 정답이 라벨링되어 있지 않을 수 있다. 즉, 예를 들어 데이터 분류에 관한 지도 학습의 경우의 학습 데이터는 학습 데이터 각각에 카테고리가 라벨링된 데이터 일 수 있다. 라벨링된 학습 데이터가 신경망에 입력되고 신경망의 출력(카테고리)과 학습 데이터의 라벨을 비교하여 오차(error)가 계산될 수 있다. 계산된 오차는 신경망에서 역방향(즉, 출력 레이어에서 입력 레이어 방향)으로 역전파 되며, 역전파에 따라 신경망의 각 레이어의 각 노드들의 연결 가중치가 업데이트 될 수 있다. 업데이트 되는 각 노드의 연결 가중치는 학습률(learning rate)에 따라 변화량이 결정될 수 있다. 입력 데이터에 대한 신경망의 계산과 에러의 역전파는 학습 사이클(epoch)을 구성할 수 있다. 학습률은 신경망의 학습 사이클의 반복 횟수에 따라 상이하게 적용될 수 있다. 예를 들어, 신경망의 학습 초기에는 높은 학습률을 사용하여 신경망이 빠르게 일정 수준의 성능을 확보하도록 하여 효율성을 높이고, 학습 후기에는 낮은 학습률을 사용하여 정확도를 높일 수 있다Supervised learning uses training data in which the correct answer is labeled in the training data, and in unsupervised learning, the correct answer may not be labeled in the training data. That is, for example, learning data in the case of supervised learning related to data classification may be data in which categories are labeled for each of the training data. The labeled training data is input to the neural network, and an error can be calculated by comparing the output (category) of the neural network with the label of the training data. The calculated error is back propagated in the reverse direction (ie, from the output layer to the input layer) in the neural network, and the connection weight of each node of each layer of the neural network may be updated according to the back propagation. The change amount of the connection weight of each node to be updated may be determined according to a learning rate. The computation of the neural network on the input data and the backpropagation of errors can constitute a learning cycle (epoch). The learning rate may be applied differently depending on the number of repetitions of the learning cycle of the neural network. For example, in the early stage of learning a neural network, a high learning rate can be used to increase the efficiency by allowing the neural network to quickly obtain a certain level of performance, and in the late learning period, a low learning rate can be used to increase the accuracy.
데이터의 특징에 따라 학습 방법은 달라질 수 있다. 예를 들어, 통신 시스템 상에서 송신단에서 전송한 데이터를 수신단에서 정확하게 예측하는 것을 목적으로 하는 경우, 비지도 학습 또는 강화 학습 보다는 지도 학습을 이용하여 학습을 수행하는 것이 바람직하다.The learning method may vary depending on the characteristics of the data. For example, when the purpose of accurately predicting data transmitted from a transmitter in a communication system is at a receiver, it is preferable to perform learning using supervised learning rather than unsupervised learning or reinforcement learning.
러닝 모델은 인간의 뇌에 해당하는 것으로서, 가장 기본적인 선형 모델을 생각할 수 있으나, 인공 신경망(artificial neural networks)와 같은 복잡성이 높은 신경망 구조를 러닝 모델로 사용하는 머신 러닝의 패러다임을 딥러닝(deep learning)이라 한다.The learning model corresponds to the human brain, and the most basic linear model can be considered. ) is called
학습(learning) 방식으로 사용하는 신경망 코어(neural network cord)는 크게 심층 신경망(deep neural networks, DNN), 합성곱 신경망(convolutional deep neural networks, CNN), 순환 신경망(recurrent boltzmann machine, RNN) 방식이 있으며, 이러한 러닝 모델이 적용될 수 있다.The neural network cord used as a learning method is largely divided into deep neural networks (DNN), convolutional deep neural networks (CNN), and recurrent boltzmann machine (RNN) methods. and such a learning model can be applied.
THz(Terahertz) 통신THz (Terahertz) communication
6G 시스템에서 THz 통신이 적용될 수 있다. 일 예로, 데이터 전송률은 대역폭을 늘려 높일 수 있다. 이것은 넓은 대역폭으로 sub-THz 통신을 사용하고, 진보된 대규모 MIMO 기술을 적용하여 수행될 수 있다. THz communication may be applied in the 6G system. For example, the data rate may be increased by increasing the bandwidth. This can be accomplished by using sub-THz communication with a wide bandwidth and applying advanced large-scale MIMO technology.
도 16은 본 개시에 적용 가능한 전자기 스펙트럼을 도시한 도면이다. 일 예로, 도 16을 참조하면, 밀리미터 이하의 방사선으로도 알려진 THz파는 일반적으로 0.03mm-3mm 범위의 해당 파장을 가진 0.1THz와 10THz 사이의 주파수 대역을 나타낸다. 100GHz-300GHz 대역 범위(Sub THz 대역)는 셀룰러 통신을 위한 THz 대역의 주요 부분으로 간주된다. Sub-THz 대역 mmWave 대역에 추가하면 6G 셀룰러 통신 용량은 늘어난다. 정의된 THz 대역 중 300GHz-3THz는 원적외선 (IR) 주파수 대역에 있다. 300GHz-3THz 대역은 광 대역의 일부이지만 광 대역의 경계에 있으며, RF 대역 바로 뒤에 있다. 따라서, 이 300 GHz-3THz 대역은 RF와 유사성을 나타낸다.16 is a diagram illustrating an electromagnetic spectrum applicable to the present disclosure. As an example, referring to FIG. 16 , a THz wave, also known as sub-millimeter radiation, generally represents a frequency band between 0.1 THz and 10 THz with a corresponding wavelength in the range of 0.03 mm-3 mm. The 100GHz-300GHz band range (Sub THz band) is considered a major part of the THz band for cellular communication. Sub-THz band Addition to mmWave band increases 6G cellular communication capacity. Among the defined THz bands, 300GHz-3THz is in the far-infrared (IR) frequency band. The 300GHz-3THz band is part of the broadband, but at the edge of the wideband, just behind the RF band. Thus, this 300 GHz-3THz band shows similarities to RF.
THz 통신의 주요 특성은 (i) 매우 높은 데이터 전송률을 지원하기 위해 광범위하게 사용 가능한 대역폭, (ii) 고주파에서 발생하는 높은 경로 손실 (고 지향성 안테나는 필수 불가결)을 포함한다. 높은 지향성 안테나에서 생성된 좁은 빔 폭은 간섭을 줄인다. THz 신호의 작은 파장은 훨씬 더 많은 수의 안테나 소자가 이 대역에서 동작하는 장치 및 BS에 통합될 수 있게 한다. 이를 통해 범위 제한을 극복할 수 있는 고급 적응형 배열 기술을 사용할 수 있다. The main characteristics of THz communication include (i) widely available bandwidth to support very high data rates, and (ii) high path loss occurring at high frequencies (high directional antennas are indispensable). The narrow beamwidth produced by the highly directional antenna reduces interference. The small wavelength of the THz signal allows a much larger number of antenna elements to be integrated into devices and BSs operating in this band. This allows the use of advanced adaptive nesting techniques that can overcome range limitations.
광 무선 기술(optical wireless technology)optical wireless technology
OWC(optical wireless communication) 기술은 가능한 모든 장치-대-액세스 네트워크를 위한 RF 기반 통신 외에도 6G 통신을 위해 계획되었다. 이러한 네트워크는 네트워크-대-백홀/프론트홀 네트워크 연결에 접속한다. OWC 기술은 4G 통신 시스템 이후 이미 사용되고 있으나 6G 통신 시스템의 요구를 충족시키기 위해 더 널리 사용될 것이다. 광 충실도(light fidelity), 가시광 통신, 광 카메라 통신 및 광 대역에 기초한 FSO(free space optical) 통신과 같은 OWC 기술은 이미 잘 알려진 기술이다. 광 무선 기술 기반의 통신은 매우 높은 데이터 속도, 낮은 지연 시간 및 안전한 통신을 제공할 수 있다. LiDAR(light detection and ranging) 또한 광 대역을 기반으로 6G 통신에서 초 고해상도 3D 매핑을 위해 이용될 수 있다.Optical wireless communication (OWC) technology is envisaged for 6G communication in addition to RF-based communication for all possible device-to-access networks. These networks connect to network-to-backhaul/fronthaul network connections. OWC technology has already been used since the 4G communication system, but will be used more widely to meet the needs of the 6G communication system. OWC technologies such as light fidelity, visible light communication, optical camera communication, and free space optical (FSO) communication based on a light band are well known technologies. Communication based on optical radio technology can provide very high data rates, low latency and secure communication. Light detection and ranging (LiDAR) can also be used for ultra-high-resolution 3D mapping in 6G communication based on a wide band.
FSO 백홀 네트워크FSO backhaul network
FSO 시스템의 송신기 및 수신기 특성은 광섬유 네트워크의 특성과 유사하다. 따라서, FSO 시스템의 데이터 전송은 광섬유 시스템과 비슷하다. 따라서, FSO는 광섬유 네트워크와 함께 6G 시스템에서 백홀 연결을 제공하는 좋은 기술이 될 수 있다. FSO를 사용하면, 10,000km 이상의 거리에서도 매우 장거리 통신이 가능하다. FSO는 바다, 우주, 수중, 고립된 섬과 같은 원격 및 비원격 지역을 위한 대용량 백홀 연결을 지원한다. FSO는 셀룰러 기지국 연결도 지원한다.The transmitter and receiver characteristics of an FSO system are similar to those of a fiber optic network. Thus, data transmission in an FSO system is similar to that of a fiber optic system. Therefore, FSO can be a good technology to provide backhaul connectivity in 6G systems along with fiber optic networks. Using FSO, very long-distance communication is possible even at distances of 10,000 km or more. FSO supports high-capacity backhaul connections for remote and non-remote areas such as sea, space, underwater, and isolated islands. FSO also supports cellular base station connectivity.
대규모 MIMO 기술Massive MIMO technology
스펙트럼 효율을 향상시키는 핵심 기술 중 하나는 MIMO 기술을 적용하는 것이다. MIMO 기술이 향상되면 스펙트럼 효율도 향상된다. 따라서, 6G 시스템에서 대규모 MIMO 기술이 중요할 것이다. MIMO 기술은 다중 경로를 이용하기 때문에 데이터 신호가 하나 이상의 경로로 전송될 수 있도록 다중화 기술 및 THz 대역에 적합한 빔 생성 및 운영 기술도 중요하게 고려되어야 한다.One of the key technologies to improve spectral efficiency is to apply MIMO technology. As MIMO technology improves, so does the spectral efficiency. Therefore, large-scale MIMO technology will be important in 6G systems. Since the MIMO technology uses multiple paths, a multiplexing technique and a beam generation and operation technique suitable for the THz band should also be considered important so that a data signal can be transmitted through one or more paths.
블록 체인blockchain
블록 체인은 미래의 통신 시스템에서 대량의 데이터를 관리하는 중요한 기술이 될 것이다. 블록 체인은 분산 원장 기술의 한 형태로서, 분산 원장은 수많은 노드 또는 컴퓨팅 장치에 분산되어 있는 데이터베이스이다. 각 노드는 동일한 원장 사본을 복제하고 저장한다. 블록 체인은 P2P(peer to peer) 네트워크로 관리된다. 중앙 집중식 기관이나 서버에서 관리하지 않고 존재할 수 있다. 블록 체인의 데이터는 함께 수집되어 블록으로 구성된다. 블록은 서로 연결되고 암호화를 사용하여 보호된다. 블록 체인은 본질적으로 향상된 상호 운용성(interoperability), 보안, 개인 정보 보호, 안정성 및 확장성을 통해 대규모 IoT를 완벽하게 보완한다. 따라서, 블록 체인 기술은 장치 간 상호 운용성, 대용량 데이터 추적성, 다른 IoT 시스템의 자율적 상호 작용 및 6G 통신 시스템의 대규모 연결 안정성과 같은 여러 기능을 제공한다.Blockchain will become an important technology for managing large amounts of data in future communication systems. Blockchain is a form of distributed ledger technology, which is a database distributed across numerous nodes or computing devices. Each node replicates and stores an identical copy of the ledger. The blockchain is managed as a peer-to-peer (P2P) network. It can exist without being managed by a centralized authority or server. Data on the blockchain is collected together and organized into blocks. Blocks are linked together and protected using encryption. Blockchain in nature perfectly complements IoT at scale with improved interoperability, security, privacy, reliability and scalability. Therefore, blockchain technology provides several features such as interoperability between devices, traceability of large amounts of data, autonomous interaction of different IoT systems, and large-scale connection stability of 6G communication systems.
3D 네트워킹3D Networking
6G 시스템은 지상 및 공중 네트워크를 통합하여 수직 확장의 사용자 통신을 지원한다. 3D BS는 저궤도 위성 및 UAV를 통해 제공될 것이다. 고도 및 관련 자유도 측면에서 새로운 차원을 추가하면 3D 연결이 기존 2D 네트워크와 상당히 다르다.The 6G system integrates terrestrial and public networks to support vertical expansion of user communications. 3D BS will be provided via low orbit satellites and UAVs. Adding a new dimension in terms of elevation and associated degrees of freedom makes 3D connections significantly different from traditional 2D networks.
양자 커뮤니케이션quantum communication
6G 네트워크의 맥락에서 네트워크의 감독되지 않은 강화 학습이 유망하다. 지도 학습 방식은 6G에서 생성된 방대한 양의 데이터에 레이블을 지정할 수 없다. 비지도 학습에는 라벨링이 필요하지 않다. 따라서, 이 기술은 복잡한 네트워크의 표현을 자율적으로 구축하는 데 사용할 수 있다. 강화 학습과 비지도 학습을 결합하면 진정한 자율적인 방식으로 네트워크를 운영할 수 있다.In the context of 6G networks, unsupervised reinforcement learning of networks is promising. Supervised learning methods cannot label the massive amounts of data generated by 6G. Unsupervised learning does not require labeling. Thus, this technique can be used to autonomously build representations of complex networks. Combining reinforcement learning and unsupervised learning allows networks to operate in a truly autonomous way.
무인 항공기drone
UAV(unmanned aerial vehicle) 또는 드론은 6G 무선 통신에서 중요한 요소가 될 것이다. 대부분의 경우, UAV 기술을 사용하여 고속 데이터 무선 연결이 제공된다. 기지국 엔티티는 셀룰러 연결을 제공하기 위해 UAV에 설치된다. UAV는 쉬운 배치, 강력한 가시선 링크 및 이동성이 제어되는 자유도와 같은 고정 기지국 인프라에서 볼 수 없는 특정 기능을 가지고 있다. 천재 지변 등의 긴급 상황 동안, 지상 통신 인프라의 배치는 경제적으로 실현 가능하지 않으며, 때로는 휘발성 환경에서 서비스를 제공할 수 없다. UAV는 이러한 상황을 쉽게 처리할 수 있다. UAV는 무선 통신 분야의 새로운 패러다임이 될 것이다. 이 기술은 eMBB, URLLC 및 mMTC 인 무선 네트워크의 세 가지 기본 요구 사항을 용이하게 한다. UAV는 또한, 네트워크 연결성 향상, 화재 감지, 재난 응급 서비스, 보안 및 감시, 오염 모니터링, 주차 모니터링, 사고 모니터링 등과 같은 여러 가지 목적을 지원할 수 있다. 따라서, UAV 기술은 6G 통신에 가장 중요한 기술 중 하나로 인식되고 있다.Unmanned aerial vehicles (UAVs) or drones will become an important element in 6G wireless communications. In most cases, high-speed data wireless connections are provided using UAV technology. A base station entity is installed in the UAV to provide cellular connectivity. UAVs have certain features not found in fixed base station infrastructure, such as easy deployment, strong line-of-sight links, and degrees of freedom with controlled mobility. During emergencies such as natural disasters, the deployment of terrestrial communications infrastructure is not economically feasible and sometimes cannot provide services in volatile environments. A UAV can easily handle this situation. UAV will become a new paradigm in the field of wireless communication. This technology facilitates the three basic requirements of wireless networks: eMBB, URLLC and mMTC. UAVs can also serve several purposes, such as improving network connectivity, fire detection, disaster emergency services, security and surveillance, pollution monitoring, parking monitoring, incident monitoring, and more. Therefore, UAV technology is recognized as one of the most important technologies for 6G communication.
셀-프리 통신(cell-free Communication)Cell-free Communication
여러 주파수와 이기종 통신 기술의 긴밀한 통합은 6G 시스템에서 매우 중요하다. 결과적으로, 사용자는 디바이스에서 어떤 수동 구성을 만들 필요 없이 네트워크에서 다른 네트워크로 원활하게 이동할 수 있다. 사용 가능한 통신 기술에서 최상의 네트워크가 자동으로 선택된다. 이것은 무선 통신에서 셀 개념의 한계를 깨뜨릴 것이다. 현재, 하나의 셀에서 다른 셀로의 사용자 이동은 고밀도 네트워크에서 너무 많은 핸드 오버를 야기하고, 핸드 오버 실패, 핸드 오버 지연, 데이터 손실 및 핑퐁 효과를 야기한다. 6G 셀-프리 통신은 이 모든 것을 극복하고 더 나은 QoS를 제공할 것이다. 셀-프리 통신은 멀티 커넥티비티 및 멀티-티어 하이브리드 기술과 장치의 서로 다른 이기종 라디오를 통해 달성될 것이다.Tight integration of multiple frequencies and heterogeneous communication technologies is very important in 6G systems. As a result, users can seamlessly move from one network to another without having to make any manual configuration on the device. The best network is automatically selected from the available communication technologies. This will break the limitations of the cell concept in wireless communication. Currently, user movement from one cell to another causes too many handovers in high-density networks, causing handover failures, handover delays, data loss and ping-pong effects. 6G cell-free communication will overcome all of this and provide better QoS. Cell-free communication will be achieved through multi-connectivity and multi-tier hybrid technologies and different heterogeneous radios of devices.
무선 정보 및 에너지 전송 통합(wireless information and energy transfer, WIET)Wireless information and energy transfer (WIET)
WIET은 무선 통신 시스템과 같이 동일한 필드와 웨이브(wave)를 사용한다. 특히, 센서와 스마트폰은 통신 중 무선 전력 전송을 사용하여 충전될 것이다. WIET은 배터리 충전 무선 시스템의 수명을 연장하기 위한 유망한 기술이다. 따라서, 배터리가 없는 장치는 6G 통신에서 지원될 것이다.WIET uses the same fields and waves as wireless communication systems. In particular, the sensor and smartphone will be charged using wireless power transfer during communication. WIET is a promising technology for extending the life of battery-charging wireless systems. Therefore, devices without batteries will be supported in 6G communication.
센싱과 커뮤니케이션의 통합Integration of sensing and communication
*자율 무선 네트워크는 동적으로 변화하는 환경 상태를 지속적으로 감지하고 서로 다른 노드간에 정보를 교환할 수 있는 기능이다. 6G에서, 감지는 자율 시스템을 지원하기 위해 통신과 긴밀하게 통합될 것이다.*Autonomous wireless network is a function that can continuously detect dynamically changing environmental conditions and exchange information between different nodes. In 6G, sensing will be tightly integrated with communications to support autonomous systems.
액세스 백홀 네트워크의 통합Consolidation of access backhaul networks
6G에서 액세스 네트워크의 밀도는 엄청날 것이다. 각 액세스 네트워크는 광섬유와 FSO 네트워크와 같은 백홀 연결로 연결된다. 매우 많은 수의 액세스 네트워크들에 대처하기 위해, 액세스 및 백홀 네트워크 사이에 긴밀한 통합이 있을 것이다.The density of access networks in 6G will be enormous. Each access network is connected by backhaul connections such as fiber optic and FSO networks. To cope with a very large number of access networks, there will be tight integration between the access and backhaul networks.
홀로그램 빔포밍holographic beamforming
빔포밍은 특정 방향으로 무선 신호를 전송하기 위해 안테나 배열을 조정하는 신호 처리 절차이다. 스마트 안테나 또는 진보된 안테나 시스템의 하위 집합이다. 빔포밍 기술은 높은 신호 대 잡음비, 간섭 방지 및 거부, 높은 네트워크 효율과 같은 몇 가지 장점이 있다. 홀로그램 빔포밍(hologram beamforming, HBF)은 소프트웨어-정의된 안테나를 사용하기 때문에 MIMO 시스템과 상당히 다른 새로운 빔포밍 방법이다. HBF는 6G에서 다중 안테나 통신 장치에서 신호의 효율적이고 유연한 전송 및 수신을 위해 매우 효과적인 접근 방식이 될 것이다.Beamforming is a signal processing procedure that adjusts an antenna array to transmit a radio signal in a specific direction. A smart antenna or a subset of an advanced antenna system. Beamforming technology has several advantages, such as high signal-to-noise ratio, interference prevention and rejection, and high network efficiency. Hologram beamforming (HBF) is a new beamforming method that is significantly different from MIMO systems because it uses a software-defined antenna. HBF will be a very effective approach for efficient and flexible transmission and reception of signals in multi-antenna communication devices in 6G.
빅 데이터 분석Big Data Analytics
빅 데이터 분석은 다양한 대규모 데이터 세트 또는 빅 데이터를 분석하기 위한 복잡한 프로세스이다. 이 프로세스는 숨겨진 데이터, 알 수 없는 상관 관계 및 고객 성향과 같은 정보를 찾아 완벽한 데이터 관리를 보장한다. 빅 데이터는 비디오, 소셜 네트워크, 이미지 및 센서와 같은 다양한 소스에서 수집된다. 이 기술은 6G 시스템에서 방대한 데이터를 처리하는 데 널리 사용된다.Big data analytics is a complex process for analyzing various large data sets or big data. This process ensures complete data management by finding information such as hidden data, unknown correlations and customer propensity. Big data is gathered from a variety of sources such as videos, social networks, images and sensors. This technology is widely used to process massive amounts of data in 6G systems.
LIS(large intelligent surface)LIS (large intelligent surface)
THz 대역 신호의 경우 직진성이 강하여 방해물로 인한 음영 지역이 많이 생길 수 있는데, 이러한 음영 지역 근처에 LIS 설치함으로써 통신 권역을 확대하고 통신 안정성 강화 및 추가적인 부가 서비스가 가능한 LIS 기술이 중요하게 된다. LIS는 전자기 물질(electromagnetic materials)로 만들어진 인공 표면(artificial surface)이고, 들어오는 무선파와 나가는 무선파의 전파(propagation)을 변경시킬 수 있다. LIS는 매시브 MIMO의 확장으로 보여질 수 있으나, 매시브 MIMO와 서로 다른 어레이(array) 구조 및 동작 메커니즘이 다르다. 또한, LIS는 수동 엘리먼트(passive elements)를 가진 재구성 가능한 리플렉터(reflector)로서 동작하는 점 즉, 활성(active) RF 체인(chain)을 사용하지 않고 신호를 수동적으로만 반사(reflect)하는 점에서 낮은 전력 소비를 가지는 장점이 있다. 또한, LIS의 수동적인 리플렉터 각각은 입사되는 신호의 위상 편이를 독립적으로 조절해야 하기 때문에, 무선 통신 채널에 유리할 수 있다. LIS 컨트롤러를 통해 위상 편이를 적절히 조절함으로써, 반사된 신호는 수신된 신호 전력을 부스트(boost)하기 위해 타겟 수신기에서 모여질 수 있다.In the case of the THz band signal, the linearity is strong, so there may be many shaded areas due to obstructions. By installing the LIS near these shaded areas, the LIS technology that expands the communication area, strengthens communication stability and enables additional additional services becomes important. The LIS is an artificial surface made of electromagnetic materials, and can change the propagation of incoming and outgoing radio waves. LIS can be viewed as an extension of massive MIMO, but has a different array structure and operation mechanism from that of massive MIMO. In addition, LIS is low in that it operates as a reconfigurable reflector with passive elements, that is, only passively reflects the signal without using an active RF chain. It has the advantage of having power consumption. Also, since each of the passive reflectors of the LIS must independently adjust the phase shift of the incoming signal, it can be advantageous for a wireless communication channel. By properly adjusting the phase shift via the LIS controller, the reflected signal can be gathered at the target receiver to boost the received signal power.
테라헤 르츠(THz) 무선통신Terahertz (THz) wireless communication
도 17은 본 개시에 적용 가능한 THz 통신 방법을 도시한 도면이다. 17 is a diagram illustrating a THz communication method applicable to the present disclosure.
도 17을 참조하면, THz 무선통신은 대략 0.1~10THz(1THz=1012Hz)의 진동수를 가지는 THz파를 이용하여 무선통신을 이용하는 것으로, 100GHz 이상의 매우 높은 캐리어 주파수를 사용하는 테라헤르츠(THz) 대역 무선통신을 의미할 수 있다. THz파는 RF(Radio Frequency)/밀리미터(mm)와 적외선 대역 사이에 위치하며, (i) 가시광/적외선에 비해 비금속/비분극성 물질을 잘 투과하며 RF/밀리미터파에 비해 파장이 짧아 높은 직진성을 가지며 빔 집속이 가능할 수 있다. Referring to FIG. 17, THz wireless communication uses a THz wave having a frequency of approximately 0.1 to 10 THz (1 THz = 1012 Hz), and uses a very high carrier frequency of 100 GHz or more. It can mean communication. THz wave is located between RF (Radio Frequency)/millimeter (mm) and infrared band, (i) It transmits non-metal/non-polar material better than visible light/infrared light, and has a shorter wavelength than RF/millimeter wave, so it has high straightness. Beam focusing may be possible.
또한, THz파의 광자 에너지는 수 meV에 불과하기 때문에 인체에 무해한 특성이 있다. THz 무선통신에 이용될 것으로 기대되는 주파수 대역은 공기 중 분자 흡수에 의한 전파 손실이 작은 D-밴드(110GHz~170GHz) 혹은 H-밴드(220GHz~325GHz) 대역일 수 있다. THz 무선통신에 대한 표준화 논의는 3GPP 이외에도 IEEE 802.15 THz WG(working group)을 중심으로 논의되고 있으며, IEEE 802.15의 TG(task group)(예, TG3d, TG3e)에서 발행되는 표준문서는 본 명세서에서 설명되는 내용을 구체화하거나 보충할 수 있다. THz 무선통신은 무선 인식(wireless cognition), 센싱(sensing), 이미징(imaging), 무선 통신(wireless), THz 네비게이션(navigation) 등에 응용될 수 있다.In addition, since the photon energy of the THz wave is only a few meV, it is harmless to the human body. The frequency band expected to be used for THz wireless communication may be a D-band (110 GHz to 170 GHz) or H-band (220 GHz to 325 GHz) band with low propagation loss due to absorption of molecules in the air. Standardization discussion on THz wireless communication is being discussed centered on IEEE 802.15 THz working group (WG) in addition to 3GPP, and standard documents issued by TG (task group) (eg, TG3d, TG3e) of IEEE 802.15 are described in this specification. It can be specified or supplemented. THz wireless communication may be applied to wireless recognition, sensing, imaging, wireless communication, THz navigation, and the like.
구체적으로, 도 17을 참조하면, THz 무선통신 시나리오는 매크로 네트워크(macro network), 마이크로 네트워크(micro network), 나노스케일 네트워크(nanoscale network)로 분류될 수 있다. 매크로 네트워크에서 THz 무선통신은 V2V(vehicle-to-vehicle) 연결 및 백홀/프런트홀(backhaul/fronthaul) 연결에 응용될 수 있다. 마이크로 네트워크에서 THz 무선통신은 인도어 스몰 셀(small cell), 데이터 센터에서 무선 연결과 같은 고정된 point-to-point 또는 multi-point 연결, 키오스크 다운로딩과 같은 근거리 통신(near-field communication)에 응용될 수 있다. 하기 표 5는 THz 파에서 이용될 수 있는 기술의 일례를 나타낸 표이다.Specifically, referring to FIG. 17 , a THz wireless communication scenario may be classified into a macro network, a micro network, and a nanoscale network. In a macro network, THz wireless communication can be applied to a vehicle-to-vehicle (V2V) connection and a backhaul/fronthaul connection. THz wireless communication in micro networks is applied to indoor small cells, fixed point-to-point or multi-point connections such as wireless connections in data centers, and near-field communication such as kiosk downloading. can be Table 5 below is a table showing an example of a technique that can be used in the THz wave.
[표 5][Table 5]
Figure PCTKR2020011234-appb-I000014
Figure PCTKR2020011234-appb-I000014
도 18은 본 개시에 적용 가능한 THz 무선 통신 송수신기를 도시한 도면이다.18 is a diagram illustrating a THz wireless communication transceiver applicable to the present disclosure.
도 18을 참조하면, THz 무선통신은 THz 발생 및 수신을 위한 방법을 기준으로 분류할 수 있다. THz 발생 방법은 광 소자 또는 전자소자 기반 기술로 분류할 수 있다.Referring to FIG. 18 , THz wireless communication may be classified based on a method for generating and receiving THz. The THz generation method can be classified into an optical device or an electronic device-based technology.
이때, 전자 소자를 이용하여 THz를 발생시키는 방법은 공명 터널링 다이오드(resonant tunneling diode, RTD)와 같은 반도체 소자를 이용하는 방법, 국부 발진기와 체배기를 이용하는 방법, 화합물 반도체 HEMT(high electron mobility transistor) 기반의 집적회로를 이용한 MMIC(monolithic microwave integrated circuits) 방법, Si-CMOS 기반의 집적회로를 이용하는 방법 등이 있다. 도 18의 경우, 주파수를 높이기 위해 체배기(doubler, tripler, multiplier)가 적용되었고, 서브하모닉 믹서를 지나 안테나에 의해 방사된다. THz 대역은 높은 주파수를 형성하므로, 체배기가 필수적이다. 여기서, 체배기는 입력 대비 N배의 출력 주파수를 갖게 하는 회로이며, 원하는 하모닉 주파수에 정합시키고, 나머지 모든 주파수는 걸러낸다. 그리고, 도 18의 안테나에 배열 안테나 등이 적용되어 빔포밍이 구현될 수도 있다. 도 18에서, IF는 중간 주파수(intermediate frequency)를 나타내며, 트리플러(tripler), 멀리플러(multipler)는 체배기를 나타내며, PA는 전력 증폭기(power amplifier)를 나타내며, LNA는 저잡음 증폭기(low noise amplifier), PLL은 위상동기회로(phase-locked loop)를 나타낸다.In this case, the method of generating THz using an electronic device is a method using a semiconductor device such as a resonant tunneling diode (RTD), a method using a local oscillator and a multiplier, a compound semiconductor HEMT (high electron mobility transistor) based There are a monolithic microwave integrated circuit (MMIC) method using an integrated circuit, a method using a Si-CMOS-based integrated circuit, and the like. In the case of FIG. 18 , a doubler, tripler, or multiplier is applied to increase the frequency, and it is radiated by the antenna through the sub-harmonic mixer. Since the THz band forms a high frequency, a multiplier is essential. Here, the multiplier is a circuit that has an output frequency that is N times that of the input, matches the desired harmonic frequency, and filters out all other frequencies. Also, an array antenna or the like may be applied to the antenna of FIG. 18 to implement beamforming. In FIG. 18 , IF denotes an intermediate frequency, tripler, and multiplier denote a multiplier, PA denotes a power amplifier, and LNA denotes a low noise amplifier. ), PLL represents a phase-locked loop.
도 19는 본 개시에 적용 가능한 THz 신호 생성 방법을 도시한 도면이다. 또한, 도 20은 본 개시에 적용 가능한 무선 통신 송수신기를 도시한 도면이다.19 is a diagram illustrating a method for generating a THz signal applicable to the present disclosure. In addition, FIG. 20 is a diagram illustrating a wireless communication transceiver applicable to the present disclosure.
도 19 및 도 20을 참조하면, 광 소자 기반 THz 무선통신 기술은 광소자를 이용하여 THz 신호를 발생 및 변조하는 방법을 말한다. 광 소자 기반 THz 신호 생성 기술은 레이저와 광변조기 등을 이용하여 초고속 광신호를 생성하고, 이를 초고속 광검출기를 이용하여 THz 신호로 변환하는 기술이다. 이 기술은 전자 소자만을 이용하는 기술에 비해 주파수를 증가시키기가 용이하고, 높은 전력의 신호 생성이 가능하며, 넓은 주파수 대역에서 평탄한 응답 특성을 얻을 수 있다. 광소자 기반 THz 신호 생성을 위해서는 도 19에 도시된 바와 같이, 레이저 다이오드, 광대역 광변조기, 초고속 광검출기가 필요하다. 도 19의 경우, 파장이 다른 두 레이저의 빛 신호를 합파하여 레이저 간의 파장 차이에 해당하는 THz 신호를 생성하는 것이다. 도 19에서, 광 커플러(optical coupler)는 회로 또는 시스템 간의 전기적 절연과의 결합을 제공하기 위해 광파를 사용하여 전기신호를 전송하도록 하는 반도체 디바이스를 의미하며, UTC-PD(uni-travelling carrier photo-detector)은 광 검출기의 하나로서, 능동 캐리어(active carrier)로 전자를 사용하며 밴드갭 그레이딩(bandgap grading)으로 전자의 이동 시간을 감소시킨 소자이다. UTC-PD는 150GHz 이상에서 광검출이 가능하다. 도 20에서, EDFA(erbium-doped fiber amplifier)는 어븀이 첨가된 광섬유 증폭기를 나타내며, PD(photo detector)는 광신호를 전기신호로 변환할 수 있는 반도체 디바이스를 나타내며, OSA는 각종 광통신 기능(예, 광전 변환, 전광 변환 등)을 하나의 부품으로 모듈화시킨 광모듈(optical sub assembly)를 나타내며, DSO는 디지털 스토리지 오실로스코프(digital storage oscilloscope)를 나타낸다.19 and 20 , the optical device-based THz wireless communication technology refers to a method of generating and modulating a THz signal using an optical device. The optical element-based THz signal generation technology is a technology that generates a high-speed optical signal using a laser and an optical modulator, and converts it into a THz signal using an ultra-high-speed photodetector. In this technology, it is easier to increase the frequency compared to the technology using only electronic devices, it is possible to generate a high-power signal, and it is possible to obtain a flat response characteristic in a wide frequency band. As shown in FIG. 19 , a laser diode, a broadband optical modulator, and a high-speed photodetector are required to generate a THz signal based on an optical device. In the case of FIG. 19 , a THz signal corresponding to a difference in wavelength between the lasers is generated by multiplexing the light signals of two lasers having different wavelengths. In FIG. 19 , an optical coupler refers to a semiconductor device that transmits electrical signals using light waves to provide coupling with electrical insulation between circuits or systems, and UTC-PD (uni-travelling carrier photo- The detector) is one of the photodetectors, which uses electrons as active carriers and reduces the movement time of electrons by bandgap grading. UTC-PD is capable of photodetection above 150GHz. In FIG. 20 , an erbium-doped fiber amplifier (EDFA) indicates an erbium-doped optical fiber amplifier, a photo detector (PD) indicates a semiconductor device capable of converting an optical signal into an electrical signal, and the OSA indicates various optical communication functions (eg, , photoelectric conversion, electro-optical conversion, etc.) represents an optical module modularized into one component, and DSO represents a digital storage oscilloscope.
도 21은 본 개시에 적용 가능한 송신기 구조를 도시한 도면이다. 또한, 도 22는 본 개시에 적용 가능한 변조기 구조를 도시한 도면이다.21 is a diagram illustrating a structure of a transmitter applicable to the present disclosure. Also, FIG. 22 is a diagram illustrating a modulator structure applicable to the present disclosure.
도 21 및 도 22를 참조하면, 일반적으로 레이저(laser)의 광학 소스(optical source)를 광파 가이드(optical wave guide)를 통과시켜 신호의 위상(phase)등을 변화시킬 수 있다. 이때, 마이크로파 컨택트(microwave contact) 등을 통해 전기적 특성을 변화시킴으로써 데이터를 싣게 된다. 따라서, 광학 변조기 출력(optical modulator output)은 변조된(modulated) 형태의 파형으로 형성된다. 광전 변조기(O/E converter)는 비선형 크리스탈(nonlinear crystal)에 의한 광학 정류(optical rectification) 동작, 광전도 안테나(photoconductive antenna)에 의한 광전 변환(O/E conversion), 광속의 전자 다발(bunch of relativistic electrons)로부터의 방출(emission) 등에 따라 THz 펄스를 생성할 수 있다. 상기와 같은 방식으로 발생한 테라헤르츠 펄스(THz pulse)는 펨토 세컨드(femto second)부터 피코 세컨드(pico second)의 단위의 길이를 가질 수 있다. 광전 변환기(O/E converter)는 소자의 비선형성(non-linearity)을 이용하여, 하향 변환(Down conversion)을 수행한다. Referring to FIGS. 21 and 22 , in general, a phase of a signal may be changed by passing an optical source of a laser through an optical wave guide. At this time, data is loaded by changing electrical characteristics through microwave contact or the like. Accordingly, an optical modulator output is formed as a modulated waveform. The photoelectric modulator (O/E converter) is an optical rectification operation by a nonlinear crystal (nonlinear crystal), photoelectric conversion (O / E conversion) by a photoconductive antenna (photoconductive antenna), a bunch of electrons in the light beam (bunch of) THz pulses can be generated by, for example, emission from relativistic electrons. A terahertz pulse (THz pulse) generated in the above manner may have a length in units of femtoseconds to picoseconds. An O/E converter performs down conversion by using non-linearity of a device.
테라헤르츠 스펙트럼의 용도(THz spectrum usage)를 고려할 때, 테라헤르츠 시스템을 위해서 고정된(fixed) 또는 모바일 서비스(mobile service) 용도로써 여러 개의 연속적인 기가헤르츠(contiguous GHz)의 대역들(bands)을 사용할 가능성이 높다. 아웃도어(outdoor) 시나리오 기준에 의하면, 1THz까지의 스펙트럼에서 산소 감쇠(Oxygen attenuation) 10^2 dB/km를 기준으로 가용 대역폭(Bandwidth)이 분류될 수 있다. 이에 따라 상기 가용 대역폭이 여러 개의 밴드 청크(band chunk)들로 구성되는 프레임워크(framework)가 고려될 수 있다. 상기 프레임워크의 일 예시로 하나의 캐리어(carrier)에 대해 테라헤르츠 펄스(THz pulse)의 길이를 50ps로 설정한다면, 대역폭(BW)은 약 20GHz가 된다. Considering the THz spectrum usage, a number of contiguous GHz bands for fixed or mobile service use for the terahertz system are used. likely to use According to the outdoor scenario standard, available bandwidth may be classified based on oxygen attenuation of 10^2 dB/km in a spectrum up to 1 THz. Accordingly, a framework in which the available bandwidth is composed of several band chunks may be considered. As an example of the framework, if the length of a terahertz pulse (THz pulse) for one carrier is set to 50 ps, the bandwidth (BW) becomes about 20 GHz.
적외선 대역(infrared band)에서 테라헤르츠 대역(THz band)으로의 효과적인 하향 변환(Down conversion)은 광전 컨버터(O/E converter)의 비선형성(nonlinearity)을 어떻게 활용하는가에 달려 있다. 즉, 원하는 테라헤르츠 대역(THz band)으로 하향 변환(down conversion)하기 위해서는 해당 테라헤르츠 대역(THz band)에 옮기기에 가장 이상적인 비선형성(non-linearity)을 갖는 광전 변환기(O/E converter)의 설계가 요구된다. 만일 타겟으로 하는 주파수 대역에 맞지 않는 광전 변환기(O/E converter)를 사용하는 경우, 해당 펄스(pulse)의 크기(amplitude), 위상(phase)에 대하여 오류(error)가 발생할 가능성이 높다. Effective down conversion from the infrared band to the THz band depends on how the nonlinearity of the O/E converter is exploited. That is, in order to down-convert to a desired terahertz band (THz band), the O/E converter having the most ideal non-linearity for transfer to the terahertz band (THz band) is design is required. If an O/E converter that does not fit the target frequency band is used, there is a high possibility that an error may occur with respect to the amplitude and phase of the corresponding pulse.
단일 캐리어(single carrier) 시스템에서, 광전 변환기 1개를 이용하여 테라헤르츠 송수신 시스템이 구현될 수 있다. 채널 환경에 따라 달라지지만 멀리 캐리어(Multi carrier) 시스템에서, 캐리어 수만큼 광전 변환기가 요구될 수 있다. 특히 전술한 스펙트럼 용도와 관련된 계획에 따라 여러 개의 광대역들을 이용하는 멀티 캐리어 시스템인 경우, 그 현상이 두드러지게 될 것이다. 이와 관련하여 상기 멀티 캐리어 시스템을 위한 프레임 구조가 고려될 수 있다. 광전 변환기를 기반으로 하향 주파수 변환된 신호는 특정 자원 영역(예: 특정 프레임)에서 전송될 수 있다. 상기 특정 자원 영역의 주파수 영역은 복수의 청크(chunk)들을 포함할 수 있다. 각 청크(chunk)는 적어도 하나의 컴포넌트 캐리어(CC)로 구성될 수 있다.In a single carrier system, a terahertz transmission/reception system may be implemented using one photoelectric converter. Although it depends on the channel environment, in a far-carrier system, as many photoelectric converters as the number of carriers may be required. In particular, in the case of a multi-carrier system using several broadbands according to the above-described spectrum usage-related scheme, the phenomenon will become conspicuous. In this regard, a frame structure for the multi-carrier system may be considered. The down-frequency-converted signal based on the photoelectric converter may be transmitted in a specific resource region (eg, a specific frame). The frequency domain of the specific resource region may include a plurality of chunks. Each chunk may be composed of at least one component carrier (CC).
도 23은 본 개시에 적용 가능한 신경망을 나타낸 도면이다.23 is a diagram illustrating a neural network applicable to the present disclosure.
상술한 바와 같이, 새로운 통신 시스템(e.g. 6G 시스템)에서 인공 지능 기술이 도입될 수 있다. 이때, 인공지능은 사람의 뇌를 본 따서 만든 머신러닝 모델로서 신경망(neural network)을 활용할 수 있다. As described above, artificial intelligence technology may be introduced in a new communication system (e.g. 6G system). In this case, artificial intelligence can utilize a neural network as a machine learning model modeled after the human brain.
구체적으로, 디바이스는 0과 1로 이루어진 사칙연산을 처리하고, 이에 기초하여 동작 및 통신을 수행할 수 있다. 이때, 기술의 발달로 인해 디바이스가 예전보다도 더 빠른 시간에 더 적은 전력을 사용하여 많은 사칙연산을 처리할 수 있다. 반면, 사람은 사칙연산을 디바이스만큼 빠르게 할 수 없다. 인간의 뇌는 오직 빠른 사칙연산만을 처리하기 위해 만들어진 것이 아닐 수 있다. 그러나, 사람은 인지 및 자연어처리 등의 동작을 수행할 수 있다. 이때, 상술한 동작은 사칙연산 이상의 무언가를 처리하기 위한 동작으로 현재 디바이스로는 인간의 뇌가 할 수 있는 수준으로 처리가 불가능할 수 있다. 따라서, 디바이스가 자연언어처리, 컴퓨터 비전 등의 영역에서는 인간과 비슷한 성능을 낼 수 있도록 시스템을 만드는 것을 고려할 수 있다. 상술한 점을 고려하여, 신경망은 인간의 뇌를 모방해 보자라는 아이디어에 기초하여 만들어진 모델일 수 있다.Specifically, the device may process the arithmetic operation consisting of 0 and 1, and may perform operations and communication based on this. At this time, due to the development of technology, the device can process many arithmetic operations in a faster time and using less power than before. On the other hand, humans cannot perform arithmetic operations as fast as devices. The human brain may not be built to process only fast arithmetic operations. However, humans can perform operations such as recognition and natural language processing. In this case, the above-described operation is an operation for processing something more than arithmetic operation, and the current device may not be able to process to a level that a human brain can do. Therefore, it may be considered to make a system so that the device can achieve performance similar to that of a human in areas such as natural language processing and computer vision. In consideration of the above, the neural network may be a model created based on the idea of mimicking the human brain.
이때, 신경망은 상술한 모티베이션(Motivation)으로 만들어진 간단한 수학적 모델일 수 있다. 여기서, 인간의 뇌는 엄청나게 많은 뉴런들과 그것들을 연결하는 시냅스로 구성될 수 있다. 또한, 각각의 뉴런들이 활성화(activate)되는 방식에 따라서 다른 뉴런들도 활성화되는지 여부를 선택하여 동작(action)을 취할 수 있다. 신경망은 상술한 사실들에 기초하여 수학적 모델을 정의할 수 있다.In this case, the neural network may be a simple mathematical model made with the above-described motivation. Here, the human brain can consist of a huge number of neurons and synapses connecting them. In addition, according to a method in which each neuron is activated, an action may be taken by selecting whether other neurons are also activated. The neural network may define a mathematical model based on the above facts.
일 예로, 뉴런들은 노드(node)이고, 뉴런들을 연결하는 시냅스가 엣지(edge)인 네트워크를 생성하는 것도 가능할 수 있다. 이때, 각각의 시냅스의 중요도는 다른 수 있다. 즉, 엣지(edge)마다 웨이트(weight)을 따로 정의할 필요성이 있다. For example, neurons are nodes, and it may be possible to create a network in which a synapse connecting neurons is an edge. In this case, the importance of each synapse may be different. That is, it is necessary to separately define a weight for each edge.
일 예로, 도 23을 참조하면, 신경망은 직접적인 그래프(directed graph)일 수 있다. 즉, 정보 전파(information propagation)는 한 방향으로 고정될 수 있다. 일 예로, 비-직접적인 엣지(undirected edge)를 가지게 되는 경우, 또는 동일한 직접적인 엣지(directed edge)가 양방향으로 주어질 경우, 정보 전파(information propagation)는 반복(recursive)하게 일어날 수 있다. 따라서, 신경망에 의한 결과가 복잡해질 수 있다. 일 예로, 상술한 바와 같은 신경망은 RNN(recurrent neural network)일 수 있다. 이때, RNN은 과거 데이터를 저장하는 효과가 있기 때문에 최근 음성인식 등의 연속 데이터(sequential data)를 처리할 때 많이 사용되고 있다. 또한, 멀티 레이어 인식(Multi-layer perceptron, MLP) 구조는 직접 샘플 그래프(directed simple graph)일 수 있다. As an example, referring to FIG. 23 , the neural network may be a directed graph. That is, information propagation may be fixed in one direction. For example, when a non-directed edge is provided or the same direct edge is given in both directions, information propagation may occur recursively. Therefore, the result by the neural network can be complicated. For example, the neural network as described above may be a recurrent neural network (RNN). At this time, since RNN has the effect of storing past data, it is recently used a lot when processing sequential data such as voice recognition. In addition, the multi-layer perceptron (MLP) structure may be a directed simple graph.
여기서, 같은 레이어들 안에서는 서로 연결(connection)이 없다. 즉, 셀프 루프(self-loop)와 평행한 엣지(parallel edge)가 없고, 레이어와 레이어 사이에만 엣지가 존재할 수 있다. 또한, 서로 인접한 레이어 사이에만 엣지를 가질 수 있다. 즉, 도 23에서, 첫 번째 레이어와 네 번째 레이어를 직접 연결하는 엣지가 없는 것이다. 일 예로, 하기에서 레이어에 대한 특별한 언급이 없다면 상술한 MLP일 수 있으나, 이에 한정되는 것은 아니다. 상술한 경우, 정보 전파(information propagation)는 포워딩 방향(forward)으로만 발생할 수 있다. 따라서, 상술한 네트워크는 피드-포워드 네트워크(feed-forward network)일 수 있으나, 이에 한정되는 것은 아니다.Here, there is no connection between the same layers. That is, there is no edge parallel to a self-loop, and an edge may exist only between layers. In addition, an edge may only exist between adjacent layers. That is, in FIG. 23 , there is no edge directly connecting the first layer and the fourth layer. As an example, the MLP may be the above-described MLP unless there is a special mention of the layer below, but the present invention is not limited thereto. In the above-described case, information propagation may occur only in a forwarding direction. Accordingly, the above-described network may be a feed-forward network, but is not limited thereto.
또한, 일 예로, 실제 뇌에서는 각기 다른 뉴런들이 활성화되고, 그 결과가 다음 뉴런으로 전달될 수 있다. 상술한 방식으로 결과 값은 최종 결정을 내리는 뉴런이 활성화시킬 수 있으며, 이를 통해 정보를 처리하게 된다. 이때, 상술한 방식을 수학적 모델로 변경하면, 입력(input) 데이터들에 대한 활성화(activation) 조건을 함수(function)로 표현하는 것이 가능할 수 있다. 이때, 상술한 함수를 활성화 함수(activate function)로 지칭할 수 있다. Also, as an example, different neurons may be activated in an actual brain, and the result may be transmitted to the next neuron. In the manner described above, the result value can be activated by the neuron that makes the final decision, and the information is processed through it. In this case, if the above-described method is changed to a mathematical model, it may be possible to express an activation condition for input data as a function. In this case, the above-described function may be referred to as an activate function.
일 예로, 가장 간단한 활성화 함수는 모든 입력 데이터를 합한 다음 임계값(threshold)과 비교하는 함수일 수 있다. 일 예로, 모든 입력 데이터의 합이 특정 값을 넘는 경우, 디바이스는 활성화로 정보를 처리할 수 있다. 반면, 모든 입력 데이터의 합이 특정 값을 넘지 못한 경우, 디바이스는 비활성화로 정보를 처리할 수 있다.As an example, the simplest activation function may be a function that sums all input data and compares it with a threshold value. For example, when the sum of all input data exceeds a specific value, the device may process information as activation. On the other hand, when the sum of all input data does not exceed a specific value, the device may process information as deactivation.
또 다른 일 예로, 활성화 함수는 다양한 형태일 수 있다. 일 예로, 설명의 편의를 위해 수학식 1을 정의할 수 있다. 이때, 수학식 1에서 웨이트(w)뿐만 아니라 바이스(bais)를 고려할 필요성이 있으며, 이를 고려하면 하기 수학식 2처럼 표현될 수 있다. 다만, 바이스(b)와 웨이트(w)은 거의 동일하기 때문에 하기에서는 웨이트만을 고려하여 서술한다. 다만, 이에 한정되는 것은 아니다. 일 예로, 항상 값이 1인
Figure PCTKR2020011234-appb-I000015
를 추가한다면
Figure PCTKR2020011234-appb-I000016
가 바이스가 되므로, 가상의 입력을 가정하고, 이를 통해 웨이트와 바이스를 동일하게 취급할 수 있으며, 상술한 실시예로 한정되지 않는다.
As another example, the activation function may have various forms. As an example, Equation 1 may be defined for convenience of description. In this case, in Equation 1, it is necessary to consider not only the weight w but also the bias, and when this is taken into consideration, it can be expressed as Equation 2 below. However, since the vise (b) and the weight (w) are almost the same, only the weight is considered and described below. However, the present invention is not limited thereto. For example, the value is always 1
Figure PCTKR2020011234-appb-I000015
if you add
Figure PCTKR2020011234-appb-I000016
Since is a vise, it is possible to assume a virtual input, and through this, the weight and the vise can be treated equally, and the present invention is not limited to the above-described embodiment.
[수학식 1][Equation 1]
Figure PCTKR2020011234-appb-I000017
Figure PCTKR2020011234-appb-I000017
[수학식 2][Equation 2]
Figure PCTKR2020011234-appb-I000018
Figure PCTKR2020011234-appb-I000018
상술한 바에 기초한 모델은 처음에 노드와 엣지로 이루어진 네트워크의 모양을 정의할 수 있다. 그 후, 모델은 각 노드별로 활성화 함수를 정의할 수 있다. 또한, 모델을 조절하는 파라미터의 역할은 엣지의 웨이트를 맡게 되며, 가장 적절한 웨이트를 찾는 것이 수학적 모델의 트레이닝 목표일 수 있다. 일 예로, 하기 수학식 3 내지 수학식 6은 상술한 활성화 함수의 한 형태일 수 있으며, 특정 형태로 한정되는 것은 아니다.A model based on the above can initially define the shape of a network composed of nodes and edges. After that, the model can define an activation function for each node. In addition, the role of the parameter that adjusts the model takes on the weight of the edge, and finding the most appropriate weight may be a training goal of the mathematical model. For example, the following Equations 3 to 6 may be one form of the above-described activation function, and are not limited to a specific form.
[수학식 3][Equation 3]
Figure PCTKR2020011234-appb-I000019
Figure PCTKR2020011234-appb-I000019
[수학식 4][Equation 4]
Figure PCTKR2020011234-appb-I000020
Figure PCTKR2020011234-appb-I000020
[수학식 5][Equation 5]
Figure PCTKR2020011234-appb-I000021
Figure PCTKR2020011234-appb-I000021
[수학식 6][Equation 6]
Figure PCTKR2020011234-appb-I000022
Figure PCTKR2020011234-appb-I000022
또한, 일 예로, 수학적 모델을 트레이닝하는 경우, 모든 파라미터가 결정된 것으로 가정하고 신경망이 어떻게 결과를 인터페이스하는지를 확인할 필요성이 있다. 이때, 신경망은 먼저 주어진 입력에 대해 다음 레이어를 활성화를 결정하고, 결정된 활성화에 따라 다음 레이어의 활성화를 결정할 수 있다. 상술한 방식에 기초하여 마지막 결정 레이어의 결과를 보고 인터페이스를 결정할 수 있다. Also, as an example, when training a mathematical model, it is necessary to assume that all parameters are determined and to check how the neural network interfaces the results. In this case, the neural network may first determine activation of the next layer with respect to a given input, and may determine activation of the next layer according to the determined activation. Based on the above-described method, the interface may be determined by looking at the result of the last decision layer.
일 예로, 도 24는 본 개시에 적용 가능한 신경망에서 활성화 노드를 나타낸 도면이다. 도 24를 참조하면, 분류(classification)를 수행하는 경우, 마지막 레이어에 분류하고 싶은 클라스(class) 개수만큼 결정 노드(decision node)를 생성한 다음 그 중 하나를 활성화하여 값을 선택할 수 있다.As an example, FIG. 24 is a diagram illustrating an activation node in a neural network applicable to the present disclosure. Referring to FIG. 24 , when classification is performed, as many decision nodes as the number of classes to be classified in the last layer may be created, and then a value may be selected by activating one of them.
또한, 일 예로, 신경망의 활성화 함수들이 비-선형(non-linear)하고, 해당 함수들이 서로 레이어를 이루면서 복잡하게 구성된 경우를 고려할 수 있다. 이때, 신경망의 웨이트 최적화(weight optimization)는 논-컨벡스 최적화(non-convex optimization)일 수 있다. 따라서, 신경망의 파라미터들의 글로벌 최적화(optimum)를 찾는 것은 불가능할 수 있다. 상술한 점을 고려하여, 그라디언트 감소(gradient descent) 방법을 사용하여 적당한 값까지 수렴시키는 방법을 사용할 수 있다. 일 예로, 모든 최적화(optimization) 문제는 타겟 함수(target function)가 정의되어야 풀 수 있다. Also, as an example, a case in which activation functions of a neural network are non-linear and the functions are complexly configured while forming layers with each other may be considered. In this case, weight optimization of the neural network may be non-convex optimization. Therefore, it may be impossible to find a global optimization of parameters of a neural network. In consideration of the above, a method of convergence to an appropriate value using a gradient descent method may be used. For example, all optimization problems can be solved only when a target function is defined.
신경망에서는 마지막 결정 레이어에서 실제로 원하는 타겟 아웃풋과 현재 네트워크가 생성한 추정 아웃풋(estimated output) 상호 간의 손실 함수(loss function)를 계산하여 해당 값을 최소화(minimize)하는 방식을 취할 수 있다. 일 예로, 손실 함수는 하기 수학식 7 내지 9와 같을 수 있으나, 이에 한정되는 것은 아니다.In the neural network, a method of minimizing a corresponding value by calculating a loss function between a target output actually desired in the final decision layer and an estimated output generated by the current network may be calculated. As an example, the loss function may be as shown in Equations 7 to 9 below, but is not limited thereto.
여기서, d-차원의 타겟 아웃풋(dimensional target output)을
Figure PCTKR2020011234-appb-I000023
, 추정된 아웃풋(estimated output)을
Figure PCTKR2020011234-appb-I000024
로 정의하는 경우를 고려할 수 있다. 이때, 수학식 7 내지 9는 최적화를 위한 손실 함수일 수 있다.
Here, the d-dimensional target output
Figure PCTKR2020011234-appb-I000023
, the estimated output
Figure PCTKR2020011234-appb-I000024
It can be considered when defining In this case, Equations 7 to 9 may be loss functions for optimization.
[수학식 7][Equation 7]
Figure PCTKR2020011234-appb-I000025
Figure PCTKR2020011234-appb-I000025
[수학식 8][Equation 8]
Figure PCTKR2020011234-appb-I000026
Figure PCTKR2020011234-appb-I000026
[수학식 9][Equation 9]
Figure PCTKR2020011234-appb-I000027
Figure PCTKR2020011234-appb-I000027
상술한 손실 함수가 주어지는 경우, 해당 값을 주어진 파라미터들에 대한 그라디언트(gradient)를 구한 다음 그 값들을 사용해 파라미터에 대한 업데이트를 수행할 수 있다.When the above-described loss function is given, a gradient for the parameters given the corresponding values may be obtained, and then the parameters may be updated using the values.
일 예로, 백프로파게이션 알고리즘 (Back propagation algorithm)은 체인 룰을 사용해 그라디언트(gradient) 계산을 간단하게 수행할 수 있는 알고리즘일 수 있다. 상술한 알고리즘에 기초하여 각각의 파라미터의 그라디언트를 계산할 때 평행화(parallelization)도 용이할 수 있다. 또한, 알고리즘 디자인을 통해 메모리도 절약할 수 있다. 따라서, 신경망 업데이트는 백프로파게이션 알고리즘을 사용할 수 있다. 또한, 일 예로, 그라디언트 감소 방법(Gradient descent method)을 사용하기 위해 현재 파라미터에 대한 그라이언트를 계산할 필요성이 있다. 이때, 네트워크가 복잡해지는 경우, 해당 값은 계산이 복잡해질 수 있다. 반면, 백프로파게이션 알고리즘에서는 먼저 현재 파라미터를 사용하여 손실(loss)를 계산하고, 각각의 파라미터들이 해당 손실에 얼마만큼 영향을 미쳤는지를 체인 룰을 통해 계산할 수 있다. 계산된 값에 기초하여 업데이트가 수행될 수 있다. 일 예로, 백프로파게이션 알고리즘은 두 가지 페이즈(phase)로 나눌 수가 있다. 하나는 프로파게이션 페이즈(propagation phase)이며, 하나는 웨이트 업데이트 페이즈(weight update phase)일 수 있다. 이때, 프로파게이션 페이즈에서는 훈련 입력 패턴(training input pattern)에서부터 에러 또는 각 뉴런들의 변화량을 계산할 수 있다. 또한, 일 예로, 웨이트 업데이트 페이즈에서는 앞에서 계산한 값을 사용해 웨이트를 업데이트할 수 있다. 일 예로, 구체적인 페이즈에 대해서는 하기 표 6과 같을 수 있다. As an example, the back propagation algorithm may be an algorithm capable of simply performing gradient calculation using a chain rule. When calculating the gradient of each parameter based on the above-described algorithm, parallelization may also be easy. Also, memory can be saved through algorithm design. Therefore, the neural network update may use a backpropagation algorithm. Also, as an example, in order to use a gradient descent method, it is necessary to calculate a gradient for a current parameter. In this case, when the network becomes complicated, the calculation of the corresponding value may be complicated. On the other hand, in the backpropagation algorithm, a loss is first calculated using the current parameters, and how much each parameter affects the corresponding loss can be calculated through the chain rule. An update may be performed based on the calculated value. For example, the backpropagation algorithm may be divided into two phases. One may be a propagation phase, and the other may be a weight update phase. In this case, in the propagation phase, an error or a change amount of each neuron may be calculated from a training input pattern. Also, as an example, in the weight update phase, the weight may be updated using the previously calculated value. As an example, specific phases may be as shown in Table 6 below.
[표 6][Table 6]
Figure PCTKR2020011234-appb-I000028
Figure PCTKR2020011234-appb-I000028
일 예로, 도 25는 본 개시에 적용 가능한 체인 룰을 이용하여 그라디언트를 계산하는 방법을 나타낸 도면이다. 도 25를 참조하면,
Figure PCTKR2020011234-appb-I000029
를 구하는 방법을 개시할 수 있다. 이때, 해당 값을 계산하는 대신 y-레이어(y-layer)에서 이미 계산한 파생값(derivative)인
Figure PCTKR2020011234-appb-I000030
와 y-레이어와 x에만 관계있는
Figure PCTKR2020011234-appb-I000031
를 사용하여 원하는 값을 계산할 수 있다. 만약 x 아래에 x′이라는 파라미터가 존재하는 경우,
Figure PCTKR2020011234-appb-I000032
Figure PCTKR2020011234-appb-I000033
을 사용하여
Figure PCTKR2020011234-appb-I000034
을 계산할 수 있다. 따라서, 백프로파게이션 알고리즘(backpropagation algorithm)에서 필요한 것은 현재 업데이트하려는 파라미터의 바로 전 변수(variable)의 파생값(derivative)과 현재 파라미터로 바로 전 변수를 미분한 값 두개 뿐일 수 있다.
As an example, FIG. 25 is a diagram illustrating a method of calculating a gradient using a chain rule applicable to the present disclosure. Referring to Figure 25,
Figure PCTKR2020011234-appb-I000029
A method for obtaining . At this time, instead of calculating the corresponding value, it is a derivative value already calculated in the y-layer.
Figure PCTKR2020011234-appb-I000030
with y-layers and only relevant to x
Figure PCTKR2020011234-appb-I000031
can be used to calculate the desired value. If a parameter called x' exists under x,
Figure PCTKR2020011234-appb-I000032
Wow
Figure PCTKR2020011234-appb-I000033
using
Figure PCTKR2020011234-appb-I000034
can be calculated. Therefore, what is required in the backpropagation algorithm may be only two values of a derivative of a variable immediately preceding the parameter to be updated and a value obtained by differentiating the immediately preceding variable with the current parameter.
상술한 과정에서 아웃풋 레이어에서부터 순차적으로 내려오면서 반복될 수 있다. 즉, “output -> hidden k, hidden k -> hidden k-1, … hidden 2 -> hidden 1, hidden 1 -> input”의 과정을 거치면서 계속 웨이트가 업데이트될 수 있다. 그라디언트를 계산한 후에 직접 그라디언트 감소(Gradient Descent)를 사용하여 파라미터만 업데이트를 수행할 수 있다.In the process described above, it may be repeated while descending sequentially from the output layer. That is, “output -> hidden k, hidden k -> hidden k-1, … hidden 2 -> hidden 1, hidden 1 -> input”, the weight can be continuously updated. After calculating the gradient, you can directly update the parameters using Gradient Descent.
다만, 신경망의 입력 데이터 개수가 엄청나게 많기 때문에 정확한 그라디언트(gradient)를 계산하기 위해서는 모든 훈련 데이터(training data)에 대해 그라디언트를 전부 계산할 필요성이 있다. 이때, 그 값을 평균 내어 정확한 그라디언트를 구한 다음 ‘한 번’ 업데이트를 수행할 수 있다. 다만, 상술한 방법은 비효율적이기 때문에 SDG(stochastic Gradient Descent) 방법을 사용할 수 있다. 이때, SGD는 모든 데이터의 그라디언트를 평균내어 그라디언트 업데이트를 수행하는 대신 (이를 ‘full batch’라고 한다), 일부의 데이터로 ‘mini batch’를 형성하여 한 배치(batch)에 대한 그라디언트만 계산하여 전체 파라미터를 업데이트할 수 있다. 컨벡스 최적화(Convex optimization)의 경우, 특정 조건이 충족되면 SGD와 GD가 같은 글로벌 최적화(global optimum)로 수렴하는 것이 증명될 수 있으나, 신경망은 컨벡스(convex)가 아니기 때문에 배치(batch)를 설정하는 방법에 따라 수렴하는 조건이 바뀔 수 있다.However, since the number of input data of the neural network is enormous, in order to calculate an accurate gradient, it is necessary to calculate all the gradients for all training data. In this case, the value is averaged to obtain an accurate gradient, and then the update can be performed ‘once’. However, since the above-described method is inefficient, a stochastic gradient descent (SDG) method may be used. At this time, instead of performing a gradient update by averaging the gradients of all data (this is called a 'full batch'), SGD forms a 'mini batch' with some data and calculates the gradient for only one batch to calculate the entire You can update parameters. In the case of convex optimization, it can be proven that SGD and GD converge to the same global optimum when certain conditions are met, but since the neural network is not convex, it is necessary to set a batch. Convergence conditions may change depending on the method.
복소수 값 처리 신경망(Complex valued neural networks)Complex valued neural networks
복소수(Complex number)를 처리하는 신경망은 신경망 설명(neural network description)이나 파라미터 표현 등 다수의 장점이 존재할 수 있다. 다만, 복소수 값 처리 신경망(complex value neural network)을 사용하기 위해서는 실수(real number)를 처리하는 실수 처리 신경망(real neural network)에 비해서 고려해야 할 점이 존재할 수 있다. 일 예로, 백프로파게이션을 통해 웨이트를 업데이트 하는 과정에서 활성화 함수에 대한 제약 사항을 고려할 필요가 있다. 일 예로, 예를 들면, 수학식 3의 “sigmoid function
Figure PCTKR2020011234-appb-I000035
”의 경우, t가 복수 수(complex number)인 경우,
Figure PCTKR2020011234-appb-I000036
의 경우 f(t)가 0이 되어 미분 가능하지 않다. 따라서, 실수 처리 신경망(real neural network)에서 일반적으로 사용하는 활성화 함수는 제약없이 복소수 처리 신경망에 적용할 수 없다. 더구나, “Liouville’s theorem”에 의하면 복소 도메인(complex domain)에서 미분 가능하고 바운디드(bounded) 성질을 만족하는 함수는 상수(constant) 함수뿐일 수 있으며, “Liouville’s theorem”는 하기 표 7과 같을 수 있다.
A neural network that processes a complex number may have a number of advantages, such as a neural network description or a parameter expression. However, in order to use a complex value neural network, there may be points to be considered compared to a real neural network that processes real numbers. For example, in the process of updating the weight through backpropagation, it is necessary to consider the restrictions on the activation function. As an example, for example, the “sigmoid function of Equation 3
Figure PCTKR2020011234-appb-I000035
”, if t is a complex number,
Figure PCTKR2020011234-appb-I000036
In the case of , f(t) becomes 0, so it is not differentiable. Therefore, activation functions generally used in real neural networks cannot be applied to complex neural networks without restrictions. Moreover, according to “Liouville's theorem”, only a function that is differentiable in the complex domain and satisfies the bounded property may be a constant function, and “Liouville's theorem” can be as shown in Table 7 below. there is.
[표 7][Table 7]
Figure PCTKR2020011234-appb-I000037
Figure PCTKR2020011234-appb-I000037
일 예로, 표 7에 기초하여 “Liouville’s theorem”에 의해 하기 수학식 10이 도출될 수 있다.As an example, the following Equation 10 may be derived by “Liouville’s theorem” based on Table 7.
[수학식 10][Equation 10]
Figure PCTKR2020011234-appb-I000038
Figure PCTKR2020011234-appb-I000038
여기서, r을 무한대로 하면,
Figure PCTKR2020011234-appb-I000039
일 수 있다. 따라서,
Figure PCTKR2020011234-appb-I000040
일 수 있다. 다만, 상수 함수(constant function)를 신경망의 활성화 함수로 사용하는 것은 무의미할 수 있다. 따라서, 백프로파게이션이 가능하게 하는 복소 활성화 함수(complex activation function, f(z))에 필요한 특징은 하기 표 8과 같을 수 있다.
Here, if r is made to infinity,
Figure PCTKR2020011234-appb-I000039
can be therefore,
Figure PCTKR2020011234-appb-I000040
can be However, it may be meaningless to use a constant function as an activation function of a neural network. Accordingly, characteristics required for a complex activation function (f(z)) enabling backpropagation may be shown in Table 8 below.
[표 8][Table 8]
Figure PCTKR2020011234-appb-I000041
Figure PCTKR2020011234-appb-I000041
상술한 표 8과 같은 특징을 만족하는 경우, 복수 활성화 함수의 형태는 하기 수학식 11과 같을 수 있다.When the characteristics shown in Table 8 are satisfied, the form of the plurality of activation functions may be as shown in Equation 11 below.
[수학식 11][Equation 11]
Figure PCTKR2020011234-appb-I000042
Figure PCTKR2020011234-appb-I000042
여기서,
Figure PCTKR2020011234-appb-I000043
Figure PCTKR2020011234-appb-I000044
는 실수 처리 신경망(real neural network)에서 사용하는 “sigmoid function” , “hyperbolic tangent function”등의 활성화 함수가 사용될 수 있다.
here,
Figure PCTKR2020011234-appb-I000043
and
Figure PCTKR2020011234-appb-I000044
Activation functions such as “sigmoid function” and “hyperbolic tangent function” used in real neural networks can be used.
신경망 종류type of neural network
Convolution neural network (CNN)Convolution neural networks (CNNs)
CNN은 음성 인식이나 이미지 인식에서 주로 사용되는 신경망의 한 종류일 수 있으나, 이에 한정되는 것은 아니다. CNN은 다차원 배열 데이터를 처리하도록 구성되어 있어, 컬러(color) 이미지와 같은 다차원 배열 처리에 특화되어 있다. 따라서, 이미지 인식 분야에서 딥 러닝을 활용한 기법은 대부분 CNN을 기초로 수행될 수 있다. 일 예로, 일반 신경망의 경우, 이미지 데이터를 그대로 처리한다. 즉, 이미지 전체를 하나의 데이터로 생각해서 입력으로 받아들이기 때문에, 이미지의 특성을 찾지 못하고 위와 같이 이미지의 위치가 조금만 달라지거나 왜곡된 경우에 올바른 성능을 내지 않을 수 있다. CNN may be a type of neural network mainly used in speech recognition or image recognition, but is not limited thereto. CNN is configured to process multi-dimensional array data, and is specialized in multi-dimensional array processing such as color images. Therefore, most techniques using deep learning in the image recognition field can be performed based on CNN. For example, in the case of a general neural network, image data is processed as it is. That is, since the entire image is considered as one data and received as input, the correct performance may not be obtained if the image position is slightly changed or distorted as above without finding the characteristics of the image.
그러나, CNN은 이미지를 하나의 데이터가 아닌, 여러 개로 분할하여 처리할 수 있다. 상술한 바를 통해, CNN은 이미지가 왜곡되더라도 이미지의 부분적 특성을 추출할 수 있어 올바른 성능을 낼 수 있다. CNN은 하기 표 9와 같은 용어로 정의될 수 있다.However, CNN can process an image by dividing it into several pieces, not one piece of data. As described above, even if the image is distorted, the CNN can extract the partial characteristics of the image, so that the correct performance can be achieved. CNN may be defined in terms as shown in Table 9 below.
[표 9][Table 9]
Figure PCTKR2020011234-appb-I000045
Figure PCTKR2020011234-appb-I000045
Recurrent neural network (RNN)Recurrent neural networks (RNNs)
도 26은 본 개시에 적용 가능한 RNN에 기초한 학습 모델을 나타낸 도면이다. 도 26을 참조하면, RNN은 숨겨진 노드(hidden node)가 방향을 가진 엣지(edge)로 연결돼 순환구조를 이루는(directed cycle) 인공신경망의 한 종류일 수 있다. 일 예로, RNN은 음성, 문자 등 순차적으로 등장하는 데이터 처리에 적합한 모델일 수 있다. RNN은 시퀀스 길이에 관계없이 인풋과 아웃풋을 받아들일 수 있는 네트워크 구조이기 때문에 필요에 따라 다양하고 유연하게 구조를 만들 수 있다는 장점을 가지고 있다. 일 예로, 도 26에서
Figure PCTKR2020011234-appb-I000046
(t=1,2,…) 는 숨겨진 레이어(hidden layer)이고, x는 입력, y는 아웃풋을 나타낼 수 있다. RNN은 관련 정보와 그 정보를 사용하는 지점 사이 거리가 멀 경우 백프로파게이션을 수행하는 경우에 그라디언트가 점차 줄어 학습능력이 저하될 수 있으며, 이를 “vanishing gradient” 문제라고 한다. 일 예로, “Vanishing gradient” 문제를 해결하기 위해서 제안된 구조가 LSTM(long-short term memory)와 GRU(gated recurrent unit)일 수 있다. 즉, RNN은 CNN과 비교하여 피드백이 존재하는 구조일 수 있다.
26 is a diagram illustrating a learning model based on RNN applicable to the present disclosure. Referring to FIG. 26 , the RNN may be a type of artificial neural network in which hidden nodes are connected by directional edges to form a directed cycle. As an example, the RNN may be a model suitable for processing data that appears sequentially, such as voice and text. Since RNN is a network structure that can accept input and output regardless of sequence length, it has the advantage of being able to create various and flexible structures according to needs. As an example, in FIG. 26
Figure PCTKR2020011234-appb-I000046
(t=1,2,…) is a hidden layer, x may represent an input, and y may represent an output. In RNN, if the distance between the relevant information and the point where the information is used is long, the gradient may gradually decrease when backpropagation is performed and learning ability may deteriorate, which is called a “vanishing gradient” problem. For example, a structure proposed to solve the “vanishing gradient” problem may be a long-short term memory (LSTM) and a gated recurrent unit (GRU). That is, the RNN may have a structure in which feedback exists compared to CNN.
AutoencoderAutoencoder
도 27은 본 개시에 적용 가능한 오토인코더를 나타낸 도면이다. 또한, 도 28 내지 도 30은 본 개시에 적용 가능한 터보 오토인코더를 나타낸 도면이다. 도 27을 참조하면, 신경망을 통신 시스템(communication system)에 적용하기 위한 다양한 시도가 수행되고 있다. 이때, 일 예로, 신경망을 물리 계층(physical layer)에 적용하려는 시도는 주로 수신단(receiver)의 특정 기능을 최적화하는 것에 중점을 둘 수 있다. 구체적인 일 예로, 채널 디코더(channel decoder)를 신경망(neural network)으로 구성하는 경우, 채널 디코더의 성능이 향상될 수 있다. 또 다른 일 예로, 복수 개의 송수신 안테나를 가진 MIMO 시스템에서 MIMO 디텍터(MIMO detector)를 신경망으로 구현하는 경우, MIMO 시스템의 성능이 향상될 수 있다. 27 is a view showing an autoencoder applicable to the present disclosure. 28 to 30 are views showing a turbo autoencoder applicable to the present disclosure. Referring to FIG. 27 , various attempts are being made to apply a neural network to a communication system. In this case, as an example, an attempt to apply a neural network to a physical layer may mainly focus on optimizing a specific function of a receiver. As a specific example, when the channel decoder is configured as a neural network, the performance of the channel decoder may be improved. As another example, if a MIMO detector is implemented as a neural network in a MIMO system having a plurality of transmit/receive antennas, the performance of the MIMO system may be improved.
또 다른 일 예로, 오토인코더(autoencoder)방식이 적용될 수 있다. 이때, 오토인코더는 송신단(transmitter) 및 수신단(receiver) 모두를 신경망(neural network)로 구성하여 엔드-투-엔드(end-to-end) 관점에서 최적화를 수행하여 성능 향상을 기하는 방식일 수 있으며, 도 27과 같이 구성될 수 있다. As another example, an autoencoder method may be applied. At this time, the autoencoder configures both the transmitter and the receiver as a neural network, and performs optimization from an end-to-end point of view to improve performance. and may be configured as shown in FIG. 27 .
도 28은 본 개시에 적용 가능한 압축 방식에 기초한 연합학습 방식을 나타낸 도면이다. 28 is a diagram illustrating a federated learning method based on a compression method applicable to the present disclosure.
일 예로, 상술한 바와 같이 새로운 통신 시스템에서는 인공 지능 및 머신 러닝이 적용될 수 있다. 여기서, 일 예로, 새로운 통신 시스템에 연합학습(Federated Learning)의 모델 파라미터가 적용될 수 있다. 하기에서는 연합학습의 모델 파라미터가 통신환경에 적응되어 신호가 전송되는 방법 및 시스템에 대해 서술한다.For example, as described above, artificial intelligence and machine learning may be applied in the new communication system. Here, as an example, a model parameter of Federated Learning may be applied to a new communication system. Hereinafter, a method and system in which the model parameters of federated learning are adapted to the communication environment and signals are transmitted will be described.
일 예로, 연합학습(Federated Learning)은 개인의 프라이버시 보호, 분산 처리를 통한 기지국의 로드감소 및 기지국과 단말과의 트래픽을 감소시키는 경우 중 어느 하나에 적용될 수 있다. 다만, 이에 한정되는 것은 아닐 수 있다. 이때, 일 예로, 로컬 모델 파라미터(e.g. 딥 뉴럴 네트워크의 가중치, 정보)의 트래픽은 무선 통신환경에서 많은 부담을 줄 수 있다. 상술한 점을 고려하여, 로컬 모델 파라미터의 압축 또는 에어콤프(Aircomp(Over the Air Computing))를 통한 트래픽 감소를 위한 기술들이 개발되고 있다. As an example, federated learning may be applied to any one of the cases of protecting personal privacy, reducing the load of the base station through distributed processing, and reducing traffic between the base station and the terminal. However, it may not be limited thereto. In this case, as an example, traffic of local model parameters (e.g. weight, information of the deep neural network) may give a lot of burden in a wireless communication environment. In consideration of the above, techniques for reducing traffic through compression of local model parameters or aircomp (Over the Air Computing) are being developed.
다만, 통신 시스템에서 무선통신 환경은 다양할 수 있다. 또한, 통신시스템에서 학습이 필요한 단말 수가 다양하게 설정될 수 있다. 여기서, 통신 시스템에는 상술한 환경을 고려하여 고정적인 특정 기술이 아닌 유동적인 운영 방법 및 시스템이 필요할 수 있다. 이를 통해, 통신 시스템의 자원 효율성을 증대시킬 수 있으며, 하기에서는 상술한 점을 고려하여 연합학습 방식을 적용하는 방법에 대해 서술한다.However, the wireless communication environment in the communication system may be diverse. In addition, the number of terminals requiring learning in the communication system may be set in various ways. Here, the communication system may require a flexible operating method and system rather than a fixed specific technology in consideration of the above-described environment. Through this, it is possible to increase the resource efficiency of the communication system. Hereinafter, a method of applying the federated learning method in consideration of the above points will be described.
여기서, 단말 모델 파라미터 압축을 통한 연합학습(Federated Learning) 방식이 통신 시스템에 적용될 수 있다. 이때, 압축을 통한 연합학습은 각 단말이 파라미터의 특성을 고려하여 데이터에 대한 압축을 수행하여 기지국에 전송하는 방식일 수 있다. 따라서, 기지국이 연합학습 방식에 기초하여 신호를 수신하는 경우, 기지국은 수신한 신호에 기초하여 압축을 풀고, 수집된 파라미터를 합산하는 동작을 수행할 필요성이 있다. 따라서, 기지국의 로드는 증가할 수 있다. 또한, 일 예로, 각 단말 수 별로 통신채널을 할당해야 되기 때문에, 사용 단말의 수에 비례하여 통신 트래픽이 증가할 수 있다. 따라서, 단말들이 다수 존재하는 경우, 압축을 통한 방식은 효율성을 감소시킬 수 있다. Here, a federated learning method through terminal model parameter compression may be applied to the communication system. In this case, the federated learning through compression may be a method in which each terminal performs compression on data in consideration of the characteristics of the parameters and transmits the data to the base station. Therefore, when the base station receives a signal based on the federated learning method, the base station needs to perform an operation of decompressing the received signal based on the received signal and summing the collected parameters. Accordingly, the load of the base station may increase. Also, for example, since a communication channel must be allocated for each number of terminals, communication traffic may increase in proportion to the number of terminals used. Therefore, when there are a plurality of terminals, the method through compression may reduce efficiency.
특히, 저 복잡도 단말 또는 계산 로드가 많이 걸려 있는 단말에서 압축은 데이터 처리의 지연을 발생시킬 수 있다. 즉, 단말은 압축된 데이터를 처리하기 위한 시간이 필요할 수 있으며, 이에 기초하여 지연이 발생할 수 있다. In particular, in a low-complexity terminal or a terminal that has a lot of computational load, compression may cause delay in data processing. That is, the terminal may need time to process the compressed data, and delay may occur based on this.
상술한 점을 고려하면, 통신환경이 좋은 경우, 압축으로 인한 지연을 줄이는 방법이 필요할 수 있다. 일 예로, 현재 통신 시스템에서 변조방식은 채널환경에 따라 변경될 수 있다. 여기서, 채널환경이 좋은 경우, 단말은 256QAM(Quadrature Amplitude Modulation)과 같은 변조방식을 사용할 수 있다. 즉, 단말은 동일 시간 구간에 더 많은 데이터를 전송할 수 있는바, 데이터 스루풋(Throughput)이 증가할 수 있다. 이에 따라, 저 지연 통신을 수행할 수 있다. In consideration of the above, if the communication environment is good, a method for reducing the delay due to compression may be required. For example, in the current communication system, the modulation method may be changed according to the channel environment. Here, when the channel environment is good, the terminal may use a modulation scheme such as 256QAM (Quadrature Amplitude Modulation). That is, since the terminal can transmit more data in the same time period, data throughput may increase. Accordingly, low-delay communication can be performed.
반면, 채널환경이 좋지 않은 경우, 단말은 QPSK(Quadrature Phase Shift Keying)와 같은 변조방식을 사용할 수 있다. 즉, 단말은 동일 시간 구간에 적은 데이터를 전송할 수 있기 때문에 데이터 스루풋(Throughput)이 감소하게 되어 연합학습의 전송 및 처리에 지연이 발생할 수 있다. On the other hand, when the channel environment is not good, the UE may use a modulation scheme such as Quadrature Phase Shift Keying (QPSK). That is, since the terminal can transmit a small amount of data in the same time period, data throughput is reduced, which may cause delay in transmission and processing of federated learning.
이때, 압축에 기초한 방식과 채널환경에 따라 변조방식을 변경하는 방식은 각각 다른 지연속도를 가질 수 있다. 또한, 압축에 기초한 방식은 압축률에 따라 지연속도가 다를 수 있다. 일 예로, 압축률이 커지면 압축을 위한 처리시간이 증가하기 때문에 지연시간이 길어지고, 압축률이 작아지면 압축을 위한 처리시간이 줄어들 수 있기 때문에 지연시간이 짧아질 수 있다. 또한, 일 예로, 통신환경에 따른 변조방식의 변경은 데이터 스루풋을 변경시키기 때문에 지연속도에 영향을 줄 수 있다. In this case, the compression-based method and the method of changing the modulation method according to the channel environment may have different delay rates. In addition, the compression-based method may have a different delay speed depending on the compression rate. For example, when the compression rate increases, the delay time increases because the processing time for compression increases, and when the compression rate decreases, the delay time may be shortened because the processing time for compression may decrease. Also, for example, a change in a modulation method according to a communication environment may affect a delay rate because data throughput is changed.
압축률과 변조방식의 변경이 모두 지연속도에 영향을 주기 때문에 각각의 방식을 독립적으로 처리하는 경우, 지연속도를 유지하는데 한계가 있을 수 있다. 상술한 점을 고려하여, 하기에서는 압축률과 변조방식을 고려하여 연합학습을 수행하는 방법에 대해 서술한다. 일 예로, 압축방식은 전송용량을 최소화 할 수 있지만, 압축률을 높이게 되면 모델 파라미터의 손실이 발생할 수 있다. 따라서, 단말이 높은 압축률에 기초하여 데이터를 압축하는 경우에 문제가 발생할 수 있다. 따라서, 단말은 목표 손실율을 고려하여 전송용량을 최소화하는 압축률을 선택할 필요성이 있다. Since changes in compression rate and modulation method both affect the delay rate, when each method is independently processed, there may be a limit to maintaining the delay rate. In consideration of the above, a method of performing joint learning in consideration of a compression rate and a modulation method will be described below. For example, the compression method can minimize the transmission capacity, but if the compression rate is increased, a loss of model parameters may occur. Accordingly, when the terminal compresses data based on a high compression rate, a problem may occur. Accordingly, the terminal needs to select a compression rate that minimizes the transmission capacity in consideration of the target loss rate.
또한, 일 예로, 목표 손실율은 사용자 수(또는 단말 수)에 기초하여 다르게 적용될 수 있다. 일 예로, 사용자 수가 적은 경우, 단말 개별 손실율의 영향도는 클 수 있다. 반면, 사용자 수가 많은 경우, 단말 개별 손실율의 영향도는 떨어질 수 있다. 즉, 사용자 수는 손실율에 영향을 미칠 수 있기 때문에 사용자 수와 무관하게 고정된 압축률을 사용하는 것은 성능 향상 비율 대비 전송 효율을 감소시킬 수 있다. Also, as an example, the target loss rate may be applied differently based on the number of users (or the number of terminals). For example, when the number of users is small, the influence of an individual terminal loss rate may be large. On the other hand, when the number of users is large, the influence of the individual terminal loss rate may be reduced. That is, since the number of users may affect the loss ratio, using a fixed compression ratio regardless of the number of users may reduce transmission efficiency compared to the performance improvement ratio.
하기에서는 상술한 바를 고려하여 압축률과 변조방식을 결정하는 경우에 있어서 지연시간을 최소화하는 방법 및 전송용량을 최소화하는 방법에 대해 서술한다.Hereinafter, a method of minimizing a delay time and a method of minimizing a transmission capacity when a compression rate and a modulation method are determined in consideration of the foregoing will be described.
여기서, 일 예로, 도 28을 참조하면, 연합학습(Federated Learning) 방식에서 단말과 기지국간 가중치 시그널링 방법을 고정적으로 사용하는 경우, 효율성은 무선 환경에 기초하여 다를 수 있다. 일 예로, 효율성은 특정 환경에서 높을 수 있으나, 그 반대의 경우에는 오히려 효율성이 저해될 수 있다. 이때, 무선 환경은 유동적으로 변화할 수 있기 때문에 유동적으로 변동되는 무선 환경을 인식하고, 인식된 무선 환경에 기초한 기술이 선택될 필요성이 있다. Here, as an example, referring to FIG. 28 , when a weight signaling method between a terminal and a base station is fixedly used in a federated learning method, efficiency may be different based on a wireless environment. For example, the efficiency may be high in a specific environment, but in the opposite case, the efficiency may be inhibited. In this case, since the wireless environment can change dynamically, it is necessary to recognize the dynamically changing wireless environment and select a technology based on the recognized wireless environment.
일 예로, 각각의 단말은 연합학습(Federated Learning) 방식에 기초하여 학습한 모델의 파라미터(e.g. 딥 뉴럴 네트워크의 가중치, 정보)를 기지국으로 전달할 수 있다. 도 28를 참조하면, 각각의 단말들은 압축한 파라미터를 전달하고, 기지국은 하기 수학식 12에 기초하여 글로벌 모델을 업데이트할 수 있다. 여기서, c는 정보 압축 및 변조 처리일 수 있고, d는 복조 및 정보 복원 처리일 수 있다. 그 후, 기지국은 업데이트된 글로벌 모델을 각각의 단말로 전달할 수 있다.As an example, each terminal may transmit the parameters (e.g. weights and information of the deep neural network) of the model learned based on the federated learning method to the base station. Referring to FIG. 28 , each terminal transmits compressed parameters, and the base station may update the global model based on Equation 12 below. Here, c may be information compression and modulation processing, and d may be demodulation and information restoration processing. Thereafter, the base station may transmit the updated global model to each terminal.
[수학식 12][Equation 12]
Figure PCTKR2020011234-appb-I000047
Figure PCTKR2020011234-appb-I000047
보다 상세하게는, 각각의 단말은 모델 파라미터의 양을 최소화하는 방법에 기초하여 압축을 진행할 수 있다. 일 예로, 도 28에서 각각의 단말들은 동일한 압축 알고리즘을 사용하였으나, 이에 한정되는 것은 아니다.More specifically, each terminal may perform compression based on a method of minimizing the amount of model parameters. As an example, although the respective terminals use the same compression algorithm in FIG. 28 , the present invention is not limited thereto.
일 예로, 압축은 가중치 가지치기, 양자화 및 가중치 공유 중 적어도 어느 하나에 기초하여 수행될 수 있다. 또한, 일 예로, 압축은 다른 방법에 기초하여 수행될 수 있으며, 상술한 실시예로 한정되지 않는다. 여기서, 기존 신경망에 기초하여 압축을 수행하는 경우, 가중치(Weights) 중 실제 추론을 위해 필요한 값은 작은 값들에 대한 내성을 가질 수 있다. 즉, 실제 추론을 위해 필요한 가중치 값은 작은 값들에 대해서는 영향이 작을 수 있다. 상술한 점을 고려하여, 가중치 가지치기는 작은 가중치 값을 모두 0으로 설정할 수 있다. 이를 통해, 신경망은 네트워크 모델 크기를 줄일 수 있다. 또한, 일 예로, 양자화(Quantization)는 특정 비트 수로 데이터를 줄여서 계산하는 방식일 수 있다. 즉, 데이터는 특정 양자화된 값으로만 표현될 수 있다. 또한, 일 예로, 가중치 공유는 가중치 값들을 근사값(e.g. 코드북)에 기초하여 조정하고, 이를 공유하도록 하는 방식일 수 있다. 여기서, 네트워크에서 신호가 전송되는 경우, 해당 정보는 코드북과 그 값에 대한 인덱스만이 공유될 수 있다. As an example, compression may be performed based on at least one of weight pruning, quantization, and weight sharing. Also, as an example, compression may be performed based on another method, and is not limited to the above-described embodiment. Here, when compression is performed based on the existing neural network, a value necessary for actual inference among weights may have resistance to small values. That is, a weight value necessary for actual inference may have a small effect on small values. In consideration of the above, in weight pruning, all small weight values may be set to 0. Through this, the neural network can reduce the network model size. Also, as an example, quantization may be a method of calculating data by reducing data to a specific number of bits. That is, data can be expressed only as a specific quantized value. Also, as an example, weight sharing may be a method of adjusting weight values based on an approximate value (e.g. codebook) and sharing the weight values. Here, when a signal is transmitted in the network, only the codebook and the index for the corresponding information may be shared.
상술한 방법 중 어느 하나에 기초하여 각각의 단말은 데이터에 대한 압축을 수행할 수 있으며, 압축된 정보를 기지국으로 전송할 수 있다. 이때, 기지국은 압축된
Figure PCTKR2020011234-appb-I000048
를 각각의 단말로부터 수신하고, 수신한 정보에 대한 압축을 해제하여 글로벌 모델의 파라미터를 계산하고 업데이트할 수 있다.
Based on any one of the above-described methods, each terminal may perform data compression, and may transmit compressed information to the base station. At this time, the base station compresses
Figure PCTKR2020011234-appb-I000048
can be received from each terminal, and the received information can be decompressed to calculate and update parameters of the global model.
여기서, 각각의 단말은 개별적인 특성을 갖는 로컬모델 파라미터를 설정할 수 있다. 따라서, 각각의 단말이 압축을 수행하는 경우, 압축 효율은 단말마다 상이할 수 있다. 또한, 일 예로, 각각의 단말은 서로 상이한 하드웨어 리소스를 가질 수 있다. 여기서, 압축 효율은 하드웨어 리소스에 영향을 받을 수 있다. 따라서, 각각의 단말마다 압축효율이 상이할 수 있다.Here, each terminal may set local model parameters having individual characteristics. Accordingly, when each terminal performs compression, compression efficiency may be different for each terminal. Also, as an example, each terminal may have different hardware resources. Here, compression efficiency may be affected by hardware resources. Accordingly, the compression efficiency may be different for each terminal.
구체적인 일 예로, 단말이 8비트로 양자화를 수행하는 경우, 64비트 연산 처리 기능이 구비된 단말은 높은 압축 효율을 얻을 수 있다. 반면, 16비트 연산 처리 기능이 구비된 단말은 압축 효율이 작을 수 있다. 또한, 일 예로, 단말이 저 사양의 하드웨어를 구비하는 경우, 단말은 많은 압축 로드를 받을 수 있다. 따라서, 상술한 단말은 간단한 압축기법을 사용하는 것이 유리할 수 있다. 일 예로, IoT(Internet of Thing) 단말이나 저전력 단말들은 비교적 저 사양의 하드웨어를 구비할 수 있기 때문에 간단한 압축 기법을 사용할 수 있다. 반면, AI에 기초하여 동작하는 단말이나 대용량의 데이터를 처리하는 단말은 고사양의 하드웨어를 구비할 수 있기 때문에 복잡한 압축 기법을 사용하여 압축 효율을 높일 수 있다. 즉, 단말별로 상이한 압축 방법이 사용될 수 있으며, 각각에 맞는 압축방법을 사용하는 것이 필요할 수 있다.As a specific example, when the terminal performs quantization with 8 bits, the terminal equipped with a 64-bit arithmetic processing function can obtain high compression efficiency. On the other hand, a terminal equipped with a 16-bit arithmetic processing function may have low compression efficiency. Also, as an example, when the terminal has low-spec hardware, the terminal may receive a large compression load. Therefore, it may be advantageous for the above-described terminal to use a simple compression method. For example, since Internet of Thing (IoT) terminals or low-power terminals may have relatively low-spec hardware, a simple compression technique may be used. On the other hand, since a terminal operating based on AI or a terminal processing a large amount of data may have high-spec hardware, it is possible to increase the compression efficiency by using a complex compression technique. That is, different compression methods may be used for each terminal, and it may be necessary to use a compression method suitable for each.
상술한 점을 고려하여, 각각의 단말은 로컬모델 파라미터의 개별적인 특성과 하드웨어 리소스에 적합한 압축방식을 사용할 수 있다. 이때, 단말들은 기지국으로 압축 방법에 대한 정보를 전달할 필요성이 있다. 기지국은 단말로부터 수신한 정보에 기초하여 각각의 단말로부터 수신한 압축된 데이터와 모델 파라미터를 복원할 수 있다.In consideration of the above, each terminal may use a compression method suitable for individual characteristics of local model parameters and hardware resources. In this case, the terminals need to transmit information on the compression method to the base station. The base station may restore compressed data and model parameters received from each terminal based on the information received from the terminal.
도 29는 본 개시에 적용 가능한 압축률에 따른 처리시간 및 전송시간을 나타낸 도면이다. 29 is a diagram illustrating a processing time and a transmission time according to a compression rate applicable to the present disclosure.
상술한 바에 기초하여 단말과 기지국이 연합학습에 기초하여 통신을 수행하는 경우, 단말과 기지국은 지연을 줄이기 위해 모델 파라미터의 최종 전달시간을 최소화할 수 있다.When the terminal and the base station perform communication based on the federated learning based on the above description, the terminal and the base station may minimize the final delivery time of the model parameter in order to reduce the delay.
보다 상세하게는, 단말이 모델 파라미터를 압축하여 기지국으로 전송하는 경우, 모델 파라미터의 전체 지연시간은 하기 수학식 13에 기초하여 결정될 수 있다. 즉, 전체 지연시간은 압축률(또는 해제율)에 기초한 지연 시간 및 전송지연 시간의 합으로 표현될 수 있다. 구체적으로, 하기 수학식 13에서 압축지연(
Figure PCTKR2020011234-appb-I000049
)은 압축을 위해서 사용되는 단말의 처리시간과 이를 다시 복원하는 기지국의 처리시간의 합을 의미할 수 있다. 또한, 하기 수학식 13에서 전송지연(
Figure PCTKR2020011234-appb-I000050
)은 모델 파라미터 전체를 전송하는데 걸리는 전송 시간일 수 있다. 즉, 전체 지연시간(
Figure PCTKR2020011234-appb-I000051
)은 압축 및 해제에 필요한 시간과 전송시간의 합으로 표현될 수 있다. 일 예로, 하기 수학식 13에서 무선환경에 대한 전파지연이나 그 밖에 시스템 지연 등에 대해서는 고려되지 않지 않을 수 있다. 다만, 이는 하나의 일 예일 뿐, 상술한 구성을 반영하는 것도 가능할 수 있다.
More specifically, when the terminal compresses the model parameter and transmits it to the base station, the total delay time of the model parameter may be determined based on Equation 13 below. That is, the total delay time may be expressed as the sum of the delay time based on the compression rate (or the release rate) and the transmission delay time. Specifically, in the following Equation 13, the compression delay (
Figure PCTKR2020011234-appb-I000049
) may mean the sum of the processing time of the terminal used for compression and the processing time of the base station for reconstructing it. In addition, in the following Equation 13, the transmission delay (
Figure PCTKR2020011234-appb-I000050
) may be the transmission time it takes to transmit all of the model parameters. That is, the total delay time (
Figure PCTKR2020011234-appb-I000051
) can be expressed as the sum of the time required for compression and decompression and the transmission time. For example, in Equation 13 below, propagation delay for a wireless environment or other system delay may not be considered. However, this is only one example, and it may be possible to reflect the above-described configuration.
[수학식 13][Equation 13]
Figure PCTKR2020011234-appb-I000052
Figure PCTKR2020011234-appb-I000052
여기서, 압축지연(
Figure PCTKR2020011234-appb-I000053
)은 압축률, 단말/기지국의 성능 및 압축할 원본데이터의 크기 등에 따라 변화할 수 있으며, 하기 수학식 14에 기초하여 결정될 수 있다. 구체적으로,
Figure PCTKR2020011234-appb-I000054
는 복원을 위한 지연(Decompression Delay)이고,
Figure PCTKR2020011234-appb-I000055
는 압축을 위한 지연(Compression Delay)일 수 있다. 또한, CR은 압축률(Compression Ratio)로서 압축전크기/압축후크기 일 수 있다. 또한,
Figure PCTKR2020011234-appb-I000056
는 기지국의 성능을 나타내 주는 지표이고,
Figure PCTKR2020011234-appb-I000057
는 단말의 성능을 나타내 주는 지표일 수 있다. 또한, DS는 데이터 크기(Data Size)일 수 있다. 즉, 수학식 14에 기초하면, 압축을 위한 지연인
Figure PCTKR2020011234-appb-I000058
는 압축률(CR)이 높은 경우, 단말 성능(
Figure PCTKR2020011234-appb-I000059
)이 낮은 경우 및 DS가 큰 경우 증가할 수 있다. 또한, 복원을 위한 지연인 D_d는 압축률(CR)이 높은 경우, 기지국 성능(
Figure PCTKR2020011234-appb-I000060
)이 낮은 경우 및 DS가 큰 경우 증가할 수 있다. 구체적으로, 압축/복원에 대한 처리시간은 압축률이 클수록 단말 및 기지국 로드가 많이 걸리기 때문에 증가할 수 있다. 또한, 단말 및 기지국의 성능에도 마찬가지로 영향을 받으며, 상술한 바와 같다. 또한, 압축해야 할 원본데이터 크기가 클수록 더 많은 메모리 읽기/쓰기(Read/Write)처리와 연산양을 사용하기 때문에 처리시간도 같이 증가할 수 있다.
Here, the compression delay (
Figure PCTKR2020011234-appb-I000053
) may change depending on the compression rate, the performance of the terminal/base station, and the size of the original data to be compressed, and may be determined based on Equation 14 below. Specifically,
Figure PCTKR2020011234-appb-I000054
is the delay for restoration (Decompression Delay),
Figure PCTKR2020011234-appb-I000055
may be a delay for compression (Compression Delay). In addition, CR is a compression ratio and may be a size before compression/size after compression. also,
Figure PCTKR2020011234-appb-I000056
is an index indicating the performance of the base station,
Figure PCTKR2020011234-appb-I000057
may be an indicator indicating the performance of the terminal. Also, DS may be a data size. That is, based on Equation 14, the delay for compression
Figure PCTKR2020011234-appb-I000058
When the compression ratio (CR) is high, the terminal performance (
Figure PCTKR2020011234-appb-I000059
) is low and DS is large. In addition, D_d, which is a delay for restoration, is when the compression ratio (CR) is high, the base station performance (
Figure PCTKR2020011234-appb-I000060
) is low and DS is large. Specifically, the processing time for compression/decompression may increase as the compression rate increases because it takes a lot of load on the terminal and the base station. In addition, the performance of the terminal and the base station is also affected, as described above. In addition, the larger the size of the original data to be compressed, the more memory read/write (Read/Write) processing and calculation amount is used, so the processing time may increase as well.
[수학식 14] [Equation 14]
Figure PCTKR2020011234-appb-I000061
Figure PCTKR2020011234-appb-I000061
또한, 일 예로, 전송지연(
Figure PCTKR2020011234-appb-I000062
)은 무선채널환경에 기반하여 설정된 MCS(Modulation and Coding Scheme) 및 압축한 데이터 크기(특정 압축률이 적용된)에 영향을 받을 수 있다. 일 예로, 전송시간은 MCS가 높을수록 감소할 수 있다. 또한, 전송시간은 압축률이 높을수록 감소할 수 있으며, 이는 하기 수학식 15와 같을 수 있다. 여기서,
Figure PCTKR2020011234-appb-I000063
는 최소 전송속도의 MCS일 수 있다. 또한,
Figure PCTKR2020011234-appb-I000064
Figure PCTKR2020011234-appb-I000065
일 때 모듈레이션 심볼당 비트들(bits per modulation symbol)일 수 있고,
Figure PCTKR2020011234-appb-I000066
Figure PCTKR2020011234-appb-I000067
일 때 코딩 레이트(Coding Rate)일 수 있다. 또한,
Figure PCTKR2020011234-appb-I000068
Figure PCTKR2020011234-appb-I000069
일 때의 코딩 레이트(Coding Rate)에 대한 초당 비트(Bit per Second)일 수 있다. 즉, 전송지연(
Figure PCTKR2020011234-appb-I000070
)은 데이터 크기(DS)가 크면 증가할 수 있다. 또한, 전송지연(
Figure PCTKR2020011234-appb-I000071
)은 압축률이 작은 경우 및 MCS가 작을수록 증가할 수 있다.
In addition, as an example, transmission delay (
Figure PCTKR2020011234-appb-I000062
) may be affected by the Modulation and Coding Scheme (MCS) set based on the radio channel environment and the compressed data size (a specific compression rate is applied). For example, the transmission time may decrease as the MCS increases. In addition, the transmission time may decrease as the compression rate increases, which may be expressed by Equation 15 below. here,
Figure PCTKR2020011234-appb-I000063
may be the MCS of the minimum transmission rate. also,
Figure PCTKR2020011234-appb-I000064
Is
Figure PCTKR2020011234-appb-I000065
When , it may be bits per modulation symbol,
Figure PCTKR2020011234-appb-I000066
Is
Figure PCTKR2020011234-appb-I000067
It may be a coding rate when . also,
Figure PCTKR2020011234-appb-I000068
Is
Figure PCTKR2020011234-appb-I000069
It may be bits per second for the coding rate when . That is, the transmission delay (
Figure PCTKR2020011234-appb-I000070
) may increase when the data size DS is large. In addition, transmission delay (
Figure PCTKR2020011234-appb-I000071
) may increase when the compression ratio is small and the MCS is small.
[수학식 15][Equation 15]
Figure PCTKR2020011234-appb-I000072
Figure PCTKR2020011234-appb-I000072
구체적인 일 예로, 도 29를 참조하면, 상술한 수학식 13에 기초하여 상술한 전체지연(
Figure PCTKR2020011234-appb-I000073
)은 압축지연(
Figure PCTKR2020011234-appb-I000074
)과 전송지연(
Figure PCTKR2020011234-appb-I000075
)에 따라 결정될 수 있다. 일 예로, 도 29를 참조하면, 압축률이 증가하면 압축지연(
Figure PCTKR2020011234-appb-I000076
)은 증가하고, 전송지연(
Figure PCTKR2020011234-appb-I000077
)은 감소할 수 있다. 즉, 압축지연(
Figure PCTKR2020011234-appb-I000078
)과 전송지연(
Figure PCTKR2020011234-appb-I000079
)은 압축률(CR)을 기준으로 반비례 관계일 수 있다. 상술한 점을 고려하여 단말과 기지국이 최적의 통신으로 전체지연(
Figure PCTKR2020011234-appb-I000080
)을 최소화하기 위해 압축률(CR)을 결정할 필요성이 있으며, 하기에서는 이에 대한 방법을 서술한다.
As a specific example, referring to FIG. 29, based on Equation 13, the total delay (
Figure PCTKR2020011234-appb-I000073
) is the compression delay (
Figure PCTKR2020011234-appb-I000074
) and transmission delay (
Figure PCTKR2020011234-appb-I000075
) can be determined according to For example, referring to FIG. 29, when the compression rate increases, the compression delay (
Figure PCTKR2020011234-appb-I000076
) increases, and the transmission delay (
Figure PCTKR2020011234-appb-I000077
) can be reduced. That is, the compression delay (
Figure PCTKR2020011234-appb-I000078
) and transmission delay (
Figure PCTKR2020011234-appb-I000079
) may be inversely proportional to the compression ratio (CR). Considering the above, the terminal and the base station can achieve the optimal communication with the total delay (
Figure PCTKR2020011234-appb-I000080
), there is a need to determine the compression ratio (CR), and a method for this is described below.
도 30은 본 개시에 적용 가능한 저 지연 연합학습을 위해 압축률과 MCS(Modulation Coding Scheme)를 결정하는 방법을 나타낸 도면이다.30 is a diagram illustrating a method of determining a compression rate and a Modulation Coding Scheme (MCS) for low-latency joint learning applicable to the present disclosure.
일 예로, 상술한 도 29에서 전체지연(
Figure PCTKR2020011234-appb-I000081
)은 압축률에 따라 달라지는 압축지연(
Figure PCTKR2020011234-appb-I000082
)과 전송지연(
Figure PCTKR2020011234-appb-I000083
)의 합일 수 있다. 여기서, 도 29처럼 전체지연(
Figure PCTKR2020011234-appb-I000084
)이 최소가 되는 압축률을 선정하는 경우, 전체 지연은 최소가 될 수 있다.
As an example, the total delay (
Figure PCTKR2020011234-appb-I000081
) is the compression delay (
Figure PCTKR2020011234-appb-I000082
) and transmission delay (
Figure PCTKR2020011234-appb-I000083
) can be the sum of Here, the total delay (
Figure PCTKR2020011234-appb-I000084
) is selected, the overall delay can be minimized.
상술한 점을 고려하여, 기지국은 단말로부터 수신한 기준신호(또는 참조신호)를 통해 SNR(Signal Noise Ratio)를 측정하고, 이에 기초하여 MCS 및 압축률 값을 예측할 수 있다.In consideration of the above, the base station may measure a signal noise ratio (SNR) through a reference signal (or reference signal) received from the terminal, and estimate the MCS and compression ratio values based thereon.
보다 상세하게는, 도 30을 참조하면, 기지국은 AMC(Adaptive Modulation and Coding) 에이전트(AMC Agent, 3010), MCS 지시 생성기(3020), 압축률 예측기(3030) 및 압축률 지시 생성기(3040) 중 적어도 어느 하나를 포함할 수 있다. 다만 , 기지국에 포함되는 상술한 구성은 하나의 일 예일 수 있으며, 상술한 명칭 역시 하나의 일 예일 수 있다. 일 예로, 기지국은 상술한 구성들과 동일한 기능을 수행하는 다른 구성을 포함할 수 있다. 또한, 기지국은 상술한 명칭과 다른 명칭을 갖는 구성에 기초하여 기능을 수행하도록 할 수 있으며, 상술한 실시예로 한정되지 않는다. 하기에서는 설명의 편의를 위해 상술한 구성에 기초하여 관련 내용을 서술하지만, 이에 한정되는 것은 아닐 수 있다. More specifically, referring to FIG. 30 , the base station is at least one of an Adaptive Modulation and Coding (AMC) agent (AMC Agent, 3010), an MCS instruction generator 3020, a compression rate predictor 3030, and a compression rate indication generator 3040. may contain one. However, the above-described configuration included in the base station may be an example, and the above-described name may also be an example. As an example, the base station may include other components that perform the same function as the above-described components. In addition, the base station may perform a function based on a configuration having a name different from the above-mentioned name, and is not limited to the above-described embodiment. Hereinafter, related content will be described based on the above-described configuration for convenience of description, but may not be limited thereto.
여기서, 일 예로, AMC 에이전트(3010)은 단말로부터 수신한 기준신호에 기초하여 측정된 SNR 정보를 바탕으로 MCS 예측을 수행할 수 있다. 그 후, AMC 에이전트(3010)는 예측된 MSC에 대한 정보를 MCS 지시 생성기(3020)로 전달할 수 있다. 이때, MCS 지시 생성기(3020)는 MCS를 지시하는 정보를 생성하여 단말로 전송할 수 있다. 또한, 일 예로, 압축률 예측기(3030)는 AMC 에이전트(3010)이 예측한 MCS와 전송데이터의 원본사이즈(DS), 기지국 성능 지표(
Figure PCTKR2020011234-appb-I000085
) 및 단말 성능지표(
Figure PCTKR2020011234-appb-I000086
)를 바탕으로 압축률을 예측할 수 있으며, 이에 대해서는 후술한다. 그 후, 압축률 예측기(3030)는 생성된 압축률 값을 압축률 지시 생성기(3040)로 전달할 수 있다. 이때, 압축률 지시 생성기(3040)는 단말에게 해당 압축률을 적용하여 전송하도록 지시할 수 있다. 일 예로, 도 31은 상술한 30에 기초하여 압축률 및 MCS를 결정하는 방법을 나타낸 도면이다. 일 예로, 기지국은 단말로부터 기준신호(또는 참조신호)를 수신하고, 수신된 신호에 기초하여 SNR을 측정할 수 있다.(S3110) 그 후, 기지국은 AMC 에이전트에게 측정된 SNR 정보를 제공하고, AMC 에이전트는 SNR 정보에 기초하여 SNR에 맞는 MCS를 예측할 수 있다.(S3120) 그 후, 기지국의 압축률 예측기는 예측된 MCS, 전송사이즈(DS), 기지국 성능 지표(
Figure PCTKR2020011234-appb-I000087
) 및 단말 성능지표(
Figure PCTKR2020011234-appb-I000088
) 중 적어도 어느 하나에 기초하여 압축률을 예측할 수 있다.(S3130) 그 후, 기지국은 예측된 MCS 및 압축률 값을 단말에게 전송하도록 지시 생성기에게 지시할 수 있다.(S3140) 즉, 기지국은 예측된 MCS 및 압축률 값을 단말에게 전송할 수 있다.
Here, as an example, the AMC agent 3010 may perform MCS prediction based on SNR information measured based on a reference signal received from the terminal. Thereafter, the AMC agent 3010 may transmit information on the predicted MSC to the MCS indication generator 3020 . In this case, the MCS indication generator 3020 may generate information indicating the MCS and transmit it to the terminal. In addition, as an example, the compression rate predictor 3030 includes the MCS predicted by the AMC agent 3010 and the original size (DS) of transmission data, the base station performance index (
Figure PCTKR2020011234-appb-I000085
) and terminal performance indicators (
Figure PCTKR2020011234-appb-I000086
) can predict the compression ratio, which will be described later. Thereafter, the compression ratio predictor 3030 may transmit the generated compression ratio value to the compression ratio indication generator 3040 . In this case, the compression rate indication generator 3040 may instruct the terminal to transmit by applying the corresponding compression rate. As an example, FIG. 31 is a diagram illustrating a method of determining a compression ratio and an MCS based on the aforementioned 30. As an example, the base station may receive a reference signal (or reference signal) from the terminal and measure the SNR based on the received signal (S3110). Then, the base station provides the measured SNR information to the AMC agent, The AMC agent may predict the MCS suitable for the SNR based on the SNR information. (S3120) Then, the compression rate predictor of the base station determines the predicted MCS, the transmission size (DS), and the base station performance index (S3120).
Figure PCTKR2020011234-appb-I000087
) and terminal performance indicators (
Figure PCTKR2020011234-appb-I000088
) may predict a compression rate based on at least one of ). (S3130) Then, the base station may instruct the instruction generator to transmit the predicted MCS and compression rate values to the terminal. (S3140) That is, the base station is the predicted MCS and compression rate values may be transmitted to the terminal.
도 32는 본 개시에 적용 가능한 강화학습에 기초하여 AMC(Adaptive Modulation and Coding) 에이전트의 동작 방법을 나타낸 도면이다.32 is a diagram illustrating an operation method of an adaptive modulation and coding (AMC) agent based on reinforcement learning applicable to the present disclosure.
일 예로, 도 32를 참조하면, AMC 에이전트(3210)는 스테이트(state,
Figure PCTKR2020011234-appb-I000089
)를 입력으로 사용할 수 있다. 여기서, 스테이트(
Figure PCTKR2020011234-appb-I000090
)는 무선채널(3220)을 통해 전송되는 업링크 기준신호에서 측정된 SNR의 양자화된 값으로 표현될 수 있다. 또한, 일 예로, AMC 에이전트(3210)의 액션(action)은
Figure PCTKR2020011234-appb-I000091
로 정의될 수 있다. 여기서,
Figure PCTKR2020011234-appb-I000092
는 MCS의 인덱스일 수 있다. 이때, AMC 에이전트(3210)는 무선채널의 SNR 정보를 기반하여 보상(Reward)를 최대화하는 MCS를 선택할 수 있다. 따라서, AMC 에이전트(3210)의 보상(Reward, R)은 주파수 효율(Spectral Efficiency)에 기초하여 표현될 수 있으며, 하기 수학식 16과 같을 수 있다. 여기서, BLER은 블록 에러 비율(Block Error Rate)이고, u 모듈레이션 심볼당 비트들이고, v는 코딩 레이트일 수 있다.
As an example, referring to FIG. 32 , the AMC agent 3210 is a state (state,
Figure PCTKR2020011234-appb-I000089
) can be used as input. Here, state(
Figure PCTKR2020011234-appb-I000090
) may be expressed as a quantized value of the SNR measured in the uplink reference signal transmitted through the radio channel 3220 . In addition, as an example, the action of the AMC agent 3210 is
Figure PCTKR2020011234-appb-I000091
can be defined as here,
Figure PCTKR2020011234-appb-I000092
may be an index of the MCS. In this case, the AMC agent 3210 may select an MCS that maximizes a reward based on the SNR information of the radio channel. Accordingly, the reward (Reward, R) of the AMC agent 3210 may be expressed based on the frequency efficiency (Spectral Efficiency), and may be expressed as Equation 16 below. Here, BLER may be a block error rate, u bits per modulation symbol, and v may be a coding rate.
[수학식 16][Equation 16]
Figure PCTKR2020011234-appb-I000093
Figure PCTKR2020011234-appb-I000093
즉, AMC 에이전트(3210)는 무선채널환경(3220)에서 주파수 효율(Spectral Efficiency)을 최대화하는 MCS를 결정하도록 학습될 수 있다. 일 예로, MCS에 대한 학습은 강화학습의 종류인 “Q-Learning”을 통해서 구현될 수 있으나, 이에 한정되는 것은 아니다. 이때, AMC 에이전트(3210)에 의해 학습되는 액션 값(Action-Value)은 하기 수학식 17과 같을 수 있다. 여기서,
Figure PCTKR2020011234-appb-I000094
는 학습 비율(learning rate)이고,
Figure PCTKR2020011234-appb-I000095
은 디스카운트 팩터(discount factor)일 수 있다.
That is, the AMC agent 3210 may be trained to determine the MCS that maximizes the frequency efficiency (Spectral Efficiency) in the radio channel environment 3220 . As an example, learning for MCS may be implemented through “Q-Learning,” which is a type of reinforcement learning, but is not limited thereto. In this case, the action value (Action-Value) learned by the AMC agent 3210 may be as shown in Equation 17 below. here,
Figure PCTKR2020011234-appb-I000094
is the learning rate,
Figure PCTKR2020011234-appb-I000095
may be a discount factor.
[수학식 17][Equation 17]
Figure PCTKR2020011234-appb-I000096
Figure PCTKR2020011234-appb-I000096
또 다른 일 예로, 기지국은 AMC 에이전트(3210)을 사용하지 않고, 기존 통신 시스템처럼 테이블 형태에 기초한 MCS를 선택하는 방식과 압축률 예측기를 연동하는 것도 가능할 수 있다. 즉, 기지국은 SNR에 기초하여 MCS 테이블에서 대응되는 인덱스를 선택하고, 이에 기초하여 압축률 예측기와 연동시킬 수 있으며, 상술한 실시예로 한정되지 않는다. 기지국은 AMC 에이전트(3210)에 기초하여 학습을 통해 MCS 값을 도출하거나 기존 테이블에 기초하여 MCS 값을 도출할 수 있으며, 상술한 실시예로 한정되지 않는다.As another example, the base station does not use the AMC agent 3210, and it may be possible to link a compression rate predictor with a method of selecting an MCS based on a table form like the existing communication system. That is, the base station may select a corresponding index from the MCS table based on the SNR and link it with the compression rate predictor based on this, and is not limited to the above-described embodiment. The base station may derive an MCS value through learning based on the AMC agent 3210 or may derive an MCS value based on an existing table, and is not limited to the above-described embodiment.
여기서, 일 예로, 압축률 예측기는 주어진 조건
Figure PCTKR2020011234-appb-I000097
의 모든 경우(단계별)에 대해서 최적의 압축률을 사전에 계산할 수 있다. 이를 통해, 압축률 예측기는 룩업 테이블(Look-up Table)형태로 압축률을 계산할 수 있다. 즉, 압축률 예측기는 대응되는 조건에 기초하여 복잡한 연산은 사전에 수행하고, 이에 대응되는 룩업 테이블을 통해 압축률을 도출할 수 있으며, 이를 통해 연산을 빠르게 수행할 수 있다.
Here, as an example, the compression rate predictor is given a condition
Figure PCTKR2020011234-appb-I000097
For all cases (step-by-step) of , the optimal compression ratio can be calculated in advance. Through this, the compression rate predictor may calculate the compression rate in the form of a look-up table. That is, the compression rate predictor may perform a complex operation in advance based on a corresponding condition and derive a compression rate through a lookup table corresponding thereto, and through this, the operation may be performed quickly.
또 다른 일 예로, 압축률 예측기는 보다 정확하고 세밀한 예측을 위해서 인공지능(Artificial Intelligence, AI)를 사용할 수 있다. 여기서, 일 예로, 압축기 예측기는 강화학습에 기초하여 학습을 수행할 수 있다. 이때, 강화학습의 경우에는 실시간으로 업데이트가 가능할 수 있다. 따라서, 압축률 예측기는 주어진 조건 외에 발생하는 지연에 대해서도 적응 가능한 예측을 수행할 수 있다. 다만, 이는 하나의 일 예일 뿐, 상술한 실시예로 한정되지 않는다. As another example, the compression rate predictor may use artificial intelligence (AI) for more accurate and detailed prediction. Here, as an example, the compressor predictor may perform learning based on reinforcement learning. In this case, in the case of reinforcement learning, it may be possible to update in real time. Accordingly, the compression rate predictor can perform adaptive prediction on delays occurring other than the given conditions. However, this is only one example and is not limited to the above-described embodiment.
구체적으로, 상술한 바에 기초하여 AMC 에이전트가 MCS를 예측하고, 예측된 MCS를 MCS 지시 생성기를 통해 단말에게 해당 MCS를 선택하도록 지시할 수 있다. 또한, 압축률 예측기는 AMC 에이전트가 예측한 MCS와 전송데이터의 원본사이즈(DS), 기지국 성능 지표(
Figure PCTKR2020011234-appb-I000098
) 및 단말 성능지표(
Figure PCTKR2020011234-appb-I000099
) 중 적어도 어느 하나를 통해 압축률을 예측할 수 있다. 그 후, 압축률 예측기는 예측된 압축률 값을 압축률 지시 생성기로 전달할 수 있다. 압축률 지시 생성기는 전달받은 압축률 값에 기초하여 단말에게 해당 압축률을 적용하여 전송하도록 지시할 수 있다.
Specifically, the AMC agent may predict the MCS based on the above description, and the predicted MCS may instruct the UE to select the corresponding MCS through the MCS indication generator. In addition, the compression rate predictor includes the MCS predicted by the AMC agent, the original size (DS) of the transmitted data, and the base station performance index (
Figure PCTKR2020011234-appb-I000098
) and terminal performance indicators (
Figure PCTKR2020011234-appb-I000099
), it is possible to predict the compression ratio through at least one. Then, the compression ratio predictor may pass the predicted compression ratio value to the compression ratio indication generator. The compression ratio indication generator may instruct the terminal to transmit by applying the corresponding compression ratio based on the received compression ratio value.
여기서, 도 33은 본 개시에 적용 가능한 전결합 레이어(Full Connected Layer)에 기초하여 전송지연을 최소화하기 위해 압축률을 예측하는 방법을 나타낸 도면이다. 일 예로, 도 33을 참조하면, 압축률 예측기는 전 결합 방식(Full Connected Layer)에 기초하여 압축률을 예측할 수 있다. 보다 상세하게는, 압축률 예측기는 전송데이터의 원본사이즈(DS), 기지국 성능 지표(
Figure PCTKR2020011234-appb-I000100
), 단말 성능지표(
Figure PCTKR2020011234-appb-I000101
) 및 MCS 값에서 계산된 최적의 압축률 값을 학습데이터로 구성할 수 있다. 이때, 압축률 예측기 내의 각 레이어들은 전부 연결될 수 있으며, 이를 통해 각각의 요소를 반영한 학습을 수행할 수 있다. 그 후, 압축률 예측기는 상술한 입력 값에 기초하여 최단 지연을 제공하는 압축률을 출력값으로 도출할 수 있다.
Here, FIG. 33 is a diagram illustrating a method of predicting a compression rate to minimize transmission delay based on a fully connected layer applicable to the present disclosure. As an example, referring to FIG. 33 , the compression ratio predictor may predict the compression ratio based on a full connected layer. In more detail, the compression rate predictor includes the original size (DS) of transmitted data, the base station performance index (
Figure PCTKR2020011234-appb-I000100
), terminal performance index (
Figure PCTKR2020011234-appb-I000101
) and the optimal compression ratio calculated from the MCS value can be configured as training data. In this case, all layers in the compression rate predictor may be connected, and through this, learning reflecting each element may be performed. Thereafter, the compression ratio predictor may derive a compression ratio providing the shortest delay as an output value based on the above-described input value.
또 다른 일 예로 , 도 34는 본 개시에 적용 가능한 전송지연을 최소화하기 위해 압축률을 제어하는 방법을 나타낸 도면이다. 도 34를 참조하면, 압축률 예측기는 강화학습에 기초하여 압축률을 예측할 수 있다. 보다 상세하게는, 도 34를 참조하면, 압축률 예측기는 강화학습을 위해 CR 에이전트(CR Agent, 3410), 딜레이 계산기(3420) 및 압축률 조정기(3430) 중 적어도 어느 하나를 포함할 수 있다.As another example, FIG. 34 is a diagram illustrating a method of controlling a compression rate to minimize transmission delay applicable to the present disclosure. Referring to FIG. 34 , the compression rate predictor may predict the compression rate based on reinforcement learning. More specifically, referring to FIG. 34 , the compression rate predictor may include at least one of a CR Agent 3410 , a delay calculator 3420 , and a compression rate adjuster 3430 for reinforcement learning.
다만, 압축률 예측기에 포함되는 상술한 구성은 하나의 일 예일 수 있으며, 상술한 명칭 역시 하나의 일 예일 수 있다. 일 예로, 압축률 예측기는 상술한 구성들과 동일한 기능을 수행하는 다른 구성을 포함할 수 있다. 또한, 압축률 예측기는 상술한 명칭과 다른 명칭을 갖는 구성에 기초하여 기능을 수행하도록 할 수 있으며, 상술한 실시예로 한정되지 않는다. 하기에서는 설명의 편의를 위해 상술한 구성에 기초하여 관련 내용을 서술하지만, 이에 한정되는 것은 아닐 수 있다. However, the above-described configuration included in the compression rate predictor may be an example, and the above-described name may also be an example. As an example, the compression rate predictor may include other components that perform the same function as the above-described components. In addition, the compression rate predictor may perform a function based on a configuration having a name different from the above-mentioned name, and is not limited to the above-described embodiment. Hereinafter, related content will be described based on the above-described configuration for convenience of description, but may not be limited thereto.
이때, 일 예로, CR 에이전트(3410)의 스테이트(
Figure PCTKR2020011234-appb-I000102
)는
Figure PCTKR2020011234-appb-I000103
일 수 있다. 즉, CR 에이전트(3410)는 원본데이터 크기(DS), MCS, 기지국 성능 지표(
Figure PCTKR2020011234-appb-I000104
) 및 단말 성능 지표(
Figure PCTKR2020011234-appb-I000105
)를 고려하여 학습할 수 있다. 또한, 일 예로, CR 에이전트(3410)의 액션(Action)은 압축률의 단위단계를 증가시키거나 감소시키는 역할을 수행할 수 있다. 여기서, 조정가능한 압축률의 단계가 n인 경우, 압축률 조정기(3430)의 출력 값은
Figure PCTKR2020011234-appb-I000106
의 범위내에 존재할 수 있다. 압축률 조정기(3430)는 CR에이전트(3410) 액션에 기초하여 현재 압축률 값을 증가 또는 감소시킬 수 있다. 그 후, 압축률 조정기(3430)는 조정 값에 대한 정보를 CR 에이전트(3410)에 다음 상태 값으로 전달할 수 있다. 여기서, 딜레이 계산기(3420)는 압축률 조정기의 출력 값에 해당되는 보상(Reward, R)을 계산할 수 있으며, 보상은 하기 수학식 18과 같을 수 있다.
At this time, as an example, the state of the CR agent 3410 (
Figure PCTKR2020011234-appb-I000102
)Is
Figure PCTKR2020011234-appb-I000103
can be That is, the CR agent 3410 is the original data size (DS), MCS, base station performance indicators (
Figure PCTKR2020011234-appb-I000104
) and terminal performance indicators (
Figure PCTKR2020011234-appb-I000105
) can be considered. Also, as an example, the action of the CR agent 3410 may serve to increase or decrease the unit step of the compression rate. Here, when the step of the adjustable compression ratio is n, the output value of the compression ratio adjuster 3430 is
Figure PCTKR2020011234-appb-I000106
may be within the range of The compression ratio adjuster 3430 may increase or decrease the current compression ratio value based on the action of the CR agent 3410 . Thereafter, the compression ratio adjuster 3430 may transmit information on the adjustment value to the CR agent 3410 as a next state value. Here, the delay calculator 3420 may calculate a compensation (Reward, R) corresponding to the output value of the compression ratio adjuster, and the compensation may be as shown in Equation 18 below.
여기서,
Figure PCTKR2020011234-appb-I000107
는 이전 압축률에서의 지연 값이고,
Figure PCTKR2020011234-appb-I000108
는 현재 압축률에서 지연 값일 수 있다. 이때, 일 예로, 보상은 액션으로 인한 지연이 더 줄어드는 경우에 커질 수 있다. 따라서, CR 에이전트(3410)는 지연을 줄이는 방향으로 액션을 선택할 수 있다.
here,
Figure PCTKR2020011234-appb-I000107
is the delay value at the previous compression rate,
Figure PCTKR2020011234-appb-I000108
may be a delay value at the current compression rate. In this case, as an example, the reward may be increased when the delay due to the action is further reduced. Accordingly, the CR agent 3410 may select an action in the direction of reducing the delay.
상술한 바에 기초하여, 강화학습을 사용한 압축률 예측기는 압축률 조정기(3430)에 기초하여 지연 값에 대해 반복적으로 계산하여 CR 에이전트(3410)로 제공하고, CR 에이전트(3410)는 반복된 값에 기초하여 수렴된 압축률(CR, Compression Ratio)를 사용할 수 있다. 또 다른 일 예로, 기지국이 단말로부터 압축시작시간에 대한 정보를 수신하는 경우, 기지국은 압축복원완료시간과의 차이에 기초하여 딜레이를 실측할 수 있다. 이때, 압축률 예측기는 상술한 정보를 더 반영하여 압축률 값을 도출할 수 있으며, 이를 통해 정확도를 높일 수 있으나, 이에 한정되는 것은 아니다.Based on the above, the compression rate predictor using reinforcement learning repeatedly calculates the delay value based on the compression rate adjuster 3430 and provides it to the CR agent 3410, and the CR agent 3410 is based on the repeated value. A converged compression ratio (CR, Compression Ratio) can be used. As another example, when the base station receives the information on the compression start time from the terminal, the base station may measure the delay based on the difference from the compression and restoration completion time. In this case, the compression rate predictor may derive a compression rate value by further reflecting the above-described information, and through this, accuracy may be increased, but the present invention is not limited thereto.
[수학식 18][Equation 18]
Figure PCTKR2020011234-appb-I000109
Figure PCTKR2020011234-appb-I000109
도 35는 본 개시에 적용 가능한 전송지연을 최소화하기 위해 압축률 및 MCS를 제어하는 방법에 대한 플로우를 나타낸 도면이다.35 is a diagram illustrating a flow for a method of controlling a compression rate and MCS to minimize transmission delay applicable to the present disclosure.
도 35를 참조하면, 단말들(3510, 3520, 3530)은 기지국(3540)으로 각각의 성능 지표(
Figure PCTKR2020011234-appb-I000110
)를 전송할 수 있다. 보다 상세하게는, 기지국(3540)은 각각의 단말들(3510, 3520, 3530)에게 단말 성능 지표 전송을 요청하는 메시지를 전송할 수 있다. 이때, 각각의 단말들(3510, 3520, 3530)은 기지국으로부터 수신한 요청 메시지에 기초하여 각각의 성능 지표(
Figure PCTKR2020011234-appb-I000111
)를 기지국(3540)으로 전송할 수 있다.
Referring to FIG. 35 , terminals 3510 , 3520 , and 3530 each perform performance indicators (
Figure PCTKR2020011234-appb-I000110
) can be transmitted. In more detail, the base station 3540 may transmit a message requesting transmission of a terminal performance indicator to each of the terminals 3510 , 3520 , and 3530 . At this time, each of the terminals (3510, 3520, 3530) based on the request message received from the base station each performance indicator (
Figure PCTKR2020011234-appb-I000111
) may be transmitted to the base station 3540 .
그 후, 기지국(3540)은 각각의 단말들(3510, 3520, 3530)로 글로벌 모델(
Figure PCTKR2020011234-appb-I000112
)을 전달할 수 있다. 이때, 각각의 단말들(3510, 3520, 3530)은 기지국(3540)으로부터 수신한 글로벌 모델(
Figure PCTKR2020011234-appb-I000113
)을 통해 로컬학습을 수행할 수 있다. 이를 통해, 각각의 단말들(3510, 3520, 3530)은 모델 파라미터를 전송할 준비를 수행할 수 있다. 그 후, 각각의 단말들(3510, 3520, 3530)은 기지국으로 각각의 기준신호를 전송할 수 있다. 이때, 기지국(3540)은 각각의 단말들(3510, 3520, 3530) 로부터 수신한 각각의 기준 신호에 기초하여 각각의 SNR을 측정할 수 있다. 기지국(3540)은 상술한 바에 기초하여 SNR에 기초하여 MCS를 결정할 수 있다. 이때, 상술한 바와 같이, MCS는 인공 지능에 기초하여 학습을 통해 결정될 수 있다. 또 다른 일 예로, MCS는 기존 통신 시스템처럼 테이블 값에 기초하여 결정될 수 있으며, 상술한 실시예로 한정되지 않는다. 그 후, 기지국(3540)은 결정된 MCS와 기지국 성능 지표(
Figure PCTKR2020011234-appb-I000114
)와 각각의 단말의 성능 지표(
Figure PCTKR2020011234-appb-I000115
) 및 원본 데이터 크기(DS) 중 적어도 어느 하나를 이용하여 저 지연을 위한 압축률을 예측할 수 있다. 일 예로, 기지국(3540)은 상술한 도 33과 같은 전 결합 방식 또는 도 34와 같은 강화학습 방식에 기초하여 압축률을 예측할 수 있다. 여기서, 기지국은 도 34에 기초하여 압축률 조정기 및 지연 계산기에 기초하여 압축률을 도출할 수 있으며, 상술한 실시예로 한정되지 않는다. 그 후, 기지국(3540)은 각각의 단말들(3510, 3520, 3530)로 동작 지시를 전송할 수 있다. 이때, 각각의 동작 지시에는 해당 단말에 대한 압축률 및 MCS 정보가 포함될 수 있다. 그 후, 각각의 단말들(3510, 3520, 3530)은 수신한 정보에 기초하여 데이터에 압축을 수행할 수 있다. 그 후, 각각의 단말들(3510, 3520, 3530)은 압축된 각각의 데이터들(
Figure PCTKR2020011234-appb-I000116
)을 기지국(3540)으로 전송할 수 있다.
After that, the base station 3540 is a global model (
Figure PCTKR2020011234-appb-I000112
) can be transmitted. At this time, each of the terminals (3510, 3520, 3530) receives the global model (3540) from the base station (3540).
Figure PCTKR2020011234-appb-I000113
) to perform local learning. Through this, each of the terminals 3510 , 3520 , and 3530 may prepare to transmit the model parameter. Thereafter, each of the terminals 3510 , 3520 , and 3530 may transmit each reference signal to the base station. In this case, the base station 3540 may measure each SNR based on each reference signal received from each of the terminals 3510 , 3520 , and 3530 . The base station 3540 may determine the MCS based on the SNR based on the above description. In this case, as described above, the MCS may be determined through learning based on artificial intelligence. As another example, the MCS may be determined based on a table value like the existing communication system, and is not limited to the above-described embodiment. Then, the base station 3540 determines the MCS and the base station performance indicator (
Figure PCTKR2020011234-appb-I000114
) and the performance index of each terminal (
Figure PCTKR2020011234-appb-I000115
) and the original data size (DS) may be used to predict the compression ratio for low delay. As an example, the base station 3540 may predict the compression ratio based on the pre-combination method as shown in FIG. 33 or the reinforcement learning method as shown in FIG. 34 . Here, the base station may derive the compression ratio based on the compression ratio adjuster and the delay calculator based on FIG. 34, and is not limited to the above-described embodiment. Thereafter, the base station 3540 may transmit an operation instruction to each of the terminals 3510 , 3520 , and 3530 . In this case, each operation instruction may include a compression rate and MCS information for the corresponding terminal. Thereafter, each of the terminals 3510 , 3520 , and 3530 may perform compression on data based on the received information. Then, each of the terminals (3510, 3520, 3530) is each compressed data (
Figure PCTKR2020011234-appb-I000116
) may be transmitted to the base station 3540 .
그 후, 기지국(3540)은 수신한 데이터에 기초하여 글로벌 모델 파라미터를 생성 및 업데이트할 수 있다. 그 후, 기지국(3540)은 업데이트된 글로벌 모델 파라미터를 각각의 단말들(3510, 3520, 3530)로 전송할 수 있다. Thereafter, the base station 3540 may generate and update global model parameters based on the received data. Thereafter, the base station 3540 may transmit the updated global model parameter to the respective terminals 3510 , 3520 , and 3530 .
여기서, 일 예로, 단말 성능 지표(
Figure PCTKR2020011234-appb-I000117
) 및 기지국 성능 지표(
Figure PCTKR2020011234-appb-I000118
)는 단말 및 기지국의 압축능력과 관련된 성능을 나타내는 지표일 수 있다. 일 예로, 단말 및 기지국의 성능 지표는 벤치마킹 툴이나 제품사양(CPU, GPU, Memory)에 따른 표준화된 점수로 정의될 수 있으나, 이에 한정되는 것은 아니다. 또 다른 일 예로, 기지국은 벤치마킹 툴을 단말에 전달할 수 있다. 이때, 단말은 수신한 벤치마킹 툴에 기초하여 측정을 수행하고, 측정된 점수를 기지국으로 전달할 수 있다. 이때, 기지국은 측정된 점수에 기초하여 단말 성능 지표를 확인할 수 있으나, 이는 하나의 일 예일 뿐, 상술한 실시예로 한정되지 않는다.
Here, as an example, the terminal performance index (
Figure PCTKR2020011234-appb-I000117
) and base station performance indicators (
Figure PCTKR2020011234-appb-I000118
) may be an index indicating performance related to the compression capability of the terminal and the base station. As an example, the performance index of the terminal and the base station may be defined as a standardized score according to a benchmarking tool or a product specification (CPU, GPU, Memory), but is not limited thereto. As another example, the base station may deliver a benchmarking tool to the terminal. In this case, the terminal may perform measurement based on the received benchmarking tool, and transmit the measured score to the base station. In this case, the base station may check the terminal performance indicator based on the measured score, but this is only an example and is not limited to the above-described embodiment.
또 다른 일 예로, 도 36 및 도 37은 전송용량이 최소화하도록 압축률을 제어하는 방법을 나타낸 도면일 수 있다. 일 예로, 상술한 압축률 예측기는 전송용량을 최소화하도록 설계될 수 있다.As another example, FIGS. 36 and 37 may be diagrams illustrating a method of controlling a compression rate to minimize transmission capacity. As an example, the above-described compression rate predictor may be designed to minimize transmission capacity.
보다 상세하게는, 압축률이 높은 경우, 전송용량은 최소화될 수 있다. 다만, 데이터에 대한 압축률이 높은 경우, 데이터에 대한 손실이 증가할 수 있다. 따라서, 목표 압축손실 값 내에서 최대한 압축률을 높이는 방안이 필요할 수 있으며, 이에 기초하여 압축률 예측기가 구현될 수 있다. More specifically, when the compression rate is high, the transmission capacity can be minimized. However, when the compression rate for data is high, data loss may increase. Therefore, a method for maximally increasing the compression ratio within the target compression loss value may be required, and a compression ratio predictor may be implemented based on this.
일 예로, 도 36을 참조하면, 압축률 예측기는 CR 에이전트(3610),
Figure PCTKR2020011234-appb-I000119
비교기(3620) 및 압축률 조정기(3630) 중 적어도 어느 하나를 포함할 수 있다. 다만, 압축률 예측기에 포함되는 상술한 구성은 하나의 일 예일 수 있으며, 상술한 명칭 역시 하나의 일 예일 수 있다. 일 예로, 압축률 예측기는 상술한 구성들과 동일한 기능을 수행하는 다른 구성을 포함할 수 있다. 또한, 압축률 예측기는 상술한 명칭과 다른 명칭을 갖는 구성에 기초하여 기능을 수행하도록 할 수 있으며, 상술한 실시예로 한정되지 않는다. 하기에서는 설명의 편의를 위해 상술한 구성에 기초하여 관련 내용을 서술하지만, 이에 한정되는 것은 아닐 수 있다.
As an example, referring to FIG. 36 , the compression rate predictor is a CR agent 3610,
Figure PCTKR2020011234-appb-I000119
At least one of a comparator 3620 and a compression ratio adjuster 3630 may be included. However, the above-described configuration included in the compression rate predictor may be an example, and the above-described name may also be an example. As an example, the compression rate predictor may include other components that perform the same function as the above-described components. In addition, the compression rate predictor may perform a function based on a configuration having a name different from the above-mentioned name, and is not limited to the above-described embodiment. Hereinafter, related content will be described based on the above-described configuration for convenience of description, but may not be limited thereto.
이때, 일 예로, CR 에이전트(3610)의 스테이트(
Figure PCTKR2020011234-appb-I000120
)는
Figure PCTKR2020011234-appb-I000121
일 수 있다. 즉, CR 에이전트(3610)는 압축률 및 사용자 수(단말 수)를 고려하여 학습을 수행할 수 있으며, 이에 대해서는 후술한다. 또한, 일 예로, CR 에이전트(3610)의 액션(Action)은 압축률의 단위단계를 증가시키거나 감소시키는 역할을 수행할 수 있다. 여기서, 조정가능한 압축률의 단계가 n인 경우, 압축률 조정기(3630)의 출력 값은
Figure PCTKR2020011234-appb-I000122
의 범위내에 존재할 수 있다. 압축률 조정기(3460)는 CR에이전트(3610) 액션에 기초하여 현재 압축률 값을 증가 또는 감소시킬 수 있다. 그 후, 압축률 조정기(3630)는 조정 값에 대한 정보를 CR 에이전트(3610)에 다음 상태 값으로 전달할 수 있다. 여기서,
Figure PCTKR2020011234-appb-I000123
비교기(3620)는 압축률 조정기의 출력 값에 해당되는 보상(Reward, R)을 계산할 수 있으며, 보상은 하기 수학식 19와 같을 수 있다. 여기서,
Figure PCTKR2020011234-appb-I000124
는 적용할 수 있는 최대 압축률이고,
Figure PCTKR2020011234-appb-I000125
는 최소 압축률(즉, 압축을 수행하지 않는 경우)일 수 있다. 또한, CR은 현재 압축률(즉, 압축률 조정기의 출력 값)일 수 있다. 또한,
Figure PCTKR2020011234-appb-I000126
는 목표 압축 손실률이고,
Figure PCTKR2020011234-appb-I000127
는 현재 압축 손실률일 수 있다.
At this time, as an example, the state of the CR agent 3610 (
Figure PCTKR2020011234-appb-I000120
)Is
Figure PCTKR2020011234-appb-I000121
can be That is, the CR agent 3610 may perform learning in consideration of the compression rate and the number of users (the number of terminals), which will be described later. Also, as an example, the action of the CR agent 3610 may serve to increase or decrease the unit step of the compression rate. Here, when the step of the adjustable compression ratio is n, the output value of the compression ratio adjuster 3630 is
Figure PCTKR2020011234-appb-I000122
may be within the range of The compression ratio adjuster 3460 may increase or decrease the current compression ratio value based on the action of the CR agent 3610 . Thereafter, the compression rate adjuster 3630 may transmit information on the adjustment value to the CR agent 3610 as a next state value. here,
Figure PCTKR2020011234-appb-I000123
The comparator 3620 may calculate a compensation (Reward, R) corresponding to the output value of the compression ratio adjuster, and the compensation may be as shown in Equation 19 below. here,
Figure PCTKR2020011234-appb-I000124
is the maximum compression ratio that can be applied,
Figure PCTKR2020011234-appb-I000125
may be the minimum compression ratio (ie, when no compression is performed). Also, CR may be a current compression ratio (ie, an output value of the compression ratio adjuster). also,
Figure PCTKR2020011234-appb-I000126
is the target compression loss ratio,
Figure PCTKR2020011234-appb-I000127
may be the current compression loss ratio.
[수학식 19][Equation 19]
Figure PCTKR2020011234-appb-I000128
Figure PCTKR2020011234-appb-I000128
이때, 일 예로, 보상은 액션으로 인한 압축 손실률이 더 줄어드는 경우에 커질 수 있다. 따라서, CR 에이전트(3610)는 압축 손실률을 줄이는 방향으로 액션을 선택할 수 있다.In this case, as an example, the compensation may be increased when the compression loss rate due to the action is further reduced. Accordingly, the CR agent 3610 may select an action in the direction of reducing the compression loss rate.
상술한 바에 기초하여, 강화학습을 사용한 압축률 예측기는 압축률 조정기(3630)에 기초하여 압축 손실률에 대해 반복적으로 계산하여 CR 에이전트(3610)로 제공하고, CR 에이전트(3610)는 반복된 값에 기초하여 수렴된 압축률(CR, Compression Ratio)를 사용할 수 있다. Based on the above, the compression rate predictor using reinforcement learning repeatedly calculates the compression loss rate based on the compression rate adjuster 3630 and provides it to the CR agent 3610, and the CR agent 3610 is based on the repeated value. A converged compression ratio (CR, Compression Ratio) can be used.
여기서, 일 예로, 데이터 압축에 의해 발생하는 손실률은 사용자 수가 증가하면 감소할 수 있다. 즉, 사용자 수가 적을수록 압축 손실률에 대한 영향이 클 수 있다. 상술한 점을 고려하여, CR 에이전트(3610)의 스테이트는 압축률(CR)과 사용자 수(n)을 고려하여
Figure PCTKR2020011234-appb-I000129
으로 설정될 수 있다.
Here, as an example, a loss rate caused by data compression may decrease as the number of users increases. That is, the smaller the number of users, the greater the effect on the compression loss rate may be. In consideration of the above, the state of the CR agent 3610 is determined by considering the compression ratio (CR) and the number of users (n).
Figure PCTKR2020011234-appb-I000129
can be set to
일 예로, 사용자 수(n)가 적은 경우, 압축 손실률은 각각의 사용자마다 크게 영향을 미칠 수 있다. 반면, 사용자 수(n)이 큰 경우, 압축 손실률은 각각의 사용자마다 영향이 크지 않을 수 있다. 일 예로, 압축은 사용자마다 서로 다른 부분이 수행될 수 있다. 여기서, 사용자 수(n)은 경우, 전체적인 압축 손실률에서 압축 손실에 대한 영향이 클 수 있다. 반면, 사용자 수(n)이 전체적인 압축 손실률에서 압축 손실에 대한 영향이 작을 수 있다. 상술한 점을 고려하여, CR 에이전트(3610)의 스테이트는 압축률(CR)과 사용자 수(n)을 고려할 수 있다. For example, when the number of users (n) is small, the compression loss rate may greatly affect each user. On the other hand, when the number of users (n) is large, the compression loss ratio may not have a large effect on each user. For example, a different part of compression may be performed for each user. Here, the number of users (n) may have a large influence on the compression loss in the overall compression loss ratio. On the other hand, the number of users (n) may have a small influence on the compression loss in the overall compression loss ratio. In consideration of the above, the state of the CR agent 3610 may consider the compression ratio (CR) and the number of users (n).
또한, 일 예로, 상술한 수학식 19에서 사용자 수가 증가하는 경우, 목표 압축 손실률(
Figure PCTKR2020011234-appb-I000130
)가 높게 설정될 수 있다. 이를 통해, 현재 압축률(즉, 압축률 조정기의 출력 값)이 커지도록 보상이 설계될 수 있다. 상술한 점을 고려하여, 기지국은 사용자 수(또는 단말 수)를 확인하여 목표 압축 손실률(
Figure PCTKR2020011234-appb-I000131
)을 결정할 수 있다. 또 다른 일 예로, 사용자 수에 대응되는 목표 압축 손실률(
Figure PCTKR2020011234-appb-I000132
) 값이 사전에 기 설정될 수 있다. 기지국은 사용자 수를 확인하고, 확인된 사용자 수에 대응되는 목표 압축 손실률(
Figure PCTKR2020011234-appb-I000133
) 값을 사용할 수 있으며, 상술한 실시예로 한정되지 않는다. 즉, 압축률 예측기는 사용자 수를 고려하여 압축률 값을 학습할 수 있다.
In addition, as an example, when the number of users increases in Equation 19 above, the target compression loss ratio (
Figure PCTKR2020011234-appb-I000130
) can be set high. Through this, compensation may be designed so that the current compression ratio (ie, the output value of the compression ratio adjuster) increases. In consideration of the above, the base station checks the number of users (or the number of terminals) to determine the target compression loss rate (
Figure PCTKR2020011234-appb-I000131
) can be determined. As another example, the target compression loss ratio corresponding to the number of users (
Figure PCTKR2020011234-appb-I000132
) may be preset in advance. The base station checks the number of users, and the target compression loss ratio (
Figure PCTKR2020011234-appb-I000133
) value can be used, and it is not limited to the above-described embodiment. That is, the compression rate predictor may learn the compression rate value in consideration of the number of users.
도 37은 본 개시에 적용 가능한 전송 용량을 최소화하기 위해 압축률 및 MCS를 제어하는 방법에 대한 플로우를 나타낸 도면이다.37 is a diagram illustrating a flow for a method of controlling a compression rate and MCS to minimize a transmission capacity applicable to the present disclosure.
도 37를 참조하면, 기지국(3740)은 각각의 단말들(3710, 3720, 3730)로 글로벌 모델(g_pre)을 전달할 수 있다. 이때, 각각의 단말들(3710, 3720, 3730)은 기지국(3740)으로부터 수신한 글로벌 모델(
Figure PCTKR2020011234-appb-I000134
)을 통해 로컬학습을 수행할 수 있다. 이를 통해, 각각의 단말들(3710, 3720, 3730)은 모델 파라미터를 전송할 준비를 수행할 수 있다. 그 후, 각각의 단말들(3710, 3720, 3730)은 기지국으로 각각의 기준신호를 전송할 수 있다. 이때, 기지국(3740)은 각각의 단말들(3710, 3720, 3730) 로부터 수신한 각각의 기준신호에 기초하여 각각의 SNR을 측정할 수 있다. 기지국(3740)은 상술한 바에 기초하여 SNR에 기초하여 MCS를 결정할 수 있다.
Referring to FIG. 37 , the base station 3740 may transmit the global model g_pre to the respective terminals 3710 , 3720 , and 3730 . At this time, each of the terminals 3710, 3720, 3730 receives the global model (
Figure PCTKR2020011234-appb-I000134
) to perform local learning. Through this, each of the terminals 3710, 3720, and 3730 may prepare to transmit the model parameter. Thereafter, each of the terminals 3710 , 3720 , and 3730 may transmit each reference signal to the base station. In this case, the base station 3740 may measure each SNR based on each reference signal received from each of the terminals 3710 , 3720 , and 3730 . The base station 3740 may determine the MCS based on the SNR based on the above description.
이때, 일 예로, 기지국(3740)은 단말 수(또는 사용자 수)를 더 확인할 수 있다. 구체적인 일 예로, 기지국(3740)은 기지국(3740)과 연결된 단말 수를 확인하고, 이를 상술한 사용자 수(n) 값으로 사용할 수 있다. 또 다른 일 예로, 기지국(3740)이 각각의 단말들(3710, 3720, 3730)로부터 기준신호를 수신하는 경우, 기지국(3740)은 기준신호가 수신된 단말을 확인하고, 이에 기초하여 사용자 수(n) 값을 결정할 수 있다. 일 예로, 특정 단말이 전송한 기준신호를 기지국(3740)이 수신하지 못한 경우, 기지국(3740)은 해당 단말을 상술한 사용자 수(n)을 카운트할 때 제외할 수 있다. 즉, 기지국(3740)은 각각의 단말들(3710, 3720, 3730)로부터 기준신호를 수신하여 SNR을 측정할뿐만 아니라 사용자 수(n)도 결정할 수 있으며, 상술한 실시예로 한정되지 않는다.In this case, as an example, the base station 3740 may further confirm the number of terminals (or the number of users). As a specific example, the base station 3740 may check the number of terminals connected to the base station 3740 and use it as the above-described number of users (n). As another example, when the base station 3740 receives a reference signal from each of the terminals 3710, 3720, and 3730, the base station 3740 identifies the terminal from which the reference signal is received, and based on this, the number of users ( n) the value can be determined. For example, when the base station 3740 does not receive the reference signal transmitted by a specific terminal, the base station 3740 may exclude the corresponding terminal when counting the number of users n described above. That is, the base station 3740 may receive a reference signal from each of the terminals 3710 , 3720 , and 3730 to measure the SNR as well as determine the number of users n, and is not limited to the above-described embodiment.
또한, 일 예로, MCS는 인공 지능에 기초하여 학습을 통해 결정될 수 있다. 또 다른 일 예로, MCS는 기존 통신 시스템처럼 테이블 값에 기초하여 결정될 수 있으며, 상술한 실시예로 한정되지 않는다. 그 후, 기지국(3740)은 결정된 MCS와 사용자 수 중 적어도 어느 하나를 이용하여 전송용량을 최소화하는 압축률을 예측할 수 있다. 일 예로, 기지국(3740)은 상술한 도 36과 같은 강화학습 방식에 기초하여 압축률을 예측할 수 있다. 여기서, 일 예로, 기지국은 도 36에 기초하여 압축률 조정기 및
Figure PCTKR2020011234-appb-I000135
비교기에 기초하여 압축률을 도출할 수 있으며, 상술한 실시예로 한정되지 않는다. 그 후, 기지국(3740)은 각각의 단말들(3710, 3720, 3730)로 동작 지시를 전송할 수 있다. 이때, 각각의 동작 지시에는 해당 단말에 대한 압축률 및 MCS 정보가 포함될 수 있다. 그 후, 각각의 단말들(3710, 3720, 3730)은 수신한 정보에 기초하여 데이터에 압축을 수행할 수 있다. 그 후, 각각의 단말들(3710, 3720, 3730)은 압축된 각각의 데이터들
Figure PCTKR2020011234-appb-I000136
을 기지국(3740)으로 전송할 수 있다.
Also, as an example, the MCS may be determined through learning based on artificial intelligence. As another example, the MCS may be determined based on a table value like the existing communication system, and is not limited to the above-described embodiment. Thereafter, the base station 3740 may predict a compression rate that minimizes the transmission capacity by using at least one of the determined MCS and the number of users. As an example, the base station 3740 may predict the compression ratio based on the reinforcement learning method shown in FIG. 36 described above. Here, as an example, the base station has a compression ratio adjuster and
Figure PCTKR2020011234-appb-I000135
The compression ratio may be derived based on the comparator, and the present invention is not limited to the above-described embodiment. Thereafter, the base station 3740 may transmit an operation instruction to each of the terminals 3710 , 3720 , and 3730 . In this case, each operation instruction may include a compression rate and MCS information for the corresponding terminal. Thereafter, each of the terminals 3710 , 3720 , and 3730 may perform compression on data based on the received information. After that, each of the terminals 3710 , 3720 , 3730 receives the compressed data
Figure PCTKR2020011234-appb-I000136
may be transmitted to the base station 3740 .
그 후, 기지국(3740)은 수신한 데이터에 기초하여 글로벌 모델 파라미터를 생성 및 업데이트할 수 있다. 그 후, 기지국(3740)은 업데이트된 글로벌 모델 파라미터를 각각의 단말들(3710, 3720, 3730)로 전송할 수 있다. Thereafter, the base station 3740 may generate and update global model parameters based on the received data. Thereafter, the base station 3740 may transmit the updated global model parameter to the respective terminals 3710 , 3720 , and 3730 .
여기서, 일 예로, 상술한 도 37의 경우에는 도 35와 다르게 단말의 성능 지표(
Figure PCTKR2020011234-appb-I000137
)에 대한 요청 및 응답 동작이 포함되지 않을 수 있으며, 이를 통해 불필요한 신호 교환이 생략될 수 있다. 또한, 일 예로, 압축률은 사용자 수(또는 단말 수)에 기초하여 결정될 수 있는바, 기지국의 예측 동작이 간단하게 수행될 수 있다, 일 예로, 사용자 수(또는 단말 수)가 증가하는 경우, 단말별 압축률의 손실률의 영향이 줄어들 수 있다. 따라서, 사용자 수가 많을수록 더 많은 압축을 수행할 수 있으며, 이에 기초하여 전송용량을 최소화하는 압축률을 결정할 수 있으며, 이는 상술한 바와 같다.
Here, as an example, in the case of the above-described FIG. 37, the terminal's performance index (
Figure PCTKR2020011234-appb-I000137
) may not include request and response operations, and unnecessary signal exchange may be omitted through this. In addition, as an example, the compression rate can be determined based on the number of users (or the number of terminals), so the prediction operation of the base station can be performed simply. For example, when the number of users (or the number of terminals) increases, the terminal The influence of the loss ratio of the star compression ratio can be reduced. Accordingly, as the number of users increases, more compression can be performed, and a compression rate that minimizes transmission capacity can be determined based on this, as described above.
도 38은 본 개시에 적용 가능한 기지국 동작 방법을 나타낸 도면이다.38 is a diagram illustrating a method of operating a base station applicable to the present disclosure.
기지국은 복수 개의 단말들로 제 1 글로벌 파라미터를 전송할 수 있다. (S3810) 여기서, 도 28 내지 도 37에서 상술한 바와 같이, 기지국은 연합학습을 고려한 글로벌 파라미터를 복수 개의 단말들로 전송할 수 있으며, 이는 상술한 바와 같다. 다음으로, 기지국은 복수 개의 단말들로부터 각각의 기준신호를 수신할 수 있다. (S3820) 그 후, 기지국은 수신된 각각의 기준신호에 기초하여 SNR(Signal Noise Ratio)을 측정할 수 있다. 또한, 기지국은 측정된 SNR에 기초하여 압축률 및 MCS를 결정할 수 있다. (S3830) 여기서, 도 28 내지 도 37에서 상술한 바와 같이, 기지국은, 기 설정된 MCS 테이블에 기초하여 측정된 SNR로부터 MCS를 결정할 수 있다. 또한, 일 예로, 기지국은 강화학습에 기초하여 측정된 SNR로부터 MCS를 결정할 수 있다. 이때, 강화학습은 주파수 효율(Spectral Efficiency)을 고려한 보상(Reward) 및 측정된 SNR을 입력 값으로 이용할 수 있으며, 이를 통해 MCS를 출력 값으로 도출할 수 있다. 즉, 기지국은 강화학습을 통해 MCS를 결정할 수 있다.The base station may transmit the first global parameter to a plurality of terminals. (S3810) Here, as described above with reference to FIGS. 28 to 37, the base station may transmit a global parameter in consideration of joint learning to a plurality of terminals, as described above. Next, the base station may receive each reference signal from a plurality of terminals. (S3820) Thereafter, the base station may measure a signal noise ratio (SNR) based on each received reference signal. In addition, the base station may determine the compression ratio and MCS based on the measured SNR. (S3830) Here, as described above with reference to FIGS. 28 to 37 , the base station may determine the MCS from the measured SNR based on a preset MCS table. Also, as an example, the base station may determine the MCS from the measured SNR based on reinforcement learning. In this case, reinforcement learning may use a reward in consideration of spectral efficiency and the measured SNR as input values, and through this, the MCS may be derived as an output value. That is, the base station may determine the MCS through reinforcement learning.
다음으로, 기지국은 결정된 MCS에 기초하여 압축률을 결정할 수 있다. 이때, 일 예로, 도 33 내지 도 35에서처럼 기지국은 전송지연을 최소화하는 압축률을 결정할 수 있다. 여기서, 기지국은 결정된 MCS, 원본 데이터 크기(Data Size, DS), 단말 성능(
Figure PCTKR2020011234-appb-I000138
) 및 기지국 성능(
Figure PCTKR2020011234-appb-I000139
) 중 적어도 어느 하나에 기초하여 압축률을 결정할 수 있으며, 이를 통해 전송지연을 최소화할 수 있다. 이때, 일 예로, 기지국은 전 결합 레이어(Full Connected Layer) 방식에 기초하여 전송지연이 최소화되는 압축률을 결정할 수 있으며, 이는 도 33과 같을 수 있다.
Next, the base station may determine a compression rate based on the determined MCS. At this time, as an example, as shown in FIGS. 33 to 35 , the base station may determine a compression rate that minimizes transmission delay. Here, the base station determines the MCS, the original data size (Data Size, DS), the terminal performance (
Figure PCTKR2020011234-appb-I000138
) and base station performance (
Figure PCTKR2020011234-appb-I000139
), the compression rate can be determined based on at least any one of them, and through this, the transmission delay can be minimized. In this case, as an example, the base station may determine a compression rate at which transmission delay is minimized based on a Full Connected Layer scheme, which may be as shown in FIG. 33 .
또한, 일 예로, 기지국은 강화학습에 기초하여 전송지연이 최소화되는 압축률을 결정할 수 있다. 이때, 강화학습은 지연(Delay)을 고려한 보상(Reward), 결정된 MCS, 원본 데이터 크기(Data Size, DS), 단말 성능(
Figure PCTKR2020011234-appb-I000140
) 및 기지국 성능(
Figure PCTKR2020011234-appb-I000141
)을 입력 값으로 이용할 수 있다. 이를 통해, 기지국은 전송지연을 최소화하는 압축률을 결정할 수 있으며, 이는 도 34와 같을 수 있다.
Also, as an example, the base station may determine a compression rate at which transmission delay is minimized based on reinforcement learning. At this time, reinforcement learning is a reward in consideration of delay, determined MCS, original data size (Data Size, DS), and terminal performance (
Figure PCTKR2020011234-appb-I000140
) and base station performance (
Figure PCTKR2020011234-appb-I000141
) can be used as an input value. Through this, the base station can determine a compression rate that minimizes the transmission delay, which may be as shown in FIG. 34 .
여기서, 일 예로, 기지국은 상술한 바와 같이 압축률을 예측하기 위해 복수 개의 단말들로 단말 성능(
Figure PCTKR2020011234-appb-I000142
) 정보를 요청하는 메시지를 전송할 수 있다. 그 후, 기지국은 복수 개의 단말들로부터 각각의 단말 성능(
Figure PCTKR2020011234-appb-I000143
) 정보를 수신할 수 있다. 이를 통해, 기지국은 상술한 바와 같이 압축률을 결정할 수 있다.
Here, as an example, the base station uses a plurality of terminals to predict the compression rate as described above.
Figure PCTKR2020011234-appb-I000142
) to send a message requesting information. Thereafter, the base station receives each terminal capability (
Figure PCTKR2020011234-appb-I000143
) to receive information. Through this, the base station can determine the compression ratio as described above.
또한, 일 예로, 기지국은 전송용량을 최소화하는 압축률을 결정할 수 있다. 이때, 기지국은 측정된 SNR을 통해 MCS를 결정할 수 있으며, 이는 상술한 바와 같다. 그 후, 기지국은 복수 개의 단말 수를 고려하여 압축률을 결정할 수 있다. 여기서, 복수 개의 단말 수(또는 사용자 수)가 작은 경우, 압축 손실률의 영향이 클 수 있다. 반면, 복수 개의 단말 수(또는 사용자 수)가 큰 경우, 압축 손실률의 영향은 작을 수 있으며, 이는 상술한 바와 같다.Also, as an example, the base station may determine a compression rate that minimizes the transmission capacity. In this case, the base station may determine the MCS through the measured SNR, as described above. Thereafter, the base station may determine the compression rate in consideration of the number of the plurality of terminals. Here, when the number of a plurality of terminals (or the number of users) is small, the compression loss rate may have a large effect. On the other hand, when the number of terminals (or the number of users) is large, the influence of the compression loss rate may be small, as described above.
또한, 일 예로, 기지국은 강화학습에 기초하여 전송용량이 최소화되는 압축률을 결정할 수 있다. 이때, 기지국이 강화학습을 수행하는 경우, 보상은 목표 압축 손실률을 고려하여 결정될 수 있으며, 이는 도 36과 같을 수 있다. 또한, 강화학습은 목표 압축 손실률을 고려한 보상 및 상기 복수 개의 단말 수를 입력 값으로 이용할 수 있다. 기지국은 입력 값에 기초하여 압축률을 결정할 수 있다. 여기서, 일 예로, 목표 압축 손실률은 복수 개의 단말 수에 기초하여 다르게 설정될 수 있다. 일 예로, 목표 압축 손실률은 복수 개의 단말 수가 클수록 높게 설정될 수 있다. 또한, 일 예로, 기지국은 상술한 바와 같이 전송용량을 최소화하는 압축률을 결정하기 위해 복수 개의 단말 수를 확인하는 동작을 수행할 수 있으며, 이는 상술한 바와 같다.Also, as an example, the base station may determine a compression rate at which the transmission capacity is minimized based on reinforcement learning. In this case, when the base station performs reinforcement learning, the compensation may be determined in consideration of the target compression loss rate, which may be as shown in FIG. 36 . In addition, reinforcement learning may use a compensation in consideration of a target compression loss rate and the number of the plurality of terminals as input values. The base station may determine the compression rate based on the input value. Here, as an example, the target compression loss ratio may be set differently based on the number of a plurality of terminals. For example, the target compression loss rate may be set higher as the number of the plurality of terminals increases. Also, as an example, the base station may perform the operation of checking the number of terminals to determine the compression rate that minimizes the transmission capacity as described above, as described above.
기지국은 상술한 바에 기초하여 결정된 압축률과 MCS에 대한 정보를 복수 개의 단말들 각각에게 지시할 수 있다. (S3840) 여기서, 기지국은 복수 개의 단말들로부터 결정된 압축률 및 MCS에 기초하여 데이터를 수신할 수 있다. (S3850) 그 후, 기지국은 복수 개의 단말들 각각으로부터 수신한 데이터에 기초하여 제 1 글로벌 파라미터를 제 2 글로벌 파라미터로 업데이트할 수 있다. 그 후, 기지국은 업데이트한 글로벌 파라미터를 복수 개의 단말들에게 전달할 수 있다.The base station may indicate to each of the plurality of terminals information on the compression ratio and MCS determined based on the above description. (S3840) Here, the base station may receive data based on the MCS and the compression ratio determined from the plurality of terminals. (S3850) Thereafter, the base station may update the first global parameter to the second global parameter based on data received from each of the plurality of terminals. Thereafter, the base station may transmit the updated global parameter to a plurality of terminals.
상기 설명한 제안 방식에 대한 일례들 또한 본 개시의 구현 방법들 중 하나로 포함될 수 있으므로, 일종의 제안 방식들로 간주될 수 있음은 명백한 사실이다. 또한, 상기 설명한 제안 방식들은 독립적으로 구현될 수도 있지만, 일부 제안 방식들의 조합 (또는 병합) 형태로 구현될 수도 있다. 상기 제안 방법들의 적용 여부 정보 (또는 상기 제안 방법들의 규칙들에 대한 정보)는 기지국이 단말에게 사전에 정의된 시그널 (예: 물리 계층 시그널 또는 상위 계층 시그널)을 통해서 알려주도록 규칙이 정의될 수 가 있다.Since examples of the above-described proposed method may also be included as one of the implementation methods of the present disclosure, it is clear that they may be regarded as a kind of proposed method. In addition, the above-described proposed methods may be implemented independently, or may be implemented in the form of a combination (or merge) of some of the proposed methods. Rules can be defined so that the base station informs the terminal of whether the proposed methods are applied or not (or information about the rules of the proposed methods) through a predefined signal (eg, a physical layer signal or a higher layer signal). there is.
본 개시는 본 개시에서 서술하는 기술적 아이디어 및 필수적 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구체화될 수 있다. 따라서, 상기의 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니되고 예시적인 것으로 고려되어야 한다. 본 개시의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 개시의 등가적 범위 내에서의 모든 변경은 본 개시의 범위에 포함된다. 또한, 특허청구범위에서 명시적인 인용 관계가 있지 않은 청구항들을 결합하여 실시 예를 구성하거나 출원 후의 보정에 의해 새로운 청구항으로 포함할 수 있다.The present disclosure may be embodied in other specific forms without departing from the technical ideas and essential characteristics described in the present disclosure. Accordingly, the above detailed description should not be construed as restrictive in all respects but as exemplary. The scope of the present disclosure should be determined by a reasonable interpretation of the appended claims, and all modifications within the equivalent scope of the present disclosure are included in the scope of the present disclosure. In addition, claims that are not explicitly cited in the claims may be combined to form an embodiment, or may be included as new claims by amendment after filing.
본 개시의 실시 예들은 다양한 무선접속 시스템에 적용될 수 있다. 다양한 무선접속 시스템들의 일례로서, 3GPP(3rd Generation Partnership Project) 또는 3GPP2 시스템 등이 있다. Embodiments of the present disclosure may be applied to various wireless access systems. As an example of various radio access systems, there is a 3rd Generation Partnership Project (3GPP) or a 3GPP2 system.
본 개시의 실시 예들은 상기 다양한 무선접속 시스템뿐 아니라, 상기 다양한 무선접속 시스템을 응용한 모든 기술 분야에 적용될 수 있다. 나아가, 제안한 방법은 초고주파 대역을 이용하는 mmWave, THz 통신 시스템에도 적용될 수 있다. Embodiments of the present disclosure may be applied not only to the various radio access systems, but also to all technical fields to which the various radio access systems are applied. Furthermore, the proposed method can be applied to mmWave and THz communication systems using very high frequency bands.
추가적으로, 본 개시의 실시예들은 자유 주행 차량, 드론 등 다양한 애플리케이션에도 적용될 수 있다.Additionally, embodiments of the present disclosure may be applied to various applications such as free-running vehicles and drones.

Claims (12)

  1. 무선 통신 시스템에서 기지국의 동작 방법에 있어서,A method of operating a base station in a wireless communication system, the method comprising:
    복수 개의 단말들로 제 1 글로벌 파라미터를 전송하는 단계;transmitting a first global parameter to a plurality of terminals;
    상기 복수 개의 단말들로부터 각각의 기준신호를 수신하는 단계;receiving each reference signal from the plurality of terminals;
    상기 수신된 각각의 기준신호에 기초하여 SNR(Signal Noise Ratio)을 측정하고, 상기 측정된 SNR에 기초하여 압축률 및 MCS(Modulation Coding Scheme)를 결정하는 단계;measuring a signal noise ratio (SNR) based on each of the received reference signals, and determining a compression ratio and a modulation coding scheme (MCS) based on the measured SNR;
    상기 결정된 압축률 및 MCS에 대한 정보를 상기 복수 개의 단말들에게 각각 지시하는 단계; instructing the determined compression ratio and information on the MCS to the plurality of terminals, respectively;
    상기 복수 개의 단말들로부터 상기 결정된 압축률 및 MCS에 기초하여 데이터를 수신하는 단계; 및receiving data from the plurality of terminals based on the determined compression ratio and MCS; and
    상기 복수 개의 단말들 각각으로부터 수신한 데이터에 기초하여 상기 제 1 글로벌 파라미터를 제 2 글로벌 파라미터로 업데이트하는 단계;를 포함하는, 기지국 동작 방법. Updating the first global parameter to a second global parameter based on the data received from each of the plurality of terminals; Including, the base station operating method.
  2. 제 1 항에 있어서,The method of claim 1,
    상기 기지국은, The base station is
    기 설정된 MCS 테이블에 기초하여 상기 측정된 SNR로부터 상기 MCS를 결정하는, 기지국 동작 방법.A base station operating method for determining the MCS from the measured SNR based on a preset MCS table.
  3. 제 1 항에 있어서,The method of claim 1,
    상기 기지국은, The base station is
    강화학습에 기초하여 상기 측정된 SNR로부터 상기 MCS를 결정하되,Determining the MCS from the measured SNR based on reinforcement learning,
    상기 강화학습은 주파수 효율(Spectral Efficiency)을 고려한 보상(Reward) 및 상기 측정된 SNR을 입력 값으로 이용하고,The reinforcement learning uses a reward in consideration of frequency efficiency and the measured SNR as input values,
    상기 입력 값에 기초하여 상기 MCS를 출력 값으로 도출하는, 기지국 동작 방법.A method of operating a base station, deriving the MCS as an output value based on the input value.
  4. 제 1 항에 있어서,The method of claim 1,
    상기 기지국이 상기 측정된 SNR을 통해 상기 MCS를 결정하고,The base station determines the MCS through the measured SNR,
    상기 결정된 MCS, 원본 데이터 크기(Data Size, DS), 단말 성능(
    Figure PCTKR2020011234-appb-I000144
    ) 및 기지국 성능(
    Figure PCTKR2020011234-appb-I000145
    ) 중 적어도 어느 하나에 기초하여 상기 압축률을 결정하는, 기지국 동작 방법.
    The determined MCS, original data size (Data Size, DS), terminal performance (
    Figure PCTKR2020011234-appb-I000144
    ) and base station performance (
    Figure PCTKR2020011234-appb-I000145
    ) to determine the compression rate based on at least one of, the base station operating method.
  5. 제 4 항에 있어서,5. The method of claim 4,
    상기 기지국은 전 결합 레이어(Full Connected Layer) 방식에 기초하여 전송지연이 최소화되는 상기 압축률을 결정하는, 기지국 동작 방법.The base station determines the compression rate to minimize transmission delay based on a full connected layer (Full Connected Layer) method, the base station operating method.
  6. 제 4 항에 있어서,5. The method of claim 4,
    상기 기지국은 강화학습에 기초하여 전송지연이 최소화되는 상기 압축률을 결정하되,The base station determines the compression rate at which transmission delay is minimized based on reinforcement learning,
    상기 강화학습은 지연(Delay)을 고려한 보상(Reward), 상기 결정된 MCS, 상기 원본 데이터 크기(Data Size, DS), 상기 단말 성능(
    Figure PCTKR2020011234-appb-I000146
    ) 및 상기 기지국 성능(
    Figure PCTKR2020011234-appb-I000147
    )을 입력 값으로 이용하고,
    The reinforcement learning is a reward in consideration of delay, the determined MCS, the original data size (Data Size, DS), the terminal performance (
    Figure PCTKR2020011234-appb-I000146
    ) and the base station performance (
    Figure PCTKR2020011234-appb-I000147
    ) as the input value,
    상기 입력 값에 기초하여 상기 압축률을 결정하는, 기지국 동작 방법.Determining the compression ratio based on the input value, the base station operating method.
  7. 제 4 항에 있어서,5. The method of claim 4,
    상기 복수 개의 단말들로 단말 성능(
    Figure PCTKR2020011234-appb-I000148
    ) 정보를 요청하는 메시지를 전송하는 단계; 및
    Terminal performance with the plurality of terminals (
    Figure PCTKR2020011234-appb-I000148
    ) sending a message requesting information; and
    상기 복수 개의 단말들로부터 각각의 단말 성능(
    Figure PCTKR2020011234-appb-I000149
    ) 정보를 수신하는 단계;를 더 포함하는, 기지국 동작 방법.
    From the plurality of terminals, each terminal capability (
    Figure PCTKR2020011234-appb-I000149
    ) receiving the information; further comprising, the base station operating method.
  8. 제 1 항에 있어서,The method of claim 1,
    상기 기지국이 상기 측정된 SNR을 통해 상기 MCS를 결정하고,The base station determines the MCS through the measured SNR,
    상기 복수 개의 단말 수에 기초하여 상기 압축률을 결정하는, 기지국 동작 방법.Determining the compression rate based on the number of the plurality of terminals, the base station operating method.
  9. 제 8 항에 있어서,9. The method of claim 8,
    상기 기지국은 강화학습에 기초하여 전송용량이 최소화되는 상기 압축률을 결정하되,The base station determines the compression rate at which the transmission capacity is minimized based on reinforcement learning,
    상기 강화학습은 목표 압축 손실률을 고려한 보상(Reward) 및 상기 복수 개의 단말 수를 입력 값으로 이용하고,The reinforcement learning uses a reward considering a target compression loss rate and the number of the plurality of terminals as input values,
    상기 입력 값에 기초하여 상기 압축률을 결정하는, 기지국 동작 방법.Determining the compression ratio based on the input value, the base station operating method.
  10. 제 9 항에 있어서,10. The method of claim 9,
    상기 목표 압축 손실률은 상기 복수 개의 단말 수에 기초하여 다르게 설정되는, 기지국 동작 방법.The target compression loss rate is set differently based on the number of the plurality of terminals, the base station operating method.
  11. 제 8 항에 있어서,9. The method of claim 8,
    상기 기지국이 상기 복수 개의 단말 수를 확인하는 단계;를 더 포함하는, 기지국 동작 방법.The base station further comprising; confirming the number of the plurality of terminals;
  12. 무선 통신 시스템에서 동작하는 기지국에 있어서,In a base station operating in a wireless communication system,
    적어도 하나의 송신기;at least one transmitter;
    적어도 하나의 수신기;at least one receiver;
    적어도 하나의 프로세서; 및at least one processor; and
    상기 적어도 하나의 프로세서에 동작 가능하도록 연결되고, 실행될 경우 상기 적어도 하나의 프로세서가 특정 동작을 수행하도록 하는 명령들(instructions)을 저장하는 적어도 하나의 메모리를 포함하고,at least one memory operatively coupled to the at least one processor and storing instructions that, when executed, cause the at least one processor to perform a specific operation;
    상기 특정 동작은:The specific action is:
    복수 개의 단말들로 제 1 글로벌 파라미터를 전송하고,Transmitting a first global parameter to a plurality of terminals,
    상기 복수 개의 단말들로부터 각각의 기준신호를 수신하고,Receiving each reference signal from the plurality of terminals,
    상기 수신된 각각의 기준신호에 기초하여 SNR(Signal Noise Ratio)을 측정하고, 상기 측정된 SNR에 기초하여 압축률 및 MCS(Modulation Coding Scheme)를 결정하고,Measuring a signal noise ratio (SNR) based on each of the received reference signals, and determining a compression ratio and a modulation coding scheme (MCS) based on the measured SNR,
    상기 결정된 압축률 및 MCS에 대한 정보를 상기 복수 개의 단말들에게 각각 지시하고,Instructing the determined compression ratio and information on the MCS to the plurality of terminals, respectively,
    상기 복수 개의 단말들로부터 상기 결정된 압축률 및 MCS에 기초하여 데이터를 수신하고, 및Receive data from the plurality of terminals based on the determined compression ratio and MCS, and
    상기 복수 개의 단말들 각각으로부터 수신한 데이터에 기초하여 상기 제 1 글로벌 파라미터를 제 2 글로벌 파라미터로 업데이트하는, 기지국.Based on the data received from each of the plurality of terminals, the base station for updating the first global parameter to a second global parameter.
PCT/KR2020/011234 2020-08-24 2020-08-24 Method by which terminal and base station transmit/receive signals in wireless communication system, and apparatus WO2022045377A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020227034789A KR20230056622A (en) 2020-08-24 2020-08-24 Method and apparatus for transmitting and receiving signals between a terminal and a base station in a wireless communication system
PCT/KR2020/011234 WO2022045377A1 (en) 2020-08-24 2020-08-24 Method by which terminal and base station transmit/receive signals in wireless communication system, and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2020/011234 WO2022045377A1 (en) 2020-08-24 2020-08-24 Method by which terminal and base station transmit/receive signals in wireless communication system, and apparatus

Publications (1)

Publication Number Publication Date
WO2022045377A1 true WO2022045377A1 (en) 2022-03-03

Family

ID=80353489

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/011234 WO2022045377A1 (en) 2020-08-24 2020-08-24 Method by which terminal and base station transmit/receive signals in wireless communication system, and apparatus

Country Status (2)

Country Link
KR (1) KR20230056622A (en)
WO (1) WO2022045377A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200293896A1 (en) * 2019-03-12 2020-09-17 Samsung Electronics Co., Ltd. Multiple-input multiple-output (mimo) detector selection using neural network

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101127498B1 (en) * 2004-10-20 2012-03-23 코닌클리케 필립스 일렉트로닉스 엔.브이. A system and method for dynamic adaptation of data rate and transmit power with a beaconing protocol
KR101314611B1 (en) * 2007-01-30 2013-10-07 엘지전자 주식회사 Method And Apparatus For Selecting MCS Index According To Frequency Selectivity, And Communication System For The Same
KR101428921B1 (en) * 2013-04-12 2014-09-25 한국과학기술원 Method and Apparatus for Selective Transport using Machine Learning in Multi-radio Environments
WO2017153891A1 (en) * 2016-03-07 2017-09-14 Neptune Computer Inc. Method and system for a computer to interface with wirelessly connected peripheral devices
KR20180034558A (en) * 2015-07-27 2018-04-04 후아웨이 테크놀러지 컴퍼니 리미티드 Link adaptation in unacknowledged multiple access systems

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101127498B1 (en) * 2004-10-20 2012-03-23 코닌클리케 필립스 일렉트로닉스 엔.브이. A system and method for dynamic adaptation of data rate and transmit power with a beaconing protocol
KR101314611B1 (en) * 2007-01-30 2013-10-07 엘지전자 주식회사 Method And Apparatus For Selecting MCS Index According To Frequency Selectivity, And Communication System For The Same
KR101428921B1 (en) * 2013-04-12 2014-09-25 한국과학기술원 Method and Apparatus for Selective Transport using Machine Learning in Multi-radio Environments
KR20180034558A (en) * 2015-07-27 2018-04-04 후아웨이 테크놀러지 컴퍼니 리미티드 Link adaptation in unacknowledged multiple access systems
WO2017153891A1 (en) * 2016-03-07 2017-09-14 Neptune Computer Inc. Method and system for a computer to interface with wirelessly connected peripheral devices

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200293896A1 (en) * 2019-03-12 2020-09-17 Samsung Electronics Co., Ltd. Multiple-input multiple-output (mimo) detector selection using neural network
US11625610B2 (en) * 2019-03-12 2023-04-11 Samsung Electronics Co., Ltd Multiple-input multiple-output (MIMO) detector selection using neural network

Also Published As

Publication number Publication date
KR20230056622A (en) 2023-04-27

Similar Documents

Publication Publication Date Title
WO2021112360A1 (en) Method and device for estimating channel in wireless communication system
WO2022050432A1 (en) Method and device for performing federated learning in wireless communication system
WO2021256584A1 (en) Method for transmitting or receiving data in wireless communication system and apparatus therefor
WO2022045399A1 (en) Federated learning method based on selective weight transmission and terminal therefor
WO2022014732A1 (en) Method and apparatus for performing federated learning in wireless communication system
WO2021251523A1 (en) Method and device for ue and base station to transmit and receive signal in wireless communication system
WO2021251511A1 (en) Method for transmitting/receiving uplink signal of high frequency band in wireless communication system, and device therefor
WO2022045377A1 (en) Method by which terminal and base station transmit/receive signals in wireless communication system, and apparatus
WO2022014735A1 (en) Method and device for terminal and base station to transmit and receive signals in wireless communication system
WO2022004914A1 (en) Method and apparatus for transmitting and receiving signals of user equipment and base station in wireless communication system
WO2022097774A1 (en) Method and device for performing feedback by terminal and base station in wireless communication system
WO2022014728A1 (en) Method and apparatus for performing channel coding by user equipment and base station in wireless communication system
WO2022054980A1 (en) Encoding method and neural network encoder structure usable in wireless communication system
WO2022045402A1 (en) Method and device for terminal and base station transmitting/receiving signal in wireless communication system
WO2022004927A1 (en) Method for transmitting or receiving signal in wireless communication system using auto encoder, and apparatus therefor
WO2022014751A1 (en) Method and apparatus for generating uw for channel estimation in frequency domain in wireless communication system
WO2022019352A1 (en) Signal transmission and reception method and apparatus for terminal and base station in wireless communication system
WO2022119021A1 (en) Method and device for adapting learning class-based system to ai mimo
WO2022039287A1 (en) Method by which user equipment and base station transmit/receive signals in wireless communication system, and apparatus
WO2022050434A1 (en) Method and apparatus for performing handover in wireless communication system
WO2021261611A1 (en) Method and device for performing federated learning in wireless communication system
WO2022080530A1 (en) Method and device for transmitting and receiving signals by using multiple antennas in wireless communication system
WO2021256585A1 (en) Method and device for transmitting/receiving signal in wireless communication system
WO2022054981A1 (en) Method and device for executing compression federated learning
WO2022045390A1 (en) Method and apparatus for performing channel coding by terminal and base station in wireless communication system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20951611

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20951611

Country of ref document: EP

Kind code of ref document: A1