WO2021261611A1 - Method and device for performing federated learning in wireless communication system - Google Patents

Method and device for performing federated learning in wireless communication system Download PDF

Info

Publication number
WO2021261611A1
WO2021261611A1 PCT/KR2020/008203 KR2020008203W WO2021261611A1 WO 2021261611 A1 WO2021261611 A1 WO 2021261611A1 KR 2020008203 W KR2020008203 W KR 2020008203W WO 2021261611 A1 WO2021261611 A1 WO 2021261611A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
server
connection
weight
information related
Prior art date
Application number
PCT/KR2020/008203
Other languages
French (fr)
Korean (ko)
Inventor
이명희
김일환
이종구
김성진
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to PCT/KR2020/008203 priority Critical patent/WO2021261611A1/en
Publication of WO2021261611A1 publication Critical patent/WO2021261611A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/18Network planning tools

Definitions

  • the following description relates to a wireless communication system, and to a method and apparatus for performing federated learning in a wireless communication system.
  • a wireless access system is a multiple access system that can support communication with multiple users by sharing available system resources (bandwidth, transmission power, etc.).
  • Examples of the multiple access system include a code division multiple access (CDMA) system, a frequency division multiple access (FDMA) system, a time division multiple access (TDMA) system, an orthogonal frequency division multiple access (OFDMA) system, and a single carrier frequency (SC-FDMA) system. division multiple access) systems.
  • CDMA code division multiple access
  • FDMA frequency division multiple access
  • TDMA time division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • an enhanced mobile broadband (eMBB) communication technology has been proposed compared to the existing radio access technology (RAT).
  • eMBB enhanced mobile broadband
  • RAT radio access technology
  • UE reliability and latency sensitive services/user equipment
  • mMTC massive machine type communications
  • the present disclosure relates to a method and apparatus for efficiently performing federated learning in a wireless communication system.
  • the present disclosure relates to a method and apparatus for reducing a resource of a radio link required for federated learning in a wireless communication system.
  • a method of operating a terminal in a wireless communication system includes receiving information related to an initial network model from a server, configuring a dense network based on the initial network model, and the dense network changing at least one weight of at least one connection by performing training on It may include the step of transmitting.
  • a method of operating a server in a wireless communication system includes the steps of: transmitting information related to an initial network model to a terminal; receiving information related to a weight change amount for at least one connection from the terminal; The method may include updating weights of the initial network model based on information related to a weight change amount, and removing at least one connection based on the updated weights.
  • a terminal in a wireless communication system may include a transceiver and a processor connected to the transceiver.
  • the processor receives information related to an initial network model from a server, configures a dense network based on the initial network model, and performs training on the dense network by performing at least one of at least one connection. It is possible to control to change one weight and transmit information related to a weight change amount for at least one connection selected based on the change amount of the at least one weight to the server.
  • a server may include a transceiver and a processor connected to the transceiver.
  • the processor transmits information related to the initial network model to the terminal, receives information related to a weight change amount for at least one connection from the terminal, and calculates weights of the initial network model based on the information related to the weight change amount update, and control to remove at least one connection based on the updated weights.
  • federated learning can be performed more effectively in a wireless communication system.
  • FIG. 1 is a diagram illustrating an example of a communication system applied to the present disclosure.
  • FIG. 2 is a diagram illustrating an example of a wireless device applicable to the present disclosure.
  • FIG. 3 is a diagram illustrating another example of a wireless device applied to the present disclosure.
  • FIG. 4 is a diagram illustrating an example of a mobile device applied to the present disclosure.
  • FIG. 5 is a diagram illustrating an example of a vehicle or autonomous driving vehicle applied to the present disclosure.
  • FIG. 6 is a diagram illustrating an example of a movable body applied to the present disclosure.
  • FIG. 7 is a diagram illustrating an example of an XR device applied to the present disclosure.
  • FIG. 8 is a diagram illustrating an example of a robot applied to the present disclosure.
  • AI artificial intelligence
  • FIG. 10 is a diagram illustrating physical channels applied to the present disclosure and a signal transmission method using the same.
  • FIG. 11 is a diagram illustrating a control plane and a user plane structure of a radio interface protocol applied to the present disclosure.
  • FIG. 12 is a diagram illustrating a method of processing a transmission signal applied to the present disclosure.
  • FIG. 13 is a diagram illustrating a structure of a radio frame applicable to the present disclosure.
  • FIG. 14 is a diagram illustrating a slot structure applicable to the present disclosure.
  • 15 is a diagram illustrating an example of a communication structure that can be provided in a 6G system applicable to the present disclosure.
  • 16 is a diagram illustrating an electromagnetic spectrum applicable to the present disclosure.
  • 17 is a diagram illustrating a THz communication method applicable to the present disclosure.
  • FIG. 18 is a diagram illustrating a THz wireless communication transceiver applicable to the present disclosure.
  • FIG. 19 is a diagram illustrating a method for generating a THz signal applicable to the present disclosure.
  • 20 is a diagram illustrating a wireless communication transceiver applicable to the present disclosure.
  • 21 is a diagram illustrating a structure of a transmitter applicable to the present disclosure.
  • 22 is a diagram illustrating a modulator structure applicable to the present disclosure.
  • FIG. 23 is a diagram illustrating a structure of a perceptron included in an artificial neural network applicable to the present disclosure.
  • 24 is a diagram illustrating an artificial neural network structure applicable to the present disclosure.
  • 25 is a diagram illustrating a deep neural network applicable to the present disclosure.
  • 26 is a diagram illustrating a convolutional neural network applicable to the present disclosure.
  • FIG. 27 is a diagram illustrating a filter operation of a convolutional neural network applicable to the present disclosure.
  • FIG. 28 is a diagram illustrating a neural network structure in which a cyclic loop applicable to the present disclosure exists.
  • 29 is a diagram illustrating an operation structure of a recurrent neural network applicable to the present disclosure.
  • 30 is a diagram illustrating the concept of associative learning applicable to the present disclosure.
  • 31 is a diagram showing an example of a protocol of associative learning applicable to the present disclosure.
  • 32 is a diagram illustrating the concept of connection and weight learning applicable to the present disclosure.
  • 33 is a diagram illustrating examples of networks before and after pruning according to connection and weight learning applicable to the present disclosure.
  • 34A and 34B are diagrams illustrating pruning sensitivity of an AlexNet network.
  • 35 is a diagram illustrating an embodiment of a procedure for performing federated learning in a terminal applicable to the present disclosure.
  • 36 is a diagram illustrating an embodiment of a procedure for performing federated learning in a server applicable to the present disclosure.
  • FIG. 37 is a diagram illustrating an embodiment of a procedure for performing compressed federated learning in a server applicable to the present disclosure.
  • 38 is a diagram illustrating an embodiment of a procedure for performing federated collection during each iteration step in a server applicable to the present disclosure.
  • 39 is a diagram illustrating an embodiment of a procedure for performing federated collection during each iteration in a terminal applicable to the present disclosure.
  • 40 is a diagram illustrating an embodiment of a procedure for performing pruning in a server applicable to the present disclosure.
  • 41 is a diagram illustrating an example of a protocol of the first two iterations in compressed associative learning applicable to the present disclosure.
  • FIG. 42 is a diagram illustrating an example of a protocol of the latter two iterations in compressed associative learning applicable to the present disclosure.
  • FIG. 43 is a diagram illustrating an example of a protocol for restarting a federated collection operation in compressed federated learning applicable to the present disclosure.
  • 44 is a diagram illustrating an example of signal exchange in the first half of associative learning applicable to the present disclosure.
  • 45 is a diagram illustrating an example of signal exchange in the second half of compressed associative learning applicable to the present disclosure.
  • 46 is a diagram illustrating an example of a packet format for transmitting information related to weights applicable to the present disclosure.
  • 47 is a diagram illustrating another example of a packet format for transmitting information related to weights applicable to the present disclosure.
  • each component or feature may be considered optional unless explicitly stated otherwise.
  • Each component or feature may be implemented in a form that is not combined with other components or features.
  • some components and/or features may be combined to configure an embodiment of the present disclosure.
  • the order of operations described in embodiments of the present disclosure may be changed. Some configurations or features of one embodiment may be included in other embodiments, or may be replaced with corresponding configurations or features of other embodiments.
  • the base station has a meaning as a terminal node of a network that directly communicates with the mobile station.
  • a specific operation described as being performed by the base station in this document may be performed by an upper node of the base station in some cases.
  • the 'base station' is a term such as a fixed station, a Node B, an eNB (eNode B), a gNB (gNode B), an ng-eNB, an advanced base station (ABS) or an access point (access point).
  • eNode B eNode B
  • gNode B gNode B
  • ng-eNB ng-eNB
  • ABS advanced base station
  • access point access point
  • a terminal includes a user equipment (UE), a mobile station (MS), a subscriber station (SS), a mobile subscriber station (MSS), It may be replaced by terms such as a mobile terminal or an advanced mobile station (AMS).
  • UE user equipment
  • MS mobile station
  • SS subscriber station
  • MSS mobile subscriber station
  • AMS advanced mobile station
  • a transmitting end refers to a fixed and/or mobile node that provides a data service or a voice service
  • a receiving end refers to a fixed and/or mobile node that receives a data service or a voice service.
  • the mobile station may be a transmitting end, and the base station may be a receiving end.
  • the mobile station may be the receiving end, and the base station may be the transmitting end.
  • Embodiments of the present disclosure IEEE 802.xx system, (3rd Generation Partnership Project) 3GPP access system, which are wireless systems, 3GPP LTE (Long Term Evolution) systems, 3GPP 5G (5 th generation) NR (New Radio) system, 3GPP2 system and It may be supported by standard documents disclosed in at least one of, in particular, embodiments of the present disclosure by 3GPP TS (technical specification) 38.211, 3GPP TS 38.212, 3GPP TS 38.213, 3GPP TS 38.321 and 3GPP TS 38.331 documents. can be supported
  • embodiments of the present disclosure may be applied to other wireless access systems, and are not limited to the above-described system. As an example, it may be applicable to a system applied after the 3GPP 5G NR system, and is not limited to a specific system.
  • CDMA code division multiple access
  • FDMA frequency division multiple access
  • TDMA time division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • LTE may mean 3GPP TS 36.xxx Release 8 or later technology.
  • LTE technology after 3GPP TS 36.xxx Release 10 may be referred to as LTE-A
  • LTE technology after 3GPP TS 36.xxx Release 13 may be referred to as LTE-A pro.
  • 3GPP NR may refer to technology after TS 38.xxx Release 15.
  • 3GPP 6G may refer to technology after TS Release 17 and/or Release 18.
  • "xxx" stands for standard document detail number.
  • LTE/NR/6G may be collectively referred to as a 3GPP system.
  • FIG. 1 is a diagram illustrating an example of a communication system applied to the present disclosure.
  • a communication system 100 applied to the present disclosure includes a wireless device, a base station, and a network.
  • the wireless device means a device that performs communication using a wireless access technology (eg, 5G NR, LTE), and may be referred to as a communication/wireless/5G device.
  • the wireless device may include a robot 100a, a vehicle 100b-1, 100b-2, an extended reality (XR) device 100c, a hand-held device 100d, and a home appliance. appliance) 100e, an Internet of Things (IoT) device 100f, and an artificial intelligence (AI) device/server 100g.
  • a wireless access technology eg, 5G NR, LTE
  • XR extended reality
  • IoT Internet of Things
  • AI artificial intelligence
  • the vehicle may include a vehicle equipped with a wireless communication function, an autonomous driving vehicle, a vehicle capable of performing inter-vehicle communication, and the like.
  • the vehicles 100b-1 and 100b-2 may include an unmanned aerial vehicle (UAV) (eg, a drone).
  • UAV unmanned aerial vehicle
  • the XR device 100c includes augmented reality (AR)/virtual reality (VR)/mixed reality (MR) devices, and includes a head-mounted device (HMD), a head-up display (HUD) provided in a vehicle, a television, It may be implemented in the form of a smartphone, a computer, a wearable device, a home appliance, a digital signage, a vehicle, a robot, and the like.
  • the portable device 100d may include a smart phone, a smart pad, a wearable device (eg, smart watch, smart glasses), and a computer (eg, a laptop computer).
  • the home appliance 100e may include a TV, a refrigerator, a washing machine, and the like.
  • the IoT device 100f may include a sensor, a smart meter, and the like.
  • the base station 120 and the network 130 may be implemented as a wireless device, and a specific wireless device 120a may operate as a base station/network node to other wireless devices.
  • the wireless devices 100a to 100f may be connected to the network 130 through the base station 120 .
  • AI technology may be applied to the wireless devices 100a to 100f , and the wireless devices 100a to 100f may be connected to the AI server 100g through the network 130 .
  • the network 130 may be configured using a 3G network, a 4G (eg, LTE) network, or a 5G (eg, NR) network.
  • the wireless devices 100a to 100f may communicate with each other through the base station 120/network 130, but communicate directly without going through the base station 120/network 130 (eg, sidelink communication) You may.
  • the vehicles 100b-1 and 100b-2 may perform direct communication (eg, vehicle to vehicle (V2V)/vehicle to everything (V2X) communication).
  • the IoT device 100f eg, a sensor
  • Wireless communication/connection 150a, 150b, and 150c may be performed between the wireless devices 100a to 100f/base station 120 and the base station 120/base station 120 .
  • wireless communication/connection includes uplink/downlink communication 150a and sidelink communication 150b (or D2D communication), and communication between base stations 150c (eg, relay, integrated access backhaul (IAB)). This may be achieved through radio access technology (eg, 5G NR).
  • IAB integrated access backhaul
  • the wireless device and the base station/wireless device, and the base station and the base station may transmit/receive wireless signals to each other.
  • the wireless communication/connection 150a , 150b , 150c may transmit/receive signals through various physical channels.
  • various configuration information setting processes for transmission/reception of wireless signals various signal processing processes (eg, channel encoding/decoding, modulation/demodulation, resource mapping/demapping, etc.) , at least a part of a resource allocation process may be performed.
  • signal processing processes eg, channel encoding/decoding, modulation/demodulation, resource mapping/demapping, etc.
  • FIG. 2 is a diagram illustrating an example of a wireless device applicable to the present disclosure.
  • a first wireless device 200a and a second wireless device 200b may transmit/receive wireless signals through various wireless access technologies (eg, LTE, NR).
  • ⁇ first wireless device 200a, second wireless device 200b ⁇ is ⁇ wireless device 100x, base station 120 ⁇ of FIG. 1 and/or ⁇ wireless device 100x, wireless device 100x) ⁇ can be matched.
  • the first wireless device 200a includes one or more processors 202a and one or more memories 204a, and may further include one or more transceivers 206a and/or one or more antennas 208a.
  • the processor 202a controls the memory 204a and/or the transceiver 206a and may be configured to implement the descriptions, functions, procedures, suggestions, methods, and/or operational flowcharts disclosed herein.
  • the processor 202a may process information in the memory 204a to generate first information/signal, and then transmit a wireless signal including the first information/signal through the transceiver 206a.
  • the processor 202a may receive the radio signal including the second information/signal through the transceiver 206a, and then store the information obtained from the signal processing of the second information/signal in the memory 204a.
  • the memory 204a may be connected to the processor 202a and may store various information related to the operation of the processor 202a.
  • the memory 204a may provide instructions for performing some or all of the processes controlled by the processor 202a, or for performing the descriptions, functions, procedures, suggestions, methods, and/or operational flowcharts disclosed herein. may store software code including
  • the processor 202a and the memory 204a may be part of a communication modem/circuit/chip designed to implement a wireless communication technology (eg, LTE, NR).
  • a wireless communication technology eg, LTE, NR
  • the transceiver 206a may be coupled with the processor 202a and may transmit and/or receive wireless signals via one or more antennas 208a.
  • the transceiver 206a may include a transmitter and/or a receiver.
  • the transceiver 206a may be used interchangeably with a radio frequency (RF) unit.
  • RF radio frequency
  • a wireless device may refer to a communication modem/circuit/chip.
  • the second wireless device 200b includes one or more processors 202b, one or more memories 204b, and may further include one or more transceivers 206b and/or one or more antennas 208b.
  • the processor 202b controls the memory 204b and/or the transceiver 206b and may be configured to implement the descriptions, functions, procedures, proposals, methods, and/or operational flowcharts disclosed herein.
  • the processor 202b may process information in the memory 204b to generate third information/signal, and then transmit a wireless signal including the third information/signal through the transceiver 206b.
  • the processor 202b may receive the radio signal including the fourth information/signal through the transceiver 206b, and then store information obtained from signal processing of the fourth information/signal in the memory 204b.
  • the memory 204b may be connected to the processor 202b and may store various information related to the operation of the processor 202b.
  • the memory 204b may provide instructions for performing some or all of the processes controlled by the processor 202b, or for performing the descriptions, functions, procedures, suggestions, methods, and/or operational flowcharts disclosed herein. may store software code including
  • the processor 202b and the memory 204b may be part of a communication modem/circuit/chip designed to implement a wireless communication technology (eg, LTE, NR).
  • a wireless communication technology eg, LTE, NR
  • the transceiver 206b may be coupled to the processor 202b and may transmit and/or receive wireless signals via one or more antennas 208b.
  • Transceiver 206b may include a transmitter and/or receiver.
  • Transceiver 206b may be used interchangeably with an RF unit.
  • a wireless device may refer to a communication modem/circuit/chip.
  • one or more protocol layers may be implemented by one or more processors 202a, 202b.
  • one or more processors 202a, 202b may include one or more layers (eg, PHY (physical), MAC (media access control), RLC (radio link control), PDCP (packet data convergence protocol), RRC (radio resource) control) and a functional layer such as service data adaptation protocol (SDAP)).
  • layers eg, PHY (physical), MAC (media access control), RLC (radio link control), PDCP (packet data convergence protocol), RRC (radio resource) control
  • SDAP service data adaptation protocol
  • the one or more processors 202a, 202b may be configured to process one or more protocol data units (PDUs) and/or one or more service data units (SDUs) according to the descriptions, functions, procedures, proposals, methods, and/or operational flowcharts disclosed herein. can create The one or more processors 202a, 202b may generate messages, control information, data, or information according to the description, function, procedure, proposal, method, and/or flow charts disclosed herein. The one or more processors 202a, 202b generate a signal (eg, a baseband signal) including a PDU, SDU, message, control information, data or information according to the functions, procedures, proposals and/or methods disclosed herein.
  • a signal eg, a baseband signal
  • processors 202a, 202b may receive signals (eg, baseband signals) from one or more transceivers 206a, 206b, and the descriptions, functions, procedures, proposals, methods, and/or flowcharts of operation disclosed herein.
  • PDUs, SDUs, messages, control information, data, or information may be acquired according to the fields.
  • One or more processors 202a, 202b may be referred to as a controller, microcontroller, microprocessor, or microcomputer.
  • One or more processors 202a, 202b may be implemented by hardware, firmware, software, or a combination thereof.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGAs field programmable gate arrays
  • firmware or software may be implemented using firmware or software, and the firmware or software may be implemented to include modules, procedures, functions, and the like.
  • the descriptions, functions, procedures, proposals, methods, and/or flow charts disclosed in this document provide that firmware or software configured to perform is included in one or more processors 202a, 202b, or stored in one or more memories 204a, 204b. It may be driven by the above processors 202a and 202b.
  • the descriptions, functions, procedures, suggestions, methods, and/or flowcharts of operations disclosed herein may be implemented using firmware or software in the form of code, instructions, and/or a set of instructions.
  • One or more memories 204a, 204b may be coupled to one or more processors 202a, 202b and may store various types of data, signals, messages, information, programs, codes, instructions, and/or instructions.
  • One or more memories 204a, 204b may include read only memory (ROM), random access memory (RAM), erasable programmable read only memory (EPROM), flash memory, hard drives, registers, cache memory, computer readable storage media and/or It may be composed of a combination of these.
  • One or more memories 204a, 204b may be located inside and/or external to one or more processors 202a, 202b. Additionally, one or more memories 204a, 204b may be coupled to one or more processors 202a, 202b through various technologies, such as wired or wireless connections.
  • the one or more transceivers 206a, 206b may transmit user data, control information, radio signals/channels, etc. referred to in the methods and/or operational flowcharts of this document to one or more other devices.
  • the one or more transceivers 206a, 206b may receive user data, control information, radio signals/channels, etc. referred to in the descriptions, functions, procedures, suggestions, methods and/or flow charts, etc. disclosed herein, from one or more other devices. have.
  • one or more transceivers 206a , 206b may be coupled to one or more processors 202a , 202b and may transmit and receive wireless signals.
  • one or more processors 202a, 202b may control one or more transceivers 206a, 206b to transmit user data, control information, or wireless signals to one or more other devices. Additionally, one or more processors 202a, 202b may control one or more transceivers 206a, 206b to receive user data, control information, or wireless signals from one or more other devices. Further, one or more transceivers 206a, 206b may be coupled with one or more antennas 208a, 208b, and the one or more transceivers 206a, 206b may be connected via one or more antennas 208a, 208b. , may be set to transmit and receive user data, control information, radio signals/channels, etc.
  • one or more antennas may be a plurality of physical antennas or a plurality of logical antennas (eg, antenna ports).
  • the one or more transceivers 206a, 206b converts the received radio signal/channel, etc. from the RF band signal to process the received user data, control information, radio signal/channel, etc. using the one or more processors 202a, 202b. It can be converted into a baseband signal.
  • One or more transceivers 206a, 206b may convert user data, control information, radio signals/channels, etc. processed using one or more processors 202a, 202b from baseband signals to RF band signals.
  • one or more transceivers 206a, 206b may include (analog) oscillators and/or filters.
  • FIG. 3 is a diagram illustrating another example of a wireless device applied to the present disclosure.
  • a wireless device 300 corresponds to the wireless devices 200a and 200b of FIG. 2 , and includes various elements, components, units/units, and/or modules. ) can be composed of
  • the wireless device 300 may include a communication unit 310 , a control unit 320 , a memory unit 330 , and an additional element 340 .
  • the communication unit may include communication circuitry 312 and transceiver(s) 314 .
  • communication circuitry 312 may include one or more processors 202a, 202b and/or one or more memories 204a, 204b of FIG. 2 .
  • the transceiver(s) 314 may include one or more transceivers 206a , 206b and/or one or more antennas 208a , 208b of FIG. 2 .
  • the control unit 320 is electrically connected to the communication unit 310 , the memory unit 330 , and the additional element 340 and controls general operations of the wireless device.
  • the controller 320 may control the electrical/mechanical operation of the wireless device based on the program/code/command/information stored in the memory unit 330 .
  • control unit 320 transmits the information stored in the memory unit 330 to the outside (eg, another communication device) through the communication unit 310 through a wireless/wired interface, or externally (eg, through the communication unit 310) Information received through a wireless/wired interface from another communication device) may be stored in the memory unit 330 .
  • the additional element 340 may be configured in various ways according to the type of the wireless device.
  • the additional element 340 may include at least one of a power unit/battery, an input/output unit, a driving unit, and a computing unit.
  • the wireless device 300 may include a robot ( FIGS. 1 and 100a ), a vehicle ( FIGS. 1 , 100b-1 , 100b-2 ), an XR device ( FIGS. 1 and 100c ), and a mobile device ( FIGS. 1 and 100d ). ), home appliances (FIG. 1, 100e), IoT device (FIG.
  • the wireless device may be mobile or used in a fixed location depending on the use-example/service.
  • various elements, components, units/units, and/or modules in the wireless device 300 may be all interconnected through a wired interface, or at least some may be wirelessly connected through the communication unit 310 .
  • the control unit 320 and the communication unit 310 are connected by wire, and the control unit 320 and the first unit (eg, 130 , 140 ) are connected wirelessly through the communication unit 310 .
  • each element, component, unit/unit, and/or module within the wireless device 300 may further include one or more elements.
  • the controller 320 may include one or more processor sets.
  • control unit 320 may be configured as a set of a communication control processor, an application processor, an electronic control unit (ECU), a graphic processing processor, a memory control processor, and the like.
  • memory unit 330 may include RAM, dynamic RAM (DRAM), ROM, flash memory, volatile memory, non-volatile memory, and/or a combination thereof. can be configured.
  • FIG. 4 is a diagram illustrating an example of a mobile device applied to the present disclosure.
  • the portable device may include a smart phone, a smart pad, a wearable device (eg, a smart watch, smart glasses), and a portable computer (eg, a laptop computer).
  • the mobile device may be referred to as a mobile station (MS), a user terminal (UT), a mobile subscriber station (MSS), a subscriber station (SS), an advanced mobile station (AMS), or a wireless terminal (WT).
  • MS mobile station
  • UT user terminal
  • MSS mobile subscriber station
  • SS subscriber station
  • AMS advanced mobile station
  • WT wireless terminal
  • the mobile device 400 includes an antenna unit 408 , a communication unit 410 , a control unit 420 , a memory unit 430 , a power supply unit 440a , an interface unit 440b , and an input/output unit 440c .
  • the antenna unit 408 may be configured as a part of the communication unit 410 .
  • Blocks 410 to 430/440a to 440c respectively correspond to blocks 310 to 330/340 of FIG. 3 .
  • the communication unit 410 may transmit and receive signals (eg, data, control signals, etc.) with other wireless devices and base stations.
  • the controller 420 may control components of the portable device 400 to perform various operations.
  • the controller 420 may include an application processor (AP).
  • the memory unit 430 may store data/parameters/programs/codes/commands necessary for driving the portable device 400 . Also, the memory unit 430 may store input/output data/information.
  • the power supply unit 440a supplies power to the portable device 400 and may include a wired/wireless charging circuit, a battery, and the like.
  • the interface unit 440b may support a connection between the portable device 400 and other external devices.
  • the interface unit 440b may include various ports (eg, an audio input/output port and a video input/output port) for connection with an external device.
  • the input/output unit 440c may receive or output image information/signal, audio information/signal, data, and/or information input from a user.
  • the input/output unit 440c may include a camera, a microphone, a user input unit, a display unit 440d, a speaker, and/or a haptic module.
  • the input/output unit 440c obtains information/signals (eg, touch, text, voice, image, video) input from the user, and the obtained information/signals are stored in the memory unit 430 . can be saved.
  • the communication unit 410 may convert the information/signal stored in the memory into a wireless signal, and transmit the converted wireless signal directly to another wireless device or to a base station. Also, after receiving a radio signal from another radio device or base station, the communication unit 410 may restore the received radio signal to original information/signal.
  • the restored information/signal may be stored in the memory unit 430 and output in various forms (eg, text, voice, image, video, haptic) through the input/output unit 440c.
  • FIG. 5 is a diagram illustrating an example of a vehicle or autonomous driving vehicle applied to the present disclosure.
  • the vehicle or autonomous driving vehicle may be implemented as a mobile robot, a vehicle, a train, an aerial vehicle (AV), a ship, and the like, but is not limited to the shape of the vehicle.
  • AV aerial vehicle
  • the vehicle or autonomous driving vehicle 500 includes an antenna unit 508 , a communication unit 510 , a control unit 520 , a driving unit 540a , a power supply unit 540b , a sensor unit 540c and autonomous driving.
  • a unit 540d may be included.
  • the antenna unit 550 may be configured as a part of the communication unit 510 .
  • Blocks 510/530/540a to 540d respectively correspond to blocks 410/430/440 of FIG. 4 .
  • the communication unit 510 may transmit/receive signals (eg, data, control signals, etc.) to and from external devices such as other vehicles, base stations (eg, base stations, roadside units, etc.), and servers.
  • the controller 520 may control elements of the vehicle or the autonomous driving vehicle 500 to perform various operations.
  • the controller 520 may include an electronic control unit (ECU).
  • the driving unit 540a may cause the vehicle or the autonomous driving vehicle 500 to run on the ground.
  • the driving unit 540a may include an engine, a motor, a power train, a wheel, a brake, a steering device, and the like.
  • the power supply unit 540b supplies power to the vehicle or the autonomous driving vehicle 500 , and may include a wired/wireless charging circuit, a battery, and the like.
  • the sensor unit 540c may obtain vehicle state, surrounding environment information, user information, and the like.
  • the sensor unit 540c includes an inertial measurement unit (IMU) sensor, a collision sensor, a wheel sensor, a speed sensor, an inclination sensor, a weight sensor, a heading sensor, a position module, and a vehicle forward movement.
  • IMU inertial measurement unit
  • a collision sensor a wheel sensor
  • a speed sensor a speed sensor
  • an inclination sensor a weight sensor
  • a heading sensor a position module
  • a vehicle forward movement / may include a reverse sensor, a battery sensor, a fuel sensor, a tire sensor, a steering sensor, a temperature sensor, a humidity sensor, an ultrasonic sensor, an illuminance sensor, a pedal position sensor, and the like.
  • the autonomous driving unit 540d includes a technology for maintaining a driving lane, a technology for automatically adjusting speed such as adaptive cruise control, a technology for automatically driving along a predetermined route, and a technology for automatically setting a route when a destination is set. technology can be implemented.
  • the communication unit 510 may receive map data, traffic information data, and the like from an external server.
  • the autonomous driving unit 540d may generate an autonomous driving route and a driving plan based on the acquired data.
  • the controller 520 may control the driving unit 540a to move the vehicle or the autonomous driving vehicle 500 along the autonomous driving path (eg, speed/direction adjustment) according to the driving plan.
  • the communication unit 510 may obtain the latest traffic information data from an external server non/periodically, and may acquire surrounding traffic information data from surrounding vehicles.
  • the sensor unit 540c may acquire vehicle state and surrounding environment information.
  • the autonomous driving unit 540d may update the autonomous driving route and driving plan based on the newly acquired data/information.
  • the communication unit 510 may transmit information about a vehicle location, an autonomous driving route, a driving plan, and the like to an external server.
  • the external server may predict traffic information data in advance using AI technology or the like based on information collected from the vehicle or autonomous vehicles, and may provide the predicted traffic information data to the vehicle or autonomous vehicles.
  • FIG. 6 is a diagram illustrating an example of a movable body applied to the present disclosure.
  • the moving object applied to the present disclosure may be implemented as at least any one of means of transport, train, aircraft, and ship.
  • the movable body applied to the present disclosure may be implemented in other forms, and is not limited to the above-described embodiment.
  • the mobile unit 600 may include a communication unit 610 , a control unit 620 , a memory unit 630 , an input/output unit 640a , and a position measurement unit 640b .
  • blocks 610 to 630/640a to 640b correspond to blocks 310 to 330/340 of FIG. 3 , respectively.
  • the communication unit 610 may transmit/receive signals (eg, data, control signals, etc.) to/from other mobile devices or external devices such as a base station.
  • the controller 620 may perform various operations by controlling the components of the movable body 600 .
  • the memory unit 630 may store data/parameters/programs/codes/commands supporting various functions of the mobile unit 600 .
  • the input/output unit 640a may output an AR/VR object based on information in the memory unit 630 .
  • the input/output unit 640a may include a HUD.
  • the position measuring unit 640b may acquire position information of the moving object 600 .
  • the location information may include absolute location information of the moving object 600 , location information within a driving line, acceleration information, and location information with a surrounding vehicle.
  • the location measuring unit 640b may include a GPS and various sensors.
  • the communication unit 610 of the mobile unit 600 may receive map information, traffic information, and the like from an external server and store it in the memory unit 630 .
  • the position measurement unit 640b may obtain information about the location of the moving object through GPS and various sensors and store it in the memory unit 630 .
  • the controller 620 may generate a virtual object based on map information, traffic information, and location information of a moving object, and the input/output unit 640a may display the generated virtual object on a window inside the moving object (651, 652). Also, the control unit 620 may determine whether the moving object 600 is normally operating within the driving line based on the moving object location information.
  • the control unit 620 may display a warning on the glass window of the moving object through the input/output unit 640a. Also, the control unit 620 may broadcast a warning message regarding the driving abnormality to surrounding moving objects through the communication unit 610 . Depending on the situation, the control unit 620 may transmit the location information of the moving object and information on the driving/moving object abnormality to the related organization through the communication unit 610 .
  • the XR device may be implemented as an HMD, a head-up display (HUD) provided in a vehicle, a television, a smart phone, a computer, a wearable device, a home appliance, a digital signage, a vehicle, a robot, and the like.
  • HMD head-up display
  • a television a smart phone
  • a computer a wearable device
  • a home appliance a digital signage
  • a vehicle a robot, and the like.
  • the XR device 700a may include a communication unit 710 , a control unit 720 , a memory unit 730 , an input/output unit 740a , a sensor unit 740b , and a power supply unit 740c .
  • blocks 710 to 730/740a to 740c may correspond to blocks 310 to 330/340 of FIG. 3 , respectively.
  • the communication unit 710 may transmit/receive signals (eg, media data, control signals, etc.) to/from external devices such as other wireless devices, portable devices, or media servers.
  • Media data may include images, images, and sounds.
  • the controller 720 may perform various operations by controlling the components of the XR device 700a.
  • the controller 720 may be configured to control and/or perform procedures such as video/image acquisition, (video/image) encoding, and metadata generation and processing.
  • the memory unit 730 may store data/parameters/programs/codes/commands necessary for driving the XR device 700a/creating an XR object.
  • the input/output unit 740a may obtain control information, data, etc. from the outside, and may output the generated XR object.
  • the input/output unit 740a may include a camera, a microphone, a user input unit, a display unit, a speaker, and/or a haptic module.
  • the sensor unit 740b may obtain an XR device state, surrounding environment information, user information, and the like.
  • the sensor unit 740b includes a proximity sensor, an illuminance sensor, an acceleration sensor, a magnetic sensor, a gyro sensor, an inertial sensor, a red green blue (RGB) sensor, an infrared (IR) sensor, a fingerprint recognition sensor, an ultrasonic sensor, an optical sensor, a microphone and / or radar or the like.
  • the power supply unit 740c supplies power to the XR device 700a, and may include a wired/wireless charging circuit, a battery, and the like.
  • the memory unit 730 of the XR device 700a may include information (eg, data, etc.) necessary for generating an XR object (eg, AR/VR/MR object).
  • the input/output unit 740a may obtain a command to operate the XR device 700a from the user, and the controller 720 may drive the XR device 700a according to the user's driving command. For example, when the user intends to watch a movie or news through the XR device 700a, the controller 720 transmits the content request information through the communication unit 730 to another device (eg, the mobile device 700b) or can be sent to the media server.
  • another device eg, the mobile device 700b
  • the communication unit 730 may download/stream contents such as movies and news from another device (eg, the portable device 700b) or a media server to the memory unit 730 .
  • the controller 720 controls and/or performs procedures such as video/image acquisition, (video/image) encoding, and metadata generation/processing for the content, and is acquired through the input/output unit 740a/sensor unit 740b It is possible to generate/output an XR object based on information about one surrounding space or a real object.
  • the XR device 700a is wirelessly connected to the portable device 700b through the communication unit 710 , and the operation of the XR device 700a may be controlled by the portable device 700b.
  • the portable device 700b may operate as a controller for the XR device 700a.
  • the XR device 700a may obtain 3D location information of the portable device 700b, and then generate and output an XR object corresponding to the portable device 700b.
  • the robot 800 may include a communication unit 810 , a control unit 820 , a memory unit 830 , an input/output unit 840a , a sensor unit 840b , and a driving unit 840c .
  • blocks 810 to 830/840a to 840c may correspond to blocks 310 to 330/340 of FIG. 3 , respectively.
  • the communication unit 810 may transmit and receive signals (eg, driving information, control signals, etc.) with external devices such as other wireless devices, other robots, or control servers.
  • the controller 820 may control components of the robot 800 to perform various operations.
  • the memory unit 830 may store data/parameters/programs/codes/commands supporting various functions of the robot 800 .
  • the input/output unit 840a may obtain information from the outside of the robot 800 and may output information to the outside of the robot 800 .
  • the input/output unit 840a may include a camera, a microphone, a user input unit, a display unit, a speaker, and/or a haptic module.
  • the sensor unit 840b may obtain internal information, surrounding environment information, user information, and the like of the robot 800 .
  • the sensor unit 840b may include a proximity sensor, an illumination sensor, an acceleration sensor, a magnetic sensor, a gyro sensor, an inertial sensor, an IR sensor, a fingerprint recognition sensor, an ultrasonic sensor, an optical sensor, a microphone, a radar, and the like.
  • the driving unit 840c may perform various physical operations, such as moving a robot joint. Also, the driving unit 840c may cause the robot 800 to travel on the ground or to fly in the air.
  • the driving unit 840c may include an actuator, a motor, a wheel, a brake, a propeller, and the like.
  • AI devices include TVs, projectors, smartphones, PCs, laptops, digital broadcasting terminals, tablet PCs, wearable devices, set-top boxes (STBs), radios, washing machines, refrigerators, digital signage, robots, vehicles, etc. It may be implemented as a device or a mobile device.
  • the AI device 900 includes a communication unit 910 , a control unit 920 , a memory unit 930 , input/output units 940a/940b , a learning processor unit 940c and a sensor unit 940d.
  • the communication unit 910 uses wired/wireless communication technology to communicate with external devices such as other AI devices (eg, FIGS. 1, 100x, 120, 140) or an AI server ( FIGS. 1 and 140 ) and wired/wireless signals (eg, sensor information, user input, learning model, control signal, etc.). To this end, the communication unit 910 may transmit information in the memory unit 930 to an external device or transmit a signal received from the external device to the memory unit 930 .
  • AI devices eg, FIGS. 1, 100x, 120, 140
  • an AI server FIGS. 1 and 140
  • wired/wireless signals eg, sensor information, user input, learning model, control signal, etc.
  • the controller 920 may determine at least one executable operation of the AI device 900 based on information determined or generated using a data analysis algorithm or a machine learning algorithm. In addition, the controller 920 may control the components of the AI device 900 to perform the determined operation. For example, the control unit 920 may request, search, receive, or utilize the data of the learning processor unit 940c or the memory unit 930, and may be a predicted operation among at least one executable operation or determined to be preferable. Components of the AI device 900 may be controlled to execute the operation.
  • control unit 920 collects history information including user feedback on the operation contents or operation of the AI device 900 and stores it in the memory unit 930 or the learning processor unit 940c, or the AI server ( 1 and 140), and the like may be transmitted to an external device.
  • the collected historical information may be used to update the learning model.
  • the memory unit 930 may store data supporting various functions of the AI device 900 .
  • the memory unit 930 may store data obtained from the input unit 940a , data obtained from the communication unit 910 , output data of the learning processor unit 940c , and data obtained from the sensing unit 940 .
  • the memory unit 930 may store control information and/or software codes necessary for the operation/execution of the control unit 920 .
  • the input unit 940a may acquire various types of data from the outside of the AI device 900 .
  • the input unit 920 may obtain training data for model learning, input data to which the learning model is applied, and the like.
  • the input unit 940a may include a camera, a microphone, and/or a user input unit.
  • the output unit 940b may generate an output related to sight, hearing, or touch.
  • the output unit 940b may include a display unit, a speaker, and/or a haptic module.
  • the sensing unit 940 may obtain at least one of internal information of the AI device 900 , surrounding environment information of the AI device 900 , and user information by using various sensors.
  • the sensing unit 940 may include a proximity sensor, an illumination sensor, an acceleration sensor, a magnetic sensor, a gyro sensor, an inertial sensor, an RGB sensor, an IR sensor, a fingerprint recognition sensor, an ultrasonic sensor, an optical sensor, a microphone, and/or a radar. have.
  • the learning processor unit 940c may train a model composed of an artificial neural network by using the training data.
  • the learning processor unit 940c may perform AI processing together with the learning processor unit of the AI server ( FIGS. 1 and 140 ).
  • the learning processor unit 940c may process information received from an external device through the communication unit 910 and/or information stored in the memory unit 930 . Also, the output value of the learning processor unit 940c may be transmitted to an external device through the communication unit 910 and/or stored in the memory unit 930 .
  • a terminal may receive information from a base station through downlink (DL) and transmit information to a base station through uplink (UL).
  • Information transmitted and received between the base station and the terminal includes general data information and various control information, and various physical channels exist according to the type/use of the information they transmit and receive.
  • FIG. 10 is a diagram illustrating physical channels applied to the present disclosure and a signal transmission method using the same.
  • the terminal receives a primary synchronization channel (P-SCH) and a secondary synchronization channel (S-SCH) from the base station, synchronizes with the base station, and obtains information such as cell ID. .
  • P-SCH primary synchronization channel
  • S-SCH secondary synchronization channel
  • the terminal may receive a physical broadcast channel (PBCH) signal from the base station to obtain intra-cell broadcast information.
  • the UE may receive a downlink reference signal (DL RS) in the initial cell search step to check the downlink channel state.
  • DL RS downlink reference signal
  • the UE receives a physical downlink control channel (PDCCH) and a physical downlink control channel (PDSCH) according to physical downlink control channel information in step S1012 and receives a little more Specific system information can be obtained.
  • PDCCH physical downlink control channel
  • PDSCH physical downlink control channel
  • the terminal may perform a random access procedure, such as steps S1013 to S1016, to complete access to the base station.
  • the UE transmits a preamble through a physical random access channel (PRACH) (S1013), and RAR for the preamble through a physical downlink control channel and a corresponding physical downlink shared channel (S1013). random access response) may be received (S1014).
  • the UE transmits a physical uplink shared channel (PUSCH) using scheduling information in the RAR (S1015), and a contention resolution procedure such as reception of a physical downlink control channel signal and a corresponding physical downlink shared channel signal. ) can be performed (S1016).
  • PUSCH physical uplink shared channel
  • S1015 scheduling information in the RAR
  • a contention resolution procedure such as reception of a physical downlink control channel signal and a corresponding physical downlink shared channel signal.
  • the terminal After performing the procedure as described above, the terminal receives a physical downlink control channel signal and/or a physical downlink shared channel signal (S1017) and a physical uplink shared channel as a general uplink/downlink signal transmission procedure thereafter.
  • channel, PUSCH) signal and/or a physical uplink control channel (PUCCH) signal may be transmitted ( S1018 ).
  • UCI uplink control information
  • HARQ-ACK / NACK hybrid automatic repeat and request acknowledgment / negative-ACK
  • SR scheduling request
  • CQI channel quality indication
  • PMI precoding matrix indication
  • RI rank indication
  • BI beam indication
  • the UCI is generally transmitted periodically through the PUCCH, but may be transmitted through the PUSCH according to an embodiment (eg, when control information and traffic data are to be transmitted at the same time).
  • the UE may aperiodically transmit the UCI through the PUSCH.
  • FIG. 11 is a diagram illustrating a control plane and a user plane structure of a radio interface protocol applied to the present disclosure.
  • entity 1 may be a user equipment (UE).
  • the term "terminal" may be at least one of a wireless device, a portable device, a vehicle, a mobile body, an XR device, a robot, and an AI to which the present disclosure is applied in FIGS. 1 to 9 described above.
  • the terminal refers to a device to which the present disclosure can be applied and may not be limited to a specific device or device.
  • Entity 2 may be a base station.
  • the base station may be at least one of an eNB, a gNB, and an ng-eNB.
  • the base station may refer to an apparatus for transmitting a downlink signal to the terminal, and may not be limited to a specific type or apparatus. That is, the base station may be implemented in various forms or types, and may not be limited to a specific form.
  • Entity 3 may be a network device or a device performing a network function.
  • the network device may be a core network node (eg, a mobility management entity (MME), an access and mobility management function (AMF), etc.) that manages mobility.
  • the network function may mean a function implemented to perform a network function
  • entity 3 may be a device to which the function is applied. That is, the entity 3 may refer to a function or device that performs a network function, and is not limited to a specific type of device.
  • the control plane may refer to a path through which control messages used by a user equipment (UE) and a network to manage a call are transmitted.
  • the user plane may mean a path through which data generated in the application layer, for example, voice data or Internet packet data, is transmitted.
  • the physical layer which is the first layer, may provide an information transfer service to a higher layer by using a physical channel.
  • the physical layer is connected to the upper medium access control layer through a transport channel.
  • data may be moved between the medium access control layer and the physical layer through the transport channel.
  • Data can be moved between the physical layers of the transmitting side and the receiving side through a physical channel.
  • the physical channel uses time and frequency as radio resources.
  • a medium access control (MAC) layer of the second layer provides a service to a radio link control (RLC) layer, which is an upper layer, through a logical channel.
  • the RLC layer of the second layer may support reliable data transmission.
  • the function of the RLC layer may be implemented as a function block inside the MAC.
  • the packet data convergence protocol (PDCP) layer of the second layer may perform a header compression function that reduces unnecessary control information in order to efficiently transmit IP packets such as IPv4 or IPv6 in a narrow-bandwidth air interface.
  • PDCP packet data convergence protocol
  • a radio resource control (RRC) layer located at the bottom of the third layer is defined only in the control plane.
  • the RRC layer may be in charge of controlling logical channels, transport channels and physical channels in relation to configuration, re-configuration, and release of radio bearers (RBs).
  • RB may mean a service provided by the second layer for data transfer between the terminal and the network.
  • the UE and the RRC layer of the network may exchange RRC messages with each other.
  • a non-access stratum (NAS) layer above the RRC layer may perform functions such as session management and mobility management.
  • One cell constituting the base station may be set to one of various bandwidths to provide downlink or uplink transmission services to multiple terminals. Different cells may be configured to provide different bandwidths.
  • the downlink transmission channel for transmitting data from the network to the terminal includes a broadcast channel (BCH) for transmitting system information, a paging channel (PCH) for transmitting a paging message, and a downlink shared channel (SCH) for transmitting user traffic or control messages.
  • BCH broadcast channel
  • PCH paging channel
  • SCH downlink shared channel
  • RACH random access channel
  • SCH uplink shared channel
  • a logical channel that is located above the transport channel and is mapped to the transport channel includes a broadcast control channel (BCCH), a paging control channel (PCCH), a common control channel (CCCH), a multicast control channel (MCCH), and a multicast (MTCH) channel. traffic channels), etc.
  • BCCH broadcast control channel
  • PCCH paging control channel
  • CCCH common control channel
  • MCCH multicast control channel
  • MTCH multicast
  • the transmission signal may be processed by a signal processing circuit.
  • the signal processing circuit 1200 may include a scrambler 1210 , a modulator 1220 , a layer mapper 1230 , a precoder 1240 , a resource mapper 1250 , and a signal generator 1260 .
  • the operation/function of FIG. 12 may be performed by the processors 202a and 202b and/or the transceivers 206a and 206b of FIG. 2 .
  • blocks 1010 to 1060 may be implemented in the processors 202a and 202b of FIG. 2 .
  • blocks 1210 to 1250 may be implemented in the processors 202a and 202b of FIG. 2
  • block 1260 may be implemented in the transceivers 206a and 206b of FIG. 2 , and the embodiment is not limited thereto.
  • the codeword may be converted into a wireless signal through the signal processing circuit 1200 of FIG. 12 .
  • the codeword is a coded bit sequence of an information block.
  • the information block may include a transport block (eg, a UL-SCH transport block, a DL-SCH transport block).
  • the radio signal may be transmitted through various physical channels (eg, PUSCH, PDSCH) of FIG. 10 .
  • the codeword may be converted into a scrambled bit sequence by the scrambler 1210 .
  • a scramble sequence used for scrambling is generated based on an initialization value, and the initialization value may include ID information of a wireless device, and the like.
  • the scrambled bit sequence may be modulated by a modulator 1220 into a modulation symbol sequence.
  • the modulation method may include pi/2-binary phase shift keying (pi/2-BPSK), m-phase shift keying (m-PSK), m-quadrature amplitude modulation (m-QAM), and the like.
  • the complex modulation symbol sequence may be mapped to one or more transport layers by a layer mapper 1230 .
  • Modulation symbols of each transport layer may be mapped to corresponding antenna port(s) by the precoder 1240 (precoding).
  • the output z of the precoder 1240 may be obtained by multiplying the output y of the layer mapper 1230 by the precoding matrix W of N*M.
  • N is the number of antenna ports
  • M is the number of transport layers.
  • the precoder 1240 may perform precoding after performing transform precoding (eg, discrete fourier transform (DFT) transform) on the complex modulation symbols. Also, the precoder 1240 may perform precoding without performing transform precoding.
  • transform precoding eg, discrete fourier transform (DFT) transform
  • the resource mapper 1250 may map modulation symbols of each antenna port to a time-frequency resource.
  • the time-frequency resource may include a plurality of symbols (eg, a CP-OFDMA symbol, a DFT-s-OFDMA symbol) in the time domain and a plurality of subcarriers in the frequency domain.
  • the signal generator 1260 generates a radio signal from the mapped modulation symbols, and the generated radio signal may be transmitted to another device through each antenna.
  • the signal generator 1260 may include an inverse fast fourier transform (IFFT) module and a cyclic prefix (CP) inserter, a digital-to-analog converter (DAC), a frequency uplink converter, and the like. .
  • IFFT inverse fast fourier transform
  • CP cyclic prefix
  • DAC digital-to-analog converter
  • the signal processing process for the received signal in the wireless device may be configured in reverse of the signal processing process 1210 to 1260 of FIG. 12 .
  • the wireless device eg, 200a or 200b of FIG. 2
  • the received radio signal may be converted into a baseband signal through a signal restorer.
  • the signal restorer may include a frequency downlink converter, an analog-to-digital converter (ADC), a CP remover, and a fast fourier transform (FFT) module.
  • ADC analog-to-digital converter
  • FFT fast fourier transform
  • the baseband signal may be restored to a codeword through a resource de-mapper process, a postcoding process, a demodulation process, and a descrambling process.
  • the codeword may be restored to the original information block through decoding.
  • the signal processing circuit (not shown) for the received signal may include a signal restorer, a resource de-mapper, a post coder, a demodulator, a descrambler, and a decoder.
  • FIG. 13 is a diagram illustrating a structure of a radio frame applicable to the present disclosure.
  • Uplink and downlink transmission based on the NR system may be based on a frame as shown in FIG. 13 .
  • one radio frame has a length of 10 ms and may be defined as two 5 ms half-frames (HF).
  • One half-frame may be defined as 5 1ms subframes (subframe, SF).
  • One subframe is divided into one or more slots, and the number of slots in a subframe may depend on subcarrier spacing (SCS).
  • SCS subcarrier spacing
  • each slot may include 12 or 14 OFDM(A) symbols according to a cyclic prefix (CP).
  • CP cyclic prefix
  • each slot When a normal CP (normal CP) is used, each slot may include 14 symbols.
  • each slot may include 12 symbols.
  • the symbol may include an OFDM symbol (or a CP-OFDM symbol) and an SC-FDMA symbol (or a DFT-s-OFDM symbol).
  • Table 1 shows the number of symbols per slot, the number of slots per frame, and the number of slots per subframe according to the SCS when the normal CP is used
  • Table 2 shows the number of slots per slot according to the SCS when the extended CSP is used. Indicates the number of symbols, the number of slots per frame, and the number of slots per subframe.
  • N slot symb may indicate the number of symbols in a slot
  • N frame may indicate the number of slots in a frame
  • ⁇ slot may indicate the number of slots in a frame
  • N subframe may indicate the number of slots in a subframe.
  • OFDM(A) numerology eg, SCS, CP length, etc.
  • OFDM(A) numerology eg, SCS, CP length, etc.
  • an (absolute time) interval of a time resource eg, SF, slot, or TTI
  • a TU time unit
  • NR may support multiple numerology (or subcarrier spacing (SCS)) to support various 5G services. For example, when SCS is 15kHz, it supports a wide area in traditional cellular bands, and when SCS is 30kHz/60kHz, dense-urban, lower latency and a wider carrier bandwidth, and when the SCS is 60 kHz or higher, it can support a bandwidth greater than 24.25 GHz to overcome phase noise.
  • SCS subcarrier spacing
  • the NR frequency band is defined as a frequency range of two types (FR1, FR2).
  • FR1 and FR2 may be configured as shown in the table below.
  • FR2 may mean a millimeter wave (mmW).
  • the above-described pneumatic numerology may be set differently.
  • a terahertz wave (THz) band may be used as a higher frequency band than the above-described FR2.
  • the SCS may be set to be larger than that of the NR system, and the number of slots may be set differently, and it is not limited to the above-described embodiment.
  • the THz band will be described later.
  • FIG. 14 is a diagram illustrating a slot structure applicable to the present disclosure.
  • One slot includes a plurality of symbols in the time domain. For example, in the case of a normal CP, one slot may include 7 symbols, but in the case of an extended CP, one slot may include 6 symbols.
  • a carrier includes a plurality of subcarriers (subcarrier) in the frequency domain.
  • a resource block may be defined as a plurality of (eg, 12) consecutive subcarriers in the frequency domain.
  • a bandwidth part is defined as a plurality of consecutive (P)RBs in the frequency domain, and may correspond to one numerology (eg, SCS, CP length, etc.).
  • a carrier may include a maximum of N (eg, 5) BWPs. Data communication is performed through the activated BWP, and only one BWP can be activated for one terminal.
  • N e.g. 5
  • Each element in the resource grid is referred to as a resource element (RE), and one complex symbol may be mapped.
  • RE resource element
  • 6G (wireless) systems have (i) very high data rates per device, (ii) very large number of connected devices, (iii) global connectivity, (iv) very low latency, (v) battery- It aims to reduce energy consumption of battery-free IoT devices, (vi) ultra-reliable connections, and (vii) connected intelligence with machine learning capabilities.
  • the vision of the 6G system may have four aspects such as "intelligent connectivity”, “deep connectivity”, “holographic connectivity”, and “ubiquitous connectivity”, and the 6G system may satisfy the requirements shown in Table 4 below. That is, Table 4 is a table showing the requirements of the 6G system.
  • the 6G system includes enhanced mobile broadband (eMBB), ultra-reliable low latency communications (URLLC), massive machine type communications (mmTC), AI integrated communication, and tactile Internet (tactile internet), high throughput (high throughput), high network capacity (high network capacity), high energy efficiency (high energy efficiency), low backhaul and access network congestion (low backhaul and access network congestion) and improved data security ( It may have key factors such as enhanced data security.
  • eMBB enhanced mobile broadband
  • URLLC ultra-reliable low latency communications
  • mmTC massive machine type communications
  • AI integrated communication e.g., eMBB
  • tactile Internet e internet
  • high throughput high network capacity
  • high energy efficiency high energy efficiency
  • low backhaul and access network congestion low backhaul and access network congestion
  • improved data security It may have key factors such as enhanced data security.
  • 15 is a diagram illustrating an example of a communication structure that can be provided in a 6G system applicable to the present disclosure.
  • the 6G system is expected to have 50 times higher simultaneous wireless communication connectivity than the 5G wireless communication system.
  • URLLC a key feature of 5G, is expected to become an even more important technology by providing an end-to-end delay of less than 1 ms in 6G communication.
  • the 6G system will have much better volumetric spectral efficiency, unlike the frequently used area spectral efficiency.
  • 6G systems can provide very long battery life and advanced battery technology for energy harvesting, so mobile devices in 6G systems may not need to be charged separately.
  • new network characteristics in 6G may be as follows.
  • 6G is expected to be integrated with satellites to provide a global mobile population.
  • the integration of terrestrial, satellite and public networks into one wireless communication system could be very important for 6G.
  • AI may be applied in each step of a communication procedure (or each procedure of signal processing to be described later).
  • the 6G wireless network will deliver power to charge the batteries of devices such as smartphones and sensors. Therefore, wireless information and energy transfer (WIET) will be integrated.
  • WIET wireless information and energy transfer
  • Small cell networks The idea of small cell networks was introduced to improve the received signal quality as a result of improved throughput, energy efficiency and spectral efficiency in cellular systems. As a result, small cell networks are essential characteristics for communication systems beyond 5G and Beyond 5G (5GB). Accordingly, the 6G communication system also adopts the characteristics of the small cell network.
  • Ultra-dense heterogeneous networks will be another important characteristic of 6G communication system.
  • a multi-tier network composed of heterogeneous networks improves overall QoS and reduces costs.
  • the backhaul connection is characterized as a high-capacity backhaul network to support high-capacity traffic.
  • High-speed fiber optics and free-space optics (FSO) systems may be possible solutions to this problem.
  • High-precision localization (or location-based service) through communication is one of the functions of the 6G wireless communication system. Therefore, the radar system will be integrated with the 6G network.
  • Softening and virtualization are two important functions that underlie the design process in 5GB networks to ensure flexibility, reconfigurability and programmability. In addition, billions of devices can be shared in a shared physical infrastructure.
  • AI The most important and newly introduced technology for 6G systems is AI.
  • AI was not involved in the 4G system.
  • 5G systems will support partial or very limited AI.
  • the 6G system will be AI-enabled for full automation.
  • Advances in machine learning will create more intelligent networks for real-time communication in 6G.
  • Incorporating AI into communications can simplify and enhance real-time data transmission.
  • AI can use numerous analytics to determine how complex target tasks are performed. In other words, AI can increase efficiency and reduce processing delays.
  • AI can also play an important role in M2M, machine-to-human and human-to-machine communication.
  • AI can be a rapid communication in the BCI (brain computer interface).
  • BCI brain computer interface
  • AI-based communication systems can be supported by metamaterials, intelligent structures, intelligent networks, intelligent devices, intelligent cognitive radios, self-sustaining wireless networks, and machine learning.
  • AI-based physical layer transmission means applying a signal processing and communication mechanism based on an AI driver rather than a traditional communication framework in a fundamental signal processing and communication mechanism.
  • a signal processing and communication mechanism based on an AI driver rather than a traditional communication framework in a fundamental signal processing and communication mechanism.
  • deep learning-based channel coding and decoding, deep learning-based signal estimation and detection, deep learning-based multiple input multiple output (MIMO) mechanism It may include AI-based resource scheduling and allocation.
  • Machine learning may be used for channel estimation and channel tracking, and may be used for power allocation, interference cancellation, and the like in a physical layer of a downlink (DL). In addition, machine learning may be used for antenna selection, power control, symbol detection, and the like in a MIMO system.
  • DL downlink
  • machine learning may be used for antenna selection, power control, symbol detection, and the like in a MIMO system.
  • Deep learning-based AI algorithms require large amounts of training data to optimize training parameters.
  • a lot of training data is used offline. This is because static training on training data in a specific channel environment may cause a contradiction between dynamic characteristics and diversity of a wireless channel.
  • signals of the physical layer of wireless communication are complex signals.
  • further research on a neural network for detecting a complex domain signal is needed.
  • Machine learning refers to a set of operations that trains a machine to create a machine that can perform tasks that humans can or cannot do.
  • Machine learning requires data and a learning model.
  • data learning methods can be roughly divided into three types: supervised learning, unsupervised learning, and reinforcement learning.
  • Neural network learning is to minimize output errors. Neural network learning repeatedly inputs training data into the neural network, calculates the output and target errors of the neural network for the training data, and backpropagates the neural network error from the output layer of the neural network to the input layer in the direction to reduce the error. ) to update the weight of each node in the neural network.
  • Supervised learning uses training data in which the correct answer is labeled in the training data, and in unsupervised learning, the correct answer may not be labeled in the training data. That is, for example, learning data in the case of supervised learning related to data classification may be data in which categories are labeled for each of the training data.
  • the labeled training data is input to the neural network, and an error can be calculated by comparing the output (category) of the neural network with the label of the training data.
  • the calculated error is back propagated in the reverse direction (ie, from the output layer to the input layer) in the neural network, and the connection weight of each node of each layer of the neural network may be updated according to the back propagation.
  • the change amount of the connection weight of each node to be updated may be determined according to a learning rate.
  • the computation of the neural network on the input data and the backpropagation of errors can constitute a learning cycle (epoch).
  • the learning rate may be applied differently depending on the number of repetitions of the learning cycle of the neural network. For example, in the early stage of learning a neural network, a high learning rate can be used to increase the efficiency by allowing the neural network to quickly obtain a certain level of performance, and in the late learning period, a low learning rate can be used to increase the accuracy.
  • the learning method may vary depending on the characteristics of the data. For example, when the purpose of accurately predicting data transmitted from a transmitter in a communication system is at a receiver, it is preferable to perform learning using supervised learning rather than unsupervised learning or reinforcement learning.
  • the learning model corresponds to the human brain, and the most basic linear model can be considered. ) is called
  • the neural network cord used as a learning method is largely divided into deep neural networks (DNN), convolutional deep neural networks (CNN), and recurrent boltzmann machine (RNN) methods. and such a learning model can be applied.
  • DNN deep neural networks
  • CNN convolutional deep neural networks
  • RNN recurrent boltzmann machine
  • THz communication may be applied in the 6G system.
  • the data rate may be increased by increasing the bandwidth. This can be accomplished by using sub-THz communication with a wide bandwidth and applying advanced large-scale MIMO technology.
  • a THz wave also known as sub-millimeter radiation, generally represents a frequency band between 0.1 THz and 10 THz with a corresponding wavelength in the range of 0.03 mm-3 mm.
  • the 100GHz-300GHz band range (Sub THz band) is considered a major part of the THz band for cellular communication.
  • Sub-THz band Addition to mmWave band increases 6G cellular communication capacity.
  • 300GHz-3THz is in the far-infrared (IR) frequency band.
  • the 300GHz-3THz band is part of the broadband, but at the edge of the wideband, just behind the RF band. Thus, this 300 GHz-3 THz band shows similarities to RF.
  • THz communication The main characteristics of THz communication include (i) widely available bandwidth to support very high data rates, and (ii) high path loss occurring at high frequencies (high directional antennas are indispensable).
  • the narrow beamwidth produced by the highly directional antenna reduces interference.
  • the small wavelength of the THz signal allows a much larger number of antenna elements to be integrated into devices and BSs operating in this band. This allows the use of advanced adaptive nesting techniques that can overcome range limitations.
  • Optical wireless communication (OWC) technology is envisaged for 6G communication in addition to RF-based communication for all possible device-to-access networks. These networks connect to network-to-backhaul/fronthaul network connections.
  • OWC technology has already been used since the 4G communication system, but will be used more widely to meet the needs of the 6G communication system.
  • OWC technologies such as light fidelity, visible light communication, optical camera communication, and free space optical (FSO) communication based on a light band are well known technologies. Communication based on optical radio technology can provide very high data rates, low latency and secure communication.
  • Light detection and ranging (LiDAR) can also be used for ultra-high-resolution 3D mapping in 6G communication based on a wide band.
  • FSO The transmitter and receiver characteristics of an FSO system are similar to those of a fiber optic network.
  • data transmission in an FSO system is similar to that of a fiber optic system. Therefore, FSO can be a good technology to provide backhaul connectivity in 6G systems along with fiber optic networks.
  • FSO supports high-capacity backhaul connections for remote and non-remote areas such as sea, space, underwater, and isolated islands.
  • FSO also supports cellular base station connectivity.
  • MIMO technology improves, so does the spectral efficiency. Therefore, large-scale MIMO technology will be important in 6G systems. Since the MIMO technology uses multiple paths, a multiplexing technique and a beam generation and operation technique suitable for the THz band should also be considered important so that a data signal can be transmitted through one or more paths.
  • Blockchain will become an important technology for managing large amounts of data in future communication systems.
  • Blockchain is a form of distributed ledger technology, which is a database distributed across numerous nodes or computing devices. Each node replicates and stores an identical copy of the ledger.
  • the blockchain is managed as a peer-to-peer (P2P) network. It can exist without being managed by a centralized authority or server. Data on the blockchain is collected together and organized into blocks. Blocks are linked together and protected using encryption.
  • Blockchain in nature perfectly complements IoT at scale with improved interoperability, security, privacy, reliability and scalability. Therefore, blockchain technology provides several features such as interoperability between devices, traceability of large amounts of data, autonomous interaction of different IoT systems, and large-scale connection stability of 6G communication systems.
  • the 6G system integrates terrestrial and public networks to support vertical expansion of user communications.
  • 3D BS will be provided via low orbit satellites and UAVs. Adding a new dimension in terms of elevation and associated degrees of freedom makes 3D connections significantly different from traditional 2D networks.
  • Unmanned aerial vehicles or drones will become an important element in 6G wireless communications.
  • UAVs Unmanned aerial vehicles
  • a base station entity is installed in the UAV to provide cellular connectivity.
  • UAVs have certain features not found in fixed base station infrastructure, such as easy deployment, strong line-of-sight links, and degrees of freedom with controlled mobility.
  • the deployment of terrestrial communications infrastructure is not economically feasible and sometimes cannot provide services in volatile environments.
  • a UAV can easily handle this situation.
  • UAV will become a new paradigm in the field of wireless communication. This technology facilitates the three basic requirements of wireless networks: eMBB, URLLC and mMTC.
  • UAVs can also serve several purposes, such as improving network connectivity, fire detection, disaster emergency services, security and surveillance, pollution monitoring, parking monitoring, incident monitoring, and more. Therefore, UAV technology is recognized as one of the most important technologies for 6G communication.
  • Tight integration of multiple frequencies and heterogeneous communication technologies is very important in 6G systems. As a result, users can seamlessly move from one network to another without having to make any manual configuration on the device. The best network is automatically selected from the available communication technologies. This will break the limitations of the cell concept in wireless communication. Currently, user movement from one cell to another causes too many handovers in high-density networks, causing handover failures, handover delays, data loss and ping-pong effects. 6G cell-free communication will overcome all of this and provide better QoS. Cell-free communication will be achieved through multi-connectivity and multi-tier hybrid technologies and different heterogeneous radios of devices.
  • WIET Wireless information and energy transfer
  • WIET uses the same fields and waves as wireless communication systems.
  • the sensor and smartphone will be charged using wireless power transfer during communication.
  • WIET is a promising technology for extending the life of battery-charging wireless systems. Therefore, devices without batteries will be supported in 6G communication.
  • An autonomous wireless network is a function that can continuously detect dynamically changing environmental conditions and exchange information between different nodes.
  • sensing will be tightly integrated with communications to support autonomous systems.
  • each access network is connected by backhaul connections such as fiber optic and FSO networks.
  • backhaul connections such as fiber optic and FSO networks.
  • Beamforming is a signal processing procedure that adjusts an antenna array to transmit a radio signal in a specific direction.
  • Beamforming technology has several advantages, such as high signal-to-noise ratio, interference prevention and rejection, and high network efficiency.
  • Hologram beamforming (HBF) is a new beamforming method that is significantly different from MIMO systems because it uses a software-defined antenna. HBF will be a very effective approach for efficient and flexible transmission and reception of signals in multi-antenna communication devices in 6G.
  • Big data analytics is a complex process for analyzing various large data sets or big data. This process ensures complete data management by finding information such as hidden data, unknown correlations and customer propensity. Big data is gathered from a variety of sources such as videos, social networks, images and sensors. This technology is widely used to process massive amounts of data in 6G systems.
  • the LIS is an artificial surface made of electromagnetic materials, and can change the propagation of incoming and outgoing radio waves.
  • LIS can be viewed as an extension of massive MIMO, but has a different array structure and operation mechanism from that of massive MIMO.
  • LIS is low in that it operates as a reconfigurable reflector with passive elements, that is, only passively reflects the signal without using an active RF chain. It has the advantage of having power consumption.
  • each of the passive reflectors of the LIS must independently adjust the phase shift of the incoming signal, it can be advantageous for a wireless communication channel.
  • the reflected signal can be gathered at the target receiver to boost the received signal power.
  • 17 is a diagram illustrating a THz communication method applicable to the present disclosure.
  • THz wave is located between RF (Radio Frequency)/millimeter (mm) and infrared band, (i) It transmits non-metal/non-polar material better than visible light/infrared light, and has a shorter wavelength than RF/millimeter wave, so it has high straightness. Beam focusing may be possible.
  • the frequency band expected to be used for THz wireless communication may be a D-band (110 GHz to 170 GHz) or H-band (220 GHz to 325 GHz) band with low propagation loss due to absorption of molecules in the air.
  • Standardization discussion on THz wireless communication is being discussed centered on IEEE 802.15 THz working group (WG) in addition to 3GPP, and standard documents issued by TG (task group) (eg, TG3d, TG3e) of IEEE 802.15 are described in this specification. It can be specified or supplemented.
  • THz wireless communication may be applied to wireless recognition, sensing, imaging, wireless communication, THz navigation, and the like.
  • a THz wireless communication scenario may be classified into a macro network, a micro network, and a nanoscale network.
  • THz wireless communication can be applied to a vehicle-to-vehicle (V2V) connection and a backhaul/fronthaul connection.
  • V2V vehicle-to-vehicle
  • THz wireless communication in micro networks is applied to indoor small cells, fixed point-to-point or multi-point connections such as wireless connections in data centers, and near-field communication such as kiosk downloading.
  • Table 5 below is a table showing an example of a technique that can be used in the THz wave.
  • FIG. 18 is a diagram illustrating a THz wireless communication transceiver applicable to the present disclosure.
  • THz wireless communication may be classified based on a method for generating and receiving THz.
  • the THz generation method can be classified into an optical device or an electronic device-based technology.
  • the method of generating THz using an electronic device is a method using a semiconductor device such as a resonant tunneling diode (RTD), a method using a local oscillator and a multiplier, a compound semiconductor HEMT (high electron mobility transistor) based
  • a monolithic microwave integrated circuit (MMIC) method using an integrated circuit a method using a Si-CMOS-based integrated circuit, and the like.
  • MMIC monolithic microwave integrated circuit
  • a doubler, tripler, or multiplier is applied to increase the frequency, and it is radiated by the antenna through the sub-harmonic mixer. Since the THz band forms a high frequency, a multiplier is essential.
  • the multiplier is a circuit that has an output frequency that is N times that of the input, matches the desired harmonic frequency, and filters out all other frequencies.
  • an array antenna or the like may be applied to the antenna of FIG. 18 to implement beamforming.
  • IF denotes an intermediate frequency
  • tripler and multiplier denote a multiplier
  • PA denotes a power amplifier
  • LNA denotes a low noise amplifier.
  • PLL represents a phase-locked loop.
  • FIG. 19 is a diagram illustrating a method for generating a THz signal applicable to the present disclosure.
  • FIG. 20 is a diagram illustrating a wireless communication transceiver applicable to the present disclosure.
  • the optical device-based THz wireless communication technology refers to a method of generating and modulating a THz signal using an optical device.
  • the optical element-based THz signal generation technology is a technology that generates a high-speed optical signal using a laser and an optical modulator, and converts it into a THz signal using an ultra-high-speed photodetector. In this technology, it is easier to increase the frequency compared to the technology using only electronic devices, it is possible to generate a high-power signal, and it is possible to obtain a flat response characteristic in a wide frequency band.
  • a laser diode, a broadband optical modulator, and a high-speed photodetector are required to generate an optical device-based THz signal.
  • an optical coupler refers to a semiconductor device that transmits electrical signals using light waves to provide coupling with electrical insulation between circuits or systems
  • UTC-PD uni-travelling carrier photo- The detector
  • UTC-PD is one of the photodetectors, which uses electrons as active carriers and reduces the movement time of electrons by bandgap grading.
  • UTC-PD is capable of photodetection above 150GHz.
  • an erbium-doped fiber amplifier indicates an erbium-doped optical fiber amplifier
  • a photo detector indicates a semiconductor device capable of converting an optical signal into an electrical signal
  • the OSA indicates various optical communication functions (eg, .
  • FIG. 21 is a diagram illustrating a structure of a transmitter applicable to the present disclosure.
  • FIG. 22 is a diagram illustrating a modulator structure applicable to the present disclosure.
  • a phase of a signal may be changed by passing an optical source of a laser through an optical wave guide.
  • data is loaded by changing electrical characteristics through microwave contact or the like.
  • an optical modulator output is formed as a modulated waveform.
  • the photoelectric modulator (O/E converter) is an optical rectification operation by a nonlinear crystal (nonlinear crystal), photoelectric conversion (O / E conversion) by a photoconductive antenna (photoconductive antenna), a bunch of electrons in the light beam (bunch of) THz pulses can be generated by, for example, emission from relativistic electrons.
  • a terahertz pulse (THz pulse) generated in the above manner may have a length in units of femtoseconds to picoseconds.
  • An O/E converter performs down conversion by using non-linearity of a device.
  • a number of contiguous GHz bands for fixed or mobile service use for the terahertz system are used. likely to use
  • available bandwidth may be classified based on oxygen attenuation of 10 ⁇ 2 dB/km in a spectrum up to 1 THz. Accordingly, a framework in which the available bandwidth is composed of several band chunks may be considered.
  • the bandwidth (BW) becomes about 20 GHz.
  • Effective down conversion from the infrared band to the THz band depends on how the nonlinearity of the O/E converter is exploited. That is, in order to down-convert to a desired terahertz band (THz band), the O/E converter having the most ideal non-linearity for transfer to the terahertz band (THz band) is design is required. If an O/E converter that does not fit the target frequency band is used, there is a high possibility that an error may occur with respect to the amplitude and phase of the corresponding pulse.
  • a terahertz transmission/reception system may be implemented using one photoelectric converter in a single carrier system. Although it depends on the channel environment, as many photoelectric converters as the number of carriers may be required in a far-carrier system. In particular, in the case of a multi-carrier system using several broadbands according to the above-described spectrum usage-related scheme, the phenomenon will become conspicuous. In this regard, a frame structure for the multi-carrier system may be considered.
  • the down-frequency-converted signal based on the photoelectric converter may be transmitted in a specific resource region (eg, a specific frame).
  • the frequency domain of the specific resource region may include a plurality of chunks. Each chunk may be composed of at least one component carrier (CC).
  • FIG. 23 is a diagram illustrating a structure of a perceptron included in an artificial neural network applicable to the present disclosure. Also, FIG. 24 is a diagram illustrating an artificial neural network structure applicable to the present disclosure.
  • an artificial intelligence system may be applied in the 6G system.
  • the artificial intelligence system may operate based on a learning model corresponding to the human brain, as described above.
  • a paradigm of machine learning that uses a neural network structure with high complexity such as artificial neural networks as a learning model can be called deep learning.
  • the neural network cord used as a learning method is largely a deep neural network (DNN), a convolutional deep neural network (CNN), and a recurrent neural network (RNN).
  • DNN deep neural network
  • CNN convolutional deep neural network
  • RNN recurrent neural network
  • the artificial neural network may be composed of several perceptrons.
  • a perceptron If the huge artificial neural network structure extends the simplified perceptron structure shown in FIG. 23, input vectors can be applied to different multidimensional perceptrons. For convenience of description, an input value or an output value is referred to as a node.
  • the perceptron structure shown in FIG. 23 may be described as being composed of a total of three layers based on an input value and an output value. 1 st layer and 2 nd layer between, the (d + 1) pieces perceptron H of D, 2, (H + 1) between nd layer and a 3 rd layer level perceptron is to be described as an artificial neural network 24 present the K can
  • the layer where the input vector is located is called an input layer
  • the layer where the final output value is located is called the output layer
  • all layers located between the input layer and the output layer are called hidden layers.
  • the artificial neural network illustrated in FIG. 24 can be understood as a total of two layers.
  • the artificial neural network is constructed by connecting the perceptrons of the basic blocks in two dimensions.
  • the aforementioned input layer, hidden layer, and output layer can be jointly applied in various artificial neural network structures such as CNN and RNN to be described later as well as multi-layer perceptron.
  • various artificial neural network structures such as CNN and RNN to be described later as well as multi-layer perceptron.
  • the artificial neural network becomes deeper, and a machine learning paradigm that uses a sufficiently deep artificial neural network as a learning model can be called deep learning.
  • an artificial neural network used for deep learning may be referred to as a deep neural network (DNN).
  • DNN deep neural network
  • 25 is a diagram illustrating a deep neural network applicable to the present disclosure.
  • the deep neural network may be a multilayer perceptron composed of eight hidden layers + eight output layers.
  • the multilayer perceptron structure may be expressed as a fully-connected neural network.
  • a connection relationship does not exist between nodes located in the same layer, and a connection relationship can exist only between nodes located in adjacent layers.
  • DNN has a fully connected neural network structure and is composed of a combination of a number of hidden layers and activation functions, so it can be usefully applied to figure out the correlation between input and output.
  • the correlation characteristic may mean a joint probability of input/output.
  • 26 is a diagram illustrating a convolutional neural network applicable to the present disclosure.
  • 27 is a diagram illustrating a filter operation of a convolutional neural network applicable to the present disclosure.
  • various artificial neural network structures different from the above-described DNN may be formed.
  • the DNN nodes located inside one layer are arranged in a one-dimensional vertical direction.
  • the nodes are two-dimensionally arranged with w horizontally and h vertical nodes. (Convolutional neural network structure in Fig. 26).
  • a weight is added per connection in the connection process from one input node to the hidden layer, a total of h ⁇ w weights must be considered. Since there are h ⁇ w nodes in the input layer, a total of h 2 w 2 weights may be required between two adjacent layers.
  • the convolutional neural network of FIG. 26 has a problem in that the number of weights increases exponentially according to the number of connections, so instead of considering the connection of all modes between adjacent layers, it is assumed that a filter with a small size exists.
  • a weighted sum and activation function operation may be performed on a portion where the filters overlap.
  • one filter has a weight corresponding to the number corresponding to its size, and learning of the weight can be performed so that a specific feature on the image can be extracted and output as a factor.
  • a 3 ⁇ 3 filter is applied to the upper left 3 ⁇ 3 region of the input layer, and an output value obtained by performing weighted sum and activation function operations on a corresponding node may be stored in z 22 .
  • the above-described filter may perform weighted sum and activation function calculations while moving horizontally and vertically at regular intervals while scanning the input layer, and the output value may be disposed at the current filter position. Since this operation method is similar to a convolution operation on an image in the field of computer vision, a deep neural network with such a structure is called a convolutional neural network (CNN), and the result of the convolution operation is The hidden layer may be referred to as a convolutional layer. Also, a neural network having a plurality of convolutional layers may be referred to as a deep convolutional neural network (DCNN).
  • DCNN deep convolutional neural network
  • the number of weights can be reduced by calculating the weighted sum by including only nodes located in the region covered by the filter in the node where the filter is currently located. Due to this, one filter can be used to focus on features for a local area. Accordingly, CNN can be effectively applied to image data processing in which physical distance on a two-dimensional domain is an important criterion. Meanwhile, in CNN, a plurality of filters may be applied immediately before the convolution layer, and a plurality of output results may be generated through the convolution operation of each filter.
  • a structure in which this method is applied to an artificial neural network can be called a recurrent neural network structure.
  • 28 is a diagram illustrating a neural network structure in which a cyclic loop applicable to the present disclosure exists.
  • 29 is a diagram illustrating an operation structure of a recurrent neural network applicable to the present disclosure.
  • a recurrent neural network is an element ⁇ x 1 (t) , x 2 (t) , . , x d (t) ⁇ in the process of input to the fully connected neural network
  • the immediately preceding time point t-1 is the hidden vector ⁇ z 1 (t-1) , z 2 (t-1) , ... , z H (t-1) ⁇ can be input together to have a structure in which a weighted sum and an activation function are applied.
  • the reason why the hidden vector is transferred to the next time point in this way is that information in the input vector at previous time points is considered to be accumulated in the hidden vector of the current time point.
  • the recurrent neural network may operate in a predetermined time sequence with respect to an input data sequence.
  • the input vector ⁇ x 1 (t) , x 2 (t) , ... , x d (t) ⁇ when the hidden vector ⁇ z 1 (1) , z 2 (1) , ... , z H (1) ⁇ is the input vector ⁇ x 1 (2) , x 2 (2) , ... , x d (2) ⁇
  • the vector of the hidden layer ⁇ z 1 (2) , z 2 (2) , ... , z H (2) ⁇ is determined.
  • These processes are time point 2, time point 3, ... , iteratively until time point T.
  • a deep recurrent neural network when a plurality of hidden layers are arranged in a recurrent neural network, this is called a deep recurrent neural network (DRNN).
  • the recurrent neural network is designed to be usefully applied to sequence data (eg, natural language processing).
  • neural network core used as a learning method, in addition to DNN, CNN, and RNN, restricted Boltzmann machine (RBM), deep belief networks (DBN), deep Q-Network and It includes various deep learning techniques such as, and can be applied to fields such as computer vision, voice recognition, natural language processing, and voice/signal processing.
  • RBM restricted Boltzmann machine
  • DNN deep belief networks
  • Q-Network includes various deep learning techniques such as, and can be applied to fields such as computer vision, voice recognition, natural language processing, and voice/signal processing.
  • AI-based physical layer transmission means applying a signal processing and communication mechanism based on an AI driver rather than a traditional communication framework in a fundamental signal processing and communication mechanism. For example, deep learning-based channel coding and decoding, deep learning-based signal estimation and detection, deep learning-based MIMO mechanism, AI-based resource scheduling ( scheduling) and allocation may be included.
  • the present disclosure is for performing federated learning in a wireless communication system, and in particular, it is required to provide weights or gradients in a situation where compressed federated learning is performed. Techniques for reducing bandwidth consumption will be described.
  • Wireless communication systems are developing extensively to provide various types of communication services such as voice and data, and recent attempts to graft AI into communication systems are rapidly increasing.
  • the methods of grafting AI that are being attempted can be broadly divided into 'C4AI (communications for AI)', which develops communication technology to support AI, and 'AI4C (AI for communications)', which uses AI to improve communication performance.
  • AI4C there is a study to increase design efficiency by replacing a channel encoder/decoder with an end-to-end autoencoder.
  • C4AI using federated learning, which is a technique of distributed learning, without sharing the raw data of the device, only the weight or gradient of the model with the server
  • federated learning which is a technique of distributed learning, without sharing the raw data of the device, only the weight or gradient of the model with the server
  • federated learning which is a technique of distributed learning, without sharing the raw data of the device, only the weight or gradient of the model with the server
  • federated learning which is a technique of
  • Federated learning is a type of distributed machine learning that trains machine learning models in a central server using distributed data stored in mobile devices such as smartphones. Unlike other distributed machine learning techniques that assume a wired communication environment, federated learning is a distributed machine learning technique in which a training process is performed on each device using data collected from individual users' mobile devices. Mobile devices generate a lot of data through interaction with users, and most of the data may include sensitive personal information. Data such as photos, user's location, chat history, video, and voice are subject to personal information protection, and the user does not want these data to be leaked to the outside of the device. Even if data is encrypted or anonymity is guaranteed, users do not want the data to be leaked outside. Therefore, there is a limitation in that data cannot be collected to a central server such as a data center, and this limitation makes it difficult to apply the data to distributed machine learning and deep learning techniques.
  • FIG. 30 is a diagram illustrating the concept of associative learning applicable to the present disclosure.
  • a first terminal 3010a and a second terminal 3010b participate in federated learning.
  • the first terminal 3010a obtains an updated first model 3012a by performing learning on the model provided from the base station 3020, and the second terminal 3010b learns the model provided from the base station 3020.
  • By performing an updated second model 3012b is obtained.
  • Each of the first terminal 3010a and the second terminal 3010b transmits the weight w 1 or w 2 of the updated model 3012a or 3012b to the base station 3020 .
  • the terminals 3010a and 3010b transmit information about the weight or gradient changed after learning to the base station 3020 through the uplink of the communication channel. Accordingly, the base station 3020 updates the model 3022 stored in the base station 3020 using the aggregated weights w 1 and w 2 . For example, the base station 3020 may update the weight of the model 3022 as an average value of the fed back weights.
  • a federated averaging algorithm is a technique for reducing the number of communication rounds by using a minibatch.
  • a local data set of each terminal is trained in mini-batch units, updated weights/gradients are transmitted to the server, and weight averaging is performed in the server. ) to update the global common prediction model.
  • One of the main challenges is not only to reduce the number of communication rounds, but also to save the bandwidth required to transmit weights/gradients in the uplink.
  • the federated averaging algorithm is expressed as a pseudo code, as shown in Table 6 below. In Table 6, k denotes an index of K terminals or clients, B denotes a miniBatch size, E denotes a number of a local epoch, and ⁇ denotes a learning rate.
  • FIG. 31 is a diagram showing an example of a protocol of associative learning applicable to the present disclosure.
  • terminals 3110a to 3110e that satisfy conditions such as charging, power on state, and connection with a base station notify the server 3130 that they are ready to register as a participant.
  • the server 3130 selects an optimal number of terminals, and then provides the selected terminals 3110a to 3110c with tasks and calculations to be performed as participants. Transmits data structures such as graph information for The server 3130 notifies the unselected terminals 3110d and 3110e that the next reconnection will be performed.
  • a configuration step 3104-i of round i the selected terminals 3110a to 3110c perform training using the global network model received from the server 3130 and local data stored in the terminal.
  • the terminals 3110a to 3110c transmit information on weights or gradients updated through training to the server 3130, and the server 3130 aggregates information is reflected in the global network model.
  • the above-described operations are one round.
  • the selection phase 3102-(i+1)), the setting phase 3104-(i+1)), and the reporting phase 3106-(i+1)) proceed similarly.
  • the terminals 3110a to 3110c and the server 3130 selected as participants maintain a connected state.
  • the server 3130 ignores the participant and proceeds with the round. Therefore, it is desirable that the federated learning protocol be designed so that no failure occurs even when the round is carried out, ignoring the participant who has failed to connect.
  • Learning may include training for connection and training for weight.
  • the concept of learning for both connections and weights is described below with reference to FIGS. 32 and 33 .
  • connection and weight learning includes a train connectivity procedure 3201 , a prune connections procedure 3203 , and a weight training procedure 3205 .
  • the connection training procedure 3201 is a procedure for training the network to learn which connections are important, and the connection pruning procedure 3203 prunes insignificant connections (eg, connections whose weight is less than a threshold).
  • procedure, and the weight training procedure 3205 is a retraining procedure, which is a procedure for learning weights by performing retraining in a pruned sparse connection state.
  • the network before pruning is a dense network 3310 in which all possible connections are formed. With all connections established, the network is trained and weights are calculated to learn which connection is more important. Then, a connection having a weight lower than the threshold is treated as an insignificant connection, and the insignificant connection is pruned. That is, the network is converted from a dense network 3310 to a sparse network 3320 . Finally, by learning the weights through retraining in the pruned sparse connection state, the weights are fine-tuned. By defining a threshold at a level without loss of accuracy, and repeating the connection pruning procedure 3203 and the weight training procedure 3205 , a minimum number of combinations of connections can be derived.
  • Table 7 below shows examples of parameter compression rates for each network model.
  • AlexNet consists of 5 convolution layers and 3 fully-connected layers, and the last fully connected layer is used to classify 1000 categories.
  • FIGS. 34A and 34B are diagrams illustrating pruning sensitivity of an AlexNet network.
  • Fig. 34A shows the pruning sensitivity of the convolutional layer
  • Fig. 34B shows the pruning sensitivity of the fully connected layer.
  • conv1 is more sensitive to pruning than other layers.
  • the limit that can be pruned without compromising accuracy is about 20%. That is, among the connections of conv1, 20% of connections having a low weight do not have a significant effect on performance, so 20% of connections having a low weight may be pruned.
  • FIG. 34B in the case of fc3, about 53% of connections can be pruned without degradation of accuracy.
  • the present disclosure describes various embodiments for saving bandwidth when transmitting information related to weights or gradients using a communication link during a federated learning procedure.
  • Federated learning may be applied to various artificial neural networks applicable to a communication system.
  • various embodiments to be described below may be used to learn various network models, such as a network model for an autoencoder performing a function of a channel encoder/decoder, and a network model for channel estimation.
  • 35 is a diagram illustrating an embodiment of a procedure for performing federated learning in a terminal applicable to the present disclosure. 35 illustrates an operation method of a terminal participating in federated learning.
  • the terminal receives information related to the initial network model.
  • the initial network model is a network model stored in the server and is a subject to be updated by this procedure.
  • the initial network model provided in this step may be a basic model that has not been updated at all or a model updated at least once.
  • the information related to the initial network model may include information related to at least one of the number of nodes for each layer of the network model, connections of nodes, and weights of connections.
  • step S3503 the terminal configures the initial network model as a dense network. That is, the terminal configures a dense network by adding all possible connections between nodes.
  • a dense network may be referred to as a fully-connected network.
  • the weight of the newly added connection may be set to a predefined value.
  • the terminal changes the weights through training on the dense network.
  • the UE may newly determine weights of connections by performing training in a state in which all nodes are connected.
  • the terminal may acquire training data and perform training using the acquired training data.
  • the training data may be extracted or generated from data stored in the terminal.
  • the terminal may update at least one weight by performing a backpropagation operation.
  • step S3507 the terminal transmits information related to the weight of at least one connection. That is, the terminal selects at least one of the connections included in the dense network, and transmits information related to the weight of the selected at least one connection.
  • the terminal may select at least one connection based on the amount of change in weight due to training.
  • the weight-related information is for notifying the weight changed through training, and may include, for example, a change amount.
  • any of the connections may not be selected, and in this case, step S3507 may be omitted.
  • 36 is a diagram illustrating an embodiment of a procedure for performing federated learning in a server applicable to the present disclosure.
  • 36 illustrates an operation method of a server that controls federated learning.
  • the operating subject of the procedure illustrated in FIG. 36 is described as a 'server', where the server may be included in the base station or may be a core network entity.
  • the server transmits information related to the initial network model.
  • the initial network model is a network model stored in the server and is a subject to be updated by this procedure.
  • the initial network model provided in this step may be a basic model that has not been updated at all or a model updated at least once.
  • the information related to the initial network model may include information related to at least one of the number of nodes for each layer of the network model, connections of nodes, and weights of connections.
  • the server receives information related to the weight of at least one connection. That is, the server receives information related to at least one of the weights of the connection updated by the training performed in the terminal.
  • the weight-related information is for notifying the weight changed through training performed in the terminal, and may include, for example, a change amount.
  • the server may receive information related to weights from at least one terminal.
  • the server updates the weights of the network model based on the received information.
  • the server may generate a network model corresponding to each terminal by using information related to the received weight, and determine one updated network model based on the weights of the plurality of network models. For example, the server may determine the updated network model by averaging weights of network models corresponding to different terminals for each connection.
  • step S3607 the server prunes at least one connection based on the updated weights. That is, the server selects at least one connection based on the updated weights, and removes the selected at least one connection. For example, the server may select at least one connection having a weight equal to or less than a threshold. However, according to another embodiment, any of the connections may not be pruned, and in this case, step S3607 may be omitted. According to an embodiment, this step S3607 may be performed after steps S3601 to S3605 are repeated a plurality of times.
  • the terminal provides information related to the weight determined through training to the server, and the server may update the network model using the information related to the weight.
  • information related to the weight may be aggregated from a plurality of terminals. Through this, it is possible to train a machine learning model using data distributed among a plurality of terminals.
  • an operation of collecting information related to a weight and updating a network model may be repeated a plurality of times.
  • an operation of selecting at least one terminal to participate in training may be preceded, and a control signaling operation instructing the terminal to stop or start training may also be performed.
  • An embodiment of a procedure in consideration of selection of participating terminals, repetitive learning, and control signaling is as follows.
  • 37 is a diagram illustrating an embodiment of a procedure for performing compressed federated learning in a server applicable to the present disclosure.
  • 37 illustrates an operation method of a server that controls federated learning.
  • the operating subject of the procedure illustrated in FIG. 37 is described as a 'server', where the server may be included in the base station or may be a core network entity.
  • step S3701 the server selects at least one terminal to perform training.
  • a report on the resource of each terminal may be performed.
  • the report may include information related to the version of the global sparse model possessed by each terminal.
  • step S3703 the server distributes the initial global sparse model. According to another embodiment, if all terminals to be trained have the same version of the global sparse model, step S3703 may be omitted.
  • N total_UE_participated means the number of terminals participating in federated learning. Alternatively, N total_UE_participated may be understood as the number of times a report of a training result is received.
  • the server performs an i-th iteration. First, i is 1. In the i-th iteration operation, the terminal configures a dense network, determines weights of connections through training, and transmits information related to at least some of the determined weights to the server. The server receives information related to the received weight. At this time, the server counts the number of received reports.
  • step S3709 the server updates N total_UE_participated to N total_UE_participated +N _UE_participated. That is, the server increases the number of terminals participating in federated learning by the number of times it receives a weight-related report in step S3703. If the same UE performs training and reporting twice during one repetition, N total_UE_participated may increase by 2.
  • step S3711 the server compares N total_UE_participated with a threshold N total_UE_possible_participating .
  • N total_UE_possible_participating is a threshold defined for determining the end of iteration.
  • the server performs a union collection (aggregation federated) operation.
  • the server may update the network model based on the collected weight related information, and transmit information related to the updated network model to the terminals.
  • the information related to the updated network model may include updated weights. Accordingly, training using the network model updated in the i-th iterative learning in step S3707 is performed.
  • step S3715 the server transmits a training stop message to the UEs. That is, since sufficient learning has been performed, the server stops training of the terminals. In response, the terminal stops determining and reporting weights through training.
  • step S3717 the server performs pruning. In other words, the server drops at least one connection. At least one connection may be removed based on weights updated based on information collected from terminals.
  • step S3719 the server transmits a training start (train start) message to the UEs. Accordingly, the terminals perform learning again.
  • step S3721 the server sends an inference change message to the UEs.
  • the terminals perform an inference operation using the network model.
  • the server may return to step S3705 to further update the network model.
  • the repetition of steps S3705 to S3721 may be performed after a predetermined time or may be performed by the occurrence of a defined event.
  • 38 is a diagram illustrating an embodiment of a procedure for performing federated collection during each iteration step in a server applicable to the present disclosure. 38 illustrates an operating method of a server. An operating subject of the procedure illustrated in FIG. 38 is described as a 'server', where the server may be a base station or a core network entity.
  • the server reconfigures the sparse global weight based on information related to the weight collected from each terminal.
  • the server stores a plurality of network models corresponding to each of the terminals participating in the learning, and reconfigures the weights of the network models corresponding to each terminal by using information related to the weights for each terminal.
  • the server reconfigures the weight of the first network model based on the information received from the first terminal, and reconfigures the weight of the second network model based on the information received from the second terminal.
  • the information received from the terminal may include only weight-related information for some of the connections.
  • weights for the reconfiguration of weights for a connection provided with weight-related information from the terminal hereinafter referred to as 'received connection'
  • 'unreceived connection' a weight for a connection for which weight-related information is not provided from the terminal.
  • the reconstruction of can be performed differently.
  • the server applies the weight of the connection included in the existing global sparse weight w sparse_old as it is.
  • the server modifies the weight of the corresponding connection included in the existing global sparse weight w sparse_old using the received information, and then applies it. If the received information is a pruned weight difference vector diff(w k ) indicating the change in weight, the server calculates the weight and change in weight of the corresponding connection included in the existing global sparse weight w sparse_old . By summing, the weights of the corresponding connections are reconstructed.
  • step S3803 the server determines new weights by averaging the reconstructed weight vectors. Since a plurality of network models having different weights corresponding to each of the plurality of terminals are derived through step S3801, the server may update the global network model based on the plurality of network models. To this end, the server may average the reconstructed weights for each connection ( ).
  • step S3807 the server transmits a new sparse global model to the terminals. In other words, the server transmits weight information w new_sparse of the sparse global model including the weights updated in step S3805.
  • the server reconfigures a corresponding network model based on information received from the terminal.
  • the server determines the weight to be reconstructed by adding up the existing weight and the received change amount.
  • a weight may be assigned to the received change amount. That is, a weight less than 1 may be applied to reduce the influence of the received change in weight reconstruction, and a weight greater than 1 may be applied to increase the influence.
  • the server updates the global network model by averaging the reconstructed weights.
  • different averaging weights may be applied to the weights. For example, a larger averaging weight may be applied to a network model corresponding to a terminal having high learning accuracy or using the network model relatively frequently compared to other network models.
  • 39 is a diagram illustrating an embodiment of a procedure for performing federated collection during each iteration in a terminal applicable to the present disclosure. 39 illustrates an operation method of a terminal participating in federated learning.
  • the terminal receives an initial sparse network.
  • the terminal may receive the initial sparse network in the initial registration process.
  • the initial sparse network may refer to a global network that is received at the beginning of federated learning, and a global network that is transmitted in iterations after the initial may be referred to as a sparse network.
  • step S3903 the terminal configures a dense network and then performs training. After the terminal constructs a dense network by forming all connections of the sparse network, it trains with local data to learn which connection is important. Accordingly, the weight of at least one connection may be changed.
  • the terminal prunes at least one unimportant connection. For example, whether the connection is important may be determined based on the weight of the connection after training. According to an embodiment, the terminal may check the amount of change in the weight of each connection by training, and determine that the connection in which the change amount is smaller than a threshold is not important. For example, a connection whose weight changed from 0 to 0.10 could be treated as more meaningful, that is, more important, than a connection whose weight changed from 0.90 to 0.92 by training.
  • step S3907 the terminal generates a change amount vector including the weight of at least one unpruned connection.
  • the change amount vector includes a change amount of at least one connection whose weight change amount due to training is greater than a threshold value.
  • the connections included in the variation vector are selected by the weight variation by training, they may or may not match the connections included in the initial sparse network.
  • step S3909 the terminal transmits the change amount vector to the server.
  • a weight for at least one connection not included in the change amount vector may be reconfigured by the server. Connections that have been pruned in the terminal and have not received a weight to the server are not ignored, but may be included in the final network model by the server's determination. That is, the pruning operation in the terminal is to reduce the data size of the weight vector transmitted through the uplink.
  • each iteration step operations as shown in FIGS. 38 and 39 may be performed.
  • the number of iterations is preferably determined so that the performance of the network model can be sufficiently converged for federated learning. For example, referring to FIG. 37 , whether the number of repetitions is sufficient may be determined by whether the number of terminals participating in federated learning reaches a threshold.
  • the server may determine a threshold in a range without performance degradation according to a prune ratio, and determine the number of fine tuning epochs. For example, if the pruning rate is 50%, if the convergence without performance degradation in the number of fine-tuning steps 10, the threshold for the number of terminals participating in the federated learning may be determined as follows [Equation 1].
  • N total UE possible participaing is the threshold for the number of terminals participating in federated learning
  • N fine tunnig epoch is the number of fine-tuning steps
  • N total init data is the initial used when generating the initial pruning model
  • the number of data, batches of size B means the size of the unit that the terminal learns during every training.
  • the number of fine-tuning steps is 10
  • the number of initial data used to create the initial pruning model is 65000
  • the batch size B is 65
  • the total number of UEs that can participate in iteration for Each terminal learns according to the batch size B during every training, and transmits the weight change vector to the server. This operation is repeated I times, and I may be expressed as in [Equation 2] below.
  • N total UE possible participation is a threshold for the number of terminals participating in federated learning
  • N UE participating_i is the number of terminals participating in the i-th iteration
  • I is the total number of iterations.
  • the server calculates the accumulated number of training participation terminals at the collection time, and when [Equation 2] is satisfied, the training operation of the terminals is stopped by delivering a training stop message to all terminals. Accordingly, unnecessary waste of computing resources of each terminal is reduced. After that, the server performs pruning.
  • 40 is a diagram illustrating an embodiment of a procedure for performing pruning in a server applicable to the present disclosure. 40 illustrates an operating method of a server.
  • the operating subject of the procedure illustrated in FIG. 38 is described as a 'server', where the server may be included in the base station or may be a core network entity.
  • the server reconstructs sparse global weights based on information related to weights collected from each terminal.
  • the server stores a plurality of network models corresponding to each of the terminals participating in the learning, and reconfigures the weights of the network models corresponding to each terminal by using information related to the weights for each terminal.
  • the server reconfigures the weight of the first network model based on the information received from the first terminal, and reconfigures the weight of the second network model based on the information received from the second terminal.
  • the server prunes unimportant connections.
  • the server updates N total UE participated by accumulating N UE participated in every iteration of federated learning. If N total UE participated is greater than or equal to N total UE possible participating , the server performs pruning. For example, the server may construct a weight vector w new_sparse_model of the new global sparse network model by removing at least one connection with a threshold lower than the threshold.
  • the server transmits a new sparse global model to the terminals.
  • the server transmits sparse global model information w new_sparse_model including the weights updated in step S4007 .
  • the sparse global model information includes information related to a structure of nodes in a network model, a structure of connections, and weights of connections.
  • CFL compressed federated learning
  • 41 is a diagram illustrating an example of a protocol of the first two iterations in compressed associative learning applicable to the present disclosure. 41 illustrates a protocol of federated learning in which four terminals 4110a to 4110d and the server 4120 can participate.
  • training terminal selection step 4102-1 in the first iteration of CFL, training terminal selection step 4102-1, initial global sparse model distribution step 4104-1, training result reporting step (4106-1) proceeds.
  • the terminals 4110a to 4110d transmit a resource report to the server 4120, and the server 4120 selects a device (eg, a terminal) to participate in training. do.
  • the server 4120 sends a global sparse model distribution (GSMD) activation message indicating the start of distribution of the global sparse model, information about the global sparse model, and the global sparse model of the global sparse model.
  • GSMD global sparse model distribution
  • each of the terminals 4110a to 4110d transforms the global sparse model into a dense network and performs training.
  • each of the terminals 4110a to 4110d reports a training result including a vector of change in weight determined through training, and the server 4120 collects the training result, Update the weights of the global network model.
  • the training terminal selection step 4102-2, the initial global sparse model distribution step 4104-2, and the training result reporting step 4106-2 proceed.
  • three terminals 4110a, 4110b, and 4110d participate in training, and transmission of a GSMD activation message, sparse global model distribution, GSMD deactivation message transmission, training start message, and inference start message is transmitted. is omitted, and a sparse weight distribution operation is performed.
  • 42 is a diagram illustrating an example of a protocol of the latter two iterations in compressed associative learning applicable to the present disclosure. 42 illustrates a protocol of federated learning in which four terminals 4210a to 4210d and the server 4220 can participate.
  • the training terminal selection step 4202-(I-1)), the initial global sparse model distribution step 4204-(I) -1)), the training result reporting step 4206-(I-1)) proceeds.
  • Three terminals (4210a, 4210b, 4210d) participate in the training.
  • a training terminal selection step 4202-I, an initial global sparse model distribution step 4204-I, and a training result reporting step 4206-I are performed.
  • the server 4220 stops the training operation of the terminals 4210b and 4210d by transmitting a training stop message to the selected terminals 4210b and 4210d that have not yet reported the training result. For this reason, computational resources of the terminals 4210b and 4210d are saved, and uplink bandwidth is saved by not transmitting unnecessary training result reports.
  • the server 4220 performs a pruning step to generate a new global sparse model.
  • 43 is a diagram illustrating an example of a protocol for restarting a federated collection operation in compressed federated learning applicable to the present disclosure. 43 illustrates a protocol of federated learning in which four terminals 4310a to 4310d and the server 4320 can participate.
  • a training terminal selection step 4302 a new global sparse model information distribution step 4304 , and a training result reporting step 4306 are performed.
  • the server 4320 transmits a global sparse model change (GSMC) message as a control message to the terminals 4310a to 4310d, thereby providing new global sparse model information (new global sparse model-) info) will be distributed.
  • the server 420 transmits the new global sparse model information by using the data channel, and sends a training start message and an inference change message.
  • GSMC global sparse model change
  • the terminals 4310a, 4310b, and 4310d perform training and inference. Specifically, each of the terminals 4310a, 4310b, and 4310d converts the global sparse model into a dense network, performs training, reports a training result including a vector of change in weight determined through training, and the server 4320 collects the training results and updates the weights of the global network model.
  • 44 is a diagram illustrating an example of signal exchange in the first half of compressed associative learning applicable to the present disclosure. 44 illustrates the exchange of control messages and data messages between the first terminal 4410a, the Nth terminal 4410b, and the base station 4420 at the initial global sparse model distribution and every i-th iteration in a CFL environment.
  • the base station 4420 includes a server that controls federated learning. In the following description, descriptions of operations overlapping those of the first terminal 4410a among the operations of the N-th terminal 4410b will be omitted.
  • the first terminal 4410a transmits a UE resource report message to the base station 4420 .
  • the base station 4420 selects terminals to participate in training.
  • the base station 4420 transmits a GSMD activation message.
  • the base station 4420 distributes a sparse model.
  • the base station 4420 transmits a GSMD deactivation message.
  • the base station 4420 transmits a training start message.
  • the base station 4420 transmits a speculation start message.
  • step S4415 the first terminal 4410a converts the global sparse model into a dense network and performs training.
  • step S4417 the first terminal 4410a transmits a training result report.
  • the training result report includes a vector of change in weights determined through training.
  • step S4419 the server 4420 performs compressed federation collection. That is, the server 4420 collects training results from a plurality of terminals including the first terminal 4410a and the N-th terminal 4410b and updates the weights of the global network model. After that, the next iteration proceeds.
  • step S4421 the first terminal 4410a transmits a UE resource report message to the base station 4420 .
  • the base station 4420 selects terminals to participate in training.
  • step S4425 the base station 4420 distributes information related to the sparse weight.
  • the information related to the sparse weight includes information about the weights of the network model to be used for learning of the terminals 4410a and 4410b in the corresponding iteration.
  • 45 is a diagram illustrating an example of signal exchange in the second half of associative learning applicable to the present disclosure.
  • 44 illustrates the exchange of control messages and data messages between the first terminal 4510a, the N-th terminal 4520b, and the base station 4520 in the I-th iteration in a CFL environment.
  • the base station 4520 includes a server that controls federated learning. In the following description, descriptions of operations overlapping those of the first terminal 4510a among the operations of the N-th terminal 4520b will be omitted.
  • the first terminal 4520a transmits a UE resource report message to the base station 4520 .
  • the base station 4520 selects terminals to participate in training. Subsequently, although not shown in FIG. 45 , the base station 4520 may distribute information related to the sparse weight.
  • the first terminal 4510a transmits a training result report.
  • the training result report includes a vector of change in weights determined through training.
  • the base station 4520 Upon receiving the training result report from the first terminal 4510a, the base station 4520 determines that sufficient training results have been collected. Accordingly, in step S4509, the base station 4520 transmits a training stop message, which is a control message, to the N-th terminal 4510b. Accordingly, the N-th terminal 4510b ends the training.
  • a training stop message which is a control message
  • step S4511 the server 4520 generates a new sparse model by performing a server pruning step.
  • step S4513 the first terminal 4520a transmits a UE resource report message to the base station 4520 .
  • step S4515 the base station 4520 selects terminals.
  • step S4517 the server 4520 transmits a global sparse model change (GSMC) message.
  • step S4519 the server 4520 distributes new sparse model information.
  • steps S4521 and S4523 the server 4520 controls the terminals 4510a and 4510b to perform training and inference with a new sparse model by transmitting a training start message and an inference change message.
  • the terminal transmits information indicating a training result to a server or a base station.
  • the training result includes at least one value indicating the change amount of the weight.
  • the change amount of the weight may be variously expressed.
  • 46 is a diagram illustrating an example of a packet format for transmitting information related to weights applicable to the present disclosure. 46 is an example of a packet structure supporting two formats usable in uplink.
  • the packet includes a connection information (CI) type 4602 . If the CI type 4602 is a first value (eg, 0), the packet follows the first format 4610 . If the CI type 4602 is a second value (eg, 1), the packet follows the second format 4620 .
  • the first format 4610 is based on a bit mask header scheme, and the second format 4620 is based on an index:variance dictionary scheme.
  • a packet in a first format 4610 includes a CI 4612 and a diff(w k ) 4614 .
  • the CI 4612 includes a header for information related to the connection.
  • the CI 4612 indicates at least one connection to which a weight change amount is provided according to a bitmap method. For example, when a total of four connections exist and weight information for the first, third, and fourth connections is transmitted, the CI 4612 may be set to [1011].
  • diff(w k ) 4614 includes a weight change of at least one connection designated by CI 4612 . For example, if CI 4612 is [1011], diff(w k ) 4614 may include three weight change values.
  • the weight change of the four connections is [0.009, 0.000009, 0.9, 0.5]
  • the reporting threshold is 0.0001
  • the change amount of the second connection 0.000009 is less than the threshold 0.0001. Accordingly, the weight change amount of the remaining connections except for the second connection is reported.
  • CI 4612 is set to [1011]
  • diff(w k ) 4614 is set to [0.009, 0.9, 0.5].
  • the packet in the second format 4620 includes at least one CI index 4622 or 4626 and at least one diff(w k ) 4624 or 4628 .
  • One CI index 4622 or 4626 and one diff(w k ) 4624 or 4628 form a pair.
  • the CI index 4622 or 4626 indicates a reported connection
  • diff(w k ) 4624 or 4628 includes a value indicating the amount of weight change of the connection indicated by the CI index 4622 or 4626 .
  • the packet contains as many pairs of CI index-diff(w k ) as the number of reported connections.
  • the weight change of the 4 connections is [0.009, 0.00009, 0.9, 0.00005], and the reporting threshold is 0.0001, the change amount of the second connection 0.00009 and the change amount of the fourth connection 0.00005 are less than the threshold of 0.0001. Accordingly, the weight change amount of connections other than the second connection and the fourth connection is reported.
  • the CI index 4622:diff(w k ) 4624 is set to [1:0.009]
  • the CI index 4626:diff(w k ) 4628 is set to [3:0.9]. Accordingly, there is an effect of reducing the uplink bandwidth usage compared to the case where all weight changes are transmitted as they are.
  • the terminal can selectively use a format having a smaller packet size. For example, when transmitting a training result report, the terminal may generate packets or predict sizes according to two formats, and may transmit a packet in a format having a smaller size.
  • 47 is a diagram illustrating another example of a packet format for transmitting information related to weights applicable to the present disclosure. 47 illustrates a packet format usable in downlink.
  • the packet includes CI 4702 and W new_sparse 4704 .
  • the CI 4702 includes a bit mask header indicating a connection corresponding to at least one weight included in the W new_sparse 4704 .
  • W new_sparse 4704 includes at least one weight value of the at least one connections indicated by CI 4702 . For example, if the weights of the 1st, 3rd, and 4th connections among 4 connections are passed, CI 4702 is set to [1011] and W new_sparse (4704) is set to [0.009, 0.9, 0.5] can be
  • the format of the packet illustrated in FIG. 47 may be used by a server or base station to provide information related to new weights to be trained in every iteration.
  • the server or the base station may provide information related to the new weight using a format similar to the second format 4620 of FIG. 46 .
  • diff(w k ) included in the second format 4620 may be replaced with w k indicating a weight value.
  • examples of the above-described proposed method may also be included as one of the implementation methods of the present disclosure, it is clear that they may be regarded as a kind of proposed method.
  • the above-described proposed methods may be implemented independently, but may also be implemented in the form of a combination (or merge) of some of the proposed methods.
  • Rules can be defined so that the base station informs the terminal of whether the proposed methods are applied or not (or information on the rules of the proposed methods) through a predefined signal (eg, a physical layer signal or a higher layer signal). have.
  • Embodiments of the present disclosure may be applied to various wireless access systems.
  • various radio access systems there is a 3rd Generation Partnership Project (3GPP) or a 3GPP2 system.
  • 3GPP 3rd Generation Partnership Project
  • 3GPP2 3rd Generation Partnership Project2
  • Embodiments of the present disclosure may be applied not only to the various radio access systems, but also to all technical fields to which the various radio access systems are applied. Furthermore, the proposed method can be applied to mmWave and THzWave communication systems using very high frequency bands.
  • embodiments of the present disclosure may be applied to various applications such as free-running vehicles and drones.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Data Mining & Analysis (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Computational Linguistics (AREA)
  • Software Systems (AREA)
  • Evolutionary Computation (AREA)
  • Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

The present disclosure relates to a method for operating a terminal and a base station in a wireless communication system, and a device supporting same. As an example of the present disclosure, a method for operating a terminal in a wireless communication system may comprise the steps of: receiving, from a server, information related to an initial network model; constructing a dense network on the basis of the initial network model; changing at least one weight of at least one connection by training the dense network; and transmitting, to the server, information related to a weight variation for at least one connection selected on the basis of the variation of the at least one weight.

Description

무선 통신 시스템에서 연합 학습을 수행하기 위한 방법 및 장치Method and apparatus for performing federated learning in a wireless communication system
이하의 설명은 무선 통신 시스템에 대한 것으로, 무선 통신 시스템에서 연합 학습(federated learning)을 수행하기 위한 방법 및 장치에 관한 것이다.The following description relates to a wireless communication system, and to a method and apparatus for performing federated learning in a wireless communication system.
무선 접속 시스템이 음성이나 데이터 등과 같은 다양한 종류의 통신 서비스를 제공하기 위해 광범위하게 전개되고 있다. 일반적으로 무선 접속 시스템은 가용한 시스템 자원(대역폭, 전송 파워 등)을 공유하여 다중 사용자와의 통신을 지원할 수 있는 다중 접속(multiple access) 시스템이다. 다중 접속 시스템의 예들로는 CDMA(code division multiple access) 시스템, FDMA(frequency division multiple access) 시스템, TDMA(time division multiple access) 시스템, OFDMA(orthogonal frequency division multiple access) 시스템, SC-FDMA(single carrier frequency division multiple access) 시스템 등이 있다.Wireless access systems are being widely deployed to provide various types of communication services such as voice and data. In general, a wireless access system is a multiple access system that can support communication with multiple users by sharing available system resources (bandwidth, transmission power, etc.). Examples of the multiple access system include a code division multiple access (CDMA) system, a frequency division multiple access (FDMA) system, a time division multiple access (TDMA) system, an orthogonal frequency division multiple access (OFDMA) system, and a single carrier frequency (SC-FDMA) system. division multiple access) systems.
특히, 많은 통신 기기들이 큰 통신 용량을 요구하게 됨에 따라 기존 RAT(radio access technology)에 비해 향상된 모바일 브로드밴드(enhanced mobile broadband, eMBB) 통신 기술이 제안되고 있다. 또한 다수의 기기 및 사물들을 연결하여 언제 어디서나 다양한 서비스를 제공하는 mMTC(massive machine type communications) 뿐만 아니라 신뢰성(reliability) 및 지연(latency) 민감한 서비스/UE(user equipment)를 고려한 통신 시스템이 제안되고 있다. 이를 위한 다양한 기술 구성들이 제안되고 있다. In particular, as many communication devices require a large communication capacity, an enhanced mobile broadband (eMBB) communication technology has been proposed compared to the existing radio access technology (RAT). In addition, a communication system that considers reliability and latency sensitive services/user equipment (UE) as well as massive machine type communications (mMTC) that provides various services anytime, anywhere by connecting multiple devices and things has been proposed. . For this purpose, various technical configurations have been proposed.
본 개시는 무선 통신 시스템에서 연합 학습(federated learning)을 효율적으로 수행하기 위한 방법 및 장치에 관한 것이다.The present disclosure relates to a method and apparatus for efficiently performing federated learning in a wireless communication system.
본 개시는 무선 통신 시스템에서 연합 학습(federated learning)을 위해 필요한 무선 링크의 자원을 줄이기 위한 방법 및 장치에 관한 것이다.The present disclosure relates to a method and apparatus for reducing a resource of a radio link required for federated learning in a wireless communication system.
본 개시에서 이루고자 하는 기술적 목적들은 이상에서 언급한 사항들로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 이하 설명할 본 개시의 실시 예들로부터 본 개시의 기술 구성이 적용되는 기술분야에서 통상의 지식을 가진 자에 의해 고려될 수 있다.The technical objects to be achieved in the present disclosure are not limited to the above, and other technical problems not mentioned are common knowledge in the technical field to which the technical configuration of the present disclosure is applied from the embodiments of the present disclosure to be described below. can be considered by those with
본 개시의 일 예로서, 무선 통신 시스템에서 단말의 동작 방법은, 서버로부터 초기 네트워크 모델에 관련된 정보를 수신하는 단계, 상기 초기 네트워크 모델을 기반으로 밀집(dense) 네트워크를 구성하는 단계, 상기 밀집 네트워크에 대한 훈련을 수행함으로써 적어도 하나의 연결(connection)의 적어도 하나의 가중치를 변경하는 단계, 및 상기 적어도 하나의 가중치의 변화량에 기반하여 선택된 적어도 하나의 연결에 대한 가중치 변화량에 관련된 정보를 상기 서버에게 송신하는 단계를 포함할 수 있다.As an example of the present disclosure, a method of operating a terminal in a wireless communication system includes receiving information related to an initial network model from a server, configuring a dense network based on the initial network model, and the dense network changing at least one weight of at least one connection by performing training on It may include the step of transmitting.
본 개시의 일 예로서, 무선 통신 시스템에서 서버의 동작 방법은, 단말에게 초기 네트워크 모델에 관련된 정보를 송신하는 단계, 상기 단말로부터 적어도 하나의 연결에 대한 가중치 변화량에 관련된 정보를 수신하는 단계, 상기 가중치 변화량에 관련된 정보에 기반하여 상기 초기 네트워크 모델의 가중치들을 갱신하는 단계, 및 상기 갱신된 가중치들에 기반하여 적어도 하나의 연결을 제거하는 단계를 포함할 수 있다.As an example of the present disclosure, a method of operating a server in a wireless communication system includes the steps of: transmitting information related to an initial network model to a terminal; receiving information related to a weight change amount for at least one connection from the terminal; The method may include updating weights of the initial network model based on information related to a weight change amount, and removing at least one connection based on the updated weights.
본 개시의 일 예로서, 무선 통신 시스템에서 단말은, 송수신기 및 상기 송수신기와 연결된 프로세서를 포함할 수 있다. 상기 프로세서는, 서버로부터 초기 네트워크 모델에 관련된 정보를 수신하고, 상기 초기 네트워크 모델을 기반으로 밀집(dense) 네트워크를 구성하고, 상기 밀집 네트워크에 대한 훈련을 수행함으로써 적어도 하나의 연결(connection)의 적어도 하나의 가중치를 변경하고, 및 상기 적어도 하나의 가중치의 변화량에 기반하여 선택된 적어도 하나의 연결에 대한 가중치 변화량에 관련된 정보를 상기 서버에게 송신하도록 제어할 수 있다.As an example of the present disclosure, a terminal in a wireless communication system may include a transceiver and a processor connected to the transceiver. The processor receives information related to an initial network model from a server, configures a dense network based on the initial network model, and performs training on the dense network by performing at least one of at least one connection. It is possible to control to change one weight and transmit information related to a weight change amount for at least one connection selected based on the change amount of the at least one weight to the server.
본 개시의 일 예로서, 무선 통신 시스템에서 서버는, 송수신기 및 상기 송수신기와 연결된 프로세서를 포함할 수 있다. 상기 프로세서는, 단말에게 초기 네트워크 모델에 관련된 정보를 송신하고, 상기 단말로부터 적어도 하나의 연결에 대한 가중치 변화량에 관련된 정보를 수신하고, 상기 가중치 변화량에 관련된 정보에 기반하여 상기 초기 네트워크 모델의 가중치들을 갱신하고, 및 상기 갱신된 가중치들에 기반하여 적어도 하나의 연결을 제거하도록 제어할 수 있다.As an example of the present disclosure, in a wireless communication system, a server may include a transceiver and a processor connected to the transceiver. The processor transmits information related to the initial network model to the terminal, receives information related to a weight change amount for at least one connection from the terminal, and calculates weights of the initial network model based on the information related to the weight change amount update, and control to remove at least one connection based on the updated weights.
상술한 본 개시의 양태들은 본 개시의 바람직한 실시 예들 중 일부에 불과하며, 본 개시의 기술적 특징들이 반영된 다양한 실시 예들이 당해 기술분야의 통상적인 지식을 가진 자에 의해 이하 상술할 본 개시의 상세한 설명을 기반으로 도출되고 이해될 수 있다.Aspects of the present disclosure described above are only some of the preferred embodiments of the present disclosure, and various embodiments in which the technical features of the present disclosure are reflected are detailed descriptions of the present disclosure that will be described below by those of ordinary skill in the art can be derived and understood based on
본 개시에 기초한 실시 예들에 의해 하기와 같은 효과가 있을 수 있다.The following effects may be obtained by the embodiments based on the present disclosure.
본 개시에 따르면, 무선 통신 시스템에서 연합 학습(federated learning)이 보다 효과적으로 수행될 수 있다.According to the present disclosure, federated learning can be performed more effectively in a wireless communication system.
본 개시의 실시 예들에서 얻을 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 이하의 본 개시의 실시 예들에 대한 기재로부터 본 개시의 기술 구성이 적용되는 기술분야에서 통상의 지식을 가진 자에게 명확하게 도출되고 이해될 수 있다. 즉, 본 개시에서 서술하는 구성을 실시함에 따른 의도하지 않은 효과들 역시 본 개시의 실시 예들로부터 당해 기술분야의 통상의 지식을 가진 자에 의해 도출될 수 있다.Effects that can be obtained in the embodiments of the present disclosure are not limited to the above-mentioned effects, and other effects not mentioned are the technical fields to which the technical configuration of the present disclosure is applied from the description of the embodiments of the present disclosure below. It can be clearly derived and understood by those of ordinary skill in the art. That is, unintended effects of implementing the configuration described in the present disclosure may also be derived by those of ordinary skill in the art from the embodiments of the present disclosure.
이하에 첨부되는 도면들은 본 개시에 관한 이해를 돕기 위한 것으로, 상세한 설명과 함께 본 개시에 대한 실시 예들을 제공할 수 있다. 다만, 본 개시의 기술적 특징이 특정 도면에 한정되는 것은 아니며, 각 도면에서 개시하는 특징들은 서로 조합되어 새로운 실시 예로 구성될 수 있다. 각 도면에서의 참조 번호(reference numerals)들은 구조적 구성요소(structural elements)를 의미할 수 있다.The accompanying drawings below are provided to help understanding of the present disclosure, and together with the detailed description, may provide embodiments of the present disclosure. However, the technical features of the present disclosure are not limited to specific drawings, and features disclosed in each drawing may be combined with each other to constitute a new embodiment. Reference numerals in each drawing may refer to structural elements.
도 1은 본 개시에 적용되는 통신 시스템 예시를 도시한 도면이다.1 is a diagram illustrating an example of a communication system applied to the present disclosure.
도 2는 본 개시에 적용될 수 있는 무선 기기의 예시를 도시한 도면이다.2 is a diagram illustrating an example of a wireless device applicable to the present disclosure.
도 3은 본 개시에 적용되는 무선 기기의 다른 예시를 도시한 도면이다.3 is a diagram illustrating another example of a wireless device applied to the present disclosure.
도 4는 본 개시에 적용되는 휴대 기기의 예시를 도시한 도면이다.4 is a diagram illustrating an example of a mobile device applied to the present disclosure.
도 5는 본 개시에 적용되는 차량 또는 자율 주행 차량의 예시를 도시한 도면이다.5 is a diagram illustrating an example of a vehicle or autonomous driving vehicle applied to the present disclosure.
도 6은 본 개시에 적용되는 이동체의 예시를 도시한 도면이다.6 is a diagram illustrating an example of a movable body applied to the present disclosure.
도 7은 본 개시에 적용되는 XR 기기의 예시를 도시한 도면이다.7 is a diagram illustrating an example of an XR device applied to the present disclosure.
도 8은 본 개시에 적용되는 로봇의 예시를 도시한 도면이다.8 is a diagram illustrating an example of a robot applied to the present disclosure.
도 9는 본 개시에 적용되는 AI(artificial intelligence) 기기의 예시를 도시한 도면이다.9 is a diagram illustrating an example of an artificial intelligence (AI) device applied to the present disclosure.
도 10은 본 개시에 적용되는 물리 채널들 및 이들을 이용한 신호 전송 방법을 도시한 도면이다.10 is a diagram illustrating physical channels applied to the present disclosure and a signal transmission method using the same.
도 11은 본 개시에 적용되는 무선 인터페이스 프로토콜(radio interface protocol)의 제어평면(control plane) 및 사용자 평면(user plane) 구조를 도시한 도면이다.11 is a diagram illustrating a control plane and a user plane structure of a radio interface protocol applied to the present disclosure.
도 12는 본 개시에 적용되는 전송 신호를 처리하는 방법을 도시한 도면이다.12 is a diagram illustrating a method of processing a transmission signal applied to the present disclosure.
도 13은 본 개시에 적용 가능한 무선 프레임의 구조를 도시한 도면이다.13 is a diagram illustrating a structure of a radio frame applicable to the present disclosure.
도 14는 본 개시에 적용 가능한 슬롯 구조를 도시한 도면이다.14 is a diagram illustrating a slot structure applicable to the present disclosure.
도 15는 본 개시에 적용 가능한 6G 시스템에서 제공 가능한 통신 구조의 일례를 도시한 도면이다.15 is a diagram illustrating an example of a communication structure that can be provided in a 6G system applicable to the present disclosure.
도 16은 본 개시에 적용 가능한 전자기 스펙트럼을 도시한 도면이다.16 is a diagram illustrating an electromagnetic spectrum applicable to the present disclosure.
도 17은 본 개시에 적용 가능한 THz 통신 방법을 도시한 도면이다.17 is a diagram illustrating a THz communication method applicable to the present disclosure.
도 18은 본 개시에 적용 가능한 THz 무선 통신 송수신기를 도시한 도면이다.18 is a diagram illustrating a THz wireless communication transceiver applicable to the present disclosure.
도 19는 본 개시에 적용 가능한 THz 신호 생성 방법을 도시한 도면이다.19 is a diagram illustrating a method for generating a THz signal applicable to the present disclosure.
도 20은 본 개시에 적용 가능한 무선 통신 송수신기를 도시한 도면이다.20 is a diagram illustrating a wireless communication transceiver applicable to the present disclosure.
도 21은 본 개시에 적용 가능한 송신기 구조를 도시한 도면이다.21 is a diagram illustrating a structure of a transmitter applicable to the present disclosure.
도 22는 본 개시에 적용 가능한 변조기 구조를 도시한 도면이다.22 is a diagram illustrating a modulator structure applicable to the present disclosure.
도 23은 본 개시에 적용 가능한 인공 신경망에 포함되는 퍼셉트론(perceptron)의 구조를 나타낸 도면이다.23 is a diagram illustrating a structure of a perceptron included in an artificial neural network applicable to the present disclosure.
도 24는 본 개시에 적용 가능한 인공 신경망 구조를 나타낸 도면이다.24 is a diagram illustrating an artificial neural network structure applicable to the present disclosure.
도 25는 본 개시에 적용 가능한 심층 신경망을 나타낸 도면이다.25 is a diagram illustrating a deep neural network applicable to the present disclosure.
도 26은 본 개시에 적용 가능한 컨볼루션 신경망을 나타낸 도면이다.26 is a diagram illustrating a convolutional neural network applicable to the present disclosure.
도 27은 본 개시에 적용 가능한 컨볼루션 신경망의 필터 연산을 나타낸 도면이다.27 is a diagram illustrating a filter operation of a convolutional neural network applicable to the present disclosure.
도 28은 본 개시에 적용 가능한 순환 루프가 존재하는 신경망 구조를 나타낸 도면이다.28 is a diagram illustrating a neural network structure in which a cyclic loop applicable to the present disclosure exists.
도 29는 본 개시에 적용 가능한 순환 신경망의 동작 구조를 나타낸 도면이다.29 is a diagram illustrating an operation structure of a recurrent neural network applicable to the present disclosure.
도 30은 본 개시에 적용 가능한 연합 학습의 개념을 나타내는 도면이다.30 is a diagram illustrating the concept of associative learning applicable to the present disclosure.
도 31은 본 개시에 적용 가능한 연합 학습의 프로토콜의 일례를 나타내는 도면이다.31 is a diagram showing an example of a protocol of associative learning applicable to the present disclosure.
도 32는 본 개시에 적용 가능한 연결 및 가중치 학습의 개념을 나타내는 도면이다.32 is a diagram illustrating the concept of connection and weight learning applicable to the present disclosure.
도 33은 본 개시에 적용 가능한 연결 및 가중치 학습에 따른 프루닝(pruning) 전 및 후의 네트워크의 예들을 나타내는 도면들이다.33 is a diagram illustrating examples of networks before and after pruning according to connection and weight learning applicable to the present disclosure.
도 34a 및 도 34b는 AlexNet 네트워크의 프루닝 민감도(pruning sensitivity)를 나타내는 도면들이다.34A and 34B are diagrams illustrating pruning sensitivity of an AlexNet network.
도 35는 본 개시에 적용 가능한 단말에서 연합 학습을 수행하는 절차의 일 실시 예를 도시한 도면이다.35 is a diagram illustrating an embodiment of a procedure for performing federated learning in a terminal applicable to the present disclosure.
도 36는 본 개시에 적용 가능한 서버에서 연합 학습을 수행하는 절차의 일 실시 예를 도시한 도면이다.36 is a diagram illustrating an embodiment of a procedure for performing federated learning in a server applicable to the present disclosure.
도 37은 본 개시에 적용 가능한 서버에서 압축된 연합 학습을 수행하는 절차의 일 실시 예를 나타내는 도면이다.37 is a diagram illustrating an embodiment of a procedure for performing compressed federated learning in a server applicable to the present disclosure.
도 38은 본 개시에 적용 가능한 서버에서 각 반복(iteration) 단계 동안 연합 수집을 수행하는 절차의 일 실시 예를 나타내는 도면이다.38 is a diagram illustrating an embodiment of a procedure for performing federated collection during each iteration step in a server applicable to the present disclosure.
도 39는 본 개시에 적용 가능한 단말에서 각 반복 동안 연합 수집을 수행하는 절차의 일 실시 예를 나타내는 도면이다.39 is a diagram illustrating an embodiment of a procedure for performing federated collection during each iteration in a terminal applicable to the present disclosure.
도 40은 본 개시에 적용 가능한 서버에서 프루닝을 수행하는 절차의 일 실시 예를 나타내는 도면이다.40 is a diagram illustrating an embodiment of a procedure for performing pruning in a server applicable to the present disclosure.
도 41은 본 개시에 적용 가능한 압축된 연합 학습에서 전반부 2개 반복들의 프로토콜의 일례를 나타내는 도면이다.41 is a diagram illustrating an example of a protocol of the first two iterations in compressed associative learning applicable to the present disclosure.
도 42는 본 개시에 적용 가능한 압축된 연합 학습에서 후반부 2개 반복들의 프로토콜의 일례를 나타내는 도면이다.42 is a diagram illustrating an example of a protocol of the latter two iterations in compressed associative learning applicable to the present disclosure.
도 43는 본 개시에 적용 가능한 압축된 연합 학습에서 연합 수집 동작을 재시작하는 프로토콜의 일례를 나타내는 도면이다.43 is a diagram illustrating an example of a protocol for restarting a federated collection operation in compressed federated learning applicable to the present disclosure.
도 44는 본 개시에 적용 가능한 연합 학습 전반부의 신호 교환의 일례를 나타내는 도면이다.44 is a diagram illustrating an example of signal exchange in the first half of associative learning applicable to the present disclosure.
도 45는 본 개시에 적용 가능한 압축된 연합 학습 후반부의 신호 교환의 일례를 나타내는 도면이다.45 is a diagram illustrating an example of signal exchange in the second half of compressed associative learning applicable to the present disclosure.
도 46는 본 개시에 적용 가능한 가중치에 관련된 정보를 전달하기 위한 패킷 포맷의 일례를 나타내는 도면이다.46 is a diagram illustrating an example of a packet format for transmitting information related to weights applicable to the present disclosure.
도 47는 본 개시에 적용 가능한 가중치에 관련된 정보를 전달하기 위한 패킷 포맷의 다른 예를 나타내는 도면이다.47 is a diagram illustrating another example of a packet format for transmitting information related to weights applicable to the present disclosure.
이하의 실시 예들은 본 개시의 구성요소들과 특징들을 소정 형태로 결합한 것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고려될 수 있다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결합되지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및/또는 특징들을 결합하여 본 개시의 실시 예를 구성할 수도 있다. 본 개시의 실시 예들에서 설명되는 동작들의 순서는 변경될 수 있다. 어느 실시 예의 일부 구성이나 특징은 다른 실시 예에 포함될 수 있고, 또는 다른 실시 예의 대응하는 구성 또는 특징과 교체될 수 있다.The following embodiments combine elements and features of the present disclosure in a predetermined form. Each component or feature may be considered optional unless explicitly stated otherwise. Each component or feature may be implemented in a form that is not combined with other components or features. In addition, some components and/or features may be combined to configure an embodiment of the present disclosure. The order of operations described in embodiments of the present disclosure may be changed. Some configurations or features of one embodiment may be included in other embodiments, or may be replaced with corresponding configurations or features of other embodiments.
도면에 대한 설명에서, 본 개시의 요지를 흐릴 수 있는 절차 또는 단계 등은 기술하지 않았으며, 당업자의 수준에서 이해할 수 있을 정도의 절차 또는 단계는 또한 기술하지 아니하였다.In the description of the drawings, procedures or steps that may obscure the gist of the present disclosure are not described, and procedures or steps that can be understood at the level of a person skilled in the art are also not described.
명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함(comprising 또는 including)"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다. 또한, 명세서에 기재된 "…부", "…기", "모듈" 등의 용어는 적어도 하나의 기능이나 동작을 처리하는 단위를 의미하며, 이는 하드웨어나 소프트웨어 또는 하드웨어 및 소프트웨어의 결합으로 구현될 수 있다. 또한, "일(a 또는 an)", "하나(one)", "그(the)" 및 유사 관련어는 본 개시를 기술하는 문맥에 있어서(특히, 이하의 청구항의 문맥에서) 본 명세서에 달리 지시되거나 문맥에 의해 분명하게 반박되지 않는 한, 단수 및 복수 모두를 포함하는 의미로 사용될 수 있다.Throughout the specification, when a part is said to "comprising or including" a certain component, it does not exclude other components unless otherwise stated, meaning that other components may be further included. do. In addition, terms such as “…unit”, “…group”, and “module” described in the specification mean a unit that processes at least one function or operation, which may be implemented as hardware or software or a combination of hardware and software. have. Also, "a or an", "one", "the" and like related terms are used differently herein in the context of describing the present disclosure (especially in the context of the following claims). Unless indicated or clearly contradicted by context, it may be used in a sense including both the singular and the plural.
본 명세서에서 본 개시의 실시 예들은 기지국과 이동국 간의 데이터 송수신 관계를 중심으로 설명되었다. 여기서, 기지국은 이동국과 직접적으로 통신을 수행하는 네트워크의 종단 노드(terminal node)로서의 의미가 있다. 본 문서에서 기지국에 의해 수행되는 것으로 설명된 특정 동작은 경우에 따라서는 기지국의 상위 노드(upper node)에 의해 수행될 수도 있다.In the present specification, embodiments of the present disclosure have been described focusing on a data transmission/reception relationship between a base station and a mobile station. Here, the base station has a meaning as a terminal node of a network that directly communicates with the mobile station. A specific operation described as being performed by the base station in this document may be performed by an upper node of the base station in some cases.
즉, 기지국을 포함하는 다수의 네트워크 노드들(network nodes)로 이루어지는 네트워크에서 이동국과의 통신을 위해 수행되는 다양한 동작들은 기지국 또는 기지국 이외의 다른 네트워크 노드들에 의해 수행될 수 있다. 이때, '기지국'은 고정국(fixed station), Node B, eNB(eNode B), gNB(gNode B), ng-eNB, 발전된 기지국(advanced base station, ABS) 또는 억세스 포인트(access point) 등의 용어에 의해 대체될 수 있다.That is, various operations performed for communication with a mobile station in a network including a plurality of network nodes including the base station may be performed by the base station or other network nodes other than the base station. In this case, the 'base station' is a term such as a fixed station, a Node B, an eNB (eNode B), a gNB (gNode B), an ng-eNB, an advanced base station (ABS) or an access point (access point). can be replaced by
또한, 본 개시의 실시 예들에서 단말(terminal)은 사용자 기기(user equipment, UE), 이동국(mobile station, MS), 가입자국(subscriber station, SS), 이동 가입자 단말(mobile subscriber station, MSS), 이동 단말(mobile terminal) 또는 발전된 이동 단말(advanced mobile station, AMS) 등의 용어로 대체될 수 있다.In addition, in embodiments of the present disclosure, a terminal includes a user equipment (UE), a mobile station (MS), a subscriber station (SS), a mobile subscriber station (MSS), It may be replaced by terms such as a mobile terminal or an advanced mobile station (AMS).
또한, 송신단은 데이터 서비스 또는 음성 서비스를 제공하는 고정 및/또는 이동 노드를 말하고, 수신단은 데이터 서비스 또는 음성 서비스를 수신하는 고정 및/또는 이동 노드를 의미한다. 따라서, 상향링크의 경우, 이동국이 송신단이 되고, 기지국이 수신단이 될 수 있다. 마찬가지로, 하향링크의 경우, 이동국이 수신단이 되고, 기지국이 송신단이 될 수 있다.In addition, a transmitting end refers to a fixed and/or mobile node that provides a data service or a voice service, and a receiving end refers to a fixed and/or mobile node that receives a data service or a voice service. Accordingly, in the case of uplink, the mobile station may be a transmitting end, and the base station may be a receiving end. Similarly, in the case of downlink, the mobile station may be the receiving end, and the base station may be the transmitting end.
본 개시의 실시 예들은 무선 접속 시스템들인 IEEE 802.xx 시스템, 3GPP(3rd Generation Partnership Project) 시스템, 3GPP LTE(Long Term Evolution) 시스템, 3GPP 5G(5th generation) NR(New Radio) 시스템 및 3GPP2 시스템 중 적어도 하나에 개시된 표준 문서들에 의해 뒷받침될 수 있으며, 특히, 본 개시의 실시 예들은 3GPP TS(technical specification) 38.211, 3GPP TS 38.212, 3GPP TS 38.213, 3GPP TS 38.321 및 3GPP TS 38.331 문서들에 의해 뒷받침 될 수 있다. Embodiments of the present disclosure IEEE 802.xx system, (3rd Generation Partnership Project) 3GPP access system, which are wireless systems, 3GPP LTE (Long Term Evolution) systems, 3GPP 5G (5 th generation) NR (New Radio) system, 3GPP2 system and It may be supported by standard documents disclosed in at least one of, in particular, embodiments of the present disclosure by 3GPP TS (technical specification) 38.211, 3GPP TS 38.212, 3GPP TS 38.213, 3GPP TS 38.321 and 3GPP TS 38.331 documents. can be supported
또한, 본 개시의 실시 예들은 다른 무선 접속 시스템에도 적용될 수 있으며, 상술한 시스템으로 한정되는 것은 아니다. 일 예로, 3GPP 5G NR 시스템 이후에 적용되는 시스템에 대해서도 적용 가능할 수 있으며, 특정 시스템에 한정되지 않는다.Also, embodiments of the present disclosure may be applied to other wireless access systems, and are not limited to the above-described system. As an example, it may be applicable to a system applied after the 3GPP 5G NR system, and is not limited to a specific system.
즉, 본 개시의 실시 예들 중 설명하지 않은 자명한 단계들 또는 부분들은 상기 문서들을 참조하여 설명될 수 있다. 또한, 본 문서에서 개시하고 있는 모든 용어들은 상기 표준 문서에 의해 설명될 수 있다.That is, obvious steps or parts not described in the embodiments of the present disclosure may be described with reference to the above documents. In addition, all terms disclosed in this document may be described by the standard document.
이하, 본 개시에 따른 바람직한 실시 형태를 첨부된 도면을 참조하여 상세하게 설명한다. 첨부된 도면과 함께 이하에 개시될 상세한 설명은 본 개시의 예시적인 실시 형태를 설명하고자 하는 것이며, 본 개시의 기술 구성이 실시될 수 있는 유일한 실시형태를 나타내고자 하는 것이 아니다.Hereinafter, preferred embodiments according to the present disclosure will be described in detail with reference to the accompanying drawings. DETAILED DESCRIPTION The detailed description set forth below in conjunction with the appended drawings is intended to describe exemplary embodiments of the present disclosure, and is not intended to represent the only embodiments in which the technical constructions of the present disclosure may be practiced.
또한, 본 개시의 실시 예들에서 사용되는 특정 용어들은 본 개시의 이해를 돕기 위해서 제공된 것이며, 이러한 특정 용어의 사용은 본 개시의 기술적 사상을 벗어나지 않는 범위에서 다른 형태로 변경될 수 있다.In addition, specific terms used in the embodiments of the present disclosure are provided to help the understanding of the present disclosure, and the use of these specific terms may be changed to other forms without departing from the technical spirit of the present disclosure.
이하의 기술은 CDMA(code division multiple access), FDMA(frequency division multiple access), TDMA(time division multiple access), OFDMA(orthogonal frequency division multiple access), SC-FDMA(single carrier frequency division multiple access) 등과 같은 다양한 무선 접속 시스템에 적용될 수 있다.The following technologies include code division multiple access (CDMA), frequency division multiple access (FDMA), time division multiple access (TDMA), orthogonal frequency division multiple access (OFDMA), single carrier frequency division multiple access (SC-FDMA), etc. It can be applied to various wireless access systems.
이하 설명을 명확하게 하기 위해, 3GPP 통신 시스템(예, LTE, NR 등)을 기반으로 설명하지만 본 발명의 기술적 사상이 이에 제한되는 것은 아니다. LTE는 3GPP TS 36.xxx Release 8 이후의 기술을 의미할 수 있다. 세부적으로, 3GPP TS 36.xxx Release 10 이후의 LTE 기술은 LTE-A로 지칭되고, 3GPP TS 36.xxx Release 13 이후의 LTE 기술은 LTE-A pro로 지칭될 수 있다. 3GPP NR은 TS 38.xxx Release 15 이후의 기술을 의미할 수 있다. 3GPP 6G는 TS Release 17 및/또는 Release 18 이후의 기술을 의미할 수 있다. "xxx"는 표준 문서 세부 번호를 의미한다. LTE/NR/6G는 3GPP 시스템으로 통칭될 수 있다.In order to clarify the following description, the description is based on a 3GPP communication system (eg, LTE, NR, etc.), but the technical spirit of the present invention is not limited thereto. LTE may mean 3GPP TS 36.xxx Release 8 or later technology. In detail, LTE technology after 3GPP TS 36.xxx Release 10 may be referred to as LTE-A, and LTE technology after 3GPP TS 36.xxx Release 13 may be referred to as LTE-A pro. 3GPP NR may refer to technology after TS 38.xxx Release 15. 3GPP 6G may refer to technology after TS Release 17 and/or Release 18. "xxx" stands for standard document detail number. LTE/NR/6G may be collectively referred to as a 3GPP system.
본 개시에 사용된 배경기술, 용어, 약어 등에 관해서는 본 발명 이전에 공개된 표준 문서에 기재된 사항을 참조할 수 있다. 일 예로, 36.xxx 및 38.xxx 표준 문서를 참조할 수 있다.For backgrounds, terms, abbreviations, etc. used in the present disclosure, reference may be made to matters described in standard documents published before the present invention. As an example, reference may be made to the 36.xxx and 38.xxx standard documents.
본 개시에 적용 가능한 통신 시스템Communication system applicable to the present disclosure
이로 제한되는 것은 아니지만, 본 문서에 개시된 본 개시의 다양한 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들은 기기들 간에 무선 통신/연결(예, 5G)을 필요로 하는 다양한 분야에 적용될 수 있다.Although not limited thereto, the various descriptions, functions, procedures, suggestions, methods and/or operation flowcharts of the present disclosure disclosed in this document may be applied to various fields requiring wireless communication/connection (eg, 5G) between devices. have.
이하, 도면을 참조하여 보다 구체적으로 예시한다. 이하의 도면/설명에서 동일한 도면 부호는 다르게 기술하지 않는 한, 동일하거나 대응되는 하드웨어 블록, 소프트웨어 블록 또는 기능 블록을 예시할 수 있다. Hereinafter, it will be exemplified in more detail with reference to the drawings. In the following drawings/descriptions, the same reference numerals may represent the same or corresponding hardware blocks, software blocks, or functional blocks, unless otherwise indicated.
도 1은 본 개시에 적용되는 통신 시스템 예시를 도시한 도면이다. 1 is a diagram illustrating an example of a communication system applied to the present disclosure.
도 1을 참조하면, 본 개시에 적용되는 통신 시스템(100)은 무선 기기, 기지국 및 네트워크를 포함한다. 여기서, 무선 기기는 무선 접속 기술(예, 5G NR, LTE)을 이용하여 통신을 수행하는 기기를 의미하며, 통신/무선/5G 기기로 지칭될 수 있다. 이로 제한되는 것은 아니지만, 무선 기기는 로봇(100a), 차량(100b-1, 100b-2), XR(extended reality) 기기(100c), 휴대 기기(hand-held device)(100d), 가전(home appliance)(100e), IoT(Internet of Thing) 기기(100f), AI(artificial intelligence) 기기/서버(100g)를 포함할 수 있다. 예를 들어, 차량은 무선 통신 기능이 구비된 차량, 자율 주행 차량, 차량간 통신을 수행할 수 있는 차량 등을 포함할 수 있다. 여기서, 차량(100b-1, 100b-2)은 UAV(unmanned aerial vehicle)(예, 드론)를 포함할 수 있다. XR 기기(100c)는 AR(augmented reality)/VR(virtual reality)/MR(mixed reality) 기기를 포함하며, HMD(head-mounted device), 차량에 구비된 HUD(head-up display), 텔레비전, 스마트폰, 컴퓨터, 웨어러블 디바이스, 가전 기기, 디지털 사이니지(signage), 차량, 로봇 등의 형태로 구현될 수 있다. 휴대 기기(100d)는 스마트폰, 스마트패드, 웨어러블 기기(예, 스마트워치, 스마트글래스), 컴퓨터(예, 노트북 등) 등을 포함할 수 있다. 가전(100e)은 TV, 냉장고, 세탁기 등을 포함할 수 있다. IoT 기기(100f)는 센서, 스마트 미터 등을 포함할 수 있다. 예를 들어, 기지국(120), 네트워크(130)는 무선 기기로도 구현될 수 있으며, 특정 무선 기기(120a)는 다른 무선 기기에게 기지국/네트워크 노드로 동작할 수도 있다.Referring to FIG. 1 , a communication system 100 applied to the present disclosure includes a wireless device, a base station, and a network. Here, the wireless device means a device that performs communication using a wireless access technology (eg, 5G NR, LTE), and may be referred to as a communication/wireless/5G device. Although not limited thereto, the wireless device may include a robot 100a, a vehicle 100b-1, 100b-2, an extended reality (XR) device 100c, a hand-held device 100d, and a home appliance. appliance) 100e, an Internet of Things (IoT) device 100f, and an artificial intelligence (AI) device/server 100g. For example, the vehicle may include a vehicle equipped with a wireless communication function, an autonomous driving vehicle, a vehicle capable of performing inter-vehicle communication, and the like. Here, the vehicles 100b-1 and 100b-2 may include an unmanned aerial vehicle (UAV) (eg, a drone). The XR device 100c includes augmented reality (AR)/virtual reality (VR)/mixed reality (MR) devices, and includes a head-mounted device (HMD), a head-up display (HUD) provided in a vehicle, a television, It may be implemented in the form of a smartphone, a computer, a wearable device, a home appliance, a digital signage, a vehicle, a robot, and the like. The portable device 100d may include a smart phone, a smart pad, a wearable device (eg, smart watch, smart glasses), and a computer (eg, a laptop computer). The home appliance 100e may include a TV, a refrigerator, a washing machine, and the like. The IoT device 100f may include a sensor, a smart meter, and the like. For example, the base station 120 and the network 130 may be implemented as a wireless device, and a specific wireless device 120a may operate as a base station/network node to other wireless devices.
무선 기기(100a~100f)는 기지국(120)을 통해 네트워크(130)와 연결될 수 있다. 무선 기기(100a~100f)에는 AI 기술이 적용될 수 있으며, 무선 기기(100a~100f)는 네트워크(130)를 통해 AI 서버(100g)와 연결될 수 있다. 네트워크(130)는 3G 네트워크, 4G(예, LTE) 네트워크 또는 5G(예, NR) 네트워크 등을 이용하여 구성될 수 있다. 무선 기기(100a~100f)는 기지국(120)/네트워크(130)를 통해 서로 통신할 수도 있지만, 기지국(120)/네트워크(130)를 통하지 않고 직접 통신(예, 사이드링크 통신(sidelink communication))할 수도 있다. 예를 들어, 차량들(100b-1, 100b-2)은 직접 통신(예, V2V(vehicle to vehicle)/V2X(vehicle to everything) communication)을 할 수 있다. 또한, IoT 기기(100f)(예, 센서)는 다른 IoT 기기(예, 센서) 또는 다른 무선 기기(100a~100f)와 직접 통신을 할 수 있다.The wireless devices 100a to 100f may be connected to the network 130 through the base station 120 . AI technology may be applied to the wireless devices 100a to 100f , and the wireless devices 100a to 100f may be connected to the AI server 100g through the network 130 . The network 130 may be configured using a 3G network, a 4G (eg, LTE) network, or a 5G (eg, NR) network. The wireless devices 100a to 100f may communicate with each other through the base station 120/network 130, but communicate directly without going through the base station 120/network 130 (eg, sidelink communication) You may. For example, the vehicles 100b-1 and 100b-2 may perform direct communication (eg, vehicle to vehicle (V2V)/vehicle to everything (V2X) communication). Also, the IoT device 100f (eg, a sensor) may communicate directly with another IoT device (eg, a sensor) or other wireless devices 100a to 100f.
무선 기기(100a~100f)/기지국(120), 기지국(120)/기지국(120) 간에는 무선 통신/연결(150a, 150b, 150c)이 이뤄질 수 있다. 여기서, 무선 통신/연결은 상향/하향링크 통신(150a)과 사이드링크 통신(150b)(또는, D2D 통신), 기지국간 통신(150c)(예, relay, IAB(integrated access backhaul))과 같은 다양한 무선 접속 기술(예, 5G NR)을 통해 이뤄질 수 있다. 무선 통신/연결(150a, 150b, 150c)을 통해 무선 기기와 기지국/무선 기기, 기지국과 기지국은 서로 무선 신호를 송신/수신할 수 있다. 예를 들어, 무선 통신/연결(150a, 150b, 150c)은 다양한 물리 채널을 통해 신호를 송신/수신할 수 있다. 이를 위해, 본 개시의 다양한 제안들에 기반하여, 무선 신호의 송신/수신을 위한 다양한 구성정보 설정 과정, 다양한 신호 처리 과정(예, 채널 인코딩/디코딩, 변조/복조, 자원 매핑/디매핑 등), 자원 할당 과정 등 중 적어도 일부가 수행될 수 있다.Wireless communication/ connection 150a, 150b, and 150c may be performed between the wireless devices 100a to 100f/base station 120 and the base station 120/base station 120 . Here, wireless communication/connection includes uplink/downlink communication 150a and sidelink communication 150b (or D2D communication), and communication between base stations 150c (eg, relay, integrated access backhaul (IAB)). This may be achieved through radio access technology (eg, 5G NR). Through the wireless communication/ connection 150a, 150b, and 150c, the wireless device and the base station/wireless device, and the base station and the base station may transmit/receive wireless signals to each other. For example, the wireless communication/ connection 150a , 150b , 150c may transmit/receive signals through various physical channels. To this end, based on various proposals of the present disclosure, various configuration information setting processes for transmission/reception of wireless signals, various signal processing processes (eg, channel encoding/decoding, modulation/demodulation, resource mapping/demapping, etc.) , at least a part of a resource allocation process may be performed.
본 개시에 적용 가능한 무선 기기Wireless device applicable to the present disclosure
도 2는 본 개시에 적용될 수 있는 무선 기기의 예시를 도시한 도면이다.2 is a diagram illustrating an example of a wireless device applicable to the present disclosure.
도 2를 참조하면, 제1 무선 기기(200a)와 제2 무선 기기(200b)는 다양한 무선 접속 기술(예, LTE, NR)을 통해 무선 신호를 송수신할 수 있다. 여기서, {제1 무선 기기(200a), 제2 무선 기기(200b)}은 도 1의 {무선 기기(100x), 기지국(120)} 및/또는 {무선 기기(100x), 무선 기기(100x)}에 대응할 수 있다.Referring to FIG. 2 , a first wireless device 200a and a second wireless device 200b may transmit/receive wireless signals through various wireless access technologies (eg, LTE, NR). Here, {first wireless device 200a, second wireless device 200b} is {wireless device 100x, base station 120} of FIG. 1 and/or {wireless device 100x, wireless device 100x) } can be matched.
제1 무선 기기(200a)는 하나 이상의 프로세서(202a) 및 하나 이상의 메모리(204a)를 포함하며, 추가적으로 하나 이상의 송수신기(206a) 및/또는 하나 이상의 안테나(208a)을 더 포함할 수 있다. 프로세서(202a)는 메모리(204a) 및/또는 송수신기(206a)를 제어하며, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들을 구현하도록 구성될 수 있다. 예를 들어, 프로세서(202a)는 메모리(204a) 내의 정보를 처리하여 제1 정보/신호를 생성한 뒤, 송수신기(206a)을 통해 제1 정보/신호를 포함하는 무선 신호를 전송할 수 있다. 또한, 프로세서(202a)는 송수신기(206a)를 통해 제2 정보/신호를 포함하는 무선 신호를 수신한 뒤, 제2 정보/신호의 신호 처리로부터 얻은 정보를 메모리(204a)에 저장할 수 있다. 메모리(204a)는 프로세서(202a)와 연결될 수 있고, 프로세서(202a)의 동작과 관련한 다양한 정보를 저장할 수 있다. 예를 들어, 메모리(204a)는 프로세서(202a)에 의해 제어되는 프로세스들 중 일부 또는 전부를 수행하거나, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들을 수행하기 위한 명령들을 포함하는 소프트웨어 코드를 저장할 수 있다. 여기서, 프로세서(202a)와 메모리(204a)는 무선 통신 기술(예, LTE, NR)을 구현하도록 설계된 통신 모뎀/회로/칩의 일부일 수 있다. 송수신기(206a)는 프로세서(202a)와 연결될 수 있고, 하나 이상의 안테나(208a)를 통해 무선 신호를 송신 및/또는 수신할 수 있다. 송수신기(206a)는 송신기 및/또는 수신기를 포함할 수 있다. 송수신기(206a)는 RF(radio frequency) 유닛과 혼용될 수 있다. 본 개시에서 무선 기기는 통신 모뎀/회로/칩을 의미할 수도 있다.The first wireless device 200a includes one or more processors 202a and one or more memories 204a, and may further include one or more transceivers 206a and/or one or more antennas 208a. The processor 202a controls the memory 204a and/or the transceiver 206a and may be configured to implement the descriptions, functions, procedures, suggestions, methods, and/or operational flowcharts disclosed herein. For example, the processor 202a may process information in the memory 204a to generate first information/signal, and then transmit a wireless signal including the first information/signal through the transceiver 206a. In addition, the processor 202a may receive the radio signal including the second information/signal through the transceiver 206a, and then store the information obtained from the signal processing of the second information/signal in the memory 204a. The memory 204a may be connected to the processor 202a and may store various information related to the operation of the processor 202a. For example, the memory 204a may provide instructions for performing some or all of the processes controlled by the processor 202a, or for performing the descriptions, functions, procedures, suggestions, methods, and/or operational flowcharts disclosed herein. may store software code including Here, the processor 202a and the memory 204a may be part of a communication modem/circuit/chip designed to implement a wireless communication technology (eg, LTE, NR). The transceiver 206a may be coupled with the processor 202a and may transmit and/or receive wireless signals via one or more antennas 208a. The transceiver 206a may include a transmitter and/or a receiver. The transceiver 206a may be used interchangeably with a radio frequency (RF) unit. In the present disclosure, a wireless device may refer to a communication modem/circuit/chip.
제2 무선 기기(200b)는 하나 이상의 프로세서(202b), 하나 이상의 메모리(204b)를 포함하며, 추가적으로 하나 이상의 송수신기(206b) 및/또는 하나 이상의 안테나(208b)를 더 포함할 수 있다. 프로세서(202b)는 메모리(204b) 및/또는 송수신기(206b)를 제어하며, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들을 구현하도록 구성될 수 있다. 예를 들어, 프로세서(202b)는 메모리(204b) 내의 정보를 처리하여 제3 정보/신호를 생성한 뒤, 송수신기(206b)를 통해 제3 정보/신호를 포함하는 무선 신호를 전송할 수 있다. 또한, 프로세서(202b)는 송수신기(206b)를 통해 제4 정보/신호를 포함하는 무선 신호를 수신한 뒤, 제4 정보/신호의 신호 처리로부터 얻은 정보를 메모리(204b)에 저장할 수 있다. 메모리(204b)는 프로세서(202b)와 연결될 수 있고, 프로세서(202b)의 동작과 관련한 다양한 정보를 저장할 수 있다. 예를 들어, 메모리(204b)는 프로세서(202b)에 의해 제어되는 프로세스들 중 일부 또는 전부를 수행하거나, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들을 수행하기 위한 명령들을 포함하는 소프트웨어 코드를 저장할 수 있다. 여기서, 프로세서(202b)와 메모리(204b)는 무선 통신 기술(예, LTE, NR)을 구현하도록 설계된 통신 모뎀/회로/칩의 일부일 수 있다. 송수신기(206b)는 프로세서(202b)와 연결될 수 있고, 하나 이상의 안테나(208b)를 통해 무선 신호를 송신 및/또는 수신할 수 있다. 송수신기(206b)는 송신기 및/또는 수신기를 포함할 수 있다 송수신기(206b)는 RF 유닛과 혼용될 수 있다. 본 개시에서 무선 기기는 통신 모뎀/회로/칩을 의미할 수도 있다.The second wireless device 200b includes one or more processors 202b, one or more memories 204b, and may further include one or more transceivers 206b and/or one or more antennas 208b. The processor 202b controls the memory 204b and/or the transceiver 206b and may be configured to implement the descriptions, functions, procedures, proposals, methods, and/or operational flowcharts disclosed herein. For example, the processor 202b may process information in the memory 204b to generate third information/signal, and then transmit a wireless signal including the third information/signal through the transceiver 206b. In addition, the processor 202b may receive the radio signal including the fourth information/signal through the transceiver 206b, and then store information obtained from signal processing of the fourth information/signal in the memory 204b. The memory 204b may be connected to the processor 202b and may store various information related to the operation of the processor 202b. For example, the memory 204b may provide instructions for performing some or all of the processes controlled by the processor 202b, or for performing the descriptions, functions, procedures, suggestions, methods, and/or operational flowcharts disclosed herein. may store software code including Here, the processor 202b and the memory 204b may be part of a communication modem/circuit/chip designed to implement a wireless communication technology (eg, LTE, NR). The transceiver 206b may be coupled to the processor 202b and may transmit and/or receive wireless signals via one or more antennas 208b. Transceiver 206b may include a transmitter and/or receiver. Transceiver 206b may be used interchangeably with an RF unit. In the present disclosure, a wireless device may refer to a communication modem/circuit/chip.
이하, 무선 기기(200a, 200b)의 하드웨어 요소에 대해 보다 구체적으로 설명한다. 이로 제한되는 것은 아니지만, 하나 이상의 프로토콜 계층이 하나 이상의 프로세서(202a, 202b)에 의해 구현될 수 있다. 예를 들어, 하나 이상의 프로세서(202a, 202b)는 하나 이상의 계층(예, PHY(physical), MAC(media access control), RLC(radio link control), PDCP(packet data convergence protocol), RRC(radio resource control), SDAP(service data adaptation protocol)와 같은 기능적 계층)을 구현할 수 있다. 하나 이상의 프로세서(202a, 202b)는 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들에 따라 하나 이상의 PDU(Protocol Data Unit) 및/또는 하나 이상의 SDU(service data unit)를 생성할 수 있다. 하나 이상의 프로세서(202a, 202b)는 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들에 따라 메시지, 제어정보, 데이터 또는 정보를 생성할 수 있다. 하나 이상의 프로세서(202a, 202b)는 본 문서에 개시된 기능, 절차, 제안 및/또는 방법에 따라 PDU, SDU, 메시지, 제어정보, 데이터 또는 정보를 포함하는 신호(예, 베이스밴드 신호)를 생성하여, 하나 이상의 송수신기(206a, 206b)에게 제공할 수 있다. 하나 이상의 프로세서(202a, 202b)는 하나 이상의 송수신기(206a, 206b)로부터 신호(예, 베이스밴드 신호)를 수신할 수 있고, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들에 따라 PDU, SDU, 메시지, 제어정보, 데이터 또는 정보를 획득할 수 있다.Hereinafter, hardware elements of the wireless devices 200a and 200b will be described in more detail. Although not limited thereto, one or more protocol layers may be implemented by one or more processors 202a, 202b. For example, one or more processors 202a, 202b may include one or more layers (eg, PHY (physical), MAC (media access control), RLC (radio link control), PDCP (packet data convergence protocol), RRC (radio resource) control) and a functional layer such as service data adaptation protocol (SDAP)). The one or more processors 202a, 202b may be configured to process one or more protocol data units (PDUs) and/or one or more service data units (SDUs) according to the descriptions, functions, procedures, proposals, methods, and/or operational flowcharts disclosed herein. can create The one or more processors 202a, 202b may generate messages, control information, data, or information according to the description, function, procedure, proposal, method, and/or flow charts disclosed herein. The one or more processors 202a, 202b generate a signal (eg, a baseband signal) including a PDU, SDU, message, control information, data or information according to the functions, procedures, proposals and/or methods disclosed herein. , may be provided to one or more transceivers 206a and 206b. One or more processors 202a, 202b may receive signals (eg, baseband signals) from one or more transceivers 206a, 206b, and the descriptions, functions, procedures, proposals, methods, and/or flowcharts of operation disclosed herein. PDUs, SDUs, messages, control information, data, or information may be acquired according to the fields.
하나 이상의 프로세서(202a, 202b)는 컨트롤러, 마이크로 컨트롤러, 마이크로 프로세서 또는 마이크로 컴퓨터로 지칭될 수 있다. 하나 이상의 프로세서(202a, 202b)는 하드웨어, 펌웨어, 소프트웨어, 또는 이들의 조합에 의해 구현될 수 있다. 일 예로, 하나 이상의 ASIC(application specific integrated circuit), 하나 이상의 DSP(digital signal processor), 하나 이상의 DSPD(digital signal processing device), 하나 이상의 PLD(programmable logic device) 또는 하나 이상의 FPGA(field programmable gate arrays)가 하나 이상의 프로세서(202a, 202b)에 포함될 수 있다. 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들은 펌웨어 또는 소프트웨어를 사용하여 구현될 수 있고, 펌웨어 또는 소프트웨어는 모듈, 절차, 기능 등을 포함하도록 구현될 수 있다. 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들은 수행하도록 설정된 펌웨어 또는 소프트웨어는 하나 이상의 프로세서(202a, 202b)에 포함되거나, 하나 이상의 메모리(204a, 204b)에 저장되어 하나 이상의 프로세서(202a, 202b)에 의해 구동될 수 있다. 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들은 코드, 명령어 및/또는 명령어의 집합 형태로 펌웨어 또는 소프트웨어를 사용하여 구현될 수 있다. One or more processors 202a, 202b may be referred to as a controller, microcontroller, microprocessor, or microcomputer. One or more processors 202a, 202b may be implemented by hardware, firmware, software, or a combination thereof. For example, one or more application specific integrated circuits (ASICs), one or more digital signal processors (DSPs), one or more digital signal processing devices (DSPDs), one or more programmable logic devices (PLDs), or one or more field programmable gate arrays (FPGAs) may be included in one or more processors 202a, 202b. The descriptions, functions, procedures, suggestions, methods, and/or flowcharts of operations disclosed in this document may be implemented using firmware or software, and the firmware or software may be implemented to include modules, procedures, functions, and the like. The descriptions, functions, procedures, proposals, methods, and/or flow charts disclosed in this document provide that firmware or software configured to perform is included in one or more processors 202a, 202b, or stored in one or more memories 204a, 204b. It may be driven by the above processors 202a and 202b. The descriptions, functions, procedures, suggestions, methods, and/or flowcharts of operations disclosed herein may be implemented using firmware or software in the form of code, instructions, and/or a set of instructions.
하나 이상의 메모리(204a, 204b)는 하나 이상의 프로세서(202a, 202b)와 연결될 수 있고, 다양한 형태의 데이터, 신호, 메시지, 정보, 프로그램, 코드, 지시 및/또는 명령을 저장할 수 있다. 하나 이상의 메모리(204a, 204b)는 ROM(read only memory), RAM(random access memory), EPROM(erasable programmable read only memory), 플래시 메모리, 하드 드라이브, 레지스터, 캐쉬 메모리, 컴퓨터 판독 저장 매체 및/또는 이들의 조합으로 구성될 수 있다. 하나 이상의 메모리(204a, 204b)는 하나 이상의 프로세서(202a, 202b)의 내부 및/또는 외부에 위치할 수 있다. 또한, 하나 이상의 메모리(204a, 204b)는 유선 또는 무선 연결과 같은 다양한 기술을 통해 하나 이상의 프로세서(202a, 202b)와 연결될 수 있다.One or more memories 204a, 204b may be coupled to one or more processors 202a, 202b and may store various types of data, signals, messages, information, programs, codes, instructions, and/or instructions. One or more memories 204a, 204b may include read only memory (ROM), random access memory (RAM), erasable programmable read only memory (EPROM), flash memory, hard drives, registers, cache memory, computer readable storage media and/or It may be composed of a combination of these. One or more memories 204a, 204b may be located inside and/or external to one or more processors 202a, 202b. Additionally, one or more memories 204a, 204b may be coupled to one or more processors 202a, 202b through various technologies, such as wired or wireless connections.
하나 이상의 송수신기(206a, 206b)는 하나 이상의 다른 장치에게 본 문서의 방법들 및/또는 동작 순서도 등에서 언급되는 사용자 데이터, 제어 정보, 무선 신호/채널 등을 전송할 수 있다. 하나 이상의 송수신기(206a, 206b)는 하나 이상의 다른 장치로부터 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도 등에서 언급되는 사용자 데이터, 제어 정보, 무선 신호/채널 등을 수신할 수 있다. 예를 들어, 하나 이상의 송수신기(206a, 206b)는 하나 이상의 프로세서(202a, 202b)와 연결될 수 있고, 무선 신호를 송수신할 수 있다. 예를 들어, 하나 이상의 프로세서(202a, 202b)는 하나 이상의 송수신기(206a, 206b)가 하나 이상의 다른 장치에게 사용자 데이터, 제어 정보 또는 무선 신호를 전송하도록 제어할 수 있다. 또한, 하나 이상의 프로세서(202a, 202b)는 하나 이상의 송수신기(206a, 206b)가 하나 이상의 다른 장치로부터 사용자 데이터, 제어 정보 또는 무선 신호를 수신하도록 제어할 수 있다. 또한, 하나 이상의 송수신기(206a, 206b)는 하나 이상의 안테나(208a, 208b)와 연결될 수 있고, 하나 이상의 송수신기(206a, 206b)는 하나 이상의 안테나(208a, 208b)를 통해 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도 등에서 언급되는 사용자 데이터, 제어 정보, 무선 신호/채널 등을 송수신하도록 설정될 수 있다. 본 문서에서, 하나 이상의 안테나는 복수의 물리 안테나이거나, 복수의 논리 안테나(예, 안테나 포트)일 수 있다. 하나 이상의 송수신기(206a, 206b)는 수신된 사용자 데이터, 제어 정보, 무선 신호/채널 등을 하나 이상의 프로세서(202a, 202b)를 이용하여 처리하기 위해, 수신된 무선 신호/채널 등을 RF 밴드 신호에서 베이스밴드 신호로 변환(Convert)할 수 있다. 하나 이상의 송수신기(206a, 206b)는 하나 이상의 프로세서(202a, 202b)를 이용하여 처리된 사용자 데이터, 제어 정보, 무선 신호/채널 등을 베이스밴드 신호에서 RF 밴드 신호로 변환할 수 있다. 이를 위하여, 하나 이상의 송수신기(206a, 206b)는 (아날로그) 오실레이터 및/또는 필터를 포함할 수 있다.The one or more transceivers 206a, 206b may transmit user data, control information, radio signals/channels, etc. referred to in the methods and/or operational flowcharts of this document to one or more other devices. The one or more transceivers 206a, 206b may receive user data, control information, radio signals/channels, etc. referred to in the descriptions, functions, procedures, suggestions, methods and/or flow charts, etc. disclosed herein, from one or more other devices. have. For example, one or more transceivers 206a , 206b may be coupled to one or more processors 202a , 202b and may transmit and receive wireless signals. For example, one or more processors 202a, 202b may control one or more transceivers 206a, 206b to transmit user data, control information, or wireless signals to one or more other devices. Additionally, one or more processors 202a, 202b may control one or more transceivers 206a, 206b to receive user data, control information, or wireless signals from one or more other devices. Further, one or more transceivers 206a, 206b may be coupled with one or more antennas 208a, 208b, and the one or more transceivers 206a, 206b may be connected via one or more antennas 208a, 208b. , may be set to transmit and receive user data, control information, radio signals/channels, etc. mentioned in procedures, proposals, methods and/or operation flowcharts. In this document, one or more antennas may be a plurality of physical antennas or a plurality of logical antennas (eg, antenna ports). The one or more transceivers 206a, 206b converts the received radio signal/channel, etc. from the RF band signal to process the received user data, control information, radio signal/channel, etc. using the one or more processors 202a, 202b. It can be converted into a baseband signal. One or more transceivers 206a, 206b may convert user data, control information, radio signals/channels, etc. processed using one or more processors 202a, 202b from baseband signals to RF band signals. To this end, one or more transceivers 206a, 206b may include (analog) oscillators and/or filters.
본 개시에 적용 가능한 무선 기기 구조Wireless device structure applicable to the present disclosure
도 3은 본 개시에 적용되는 무선 기기의 다른 예시를 도시한 도면이다.3 is a diagram illustrating another example of a wireless device applied to the present disclosure.
도 3을 참조하면, 무선 기기(300)는 도 2의 무선 기기(200a, 200b)에 대응하며, 다양한 요소(element), 성분(component), 유닛/부(unit), 및/또는 모듈(module)로 구성될 수 있다. 예를 들어, 무선 기기(300)는 통신부(310), 제어부(320), 메모리부(330) 및 추가 요소(340)를 포함할 수 있다. 통신부는 통신 회로(312) 및 송수신기(들)(314)을 포함할 수 있다. 예를 들어, 통신 회로(312)는 도 2의 하나 이상의 프로세서(202a, 202b) 및/또는 하나 이상의 메모리(204a, 204b)를 포함할 수 있다. 예를 들어, 송수신기(들)(314)는 도 2의 하나 이상의 송수신기(206a, 206b) 및/또는 하나 이상의 안테나(208a, 208b)을 포함할 수 있다. 제어부(320)는 통신부(310), 메모리부(330) 및 추가 요소(340)와 전기적으로 연결되며 무선 기기의 제반 동작을 제어한다. 예를 들어, 제어부(320)는 메모리부(330)에 저장된 프로그램/코드/명령/정보에 기반하여 무선 기기의 전기적/기계적 동작을 제어할 수 있다. 또한, 제어부(320)는 메모리부(330)에 저장된 정보를 통신부(310)을 통해 외부(예, 다른 통신 기기)로 무선/유선 인터페이스를 통해 전송하거나, 통신부(310)를 통해 외부(예, 다른 통신 기기)로부터 무선/유선 인터페이스를 통해 수신된 정보를 메모리부(330)에 저장할 수 있다.Referring to FIG. 3 , a wireless device 300 corresponds to the wireless devices 200a and 200b of FIG. 2 , and includes various elements, components, units/units, and/or modules. ) can be composed of For example, the wireless device 300 may include a communication unit 310 , a control unit 320 , a memory unit 330 , and an additional element 340 . The communication unit may include communication circuitry 312 and transceiver(s) 314 . For example, communication circuitry 312 may include one or more processors 202a, 202b and/or one or more memories 204a, 204b of FIG. 2 . For example, the transceiver(s) 314 may include one or more transceivers 206a , 206b and/or one or more antennas 208a , 208b of FIG. 2 . The control unit 320 is electrically connected to the communication unit 310 , the memory unit 330 , and the additional element 340 and controls general operations of the wireless device. For example, the controller 320 may control the electrical/mechanical operation of the wireless device based on the program/code/command/information stored in the memory unit 330 . In addition, the control unit 320 transmits the information stored in the memory unit 330 to the outside (eg, another communication device) through the communication unit 310 through a wireless/wired interface, or externally (eg, through the communication unit 310) Information received through a wireless/wired interface from another communication device) may be stored in the memory unit 330 .
추가 요소(340)는 무선 기기의 종류에 따라 다양하게 구성될 수 있다. 예를 들어, 추가 요소(340)는 파워 유닛/배터리, 입출력부(input/output unit), 구동부 및 컴퓨팅부 중 적어도 하나를 포함할 수 있다. 이로 제한되는 것은 아니지만, 무선 기기(300)는 로봇(도 1, 100a), 차량(도 1, 100b-1, 100b-2), XR 기기(도 1, 100c), 휴대 기기(도 1, 100d), 가전(도 1, 100e), IoT 기기(도 1, 100f), 디지털 방송용 단말, 홀로그램 장치, 공공 안전 장치, MTC 장치, 의료 장치, 핀테크 장치(또는 금융 장치), 보안 장치, 기후/환경 장치, AI 서버/기기(도 1, 140), 기지국(도 1, 120), 네트워크 노드 등의 형태로 구현될 수 있다. 무선 기기는 사용-예/서비스에 따라 이동 가능하거나 고정된 장소에서 사용될 수 있다.The additional element 340 may be configured in various ways according to the type of the wireless device. For example, the additional element 340 may include at least one of a power unit/battery, an input/output unit, a driving unit, and a computing unit. Although not limited thereto, the wireless device 300 may include a robot ( FIGS. 1 and 100a ), a vehicle ( FIGS. 1 , 100b-1 , 100b-2 ), an XR device ( FIGS. 1 and 100c ), and a mobile device ( FIGS. 1 and 100d ). ), home appliances (FIG. 1, 100e), IoT device (FIG. 1, 100f), digital broadcasting terminal, hologram device, public safety device, MTC device, medical device, fintech device (or financial device), security device, climate/ It may be implemented in the form of an environmental device, an AI server/device ( FIGS. 1 and 140 ), a base station ( FIGS. 1 and 120 ), and a network node. The wireless device may be mobile or used in a fixed location depending on the use-example/service.
도 3에서 무선 기기(300) 내의 다양한 요소, 성분, 유닛/부, 및/또는 모듈은 전체가 유선 인터페이스를 통해 상호 연결되거나, 적어도 일부가 통신부(310)를 통해 무선으로 연결될 수 있다. 예를 들어, 무선 기기(300) 내에서 제어부(320)와 통신부(310)는 유선으로 연결되며, 제어부(320)와 제1 유닛(예, 130, 140)은 통신부(310)를 통해 무선으로 연결될 수 있다. 또한, 무선 기기(300) 내의 각 요소, 성분, 유닛/부, 및/또는 모듈은 하나 이상의 요소를 더 포함할 수 있다. 예를 들어, 제어부(320)는 하나 이상의 프로세서 집합으로 구성될 수 있다. 예를 들어, 제어부(320)는 통신 제어 프로세서, 어플리케이션 프로세서(application processor), ECU(electronic control unit), 그래픽 처리 프로세서, 메모리 제어 프로세서 등의 집합으로 구성될 수 있다. 다른 예로, 메모리부(330)는 RAM, DRAM(dynamic RAM), ROM, 플래시 메모리(flash memory), 휘발성 메모리(volatile memory), 비-휘발성 메모리(non-volatile memory) 및/또는 이들의 조합으로 구성될 수 있다.In FIG. 3 , various elements, components, units/units, and/or modules in the wireless device 300 may be all interconnected through a wired interface, or at least some may be wirelessly connected through the communication unit 310 . For example, in the wireless device 300 , the control unit 320 and the communication unit 310 are connected by wire, and the control unit 320 and the first unit (eg, 130 , 140 ) are connected wirelessly through the communication unit 310 . can be connected In addition, each element, component, unit/unit, and/or module within the wireless device 300 may further include one or more elements. For example, the controller 320 may include one or more processor sets. For example, the control unit 320 may be configured as a set of a communication control processor, an application processor, an electronic control unit (ECU), a graphic processing processor, a memory control processor, and the like. As another example, the memory unit 330 may include RAM, dynamic RAM (DRAM), ROM, flash memory, volatile memory, non-volatile memory, and/or a combination thereof. can be configured.
본 개시가 적용 가능한 휴대 기기Mobile device to which the present disclosure is applicable
도 4는 본 개시에 적용되는 휴대 기기의 예시를 도시한 도면이다.4 is a diagram illustrating an example of a mobile device applied to the present disclosure.
도 4는 본 개시에 적용되는 휴대 기기를 예시한다. 휴대 기기는 스마트폰, 스마트패드, 웨어러블 기기(예, 스마트워치, 스마트글래스), 휴대용 컴퓨터(예, 노트북 등)을 포함할 수 있다. 휴대 기기는 MS(mobile station), UT(user terminal), MSS(mobile subscriber station), SS(subscriber station), AMS(advanced mobile station) 또는 WT(wireless terminal)로 지칭될 수 있다.4 illustrates a portable device applied to the present disclosure. The portable device may include a smart phone, a smart pad, a wearable device (eg, a smart watch, smart glasses), and a portable computer (eg, a laptop computer). The mobile device may be referred to as a mobile station (MS), a user terminal (UT), a mobile subscriber station (MSS), a subscriber station (SS), an advanced mobile station (AMS), or a wireless terminal (WT).
도 4를 참조하면, 휴대 기기(400)는 안테나부(408), 통신부(410), 제어부(420), 메모리부(430), 전원공급부(440a), 인터페이스부(440b) 및 입출력부(440c)를 포함할 수 있다. 안테나부(408)는 통신부(410)의 일부로 구성될 수 있다. 블록 410~430/440a~440c는 각각 도 3의 블록 310~330/340에 대응한다.Referring to FIG. 4 , the mobile device 400 includes an antenna unit 408 , a communication unit 410 , a control unit 420 , a memory unit 430 , a power supply unit 440a , an interface unit 440b , and an input/output unit 440c . ) may be included. The antenna unit 408 may be configured as a part of the communication unit 410 . Blocks 410 to 430/440a to 440c respectively correspond to blocks 310 to 330/340 of FIG. 3 .
통신부(410)는 다른 무선 기기, 기지국들과 신호(예, 데이터, 제어 신호 등)를 송수신할 수 있다. 제어부(420)는 휴대 기기(400)의 구성 요소들을 제어하여 다양한 동작을 수행할 수 있다. 제어부(420)는 AP(application processor)를 포함할 수 있다. 메모리부(430)는 휴대 기기(400)의 구동에 필요한 데이터/파라미터/프로그램/코드/명령을 저장할 수 있다. 또한, 메모리부(430)는 입/출력되는 데이터/정보 등을 저장할 수 있다. 전원공급부(440a)는 휴대 기기(400)에게 전원을 공급하며, 유/무선 충전 회로, 배터리 등을 포함할 수 있다. 인터페이스부(440b)는 휴대 기기(400)와 다른 외부 기기의 연결을 지원할 수 있다. 인터페이스부(440b)는 외부 기기와의 연결을 위한 다양한 포트(예, 오디오 입/출력 포트, 비디오 입/출력 포트)를 포함할 수 있다. 입출력부(440c)는 영상 정보/신호, 오디오 정보/신호, 데이터, 및/또는 사용자로부터 입력되는 정보를 입력 받거나 출력할 수 있다. 입출력부(440c)는 카메라, 마이크로폰, 사용자 입력부, 디스플레이부(440d), 스피커 및/또는 햅틱 모듈 등을 포함할 수 있다.The communication unit 410 may transmit and receive signals (eg, data, control signals, etc.) with other wireless devices and base stations. The controller 420 may control components of the portable device 400 to perform various operations. The controller 420 may include an application processor (AP). The memory unit 430 may store data/parameters/programs/codes/commands necessary for driving the portable device 400 . Also, the memory unit 430 may store input/output data/information. The power supply unit 440a supplies power to the portable device 400 and may include a wired/wireless charging circuit, a battery, and the like. The interface unit 440b may support a connection between the portable device 400 and other external devices. The interface unit 440b may include various ports (eg, an audio input/output port and a video input/output port) for connection with an external device. The input/output unit 440c may receive or output image information/signal, audio information/signal, data, and/or information input from a user. The input/output unit 440c may include a camera, a microphone, a user input unit, a display unit 440d, a speaker, and/or a haptic module.
일 예로, 데이터 통신의 경우, 입출력부(440c)는 사용자로부터 입력된 정보/신호(예, 터치, 문자, 음성, 이미지, 비디오)를 획득하며, 획득된 정보/신호는 메모리부(430)에 저장될 수 있다. 통신부(410)는 메모리에 저장된 정보/신호를 무선 신호로 변환하고, 변환된 무선 신호를 다른 무선 기기에게 직접 전송하거나 기지국에게 전송할 수 있다. 또한, 통신부(410)는 다른 무선 기기 또는 기지국으로부터 무선 신호를 수신한 뒤, 수신된 무선 신호를 원래의 정보/신호로 복원할 수 있다. 복원된 정보/신호는 메모리부(430)에 저장된 뒤, 입출력부(440c)를 통해 다양한 형태(예, 문자, 음성, 이미지, 비디오, 햅틱)로 출력될 수 있다. For example, in the case of data communication, the input/output unit 440c obtains information/signals (eg, touch, text, voice, image, video) input from the user, and the obtained information/signals are stored in the memory unit 430 . can be saved. The communication unit 410 may convert the information/signal stored in the memory into a wireless signal, and transmit the converted wireless signal directly to another wireless device or to a base station. Also, after receiving a radio signal from another radio device or base station, the communication unit 410 may restore the received radio signal to original information/signal. The restored information/signal may be stored in the memory unit 430 and output in various forms (eg, text, voice, image, video, haptic) through the input/output unit 440c.
본 개시가 적용 가능한 무선 기기 종류Types of wireless devices to which the present disclosure is applicable
도 5는 본 개시에 적용되는 차량 또는 자율 주행 차량의 예시를 도시한 도면이다.5 is a diagram illustrating an example of a vehicle or autonomous driving vehicle applied to the present disclosure.
도 5는 본 개시에 적용되는 차량 또는 자율 주행 차량을 예시한다. 차량 또는 자율 주행 차량은 이동형 로봇, 차량, 기차, 유/무인 비행체(aerial vehicle, AV), 선박 등으로 구현될 수 있으며, 차량의 형태로 한정되는 것은 아니다.5 illustrates a vehicle or an autonomous driving vehicle applied to the present disclosure. The vehicle or autonomous driving vehicle may be implemented as a mobile robot, a vehicle, a train, an aerial vehicle (AV), a ship, and the like, but is not limited to the shape of the vehicle.
도 5를 참조하면, 차량 또는 자율 주행 차량(500)은 안테나부(508), 통신부(510), 제어부(520), 구동부(540a), 전원공급부(540b), 센서부(540c) 및 자율 주행부(540d)를 포함할 수 있다. 안테나부(550)는 통신부(510)의 일부로 구성될 수 있다. 블록 510/530/540a~540d는 각각 도 4의 블록 410/430/440에 대응한다.Referring to FIG. 5 , the vehicle or autonomous driving vehicle 500 includes an antenna unit 508 , a communication unit 510 , a control unit 520 , a driving unit 540a , a power supply unit 540b , a sensor unit 540c and autonomous driving. A unit 540d may be included. The antenna unit 550 may be configured as a part of the communication unit 510 . Blocks 510/530/540a to 540d respectively correspond to blocks 410/430/440 of FIG. 4 .
통신부(510)는 다른 차량, 기지국(예, 기지국, 노변 기지국(road side unit) 등), 서버 등의 외부 기기들과 신호(예, 데이터, 제어 신호 등)를 송수신할 수 있다. 제어부(520)는 차량 또는 자율 주행 차량(500)의 요소들을 제어하여 다양한 동작을 수행할 수 있다. 제어부(520)는 ECU(electronic control unit)를 포함할 수 있다. 구동부(540a)는 차량 또는 자율 주행 차량(500)을 지상에서 주행하게 할 수 있다. 구동부(540a)는 엔진, 모터, 파워 트레인, 바퀴, 브레이크, 조향 장치 등을 포함할 수 있다. 전원공급부(540b)는 차량 또는 자율 주행 차량(500)에게 전원을 공급하며, 유/무선 충전 회로, 배터리 등을 포함할 수 있다. 센서부(540c)는 차량 상태, 주변 환경 정보, 사용자 정보 등을 얻을 수 있다. 센서부(540c)는 IMU(inertial measurement unit) 센서, 충돌 센서, 휠 센서(wheel sensor), 속도 센서, 경사 센서, 중량 감지 센서, 헤딩 센서(heading sensor), 포지션 모듈(position module), 차량 전진/후진 센서, 배터리 센서, 연료 센서, 타이어 센서, 스티어링 센서, 온도 센서, 습도 센서, 초음파 센서, 조도 센서, 페달 포지션 센서 등을 포함할 수 있다. 자율 주행부(540d)는 주행중인 차선을 유지하는 기술, 어댑티브 크루즈 컨트롤과 같이 속도를 자동으로 조절하는 기술, 정해진 경로를 따라 자동으로 주행하는 기술, 목적지가 설정되면 자동으로 경로를 설정하여 주행하는 기술 등을 구현할 수 있다.The communication unit 510 may transmit/receive signals (eg, data, control signals, etc.) to and from external devices such as other vehicles, base stations (eg, base stations, roadside units, etc.), and servers. The controller 520 may control elements of the vehicle or the autonomous driving vehicle 500 to perform various operations. The controller 520 may include an electronic control unit (ECU). The driving unit 540a may cause the vehicle or the autonomous driving vehicle 500 to run on the ground. The driving unit 540a may include an engine, a motor, a power train, a wheel, a brake, a steering device, and the like. The power supply unit 540b supplies power to the vehicle or the autonomous driving vehicle 500 , and may include a wired/wireless charging circuit, a battery, and the like. The sensor unit 540c may obtain vehicle state, surrounding environment information, user information, and the like. The sensor unit 540c includes an inertial measurement unit (IMU) sensor, a collision sensor, a wheel sensor, a speed sensor, an inclination sensor, a weight sensor, a heading sensor, a position module, and a vehicle forward movement. / may include a reverse sensor, a battery sensor, a fuel sensor, a tire sensor, a steering sensor, a temperature sensor, a humidity sensor, an ultrasonic sensor, an illuminance sensor, a pedal position sensor, and the like. The autonomous driving unit 540d includes a technology for maintaining a driving lane, a technology for automatically adjusting speed such as adaptive cruise control, a technology for automatically driving along a predetermined route, and a technology for automatically setting a route when a destination is set. technology can be implemented.
일 예로, 통신부(510)는 외부 서버로부터 지도 데이터, 교통 정보 데이터 등을 수신할 수 있다. 자율 주행부(540d)는 획득된 데이터를 기반으로 자율 주행 경로와 드라이빙 플랜을 생성할 수 있다. 제어부(520)는 드라이빙 플랜에 따라 차량 또는 자율 주행 차량(500)이 자율 주행 경로를 따라 이동하도록 구동부(540a)를 제어할 수 있다(예, 속도/방향 조절). 자율 주행 도중에 통신부(510)는 외부 서버로부터 최신 교통 정보 데이터를 비/주기적으로 획득하며, 주변 차량으로부터 주변 교통 정보 데이터를 획득할 수 있다. 또한, 자율 주행 도중에 센서부(540c)는 차량 상태, 주변 환경 정보를 획득할 수 있다. 자율 주행부(540d)는 새로 획득된 데이터/정보에 기반하여 자율 주행 경로와 드라이빙 플랜을 갱신할 수 있다. 통신부(510)는 차량 위치, 자율 주행 경로, 드라이빙 플랜 등에 관한 정보를 외부 서버로 전달할 수 있다. 외부 서버는 차량 또는 자율 주행 차량들로부터 수집된 정보에 기반하여, AI 기술 등을 이용하여 교통 정보 데이터를 미리 예측할 수 있고, 예측된 교통 정보 데이터를 차량 또는 자율 주행 차량들에게 제공할 수 있다.For example, the communication unit 510 may receive map data, traffic information data, and the like from an external server. The autonomous driving unit 540d may generate an autonomous driving route and a driving plan based on the acquired data. The controller 520 may control the driving unit 540a to move the vehicle or the autonomous driving vehicle 500 along the autonomous driving path (eg, speed/direction adjustment) according to the driving plan. During autonomous driving, the communication unit 510 may obtain the latest traffic information data from an external server non/periodically, and may acquire surrounding traffic information data from surrounding vehicles. Also, during autonomous driving, the sensor unit 540c may acquire vehicle state and surrounding environment information. The autonomous driving unit 540d may update the autonomous driving route and driving plan based on the newly acquired data/information. The communication unit 510 may transmit information about a vehicle location, an autonomous driving route, a driving plan, and the like to an external server. The external server may predict traffic information data in advance using AI technology or the like based on information collected from the vehicle or autonomous vehicles, and may provide the predicted traffic information data to the vehicle or autonomous vehicles.
도 6은 본 개시에 적용되는 이동체의 예시를 도시한 도면이다.6 is a diagram illustrating an example of a movable body applied to the present disclosure.
도 6을 참조하면, 본 개시에 적용되는 이동체는 운송수단, 기차, 비행체 및 선박 중 적어도 어느 하나로 구현될 수 있다. 또한, 본 개시에 적용되는 이동체는 다른 형태로 구현될 수 있으며, 상술한 실시 예로 한정되지 않는다.Referring to FIG. 6 , the moving object applied to the present disclosure may be implemented as at least any one of means of transport, train, aircraft, and ship. In addition, the movable body applied to the present disclosure may be implemented in other forms, and is not limited to the above-described embodiment.
이때, 도 6을 참조하면, 이동체(600)은 통신부(610), 제어부(620), 메모리부(630), 입출력부(640a) 및 위치 측정부(640b)를 포함할 수 있다. 여기서, 블록 610~630/640a~640b는 각각 도 3의 블록 310~330/340에 대응한다.At this time, referring to FIG. 6 , the mobile unit 600 may include a communication unit 610 , a control unit 620 , a memory unit 630 , an input/output unit 640a , and a position measurement unit 640b . Here, blocks 610 to 630/640a to 640b correspond to blocks 310 to 330/340 of FIG. 3 , respectively.
통신부(610)는 다른 이동체, 또는 기지국 등의 외부 기기들과 신호(예, 데이터, 제어 신호 등)를 송수신할 수 있다. 제어부(620)는 이동체(600)의 구성 요소들을 제어하여 다양한 동작을 수행할 수 있다. 메모리부(630)는 이동체(600)의 다양한 기능을 지원하는 데이터/파라미터/프로그램/코드/명령을 저장할 수 있다. 입출력부(640a)는 메모리부(630) 내의 정보에 기반하여 AR/VR 오브젝트를 출력할 수 있다. 입출력부(640a)는 HUD를 포함할 수 있다. 위치 측정부(640b)는 이동체(600)의 위치 정보를 획득할 수 있다. 위치 정보는 이동체(600)의 절대 위치 정보, 주행선 내에서의 위치 정보, 가속도 정보, 주변 차량과의 위치 정보 등을 포함할 수 있다. 위치 측정부(640b)는 GPS 및 다양한 센서들을 포함할 수 있다.The communication unit 610 may transmit/receive signals (eg, data, control signals, etc.) to/from other mobile devices or external devices such as a base station. The controller 620 may perform various operations by controlling the components of the movable body 600 . The memory unit 630 may store data/parameters/programs/codes/commands supporting various functions of the mobile unit 600 . The input/output unit 640a may output an AR/VR object based on information in the memory unit 630 . The input/output unit 640a may include a HUD. The position measuring unit 640b may acquire position information of the moving object 600 . The location information may include absolute location information of the moving object 600 , location information within a driving line, acceleration information, and location information with a surrounding vehicle. The location measuring unit 640b may include a GPS and various sensors.
일 예로, 이동체(600)의 통신부(610)는 외부 서버로부터 지도 정보, 교통 정보 등을 수신하여 메모리부(630)에 저장할 수 있다. 위치 측정부(640b)는 GPS 및 다양한 센서를 통하여 이동체 위치 정보를 획득하여 메모리부(630)에 저장할 수 있다. 제어부(620)는 지도 정보, 교통 정보 및 이동체 위치 정보 등에 기반하여 가상 오브젝트를 생성하고, 입출력부(640a)는 생성된 가상 오브젝트를 이동체 내 유리창에 표시할 수 있다(651, 652). 또한, 제어부(620)는 이동체 위치 정보에 기반하여 이동체(600)가 주행선 내에서 정상적으로 운행되고 있는지 판단할 수 있다. 이동체(600)가 주행선을 비정상적으로 벗어나는 경우, 제어부(620)는 입출력부(640a)를 통해 이동체 내 유리창에 경고를 표시할 수 있다. 또한, 제어부(620)는 통신부(610)를 통해 주변 이동체들에게 주행 이상에 관한 경고 메세지를 방송할 수 있다. 상황에 따라, 제어부(620)는 통신부(610)를 통해 관계 기관에게 이동체의 위치 정보와, 주행/이동체 이상에 관한 정보를 전송할 수 있다.For example, the communication unit 610 of the mobile unit 600 may receive map information, traffic information, and the like from an external server and store it in the memory unit 630 . The position measurement unit 640b may obtain information about the location of the moving object through GPS and various sensors and store it in the memory unit 630 . The controller 620 may generate a virtual object based on map information, traffic information, and location information of a moving object, and the input/output unit 640a may display the generated virtual object on a window inside the moving object (651, 652). Also, the control unit 620 may determine whether the moving object 600 is normally operating within the driving line based on the moving object location information. When the moving object 600 abnormally deviates from the travel line, the control unit 620 may display a warning on the glass window of the moving object through the input/output unit 640a. Also, the control unit 620 may broadcast a warning message regarding the driving abnormality to surrounding moving objects through the communication unit 610 . Depending on the situation, the control unit 620 may transmit the location information of the moving object and information on the driving/moving object abnormality to the related organization through the communication unit 610 .
도 7은 본 개시에 적용되는 XR 기기의 예시를 도시한 도면이다. XR 기기는 HMD, 차량에 구비된 HUD(head-up display), 텔레비전, 스마트폰, 컴퓨터, 웨어러블 디바이스, 가전 기기, 디지털 사이니지(signage), 차량, 로봇 등으로 구현될 수 있다.7 is a diagram illustrating an example of an XR device applied to the present disclosure. The XR device may be implemented as an HMD, a head-up display (HUD) provided in a vehicle, a television, a smart phone, a computer, a wearable device, a home appliance, a digital signage, a vehicle, a robot, and the like.
도 7을 참조하면, XR 기기(700a)는 통신부(710), 제어부(720), 메모리부(730), 입출력부(740a), 센서부(740b) 및 전원 공급부(740c)를 포함할 수 있다. 여기서, 블록 710~730/740a~740c은 각각 도 3의 블록 310~330/340에 대응할 수 있다.Referring to FIG. 7 , the XR device 700a may include a communication unit 710 , a control unit 720 , a memory unit 730 , an input/output unit 740a , a sensor unit 740b , and a power supply unit 740c . . Here, blocks 710 to 730/740a to 740c may correspond to blocks 310 to 330/340 of FIG. 3 , respectively.
통신부(710)는 다른 무선 기기, 휴대 기기, 또는 미디어 서버 등의 외부 기기들과 신호(예, 미디어 데이터, 제어 신호 등)를 송수신할 수 있다. 미디어 데이터는 영상, 이미지, 소리 등을 포함할 수 있다. 제어부(720)는 XR 기기(700a)의 구성 요소들을 제어하여 다양한 동작을 수행할 수 있다. 예를 들어, 제어부(720)는 비디오/이미지 획득, (비디오/이미지) 인코딩, 메타데이터 생성 및 처리 등의 절차를 제어 및/또는 수행하도록 구성될 수 있다. 메모리부(730)는 XR 기기(700a)의 구동/XR 오브젝트의 생성에 필요한 데이터/파라미터/프로그램/코드/명령을 저장할 수 있다. The communication unit 710 may transmit/receive signals (eg, media data, control signals, etc.) to/from external devices such as other wireless devices, portable devices, or media servers. Media data may include images, images, and sounds. The controller 720 may perform various operations by controlling the components of the XR device 700a. For example, the controller 720 may be configured to control and/or perform procedures such as video/image acquisition, (video/image) encoding, and metadata generation and processing. The memory unit 730 may store data/parameters/programs/codes/commands necessary for driving the XR device 700a/creating an XR object.
입출력부(740a)는 외부로부터 제어 정보, 데이터 등을 획득하며, 생성된 XR 오브젝트를 출력할 수 있다. 입출력부(740a)는 카메라, 마이크로폰, 사용자 입력부, 디스플레이부, 스피커 및/또는 햅틱 모듈 등을 포함할 수 있다. 센서부(740b)는 XR 기기 상태, 주변 환경 정보, 사용자 정보 등을 얻을 수 있다. 센서부(740b)는 근접 센서, 조도 센서, 가속도 센서, 자기 센서, 자이로 센서, 관성 센서, RGB(red green blue) 센서, IR(infrared) 센서, 지문 인식 센서, 초음파 센서, 광 센서, 마이크로폰 및/또는 레이더 등을 포함할 수 있다. 전원공급부(740c)는 XR 기기(700a)에게 전원을 공급하며, 유/무선 충전 회로, 배터리 등을 포함할 수 있다.The input/output unit 740a may obtain control information, data, etc. from the outside, and may output the generated XR object. The input/output unit 740a may include a camera, a microphone, a user input unit, a display unit, a speaker, and/or a haptic module. The sensor unit 740b may obtain an XR device state, surrounding environment information, user information, and the like. The sensor unit 740b includes a proximity sensor, an illuminance sensor, an acceleration sensor, a magnetic sensor, a gyro sensor, an inertial sensor, a red green blue (RGB) sensor, an infrared (IR) sensor, a fingerprint recognition sensor, an ultrasonic sensor, an optical sensor, a microphone and / or radar or the like. The power supply unit 740c supplies power to the XR device 700a, and may include a wired/wireless charging circuit, a battery, and the like.
일 예로, XR 기기(700a)의 메모리부(730)는 XR 오브젝트(예, AR/VR/MR 오브젝트)의 생성에 필요한 정보(예, 데이터 등)를 포함할 수 있다. 입출력부(740a)는 사용자로부터 XR 기기(700a)를 조작하는 명령을 획득할 수 있으며, 제어부(720)는 사용자의 구동 명령에 따라 XR 기기(700a)를 구동시킬 수 있다. 예를 들어, 사용자가 XR 기기(700a)를 통해 영화, 뉴스 등을 시청하려고 하는 경우, 제어부(720)는 통신부(730)를 통해 컨텐츠 요청 정보를 다른 기기(예, 휴대 기기(700b)) 또는 미디어 서버에 전송할 수 있다. 통신부(730)는 다른 기기(예, 휴대 기기(700b)) 또는 미디어 서버로부터 영화, 뉴스 등의 컨텐츠를 메모리부(730)로 다운로드/스트리밍 받을 수 있다. 제어부(720)는 컨텐츠에 대해 비디오/이미지 획득, (비디오/이미지) 인코딩, 메타데이터 생성/처리 등의 절차를 제어 및/또는 수행하며, 입출력부(740a)/센서부(740b)를 통해 획득한 주변 공간 또는 현실 오브젝트에 대한 정보에 기반하여 XR 오브젝트를 생성/출력할 수 있다.For example, the memory unit 730 of the XR device 700a may include information (eg, data, etc.) necessary for generating an XR object (eg, AR/VR/MR object). The input/output unit 740a may obtain a command to operate the XR device 700a from the user, and the controller 720 may drive the XR device 700a according to the user's driving command. For example, when the user intends to watch a movie or news through the XR device 700a, the controller 720 transmits the content request information through the communication unit 730 to another device (eg, the mobile device 700b) or can be sent to the media server. The communication unit 730 may download/stream contents such as movies and news from another device (eg, the portable device 700b) or a media server to the memory unit 730 . The controller 720 controls and/or performs procedures such as video/image acquisition, (video/image) encoding, and metadata generation/processing for the content, and is acquired through the input/output unit 740a/sensor unit 740b It is possible to generate/output an XR object based on information about one surrounding space or a real object.
또한, XR 기기(700a)는 통신부(710)를 통해 휴대 기기(700b)와 무선으로 연결되며, XR 기기(700a)의 동작은 휴대 기기(700b)에 의해 제어될 수 있다. 예를 들어, 휴대 기기(700b)는 XR 기기(700a)에 대한 콘트롤러로 동작할 수 있다. 이를 위해, XR 기기(700a)는 휴대 기기(700b)의 3차원 위치 정보를 획득한 뒤, 휴대 기기(700b)에 대응하는 XR 개체를 생성하여 출력할 수 있다.Also, the XR device 700a is wirelessly connected to the portable device 700b through the communication unit 710 , and the operation of the XR device 700a may be controlled by the portable device 700b. For example, the portable device 700b may operate as a controller for the XR device 700a. To this end, the XR device 700a may obtain 3D location information of the portable device 700b, and then generate and output an XR object corresponding to the portable device 700b.
도 8은 본 개시에 적용되는 로봇의 예시를 도시한 도면이다. 일 예로, 로봇은 사용 목적이나 분야에 따라 산업용, 의료용, 가정용, 군사용 등으로 분류될 수 있다. 이때, 도 8을 참조하면, 로봇(800)은 통신부(810), 제어부(820), 메모리부(830), 입출력부(840a), 센서부(840b) 및 구동부(840c)를 포함할 수 있다. 여기서, 블록 810~830/840a~840c은 각각 도 3의 블록 310~330/340에 대응할 수 있다.8 is a diagram illustrating an example of a robot applied to the present disclosure. For example, the robot may be classified into industrial, medical, home, military, etc. according to the purpose or field of use. In this case, referring to FIG. 8 , the robot 800 may include a communication unit 810 , a control unit 820 , a memory unit 830 , an input/output unit 840a , a sensor unit 840b , and a driving unit 840c . . Here, blocks 810 to 830/840a to 840c may correspond to blocks 310 to 330/340 of FIG. 3 , respectively.
통신부(810)는 다른 무선 기기, 다른 로봇, 또는 제어 서버 등의 외부 기기들과 신호(예, 구동 정보, 제어 신호 등)를 송수신할 수 있다. 제어부(820)는 로봇(800)의 구성 요소들을 제어하여 다양한 동작을 수행할 수 있다. 메모리부(830)는 로봇(800)의 다양한 기능을 지원하는 데이터/파라미터/프로그램/코드/명령을 저장할 수 있다. 입출력부(840a)는 로봇(800)의 외부로부터 정보를 획득하며, 로봇(800)의 외부로 정보를 출력할 수 있다. 입출력부(840a)는 카메라, 마이크로폰, 사용자 입력부, 디스플레이부, 스피커 및/또는 햅틱 모듈 등을 포함할 수 있다. The communication unit 810 may transmit and receive signals (eg, driving information, control signals, etc.) with external devices such as other wireless devices, other robots, or control servers. The controller 820 may control components of the robot 800 to perform various operations. The memory unit 830 may store data/parameters/programs/codes/commands supporting various functions of the robot 800 . The input/output unit 840a may obtain information from the outside of the robot 800 and may output information to the outside of the robot 800 . The input/output unit 840a may include a camera, a microphone, a user input unit, a display unit, a speaker, and/or a haptic module.
센서부(840b)는 로봇(800)의 내부 정보, 주변 환경 정보, 사용자 정보 등을 얻을 수 있다. 센서부(840b)는 근접 센서, 조도 센서, 가속도 센서, 자기 센서, 자이로 센서, 관성 센서, IR 센서, 지문 인식 센서, 초음파 센서, 광 센서, 마이크로폰, 레이더 등을 포함할 수 있다. The sensor unit 840b may obtain internal information, surrounding environment information, user information, and the like of the robot 800 . The sensor unit 840b may include a proximity sensor, an illumination sensor, an acceleration sensor, a magnetic sensor, a gyro sensor, an inertial sensor, an IR sensor, a fingerprint recognition sensor, an ultrasonic sensor, an optical sensor, a microphone, a radar, and the like.
구동부(840c)는 로봇 관절을 움직이는 등의 다양한 물리적 동작을 수행할 수 있다. 또한, 구동부(840c)는 로봇(800)을 지상에서 주행하거나 공중에서 비행하게 할 수 있다. 구동부(840c)는 액츄에이터, 모터, 바퀴, 브레이크, 프로펠러 등을 포함할 수 있다.The driving unit 840c may perform various physical operations, such as moving a robot joint. Also, the driving unit 840c may cause the robot 800 to travel on the ground or to fly in the air. The driving unit 840c may include an actuator, a motor, a wheel, a brake, a propeller, and the like.
도 9는 본 개시에 적용되는 AI 기기의 예시를 도시한 도면이다. 일 예로, AI 기기는 TV, 프로젝터, 스마트폰, PC, 노트북, 디지털방송용 단말기, 태블릿 PC, 웨어러블 장치, 셋톱박스(STB), 라디오, 세탁기, 냉장고, 디지털 사이니지, 로봇, 차량 등과 같은, 고정형 기기 또는 이동 가능한 기기 등으로 구현될 수 있다.9 is a diagram illustrating an example of an AI device applied to the present disclosure. For example, AI devices include TVs, projectors, smartphones, PCs, laptops, digital broadcasting terminals, tablet PCs, wearable devices, set-top boxes (STBs), radios, washing machines, refrigerators, digital signage, robots, vehicles, etc. It may be implemented as a device or a mobile device.
도 9를 참조하면, AI 기기(900)는 통신부(910), 제어부(920), 메모리부(930), 입/출력부(940a/940b), 러닝 프로세서부(940c) 및 센서부(940d)를 포함할 수 있다. 블록 910~930/940a~940d는 각각 도 3의 블록 310~330/340에 대응할 수 있다.Referring to FIG. 9 , the AI device 900 includes a communication unit 910 , a control unit 920 , a memory unit 930 , input/output units 940a/940b , a learning processor unit 940c and a sensor unit 940d. may include Blocks 910 to 930/940a to 940d may correspond to blocks 310 to 330/340 of FIG. 3 , respectively.
통신부(910)는 유무선 통신 기술을 이용하여 다른 AI 기기(예, 도 1, 100x, 120, 140)나 AI 서버(도 1, 140) 등의 외부 기기들과 유무선 신호(예, 센서 정보, 사용자 입력, 학습 모델, 제어 신호 등)를 송수신할 수 있다. 이를 위해, 통신부(910)는 메모리부(930) 내의 정보를 외부 기기로 전송하거나, 외부 기기로부터 수신된 신호를 메모리부(930)로 전달할 수 있다.The communication unit 910 uses wired/wireless communication technology to communicate with external devices such as other AI devices (eg, FIGS. 1, 100x, 120, 140) or an AI server ( FIGS. 1 and 140 ) and wired/wireless signals (eg, sensor information, user input, learning model, control signal, etc.). To this end, the communication unit 910 may transmit information in the memory unit 930 to an external device or transmit a signal received from the external device to the memory unit 930 .
제어부(920)는 데이터 분석 알고리즘 또는 머신 러닝 알고리즘을 사용하여 결정되거나 생성된 정보에 기초하여, AI 기기(900)의 적어도 하나의 실행 가능한 동작을 결정할 수 있다. 그리고, 제어부(920)는 AI 기기(900)의 구성 요소들을 제어하여 결정된 동작을 수행할 수 있다. 예를 들어, 제어부(920)는 러닝 프로세서부(940c) 또는 메모리부(930)의 데이터를 요청, 검색, 수신 또는 활용할 수 있고, 적어도 하나의 실행 가능한 동작 중 예측되는 동작이나, 바람직한 것으로 판단되는 동작을 실행하도록 AI 기기(900)의 구성 요소들을 제어할 수 있다. 또한, 제어부(920)는 AI 장치(900)의 동작 내용이나 동작에 대한 사용자의 피드백 등을 포함하는 이력 정보를 수집하여 메모리부(930) 또는 러닝 프로세서부(940c)에 저장하거나, AI 서버(도 1, 140) 등의 외부 장치에 전송할 수 있다. 수집된 이력 정보는 학습 모델을 갱신하는데 이용될 수 있다.The controller 920 may determine at least one executable operation of the AI device 900 based on information determined or generated using a data analysis algorithm or a machine learning algorithm. In addition, the controller 920 may control the components of the AI device 900 to perform the determined operation. For example, the control unit 920 may request, search, receive, or utilize the data of the learning processor unit 940c or the memory unit 930, and may be a predicted operation among at least one executable operation or determined to be preferable. Components of the AI device 900 may be controlled to execute the operation. In addition, the control unit 920 collects history information including user feedback on the operation contents or operation of the AI device 900 and stores it in the memory unit 930 or the learning processor unit 940c, or the AI server ( 1 and 140), and the like may be transmitted to an external device. The collected historical information may be used to update the learning model.
메모리부(930)는 AI 기기(900)의 다양한 기능을 지원하는 데이터를 저장할 수 있다. 예를 들어, 메모리부(930)는 입력부(940a)로부터 얻은 데이터, 통신부(910)로부터 얻은 데이터, 러닝 프로세서부(940c)의 출력 데이터, 및 센싱부(940)로부터 얻은 데이터를 저장할 수 있다. 또한, 메모리부(930)는 제어부(920)의 동작/실행에 필요한 제어 정보 및/또는 소프트웨어 코드를 저장할 수 있다.The memory unit 930 may store data supporting various functions of the AI device 900 . For example, the memory unit 930 may store data obtained from the input unit 940a , data obtained from the communication unit 910 , output data of the learning processor unit 940c , and data obtained from the sensing unit 940 . Also, the memory unit 930 may store control information and/or software codes necessary for the operation/execution of the control unit 920 .
입력부(940a)는 AI 기기(900)의 외부로부터 다양한 종류의 데이터를 획득할 수 있다. 예를 들어, 입력부(920)는 모델 학습을 위한 학습 데이터, 및 학습 모델이 적용될 입력 데이터 등을 획득할 수 있다. 입력부(940a)는 카메라, 마이크로폰 및/또는 사용자 입력부 등을 포함할 수 있다. 출력부(940b)는 시각, 청각 또는 촉각 등과 관련된 출력을 발생시킬 수 있다. 출력부(940b)는 디스플레이부, 스피커 및/또는 햅틱 모듈 등을 포함할 수 있다. 센싱부(940)는 다양한 센서들을 이용하여 AI 기기(900)의 내부 정보, AI 기기(900)의 주변 환경 정보 및 사용자 정보 중 적어도 하나를 얻을 수 있다. 센싱부(940)는 근접 센서, 조도 센서, 가속도 센서, 자기 센서, 자이로 센서, 관성 센서, RGB 센서, IR 센서, 지문 인식 센서, 초음파 센서, 광 센서, 마이크로폰 및/또는 레이더 등을 포함할 수 있다.The input unit 940a may acquire various types of data from the outside of the AI device 900 . For example, the input unit 920 may obtain training data for model learning, input data to which the learning model is applied, and the like. The input unit 940a may include a camera, a microphone, and/or a user input unit. The output unit 940b may generate an output related to sight, hearing, or touch. The output unit 940b may include a display unit, a speaker, and/or a haptic module. The sensing unit 940 may obtain at least one of internal information of the AI device 900 , surrounding environment information of the AI device 900 , and user information by using various sensors. The sensing unit 940 may include a proximity sensor, an illumination sensor, an acceleration sensor, a magnetic sensor, a gyro sensor, an inertial sensor, an RGB sensor, an IR sensor, a fingerprint recognition sensor, an ultrasonic sensor, an optical sensor, a microphone, and/or a radar. have.
러닝 프로세서부(940c)는 학습 데이터를 이용하여 인공 신경망으로 구성된 모델을 학습시킬 수 있다. 러닝 프로세서부(940c)는 AI 서버(도 1, 140)의 러닝 프로세서부와 함께 AI 프로세싱을 수행할 수 있다. 러닝 프로세서부(940c)는 통신부(910)를 통해 외부 기기로부터 수신된 정보, 및/또는 메모리부(930)에 저장된 정보를 처리할 수 있다. 또한, 러닝 프로세서부(940c)의 출력 값은 통신부(910)를 통해 외부 기기로 전송되거나/되고, 메모리부(930)에 저장될 수 있다.The learning processor unit 940c may train a model composed of an artificial neural network by using the training data. The learning processor unit 940c may perform AI processing together with the learning processor unit of the AI server ( FIGS. 1 and 140 ). The learning processor unit 940c may process information received from an external device through the communication unit 910 and/or information stored in the memory unit 930 . Also, the output value of the learning processor unit 940c may be transmitted to an external device through the communication unit 910 and/or stored in the memory unit 930 .
물리 채널들 및 일반적인 신호 전송Physical channels and general signal transmission
무선 접속 시스템에서 단말은 하향링크(downlink, DL)를 통해 기지국으로부터 정보를 수신하고, 상향링크(uplink, UL)를 통해 기지국으로 정보를 전송할 수 있다. 기지국과 단말이 송수신하는 정보는 일반 데이터 정보 및 다양한 제어 정보를 포함하고, 이들이 송수신 하는 정보의 종류/용도에 따라 다양한 물리 채널이 존재한다.In a radio access system, a terminal may receive information from a base station through downlink (DL) and transmit information to a base station through uplink (UL). Information transmitted and received between the base station and the terminal includes general data information and various control information, and various physical channels exist according to the type/use of the information they transmit and receive.
도 10은 본 개시에 적용되는 물리 채널들 및 이들을 이용한 신호 전송 방법을 도시한 도면이다.10 is a diagram illustrating physical channels applied to the present disclosure and a signal transmission method using the same.
전원이 꺼진 상태에서 다시 전원이 켜지거나, 새로이 셀에 진입한 단말은 S1011 단계에서 기지국과 동기를 맞추는 등의 초기 셀 탐색(initial cell search) 작업을 수행한다. 이를 위해 단말은 기지국으로부터 주동기 채널(primary synchronization channel, P-SCH) 및 부동기 채널(secondary synchronization channel, S-SCH)을 수신하여 기지국과 동기를 맞추고, 셀 ID 등의 정보를 획득할 수 있다. In a state in which the power is turned off, the power is turned on again, or a terminal newly entering a cell performs an initial cell search operation such as synchronizing with the base station in step S1011. To this end, the terminal receives a primary synchronization channel (P-SCH) and a secondary synchronization channel (S-SCH) from the base station, synchronizes with the base station, and obtains information such as cell ID. .
그 후, 단말은 기지국으로부터 물리 방송 채널(physical broadcast channel, PBCH) 신호를 수신하여 셀 내 방송 정보를 획득할 수 있다. 한편, 단말은 초기 셀 탐색 단계에서 하향링크 참조 신호 (DL RS: Downlink Reference Signal)를 수신하여 하향링크 채널 상태를 확인할 수 있다. 초기 셀 탐색을 마친 단말은 S1012 단계에서 물리 하향링크 제어 채널(physical downlink control channel, PDCCH) 및 물리 하향링크 제어 채널 정보에 따른 물리 하향링크 공유 채널(physical downlink control channel, PDSCH)을 수신하여 조금 더 구체적인 시스템 정보를 획득할 수 있다. Thereafter, the terminal may receive a physical broadcast channel (PBCH) signal from the base station to obtain intra-cell broadcast information. Meanwhile, the UE may receive a downlink reference signal (DL RS) in the initial cell search step to check the downlink channel state. After completing the initial cell search, the UE receives a physical downlink control channel (PDCCH) and a physical downlink control channel (PDSCH) according to physical downlink control channel information in step S1012 and receives a little more Specific system information can be obtained.
이후, 단말은 기지국에 접속을 완료하기 위해 이후 단계 S1013 내지 단계 S1016과 같은 임의 접속 과정(random access procedure)을 수행할 수 있다. 이를 위해 단말은 물리 임의 접속 채널(physical random access channel, PRACH)을 통해 프리앰블 (preamble)을 전송하고(S1013), 물리 하향링크 제어 채널 및 이에 대응하는 물리 하향링크 공유 채널을 통해 프리앰블에 대한 RAR(random access response)를 수신할 수 있다(S1014). 단말은 RAR 내의 스케줄링 정보를 이용하여 PUSCH(physical uplink shared channel)을 전송하고(S1015), 물리 하향링크 제어채널 신호 및 이에 대응하는 물리 하향링크 공유 채널 신호의 수신과 같은 충돌 해결 절차(contention resolution procedure)를 수행할 수 있다(S1016).Thereafter, the terminal may perform a random access procedure, such as steps S1013 to S1016, to complete access to the base station. To this end, the UE transmits a preamble through a physical random access channel (PRACH) (S1013), and RAR for the preamble through a physical downlink control channel and a corresponding physical downlink shared channel (S1013). random access response) may be received (S1014). The UE transmits a physical uplink shared channel (PUSCH) using scheduling information in the RAR (S1015), and a contention resolution procedure such as reception of a physical downlink control channel signal and a corresponding physical downlink shared channel signal. ) can be performed (S1016).
상술한 바와 같은 절차를 수행한 단말은 이후 일반적인 상/하향링크 신호 전송 절차로서 물리 하향링크 제어 채널 신호 및/또는 물리 하향링크 공유 채널 신호의 수신(S1017) 및 물리 상향링크 공유 채널(physical uplink shared channel, PUSCH) 신호 및/또는 물리 상향링크 제어 채널(physical uplink control channel, PUCCH) 신호의 전송(S1018)을 수행할 수 있다.After performing the procedure as described above, the terminal receives a physical downlink control channel signal and/or a physical downlink shared channel signal (S1017) and a physical uplink shared channel as a general uplink/downlink signal transmission procedure thereafter. channel, PUSCH) signal and/or a physical uplink control channel (PUCCH) signal may be transmitted ( S1018 ).
단말이 기지국으로 전송하는 제어정보를 통칭하여 상향링크 제어정보(uplink control information, UCI)라고 지칭한다. UCI는 HARQ-ACK/NACK(hybrid automatic repeat and request acknowledgement/negative-ACK), SR(scheduling request), CQI(channel quality indication), PMI(precoding matrix indication), RI(rank indication), BI(beam indication) 정보 등을 포함한다. 이때, UCI는 일반적으로 PUCCH를 통해 주기적으로 전송되지만, 실시 예에 따라(예, 제어정보와 트래픽 데이터가 동시에 전송되어야 할 경우) PUSCH를 통해 전송될 수 있다. 또한, 네트워크의 요청/지시에 의해 단말은 PUSCH를 통해 UCI를 비주기적으로 전송할 수 있다.Control information transmitted by the terminal to the base station is collectively referred to as uplink control information (UCI). UCI is HARQ-ACK / NACK (hybrid automatic repeat and request acknowledgment / negative-ACK), SR (scheduling request), CQI (channel quality indication), PMI (precoding matrix indication), RI (rank indication), BI (beam indication) ) information, etc. In this case, the UCI is generally transmitted periodically through the PUCCH, but may be transmitted through the PUSCH according to an embodiment (eg, when control information and traffic data are to be transmitted at the same time). In addition, according to a request/instruction of the network, the UE may aperiodically transmit the UCI through the PUSCH.
도 11은 본 개시에 적용되는 무선 인터페이스 프로토콜(radio interface protocol)의 제어평면(control plane) 및 사용자 평면(user plane) 구조를 도시한 도면이다.11 is a diagram illustrating a control plane and a user plane structure of a radio interface protocol applied to the present disclosure.
도 11을 참조하면, 엔티티 1(Entity 1)은 단말(user equipment, UE)일 수 있다. 이때, 단말이라 함은 상술한 도 1 내지 도 9에서 본 개시가 적용되는 무선 기기, 휴대 기기, 차량, 이동체, XR 기기, 로봇 및 AI 중 적어도 어느 하나일 수 있다. 또한, 단말은 본 개시가 적용될 수 있는 장치를 지칭하는 것으로 특정 장치나 기기로 한정되지 않을 수 있다. Referring to FIG. 11 , entity 1 may be a user equipment (UE). In this case, the term "terminal" may be at least one of a wireless device, a portable device, a vehicle, a mobile body, an XR device, a robot, and an AI to which the present disclosure is applied in FIGS. 1 to 9 described above. In addition, the terminal refers to a device to which the present disclosure can be applied and may not be limited to a specific device or device.
엔티티 2(Entity 2)는 기지국일 수 있다. 이때, 기지국은 eNB, gNB 및 ng-eNB 중 적어도 어느 하나일 수 있다. 또한, 기지국은 단말로 하향링크 신호를 전송하는 장치를 지칭할 수 있으며, 특정 타입이나 장치로 한정되지 않을 수 있다. 즉, 기지국은 다양한 형태나 타입으로 구현될 수 있으며, 특정 형태로 한정되지 않을 수 있다. Entity 2 may be a base station. In this case, the base station may be at least one of an eNB, a gNB, and an ng-eNB. In addition, the base station may refer to an apparatus for transmitting a downlink signal to the terminal, and may not be limited to a specific type or apparatus. That is, the base station may be implemented in various forms or types, and may not be limited to a specific form.
엔티티 3(Entity 3)은 네트워크 장치 또는 네트워크 펑션을 수행하는 기기일 수 있다. 이때, 네트워크 장치는 이동성을 관리하는 코어망 노드(core network node)(예, MME(mobility management entity), AMF(access and mobility management function) 등)일 수 있다. 또한, 네트워크 펑션은 네트워크 기능을 수행하기 위해 구현되는 펑션(function)을 의미할 수 있으며, 엔티티 3은 펑션이 적용된 기기일 수 있다. 즉, 엔티티 3은 네트워크 기능을 수행하는 펑션이나 기기를 지칭할 수 있으며, 특정 형태의 기기로 한정되지 않는다. Entity 3 may be a network device or a device performing a network function. In this case, the network device may be a core network node (eg, a mobility management entity (MME), an access and mobility management function (AMF), etc.) that manages mobility. In addition, the network function may mean a function implemented to perform a network function, and entity 3 may be a device to which the function is applied. That is, the entity 3 may refer to a function or device that performs a network function, and is not limited to a specific type of device.
제어평면은 단말(user equipment, UE)과 네트워크가 호를 관리하기 위해서 이용하는 제어 메시지들이 전송되는 통로를 의미할 수 있다. 또한, 사용자평면은 애플리케이션 계층에서 생성된 데이터, 예를 들어, 음성 데이터 또는 인터넷 패킷 데이터 등이 전송되는 통로를 의미할 수 있다. 이때, 제1 계층인 물리계층은 물리채널(physical channel)을 이용하여 상위 계층에게 정보 전송 서비스(information transfer service)를 제공할 수 있다. 물리계층은 상위에 있는 매체접속제어(medium access control) 계층과는 전송채널을 통해 연결되어 있다. 이때, 전송채널을 통해 매체접속제어 계층과 물리계층 사이에 데이터가 이동할 수 있다. 송신 측과 수신 측의 물리계층 사이는 물리채널을 통해 데이터가 이동할 수 있다. 이때, 물리채널은 시간과 주파수를 무선 자원으로 활용한다.The control plane may refer to a path through which control messages used by a user equipment (UE) and a network to manage a call are transmitted. Also, the user plane may mean a path through which data generated in the application layer, for example, voice data or Internet packet data, is transmitted. In this case, the physical layer, which is the first layer, may provide an information transfer service to a higher layer by using a physical channel. The physical layer is connected to the upper medium access control layer through a transport channel. In this case, data may be moved between the medium access control layer and the physical layer through the transport channel. Data can be moved between the physical layers of the transmitting side and the receiving side through a physical channel. In this case, the physical channel uses time and frequency as radio resources.
제2 계층의 매체접속제어(medium access control, MAC) 계층은 논리채널(logical channel)을 통해 상위계층인 무선링크제어(radio link control, RLC) 계층에 서비스를 제공한다. 제2 계층의 RLC 계층은 신뢰성 있는 데이터 전송을 지원할 수 있다. RLC 계층의 기능은 MAC 내부의 기능 블록으로 구현될 수도 있다. 제2 계층의 PDCP(packet data convergence protocol) 계층은 대역폭이 좁은 무선 인터페이스에서 IPv4 나 IPv6 와 같은 IP 패킷을 효율적으로 전송하기 위해 불필요한 제어정보를 줄여주는 헤더 압축(header compression) 기능을 수행할 수 있다. 제3 계층의 최하부에 위치한 무선 자원제어(radio resource control, RRC) 계층은 제어평면에서만 정의된다. RRC 계층은 무선 베어러(radio bearer, RB)들의 설정(configuration), 재설정(re-configuration) 및 해제(release)와 관련되어 논리채널, 전송채널 및 물리채널들의 제어를 담당할 수 있다. RB는 단말과 네트워크 간의 데이터 전달을 위해 제2 계층에 의해 제공되는 서비스를 의미할 수 있다. 이를 위해, 단말과 네트워크의 RRC 계층은 서로 RRC 메시지를 교환할 수 있다. RRC 계층의 상위에 있는 NAS(non-access stratum) 계층은 세션 관리(session management)와 이동성 관리(mobility management) 등의 기능을 수행할 수 있다. 기지국을 구성하는 하나의 셀은 다양한 대역폭 중 하나로 설정되어 여러 단말에게 하향 또는 상향 전송 서비스를 제공할 수 있다. 서로 다른 셀은 서로 다른 대역폭을 제공하도록 설정될 수 있다. 네트워크에서 단말로 데이터를 전송하는 하향 전송채널은 시스템 정보를 전송하는 BCH(broadcast channel), 페이징 메시지를 전송하는 PCH(paging channel), 사용자 트래픽이나 제어 메시지를 전송하는 하향 SCH(shared channel) 등이 있다. 하향 멀티캐스트 또는 방송 서비스의 트래픽 또는 제어 메시지의 경우, 하향 SCH를 통해 전송될 수도 있고, 또는 별도의 하향 MCH(Multicast Channel)을 통해 전송될 수도 있다. 한편, 단말에서 네트워크로 데이터를 전송하는 상향 전송채널로는 초기 제어 메시지를 전송하는 RACH(random access channel), 사용자 트래픽이나 제어 메시지를 전송하는 상향 SCH(shared channel)가 있다. 전송채널의 상위에 있으며, 전송채널에 매핑되는 논리채널(logical channel)로는 BCCH(broadcast control channel), PCCH(paging control channel), CCCH(common control channel), MCCH(multicast control channel) 및 MTCH(multicast traffic channel) 등이 있다.A medium access control (MAC) layer of the second layer provides a service to a radio link control (RLC) layer, which is an upper layer, through a logical channel. The RLC layer of the second layer may support reliable data transmission. The function of the RLC layer may be implemented as a function block inside the MAC. The packet data convergence protocol (PDCP) layer of the second layer may perform a header compression function that reduces unnecessary control information in order to efficiently transmit IP packets such as IPv4 or IPv6 in a narrow-bandwidth air interface. . A radio resource control (RRC) layer located at the bottom of the third layer is defined only in the control plane. The RRC layer may be in charge of controlling logical channels, transport channels and physical channels in relation to configuration, re-configuration, and release of radio bearers (RBs). RB may mean a service provided by the second layer for data transfer between the terminal and the network. To this end, the UE and the RRC layer of the network may exchange RRC messages with each other. A non-access stratum (NAS) layer above the RRC layer may perform functions such as session management and mobility management. One cell constituting the base station may be set to one of various bandwidths to provide downlink or uplink transmission services to multiple terminals. Different cells may be configured to provide different bandwidths. The downlink transmission channel for transmitting data from the network to the terminal includes a broadcast channel (BCH) for transmitting system information, a paging channel (PCH) for transmitting a paging message, and a downlink shared channel (SCH) for transmitting user traffic or control messages. have. In the case of a downlink multicast or broadcast service traffic or control message, it may be transmitted through a downlink SCH or may be transmitted through a separate downlink multicast channel (MCH). Meanwhile, as an uplink transmission channel for transmitting data from the terminal to the network, there are a random access channel (RACH) for transmitting an initial control message and an uplink shared channel (SCH) for transmitting user traffic or a control message. A logical channel that is located above the transport channel and is mapped to the transport channel includes a broadcast control channel (BCCH), a paging control channel (PCCH), a common control channel (CCCH), a multicast control channel (MCCH), and a multicast (MTCH) channel. traffic channels), etc.
도 12는 본 개시에 적용되는 전송 신호를 처리하는 방법을 도시한 도면이다. 일 예로, 전송 신호는 신호 처리 회로에 의해 처리될 수 있다. 이때, 신호 처리 회로(1200)는 스크램블러(1210), 변조기(1220), 레이어 매퍼(1230), 프리코더(1240), 자원 매퍼(1250), 신호 생성기(1260)를 포함할 수 있다. 이때, 일 예로, 도 12의 동작/기능은 도 2의 프로세서(202a, 202b) 및/또는 송수신기(206a, 206b)에서 수행될 수 있다. 또한, 일 예로, 도 12의 하드웨어 요소는 도 2의 프로세서(202a, 202b) 및/또는 송수신기(206a, 206b)에서 구현될 수 있다. 일 예로, 블록 1010~1060은 도 2의 프로세서(202a, 202b)에서 구현될 수 있다. 또한, 블록 1210~1250은 도 2의 프로세서(202a, 202b)에서 구현되고, 블록 1260은 도 2의 송수신기(206a, 206b)에서 구현될 수 있으며, 상술한 실시 예로 한정되지 않는다.12 is a diagram illustrating a method of processing a transmission signal applied to the present disclosure. As an example, the transmission signal may be processed by a signal processing circuit. In this case, the signal processing circuit 1200 may include a scrambler 1210 , a modulator 1220 , a layer mapper 1230 , a precoder 1240 , a resource mapper 1250 , and a signal generator 1260 . In this case, as an example, the operation/function of FIG. 12 may be performed by the processors 202a and 202b and/or the transceivers 206a and 206b of FIG. 2 . Also, as an example, the hardware elements of FIG. 12 may be implemented in the processors 202a and 202b and/or the transceivers 206a and 206b of FIG. 2 . As an example, blocks 1010 to 1060 may be implemented in the processors 202a and 202b of FIG. 2 . In addition, blocks 1210 to 1250 may be implemented in the processors 202a and 202b of FIG. 2 , and block 1260 may be implemented in the transceivers 206a and 206b of FIG. 2 , and the embodiment is not limited thereto.
코드워드는 도 12의 신호 처리 회로(1200)를 거쳐 무선 신호로 변환될 수 있다. 여기서, 코드워드는 정보블록의 부호화된 비트 시퀀스이다. 정보블록은 전송블록(예, UL-SCH 전송블록, DL-SCH 전송블록)을 포함할 수 있다. 무선 신호는 도 10의 다양한 물리 채널(예, PUSCH, PDSCH)을 통해 전송될 수 있다. 구체적으로, 코드워드는 스크램블러(1210)에 의해 스크램블된 비트 시퀀스로 변환될 수 있다. 스크램블에 사용되는 스크램블 시퀀스는 초기화 값에 기반하여 생성되며, 초기화 값은 무선 기기의 ID 정보 등이 포함될 수 있다. 스크램블된 비트 시퀀스는 변조기(1220)에 의해 변조 심볼 시퀀스로 변조될 수 있다. 변조 방식은 pi/2-BPSK(pi/2-binary phase shift keying), m-PSK(m-phase shift keying), m-QAM(m-quadrature amplitude modulation) 등을 포함할 수 있다. The codeword may be converted into a wireless signal through the signal processing circuit 1200 of FIG. 12 . Here, the codeword is a coded bit sequence of an information block. The information block may include a transport block (eg, a UL-SCH transport block, a DL-SCH transport block). The radio signal may be transmitted through various physical channels (eg, PUSCH, PDSCH) of FIG. 10 . Specifically, the codeword may be converted into a scrambled bit sequence by the scrambler 1210 . A scramble sequence used for scrambling is generated based on an initialization value, and the initialization value may include ID information of a wireless device, and the like. The scrambled bit sequence may be modulated by a modulator 1220 into a modulation symbol sequence. The modulation method may include pi/2-binary phase shift keying (pi/2-BPSK), m-phase shift keying (m-PSK), m-quadrature amplitude modulation (m-QAM), and the like.
복소 변조 심볼 시퀀스는 레이어 매퍼(1230)에 의해 하나 이상의 전송 레이어로 매핑될 수 있다. 각 전송 레이어의 변조 심볼들은 프리코더(1240)에 의해 해당 안테나 포트(들)로 매핑될 수 있다(프리코딩). 프리코더(1240)의 출력 z는 레이어 매퍼(1230)의 출력 y를 N*M의 프리코딩 행렬 W와 곱해 얻을 수 있다. 여기서, N은 안테나 포트의 개수, M은 전송 레이어의 개수이다. 여기서, 프리코더(1240)는 복소 변조 심볼들에 대한 트랜스폼(transform) 프리코딩(예, DFT(discrete fourier transform) 변환)을 수행한 이후에 프리코딩을 수행할 수 있다. 또한, 프리코더(1240)는 트랜스폼 프리코딩을 수행하지 않고 프리코딩을 수행할 수 있다.The complex modulation symbol sequence may be mapped to one or more transport layers by a layer mapper 1230 . Modulation symbols of each transport layer may be mapped to corresponding antenna port(s) by the precoder 1240 (precoding). The output z of the precoder 1240 may be obtained by multiplying the output y of the layer mapper 1230 by the precoding matrix W of N*M. Here, N is the number of antenna ports, and M is the number of transport layers. Here, the precoder 1240 may perform precoding after performing transform precoding (eg, discrete fourier transform (DFT) transform) on the complex modulation symbols. Also, the precoder 1240 may perform precoding without performing transform precoding.
자원 매퍼(1250)는 각 안테나 포트의 변조 심볼들을 시간-주파수 자원에 매핑할 수 있다. 시간-주파수 자원은 시간 도메인에서 복수의 심볼(예, CP-OFDMA 심볼, DFT-s-OFDMA 심볼)을 포함하고, 주파수 도메인에서 복수의 부반송파를 포함할 수 있다. 신호 생성기(1260)는 매핑된 변조 심볼들로부터 무선 신호를 생성하며, 생성된 무선 신호는 각 안테나를 통해 다른 기기로 전송될 수 있다. 이를 위해, 신호 생성기(1260)는 IFFT(inverse fast fourier transform) 모듈 및 CP(cyclic prefix) 삽입기, DAC(digital-to-analog converter), 주파수 상향 변환기(frequency uplink converter) 등을 포함할 수 있다.The resource mapper 1250 may map modulation symbols of each antenna port to a time-frequency resource. The time-frequency resource may include a plurality of symbols (eg, a CP-OFDMA symbol, a DFT-s-OFDMA symbol) in the time domain and a plurality of subcarriers in the frequency domain. The signal generator 1260 generates a radio signal from the mapped modulation symbols, and the generated radio signal may be transmitted to another device through each antenna. To this end, the signal generator 1260 may include an inverse fast fourier transform (IFFT) module and a cyclic prefix (CP) inserter, a digital-to-analog converter (DAC), a frequency uplink converter, and the like. .
무선 기기에서 수신 신호를 위한 신호 처리 과정은 도 12의 신호 처리 과정(1210~1260)의 역으로 구성될 수 있다. 일 예로, 무선 기기(예, 도 2의 200a, 200b)는 안테나 포트/송수신기를 통해 외부로부터 무선 신호를 수신할 수 있다. 수신된 무선 신호는 신호 복원기를 통해 베이스밴드 신호로 변환될 수 있다. 이를 위해, 신호 복원기는 주파수 하향 변환기(frequency downlink converter), ADC(analog-to-digital converter), CP 제거기, FFT(fast fourier transform) 모듈을 포함할 수 있다. 이후, 베이스밴드 신호는 자원 디-매퍼 과정, 포스트코딩(postcoding) 과정, 복조 과정 및 디-스크램블 과정을 거쳐 코드워드로 복원될 수 있다. 코드워드는 복호(decoding)를 거쳐 원래의 정보블록으로 복원될 수 있다. 따라서, 수신 신호를 위한 신호 처리 회로(미도시)는 신호 복원기, 자원 디-매퍼, 포스트코더, 복조기, 디-스크램블러 및 복호기를 포함할 수 있다.The signal processing process for the received signal in the wireless device may be configured in reverse of the signal processing process 1210 to 1260 of FIG. 12 . For example, the wireless device (eg, 200a or 200b of FIG. 2 ) may receive a wireless signal from the outside through an antenna port/transceiver. The received radio signal may be converted into a baseband signal through a signal restorer. To this end, the signal restorer may include a frequency downlink converter, an analog-to-digital converter (ADC), a CP remover, and a fast fourier transform (FFT) module. Thereafter, the baseband signal may be restored to a codeword through a resource de-mapper process, a postcoding process, a demodulation process, and a descrambling process. The codeword may be restored to the original information block through decoding. Accordingly, the signal processing circuit (not shown) for the received signal may include a signal restorer, a resource de-mapper, a post coder, a demodulator, a descrambler, and a decoder.
도 13은 본 개시에 적용 가능한 무선 프레임의 구조를 도시한 도면이다.13 is a diagram illustrating a structure of a radio frame applicable to the present disclosure.
NR 시스템에 기초한 상향링크 및 하향링크 전송은 도 13과 같은 프레임에 기초할 수 있다. 이때, 하나의 무선 프레임은 10ms의 길이를 가지며, 2개의 5ms 하프-프레임(half-frame, HF)으로 정의될 수 있다. 하나의 하프-프레임은 5개의 1ms 서브프레임(subframe, SF)으로 정의될 수 있다. 하나의 서브프레임은 하나 이상의 슬롯으로 분할되며, 서브프레임 내 슬롯 개수는 SCS(subcarrier spacing)에 의존할 수 있다. 이때, 각 슬롯은 CP(cyclic prefix)에 따라 12개 또는 14개의 OFDM(A) 심볼들을 포함할 수 있다. 일반 CP(normal CP)가 사용되는 경우, 각 슬롯은 14개의 심볼들을 포함할 수 있다. 확장 CP(extended CP)가 사용되는 경우, 각 슬롯은 12개의 심볼들을 포함할 수 있다. 여기서, 심볼은 OFDM 심볼(또는, CP-OFDM 심볼), SC-FDMA 심볼(또는, DFT-s-OFDM 심볼)을 포함할 수 있다.Uplink and downlink transmission based on the NR system may be based on a frame as shown in FIG. 13 . In this case, one radio frame has a length of 10 ms and may be defined as two 5 ms half-frames (HF). One half-frame may be defined as 5 1ms subframes (subframe, SF). One subframe is divided into one or more slots, and the number of slots in a subframe may depend on subcarrier spacing (SCS). In this case, each slot may include 12 or 14 OFDM(A) symbols according to a cyclic prefix (CP). When a normal CP (normal CP) is used, each slot may include 14 symbols. When an extended CP (CP) is used, each slot may include 12 symbols. Here, the symbol may include an OFDM symbol (or a CP-OFDM symbol) and an SC-FDMA symbol (or a DFT-s-OFDM symbol).
표 1은 일반 CP가 사용되는 경우, SCS에 따른 슬롯 별 심볼의 개수, 프레임 별 슬롯의 개수 및 서브프레임 별 슬롯의 개수를 나타내고, 표 2는 확장된 CSP가 사용되는 경우, SCS에 따른 슬롯 별 심볼의 개수, 프레임 별 슬롯의 개수 및 서브프레임 별 슬롯의 개수를 나타낸다.Table 1 shows the number of symbols per slot, the number of slots per frame, and the number of slots per subframe according to the SCS when the normal CP is used, and Table 2 shows the number of slots per slot according to the SCS when the extended CSP is used. Indicates the number of symbols, the number of slots per frame, and the number of slots per subframe.
Figure PCTKR2020008203-appb-I000001
Figure PCTKR2020008203-appb-I000001
Figure PCTKR2020008203-appb-I000002
Figure PCTKR2020008203-appb-I000002
Figure PCTKR2020008203-appb-I000003
Figure PCTKR2020008203-appb-I000003
Figure PCTKR2020008203-appb-I000004
Figure PCTKR2020008203-appb-I000004
00 1414 1010 1One
1One 1414 2020 22
22 1414 4040 44
33 1414 8080 88
44 1414 160160 1616
55 1414 320320 3232
Figure PCTKR2020008203-appb-I000005
Figure PCTKR2020008203-appb-I000005
Figure PCTKR2020008203-appb-I000006
Figure PCTKR2020008203-appb-I000006
Figure PCTKR2020008203-appb-I000007
Figure PCTKR2020008203-appb-I000007
Figure PCTKR2020008203-appb-I000008
Figure PCTKR2020008203-appb-I000008
22 1212 4040 44
상기 표 1 및 표 2에서, Nslot symb 는 슬롯 내 심볼의 개수를 나타내고, Nframe,μ slot는 프레임 내 슬롯의 개수를 나타내고, Nsubframe,μ slot는 서브프레임 내 슬롯의 개수를 나타낼 수 있다.In Tables 1 and 2, N slot symb may indicate the number of symbols in a slot, N frame, μ slot may indicate the number of slots in a frame , and N subframe, μ slot may indicate the number of slots in a subframe. .
또한, 본 개시가 적용 가능한 시스템에서, 하나의 단말에게 병합되는 복수의 셀들간에 OFDM(A) 뉴모놀로지(numerology)(예, SCS, CP 길이 등)가 상이하게 설정될 수 있다. 이에 따라, 동일한 개수의 심볼로 구성된 시간 자원(예, SF, 슬롯 또는 TTI)(편의상, TU(time unit)로 통칭)의 (절대 시간) 구간이 병합된 셀들 간에 상이하게 설정될 수 있다.In addition, in a system to which the present disclosure is applicable, OFDM(A) numerology (eg, SCS, CP length, etc.) may be set differently between a plurality of cells merged into one UE. Accordingly, an (absolute time) interval of a time resource (eg, SF, slot, or TTI) (commonly referred to as a TU (time unit) for convenience) composed of the same number of symbols may be set differently between the merged cells.
NR은 다양한 5G 서비스들을 지원하기 위한 다수의 numerology(또는 SCS(subcarrier spacing))를 지원할 수 있다. 예를 들어, SCS가 15kHz인 경우, 전통적인 셀룰러 밴드들에서의 넓은 영역(wide area)를 지원하며, SCS가 30kHz/60kHz인 경우, 밀집한-도시(dense-urban), 더 낮은 지연(lower latency) 및 더 넓은 캐리어 대역폭(wider carrier bandwidth)를 지원하며, SCS가 60kHz 또는 그보다 높은 경우, 위상 잡음(phase noise)를 극복하기 위해 24.25GHz보다 큰 대역폭을 지원할 수 있다.NR may support multiple numerology (or subcarrier spacing (SCS)) to support various 5G services. For example, when SCS is 15kHz, it supports a wide area in traditional cellular bands, and when SCS is 30kHz/60kHz, dense-urban, lower latency and a wider carrier bandwidth, and when the SCS is 60 kHz or higher, it can support a bandwidth greater than 24.25 GHz to overcome phase noise.
NR 주파수 밴드(frequency band)는 2가지 type(FR1, FR2)의 주파수 범위(frequency range)로 정의된다. FR1, FR2는 아래 표와 같이 구성될 수 있다. 또한, FR2는 밀리미터 웨이브(millimeter wave, mmW)를 의미할 수 있다.The NR frequency band is defined as a frequency range of two types (FR1, FR2). FR1 and FR2 may be configured as shown in the table below. In addition, FR2 may mean a millimeter wave (mmW).
Frequency Range designationFrequency Range designation Corresponding frequency rangeCorresponding frequency range Subcarrier SpacingSubcarrier Spacing
FR1FR1 410MHz - 7125MHz410MHz - 7125MHz 15, 30, 60kHz15, 30, 60 kHz
FR2FR2 24250MHz - 52600MHz24250MHz - 52600MHz 60, 120, 240kHz60, 120, 240 kHz
또한, 일 예로, 본 개시가 적용 가능한 통신 시스템에서 상술한 뉴모놀로지(numerology)가 다르게 설정될 수 있다. 일 예로, 상술한 FR2보다 높은 주파수 대역으로 테라헤르츠 웨이브(Terahertz wave, THz) 대역이 사용될 수 있다. THz 대역에서 SCS는 NR 시스템보다 더 크게 설정될 수 있으며, 슬롯 수도 상이하게 설정될 수 있으며, 상술한 실시 예로 한정되지 않는다. THz 대역에 대해서는 하기에서 후술한다.Also, as an example, in a communication system to which the present disclosure is applicable, the above-described pneumatic numerology may be set differently. For example, a terahertz wave (THz) band may be used as a higher frequency band than the above-described FR2. In the THz band, the SCS may be set to be larger than that of the NR system, and the number of slots may be set differently, and it is not limited to the above-described embodiment. The THz band will be described later.
도 14는 본 개시에 적용 가능한 슬롯 구조를 도시한 도면이다.14 is a diagram illustrating a slot structure applicable to the present disclosure.
하나의 슬롯은 시간 도메인에서 복수의 심볼을 포함한다. 예를 들어, 보통 CP의 경우 하나의 슬롯이 7개의 심볼을 포함하나, 확장 CP의 경우 하나의 슬롯이 6개의 심볼을 포함할 수 있다. 반송파(carrier)는 주파수 도메인에서 복수의 부반송파(subcarrier)를 포함한다. RB(Resource Block)는 주파수 도메인에서 복수(예, 12)의 연속한 부반송파로 정의될 수 있다. One slot includes a plurality of symbols in the time domain. For example, in the case of a normal CP, one slot may include 7 symbols, but in the case of an extended CP, one slot may include 6 symbols. A carrier (carrier) includes a plurality of subcarriers (subcarrier) in the frequency domain. A resource block (RB) may be defined as a plurality of (eg, 12) consecutive subcarriers in the frequency domain.
또한, BWP(Bandwidth Part)는 주파수 도메인에서 복수의 연속한 (P)RB로 정의되며, 하나의 뉴모놀로지(numerology)(예, SCS, CP 길이 등)에 대응될 수 있다.In addition, a bandwidth part (BWP) is defined as a plurality of consecutive (P)RBs in the frequency domain, and may correspond to one numerology (eg, SCS, CP length, etc.).
반송파는 최대 N개(예, 5개)의 BWP를 포함할 수 있다. 데이터 통신은 활성화된 BWP를 통해서 수행되며, 하나의 단말한테는 하나의 BWP만 활성화될 수 있다. 자원 그리드에서 각각의 요소는 자원요소(Resource Element, RE)로 지칭되며, 하나의 복소 심볼이 매핑될 수 있다.A carrier may include a maximum of N (eg, 5) BWPs. Data communication is performed through the activated BWP, and only one BWP can be activated for one terminal. Each element in the resource grid is referred to as a resource element (RE), and one complex symbol may be mapped.
6G 통신 시스템 6G communication system
6G (무선통신) 시스템은 (i) 디바이스 당 매우 높은 데이터 속도, (ii) 매우 많은 수의 연결된 디바이스들, (iii) 글로벌 연결성(global connectivity), (iv) 매우 낮은 지연, (v) 배터리-프리(battery-free) IoT 디바이스들의 에너지 소비를 낮추고, (vi) 초고신뢰성 연결, (vii) 머신 러닝 능력을 가지는 연결된 지능 등에 목적이 있다. 6G 시스템의 비젼은 "intelligent connectivity", "deep connectivity", "holographic connectivity", "ubiquitous connectivity"와 같은 4가지 측면일 수 있으며, 6G 시스템은 하기 표 4와 같은 요구 사항을 만족시킬 수 있다. 즉, 표 4는 6G 시스템의 요구 사항을 나타낸 표이다.6G (wireless) systems have (i) very high data rates per device, (ii) very large number of connected devices, (iii) global connectivity, (iv) very low latency, (v) battery- It aims to reduce energy consumption of battery-free IoT devices, (vi) ultra-reliable connections, and (vii) connected intelligence with machine learning capabilities. The vision of the 6G system may have four aspects such as "intelligent connectivity", "deep connectivity", "holographic connectivity", and "ubiquitous connectivity", and the 6G system may satisfy the requirements shown in Table 4 below. That is, Table 4 is a table showing the requirements of the 6G system.
Per device peak data ratePer device peak data rate 1 Tbps1 Tbps
E2E latencyE2E latency 1 ms1 ms
Maximum spectral efficiencyMaximum spectral efficiency 100 bps/Hz100 bps/Hz
Mobility supportMobility support up to 1000 km/hrup to 1000 km/hr
Satellite integrationSatellite integration FullyFully
AIAI FullyFully
Autonomous vehicleautonomous vehicle FullyFully
XRXR FullyFully
Haptic CommunicationHaptic Communication FullyFully
이때, 6G 시스템은 향상된 모바일 브로드밴드(enhanced mobile broadband, eMBB), 초-저지연 통신(ultra-reliable low latency communications, URLLC), mMTC (massive machine type communications), AI 통합 통신(AI integrated communication), 촉각 인터넷(tactile internet), 높은 스루풋(high throughput), 높은 네트워크 능력(high network capacity), 높은 에너지 효율(high energy efficiency), 낮은 백홀 및 접근 네트워크 혼잡(low backhaul and access network congestion) 및 향상된 데이터 보안(enhanced data security)과 같은 핵심 요소(key factor)들을 가질 수 있다.At this time, the 6G system includes enhanced mobile broadband (eMBB), ultra-reliable low latency communications (URLLC), massive machine type communications (mmTC), AI integrated communication, and tactile Internet (tactile internet), high throughput (high throughput), high network capacity (high network capacity), high energy efficiency (high energy efficiency), low backhaul and access network congestion (low backhaul and access network congestion) and improved data security ( It may have key factors such as enhanced data security.
도 15는 본 개시에 적용 가능한 6G 시스템에서 제공 가능한 통신 구조의 일례를 도시한 도면이다.15 is a diagram illustrating an example of a communication structure that can be provided in a 6G system applicable to the present disclosure.
도 15를 참조하면, 6G 시스템은 5G 무선통신 시스템보다 50배 더 높은 동시 무선통신 연결성을 가질 것으로 예상된다. 5G의 핵심 요소(key feature)인 URLLC는 6G 통신에서 1ms보다 적은 단-대-단(end-to-end) 지연을 제공함으로써 보다 더 주요한 기술이 될 것으로 예상된다. 이때, 6G 시스템은 자주 사용되는 영역 스펙트럼 효율과 달리 체적 스펙트럼 효율이 훨씬 우수할 것이다. 6G 시스템은 매우 긴 배터리 수명과 에너지 수확을 위한 고급 배터리 기술을 제공할 수 있어, 6G 시스템에서 모바일 디바이스들은 별도로 충전될 필요가 없을 수 있다. 또한, 6G에서 새로운 네트워크 특성들은 다음과 같을 수 있다.Referring to FIG. 15 , the 6G system is expected to have 50 times higher simultaneous wireless communication connectivity than the 5G wireless communication system. URLLC, a key feature of 5G, is expected to become an even more important technology by providing an end-to-end delay of less than 1 ms in 6G communication. At this time, the 6G system will have much better volumetric spectral efficiency, unlike the frequently used area spectral efficiency. 6G systems can provide very long battery life and advanced battery technology for energy harvesting, so mobile devices in 6G systems may not need to be charged separately. In addition, new network characteristics in 6G may be as follows.
- 위성 통합 네트워크(Satellites integrated network): 글로벌 모바일 집단을 제공하기 위해 6G는 위성과 통합될 것으로 예상된다. 지상파, 위성 및 공중 네트워크를 하나의 무선통신 시스템으로 통합은 6G에 매우 중요할 수 있다.- Satellites integrated network: 6G is expected to be integrated with satellites to provide a global mobile population. The integration of terrestrial, satellite and public networks into one wireless communication system could be very important for 6G.
- 연결된 인텔리전스(connected intelligence): 이전 세대의 무선 통신 시스템과 달리 6G는 혁신적이며, “연결된 사물”에서 "연결된 지능"으로 무선 진화가 업데이트될 것이다. AI는 통신 절차의 각 단계(또는 후술할 신호 처리의 각 절차)에서 적용될 수 있다.- Connected intelligence: Unlike previous generations of wireless communication systems, 6G is revolutionary and will update the evolution of wireless from “connected things” to “connected intelligence”. AI may be applied in each step of a communication procedure (or each procedure of signal processing to be described later).
- 무선 정보 및 에너지 전달의 완벽한 통합(seamless integration wireless information and energy transfer): 6G 무선 네트워크는 스마트폰들과 센서들과 같이 디바이스들의 배터리를 충전하기 위해 전력을 전달할 것이다. 그러므로, 무선 정보 및 에너지 전송 (WIET)은 통합될 것이다.- Seamless integration wireless information and energy transfer: The 6G wireless network will deliver power to charge the batteries of devices such as smartphones and sensors. Therefore, wireless information and energy transfer (WIET) will be integrated.
- 유비쿼터스 슈퍼 3D 연결(ubiquitous super 3-dimemtion connectivity): 드론 및 매우 낮은 지구 궤도 위성의 네트워크 및 핵심 네트워크 기능에 접속은 6G 유비쿼터스에서 슈퍼 3D 연결을 만들 것이다.- Ubiquitous super 3-dimemtion connectivity: access to networks and core network functions of drones and very low-Earth orbit satellites will create super 3D connectivity in 6G ubiquitous.
위와 같은 6G의 새로운 네트워크 특성들에서 몇 가지 일반적인 요구 사항은 다음과 같을 수 있다.In the above new network characteristics of 6G, some general requirements may be as follows.
- 스몰 셀 네트워크(small cell networks): 스몰 셀 네트워크의 아이디어는 셀룰러 시스템에서 처리량, 에너지 효율 및 스펙트럼 효율 향상의 결과로 수신 신호 품질을 향상시키기 위해 도입되었다. 결과적으로, 스몰 셀 네트워크는 5G 및 비욘드 5G (5GB) 이상의 통신 시스템에 필수적인 특성이다. 따라서, 6G 통신 시스템 역시 스몰 셀 네트워크의 특성을 채택한다.- Small cell networks: The idea of small cell networks was introduced to improve the received signal quality as a result of improved throughput, energy efficiency and spectral efficiency in cellular systems. As a result, small cell networks are essential characteristics for communication systems beyond 5G and Beyond 5G (5GB). Accordingly, the 6G communication system also adopts the characteristics of the small cell network.
- 초 고밀도 이기종 네트워크(ultra-dense heterogeneous network): 초 고밀도 이기종 네트워크들은 6G 통신 시스템의 또 다른 중요한 특성이 될 것이다. 이기종 네트워크로 구성된 멀티-티어 네트워크는 전체 QoS를 개선하고 비용을 줄인다.- Ultra-dense heterogeneous network: Ultra-dense heterogeneous networks will be another important characteristic of 6G communication system. A multi-tier network composed of heterogeneous networks improves overall QoS and reduces costs.
- 대용량 백홀(high-capacity backhaul): 백홀 연결은 대용량 트래픽을 지원하기 위해 대용량 백홀 네트워크로 특징 지어진다. 고속 광섬유 및 자유 공간 광학 (FSO) 시스템이 이 문제에 대한 가능한 솔루션일 수 있다.- high-capacity backhaul: The backhaul connection is characterized as a high-capacity backhaul network to support high-capacity traffic. High-speed fiber optics and free-space optics (FSO) systems may be possible solutions to this problem.
- 모바일 기술과 통합된 레이더 기술: 통신을 통한 고정밀 지역화(또는 위치 기반 서비스)는 6G 무선통신 시스템의 기능 중 하나이다. 따라서, 레이더 시스템은 6G 네트워크와 통합될 것이다.- Radar technology integrated with mobile technology: High-precision localization (or location-based service) through communication is one of the functions of the 6G wireless communication system. Therefore, the radar system will be integrated with the 6G network.
- 소프트화 및 가상화(softwarization and virtualization): 소프트화 및 가상화는 유연성, 재구성성 및 프로그래밍 가능성을 보장하기 위해 5GB 네트워크에서 설계 프로세스의 기초가 되는 두 가지 중요한 기능이다. 또한, 공유 물리적 인프라에서 수십억 개의 장치가 공유될 수 있다.- Softwarization and virtualization: Softening and virtualization are two important functions that underlie the design process in 5GB networks to ensure flexibility, reconfigurability and programmability. In addition, billions of devices can be shared in a shared physical infrastructure.
6G 시스템의 핵심 구현 기술Core implementation technology of 6G system
- 인공 지능(artificial Intelligence, AI)- Artificial Intelligence (AI)
6G 시스템에 가장 중요하며, 새로 도입될 기술은 AI이다. 4G 시스템에는 AI가 관여하지 않았다. 5G 시스템은 부분 또는 매우 제한된 AI를 지원할 것이다. 그러나, 6G 시스템은 완전히 자동화를 위해 AI가 지원될 것이다. 머신 러닝의 발전은 6G에서 실시간 통신을 위해 보다 지능적인 네트워크를 만들 것이다. 통신에 AI를 도입하면 실시간 데이터 전송이 간소화되고 향상될 수 있다. AI는 수많은 분석을 사용하여 복잡한 대상 작업이 수행되는 방식을 결정할 수 있다. 즉, AI는 효율성을 높이고 처리 지연을 줄일 수 있다.The most important and newly introduced technology for 6G systems is AI. AI was not involved in the 4G system. 5G systems will support partial or very limited AI. However, the 6G system will be AI-enabled for full automation. Advances in machine learning will create more intelligent networks for real-time communication in 6G. Incorporating AI into communications can simplify and enhance real-time data transmission. AI can use numerous analytics to determine how complex target tasks are performed. In other words, AI can increase efficiency and reduce processing delays.
핸드 오버, 네트워크 선택, 자원 스케줄링과 같은 시간 소모적인 작업은 AI를 사용함으로써 즉시 수행될 수 있다. AI는 M2M, 기계-대-인간 및 인간-대-기계 통신에서도 중요한 역할을 할 수 있다. 또한, AI는 BCI(brain computer interface)에서 신속한 통신이 될 수 있다. AI 기반 통신 시스템은 메타 물질, 지능형 구조, 지능형 네트워크, 지능형 장치, 지능형 인지 라디오(radio), 자체 유지 무선 네트워크 및 머신 러닝에 의해 지원될 수 있다.Time-consuming tasks such as handovers, network selection, and resource scheduling can be performed instantly by using AI. AI can also play an important role in M2M, machine-to-human and human-to-machine communication. In addition, AI can be a rapid communication in the BCI (brain computer interface). AI-based communication systems can be supported by metamaterials, intelligent structures, intelligent networks, intelligent devices, intelligent cognitive radios, self-sustaining wireless networks, and machine learning.
최근 AI를 무선 통신 시스템과 통합하려고 하는 시도들이 나타나고 있으나, 이는 어플리케이션 계층(application layer), 네트워크 계층(network layer) 특히, 딥러닝은 무선 자원 관리 및 할당(wireless resource management and allocation) 분야에 집중되어 왔다. 그러나, 이러한 연구는 점점 MAC 계층 및 물리 계층으로 발전하고 있으며, 특히 물리계층에서 딥러닝을 무선 전송(wireless transmission)과 결합하고자 하는 시도들이 나타나고 있다. AI 기반의 물리계층 전송은, 근본적인 신호 처리 및 통신 메커니즘에 있어서, 전통적인 통신 프레임워크가 아니라 AI 드라이버에 기초한 신호 처리 및 통신 메커니즘을 적용하는 것을 의미한다. 예를 들어, 딥러닝 기반의 채널 코딩 및 디코딩(channel coding and decoding), 딥러닝 기반의 신호 추정(estimation) 및 검출(detection), 딥러닝 기반의 MIMO(multiple input multiple output) 매커니즘(mechanism), AI 기반의 자원 스케줄링(scheduling) 및 할당(allocation) 등을 포함할 수 있다.Recently, attempts have been made to integrate AI with wireless communication systems, but these are the application layer, network layer, and especially deep learning focused on wireless resource management and allocation. come. However, these studies are gradually developing into the MAC layer and the physical layer, and in particular, attempts to combine deep learning with wireless transmission in the physical layer are appearing. AI-based physical layer transmission means applying a signal processing and communication mechanism based on an AI driver rather than a traditional communication framework in a fundamental signal processing and communication mechanism. For example, deep learning-based channel coding and decoding, deep learning-based signal estimation and detection, deep learning-based multiple input multiple output (MIMO) mechanism, It may include AI-based resource scheduling and allocation.
머신 러닝은 채널 추정 및 채널 트래킹을 위해 사용될 수 있으며, DL(downlink)의 물리 계층(physical layer)에서 전력 할당(power allocation), 간섭 제거(interference cancellation) 등에 사용될 수 있다. 또한, 머신 러닝은 MIMO 시스템에서 안테나 선택, 전력 제어(power control), 심볼 검출(symbol detection) 등에도 사용될 수 있다.Machine learning may be used for channel estimation and channel tracking, and may be used for power allocation, interference cancellation, and the like in a physical layer of a downlink (DL). In addition, machine learning may be used for antenna selection, power control, symbol detection, and the like in a MIMO system.
그러나 물리계층에서의 전송을 위한 DNN의 적용은 아래와 같은 문제점이 있을 수 있다.However, the application of DNN for transmission in the physical layer may have the following problems.
딥러닝 기반의 AI 알고리즘은 훈련 파라미터를 최적화하기 위해 수많은 훈련 데이터가 필요하다. 그러나 특정 채널 환경에서의 데이터를 훈련 데이터로 획득하는데 있어서의 한계로 인해, 오프라인 상에서 많은 훈련 데이터를 사용한다. 이는 특정 채널 환경에서 훈련 데이터에 대한 정적 훈련(static training)은, 무선 채널의 동적 특성 및 다이버시티(diversity) 사이에 모순(contradiction)이 생길 수 있다.Deep learning-based AI algorithms require large amounts of training data to optimize training parameters. However, due to a limitation in acquiring data in a specific channel environment as training data, a lot of training data is used offline. This is because static training on training data in a specific channel environment may cause a contradiction between dynamic characteristics and diversity of a wireless channel.
또한, 현재 딥러닝은 주로 실제 신호(real signal)을 대상으로 한다. 그러나, 무선 통신의 물리 계층의 신호들은 복소 신호(complex signal)이다. 무선 통신 신호의 특성을 매칭시키기 위해 복소(complex) 도메인 신호의 검출하는 신경망(neural network)에 대한 연구가 더 필요하다.In addition, current deep learning mainly targets real signals. However, signals of the physical layer of wireless communication are complex signals. In order to match the characteristics of a wireless communication signal, further research on a neural network for detecting a complex domain signal is needed.
이하, 머신 러닝에 대해 보다 구체적으로 살펴본다.Hereinafter, machine learning will be described in more detail.
머신 러닝은 사람이 할 수 있거나 혹은 하기 어려운 작업을 대신해낼 수 있는 기계를 만들어 내기 위해 기계를 학습시키는 일련의 동작을 의미한다. 머신 러닝을 위해서는 데이터와 러닝 모델이 필요하다. 머신 러닝에서 데이터의 학습 방법은 크게 3가지 즉, 지도 학습(supervised learning), 비지도 학습(unsupervised learning) 그리고 강화 학습(reinforcement learning)으로 구분될 수 있다.Machine learning refers to a set of operations that trains a machine to create a machine that can perform tasks that humans can or cannot do. Machine learning requires data and a learning model. In machine learning, data learning methods can be roughly divided into three types: supervised learning, unsupervised learning, and reinforcement learning.
신경망 학습은 출력의 오류를 최소화하기 위한 것이다. 신경망 학습은 반복적으로 학습 데이터를 신경망에 입력시키고 학습 데이터에 대한 신경망의 출력과 타겟의 에러를 계산하고, 에러를 줄이기 위한 방향으로 신경망의 에러를 신경망의 출력 레이어에서부터 입력 레이어 방향으로 역전파(backpropagation) 하여 신경망의 각 노드의 가중치를 업데이트하는 과정이다.Neural network learning is to minimize output errors. Neural network learning repeatedly inputs training data into the neural network, calculates the output and target errors of the neural network for the training data, and backpropagates the neural network error from the output layer of the neural network to the input layer in the direction to reduce the error. ) to update the weight of each node in the neural network.
지도 학습은 학습 데이터에 정답이 라벨링된 학습 데이터를 사용하며 비지도 학습은 학습 데이터에 정답이 라벨링되어 있지 않을 수 있다. 즉, 예를 들어 데이터 분류에 관한 지도 학습의 경우의 학습 데이터는 학습 데이터 각각에 카테고리가 라벨링된 데이터 일 수 있다. 라벨링된 학습 데이터가 신경망에 입력되고 신경망의 출력(카테고리)과 학습 데이터의 라벨을 비교하여 오차(error)가 계산될 수 있다. 계산된 오차는 신경망에서 역방향(즉, 출력 레이어에서 입력 레이어 방향)으로 역전파 되며, 역전파에 따라 신경망의 각 레이어의 각 노드들의 연결 가중치가 업데이트 될 수 있다. 업데이트 되는 각 노드의 연결 가중치는 학습률(learning rate)에 따라 변화량이 결정될 수 있다. 입력 데이터에 대한 신경망의 계산과 에러의 역전파는 학습 사이클(epoch)을 구성할 수 있다. 학습률은 신경망의 학습 사이클의 반복 횟수에 따라 상이하게 적용될 수 있다. 예를 들어, 신경망의 학습 초기에는 높은 학습률을 사용하여 신경망이 빠르게 일정 수준의 성능을 확보하도록 하여 효율성을 높이고, 학습 후기에는 낮은 학습률을 사용하여 정확도를 높일 수 있다Supervised learning uses training data in which the correct answer is labeled in the training data, and in unsupervised learning, the correct answer may not be labeled in the training data. That is, for example, learning data in the case of supervised learning related to data classification may be data in which categories are labeled for each of the training data. The labeled training data is input to the neural network, and an error can be calculated by comparing the output (category) of the neural network with the label of the training data. The calculated error is back propagated in the reverse direction (ie, from the output layer to the input layer) in the neural network, and the connection weight of each node of each layer of the neural network may be updated according to the back propagation. The change amount of the connection weight of each node to be updated may be determined according to a learning rate. The computation of the neural network on the input data and the backpropagation of errors can constitute a learning cycle (epoch). The learning rate may be applied differently depending on the number of repetitions of the learning cycle of the neural network. For example, in the early stage of learning a neural network, a high learning rate can be used to increase the efficiency by allowing the neural network to quickly obtain a certain level of performance, and in the late learning period, a low learning rate can be used to increase the accuracy.
데이터의 특징에 따라 학습 방법은 달라질 수 있다. 예를 들어, 통신 시스템 상에서 송신단에서 전송한 데이터를 수신단에서 정확하게 예측하는 것을 목적으로 하는 경우, 비지도 학습 또는 강화 학습 보다는 지도 학습을 이용하여 학습을 수행하는 것이 바람직하다.The learning method may vary depending on the characteristics of the data. For example, when the purpose of accurately predicting data transmitted from a transmitter in a communication system is at a receiver, it is preferable to perform learning using supervised learning rather than unsupervised learning or reinforcement learning.
러닝 모델은 인간의 뇌에 해당하는 것으로서, 가장 기본적인 선형 모델을 생각할 수 있으나, 인공 신경망(artificial neural networks)와 같은 복잡성이 높은 신경망 구조를 러닝 모델로 사용하는 머신 러닝의 패러다임을 딥러닝(deep learning)이라 한다.The learning model corresponds to the human brain, and the most basic linear model can be considered. ) is called
학습(learning) 방식으로 사용하는 신경망 코어(neural network cord)는 크게 심층 신경망(deep neural networks, DNN), 합성곱 신경망(convolutional deep neural networks, CNN), 순환 신경망(recurrent boltzmann machine, RNN) 방식이 있으며, 이러한 러닝 모델이 적용될 수 있다.The neural network cord used as a learning method is largely divided into deep neural networks (DNN), convolutional deep neural networks (CNN), and recurrent boltzmann machine (RNN) methods. and such a learning model can be applied.
THz(Terahertz) 통신THz (Terahertz) communication
6G 시스템에서 THz 통신이 적용될 수 있다. 일 예로, 데이터 전송률은 대역폭을 늘려 높일 수 있다. 이것은 넓은 대역폭으로 sub-THz 통신을 사용하고, 진보된 대규모 MIMO 기술을 적용하여 수행될 수 있다. THz communication may be applied in the 6G system. For example, the data rate may be increased by increasing the bandwidth. This can be accomplished by using sub-THz communication with a wide bandwidth and applying advanced large-scale MIMO technology.
도 16은 본 개시에 적용 가능한 전자기 스펙트럼을 도시한 도면이다. 일 예로, 도 16을 참조하면, 밀리미터 이하의 방사선으로도 알려진 THz파는 일반적으로 0.03mm-3mm 범위의 해당 파장을 가진 0.1THz와 10THz 사이의 주파수 대역을 나타낸다. 100GHz-300GHz 대역 범위(Sub THz 대역)는 셀룰러 통신을 위한 THz 대역의 주요 부분으로 간주된다. Sub-THz 대역 mmWave 대역에 추가하면 6G 셀룰러 통신 용량은 늘어난다. 정의된 THz 대역 중 300GHz-3THz는 원적외선 (IR) 주파수 대역에 있다. 300GHz-3THz 대역은 광 대역의 일부이지만 광 대역의 경계에 있으며, RF 대역 바로 뒤에 있다. 따라서, 이 300 GHz-3 THz 대역은 RF와 유사성을 나타낸다.16 is a diagram illustrating an electromagnetic spectrum applicable to the present disclosure. As an example, referring to FIG. 16 , a THz wave, also known as sub-millimeter radiation, generally represents a frequency band between 0.1 THz and 10 THz with a corresponding wavelength in the range of 0.03 mm-3 mm. The 100GHz-300GHz band range (Sub THz band) is considered a major part of the THz band for cellular communication. Sub-THz band Addition to mmWave band increases 6G cellular communication capacity. Among the defined THz bands, 300GHz-3THz is in the far-infrared (IR) frequency band. The 300GHz-3THz band is part of the broadband, but at the edge of the wideband, just behind the RF band. Thus, this 300 GHz-3 THz band shows similarities to RF.
THz 통신의 주요 특성은 (i) 매우 높은 데이터 전송률을 지원하기 위해 광범위하게 사용 가능한 대역폭, (ii) 고주파에서 발생하는 높은 경로 손실 (고 지향성 안테나는 필수 불가결)을 포함한다. 높은 지향성 안테나에서 생성된 좁은 빔 폭은 간섭을 줄인다. THz 신호의 작은 파장은 훨씬 더 많은 수의 안테나 소자가 이 대역에서 동작하는 장치 및 BS에 통합될 수 있게 한다. 이를 통해 범위 제한을 극복할 수 있는 고급 적응형 배열 기술을 사용할 수 있다. The main characteristics of THz communication include (i) widely available bandwidth to support very high data rates, and (ii) high path loss occurring at high frequencies (high directional antennas are indispensable). The narrow beamwidth produced by the highly directional antenna reduces interference. The small wavelength of the THz signal allows a much larger number of antenna elements to be integrated into devices and BSs operating in this band. This allows the use of advanced adaptive nesting techniques that can overcome range limitations.
광 무선 기술(optical wireless technology)optical wireless technology
OWC(optical wireless communication) 기술은 가능한 모든 장치-대-액세스 네트워크를 위한 RF 기반 통신 외에도 6G 통신을 위해 계획되었다. 이러한 네트워크는 네트워크-대-백홀/프론트홀 네트워크 연결에 접속한다. OWC 기술은 4G 통신 시스템 이후 이미 사용되고 있으나 6G 통신 시스템의 요구를 충족시키기 위해 더 널리 사용될 것이다. 광 충실도(light fidelity), 가시광 통신, 광 카메라 통신 및 광 대역에 기초한 FSO(free space optical) 통신과 같은 OWC 기술은 이미 잘 알려진 기술이다. 광 무선 기술 기반의 통신은 매우 높은 데이터 속도, 낮은 지연 시간 및 안전한 통신을 제공할 수 있다. LiDAR(light detection and ranging) 또한 광 대역을 기반으로 6G 통신에서 초 고해상도 3D 매핑을 위해 이용될 수 있다.Optical wireless communication (OWC) technology is envisaged for 6G communication in addition to RF-based communication for all possible device-to-access networks. These networks connect to network-to-backhaul/fronthaul network connections. OWC technology has already been used since the 4G communication system, but will be used more widely to meet the needs of the 6G communication system. OWC technologies such as light fidelity, visible light communication, optical camera communication, and free space optical (FSO) communication based on a light band are well known technologies. Communication based on optical radio technology can provide very high data rates, low latency and secure communication. Light detection and ranging (LiDAR) can also be used for ultra-high-resolution 3D mapping in 6G communication based on a wide band.
FSO 백홀 네트워크FSO backhaul network
FSO 시스템의 송신기 및 수신기 특성은 광섬유 네트워크의 특성과 유사하다. 따라서, FSO 시스템의 데이터 전송은 광섬유 시스템과 비슷하다. 따라서, FSO는 광섬유 네트워크와 함께 6G 시스템에서 백홀 연결을 제공하는 좋은 기술이 될 수 있다. FSO를 사용하면, 10,000km 이상의 거리에서도 매우 장거리 통신이 가능하다. FSO는 바다, 우주, 수중, 고립된 섬과 같은 원격 및 비원격 지역을 위한 대용량 백홀 연결을 지원한다. FSO는 셀룰러 기지국 연결도 지원한다.The transmitter and receiver characteristics of an FSO system are similar to those of a fiber optic network. Thus, data transmission in an FSO system is similar to that of a fiber optic system. Therefore, FSO can be a good technology to provide backhaul connectivity in 6G systems along with fiber optic networks. Using FSO, very long-distance communication is possible even at distances of 10,000 km or more. FSO supports high-capacity backhaul connections for remote and non-remote areas such as sea, space, underwater, and isolated islands. FSO also supports cellular base station connectivity.
대규모 MIMO 기술Massive MIMO technology
스펙트럼 효율을 향상시키는 핵심 기술 중 하나는 MIMO 기술을 적용하는 것이다. MIMO 기술이 향상되면 스펙트럼 효율도 향상된다. 따라서, 6G 시스템에서 대규모 MIMO 기술이 중요할 것이다. MIMO 기술은 다중 경로를 이용하기 때문에 데이터 신호가 하나 이상의 경로로 전송될 수 있도록 다중화 기술 및 THz 대역에 적합한 빔 생성 및 운영 기술도 중요하게 고려되어야 한다.One of the key technologies to improve spectral efficiency is to apply MIMO technology. As MIMO technology improves, so does the spectral efficiency. Therefore, large-scale MIMO technology will be important in 6G systems. Since the MIMO technology uses multiple paths, a multiplexing technique and a beam generation and operation technique suitable for the THz band should also be considered important so that a data signal can be transmitted through one or more paths.
블록 체인blockchain
블록 체인은 미래의 통신 시스템에서 대량의 데이터를 관리하는 중요한 기술이 될 것이다. 블록 체인은 분산 원장 기술의 한 형태로서, 분산 원장은 수많은 노드 또는 컴퓨팅 장치에 분산되어 있는 데이터베이스이다. 각 노드는 동일한 원장 사본을 복제하고 저장한다. 블록 체인은 P2P(peer to peer) 네트워크로 관리된다. 중앙 집중식 기관이나 서버에서 관리하지 않고 존재할 수 있다. 블록 체인의 데이터는 함께 수집되어 블록으로 구성된다. 블록은 서로 연결되고 암호화를 사용하여 보호된다. 블록 체인은 본질적으로 향상된 상호 운용성(interoperability), 보안, 개인 정보 보호, 안정성 및 확장성을 통해 대규모 IoT를 완벽하게 보완한다. 따라서, 블록 체인 기술은 장치 간 상호 운용성, 대용량 데이터 추적성, 다른 IoT 시스템의 자율적 상호 작용 및 6G 통신 시스템의 대규모 연결 안정성과 같은 여러 기능을 제공한다.Blockchain will become an important technology for managing large amounts of data in future communication systems. Blockchain is a form of distributed ledger technology, which is a database distributed across numerous nodes or computing devices. Each node replicates and stores an identical copy of the ledger. The blockchain is managed as a peer-to-peer (P2P) network. It can exist without being managed by a centralized authority or server. Data on the blockchain is collected together and organized into blocks. Blocks are linked together and protected using encryption. Blockchain in nature perfectly complements IoT at scale with improved interoperability, security, privacy, reliability and scalability. Therefore, blockchain technology provides several features such as interoperability between devices, traceability of large amounts of data, autonomous interaction of different IoT systems, and large-scale connection stability of 6G communication systems.
3D 네트워킹3D Networking
6G 시스템은 지상 및 공중 네트워크를 통합하여 수직 확장의 사용자 통신을 지원한다. 3D BS는 저궤도 위성 및 UAV를 통해 제공될 것이다. 고도 및 관련 자유도 측면에서 새로운 차원을 추가하면 3D 연결이 기존 2D 네트워크와 상당히 다르다.The 6G system integrates terrestrial and public networks to support vertical expansion of user communications. 3D BS will be provided via low orbit satellites and UAVs. Adding a new dimension in terms of elevation and associated degrees of freedom makes 3D connections significantly different from traditional 2D networks.
양자 커뮤니케이션quantum communication
6G 네트워크의 맥락에서 네트워크의 감독되지 않은 강화 학습이 유망하다. 지도 학습 방식은 6G에서 생성된 방대한 양의 데이터에 레이블을 지정할 수 없다. 비지도 학습에는 라벨링이 필요하지 않다. 따라서, 이 기술은 복잡한 네트워크의 표현을 자율적으로 구축하는 데 사용할 수 있다. 강화 학습과 비지도 학습을 결합하면 진정한 자율적인 방식으로 네트워크를 운영할 수 있다.In the context of 6G networks, unsupervised reinforcement learning of networks is promising. Supervised learning methods cannot label the massive amounts of data generated by 6G. Labeling is not required for unsupervised learning. Thus, this technique can be used to autonomously build representations of complex networks. Combining reinforcement learning and unsupervised learning allows networks to operate in a truly autonomous way.
무인 항공기drone
UAV(unmanned aerial vehicle) 또는 드론은 6G 무선 통신에서 중요한 요소가 될 것이다. 대부분의 경우, UAV 기술을 사용하여 고속 데이터 무선 연결이 제공된다. 기지국 엔티티는 셀룰러 연결을 제공하기 위해 UAV에 설치된다. UAV는 쉬운 배치, 강력한 가시선 링크 및 이동성이 제어되는 자유도와 같은 고정 기지국 인프라에서 볼 수 없는 특정 기능을 가지고 있다. 천재 지변 등의 긴급 상황 동안, 지상 통신 인프라의 배치는 경제적으로 실현 가능하지 않으며, 때로는 휘발성 환경에서 서비스를 제공할 수 없다. UAV는 이러한 상황을 쉽게 처리할 수 있다. UAV는 무선 통신 분야의 새로운 패러다임이 될 것이다. 이 기술은 eMBB, URLLC 및 mMTC 인 무선 네트워크의 세 가지 기본 요구 사항을 용이하게 한다. UAV는 또한, 네트워크 연결성 향상, 화재 감지, 재난 응급 서비스, 보안 및 감시, 오염 모니터링, 주차 모니터링, 사고 모니터링 등과 같은 여러 가지 목적을 지원할 수 있다. 따라서, UAV 기술은 6G 통신에 가장 중요한 기술 중 하나로 인식되고 있다.Unmanned aerial vehicles (UAVs) or drones will become an important element in 6G wireless communications. In most cases, high-speed data wireless connections are provided using UAV technology. A base station entity is installed in the UAV to provide cellular connectivity. UAVs have certain features not found in fixed base station infrastructure, such as easy deployment, strong line-of-sight links, and degrees of freedom with controlled mobility. During emergencies such as natural disasters, the deployment of terrestrial communications infrastructure is not economically feasible and sometimes cannot provide services in volatile environments. A UAV can easily handle this situation. UAV will become a new paradigm in the field of wireless communication. This technology facilitates the three basic requirements of wireless networks: eMBB, URLLC and mMTC. UAVs can also serve several purposes, such as improving network connectivity, fire detection, disaster emergency services, security and surveillance, pollution monitoring, parking monitoring, incident monitoring, and more. Therefore, UAV technology is recognized as one of the most important technologies for 6G communication.
셀-프리 통신(cell-free Communication)Cell-free Communication
여러 주파수와 이기종 통신 기술의 긴밀한 통합은 6G 시스템에서 매우 중요하다. 결과적으로, 사용자는 디바이스에서 어떤 수동 구성을 만들 필요 없이 네트워크에서 다른 네트워크로 원활하게 이동할 수 있다. 사용 가능한 통신 기술에서 최상의 네트워크가 자동으로 선택된다. 이것은 무선 통신에서 셀 개념의 한계를 깨뜨릴 것이다. 현재, 하나의 셀에서 다른 셀로의 사용자 이동은 고밀도 네트워크에서 너무 많은 핸드 오버를 야기하고, 핸드 오버 실패, 핸드 오버 지연, 데이터 손실 및 핑퐁 효과를 야기한다. 6G 셀-프리 통신은 이 모든 것을 극복하고 더 나은 QoS를 제공할 것이다. 셀-프리 통신은 멀티 커넥티비티 및 멀티-티어 하이브리드 기술과 장치의 서로 다른 이기종 라디오를 통해 달성될 것이다.Tight integration of multiple frequencies and heterogeneous communication technologies is very important in 6G systems. As a result, users can seamlessly move from one network to another without having to make any manual configuration on the device. The best network is automatically selected from the available communication technologies. This will break the limitations of the cell concept in wireless communication. Currently, user movement from one cell to another causes too many handovers in high-density networks, causing handover failures, handover delays, data loss and ping-pong effects. 6G cell-free communication will overcome all of this and provide better QoS. Cell-free communication will be achieved through multi-connectivity and multi-tier hybrid technologies and different heterogeneous radios of devices.
무선 정보 및 에너지 전송 통합(wireless information and energy transfer, WIET)Wireless information and energy transfer (WIET)
WIET은 무선 통신 시스템과 같이 동일한 필드와 웨이브(wave)를 사용한다. 특히, 센서와 스마트폰은 통신 중 무선 전력 전송을 사용하여 충전될 것이다. WIET은 배터리 충전 무선 시스템의 수명을 연장하기 위한 유망한 기술이다. 따라서, 배터리가 없는 장치는 6G 통신에서 지원될 것이다.WIET uses the same fields and waves as wireless communication systems. In particular, the sensor and smartphone will be charged using wireless power transfer during communication. WIET is a promising technology for extending the life of battery-charging wireless systems. Therefore, devices without batteries will be supported in 6G communication.
센싱과 커뮤니케이션의 통합Integration of sensing and communication
자율 무선 네트워크는 동적으로 변화하는 환경 상태를 지속적으로 감지하고 서로 다른 노드간에 정보를 교환할 수 있는 기능이다. 6G에서, 감지는 자율 시스템을 지원하기 위해 통신과 긴밀하게 통합될 것이다.An autonomous wireless network is a function that can continuously detect dynamically changing environmental conditions and exchange information between different nodes. In 6G, sensing will be tightly integrated with communications to support autonomous systems.
액세스 백홀 네트워크의 통합Consolidation of access backhaul networks
6G에서 액세스 네트워크의 밀도는 엄청날 것이다. 각 액세스 네트워크는 광섬유와 FSO 네트워크와 같은 백홀 연결로 연결된다. 매우 많은 수의 액세스 네트워크들에 대처하기 위해, 액세스 및 백홀 네트워크 사이에 긴밀한 통합이 있을 것이다.In 6G, the density of access networks will be enormous. Each access network is connected by backhaul connections such as fiber optic and FSO networks. To cope with a very large number of access networks, there will be tight integration between the access and backhaul networks.
홀로그램 빔포밍holographic beamforming
빔포밍은 특정 방향으로 무선 신호를 전송하기 위해 안테나 배열을 조정하는 신호 처리 절차이다. 스마트 안테나 또는 진보된 안테나 시스템의 하위 집합이다. 빔포밍 기술은 높은 신호 대 잡음비, 간섭 방지 및 거부, 높은 네트워크 효율과 같은 몇 가지 장점이 있다. 홀로그램 빔포밍(hologram beamforming, HBF)은 소프트웨어-정의된 안테나를 사용하기 때문에 MIMO 시스템과 상당히 다른 새로운 빔포밍 방법이다. HBF는 6G에서 다중 안테나 통신 장치에서 신호의 효율적이고 유연한 전송 및 수신을 위해 매우 효과적인 접근 방식이 될 것이다.Beamforming is a signal processing procedure that adjusts an antenna array to transmit a radio signal in a specific direction. A smart antenna or a subset of an advanced antenna system. Beamforming technology has several advantages, such as high signal-to-noise ratio, interference prevention and rejection, and high network efficiency. Hologram beamforming (HBF) is a new beamforming method that is significantly different from MIMO systems because it uses a software-defined antenna. HBF will be a very effective approach for efficient and flexible transmission and reception of signals in multi-antenna communication devices in 6G.
빅 데이터 분석Big Data Analytics
빅 데이터 분석은 다양한 대규모 데이터 세트 또는 빅 데이터를 분석하기 위한 복잡한 프로세스이다. 이 프로세스는 숨겨진 데이터, 알 수 없는 상관 관계 및 고객 성향과 같은 정보를 찾아 완벽한 데이터 관리를 보장한다. 빅 데이터는 비디오, 소셜 네트워크, 이미지 및 센서와 같은 다양한 소스에서 수집된다. 이 기술은 6G 시스템에서 방대한 데이터를 처리하는 데 널리 사용된다.Big data analytics is a complex process for analyzing various large data sets or big data. This process ensures complete data management by finding information such as hidden data, unknown correlations and customer propensity. Big data is gathered from a variety of sources such as videos, social networks, images and sensors. This technology is widely used to process massive amounts of data in 6G systems.
LIS(large intelligent surface)LIS (large intelligent surface)
THz 대역 신호의 경우 직진성이 강하여 방해물로 인한 음영 지역이 많이 생길 수 있는데, 이러한 음영 지역 근처에 LIS 설치함으로써 통신 권역을 확대하고 통신 안정성 강화 및 추가적인 부가 서비스가 가능한 LIS 기술이 중요하게 된다. LIS는 전자기 물질(electromagnetic materials)로 만들어진 인공 표면(artificial surface)이고, 들어오는 무선파와 나가는 무선파의 전파(propagation)을 변경시킬 수 있다. LIS는 매시브 MIMO의 확장으로 보여질 수 있으나, 매시브 MIMO와 서로 다른 어레이(array) 구조 및 동작 메커니즘이 다르다. 또한, LIS는 수동 엘리먼트(passive elements)를 가진 재구성 가능한 리플렉터(reflector)로서 동작하는 점 즉, 활성(active) RF 체인(chain)을 사용하지 않고 신호를 수동적으로만 반사(reflect)하는 점에서 낮은 전력 소비를 가지는 장점이 있다. 또한, LIS의 수동적인 리플렉터 각각은 입사되는 신호의 위상 편이를 독립적으로 조절해야 하기 때문에, 무선 통신 채널에 유리할 수 있다. LIS 컨트롤러를 통해 위상 편이를 적절히 조절함으로써, 반사된 신호는 수신된 신호 전력을 부스트(boost)하기 위해 타겟 수신기에서 모여질 수 있다.In the case of the THz band signal, the linearity is strong, so there may be many shaded areas due to obstructions. By installing LIS near these shaded areas, it becomes important to expand the communication area, strengthen communication stability and provide additional additional services. The LIS is an artificial surface made of electromagnetic materials, and can change the propagation of incoming and outgoing radio waves. LIS can be viewed as an extension of massive MIMO, but has a different array structure and operation mechanism from that of massive MIMO. In addition, LIS is low in that it operates as a reconfigurable reflector with passive elements, that is, only passively reflects the signal without using an active RF chain. It has the advantage of having power consumption. Also, since each of the passive reflectors of the LIS must independently adjust the phase shift of the incoming signal, it can be advantageous for a wireless communication channel. By properly adjusting the phase shift via the LIS controller, the reflected signal can be gathered at the target receiver to boost the received signal power.
테라헤르츠(THz) 무선통신terahertz (THz) wireless communication
도 17은 본 개시에 적용 가능한 THz 통신 방법을 도시한 도면이다. 17 is a diagram illustrating a THz communication method applicable to the present disclosure.
도 17을 참조하면, THz 무선통신은 대략 0.1~10THz(1THz=1012Hz)의 진동수를 가지는 THz파를 이용하여 무선통신을 이용하는 것으로, 100GHz 이상의 매우 높은 캐리어 주파수를 사용하는 테라헤르츠(THz) 대역 무선통신을 의미할 수 있다. THz파는 RF(Radio Frequency)/밀리미터(mm)와 적외선 대역 사이에 위치하며, (i) 가시광/적외선에 비해 비금속/비분극성 물질을 잘 투과하며 RF/밀리미터파에 비해 파장이 짧아 높은 직진성을 가지며 빔 집속이 가능할 수 있다. Referring to FIG. 17, THz wireless communication uses a THz wave having a frequency of approximately 0.1 to 10 THz (1 THz = 1012 Hz), and uses a very high carrier frequency of 100 GHz or more. It can mean communication. THz wave is located between RF (Radio Frequency)/millimeter (mm) and infrared band, (i) It transmits non-metal/non-polar material better than visible light/infrared light, and has a shorter wavelength than RF/millimeter wave, so it has high straightness. Beam focusing may be possible.
또한, THz파의 광자 에너지는 수 meV에 불과하기 때문에 인체에 무해한 특성이 있다. THz 무선통신에 이용될 것으로 기대되는 주파수 대역은 공기 중 분자 흡수에 의한 전파 손실이 작은 D-밴드(110GHz~170GHz) 혹은 H-밴드(220GHz~325GHz) 대역일 수 있다. THz 무선통신에 대한 표준화 논의는 3GPP 이외에도 IEEE 802.15 THz WG(working group)을 중심으로 논의되고 있으며, IEEE 802.15의 TG(task group)(예, TG3d, TG3e)에서 발행되는 표준문서는 본 명세서에서 설명되는 내용을 구체화하거나 보충할 수 있다. THz 무선통신은 무선 인식(wireless cognition), 센싱(sensing), 이미징(imaging), 무선 통신(wireless), THz 네비게이션(navigation) 등에 응용될 수 있다.In addition, since the photon energy of the THz wave is only a few meV, it is harmless to the human body. The frequency band expected to be used for THz wireless communication may be a D-band (110 GHz to 170 GHz) or H-band (220 GHz to 325 GHz) band with low propagation loss due to absorption of molecules in the air. Standardization discussion on THz wireless communication is being discussed centered on IEEE 802.15 THz working group (WG) in addition to 3GPP, and standard documents issued by TG (task group) (eg, TG3d, TG3e) of IEEE 802.15 are described in this specification. It can be specified or supplemented. THz wireless communication may be applied to wireless recognition, sensing, imaging, wireless communication, THz navigation, and the like.
구체적으로, 도 17을 참조하면, THz 무선통신 시나리오는 매크로 네트워크(macro network), 마이크로 네트워크(micro network), 나노스케일 네트워크(nanoscale network)로 분류될 수 있다. 매크로 네트워크에서 THz 무선통신은 V2V(vehicle-to-vehicle) 연결 및 백홀/프런트홀(backhaul/fronthaul) 연결에 응용될 수 있다. 마이크로 네트워크에서 THz 무선통신은 인도어 스몰 셀(small cell), 데이터 센터에서 무선 연결과 같은 고정된 point-to-point 또는 multi-point 연결, 키오스크 다운로딩과 같은 근거리 통신(near-field communication)에 응용될 수 있다. 하기 표 5는 THz 파에서 이용될 수 있는 기술의 일례를 나타낸 표이다.Specifically, referring to FIG. 17 , a THz wireless communication scenario may be classified into a macro network, a micro network, and a nanoscale network. In a macro network, THz wireless communication can be applied to a vehicle-to-vehicle (V2V) connection and a backhaul/fronthaul connection. THz wireless communication in micro networks is applied to indoor small cells, fixed point-to-point or multi-point connections such as wireless connections in data centers, and near-field communication such as kiosk downloading. can be Table 5 below is a table showing an example of a technique that can be used in the THz wave.
Transceivers DeviceTransceivers Device Available immature: UTC-PD, RTD and SBDAvailable immature: UTC-PD, RTD and SBD
Modulation and codingModulation and coding Low order modulation techniques (OOK, QPSK), LDPC, Reed Soloman, Hamming, Polar, TurboLow order modulation techniques (OOK, QPSK), LDPC, Reed Soloman, Hamming, Polar, Turbo
AntennaAntenna Omni and Directional, phased array with low number of antenna elementsOmni and Directional, phased array with low number of antenna elements
BandwidthBandwidth 69 GHz (or 23 GHz) at 300 GHz69 GHz (or 23 GHz) at 300 GHz
Channel modelsChannel models PartiallyPartially
Data rate data rate 100 Gbps100 Gbps
Outdoor deploymentoutdoor deployment NoNo
Fee space lossFee space loss HighHigh
CoverageCoverage Low Low
Radio MeasurementsRadio Measurements 300 GHz inddor300 GHz inddor
Device sizeDevice size Few micrometersFew micrometers
도 18은 본 개시에 적용 가능한 THz 무선 통신 송수신기를 도시한 도면이다.18 is a diagram illustrating a THz wireless communication transceiver applicable to the present disclosure.
도 18을 참조하면, THz 무선통신은 THz 발생 및 수신을 위한 방법을 기준으로 분류할 수 있다. THz 발생 방법은 광 소자 또는 전자소자 기반 기술로 분류할 수 있다.Referring to FIG. 18 , THz wireless communication may be classified based on a method for generating and receiving THz. The THz generation method can be classified into an optical device or an electronic device-based technology.
이때, 전자 소자를 이용하여 THz를 발생시키는 방법은 공명 터널링 다이오드(resonant tunneling diode, RTD)와 같은 반도체 소자를 이용하는 방법, 국부 발진기와 체배기를 이용하는 방법, 화합물 반도체 HEMT(high electron mobility transistor) 기반의 집적회로를 이용한 MMIC(monolithic microwave integrated circuits) 방법, Si-CMOS 기반의 집적회로를 이용하는 방법 등이 있다. 도 18의 경우, 주파수를 높이기 위해 체배기(doubler, tripler, multiplier)가 적용되었고, 서브하모닉 믹서를 지나 안테나에 의해 방사된다. THz 대역은 높은 주파수를 형성하므로, 체배기가 필수적이다. 여기서, 체배기는 입력 대비 N배의 출력 주파수를 갖게 하는 회로이며, 원하는 하모닉 주파수에 정합시키고, 나머지 모든 주파수는 걸러낸다. 그리고, 도 18의 안테나에 배열 안테나 등이 적용되어 빔포밍이 구현될 수도 있다. 도 18에서, IF는 중간 주파수(intermediate frequency)를 나타내며, 트리플러(tripler), 멀리플러(multipler)는 체배기를 나타내며, PA는 전력 증폭기(power amplifier)를 나타내며, LNA는 저잡음 증폭기(low noise amplifier), PLL은 위상동기회로(phase-locked loop)를 나타낸다.At this time, the method of generating THz using an electronic device is a method using a semiconductor device such as a resonant tunneling diode (RTD), a method using a local oscillator and a multiplier, a compound semiconductor HEMT (high electron mobility transistor) based There are a monolithic microwave integrated circuit (MMIC) method using an integrated circuit, a method using a Si-CMOS-based integrated circuit, and the like. In the case of FIG. 18 , a doubler, tripler, or multiplier is applied to increase the frequency, and it is radiated by the antenna through the sub-harmonic mixer. Since the THz band forms a high frequency, a multiplier is essential. Here, the multiplier is a circuit that has an output frequency that is N times that of the input, matches the desired harmonic frequency, and filters out all other frequencies. Also, an array antenna or the like may be applied to the antenna of FIG. 18 to implement beamforming. In FIG. 18 , IF denotes an intermediate frequency, tripler, and multiplier denote a multiplier, PA denotes a power amplifier, and LNA denotes a low noise amplifier. ), PLL represents a phase-locked loop.
도 19는 본 개시에 적용 가능한 THz 신호 생성 방법을 도시한 도면이다. 또한, 도 20은 본 개시에 적용 가능한 무선 통신 송수신기를 도시한 도면이다.19 is a diagram illustrating a method for generating a THz signal applicable to the present disclosure. In addition, FIG. 20 is a diagram illustrating a wireless communication transceiver applicable to the present disclosure.
도 19 및 도 20을 참조하면, 광 소자 기반 THz 무선통신 기술은 광소자를 이용하여 THz 신호를 발생 및 변조하는 방법을 말한다. 광 소자 기반 THz 신호 생성 기술은 레이저와 광변조기 등을 이용하여 초고속 광신호를 생성하고, 이를 초고속 광검출기를 이용하여 THz 신호로 변환하는 기술이다. 이 기술은 전자 소자만을 이용하는 기술에 비해 주파수를 증가시키기가 용이하고, 높은 전력의 신호 생성이 가능하며, 넓은 주파수 대역에서 평탄한 응답 특성을 얻을 수 있다. 광소자 기반 THz 신호 생성을 위해서는 도 19에 도시된 바와 같이, 레이저 다이오드, 광대역 광변조기, 초고속 광검출기가 필요하다. 도 19의 경우, 파장이 다른 두 레이저의 빛 신호를 합파하여 레이저 간의 파장 차이에 해당하는 THz 신호를 생성하는 것이다. 도 19에서, 광 커플러(optical coupler)는 회로 또는 시스템 간의 전기적 절연과의 결합을 제공하기 위해 광파를 사용하여 전기신호를 전송하도록 하는 반도체 디바이스를 의미하며, UTC-PD(uni-travelling carrier photo-detector)은 광 검출기의 하나로서, 능동 캐리어(active carrier)로 전자를 사용하며 밴드갭 그레이딩(bandgap grading)으로 전자의 이동 시간을 감소시킨 소자이다. UTC-PD는 150GHz 이상에서 광검출이 가능하다. 도 20에서, EDFA(erbium-doped fiber amplifier)는 어븀이 첨가된 광섬유 증폭기를 나타내며, PD(photo detector)는 광신호를 전기신호로 변환할 수 있는 반도체 디바이스를 나타내며, OSA는 각종 광통신 기능(예, 광전 변환, 전광 변환 등)을 하나의 부품으로 모듈화시킨 광모듈(optical sub assembly)를 나타내며, DSO는 디지털 스토리지 오실로스코프(digital storage oscilloscope)를 나타낸다.19 and 20 , the optical device-based THz wireless communication technology refers to a method of generating and modulating a THz signal using an optical device. The optical element-based THz signal generation technology is a technology that generates a high-speed optical signal using a laser and an optical modulator, and converts it into a THz signal using an ultra-high-speed photodetector. In this technology, it is easier to increase the frequency compared to the technology using only electronic devices, it is possible to generate a high-power signal, and it is possible to obtain a flat response characteristic in a wide frequency band. As shown in FIG. 19 , a laser diode, a broadband optical modulator, and a high-speed photodetector are required to generate an optical device-based THz signal. In the case of FIG. 19 , light signals of two lasers having different wavelengths are multiplexed to generate a THz signal corresponding to a difference in wavelength between the lasers. In FIG. 19 , an optical coupler refers to a semiconductor device that transmits electrical signals using light waves to provide coupling with electrical insulation between circuits or systems, and UTC-PD (uni-travelling carrier photo- The detector) is one of the photodetectors, which uses electrons as active carriers and reduces the movement time of electrons by bandgap grading. UTC-PD is capable of photodetection above 150GHz. In FIG. 20 , an erbium-doped fiber amplifier (EDFA) indicates an erbium-doped optical fiber amplifier, a photo detector (PD) indicates a semiconductor device capable of converting an optical signal into an electrical signal, and the OSA indicates various optical communication functions (eg, .
도 21은 본 개시에 적용 가능한 송신기 구조를 도시한 도면이다. 또한, 도 22는 본 개시에 적용 가능한 변조기 구조를 도시한 도면이다.21 is a diagram illustrating a structure of a transmitter applicable to the present disclosure. Also, FIG. 22 is a diagram illustrating a modulator structure applicable to the present disclosure.
도 21 및 도 22를 참조하면, 일반적으로 레이저(laser)의 광학 소스(optical source)를 광파 가이드(optical wave guide)를 통과시켜 신호의 위상(phase)등을 변화시킬 수 있다. 이때, 마이크로파 컨택트(microwave contact) 등을 통해 전기적 특성을 변화시킴으로써 데이터를 싣게 된다. 따라서, 광학 변조기 출력(optical modulator output)은 변조된(modulated) 형태의 파형으로 형성된다. 광전 변조기(O/E converter)는 비선형 크리스탈(nonlinear crystal)에 의한 광학 정류(optical rectification) 동작, 광전도 안테나(photoconductive antenna)에 의한 광전 변환(O/E conversion), 광속의 전자 다발(bunch of relativistic electrons)로부터의 방출(emission) 등에 따라 THz 펄스를 생성할 수 있다. 상기와 같은 방식으로 발생한 테라헤르츠 펄스(THz pulse)는 펨토 세컨드(femto second)부터 피코 세컨드(pico second)의 단위의 길이를 가질 수 있다. 광전 변환기(O/E converter)는 소자의 비선형성(non-linearity)을 이용하여, 하향 변환(Down conversion)을 수행한다. Referring to FIGS. 21 and 22 , in general, a phase of a signal may be changed by passing an optical source of a laser through an optical wave guide. At this time, data is loaded by changing electrical characteristics through microwave contact or the like. Accordingly, an optical modulator output is formed as a modulated waveform. The photoelectric modulator (O/E converter) is an optical rectification operation by a nonlinear crystal (nonlinear crystal), photoelectric conversion (O / E conversion) by a photoconductive antenna (photoconductive antenna), a bunch of electrons in the light beam (bunch of) THz pulses can be generated by, for example, emission from relativistic electrons. A terahertz pulse (THz pulse) generated in the above manner may have a length in units of femtoseconds to picoseconds. An O/E converter performs down conversion by using non-linearity of a device.
테라헤르츠 스펙트럼의 용도(THz spectrum usage)를 고려할 때, 테라헤르츠 시스템을 위해서 고정된(fixed) 또는 모바일 서비스(mobile service) 용도로써 여러 개의 연속적인 기가헤르츠(contiguous GHz)의 대역들(bands)을 사용할 가능성이 높다. 아웃도어(outdoor) 시나리오 기준에 의하면, 1THz까지의 스펙트럼에서 산소 감쇠(Oxygen attenuation) 10^2 dB/km를 기준으로 가용 대역폭(Bandwidth)이 분류될 수 있다. 이에 따라 상기 가용 대역폭이 여러 개의 밴드 청크(band chunk)들로 구성되는 프레임워크(framework)가 고려될 수 있다. 상기 프레임워크의 일 예시로 하나의 캐리어(carrier)에 대해 테라헤르츠 펄스(THz pulse)의 길이를 50ps로 설정한다면, 대역폭(BW)은 약 20GHz가 된다. Considering the THz spectrum usage, a number of contiguous GHz bands for fixed or mobile service use for the terahertz system are used. likely to use According to the outdoor scenario standard, available bandwidth may be classified based on oxygen attenuation of 10^2 dB/km in a spectrum up to 1 THz. Accordingly, a framework in which the available bandwidth is composed of several band chunks may be considered. As an example of the framework, if the length of a terahertz pulse (THz pulse) for one carrier is set to 50 ps, the bandwidth (BW) becomes about 20 GHz.
적외선 대역(infrared band)에서 테라헤르츠 대역(THz band)으로의 효과적인 하향 변환(Down conversion)은 광전 컨버터(O/E converter)의 비선형성(nonlinearity)을 어떻게 활용하는가에 달려 있다. 즉, 원하는 테라헤르츠 대역(THz band)으로 하향 변환(down conversion)하기 위해서는 해당 테라헤르츠 대역(THz band)에 옮기기에 가장 이상적인 비선형성(non-linearity)을 갖는 광전 변환기(O/E converter)의 설계가 요구된다. 만일 타겟으로 하는 주파수 대역에 맞지 않는 광전 변환기(O/E converter)를 사용하는 경우, 해당 펄스(pulse)의 크기(amplitude), 위상(phase)에 대하여 오류(error)가 발생할 가능성이 높다. Effective down conversion from the infrared band to the THz band depends on how the nonlinearity of the O/E converter is exploited. That is, in order to down-convert to a desired terahertz band (THz band), the O/E converter having the most ideal non-linearity for transfer to the terahertz band (THz band) is design is required. If an O/E converter that does not fit the target frequency band is used, there is a high possibility that an error may occur with respect to the amplitude and phase of the corresponding pulse.
단일 캐리어(single carrier) 시스템에서 광전 변환기 1개를 이용하여 테라헤르츠 송수신 시스템이 구현될 수 있다. 채널 환경에 따라 달라지지만 멀리 캐리어(Multi carrier) 시스템에서 캐리어 수만큼 광전 변환기가 요구될 수 있다. 특히 전술한 스펙트럼 용도와 관련된 계획에 따라 여러 개의 광대역들을 이용하는 멀티 캐리어 시스템인 경우, 그 현상이 두드러지게 될 것이다. 이와 관련하여 상기 멀티 캐리어 시스템을 위한 프레임 구조가 고려될 수 있다. 광전 변환기를 기반으로 하향 주파수 변환된 신호는 특정 자원 영역(예: 특정 프레임)에서 전송될 수 있다. 상기 특정 자원 영역의 주파수 영역은 복수의 청크(chunk)들을 포함할 수 있다. 각 청크(chunk)는 적어도 하나의 컴포넌트 캐리어(CC)로 구성될 수 있다.A terahertz transmission/reception system may be implemented using one photoelectric converter in a single carrier system. Although it depends on the channel environment, as many photoelectric converters as the number of carriers may be required in a far-carrier system. In particular, in the case of a multi-carrier system using several broadbands according to the above-described spectrum usage-related scheme, the phenomenon will become conspicuous. In this regard, a frame structure for the multi-carrier system may be considered. The down-frequency-converted signal based on the photoelectric converter may be transmitted in a specific resource region (eg, a specific frame). The frequency domain of the specific resource region may include a plurality of chunks. Each chunk may be composed of at least one component carrier (CC).
인공 지능(Artificial Intelligence) 시스템Artificial Intelligence System
도 23은 본 개시에 적용 가능한 인공 신경망에 포함되는 퍼셉트론(perceptron)의 구조를 나타낸 도면이다. 또한, 도 24는 본 개시에 적용 가능한 인공 신경망 구조를 나타낸 도면이다.23 is a diagram illustrating a structure of a perceptron included in an artificial neural network applicable to the present disclosure. Also, FIG. 24 is a diagram illustrating an artificial neural network structure applicable to the present disclosure.
상술한 바와 같이, 6G 시스템에서 인공 지능 시스템이 적용될 수 있다. 이때, 일 예로, 인공 지능 시스템은 인간의 뇌에 해당하는 러닝 모델에 기초하여 동작할 수 있으며, 이는 상술한 바와 같다. 이때, 인공 신경망(artificial neural networks)와 같은 복잡성이 높은 신경망 구조를 러닝 모델로 사용하는 머신 러닝의 패러다임을 딥러닝(deep learning)이라 할 수 있다. 또한, 학습(learning) 방식으로 사용하는 신경망 코어(neural network cord)는 크게 심층 신경망(deep neural network, DNN), 합성곱 신경망(convolutional deep neural network, CNN), 순환 신경망(recurrent neural network, RNN) 방식이 있다. 이때, 일 예로, 도 23을 참조하면, 인공 신경망은 여러 개의 퍼셉트론들로 구성될 수 있다. 이때, 입력 벡터 x={x1, x2, …, xd}가 입력되면, 각 성분에 가중치 {W1, W2, …, Wd}가 곱해지고, 그 결과를 모두 합산한 후, 활성함수 σ(·)를 적용하는 전체 과정은 퍼셉트론이라 불리울 수 있다. 거대한 인공 신경망 구조는 도 23에 도시한 단순화된 퍼셉트론 구조를 확장하면, 입력벡터는 서로 다른 다 차원의 퍼셉트론에 적용될 수 있다. 설명의 편의를 위해 입력값 또는 출력값을 노드(node)라 칭한다.As described above, an artificial intelligence system may be applied in the 6G system. In this case, as an example, the artificial intelligence system may operate based on a learning model corresponding to the human brain, as described above. In this case, a paradigm of machine learning that uses a neural network structure with high complexity such as artificial neural networks as a learning model can be called deep learning. In addition, the neural network cord used as a learning method is largely a deep neural network (DNN), a convolutional deep neural network (CNN), and a recurrent neural network (RNN). There is a way. In this case, as an example, referring to FIG. 23 , the artificial neural network may be composed of several perceptrons. In this case, the input vector x={x 1 , x 2 , … , x d } is entered, each component is given a weight {W 1 , W 2 , … , W d } is multiplied, and the results are summed up, and then the whole process of applying the activation function σ(·) can be called a perceptron. If the huge artificial neural network structure extends the simplified perceptron structure shown in FIG. 23, input vectors can be applied to different multidimensional perceptrons. For convenience of description, an input value or an output value is referred to as a node.
한편, 도 23에 도시된 퍼셉트론 구조는 입력값, 출력값을 기준으로 총 3개의 층(layer)로 구성되는 것으로 설명될 수 있다. 1st layer와 2nd layer 사이에는 (d+1) 차원의 퍼셉트론 H개, 2nd layer와 3rd layer 사이에는 (H+1)차원 퍼셉트론이 K 개 존재하는 인공 신경망은 도 24와 같이 표현될 수 있다. Meanwhile, the perceptron structure shown in FIG. 23 may be described as being composed of a total of three layers based on an input value and an output value. 1 st layer and 2 nd layer between, the (d + 1) pieces perceptron H of D, 2, (H + 1) between nd layer and a 3 rd layer level perceptron is to be described as an artificial neural network 24 present the K can
이때, 입력벡터가 위치하는 층을 입력층(input layer), 최종 출력값이 위치하는 층을 출력층(output layer), 입력층과 출력층 사이에 위치하는 모든 층을 은닉층(hidden layer)라 한다. 일 예로, 도 24에서 3개의 층이 개시되나, 실제 인공 신경망 층의 개수를 카운트할 때는 입력층을 제외하고 카운트하므로, 도 24에 예시된 인공 신경망은 총 2개의 층으로 이해될 수 있다. 인공 신경망은 기본 블록의 퍼셉트론을 2차원적으로 연결되어 구성된다.In this case, the layer where the input vector is located is called an input layer, the layer where the final output value is located is called the output layer, and all layers located between the input layer and the output layer are called hidden layers. As an example, although three layers are disclosed in FIG. 24 , when counting the number of actual artificial neural network layers, the input layers are counted, so the artificial neural network illustrated in FIG. 24 can be understood as a total of two layers. The artificial neural network is constructed by connecting the perceptrons of the basic blocks in two dimensions.
전술한 입력층, 은닉층, 출력층은 다층 퍼셉트론 뿐 아니라 후술할 CNN, RNN 등 다양한 인공 신경망 구조에서 공동적으로 적용될 수 있다. 은닉층의 개수가 많아질수록 인공 신경망이 깊어진 것이며, 충분히 깊어진 인공 신경망을 러닝모델로 사용하는 머신 러닝 패러다임을 딥러닝(deep learning)이라 할 수 있다. 또한 딥러닝을 위해 사용하는 인공 신경망을 심층 신경망(deep neural network, DNN)이라 할 수 있다. The aforementioned input layer, hidden layer, and output layer can be jointly applied in various artificial neural network structures such as CNN and RNN to be described later as well as multi-layer perceptron. As the number of hidden layers increases, the artificial neural network becomes deeper, and a machine learning paradigm that uses a sufficiently deep artificial neural network as a learning model can be called deep learning. Also, an artificial neural network used for deep learning may be referred to as a deep neural network (DNN).
도 25는 본 개시에 적용 가능한 심층 신경망을 나타낸 도면이다. 25 is a diagram illustrating a deep neural network applicable to the present disclosure.
도 25를 참조하면, 심층 신경망은 은닉층+출력층이 8개로 구성된 다층 퍼셉트론일 수 있다. 이때, 다층 퍼셉트론 구조를 완전 연결 신경망(fully-connected neural network)이라 표현할 수 있다. 완전 연결 신경망은 서로 같은 층에 위치하는 노드 간에는 연결 관계가 존재하지 않으며, 인접한 층에 위치한 노드들 간에만 연결 관계가 존재할 수 있다. DNN은 완전 연결 신경망 구조를 가지고 다수의 은닉층과 활성함수들의 조합으로 구성되어 입력과 출력 사이의 상관관계 특성을 파악하는데 유용하게 적용될 수 있다. 여기서 상관관계 특성은 입출력의 결합 확률(joint probability)을 의미할 수 있다. Referring to FIG. 25 , the deep neural network may be a multilayer perceptron composed of eight hidden layers + eight output layers. In this case, the multilayer perceptron structure may be expressed as a fully-connected neural network. In a fully connected neural network, a connection relationship does not exist between nodes located in the same layer, and a connection relationship can exist only between nodes located in adjacent layers. DNN has a fully connected neural network structure and is composed of a combination of a number of hidden layers and activation functions, so it can be usefully applied to figure out the correlation between input and output. Here, the correlation characteristic may mean a joint probability of input/output.
도 26은 본 개시에 적용 가능한 컨볼루션 신경망을 나타낸 도면이다. 또한, 도 27은 본 개시에 적용 가능한 컨볼루션 신경망의 필터 연산을 나타낸 도면이다.26 is a diagram illustrating a convolutional neural network applicable to the present disclosure. 27 is a diagram illustrating a filter operation of a convolutional neural network applicable to the present disclosure.
일 예로, 복수의 퍼셉트론을 서로 어떻게 연결하느냐에 따라 전술한 DNN과 다른 다양한 인공 신경망 구조를 형성할 수 있다. 이때, DNN은 하나의 층 내부에 위치한 노드들이 1차원적의 세로 방향으로 배치되어 있다. 그러나, 도 26을 참조하면, 노드들이 2차원적으로 가로 w개, 세로 h개의 노드가 배치할 경우를 가정할 수 있다. (도 26의 컨볼루션 신경망 구조). 이 경우, 하나의 입력 노드에서 은닉층으로 이어지는 연결과정에서 연결 하나당 가중치가 부가되므로, 총 h×w 개의 가중치가 고려되어야 한다. 입력층에 h×w 개의 노드가 존재하므로, 인접한 두 층 사이에는 총 h2w2개의 가중치가 필요할 수 있다.For example, according to how a plurality of perceptrons are connected to each other, various artificial neural network structures different from the above-described DNN may be formed. In this case, in the DNN, nodes located inside one layer are arranged in a one-dimensional vertical direction. However, referring to FIG. 26 , it may be assumed that the nodes are two-dimensionally arranged with w horizontally and h vertical nodes. (Convolutional neural network structure in Fig. 26). In this case, since a weight is added per connection in the connection process from one input node to the hidden layer, a total of h×w weights must be considered. Since there are h×w nodes in the input layer, a total of h 2 w 2 weights may be required between two adjacent layers.
또한, 도 26의 컨볼루션 신경망은 연결개수에 따라 가중치의 개수가 기하급수적으로 증가하는 문제가 있어 인접한 층 간의 모든 모드의 연결을 고려하는 대신, 크기가 작은 필터(filter)가 존재하는 것으로 가정할 수 있다. 일 예로, 도 27에서와 같이 필터가 겹치는 부분에 대해서는 가중합 및 활성함수 연산을 수행하도록 할 수 있다.In addition, the convolutional neural network of FIG. 26 has a problem in that the number of weights increases exponentially according to the number of connections, so instead of considering the connection of all modes between adjacent layers, it is assumed that a filter with a small size exists. can As an example, as shown in FIG. 27 , a weighted sum and activation function operation may be performed on a portion where the filters overlap.
이때, 하나의 필터는 그 크기만큼의 개수에 해당하는 가중치를 가지며, 이미지 상의 어느 특정한 특징을 요인으로 추출하여 출력할 수 있도록 가중치의 학습이 이루어질 수 있다. 도 27에서는 3×3 크기의 필터가 입력층의 가장 좌측 상단 3×3 영역에 적용되고, 해당 노드에 대한 가중합 및 활성함수 연산을 수행한 결과 출력값은 z22에 저장될 수 있다.In this case, one filter has a weight corresponding to the number corresponding to its size, and learning of the weight can be performed so that a specific feature on the image can be extracted and output as a factor. In FIG. 27 , a 3×3 filter is applied to the upper left 3×3 region of the input layer, and an output value obtained by performing weighted sum and activation function operations on a corresponding node may be stored in z 22 .
이때, 상술한 필터는 입력층을 스캔하면서 가로, 세로 일정 간격만큼 이동하면서 가중합 및 활성함수 연산이 수행되고, 그 출력값은 현재 필터의 위치에 배치될 수 있다. 이러한 연산 방식은 컴퓨터 비전(computer vision) 분야에서 이미지에 대한 컨볼루션(convolution) 연산과 유사하므로, 이러한 구조의 심층 신경망은 컨볼루션 신경망(CNN: convolutional neural network)라 불리고, 컨볼루션 연산 결과 생성되는 은닉층은 컨볼루션 층(convolutional layer)라 불릴 수 있다. 또한, 복수의 컨볼루션 층이 존재하는 신경망을 심층 컨볼루션 신경망(deep convolutional neural network, DCNN)이라 할 수 있다.In this case, the above-described filter may perform weighted sum and activation function calculations while moving horizontally and vertically at regular intervals while scanning the input layer, and the output value may be disposed at the current filter position. Since this operation method is similar to a convolution operation on an image in the field of computer vision, a deep neural network with such a structure is called a convolutional neural network (CNN), and the result of the convolution operation is The hidden layer may be referred to as a convolutional layer. Also, a neural network having a plurality of convolutional layers may be referred to as a deep convolutional neural network (DCNN).
또한, 컨볼루션 층에서는 현재 필터가 위치한 노드에서, 상기 필터가 커버하는 영역에 위치한 노드만을 포괄하여 가중합을 계산함으로써, 가중치의 개수가 감소될 수 있다. 이로 인해, 하나의 필터가 로컬(local) 영역에 대한 특징에 집중하도록 이용될 수 있다. 이에 따라, CNN은 2차원 영역 상의 물리적 거리가 중요한 판단 기준이 되는 이미지 데이터 처리에 효과적으로 적용될 수 있다. 한편, CNN은 컨볼루션 층의 직전에 복수의 필터가 적용될 수 있으며, 각 필터의 컨볼루션 연산을 통해 복수의 출력 결과를 생성할 수도 있다.In addition, in the convolution layer, the number of weights can be reduced by calculating the weighted sum by including only nodes located in the region covered by the filter in the node where the filter is currently located. Due to this, one filter can be used to focus on features for a local area. Accordingly, CNN can be effectively applied to image data processing in which physical distance on a two-dimensional domain is an important criterion. Meanwhile, in CNN, a plurality of filters may be applied immediately before the convolution layer, and a plurality of output results may be generated through the convolution operation of each filter.
한편, 데이터 속성에 따라 시퀀스(sequence) 특성이 중요한 데이터들이 있을 수 있다. 이러한 시퀀스 데이터들의 길이 가변성, 선후 관계를 고려하여 데이터 시퀀스 상의 원소를 매 시점(timestep) 마다 하나씩 입력하고, 특정 시점에 출력된 은닉층의 출력 벡터(은닉 벡터)를, 시퀀스 상의 바로 다음 원소와 함께 입력하는 방식을 인공 신경망에 적용한 구조를 순환 신경망 구조라 할 수 있다.Meanwhile, there may be data whose sequence characteristics are important according to data properties. Considering the length variability and precedence relationship of the sequence data, one element in the data sequence is input at each timestep, and the output vector (hidden vector) of the hidden layer output at a specific time is input together with the next element in the sequence. A structure in which this method is applied to an artificial neural network can be called a recurrent neural network structure.
도 28은 본 개시에 적용 가능한 순환 루프가 존재하는 신경망 구조를 나타낸 도면이다. 도 29는 본 개시에 적용 가능한 순환 신경망의 동작 구조를 나타낸 도면이다.28 is a diagram illustrating a neural network structure in which a cyclic loop applicable to the present disclosure exists. 29 is a diagram illustrating an operation structure of a recurrent neural network applicable to the present disclosure.
도 28을 참조하면, 순환 신경망(recurrent neural network, RNN)은 데이터 시퀀스 상의 어느 시선 t의 원소 {x1 (t), x2 (t), …, xd (t)}를 완전 연결 신경망에 입력하는 과정에서, 바로 이전 시점 t-1은 은닉 벡터 {z1 (t-1), z2 (t-1), …, zH (t-1)}을 함께 입력하여 가중합 및 활성함수를 적용하는 구조를 가질 수 있다. 이와 같이 은닉 벡터를 다음 시점으로 전달하는 이유는 앞선 시점들에서의 입력 벡터속 정보들이 현재 시점의 은닉 벡터에 누적된 것으로 간주하기 때문이다.Referring to FIG. 28 , a recurrent neural network (RNN) is an element {x 1 (t) , x 2 (t) , . , x d (t) } in the process of input to the fully connected neural network, the immediately preceding time point t-1 is the hidden vector {z 1 (t-1) , z 2 (t-1) , … , z H (t-1) } can be input together to have a structure in which a weighted sum and an activation function are applied. The reason why the hidden vector is transferred to the next time point in this way is that information in the input vector at previous time points is considered to be accumulated in the hidden vector of the current time point.
또한, 도 29를 참조하면, 순환 신경망은 입력되는 데이터 시퀀스에 대하여 소정의 시점 순서대로 동작할 수 있다. 이때, 시점 1에서의 입력 벡터 {x1 (t), x2 (t), …, xd (t)}가 순환 신경망에 입력되었을 때의 은닉 벡터 {z1 (1), z2 (1), …, zH (1)}가 시점 2의 입력 벡터 {x1 (2), x2 (2), …, xd (2)}와 함께 입력되어, 가중합 및 활성 함수를 통해 은닉층의 벡터 {z1 (2), z2 (2), …, zH (2)}가 결정된다. 이러한 과정은 시점 2, 시점 3, …, 시점 T까지 반복적으로 수행된다.Also, referring to FIG. 29 , the recurrent neural network may operate in a predetermined time sequence with respect to an input data sequence. In this case, the input vector {x 1 (t) , x 2 (t) , ... , x d (t) } when the hidden vector {z 1 (1) , z 2 (1) , … , z H (1) } is the input vector {x 1 (2) , x 2 (2) , … , x d (2) }, the vector of the hidden layer {z 1 (2) , z 2 (2) , … , z H (2) } is determined. These processes are time point 2, time point 3, ... , iteratively until time point T.
한편, 순환 신경망 내에서 복수의 은닉층이 배치될 경우, 이를 심층 순환 신경망(deep recurrent neural network, DRNN)라 한다. 순환 신경망은 시퀀스 데이터(예, 자연어 처리(natural language processing)에 유용하게 적용되도록 설계되어 있다.On the other hand, when a plurality of hidden layers are arranged in a recurrent neural network, this is called a deep recurrent neural network (DRNN). The recurrent neural network is designed to be usefully applied to sequence data (eg, natural language processing).
학습(learning) 방식으로 사용하는 신경망 코어로서 DNN, CNN, RNN 외에 제한 볼츠만 머신(restricted Boltzmann machine, RBM), 심층 신뢰 신경망(deep belief networks, DBN), 심층 Q-네트워크(deep Q-Network)와 같은 다양한 딥 러닝 기법들을 포함하며, 컴퓨터 비젼, 음성인식, 자연어처리, 음성/신호처리 등의 분야에 적용될 수 있다.As a neural network core used as a learning method, in addition to DNN, CNN, and RNN, restricted Boltzmann machine (RBM), deep belief networks (DBN), deep Q-Network and It includes various deep learning techniques such as, and can be applied to fields such as computer vision, voice recognition, natural language processing, and voice/signal processing.
최근에는 AI를 무선 통신 시스템과 통합하려고 하는 시도들이 나타나고 있으나, 이는 어플리케이션 계층(application layer), 네트워크 계층(network layer), 특히, 딥러닝의 경우, 무선 자원 관리 및 할당(wireless resource management and allocation) 분야에 집중되어 왔다. 그러나, 이러한 연구는 점점 MAC 계층 및 물리 계층(physical layer)으로 발전하고 있으며, 특히 물리 계층에서 딥러닝을 무선 전송(wireless transmission)과 결합하고자 하는 시도들이 나타나고 있다. AI 기반의 물리 계층 전송은, 근본적인 신호 처리 및 통신 메커니즘에 있어서, 전통적인 통신 프레임워크가 아니라, AI 드라이버에 기초한 신호 처리 및 통신 메커니즘을 적용하는 것을 의미한다. 예를 들어, 딥러닝 기반의 채널 코딩 및 디코딩(channel coding and decoding), 딥러닝 기반의 신호 추정(estimation) 및 검출(detection), 딥러닝 기반의 MIMO 매커니즘(mechanism), AI 기반의 자원 스케줄링(scheduling) 및 할당(allocation) 등을 포함할 수 있다.Recently, attempts have been made to integrate AI with wireless communication systems, but these are the application layer, network layer, and in particular, in the case of deep learning, wireless resource management and allocation. has been focused on the field. However, these studies are gradually developing into the MAC layer and the physical layer, and in particular, attempts to combine deep learning with wireless transmission in the physical layer are appearing. AI-based physical layer transmission means applying a signal processing and communication mechanism based on an AI driver rather than a traditional communication framework in a fundamental signal processing and communication mechanism. For example, deep learning-based channel coding and decoding, deep learning-based signal estimation and detection, deep learning-based MIMO mechanism, AI-based resource scheduling ( scheduling) and allocation may be included.
본 개시의 구체적인 실시 예Specific embodiments of the present disclosure
본 개시는 무선 통신 시스템에서 연합 학습(federated learning)을 수행하기 위한 것으로, 특히, 압축된 연합 학습(compressed federated learning)을 수행하는 상황에서 가중치(weight) 또는 변화도(gradient)를 제공하기 위해 요구되는 대역폭(bandwidth) 소모를 줄이기 위한 기술을 설명한다.The present disclosure is for performing federated learning in a wireless communication system, and in particular, it is required to provide weights or gradients in a situation where compressed federated learning is performed. Techniques for reducing bandwidth consumption will be described.
무선 통신 시스템은 음성이나 데이터 등과 같은 다양한 종류의 통신 서비스를 제공하기 위해 광범위하게 발전하고 있으며, 최근 AI를 통신 시스템에 접목하고자 하는 시도가 급증하고 있다. 시도되고 있는 AI를 접목하는 방식들을 크게 AI 지원을 위해 통신 기술을 발전시키는 ‘C4AI(communications for AI)’와 통신 성능의 향상을 위해 AI를 활용하는 ‘AI4C(AI for communications)’로 구분될 수 있다. AI4C의 예로서, 채널 인코더/디코더를 종단 간(end-to-end)의 오토인코더(autoencoder)로 대체함으로써 설계 효율을 올리고자 하는 연구가 있다. C4AI의 예로서, 분산 학습(distributed learning)의 한 기법인 연합 학습을 이용하여 장치의 로우 데이터(raw data)의 공유 없이, 모델(model)의 가중치(weight)나 변화도(gradient) 만을 서버와 공유함으로써 개인정보는 보호하면서 공통 예측 모델을 업데이트하는 연구가 있다. 그리고, 분리 추론(split inference)을 이용하여 장치(device), 네트워크 엣지(network edge), 그리고 클라우드 서버(cloud server)의 부하(load)를 분산시키는 방법 등이 연구되고 있다.Wireless communication systems are developing extensively to provide various types of communication services such as voice and data, and recent attempts to graft AI into communication systems are rapidly increasing. The methods of grafting AI that are being attempted can be broadly divided into 'C4AI (communications for AI)', which develops communication technology to support AI, and 'AI4C (AI for communications)', which uses AI to improve communication performance. have. As an example of AI4C, there is a study to increase design efficiency by replacing a channel encoder/decoder with an end-to-end autoencoder. As an example of C4AI, using federated learning, which is a technique of distributed learning, without sharing the raw data of the device, only the weight or gradient of the model with the server There are studies that update common predictive models while protecting privacy by sharing. In addition, a method of distributing the load of a device, a network edge, and a cloud server using split inference is being studied.
연합학습(federated Learning)은 스마트폰과 같은 모바일 장치에 저장되어 있는 분산 데이터를 이용하여 중앙 서버 내의 머신 러닝 모델을 훈련하는 분산 머신 러닝의 한 종류이다. 유선 통신 환경을 가정한 다른 분산 머신 러닝 기법과 다르게, 연합학습은 개인 사용자들의 모바일 장치에서 수집되는 데이터를 활용해 각 장치에서 훈련 과정이 수행되는 분산 머신 러닝 기법이다. 모바일 장치는 사용자와의 상호작용을 통해서 수많은 데이터들을 생성하며, 데이터의 대부분은 민감한 개인정보를 포함할 수 있다. 사진, 사용자의 위치, 채팅 내역, 영상, 음성 등의 데이터는 개인 정보 보호의 대상이며, 사용자는 이러한 데이터들이 장치 외부로 유출되는 것을 원하지 아니한다. 데이터가 암호화되거나 익명성이 보장되더라도, 사용자는 데이터의 외부 유출을 원하지 아니한다. 따라서, 데이터를 데이터 센터와 같은 중앙서버로 모을 수 없다는 한계가 있으며, 이러한 한계는 데이터들을 분산 머신 러닝, 딥러닝 기법에 적용하기 어렵게 만든다.Federated learning is a type of distributed machine learning that trains machine learning models in a central server using distributed data stored in mobile devices such as smartphones. Unlike other distributed machine learning techniques that assume a wired communication environment, federated learning is a distributed machine learning technique in which a training process is performed on each device using data collected from individual users' mobile devices. Mobile devices generate a lot of data through interaction with users, and most of the data may include sensitive personal information. Data such as photos, user's location, chat history, video, and voice are subject to personal information protection, and the user does not want these data to be leaked to the outside of the device. Even if data is encrypted or anonymity is guaranteed, users do not want the data to be leaked outside. Therefore, there is a limitation in that data cannot be collected to a central server such as a data center, and this limitation makes it difficult to apply the data to distributed machine learning and deep learning techniques.
도 30은 본 개시에 적용 가능한 연합 학습의 개념을 나타내는 도면이다. 도 30을 참고하면, 제1 단말(3010a) 및 제2 단말(3010b)이 연합 학습에 참여한다. 제1 단말(3010a)은 기지국(3020)으로부터 제공된 모델에 대한 학습을 수행함으로써 갱신된 제1 모델(3012a)을 획득하고, 제2 단말(3010b)은 기지국(3020)으로부터 제공된 모델에 대한 학습을 수행함으로써 갱신된 제2 모델(3012b)을 획득한다. 제1 단말(3010a) 및 제2 단말(3010b) 각각은 갱신된 모델(3012a 또는 3012b)의 가중치 w1 또는 w2를 기지국(3020)에게 송신한다. 다시 말해, 단말들(3010a 및 3010b)은 학습 후 변경된 가중치 또는 변화도에 관한 정보를 통신 채널의 상향링크를 통해 기지국(3020)에게 송신한다. 이에 따라, 기지국(3020)은 집성된(aggregated) 가중치들 w1 및 w2를 이용하여 기지국(3020)에 저장된 모델(3022)을 갱신한다. 예를 들어, 기지국(3020)은 모델(3022)의 가중치를 피드백된 가중치들의 평균 값으로 갱신할 수 있다.30 is a diagram illustrating the concept of associative learning applicable to the present disclosure. Referring to FIG. 30 , a first terminal 3010a and a second terminal 3010b participate in federated learning. The first terminal 3010a obtains an updated first model 3012a by performing learning on the model provided from the base station 3020, and the second terminal 3010b learns the model provided from the base station 3020. By performing an updated second model 3012b is obtained. Each of the first terminal 3010a and the second terminal 3010b transmits the weight w 1 or w 2 of the updated model 3012a or 3012b to the base station 3020 . In other words, the terminals 3010a and 3010b transmit information about the weight or gradient changed after learning to the base station 3020 through the uplink of the communication channel. Accordingly, the base station 3020 updates the model 3022 stored in the base station 3020 using the aggregated weights w 1 and w 2 . For example, the base station 3020 may update the weight of the model 3022 as an average value of the fed back weights.
연합 학습 시 통신 효율을 향상시키기 위해 사용될 수 있는 기법의 일 예로, 연합 평균화 알고리즘(federated averaging algorithm)은 미니배치(minibatch)를 사용하여 통신 횟수(communication round)를 줄이는 기법이다. 연합 평균화 알고리즘에 따르면, 각 단말의 로컬 데이터 셋(local data set)을 미니배치(minibatch) 단위로 훈련(train)하고, 업데이트된 가중치/변화도를 서버로 전송하고, 서버에서 가중치 평균화(weight averaging)를 수행함으로써 글로벌(global) 공통 예측 모델을 업데이트한다. 통신 횟수(communication round)를 줄이는 것뿐만 아니라, 상향링크로 가중치/변화도를 전송하기 위해 요구되는 대역폭을 절약하는 것도 주요 과제(challenge) 중 하나이다. 연합 평균화 알고리즘을 수도(pseudo) 코드로 표현하면, 이하 표 6과 같다. 표 6에서, k는 K개의 단말 또는 클라이언트(client)들의 인덱스, B는 미니배치(miniBatch) 크기, E는 로컬 단계(local epoch)의 번호, η는 학습율(learning rate)을 의미한다.As an example of a technique that can be used to improve communication efficiency during federated learning, a federated averaging algorithm is a technique for reducing the number of communication rounds by using a minibatch. According to the federated averaging algorithm, a local data set of each terminal is trained in mini-batch units, updated weights/gradients are transmitted to the server, and weight averaging is performed in the server. ) to update the global common prediction model. One of the main challenges is not only to reduce the number of communication rounds, but also to save the bandwidth required to transmit weights/gradients in the uplink. The federated averaging algorithm is expressed as a pseudo code, as shown in Table 6 below. In Table 6, k denotes an index of K terminals or clients, B denotes a miniBatch size, E denotes a number of a local epoch, and η denotes a learning rate.
Figure PCTKR2020008203-appb-I000009
Figure PCTKR2020008203-appb-I000009
표 6을 참고하면, k로 인덱싱된 K개의 클라이언트들이 있는 경우, 로컬 미니배치 크기 B를 사용하여 훈련이 수행되고, 갱신된 가중치 w가 서버로 전송된다. 서버는 각 로컬 미니배치에서 집성된(aggregated) w를 평균화함으로써 새로운 가중치를 결정하고, 각 클라이언트에 방송한다.Referring to Table 6, if there are K clients indexed by k, training is performed using the local mini-batch size B, and the updated weight w is transmitted to the server. The server determines a new weight by averaging the aggregated w in each local mini-batch, and broadcasts it to each client.
도 31은 본 개시에 적용 가능한 연합 학습의 프로토콜의 일례를 나타내는 도면이다. 도 31을 참고하면, 충전, 전원 온(power on) 상태, 기지국과의 연결 등의 조건을 만족한 단말들(3110a 내지 3110e)은 참여자로 등록할 준비가 되었음을 서버(3130)에게 알린다. 라운드(round) i의 선택 단계(phase)(3102-i)에서, 서버(3130)는 최적 개수만큼의 단말들을 선택한 후, 선택된 단말들(3110a 내지 3110c)에게 참여자로서 수행해야 하는 작업과 계산을 위한 그래프 정보 등의 데이터 구조를 전송한다. 서버(3130)는 선택되지 아니한 단말들(3110d 및 3110e)에게 다음에 재연결을 할 것을 알린다. 라운드 i의 설정(configuration) 단계(3104-i)에서, 선택된 단말들(3110a 내지 3110c)은 서버(3130)로부터 수신된 글로벌 네트워크 모델과 단말에 저장된 로컬 데이터를 이용하여 훈련을 수행한다. 훈련이 완료되면, 라운드 i의 보고(reporting) 단계에서, 단말들(3110a 내지 3110c)은 훈련을 통해 갱신된 가중치 또는 변화도에 대한 정보를 서버(3130)에게 송신하고, 서버(3130)는 집성된 정보를 글로벌 네트워크 모델에 반영한다. 전술한 동작들이 하나의 라운드이다. 다음의 라운드 i-1 동안, 유사하게 선택 단계(3102-(i+1)), 설정 단계(3104-(i+1)), 보고 단계(3106-(i+1))가 진행된다. 하나의 라운드 동안, 참여자로 선택된 단말들(3110a 내지 3110c) 및 서버(3130)는 연결된 상태를 유지한다. 라운드 중간에 통신 장애 등으로 인해 드랍-아웃(drop-out)이 발생하면, 서버(3130)는 해당 참여자를 무시하고, 라운드를 진행한다. 따라서, 연합 학습 프로토콜은 연결에 실패한 참여자를 무시하고, 라운드를 진행해도 장애가 발생하지 않도록 설계되는 것이 바람직하다.31 is a diagram showing an example of a protocol of associative learning applicable to the present disclosure. Referring to FIG. 31 , terminals 3110a to 3110e that satisfy conditions such as charging, power on state, and connection with a base station notify the server 3130 that they are ready to register as a participant. In a selection phase 3102-i of round i, the server 3130 selects an optimal number of terminals, and then provides the selected terminals 3110a to 3110c with tasks and calculations to be performed as participants. Transmits data structures such as graph information for The server 3130 notifies the unselected terminals 3110d and 3110e that the next reconnection will be performed. In a configuration step 3104-i of round i, the selected terminals 3110a to 3110c perform training using the global network model received from the server 3130 and local data stored in the terminal. When training is completed, in the reporting step of round i, the terminals 3110a to 3110c transmit information on weights or gradients updated through training to the server 3130, and the server 3130 aggregates information is reflected in the global network model. The above-described operations are one round. During the next round i-1, the selection phase 3102-(i+1)), the setting phase 3104-(i+1)), and the reporting phase 3106-(i+1)) proceed similarly. During one round, the terminals 3110a to 3110c and the server 3130 selected as participants maintain a connected state. If drop-out occurs due to a communication failure in the middle of the round, the server 3130 ignores the participant and proceeds with the round. Therefore, it is desirable that the federated learning protocol be designed so that no failure occurs even when the round is carried out, ignoring the participant who has failed to connect.
본 개시의 다양한 실시 예들에 따른 학습은 연결(connection)에 대한 훈련 및 가중치(weight)에 대한 훈련을 포함할 수 있다. 연결 및 가중치 모두에 대한 학습의 개념이 이하 도 32, 도 33을 참고하여 설명된다.Learning according to various embodiments of the present disclosure may include training for connection and training for weight. The concept of learning for both connections and weights is described below with reference to FIGS. 32 and 33 .
도 32는 본 개시에 적용 가능한 연결 및 가중치 학습의 개념을 나타내는 도면이다. 도 32를 참고하면, 연결 및 가중치 학습은 연결 훈련(train connectivity) 절차(3201), 연결 프루닝(prune connections) 절차(3203), 가중치 훈련(train weight) 절차(3205)를 포함한다. 연결 훈련 절차(3201)는 어떤 연결이 중요한지 학습하기 위해 네트워크를 훈련하는 절차이고, 연결 프루닝 절차(3203)는 중요하지 아니한 연결(예: 가중치가 임계치보다 작은 연결)을 가지치기 하는(prune) 절차이고, 가중치 훈련 절차(3205)는 재훈련(retrain) 절차로서, 가지치기된(pruned) 희소한(sparse) 연결 상태에서 재훈련을 수행함으로써 가중치를 학습하는 절차이다.32 is a diagram illustrating the concept of connection and weight learning applicable to the present disclosure. Referring to FIG. 32 , connection and weight learning includes a train connectivity procedure 3201 , a prune connections procedure 3203 , and a weight training procedure 3205 . The connection training procedure 3201 is a procedure for training the network to learn which connections are important, and the connection pruning procedure 3203 prunes insignificant connections (eg, connections whose weight is less than a threshold). procedure, and the weight training procedure 3205 is a retraining procedure, which is a procedure for learning weights by performing retraining in a pruned sparse connection state.
도 33은 본 개시에 적용 가능한 연결 및 가중치 학습에 따른 프루닝(pruning) 전 및 후의 네트워크의 예들을 나타내는 도면이다. 도 33을 참고하면, 프루닝 전의 네트워크은 모든 가능한 연결들이 형성된 밀집(dense) 네트워크(3310)이다. 모든 연결이 형성된 상태에서, 어떤 연결이 더 중요한지 학습하기 위해, 네트워크가 훈련되고, 가중치들이 산출된다. 이어, 임계치보다 낮은 가중치를 가지는 연결을 중요하지 아니한 연결로 취급하고, 중요하지 아니한 연결은 프루닝된다. 즉, 네트워크가 밀집 네트워크(3310)에서 희소 네트워크(sparse network)(3320)로 변환된다. 마지막으로, 프루닝된 희소한 연결 상태에서 재훈련을 통해 가중치를 학습함으로써, 가중치들이 미세 조정(fine-tuning)된다. 정확도(accuracy) 손실 없는 수준에서 임계치를 정의하고, 연결 프루닝 절차(3203) 및 가중치 훈련 절차(3205)를 반복함으로써, 최소 개수의 연결들의 조합이 도출될 수 있다.33 is a diagram illustrating examples of networks before and after pruning according to connection and weight learning applicable to the present disclosure. Referring to FIG. 33 , the network before pruning is a dense network 3310 in which all possible connections are formed. With all connections established, the network is trained and weights are calculated to learn which connection is more important. Then, a connection having a weight lower than the threshold is treated as an insignificant connection, and the insignificant connection is pruned. That is, the network is converted from a dense network 3310 to a sparse network 3320 . Finally, by learning the weights through retraining in the pruned sparse connection state, the weights are fine-tuned. By defining a threshold at a level without loss of accuracy, and repeating the connection pruning procedure 3203 and the weight training procedure 3205 , a minimum number of combinations of connections can be derived.
이하 표 7은 네트워크 모델 별 파라미터 압축률의 예들을 보여준다.Table 7 below shows examples of parameter compression rates for each network model.
NetworkNetwork Top-1 ErrorTop-1 Error Top-5 ErrorTop-5 Error Parameters Parameters Compression RateCompression Rate
LeNet-300-100 RefLeNet-300-100 PrunedLeNet-300-100 RefLeNet-300-100 Pruned 1.64%1.59%1.64%1.59% ---- 267K22K267K22K 12×12×
LeNet-5 RefLeNet-5 PrunedLeNet-5 RefLeNet-5 Pruned 0.80%0.77%0.80%0.77% ---- 431K36K431K36K 12×12×
AlexNet RefAlexNet PrunedAlexNet RefAlexNet Pruned 42.78%42.77%42.78%42.77% 19.73%19.67%19.73%19.67% 61M6.7M61M6.7M
VGG-16 RefVGG-16 PrunedVGG-16 RefVGG-16 Pruned 31.50%31.34%31.50%31.34% 11.32%10.88%11.32%10.88% 138M10.3M138M10.3M 12×12×
표 7을 참고하면, AlexNet은 5개의 컨볼루션 레이어들(convolution layers) 및 3개의 완전 연결된(fully-connected) 레이어들로 구성되며, 마지막의 완전 연결된 레이어는 1000개의 카테고리(category)들을 분류하기 위하여 활성 함수(activation function)로서 소프트맥스 함수(softmax function)를 사용한다. AlexNet에서 프루닝(pruning)을 수행하면 성능 저하 없이 9배의 파라미터 압축이 달성되고, VGG-16에서 프루닝(pruning)을 수행하면 성능 저하 없이 13배의 파라미터 압축이 달성될 수 있다.Referring to Table 7, AlexNet consists of 5 convolution layers and 3 fully-connected layers, and the last fully connected layer is used to classify 1000 categories. We use the softmax function as the activation function. When pruning is performed on AlexNet, 9 times parameter compression can be achieved without performance degradation, and when pruning is performed on VGG-16, 13 times parameter compression can be achieved without performance degradation.
도 34a 및 도 34b는 AlexNet 네트워크의 프루닝 민감도(pruning sensitivity)를 나타내는 도면들이다. 도 34a는 컨볼루션 레이어의 프루닝 민감도를, 도 34b는 완전 연결된 레이어의 프루닝 민감도를 도시한다. 도 34a를 참고하면, conv1은 다른 레이어보다 프루닝에 더 민감하다. conv1의 경우, 정확도(accuracy) 저하 없이 프루닝할 수 있는 한계는 약 20%이다. 즉, conv1의 연결들 중 가중치가 낮은 20%의 연결들은 성능에 큰 영향을 미치지 않으므로, 가중치가 낮은 20%의 연결들은 프루닝될 수 있다. 도 34b를 참고하면, fc3의 경우, 정확도의 저하 없이 약 53%의 연결들이 프루닝될 수 있다.34A and 34B are diagrams illustrating pruning sensitivity of an AlexNet network. Fig. 34A shows the pruning sensitivity of the convolutional layer, and Fig. 34B shows the pruning sensitivity of the fully connected layer. Referring to FIG. 34A , conv1 is more sensitive to pruning than other layers. In the case of conv1, the limit that can be pruned without compromising accuracy is about 20%. That is, among the connections of conv1, 20% of connections having a low weight do not have a significant effect on performance, so 20% of connections having a low weight may be pruned. Referring to FIG. 34B , in the case of fc3, about 53% of connections can be pruned without degradation of accuracy.
본 개시는 연합 학습 절차 중 통신 링크를 이용하여 가중치 또는 변화도(gradient)에 관련된 정보를 전송함에 있어서, 대역폭을 절감하기 위한 다양한 실시 예들을 설명한다. 이하 설명되는 다양한 실시 예들에 따른 연합 학습은 통신 시스템에 적용 가능한 다양한 인공 신경망에 적용될 수 있다. 예를 들어, 후술되는 다양한 실시 예들은 채널 인코더/디코더의 기능을 수행하는 오토인코더를 위한 네트워크 모델, 채널 추정을 위한 네트워크 모델 등 다양한 네트워크 모델의 학습에 활용될 수 있다.The present disclosure describes various embodiments for saving bandwidth when transmitting information related to weights or gradients using a communication link during a federated learning procedure. Federated learning according to various embodiments to be described below may be applied to various artificial neural networks applicable to a communication system. For example, various embodiments to be described below may be used to learn various network models, such as a network model for an autoencoder performing a function of a channel encoder/decoder, and a network model for channel estimation.
도 35는 본 개시에 적용 가능한 단말에서 연합 학습을 수행하는 절차의 일 실시 예를 도시한 도면이다. 도 35는 연합 학습에 참여한 단말의 동작 방법을 예시한다.35 is a diagram illustrating an embodiment of a procedure for performing federated learning in a terminal applicable to the present disclosure. 35 illustrates an operation method of a terminal participating in federated learning.
도 35를 참고하면, S3501 단계에서, 단말은 초기 네트워크 모델에 관련된 정보를 수신한다. 초기 네트워크 모델은 서버에 저장된 네트워크 모델로서, 본 절차에 의해 갱신되는 대상이다. 본 단계에서 제공되는 초기 네트워크 모델은 전혀 갱신되지 않은 기본 모델이거나 또는 적어도 1회 갱신된 모델일 수 있다. 초기 네트워크 모델에 관련된 정보는 네트워크 모델의 레이어 별 노드의 개수, 노드들의 연결들, 연결들의 가중치 중 적어도 하나에 관련된 정보를 포함할 수 있다.Referring to FIG. 35 , in step S3501, the terminal receives information related to the initial network model. The initial network model is a network model stored in the server and is a subject to be updated by this procedure. The initial network model provided in this step may be a basic model that has not been updated at all or a model updated at least once. The information related to the initial network model may include information related to at least one of the number of nodes for each layer of the network model, connections of nodes, and weights of connections.
S3503 단계에서, 단말은 초기 네트워크 모델을 밀집(dense) 네트워크로 구성한다. 즉, 단말은 노드들 간 형성 가능한 모든 연결들을 추가함으로써, 밀집 네트워크를 구성한다. 밀집 네트워크는 완전히 연결된(fully-connected) 네트워크로 지칭될 수 있다. 이때, 새롭게 추가되는 연결의 가중치는 미리 정의된 값으로 설정될 수 있다.In step S3503, the terminal configures the initial network model as a dense network. That is, the terminal configures a dense network by adding all possible connections between nodes. A dense network may be referred to as a fully-connected network. In this case, the weight of the newly added connection may be set to a predefined value.
S3505 단계에서, 단말은 밀집 네트워크에 대한 훈련을 통해 가중치들을 변경한다. 단말은 모든 노드들이 연결된 상태에서 훈련을 수행함으로써, 연결들의 가중치들을 새로이 결정할 수 있다. 단말은 훈련 데이터를 획득하고, 획득된 훈련 데이터를 이용하여 훈련을 수행할 수 있다. 예를 들어, 훈련 데이터는 단말에 저장된 데이터로부터 추출 또는 생성될 수 있다. 단말은 역전파(backpropagation) 동작을 수행함으로써 적어도 하나의 가중치가 갱신될 수 있다.In step S3505, the terminal changes the weights through training on the dense network. The UE may newly determine weights of connections by performing training in a state in which all nodes are connected. The terminal may acquire training data and perform training using the acquired training data. For example, the training data may be extracted or generated from data stored in the terminal. The terminal may update at least one weight by performing a backpropagation operation.
S3507 단계에서, 단말은 적어도 하나의 연결의 가중치에 관련된 정보를 송신한다. 즉, 단말은 밀집 네트워크에 포함되는 연결들 중 적어도 하나를 선택하고, 선택된 적어도 하나의 연결의 가중치에 관련된 정보를 송신한다. 일 실시 예에 따라, 단말은 훈련에 의한 가중치의 변화량을 기반으로 적어도 하나의 연결을 선택할 수 있다. 여기서, 가중치에 관련된 정보는 훈련을 통해 변경된 가중치를 알리기 위한 것으로서, 예를 들어, 변화량을 포함할 수 있다. 단, 다른 실시 예에 따라, 연결들 중 어떤 연결도 선택되지 아니할 수 있으며, 이 경우, 본 S3507 단계는 생략될 수 있다.In step S3507, the terminal transmits information related to the weight of at least one connection. That is, the terminal selects at least one of the connections included in the dense network, and transmits information related to the weight of the selected at least one connection. According to an embodiment, the terminal may select at least one connection based on the amount of change in weight due to training. Here, the weight-related information is for notifying the weight changed through training, and may include, for example, a change amount. However, according to another embodiment, any of the connections may not be selected, and in this case, step S3507 may be omitted.
도 36는 본 개시에 적용 가능한 서버에서 연합 학습을 수행하는 절차의 일 실시 예를 도시한 도면이다. 도 36은 연합 학습을 제어하는 서버의 동작 방법을 예시한다. 도 36에 예시된 절차의 동작 주체는 '서버'로 설명되며, 여기서 서버는 기지국에 포함되거나 또는 코어 망 엔티티일 수 있다.36 is a diagram illustrating an embodiment of a procedure for performing federated learning in a server applicable to the present disclosure. 36 illustrates an operation method of a server that controls federated learning. The operating subject of the procedure illustrated in FIG. 36 is described as a 'server', where the server may be included in the base station or may be a core network entity.
도 36을 참고하면, S3601 단계에서, 서버는 초기 네트워크 모델에 관련된 정보를 송신한다. 초기 네트워크 모델은 서버에 저장된 네트워크 모델로서, 본 절차에 의해 갱신되는 대상이다. 본 단계에서 제공되는 초기 네트워크 모델은 전혀 갱신되지 않은 기본 모델이거나 또는 적어도 1회 갱신된 모델일 수 있다. 초기 네트워크 모델에 관련된 정보는 네트워크 모델의 레이어 별 노드의 개수, 노드들의 연결들, 연결들의 가중치 중 적어도 하나에 관련된 정보를 포함할 수 있다.Referring to FIG. 36 , in step S3601, the server transmits information related to the initial network model. The initial network model is a network model stored in the server and is a subject to be updated by this procedure. The initial network model provided in this step may be a basic model that has not been updated at all or a model updated at least once. The information related to the initial network model may include information related to at least one of the number of nodes for each layer of the network model, connections of nodes, and weights of connections.
S3603 단계에서, 서버는 적어도 하나의 연결의 가중치에 관련된 정보를 수신한다. 즉, 서버는 단말에서 수행된 훈련에 의해 갱신된 연결의 가중치들 중 적어도 하나에 관련된 정보를 수신한다. 여기서, 가중치에 관련된 정보는 단말에서 수행된 훈련을 통해 변경된 가중치를 알리기 위한 것으로서, 예를 들어, 변화량을 포함할 수 있다. 서버는 적어도 하나의 단말로부터 가중치에 관련된 정보를 수신할 수 있다.In step S3603, the server receives information related to the weight of at least one connection. That is, the server receives information related to at least one of the weights of the connection updated by the training performed in the terminal. Here, the weight-related information is for notifying the weight changed through training performed in the terminal, and may include, for example, a change amount. The server may receive information related to weights from at least one terminal.
S3605 단계에서, 서버는 수신된 정보에 기반하여 네트워크 모델의 가중치들을 갱신한다. 일 실시 예에 따라, 서버는 수신된 가중치에 관련된 정보를 이용하여 각 단말에 대응하는 네트워크 모델을 생성하고, 복수의 네트워크 모델들의 가중치들을 기반으로 하나의 갱신된 네트워크 모델을 결정할 수 있다. 예를 들어, 서버는 서로 다른 단말들에 대응하는 네트워크 모델들의 가중치들을 연결 별로 평균화함으로써 갱신된 네트워크 모델을 결정할 수 있다.In step S3605, the server updates the weights of the network model based on the received information. According to an embodiment, the server may generate a network model corresponding to each terminal by using information related to the received weight, and determine one updated network model based on the weights of the plurality of network models. For example, the server may determine the updated network model by averaging weights of network models corresponding to different terminals for each connection.
S3607 단계에서, 서버는 갱신된 가중치들에 기반하여 적어도 하나의 연결을 프루닝한다. 즉, 서버는 갱신된 가중치들에 기반하여 적어도 하나의 연결을 선택하고, 선택된 적어도 하나의 연결을 제거한다. 예를 들어, 서버는 임계치 이하의 가중치를 가지는 적어도 하나의 연결을 선택할 수 있다. 단, 다른 실시 예에 따라, 연결들 중 어떤 연결도 프루닝되지 아니할 수 있으며, 이 경우, 본 S3607 단계는 생략될 수 있다. 일 실시 예에 따라, 본 S3607 단계는 S3601 단계 내지 S3605 단계가 복수 회 반복된 후 수행될 수 있다.In step S3607, the server prunes at least one connection based on the updated weights. That is, the server selects at least one connection based on the updated weights, and removes the selected at least one connection. For example, the server may select at least one connection having a weight equal to or less than a threshold. However, according to another embodiment, any of the connections may not be pruned, and in this case, step S3607 may be omitted. According to an embodiment, this step S3607 may be performed after steps S3601 to S3605 are repeated a plurality of times.
도 35 및 도 36을 참고하여 설명한 실시 예와 같이, 단말은 훈련을 통해 결정된 가중치에 관련된 정보를 서버에 제공하고, 서버는 가중치에 관련된 정보를 이용하여 네트워크 모델을 갱신할 수 있다. 이때, 가중치에 관련된 정보는 복수의 단말들로부터 수집(aggregation)될 수 있다. 이를 통해, 복수의 단말들에 분산되어 있는 데이터를 이용한 머신 러닝 모델의 훈련이 가능하다.As in the embodiment described with reference to FIGS. 35 and 36 , the terminal provides information related to the weight determined through training to the server, and the server may update the network model using the information related to the weight. In this case, information related to the weight may be aggregated from a plurality of terminals. Through this, it is possible to train a machine learning model using data distributed among a plurality of terminals.
다양한 실시 예들에 따라, 가중치에 관련된 정보의 수집 및 네트워크 모델의 갱신 동작은 복수 회 반복될 수 있다. 또한, 훈련에 참여할 적어도 하나의 단말을 선택하는 동작이 선행될 수 있고, 단말에게 훈련의 중단, 시작 등을 지시하는 제어 시그널링 동작도 수행될 수 있다. 참여 단말의 선택, 반복적인 학습, 제어 시그널링을 고려한 절차의 일 실시 예는 다음과 같다.According to various embodiments, an operation of collecting information related to a weight and updating a network model may be repeated a plurality of times. In addition, an operation of selecting at least one terminal to participate in training may be preceded, and a control signaling operation instructing the terminal to stop or start training may also be performed. An embodiment of a procedure in consideration of selection of participating terminals, repetitive learning, and control signaling is as follows.
도 37은 본 개시에 적용 가능한 서버에서 압축된 연합 학습을 수행하는 절차의 일 실시 예를 나타내는 도면이다. 도 37은 연합 학습을 제어하는 서버의 동작 방법을 예시한다. 도 37에 예시된 절차의 동작 주체는 '서버'로 설명되며, 여기서 서버는 기지국에 포함되거나 또는 코어 망 엔티티일 수 있다.37 is a diagram illustrating an embodiment of a procedure for performing compressed federated learning in a server applicable to the present disclosure. 37 illustrates an operation method of a server that controls federated learning. The operating subject of the procedure illustrated in FIG. 37 is described as a 'server', where the server may be included in the base station or may be a core network entity.
도 37을 참고하면, S3701 단계에서, 서버는 훈련을 수행할 적어도 하나의 단말을 선택한다. 이때, 일 실시 예에 따라, 각 단말의 자원에 대한 보고(report)가 수행될 수 있다. 보고는 각 단말이 보유한 글로벌 희소 모델(global sparse model)의 버전에 관련된 정보를 포함할 수 있다. S3703 단계에서, 서버는 초기 글로벌 희소 모델을 분배(distribution)한다. 다른 실시 예에 따라, 훈련을 수행할 단말들 모두가 동일한 버전의 글로벌 희소 모델을 보유하고 있으면, 본 S3703 단계는 생략될 수 있다. Referring to FIG. 37 , in step S3701, the server selects at least one terminal to perform training. In this case, according to an embodiment, a report on the resource of each terminal may be performed. The report may include information related to the version of the global sparse model possessed by each terminal. In step S3703, the server distributes the initial global sparse model. According to another embodiment, if all terminals to be trained have the same version of the global sparse model, step S3703 may be omitted.
S3705 단계에서, 서버는 Ntotal_UE_participated를 0으로 초기화한다. Ntotal_UE_participated는 연합 학습에 참여한 단말들의 개수를 의미한다. 또는, Ntotal_UE_participated는 훈련 결과의 보고를 수신한 횟수로 이해될 수 있다. S3707 단계에서, 서버는 i번째 반복(iteration)을 수행한다. 최초, i는 1이다. i번째 반복 동작에서, 단말은 밀집 네트워크를 구성하고, 훈련을 통해 연결들의 가중치들을 결정하고, 결정된 가중치들 중 적어도 일부에 관련된 정보를 서버로 송신한다. 서버는 수신된 가중치에 관련된 정보를 수신한다. 이때, 서버는 수신된 보고의 개수를 카운팅한다.In step S3705, the server initializes N total_UE_participated to 0. N total_UE_participated means the number of terminals participating in federated learning. Alternatively, N total_UE_participated may be understood as the number of times a report of a training result is received. In step S3707, the server performs an i-th iteration. First, i is 1. In the i-th iteration operation, the terminal configures a dense network, determines weights of connections through training, and transmits information related to at least some of the determined weights to the server. The server receives information related to the received weight. At this time, the server counts the number of received reports.
S3709 단계에서, 서버는 Ntotal_UE_participated를 Ntotal_UE_participated+N_UE_participated로 갱신한다. 즉, 서버는 연합 학습에 참여한 단말들의 개수를 S3703 단계에서 가중치에 관련된 보고를 수신한 횟수만큼 증가시킨다. 만일, 하나의 반복 동안 동일한 단말이 2회의 훈련 및 보고를 수행한 경우, Ntotal_UE_participated는 2 만큼 증가할 수 있다. S3711 단계에서, 서버는 Ntotal_UE_participated를 임계치 Ntotal_UE_possible_participating와 비교한다. Ntotal_UE_possible_participating는 반복의 종료를 판단하기 위해 정의된 임계치이다. In step S3709, the server updates N total_UE_participated to N total_UE_participated +N _UE_participated. That is, the server increases the number of terminals participating in federated learning by the number of times it receives a weight-related report in step S3703. If the same UE performs training and reporting twice during one repetition, N total_UE_participated may increase by 2. In step S3711 , the server compares N total_UE_participated with a threshold N total_UE_possible_participating . N total_UE_possible_participating is a threshold defined for determining the end of iteration.
만일, Ntotal_UE_participated가 Ntotal_UE_possible_participating보다 작으면, 다시 말해, 훈련에 참여한 단말의 개수가 임계치 미만이면, 서버는 S3713 단계에서, 서버는 연합 수집(federated aggregation) 동작을 수행한다. 예를 들어, 서버는 수집된 가중치에 관련된 정보를 기반으로 네트워크 모델을 갱신하고, 갱신된 네트워크 모델에 관련된 정보를 단말들에게 송신할 수 있다. 예를 들어, 갱신된 네트워크 모델에 관련된 정보는 갱신된 가중치들을 포함할 수 있다. 이에 따라, 이후 S3707 단계에서의 i번째 반복 학습에서 갱신된 네트워크 모델을 이용한 훈련이 수행된다.Ten thousand and one, if N is smaller than N total_UE_participated total_UE_possible_participating, again under other words, the number of the terminals participating in the training threshold value, the server in the step S3713, the server performs a union collection (aggregation federated) operation. For example, the server may update the network model based on the collected weight related information, and transmit information related to the updated network model to the terminals. For example, the information related to the updated network model may include updated weights. Accordingly, training using the network model updated in the i-th iterative learning in step S3707 is performed.
만일, Ntotal_UE_participated가 Ntotal_UE_possible_participating보다 크거나 같으면, S3715 단계에서, 서버는 단말들에게 훈련 중단 메시지를 송신한다. 즉, 충분한 학습이 수행되었으므로, 서버는 단말들의 훈련을 중단시킨다. 이에 응하여, 단말은 훈련을 통한 가중치의 결정 및 보고 동작을 중단한다. S3717 단계에서, 서버는 프루닝을 수행한다. 다시 말해, 서버는 적어도 하나의 연결을 제거한다. 적어도 하나의 연결은 단말들로부터 수집된 정보에 기반하여 갱신된 가중치들에 기반하여 제거될 수 있다. S3719 단계에서, 서버는 UE들에게 훈련 시작(train start) 메시지를 송신한다. 이에 따라, 단말들은 다시 학습을 수행하게 된다. S3721 단계에서, 서버는 UE들에게 추론 변경(inference change) 메시지를 송신한다. 이에 따라, 단말들은 네트워크 모델을 이용한 추론 동작을 수행하게 된다. 이후, 서버는 S3705 단계로 되돌아가 네트워크 모델을 더 갱신할 수 있다. 이때, S3705 단계 내지 S3721 단계의 반복은 일정 시간 이후 수행되거나, 또는 정의된 이벤트의 발생에 의해 수행될 수 있다.If N total_UE_participated is greater than or equal to N total_UE_possible_participating , in step S3715, the server transmits a training stop message to the UEs. That is, since sufficient learning has been performed, the server stops training of the terminals. In response, the terminal stops determining and reporting weights through training. In step S3717, the server performs pruning. In other words, the server drops at least one connection. At least one connection may be removed based on weights updated based on information collected from terminals. In step S3719, the server transmits a training start (train start) message to the UEs. Accordingly, the terminals perform learning again. In step S3721, the server sends an inference change message to the UEs. Accordingly, the terminals perform an inference operation using the network model. Thereafter, the server may return to step S3705 to further update the network model. In this case, the repetition of steps S3705 to S3721 may be performed after a predetermined time or may be performed by the occurrence of a defined event.
도 38은 본 개시에 적용 가능한 서버에서 각 반복(iteration) 단계 동안 연합 수집을 수행하는 절차의 일 실시 예를 나타내는 도면이다. 도 38은 서버의 동작 방법을 예시한다. 도 38에 예시된 절차의 동작 주체는 '서버'로 설명되며, 여기서 서버는 기지국이거나 또는 코어 망 엔티티일 수 있다.38 is a diagram illustrating an embodiment of a procedure for performing federated collection during each iteration step in a server applicable to the present disclosure. 38 illustrates an operating method of a server. An operating subject of the procedure illustrated in FIG. 38 is described as a 'server', where the server may be a base station or a core network entity.
도 38을 참고하면, S3801 단계에서, 서버는 각 단말로부터 수집된 가중치에 관련된 정보에 기반하여 희소 글로벌 가중치를 재구성한다. 서버는 학습에 참여한 단말들 각각에 대응하는 복수의 네트워크 모델을 저장하고 있으며, 단말 별 가중치에 관련된 정보를 이용하여 각 단말에 대응하는 네트워크 모델의 가중치들을 재구성한다. 다시 말해, 서버는 제1 단말로부터 수신된 정보에 기반하여 제1 네트워크 모델의 가중치를 재구성하고, 제2 단말로부터 수신된 정보에 기반하여 제2 네트워크 모델의 가중치를 재구성한다. Referring to FIG. 38 , in step S3801, the server reconfigures the sparse global weight based on information related to the weight collected from each terminal. The server stores a plurality of network models corresponding to each of the terminals participating in the learning, and reconfigures the weights of the network models corresponding to each terminal by using information related to the weights for each terminal. In other words, the server reconfigures the weight of the first network model based on the information received from the first terminal, and reconfigures the weight of the second network model based on the information received from the second terminal.
여기서, 단말로부터 수신된 정보는 연결들 중 일부에 대한 가중치 관련 정보만을 포함할 수 있다. 이 경우, 단말로부터 가중치에 관련된 정보가 제공된 연결(이하 '수신 연결'이라 칭함)에 대한 가중치의 재구성과 단말로부터 가중치에 관련된 정보가 제공되지 아니한 연결(이하 '미수신 연결'이라 칭함)에 대한 가중치의 재구성은 다르게 수행될 수 있다. 예를 들어, 미수신 연결의 경우, 서버는 기존의 글로벌 희소 가중치 wsparse_old에서 포함된 해당 연결의 가중치를 그대로 적용한다. 예를 들어, 수신 연결의 경우, 서버는 기존의 글로벌 희소 가중치 wsparse_old에서 포함된 해당 연결의 가중치를 수신된 정보를 이용하여 수정한 후, 적용한다. 수신된 정보가 가중치의 변화량을 나타내는 프루닝된 가중치 변화량 벡터(pruned weight difference vector) diff(wk)인 경우, 서버는 기존의 글로벌 희소 가중치 wsparse_old에서 포함된 해당 연결의 가중치 및 가중치의 변화량을 합산함으로써 해당 연결의 가중치를 재구성한다.Here, the information received from the terminal may include only weight-related information for some of the connections. In this case, weights for the reconfiguration of weights for a connection provided with weight-related information from the terminal (hereinafter referred to as 'received connection') and a weight for a connection for which weight-related information is not provided from the terminal (hereinafter referred to as 'unreceived connection') The reconstruction of can be performed differently. For example, in the case of an unreceived connection, the server applies the weight of the connection included in the existing global sparse weight w sparse_old as it is. For example, in the case of a received connection, the server modifies the weight of the corresponding connection included in the existing global sparse weight w sparse_old using the received information, and then applies it. If the received information is a pruned weight difference vector diff(w k ) indicating the change in weight, the server calculates the weight and change in weight of the corresponding connection included in the existing global sparse weight w sparse_old . By summing, the weights of the corresponding connections are reconstructed.
S3803 단계에서, 서버는 재구성된 가중치 벡터들을 평균화함으로써 새로운 가중치들을 결정한다. S3801 단계를 통해 복수의 단말들 각각에 대응하는, 서로 다른 가중치들을 가지는 복수의 네트워크 모델이 도출되므로, 서버는 복수의 네트워크 모델들을 기반으로 글로벌 네트워크 모델을 갱신할 수 있다. 이를 위해, 서버는 재구성된 가중치들을 연결 별로 평균화할 수 있다(
Figure PCTKR2020008203-appb-I000010
).
In step S3803, the server determines new weights by averaging the reconstructed weight vectors. Since a plurality of network models having different weights corresponding to each of the plurality of terminals are derived through step S3801, the server may update the global network model based on the plurality of network models. To this end, the server may average the reconstructed weights for each connection (
Figure PCTKR2020008203-appb-I000010
).
S3805 단계에서, 서버는 새로운 가중치들로 기존의 희소 글로벌 가중치를 갱신한다(wsparse_old=wnew). S3807 단계에서, 서버는 단말들에게 새로운 희소 글로벌 모델을 송신한다. 다시 말해, 서버는 S3805 단계에서 갱신된 가중치들을 포함하는 희소 글로벌 모델의 가중치 정보 wnew_sparse를 송신한다.In step S3805, the server updates the existing sparse global weight with the new weights (w sparse_old =w new ). In step S3807, the server transmits a new sparse global model to the terminals. In other words, the server transmits weight information w new_sparse of the sparse global model including the weights updated in step S3805.
도 38을 참고하여 설명한 실시 예에서, 서버는 단말로부터 수신된 정보에 기반하여 대응하는 네트워크 모델을 재구성한다. 이때, 수신 연결의 경우, 서버는 기존의 가중치 및 수신된 변화량을 합산함으로써 재구성되는 가중치를 결정한다. 다른 실시 예에 따라, 수신된 변화량에 가중치가 부여될 수 있다. 즉, 가중치의 재구성에 있어서 수신된 변화량의 영향을 줄이려면 1 미만의 가중치가, 영향을 높이려면 1을 초과하는 가중치가 적용될 수 있다.In the embodiment described with reference to FIG. 38, the server reconfigures a corresponding network model based on information received from the terminal. In this case, in the case of a receiving connection, the server determines the weight to be reconstructed by adding up the existing weight and the received change amount. According to another embodiment, a weight may be assigned to the received change amount. That is, a weight less than 1 may be applied to reduce the influence of the received change in weight reconstruction, and a weight greater than 1 may be applied to increase the influence.
또한, 서버는 재구성된 가중치들을 평균화함으로써 글로벌 네트워크 모델을 갱신한다. 다른 실시 예에 따라, 가중치들에 서로 다른 평균화 가중치가 적용될 수 있다. 예를 들어, 학습의 정확도가 높거나, 네트워크 모델을 상대적으로 빈번하게 사용하는 단말에 대응하는 네트워크 모델에 대하여, 다른 네트워크 모델에 비해 더 큰 평균화 가중치가 적용될 수 있다.Also, the server updates the global network model by averaging the reconstructed weights. According to another embodiment, different averaging weights may be applied to the weights. For example, a larger averaging weight may be applied to a network model corresponding to a terminal having high learning accuracy or using the network model relatively frequently compared to other network models.
도 39는 본 개시에 적용 가능한 단말에서 각 반복 동안 연합 수집을 수행하는 절차의 일 실시 예를 나타내는 도면이다. 도 39는 연합 학습에 참여한 단말의 동작 방법을 예시한다.39 is a diagram illustrating an embodiment of a procedure for performing federated collection during each iteration in a terminal applicable to the present disclosure. 39 illustrates an operation method of a terminal participating in federated learning.
도 39를 참고하면, S3901 단계에서, 단말은 초기 희소 네트워크를 수신한다. 단말은 초기 등록 과정에서 초기 희소 네트워크를 수신할 수 있다. 초기 희소 네트워크는 연합 학습의 초기에 수신되는 글로벌 네트워크를 지칭할 수 있고, 초기 이후의 반복에서 송신되는 글로벌 네트워크는 희소 네트워크라고 지칭될 수 있다.Referring to FIG. 39 , in step S3901, the terminal receives an initial sparse network. The terminal may receive the initial sparse network in the initial registration process. The initial sparse network may refer to a global network that is received at the beginning of federated learning, and a global network that is transmitted in iterations after the initial may be referred to as a sparse network.
S3903 단계에서, 단말은 밀집 네트워크 구성한 후, 훈련을 수행한다. 단말은 희소 네트워크의 모든 연결들을 형성함으로써 밀집 네트워크를 구성한 후, 어떤 연결이 중요한지를 학습하기 위해 로컬 데이터로 훈련한다. 이에 따라, 적어도 하나의 연결의 가중치가 변경될 수 있다.In step S3903, the terminal configures a dense network and then performs training. After the terminal constructs a dense network by forming all connections of the sparse network, it trains with local data to learn which connection is important. Accordingly, the weight of at least one connection may be changed.
S3905 단계에서, 단말은 중요하지 아니한 적어도 하나의 연결을 프루닝한다. 예를 들어, 연결이 중요한지 여부는 훈련 후의 연결의 가중치에 기반하여 판단될 수 있다. 일 실시 예에 따라, 단말은 훈련에 의한 각 연결의 가중치의 변화량을 확인하고, 변화량이 임계치보다 작은 연결을 중요하지 아니한 연결로 판단할 수 있다. 예를 들어, 훈련에 의해 가중치가 0.90에서 0.92로 변화한 연결 보다 가중치가 0에서 0.10으로 변한 연결이 더 의미 있는, 다시 말해, 더 중요한 연결로 취급될 수 있다.In step S3905, the terminal prunes at least one unimportant connection. For example, whether the connection is important may be determined based on the weight of the connection after training. According to an embodiment, the terminal may check the amount of change in the weight of each connection by training, and determine that the connection in which the change amount is smaller than a threshold is not important. For example, a connection whose weight changed from 0 to 0.10 could be treated as more meaningful, that is, more important, than a connection whose weight changed from 0.90 to 0.92 by training.
S3907 단계에서, 단말은 프루닝되지 아니한 적어도 하나의 연결의 가중치를 포함하는 변화량 벡터를 생성한다. 변화량 벡터는 훈련에 의한 가중치의 변화량이 임계치보다 큰 적어도 하나의 연결의 변화량을 포함한다. 여기서, 변화량 벡터에 포함되는 연결들은 훈련에 의한 가중치 변화량에 의해 선택되므로, 초기 희소 네트워크에 포함된 연결들과 일치하거나 또는 일치하지 아니할 수 있다. In step S3907, the terminal generates a change amount vector including the weight of at least one unpruned connection. The change amount vector includes a change amount of at least one connection whose weight change amount due to training is greater than a threshold value. Here, since the connections included in the variation vector are selected by the weight variation by training, they may or may not match the connections included in the initial sparse network.
S3909 단계에서, 단말은 서버에게 변화량 벡터를 송신한다. 변화량 벡터에 포함되지 아니한 적어도 하나의 연결에 대한 가중치는 서버에 의해 재구성될 수 있다. 단말에서 프루닝되고 서버로 가중치가 전달되지 아니한 연결은 무시되는 것이 아니라, 서버의 판단에 의해 최종 네트워크 모델에 포함될 수 있다. 즉, 단말에서의 프루닝 동작은 상향링크로 전달되는 가중치 벡터의 데이터 크기를 줄이기 위한 것이다.In step S3909, the terminal transmits the change amount vector to the server. A weight for at least one connection not included in the change amount vector may be reconfigured by the server. Connections that have been pruned in the terminal and have not received a weight to the server are not ignored, but may be included in the final network model by the server's determination. That is, the pruning operation in the terminal is to reduce the data size of the weight vector transmitted through the uplink.
매 반복(iteration) 단계에서, 도 38 및 도 39와 같은 동작들이 수행될 수 있다. 이때, 반복의 횟수는 연합 학습은 네트워크 모델의 성능이 충분히 수렴될 수 있도록 결정되는 것이 바람직하다. 예를 들어, 도 37을 참고하면, 반복 횟수가 충분한지 여부는 연합 학습에 참여한 단말들의 개수가 임계치에 도달하였는지 여부에 의해 결정될 수 있다. In each iteration step, operations as shown in FIGS. 38 and 39 may be performed. In this case, the number of iterations is preferably determined so that the performance of the network model can be sufficiently converged for federated learning. For example, referring to FIG. 37 , whether the number of repetitions is sufficient may be determined by whether the number of terminals participating in federated learning reaches a threshold.
초기 희소 네트워크 모델을 생성 시, 서버는 프루닝 비율(prune ratio)에 따라 성능 열화 없는 범위에서 임계치(threshold)를 결정하고, 미세 조정 단계(fine tuning epoch) 횟수를 결정할 수 있다. 예를 들어, 프루닝 비율이 50%인 경우, 미세 조정 단계의 횟수 10에서 성능 저하 없이 수렴된다면, 연합 학습에 참여한 단말들의 개수에 대한 임계치는 이하 [수학식 1]과 같이 결정될 수 있다.When generating the initial sparse network model, the server may determine a threshold in a range without performance degradation according to a prune ratio, and determine the number of fine tuning epochs. For example, if the pruning rate is 50%, if the convergence without performance degradation in the number of fine-tuning steps 10, the threshold for the number of terminals participating in the federated learning may be determined as follows [Equation 1].
Figure PCTKR2020008203-appb-M000001
Figure PCTKR2020008203-appb-M000001
[수학식 1]에서, Ntotal UE possible participaing는 연합 학습에 참여한 단말들의 개수에 대한 임계치, Nfine tunnig epoch는 미세 조정 단계의 횟수, Ntotal init data는 초기 프루닝 모델을 생성 시 사용된 초기 데이터의 개수, batches of size B는 매 훈련 시 단말이 학습하는 단위의 크기를 의미한다.In [Equation 1], N total UE possible participaing is the threshold for the number of terminals participating in federated learning, N fine tunnig epoch is the number of fine-tuning steps, N total init data is the initial used when generating the initial pruning model The number of data, batches of size B, means the size of the unit that the terminal learns during every training.
예를 들어, 미세 조정 단계의 횟수가 10이고, 초기 프루닝 모델을 생성 시 사용된 초기 데이터의 개수가 65000이고, 배치 사이즈 B가 65이면, 10000(=10×65000/65)회의 프루닝을 위한 반복에 참여 가능한 UE의 총 수가 지정된다. 각, 단말은 매 훈련 시 배치 크기 B에 따라 학습하고, 서버로 가중치의 변화량 벡터를 전송한다. 이러한 동작이 I번 반복되며, I는 이하 [수학식 2]와 같이 표현될 수 있다.For example, if the number of fine-tuning steps is 10, the number of initial data used to create the initial pruning model is 65000, and the batch size B is 65, then 10000 (=10×65000/65) pruning is performed. The total number of UEs that can participate in iteration for Each terminal learns according to the batch size B during every training, and transmits the weight change vector to the server. This operation is repeated I times, and I may be expressed as in [Equation 2] below.
Figure PCTKR2020008203-appb-M000002
Figure PCTKR2020008203-appb-M000002
[수학식 2]에서, Ntotal UE possible participaing는 연합 학습에 참여한 단말들의 개수에 대한 임계치, NUE participating_i는 i번째 반복에서 참여한 단말의 개수, I는 전체 반복 횟수를 의미한다.In [Equation 2], N total UE possible participation is a threshold for the number of terminals participating in federated learning, N UE participating_i is the number of terminals participating in the i-th iteration, and I is the total number of iterations.
만약, 임계치가 10000이고, 매 훈련 반복 시 10개의 단말들이 참여하였다면, 1000번의 반복들 후 서버에서 프루닝이 수행된다. 즉, 연합 학습의 반복이 I번 수행된다. 서버는 수집 시점에 누적된 훈련 참여 단말 개수를 계산하며, [수학식 2]가 만족되면, 훈련 중단 메시지를 모든 단말들에게 전달함으로써 단말들의 훈련 동작을 중단시킨다. 이에 따라, 각 단말의 불필요한 연산 자원(computing resource) 낭비가 감소된다. 이후, 서버는 프루닝을 수행한다.If the threshold is 10000 and 10 terminals participate in every training iteration, pruning is performed in the server after 1000 iterations. That is, the repetition of the associative learning is performed I times. The server calculates the accumulated number of training participation terminals at the collection time, and when [Equation 2] is satisfied, the training operation of the terminals is stopped by delivering a training stop message to all terminals. Accordingly, unnecessary waste of computing resources of each terminal is reduced. After that, the server performs pruning.
도 40은 본 개시에 적용 가능한 서버에서 프루닝을 수행하는 절차의 일 실시 예를 나타내는 도면이다. 도 40은 서버의 동작 방법을 예시한다. 도 38에 예시된 절차의 동작 주체는 '서버'로 설명되며, 여기서 서버는 기지국에 포함되거나 또는 코어 망 엔티티일 수 있다.40 is a diagram illustrating an embodiment of a procedure for performing pruning in a server applicable to the present disclosure. 40 illustrates an operating method of a server. The operating subject of the procedure illustrated in FIG. 38 is described as a 'server', where the server may be included in the base station or may be a core network entity.
도 38을 참고하면, S4001 단계에서, 서버는 각 단말로부터 수집된 가중치에 관련된 정보에 기반하여 희소 글로벌 가중치를 재구성한다. 서버는 학습에 참여한 단말들 각각에 대응하는 복수의 네트워크 모델을 저장하고 있으며, 단말 별 가중치에 관련된 정보를 이용하여 각 단말에 대응하는 네트워크 모델의 가중치들을 재구성한다. 다시 말해, 서버는 제1 단말로부터 수신된 정보에 기반하여 제1 네트워크 모델의 가중치를 재구성하고, 제2 단말로부터 수신된 정보에 기반하여 제2 네트워크 모델의 가중치를 재구성한다.Referring to FIG. 38 , in step S4001, the server reconstructs sparse global weights based on information related to weights collected from each terminal. The server stores a plurality of network models corresponding to each of the terminals participating in the learning, and reconfigures the weights of the network models corresponding to each terminal by using information related to the weights for each terminal. In other words, the server reconfigures the weight of the first network model based on the information received from the first terminal, and reconfigures the weight of the second network model based on the information received from the second terminal.
S4003 단계에서, 서버는 재구성된 가중치 벡터들을 평균화함으로써 새로운 가중치들을 결정한다. S4001 단계를 통해 복수의 단말들 각각에 대응하는, 서로 다른 가중치들을 가지는 복수의 네트워크 모델이 도출되므로, 서버는 복수의 네트워크 모델들을 기반으로 글로벌 네트워크 모델을 갱신할 수 있다. 이를 위해, 서버는 재구성된 가중치들을 연결 별로 평균화할 수 있다(
Figure PCTKR2020008203-appb-I000011
). S4005 단계에서, 서버는 새로운 가중치들로 기존의 희소 글로벌 가중치를 갱신한다(wsparse_old=wnew).
In step S4003, the server determines new weights by averaging the reconstructed weight vectors. Since a plurality of network models having different weights corresponding to each of the plurality of terminals are derived through step S4001, the server may update the global network model based on the plurality of network models. To this end, the server may average the reconstructed weights for each connection (
Figure PCTKR2020008203-appb-I000011
). In step S4005, the server updates the existing sparse global weight with the new weights (w sparse_old =w new ).
S4007 단계에서, 서버는 중요하지 아니한 연결들을 프루닝한다. 서버는 연합 학습의 매 반복에서 NUE participated를 누적함으로써 Ntotal UE participated를 갱신한다. Ntotal UE participated이 Ntotal UE possible participating 이상인 경우, 서버는 프루닝을 수행한다. 예를 들어, 서버는 임계치보다 낮은 임계치를 가진 적어도 하나의 연결을 제거함으로써, 새로운 글로벌 희소 네트워크 모델의 가중치 벡터 wnew_sparse_model를 구성할 수 있다.In step S4007, the server prunes unimportant connections. The server updates N total UE participated by accumulating N UE participated in every iteration of federated learning. If N total UE participated is greater than or equal to N total UE possible participating , the server performs pruning. For example, the server may construct a weight vector w new_sparse_model of the new global sparse network model by removing at least one connection with a threshold lower than the threshold.
S4009 단계에서, 서버는 단말들에게 새로운 희소 글로벌 모델을 송신한다. 다시 말해, 서버는 S4007 단계에서 갱신된 가중치들을 포함하는 희소 글로벌 모델 정보 wnew_sparse_model을 송신한다. 희소 글로벌 모델 정보는 네트워크 모델의 노드들의 구조, 연결들의 구조, 연결들의 가중치들에 관련된 정보를 포함한다.In step S4009, the server transmits a new sparse global model to the terminals. In other words, the server transmits sparse global model information w new_sparse_model including the weights updated in step S4007 . The sparse global model information includes information related to a structure of nodes in a network model, a structure of connections, and weights of connections.
이하 본 개시는 연합 학습의 프로토콜을 설명한다. 전술한 다양한 실시 예들에 따른 연합 학습 기법은 압축된 연합 학습(compressed federated learning, CFL)이라 지칭될 수 있다.Hereinafter, the present disclosure describes a protocol of federated learning. The federated learning technique according to the various embodiments described above may be referred to as compressed federated learning (CFL).
도 41은 본 개시에 적용 가능한 압축된 연합 학습에서 전반부 2개 반복들의 프로토콜의 일례를 나타내는 도면이다. 도 41은 4개의 단말들(4110a 내지 4110d) 및 서버(4120)가 참여할 수 있는 연합 학습의 프로토콜을 예시한다.41 is a diagram illustrating an example of a protocol of the first two iterations in compressed associative learning applicable to the present disclosure. 41 illustrates a protocol of federated learning in which four terminals 4110a to 4110d and the server 4120 can participate.
도 41을 참고하면, CFL의 1번째 반복에서, 훈련 단말 선택 단계(4102-1), 초기 글로벌 희소 모델 분배(global sparse model distribution) 단계(4104-1), 훈련 결과 보고(training result reporting) 단계(4106-1)가 진행된다. 훈련 단말 선택 단계(4102-1)에서, 단말들(4110a 내지 4110d)은 서버(4120)으로 자원 보고(resource report)를 송신하고, 서버(4120)는 훈련에 참여할 장치(예: 단말)을 선택한다. 초기 글로벌 희소 모델 분배 단계(4104-1)에서, 서버(4120)는 글로벌 희소 모델의 분배 시작을 알리는 GSMD(global sparse model distribution) 활성화(activation) 메시지, 글로벌 희소 모델에 대한 정보, 글로벌 희소 모델의 분배 종료를 알리는 GSMD 비활성화(deactivation) 메시지, 훈련 시작(train start) 메시지, 추론 시작(inference start) 메시지 중 적어도 하나를 송신한다. 이에 따라, 단말들(4110a 내지 4110d) 각각은 글로벌 희소 모델을 밀집 네트워크로 변환하고, 훈련을 수행한다. 이어, 훈련 결과 보고 단계(4106-1)에서, 단말들(4110a 내지 4110d) 각각은 훈련을 통해 결정된 가중치의 변화량 벡터를 포함하는 훈련 결과를 보고하고, 서버(4120)는 훈련 결과를 수집하고, 글로벌 네트워크 모델의 가중치들을 갱신한다.Referring to FIG. 41 , in the first iteration of CFL, training terminal selection step 4102-1, initial global sparse model distribution step 4104-1, training result reporting step (4106-1) proceeds. In the training terminal selection step 4102-1, the terminals 4110a to 4110d transmit a resource report to the server 4120, and the server 4120 selects a device (eg, a terminal) to participate in training. do. In the initial global sparse model distribution step 4104-1, the server 4120 sends a global sparse model distribution (GSMD) activation message indicating the start of distribution of the global sparse model, information about the global sparse model, and the global sparse model of the global sparse model. It transmits at least one of a GSMD deactivation message, a train start message, and an inference start message indicating the end of distribution. Accordingly, each of the terminals 4110a to 4110d transforms the global sparse model into a dense network and performs training. Next, in the training result reporting step 4106-1, each of the terminals 4110a to 4110d reports a training result including a vector of change in weight determined through training, and the server 4120 collects the training result, Update the weights of the global network model.
다음, CFL의 2번째 반복에서, 1번째 반복과 유사하게, 훈련 단말 선택 단계(4102-2), 초기 글로벌 희소 모델 분배 단계(4104-2), 훈련 결과 보고 단계(4106-2)가 진행된다. 다만, 1번째 반복과 달리, 3개의 단말들(4110a, 4110b, 4110d)이 훈련에 참여하며, GSMD 활성화 메시지 송신, 희소 글로벌 모델 분배, GSMD 비활성화 메시지 송신, 훈련 시작 메시지, 추론 시작 메시지의 송신이 생략되고, 희소 가중치 분배 동작이 수행된다.Next, in the second iteration of the CFL, similar to the first iteration, the training terminal selection step 4102-2, the initial global sparse model distribution step 4104-2, and the training result reporting step 4106-2 proceed. . However, unlike the first iteration, three terminals 4110a, 4110b, and 4110d participate in training, and transmission of a GSMD activation message, sparse global model distribution, GSMD deactivation message transmission, training start message, and inference start message is transmitted. is omitted, and a sparse weight distribution operation is performed.
도 42는 본 개시에 적용 가능한 압축된 연합 학습에서 후반부 2개 반복들의 프로토콜의 일례를 나타내는 도면이다. 도 42은 4개의 단말들(4210a 내지 4210d) 및 서버(4220)가 참여할 수 있는 연합 학습의 프로토콜을 예시한다.42 is a diagram illustrating an example of a protocol of the latter two iterations in compressed associative learning applicable to the present disclosure. 42 illustrates a protocol of federated learning in which four terminals 4210a to 4210d and the server 4220 can participate.
도 42를 참고하면, CFL의 I-1번째 반복에서, 도 41의 2번째 반복과 유사하게, 훈련 단말 선택 단계(4202-(I-1)), 초기 글로벌 희소 모델 분배 단계(4204-(I-1)), 훈련 결과 보고 단계(4206-(I-1))가 진행된다. 3개의 단말들(4210a, 4210b, 4210d)이 훈련에 참여한다. Referring to FIG. 42 , in the I-1 iteration of CFL, similar to the second iteration of FIG. 41 , the training terminal selection step 4202-(I-1)), the initial global sparse model distribution step 4204-(I) -1)), the training result reporting step 4206-(I-1)) proceeds. Three terminals (4210a, 4210b, 4210d) participate in the training.
이어, CFL의 I번째 반복에서, 훈련 단말 선택 단계(4202-I), 초기 글로벌 희소 모델 분배 단계(4204-I), 훈련 결과 보고 단계(4206-I)가 진행된다. I번째 반복에 도달하면, 서버(4220)에서의 미세 조정(fine tuning)이 충분히 수행되었으므로, 더이상 단말들로부터 훈련 결과 보고를 수신할 필요가 없는 상태가 될 수 있다. 서버(4220)는 아직 훈련 결과를 보고하지 아니한 선택된 단말들(4210b, 4210d)에게 훈련 중단(train stop) 메시지를 전송함으로써 단말들(4210b, 4210d)의 훈련 동작을 중단케 한다. 이로 인해, 단말들(4210b, 4210d)의 연산 자원이 절약되고, 불필요한 훈련 결과 보고를 송신하지 아니함으로써 상향링크 대역폭이 절약된다. 이어, 서버(4220)는 프루닝 단계를 진행하여, 새로운 글로벌 희소 모델을 생성한다.Subsequently, in the I-th iteration of the CFL, a training terminal selection step 4202-I, an initial global sparse model distribution step 4204-I, and a training result reporting step 4206-I are performed. When the I-th iteration is reached, since fine tuning in the server 4220 has been sufficiently performed, it may be in a state in which it is no longer necessary to receive a training result report from the terminals. The server 4220 stops the training operation of the terminals 4210b and 4210d by transmitting a training stop message to the selected terminals 4210b and 4210d that have not yet reported the training result. For this reason, computational resources of the terminals 4210b and 4210d are saved, and uplink bandwidth is saved by not transmitting unnecessary training result reports. Next, the server 4220 performs a pruning step to generate a new global sparse model.
도 43는 본 개시에 적용 가능한 압축된 연합 학습에서 연합 수집 동작을 재시작하는 프로토콜의 일례를 나타내는 도면이다. 도 43은 4개의 단말들(4310a 내지 4310d) 및 서버(4320)가 참여할 수 있는 연합 학습의 프로토콜을 예시한다.43 is a diagram illustrating an example of a protocol for restarting a federated collection operation in compressed federated learning applicable to the present disclosure. 43 illustrates a protocol of federated learning in which four terminals 4310a to 4310d and the server 4320 can participate.
도 43을 참고하면, CFL의 I+1번째 반복에서, 훈련 단말 선택 단계(4302), 새로운 글로벌 희소 모델 정보 분배 단계(4304), 훈련 결과 보고 단계(4306)가 진행된다. 이를 통해, 전술한 과정들을 반복하며 점점 진화하는 모델이 생성된다. 새로운 글로벌 희소 모델 정보 분배 단계(4304)에서, 서버(4320)는 제어 메시지로서 GSMC(global sparse model change) 메시지를 단말들(4310a 내지 4310d)에게 송신함으로써 새로운 글로벌 희소 모델 정보(new global sparse model-info)가 분배될 것임을 통지한다. 이어, 서버(420)는 새로운 글로벌 희소 모델 정보을 데이터 채널을 이용하여 송신하고, 훈련 시작 메시지 및 추론 변경 메시지를 송신한다. 이로 인해, 단말들(4310a, 4310b, 4310d)은 훈련 및 추론을 수행한다. 구체적으로, 단말들(4310a, 4310b, 4310d) 각각은 글로벌 희소 모델을 밀집 네트워크로 변환하고, 훈련을 수행하고, 훈련을 통해 결정된 가중치의 변화량 벡터를 포함하는 훈련 결과를 보고하고, 서버(4320)는 훈련 결과를 수집하고, 글로벌 네트워크 모델의 가중치들을 갱신한다.Referring to FIG. 43 , in the I+1th iteration of the CFL, a training terminal selection step 4302 , a new global sparse model information distribution step 4304 , and a training result reporting step 4306 are performed. Through this, an evolving model is generated by repeating the above-described process. In the new global sparse model information distribution step 4304, the server 4320 transmits a global sparse model change (GSMC) message as a control message to the terminals 4310a to 4310d, thereby providing new global sparse model information (new global sparse model-) info) will be distributed. Then, the server 420 transmits the new global sparse model information by using the data channel, and sends a training start message and an inference change message. Due to this, the terminals 4310a, 4310b, and 4310d perform training and inference. Specifically, each of the terminals 4310a, 4310b, and 4310d converts the global sparse model into a dense network, performs training, reports a training result including a vector of change in weight determined through training, and the server 4320 collects the training results and updates the weights of the global network model.
도 44는 본 개시에 적용 가능한 압축된 연합 학습 전반부의 신호 교환의 일례를 나타내는 도면이다. 도 44는 CFL 환경에서 초기 글로벌 희소 모델 분배 및 매 i번째 반복에서의 제1 단말(4410a), 제N 단말(4410b), 기지국(4420) 간 제어 메시지들 및 데이터 메시지들의 교환을 예시한다. 여기서, 기지국(4420)은 연합 학습을 제어하는 서버를 포함한다. 이하 설명에서, 제N 단말(4410b)의 동작들 중 제1 단말(4410a)의 동작과 중복되는 동작들에 대한 설명은 생략된다.44 is a diagram illustrating an example of signal exchange in the first half of compressed associative learning applicable to the present disclosure. 44 illustrates the exchange of control messages and data messages between the first terminal 4410a, the Nth terminal 4410b, and the base station 4420 at the initial global sparse model distribution and every i-th iteration in a CFL environment. Here, the base station 4420 includes a server that controls federated learning. In the following description, descriptions of operations overlapping those of the first terminal 4410a among the operations of the N-th terminal 4410b will be omitted.
도 44를 참고하면, S4401 단계에서, 제1 단말(4410a)는 기지국(4420)에게 UE 자원 보고 메시지를 송신한다. S4403 단계에서, 기지국(4420)은 훈련에 참여할 단말들을 선택한다. S4405 단계에서, 기지국(4420)은 GSMD 활성화 메시지를 송신한다. S4407 단계에서, 기지국(4420)은 희소 모델을 분배한다. S4409 단계에서, 기지국(4420)은 GSMD 비활성화 메시지를 송신한다. S4411 단계에서, 기지국(4420)은 훈련 시작 메시지 송신한다. S4413 단계에서, 기지국(4420)은 추론 시작 메시지를 송신한다. Referring to FIG. 44 , in step S4401 , the first terminal 4410a transmits a UE resource report message to the base station 4420 . In step S4403, the base station 4420 selects terminals to participate in training. In step S4405, the base station 4420 transmits a GSMD activation message. In step S4407, the base station 4420 distributes a sparse model. In step S4409, the base station 4420 transmits a GSMD deactivation message. In step S4411, the base station 4420 transmits a training start message. In step S4413, the base station 4420 transmits a speculation start message.
S4415 단계에서, 제1 단말(4410a)는 글로벌 희소 모델을 밀집 네트워크로 변환하고, 훈련을 수행한다. S4417 단계에서, 제1 단말(4410a)은 훈련 결과 보고를 송신한다. 훈련 결과 보고는 훈련을 통해 결정된 가중치의 변화량 벡터를 포함한다. S4419 단계에서, 서버(4420)는 압축된 연합 수집을 수행한다. 즉, 서버(4420)는 제1 단말(4410a) 및 제N 단말(4410b)를 포함하는 복수의 단말들로부터 훈련 결과를 수집하고, 글로벌 네트워크 모델의 가중치들을 갱신한다. 이후, 다음 반복이 진행된다. In step S4415, the first terminal 4410a converts the global sparse model into a dense network and performs training. In step S4417, the first terminal 4410a transmits a training result report. The training result report includes a vector of change in weights determined through training. In step S4419, the server 4420 performs compressed federation collection. That is, the server 4420 collects training results from a plurality of terminals including the first terminal 4410a and the N-th terminal 4410b and updates the weights of the global network model. After that, the next iteration proceeds.
S4421 단계에서, 제1 단말(4410a)는 기지국(4420)에게 UE 자원 보고 메시지를 송신한다. S4423 단계에서, 기지국(4420)은 훈련에 참여할 단말들을 선택한다. S4425 단계에서, 기지국(4420)은 희소 가중치에 관련된 정보를 분배한다. 희소 가중치에 관련된 정보는 해당 반복에서의 단말들(4410a, 4410b)의 학습에 사용될 네트워크 모델의 가중치들에 대한 정보를 포함한다.In step S4421 , the first terminal 4410a transmits a UE resource report message to the base station 4420 . In step S4423, the base station 4420 selects terminals to participate in training. In step S4425, the base station 4420 distributes information related to the sparse weight. The information related to the sparse weight includes information about the weights of the network model to be used for learning of the terminals 4410a and 4410b in the corresponding iteration.
도 45는 본 개시에 적용 가능한 연합 학습 후반부의 신호 교환의 일례를 나타내는 도면이다. 도 44는 CFL 환경에서 I번째 반복에서의 제1 단말(4510a), 제N 단말(4520b), 기지국(4520) 간 제어 메시지들 및 데이터 메시지들의 교환을 예시한다. 여기서, 기지국(4520)은 연합 학습을 제어하는 서버를 포함한다. 이하 설명에서, 제N 단말(4520b)의 동작들 중 제1 단말(4510a)의 동작과 중복되는 동작들에 대한 설명은 생략된다.45 is a diagram illustrating an example of signal exchange in the second half of associative learning applicable to the present disclosure. 44 illustrates the exchange of control messages and data messages between the first terminal 4510a, the N-th terminal 4520b, and the base station 4520 in the I-th iteration in a CFL environment. Here, the base station 4520 includes a server that controls federated learning. In the following description, descriptions of operations overlapping those of the first terminal 4510a among the operations of the N-th terminal 4520b will be omitted.
도 45를 참고하면, S4501 단계에서, 제1 단말(4520a)는 기지국(4520)에게 UE 자원 보고 메시지를 송신한다. S4503 단계에서, 기지국(4520)은 훈련에 참여할 단말들을 선택한다. 이어, 도 45에 도시되지 아니하였으나, 기지국(4520)은 희소 가중치에 관련된 정보를 분배할 수 있다. S4507 단계에서, 제1 단말(4510a)은 훈련 결과 보고를 송신한다. 훈련 결과 보고는 훈련을 통해 결정된 가중치의 변화량 벡터를 포함한다. Referring to FIG. 45 , in step S4501 , the first terminal 4520a transmits a UE resource report message to the base station 4520 . In step S4503, the base station 4520 selects terminals to participate in training. Subsequently, although not shown in FIG. 45 , the base station 4520 may distribute information related to the sparse weight. In step S4507, the first terminal 4510a transmits a training result report. The training result report includes a vector of change in weights determined through training.
제1 단말(4510a)로부터 훈련 결과 보고를 수신한 기지국(4520)은 충분한 훈련 결과가 수집되었음을 판단한다. 이에 따라, S4509 단계에서, 기지국(4520)은 제N 단말(4510b)로 제어 메시지인 훈련 중단(train stop) 메시지를 송신한다. 이에 따라, 제N 단말(4510b)은 훈련을 종료한다.Upon receiving the training result report from the first terminal 4510a, the base station 4520 determines that sufficient training results have been collected. Accordingly, in step S4509, the base station 4520 transmits a training stop message, which is a control message, to the N-th terminal 4510b. Accordingly, the N-th terminal 4510b ends the training.
S4511 단계에서, 서버(4520)는 서버 프루닝 단계를 진행함으로써, 새로운 희소 모델(new sparse model)을 생성한다. S4513 단계에서, 제1 단말(4520a)는 기지국(4520)에게 UE 자원 보고 메시지를 송신한다. S4515 단계에서, 기지국(4520)은 단말들을 선택한다. S4517 단계에서, 서버(4520)는 GSMC(global sparse model change) 메시지를 송신한다. S4519 단계에서, 서버(4520)는 새로운 희소 모델 정보를 분배한다. S4521 단계 및 S4523 단계에서, 서버(4520)는 훈련 시작 메시지 및 추론 변경 메시지를 송신함으로써, 단말들(4510a, 4510b)이 새로운 희소 모델로 훈련 및 추론을 수행하도록 제어한다.In step S4511, the server 4520 generates a new sparse model by performing a server pruning step. In step S4513 , the first terminal 4520a transmits a UE resource report message to the base station 4520 . In step S4515, the base station 4520 selects terminals. In step S4517, the server 4520 transmits a global sparse model change (GSMC) message. In step S4519, the server 4520 distributes new sparse model information. In steps S4521 and S4523, the server 4520 controls the terminals 4510a and 4510b to perform training and inference with a new sparse model by transmitting a training start message and an inference change message.
전술한 다양한 실시 예들에서, 단말은 서버 또는 기지국에게 훈련 결과를 나타내는 정보를 송신한다. 훈련 결과는 가중치의 변화량을 알리는 적어도 하나의 값을 포함한다. 가중치의 변화량은 다양하게 표현될 수 있는데, 이하 도 46 및 도 47을 참고하여 몇몇 예들이 설명된다.In the various embodiments described above, the terminal transmits information indicating a training result to a server or a base station. The training result includes at least one value indicating the change amount of the weight. The change amount of the weight may be variously expressed. Hereinafter, some examples will be described with reference to FIGS. 46 and 47 .
도 46는 본 개시에 적용 가능한 가중치에 관련된 정보를 전달하기 위한 패킷 포맷의 일례를 나타내는 도면이다. 도 46은 상향링크에서 사용 가능한 2가지 포맷들을 지원하는 패킷 구조의 일례이다. 46 is a diagram illustrating an example of a packet format for transmitting information related to weights applicable to the present disclosure. 46 is an example of a packet structure supporting two formats usable in uplink.
패킷은 CI(connection information) 타입(type)(4602)을 포함한다. CI 타입(4602)이 제1 값(예: 0)이면, 패킷은 제1 포맷(4610)에 따른다. CI 타입(4602)이 제2 값(예: 1)이면, 패킷은 제2 포맷(4620)에 따른다. 제1 포맷(4610)은 비트 마스크 헤더(bit mask header) 방식에 기반하며, 제2 포맷(4620)은 인덱스:변화량 딕셔너리(dictionary) 방식에 기반한다. The packet includes a connection information (CI) type 4602 . If the CI type 4602 is a first value (eg, 0), the packet follows the first format 4610 . If the CI type 4602 is a second value (eg, 1), the packet follows the second format 4620 . The first format 4610 is based on a bit mask header scheme, and the second format 4620 is based on an index:variance dictionary scheme.
제1 포맷(4610)의 패킷은 CI(4612) 및 diff(wk)(4614)를 포함한다. CI(4612)는 연결에 관련된 정보를 위한 헤더(header)를 포함한다. CI(4612)는 비트맵 방식에 따라 가중치 변화량이 제공되는 적어도 하나의 연결을 지시한다. 예를 들어, 총 4개의 연결들이 존재하고, 1번째, 3번째, 4번째 연결들에 대한 가중치 정보가 전달되는 경우, CI(4612)는 [1011]로 설정될 수 있다. diff(wk)(4614)는 CI(4612)에 의해 지정된 적어도 하나의 연결의 가중치 변화량을 포함한다. 예를 들어, CI(4612)가 [1011]인 경우, diff(wk)(4614)는 3개의 가중치 변화량 값들을 포함할 수 있다.A packet in a first format 4610 includes a CI 4612 and a diff(w k ) 4614 . The CI 4612 includes a header for information related to the connection. The CI 4612 indicates at least one connection to which a weight change amount is provided according to a bitmap method. For example, when a total of four connections exist and weight information for the first, third, and fourth connections is transmitted, the CI 4612 may be set to [1011]. diff(w k ) 4614 includes a weight change of at least one connection designated by CI 4612 . For example, if CI 4612 is [1011], diff(w k ) 4614 may include three weight change values.
구체적인 예로, 4개의 연결들이 존재하고, 4개의 연결들의 가중치 변화량이 [0.009, 0.000009, 0.9, 0.5]이며, 보고의 임계치가 0.0001인 경우, 2번째 연결의 변화량 0.000009는 임계치 0.0001 미만이다. 따라서, 2번째 연결을 제외한 나머지 연결들의 가중치 변화량이 보고된다. 이 경우, CI(4612)는 [1011]로, diff(wk)(4614)는 [0.009, 0.9, 0.5]로 설정된다. 4비트 크기의 헤더를 추가함으로써, 모든 가중치 변화량을 그대로 송신하는 경우 대비 약 32 비트의 크기 감소 효과가 발생한다.As a specific example, if there are four connections, the weight change of the four connections is [0.009, 0.000009, 0.9, 0.5], and the reporting threshold is 0.0001, the change amount of the second connection 0.000009 is less than the threshold 0.0001. Accordingly, the weight change amount of the remaining connections except for the second connection is reported. In this case, CI 4612 is set to [1011] and diff(w k ) 4614 is set to [0.009, 0.9, 0.5]. By adding a 4-bit header, there is an effect of reducing the size of about 32 bits compared to the case where all weight changes are transmitted as they are.
제2 포맷(4620)의 패킷은 적어도 하나의 CI 인덱스(index)(4622 또는 4626) 및 적어도 하나의 diff(wk)(4624 또는 4628)를 포함한다. 하나의 CI 인덱스(4622 또는 4626) 및 하나의 diff(wk)(4624 또는 4628)는 하나의 쌍(pair)을 이룬다. CI 인덱스(4622 또는 4626)는 보고되는 연결을 지시하며, diff(wk)(4624 또는 4628)는 CI 인덱스(4622 또는 4626)에 의해 지시된 연결의 가중치 변화량을 나타내는 값을 포함한다. 패킷은 보고되는 연결들의 개수 만큼의 CI 인덱스-diff(wk)의 쌍들을 포함한다. The packet in the second format 4620 includes at least one CI index 4622 or 4626 and at least one diff(w k ) 4624 or 4628 . One CI index 4622 or 4626 and one diff(w k ) 4624 or 4628 form a pair. The CI index 4622 or 4626 indicates a reported connection, and diff(w k ) 4624 or 4628 includes a value indicating the amount of weight change of the connection indicated by the CI index 4622 or 4626 . The packet contains as many pairs of CI index-diff(w k ) as the number of reported connections.
구체적인 예로, 4개의 연결들이 존재하고, 4개의 연결들의 가중치 변화량이 [0.009, 0.00009, 0.9, 0.00005]이며, 보고의 임계치가 0.0001인 경우, 2번째 연결의 변화량 0.00009 및 4번째 연결의 변화량 0.00005는 임계치 0.0001 미만이다. 따라서, 2번째 연결 및 4번째 연결을 제외한 나머지 연결들의 가중치 변화량이 보고된다. 이 경우, CI 인덱스(4622):diff(wk)(4624)는 [1:0.009], CI 인덱스(4626):diff(wk)(4628)는 [3:0.9]로 설정된다. 이에 따라, 모든 가중치 변화량을 그대로 송신하는 경우 대비 상향링크 대역폭 사용량을 감소시키는 효과가 발생한다.As a specific example, if there are 4 connections, the weight change of the 4 connections is [0.009, 0.00009, 0.9, 0.00005], and the reporting threshold is 0.0001, the change amount of the second connection 0.00009 and the change amount of the fourth connection 0.00005 are less than the threshold of 0.0001. Accordingly, the weight change amount of connections other than the second connection and the fourth connection is reported. In this case, the CI index 4622:diff(w k ) 4624 is set to [1:0.009], and the CI index 4626:diff(w k ) 4628 is set to [3:0.9]. Accordingly, there is an effect of reducing the uplink bandwidth usage compared to the case where all weight changes are transmitted as they are.
2가지 포맷들이 지원되므로, 단말은 더 작은 패킷 크기를 가지는 포맷을 선택적으로 사용할 수 있다. 예를 들어, 단말은 훈련 결과 보고를 송신 시 2가지 포맷들에 따라 패킷들을 생성하거나 또는 크기들을 예측하고, 더 작은 크기를 가지는 포맷의 패킷을 송신할 수 있다.Since two formats are supported, the terminal can selectively use a format having a smaller packet size. For example, when transmitting a training result report, the terminal may generate packets or predict sizes according to two formats, and may transmit a packet in a format having a smaller size.
도 47는 본 개시에 적용 가능한 가중치에 관련된 정보를 전달하기 위한 패킷 포맷의 다른 예를 나타내는 도면이다. 도 47은 하향링크에서 사용 가능한 패킷 포맷을 예시한다.47 is a diagram illustrating another example of a packet format for transmitting information related to weights applicable to the present disclosure. 47 illustrates a packet format usable in downlink.
도 47를 참고하면, 패킷은 CI(4702), Wnew_sparse(4704)를 포함한다. CI(4702)는 Wnew_sparse(4704)에 포함되는 적어도 하나의 가중치에 대응하는 연결을 지시하는 비트 마스크 헤더(bit mask header)를 포함한다. Wnew_sparse(4704)는 CI(4702)에 의해 지시된 적어도 하나의 연결들의 적어도 하나의 가중치 값을 포함한다. 예를 들어, 4개의 연결들 중 1번째, 3번째, 4번째 연결들의 가중치들이 전달되는 경우, CI(4702)는 [1011]로, Wnew_sparse(4704)는 [0.009, 0.9, 0.5]로 설정될 수 있다. Referring to FIG. 47 , the packet includes CI 4702 and W new_sparse 4704 . The CI 4702 includes a bit mask header indicating a connection corresponding to at least one weight included in the W new_sparse 4704 . W new_sparse 4704 includes at least one weight value of the at least one connections indicated by CI 4702 . For example, if the weights of the 1st, 3rd, and 4th connections among 4 connections are passed, CI 4702 is set to [1011] and W new_sparse (4704) is set to [0.009, 0.9, 0.5] can be
도 47에 예시된 패킷의 포맷은 서버 또는 기지국이 매 반복(iteration)에서 훈련될 새로운 가중치에 관련된 정보를 제공하기 위해 사용될 수 있다. 다른 실시 예에 따라, 서버 또는 기지국은 도 46의 제2 포맷(4620)과 유사한 포맷을 이용하여 새로운 가중치에 관련된 정보를 제공할 수 있다. 이 경우, 제2 포맷(4620)에 포함된 diff(wk)는 가중치 값을 나타내는 wk로 대체될 수 있다.The format of the packet illustrated in FIG. 47 may be used by a server or base station to provide information related to new weights to be trained in every iteration. According to another embodiment, the server or the base station may provide information related to the new weight using a format similar to the second format 4620 of FIG. 46 . In this case, diff(w k ) included in the second format 4620 may be replaced with w k indicating a weight value.
상기 설명한 제안 방식에 대한 일례들 또한 본 개시의 구현 방법들 중 하나로 포함될 수 있으므로, 일종의 제안 방식들로 간주될 수 있음은 명백한 사실이다. 또한, 상기 설명한 제안 방식들은 독립적으로 구현될 수도 있지만, 일부 제안 방식들의 조합 (또는 병합) 형태로 구현될 수 도 있다. 상기 제안 방법들의 적용 여부 정보 (또는 상기 제안 방법들의 규칙들에 대한 정보)는 기지국이 단말에게 사전에 정의된 시그널 (예: 물리 계층 시그널 또는 상위 계층 시그널)을 통해서 알려주도록 규칙이 정의될 수 가 있다.Since examples of the above-described proposed method may also be included as one of the implementation methods of the present disclosure, it is clear that they may be regarded as a kind of proposed method. In addition, the above-described proposed methods may be implemented independently, but may also be implemented in the form of a combination (or merge) of some of the proposed methods. Rules can be defined so that the base station informs the terminal of whether the proposed methods are applied or not (or information on the rules of the proposed methods) through a predefined signal (eg, a physical layer signal or a higher layer signal). have.
본 개시는 본 개시에서 서술하는 기술적 아이디어 및 필수적 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구체화될 수 있다. 따라서, 상기의 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니되고 예시적인 것으로 고려되어야 한다. 본 개시의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 개시의 등가적 범위 내에서의 모든 변경은 본 개시의 범위에 포함된다. 또한, 특허청구범위에서 명시적인 인용 관계가 있지 않은 청구항들을 결합하여 실시 예를 구성하거나 출원 후의 보정에 의해 새로운 청구항으로 포함할 수 있다.The present disclosure may be embodied in other specific forms without departing from the technical ideas and essential characteristics described in the present disclosure. Accordingly, the above detailed description should not be construed as restrictive in all respects but as exemplary. The scope of the present disclosure should be determined by a reasonable interpretation of the appended claims, and all modifications within the equivalent scope of the present disclosure are included in the scope of the present disclosure. In addition, claims that are not explicitly cited in the claims may be combined to form an embodiment, or may be included as new claims by amendment after filing.
본 개시의 실시 예들은 다양한 무선접속 시스템에 적용될 수 있다. 다양한 무선접속 시스템들의 일례로서, 3GPP(3rd Generation Partnership Project) 또는 3GPP2 시스템 등이 있다. Embodiments of the present disclosure may be applied to various wireless access systems. As an example of various radio access systems, there is a 3rd Generation Partnership Project (3GPP) or a 3GPP2 system.
본 개시의 실시 예들은 상기 다양한 무선접속 시스템뿐 아니라, 상기 다양한 무선접속 시스템을 응용한 모든 기술 분야에 적용될 수 있다. 나아가, 제안한 방법은 초고주파 대역을 이용하는 mmWave, THzWave 통신 시스템에도 적용될 수 있다. Embodiments of the present disclosure may be applied not only to the various radio access systems, but also to all technical fields to which the various radio access systems are applied. Furthermore, the proposed method can be applied to mmWave and THzWave communication systems using very high frequency bands.
추가적으로, 본 개시의 실시 예들은 자유 주행 차량, 드론 등 다양한 애플리케이션에도 적용될 수 있다.Additionally, embodiments of the present disclosure may be applied to various applications such as free-running vehicles and drones.

Claims (15)

  1. 무선 통신 시스템에서 단말의 동작 방법에 있어서,A method of operating a terminal in a wireless communication system, the method comprising:
    서버로부터 초기 네트워크 모델에 관련된 정보를 수신하는 단계;receiving information related to an initial network model from a server;
    상기 초기 네트워크 모델을 기반으로 밀집(dense) 네트워크를 구성하는 단계;constructing a dense network based on the initial network model;
    상기 밀집 네트워크에 대한 훈련을 수행함으로써 적어도 하나의 연결(connection)의 적어도 하나의 가중치를 변경하는 단계; 및changing at least one weight of at least one connection by performing training on the dense network; and
    상기 적어도 하나의 가중치의 변화량에 기반하여 선택된 적어도 하나의 연결에 대한 가중치 변화량에 관련된 정보를 상기 서버에게 송신하는 단계를 포함하는 방법.and transmitting, to the server, information related to a weight change amount for at least one connection selected based on the change amount of the at least one weight value.
  2. 청구항 1에 있어서,The method according to claim 1,
    상기 적어도 하나의 연결은, 상기 훈련에 의한 가중치의 변화량이 임계치를 초과하는 적어도 하나의 연결을 포함하는 방법.The at least one connection includes at least one connection in which an amount of weight change by the training exceeds a threshold.
  3. 청구항 1에 있어서,The method according to claim 1,
    상기 밀집 네트워크를 구성하기 전, 상기 서버로부터 상기 훈련을 시작할 것을 지시하는 제1 메시지를 수신하는 단계를 더 포함하는 방법.Receiving a first message instructing to start the training from the server before configuring the dense network.
  4. 청구항 1에 있어서,The method according to claim 1,
    상기 서버로부터 상기 훈련을 중단할 것을 지시하는 제2 메시지를 수신하는 단계; 및receiving a second message instructing to stop the training from the server; and
    상기 제2 메시지의 수신에 기반하여 상기 훈련을 중단하는 단계를 더 포함하는 방법.and stopping the training based on receipt of the second message.
  5. 청구항 1에 있어서,The method according to claim 1,
    상기 가중치 변화량에 관련된 정보를 송신한 후, 상기 가중치 변화량에 관련된 정보에 기반하여 상기 서버에 의해 갱신된 가중치들에 관련된 정보를 수신하는 단계; after transmitting the information related to the weight change amount, receiving information related to the weights updated by the server based on the information related to the weight change amount;
    상기 갱신된 가중치들을 적용한 네트워크 모델을 기반으로 밀집 네트워크 구성, 훈련에 의한 가중치 변경, 가중치 변화량에 관련된 정보의 보고를 수행하는 단계를 더 포함하는 방법.The method further comprising the step of performing a dense network configuration, weight change by training, and reporting information related to the weight change amount based on the network model to which the updated weights are applied.
  6. 청구항 1에 있어서,The method according to claim 1,
    상기 서버에서 상기 가중치 변화량에 관련된 정보에 기반하여 가중치들을 갱신하고, 갱신된 가중치들을 적용한 네트워크 모델을 프루닝함으로써 결정된 글로벌 네트워크 모델에 관련된 정보를 수신하는 단계를 더 포함하는 방법.Receiving information related to the global network model determined by updating the weights based on the information related to the weight change amount at the server and pruning the network model to which the updated weights are applied.
  7. 청구항 1에 있어서,The method according to claim 1,
    상기 서버에게 상기 단말이 보유한 글로벌 네트워크 모델에 관련된 정보를 송신하는 단계를 더 포함하는 방법.The method further comprising the step of transmitting information related to the global network model possessed by the terminal to the server.
  8. 청구항 1에 있어서,The method according to claim 1,
    상기 가중치 변화량에 관련된 정보는, The information related to the weight change amount,
    상기 적어도 하나의 연결을 지시하는 비트맵 및 상기 적어도 하나의 연결의 가중치 변화량 값을 포함하는 제1 방식, 또는A first scheme including a bitmap indicating the at least one connection and a weight change value of the at least one connection, or
    상기 적어도 하나의 연결의 인덱스 및 상기 적어도 하나의 연결의 가중치 변화량의 쌍(pair)을 포함하는 제2 방식 중 Among the second schemes including a pair of an index of the at least one connection and a weight change amount of the at least one connection
    더 작은 크기를 가지는 방식에 따라 생성되는 방법.How it is created according to the way it has a smaller size.
  9. 무선 통신 시스템에서 서버의 동작 방법에 있어서,A method of operating a server in a wireless communication system, the method comprising:
    단말에게 초기 네트워크 모델에 관련된 정보를 송신하는 단계;transmitting information related to the initial network model to the terminal;
    상기 단말로부터 적어도 하나의 연결에 대한 가중치 변화량에 관련된 정보를 수신하는 단계;receiving information related to a weight change amount for at least one connection from the terminal;
    상기 가중치 변화량에 관련된 정보에 기반하여 상기 초기 네트워크 모델의 가중치들을 갱신하는 단계; 및updating weights of the initial network model based on information related to the weight change amount; and
    상기 갱신된 가중치들에 기반하여 적어도 하나의 연결을 제거하는 단계를 포함하는 방법.and removing at least one connection based on the updated weights.
  10. 청구항 9에 있어서,10. The method of claim 9,
    상기 적어도 하나의 연결은, 임계치 미만의 가중치를 가지는 적어도 하나의 연결을 포함하는 방법.The at least one connection includes at least one connection having a weight less than a threshold.
  11. 청구항 9에 있어서,10. The method of claim 9,
    상기 단말에게 상기 갱신된 가중치들에 관련된 정보를 송신하는 단계를 더 포함하는 방법.The method further comprising transmitting information related to the updated weights to the terminal.
  12. 청구항 9에 있어서,10. The method of claim 9,
    상기 초기 네트워크 모델의 가중치들을 갱신하는 단계는,Updating the weights of the initial network model comprises:
    상기 단말로부터 수신된 가중치 변화량에 관련된 정보에 기반하여 가중치들을 재구성함으로서 상기 단말에 대응하는 제1 네트워크 모델을 결정하는 단계;determining a first network model corresponding to the terminal by reconfiguring weights based on information related to the weight change amount received from the terminal;
    다른 단말로부터 수신된 가중치 변화량에 관련된 정보에 기반하여 가중치들을 재구성함으로써 상기 다른 단말에 대응하는 제2 네트워크 모델을 결정하는 단계; 및determining a second network model corresponding to the other terminal by reconfiguring weights based on information related to the weight change amount received from the other terminal; and
    상기 단말 및 상기 다른 단말을 포함하는 복수의 단말들에 대응하는 복수의 네트워크 모델들의 가중치들을 연결 별로 평균화함으로써 갱신된 네트워크 모델을 결정하는 단계를 포함하는 방법.and determining an updated network model by averaging weights of a plurality of network models corresponding to a plurality of terminals including the terminal and the other terminal for each connection.
  13. 청구항 12에 있어서,13. The method of claim 12,
    상기 제1 네트워크 모델을 결정하는 단계는,Determining the first network model comprises:
    상기 단말로부터 가중치에 관련된 정보가 제공된 제1 연결에 대하여, 상기 초기 네트워크 모델에 포함된 제1 연결의 가중치를 적용하는 단계;applying a weight of the first connection included in the initial network model to the first connection to which information related to the weight is provided from the terminal;
    상기 단말로부터 가중치에 관련된 정보가 제공되지 아니한 제2 연결에 대하여, 상기 초기 네트워크 모델에 포함된 제2 연결의 가중치 및 상기 가중치 변화량의 합을 적용하는 단계를 포함하는 방법.and applying the sum of the weight change amount and the weight of the second connection included in the initial network model to the second connection for which weight-related information is not provided from the terminal.
  14. 청구항 9에 있어서,10. The method of claim 9,
    상기 단말을 포함한 적어도 하나의 단말에게 훈련을 시작할 것을 지시하는 제1 메시지를 송신하는 단계; 및transmitting a first message instructing to start training to at least one terminal including the terminal; and
    상기 가중치 변화량에 관련된 정보의 수신 횟수가 임계치에 도달하면, 상기 단말을 포함한 적어도 하나의 단말에게 훈련을 중단할 것을 지시하는 제2 메시지를 송신하는 단계를 더 포함하는 방법.The method further comprising the step of transmitting a second message instructing to stop training to at least one terminal including the terminal when the number of times of reception of the information related to the weight change amount reaches a threshold.
  15. 청구항 9에 있어서,10. The method of claim 9,
    상기 적어도 하나의 연결을 제거함으로써 생성된 네트워크 모델에 관련된 정보를 송신하는 단계를 더 포함하는 방법.and sending information related to the network model created by removing the at least one connection.
PCT/KR2020/008203 2020-06-23 2020-06-23 Method and device for performing federated learning in wireless communication system WO2021261611A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/KR2020/008203 WO2021261611A1 (en) 2020-06-23 2020-06-23 Method and device for performing federated learning in wireless communication system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2020/008203 WO2021261611A1 (en) 2020-06-23 2020-06-23 Method and device for performing federated learning in wireless communication system

Publications (1)

Publication Number Publication Date
WO2021261611A1 true WO2021261611A1 (en) 2021-12-30

Family

ID=79281390

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/008203 WO2021261611A1 (en) 2020-06-23 2020-06-23 Method and device for performing federated learning in wireless communication system

Country Status (1)

Country Link
WO (1) WO2021261611A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220060235A1 (en) * 2020-08-18 2022-02-24 Qualcomm Incorporated Federated learning for client-specific neural network parameter generation for wireless communication

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110610242A (en) * 2019-09-02 2019-12-24 深圳前海微众银行股份有限公司 Method and device for setting participant weight in federated learning
US10657461B2 (en) * 2016-09-26 2020-05-19 Google Llc Communication efficient federated learning
WO2020115273A1 (en) * 2018-12-07 2020-06-11 Telefonaktiebolaget Lm Ericsson (Publ) Predicting network communication performance using federated learning

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10657461B2 (en) * 2016-09-26 2020-05-19 Google Llc Communication efficient federated learning
WO2020115273A1 (en) * 2018-12-07 2020-06-11 Telefonaktiebolaget Lm Ericsson (Publ) Predicting network communication performance using federated learning
CN110610242A (en) * 2019-09-02 2019-12-24 深圳前海微众银行股份有限公司 Method and device for setting participant weight in federated learning

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
FELIX SATTLER; SIMON WIEDEMANN; KLAUS-ROBERT M\"ULLER; WOJCIECH SAMEK: "Robust and Communication-Efficient Federated Learning from Non-IID Data", ARXIV.ORG, CORNELL UNIVERSITY LIBRARY, 201 OLIN LIBRARY CORNELL UNIVERSITY ITHACA, NY 14853, 7 March 2019 (2019-03-07), 201 Olin Library Cornell University Ithaca, NY 14853 , XP081130568 *
YUANG JIANG; SHIQIANG WANG; BONG JUN KO; WEI-HAN LEE; LEANDROS TASSIULAS: "Model Pruning Enables Efficient Federated Learning on Edge Devices", ARXIV.ORG, CORNELL UNIVERSITY LIBRARY, 201 OLIN LIBRARY CORNELL UNIVERSITY ITHACA, NY 14853, 26 September 2019 (2019-09-26), 201 Olin Library Cornell University Ithaca, NY 14853 , XP081483900 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220060235A1 (en) * 2020-08-18 2022-02-24 Qualcomm Incorporated Federated learning for client-specific neural network parameter generation for wireless communication
US11909482B2 (en) * 2020-08-18 2024-02-20 Qualcomm Incorporated Federated learning for client-specific neural network parameter generation for wireless communication

Similar Documents

Publication Publication Date Title
WO2021112360A1 (en) Method and device for estimating channel in wireless communication system
WO2022050432A1 (en) Method and device for performing federated learning in wireless communication system
WO2021256584A1 (en) Method for transmitting or receiving data in wireless communication system and apparatus therefor
WO2022054981A1 (en) Method and device for executing compression federated learning
WO2022075493A1 (en) Method for performing reinforcement learning by v2x communication device in autonomous driving system
WO2022014732A1 (en) Method and apparatus for performing federated learning in wireless communication system
WO2022054985A1 (en) Method and apparatus for transmitting and receiving signal by user equipment and base station in wireless communication system
WO2021251523A1 (en) Method and device for ue and base station to transmit and receive signal in wireless communication system
WO2022025321A1 (en) Signal randomization method and device of communication apparatus
WO2022019352A1 (en) Signal transmission and reception method and apparatus for terminal and base station in wireless communication system
WO2022014735A1 (en) Method and device for terminal and base station to transmit and receive signals in wireless communication system
WO2022045399A1 (en) Federated learning method based on selective weight transmission and terminal therefor
WO2022014751A1 (en) Method and apparatus for generating uw for channel estimation in frequency domain in wireless communication system
WO2022004914A1 (en) Method and apparatus for transmitting and receiving signals of user equipment and base station in wireless communication system
WO2021251511A1 (en) Method for transmitting/receiving uplink signal of high frequency band in wireless communication system, and device therefor
WO2021261611A1 (en) Method and device for performing federated learning in wireless communication system
WO2022050528A1 (en) Method and apparatus for performing cell reselection in wireless communication system
WO2022097850A1 (en) Method and device for performing retransmission in wireless communication system
WO2022080530A1 (en) Method and device for transmitting and receiving signals by using multiple antennas in wireless communication system
WO2022097774A1 (en) Method and device for performing feedback by terminal and base station in wireless communication system
WO2022050434A1 (en) Method and apparatus for performing handover in wireless communication system
WO2022080534A1 (en) Digital aircomp signaling
WO2022045402A1 (en) Method and device for terminal and base station transmitting/receiving signal in wireless communication system
WO2021256585A1 (en) Method and device for transmitting/receiving signal in wireless communication system
WO2022054980A1 (en) Encoding method and neural network encoder structure usable in wireless communication system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20942414

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20942414

Country of ref document: EP

Kind code of ref document: A1