WO2022259815A1 - Curable composition and cured product - Google Patents

Curable composition and cured product Download PDF

Info

Publication number
WO2022259815A1
WO2022259815A1 PCT/JP2022/020196 JP2022020196W WO2022259815A1 WO 2022259815 A1 WO2022259815 A1 WO 2022259815A1 JP 2022020196 W JP2022020196 W JP 2022020196W WO 2022259815 A1 WO2022259815 A1 WO 2022259815A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
meth
formula
polymer
curable composition
Prior art date
Application number
PCT/JP2022/020196
Other languages
French (fr)
Japanese (ja)
Inventor
修一 後藤
智広 安江
慧斌 文
Original Assignee
綜研化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 綜研化学株式会社 filed Critical 綜研化学株式会社
Priority to JP2023527583A priority Critical patent/JPWO2022259815A1/ja
Priority to CN202280040628.7A priority patent/CN117529524A/en
Publication of WO2022259815A1 publication Critical patent/WO2022259815A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/10Esters
    • C08F20/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F20/28Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/14Homopolymers or copolymers of esters of esters containing halogen, nitrogen, sulfur, or oxygen atoms in addition to the carboxy oxygen

Definitions

  • the present invention relates to curable compositions and cured products.
  • Polymers having reactive silicon groups in their molecules are known as compositions that crosslink and cure through the formation of siloxane bonds accompanied by hydrolysis of silyl groups by moisture present in the atmosphere or adherend.
  • polymers having a reactive silicon group such as an alkoxysilyl group are widely used as adhesives, sealants, paints, etc. in construction/building material-related applications, automobile-related applications, and the like.
  • a curable composition containing a polymer having a reactive silicon group in its molecule is usually cured using a catalyst such as a tin-based compound because the curing reaction is accelerated.
  • a catalyst such as a tin-based compound
  • the use of tin-based compounds and the like is not preferable from the viewpoint of environmental load and toxicity to the human body.
  • composition described in Patent Document 1 above contains a tin compound as a condensation catalyst.
  • the curable compositions described in Patent Documents 2 and 3 are characterized by good curing without using a tin-based compound.
  • the polymer having a silyl group represented by a predetermined formula has high reactivity, and the reaction progresses even with moisture in the air.
  • the curable composition must be used up or discarded after being taken out of the storage container, resulting in poor storage stability.
  • An object of the present invention is to provide a curable composition that cures quickly without using a tin-based curing catalyst and can form a cured product with excellent storage stability and mechanical properties, or a curable composition that has excellent adhesiveness. to do.
  • the present invention relates to, for example, [1] to [7] below.
  • R 1 is each independently an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, or a hydroxyl group, and at least one of R 1 is the alkoxy group or hydroxyl group
  • X is -O-, -COO-, -S-, -N(R 2 )-, -CH(OH)-CH 2 -O-, -O-CO-NH- or -N(R 2 )
  • Formula (2) Y — CH 2 —SiR 13 [In formula (2), R 1 has the same definition as in formula (1); Y is a (meth)acryloyl group, an alkoxy group having 1 to 20 carbon atoms, a mercapto group, or an isocyanate group. ] [2] The curable composition according to [1], which contains 0.1 to 20 parts by mass of (B) with respect to 100 parts by mass of the (meth)acrylic polymer (A).
  • n is an integer of 1 to 6;
  • R 1 has the same meaning as in formula (1);
  • R 4 is each independently a hydrogen atom, a hydrocarbon group having 1 to 20 carbon atoms, or At least one hydrogen atom of the hydrocarbon group is a group substituted with a group selected from the group consisting of an unsubstituted amino group, a substituted amino group and an alkoxysilyl group.
  • a curable composition that can be cured without using a tin-based curing catalyst and can form a cured product having excellent storage stability and mechanical properties, or a curable composition that has excellent adhesion after long-term storage. can provide things.
  • the curable composition of the present invention (hereinafter also referred to as “the composition of the present invention") contains a (meth)acrylic polymer (A) and a silane coupling agent (B), which will be described below.
  • (meth)acrylic is used as a generic term for acrylic and methacrylic, and may be either acrylic or methacrylic
  • (meth)acrylate is used as a generic term for acrylate and methacrylate, and may be either acrylate or methacrylate
  • (Meth)acryloyl is used as a generic term for acryloyl and methacryloyl, and may be acryloyl or methacryloyl.
  • the (meth)acrylic polymer (A) (hereinafter also referred to as “polymer (A)”) has a group represented by formula (1) and has a number average molecular weight (Mn) of 1,000 or more. and a polymer containing 500 ppm or more of silicon element.
  • R 1 is each independently an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, or a hydroxyl group, and at least one of R 1 is the above alkoxy group or hydroxyl group.
  • X is -O-, -COO-, -S-, -N(R 2 )-, -CH(OH)-CH 2 -O-, -O-CO-NH- or -N(R 2 )—CO—N(R 3 )—, wherein R 2 and R 3 are a hydrogen atom, a hydrocarbon group, or a halogenated hydrocarbon group, and R 2 and R 3 are , may be the same or different.
  • alkyl groups having 1 to 20 carbon atoms include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, n-pentyl group, isopentyl group, neopentyl group and n-hexyl group.
  • alkoxy groups having 1 to 20 carbon atoms include methoxy, ethoxy, n-propyloxy, isopropyloxy, n-butyloxy, isobutyloxy, n-pentyloxy, isopentyloxy, neo pentyloxy group, n-hexyloxy group, 1-methylpentyloxy group, 4-methyl-2-pentyloxy group, 3,3-dimethylbutyloxy group, 2-ethylbutyloxy group, n-heptyloxy group, 1 -methylhexyloxy group, n-octyloxy group, isooctyloxy group, 1-methylheptyloxy group, 2-ethylhexyloxy group, 2-propylpentyloxy group, n-nonyloxy group, 2,2-dimethylheptyloxy group , 2,6-dimethyl-4-heptyloxy group, 3,5,5-trimethylhexyl
  • Hydrocarbon groups for R 2 and R 3 include, for example, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, sec-butyl group, tert-butyl group, 2-ethylhexyl group, n- Alkyl groups having 1 to 18 carbon atoms, preferably 1 to 3 carbon atoms, such as octyl group and isooctyl group; Cycloalkyl groups having 3 to 18 carbon atoms, preferably 5 to 8 carbon atoms, such as cyclopentyl group and cyclohexyl group an alkenyl group having 2 to 18 carbon atoms, preferably 2 to 5 carbon atoms, such as vinyl group, allyl group, 3-butenyl group, and 5-hexenyl group; 6 carbon atoms, such as phenyl group, naphthyl group and anthryl group; to 18, preferably 6 to 10 carbon atoms.
  • the halogenated hydrocarbon group for R 2 and R 3 is a group in which at least part of the hydrogen atoms constituting the aforementioned hydrocarbon group has been substituted with halogen atoms.
  • Halogen atoms include, for example, fluorine, chlorine, bromine and iodine atoms.
  • R 2 and R 3 are preferably hydrogen atoms or hydrocarbon groups, more preferably hydrocarbon groups.
  • Examples of groups represented by -SiR 13 include dimethylmethoxysilyl , dimethylethoxysilyl, methyldimethoxysilyl, methyldiethoxysilyl, trimethoxysilyl, triethoxysilyl and dimethylisopropoxysilyl groups. , methyldiisopropoxysilyl group and triisopropoxysilyl group.
  • the polymer (A) has a group represented by formula (1) and contains 500 ppm or more of silicon element, preferably 1,000 to 20,000 ppm, more preferably 1 , 500 to 10,000 ppm.
  • ppm means wtppm.
  • the silicon element content derived from the group represented by formula (1) in the polymer (A) can be calculated from the charge ratio, and can be measured by ICP emission spectrometry. Details are described in the Example column.
  • the polymer (A) is a polymerizable monomer component containing a (meth)acrylic acid alkyl ester (a1) (hereinafter also referred to as “monomer (a1)”) having 1 to 12 carbon atoms in the alkyl group. It is preferably coalesced. That is, the polymer (A) preferably has structural units derived from the monomer (a1).
  • the alkyl group may be linear or branched.
  • Examples of the monomer (a1) include methyl (meth)acrylate, ethyl (meth)acrylate, propyl (meth)acrylate, n-butyl (meth)acrylate, isobutyl (meth)acrylate, tert-butyl (meth)acrylate, 2 - ethylhexyl (meth)acrylate, n-octyl (meth)acrylate, isooctyl (meth)acrylate, nonyl (meth)acrylate, isononyl (meth)acrylate, n-decyl (meth)acrylate, isodecyl (meth)acrylate, lauryl (meth)acrylate ) acrylates.
  • One or two or more monomers (a1) can be used.
  • the proportion of the monomer (a1) in the polymerizable monomer component constituting the polymer (A) is preferably 20% by mass or more, more preferably 20 to 85% by mass, still more preferably 20 to 75% by mass. % by weight, particularly preferably 22 to 55% by weight.
  • the polymer (A) can have structural units derived from the monomer (a1) in the same range among all structural units. When the (meth)acrylic acid alkyl ester (a1) in which the alkyl group has 8 to 12 carbon atoms is used within the above range, a (meth)acrylic polymer having excellent mechanical properties can be obtained.
  • the polymer (A) is a hydrolyzable silyl group-containing (meth)acryloyl monomer (a2) (hereinafter “monomer (a2)”).
  • the monomer (a2) for example, a compound represented by formula (a2-1) is preferable.
  • R a is a hydrogen atom or a methyl group
  • R 1 has the same definition as R 1 in formula (1).
  • Examples of the compound represented by formula (a2-1) include (meth)acryloxymethyldimethylmethoxysilane, (meth)acryloxymethyldimethylethoxysilane, ((meth)acryloxymethyl)methyldimethoxysilane, (( Examples include (meth)acryloxy group-containing silanes such as meth)acryloxymethyl)methyldiethoxysilane, (meth)acryloxymethyltrimethoxysilane, and (meth)acryloxymethyltriethoxysilane.
  • a hydroxy group of a hydroxyalkyl (meth)acrylate such as 2-hydroxyethyl (meth)acrylate, 4-hydroxybutyl (meth)acrylate, or an aminoalkyl (meth)acrylate such as 2-aminoethyl (meth)acrylate
  • An isocyanate group of a compound represented by OCN - CH 2 -SiR 13 R 1 has the same meaning as the same symbol described in formula (1) is added to the amino group of (meth)acrylate.
  • R 1 has the same meaning as the same symbol described in formula (1)
  • One or two or more monomers (a2) can be used.
  • the proportion of the monomer (a2) in the polymerizable monomer component constituting the polymer (A) is preferably 0.01-10% by mass, more preferably 0.1-5% by mass.
  • the polymer (A) can have structural units derived from the monomer (a2) in the same range among all structural units. When the monomer (a2) is used within the above range, the group represented by the formula (1) can be introduced into the polymer (A), so that the resulting polymer (A) has appropriate crosslinkability. , suitable for use in forming a crosslinked body.
  • the polymer (A) may further have a structural unit derived from a monomer (a3) other than the monomers (a1) and (a2) as long as the objects of the present invention are not impaired.
  • Other monomers (a3) include, for example, n-tridecyl (meth) acrylate, isodecyl (meth) acrylate, n-myristyl (meth) acrylate, isomyristyl (meth) acrylate, n-pentadecyl (meth) acrylate, isopentadecyl (meth) acrylate, n-cetyl (meth) ) acrylate, isocetyl (meth) acrylate, n-heptadecyl (meth) acrylate, isoheptadecyl (meth) acrylate, n-stearyl (meth) acrylate, isostearyl (meth) acrylate, n-nonadecyl (meth) acrylate, isononadecyl (meth) (meth)acrylic acid alkyl esters such as acrylates, n-eicosyl (me
  • (meth)acrylic acid alkyl esters other than monomer (a1) and polyalkylene glycol (meth)acrylates are preferred, and (meth)acrylic acid alkyl esters other than monomer (a1) are more preferred.
  • One or two or more other monomers (a3) can be used.
  • the proportion of the other monomer (a3) in the polymerizable monomer components constituting the polymer (A) is preferably 1-65% by mass, more preferably 5-60% by mass.
  • the polymer (A) can have structural units derived from other monomers (a3) in the same range among all the structural units.
  • a mercapto group-containing compound (d) may be used as a chain transfer agent during the production of the polymer (A).
  • the mercapto group-containing compound (d) acts as a chain transfer agent because it has a functional group (-SH) with high chain transferability in radical polymerization.
  • a structural unit derived from the mercapto group-containing compound (d), particularly a mercapto group having a group represented by formula (1) When a group-containing compound is used, the group represented by formula (1) can be introduced at the molecular chain end of the polymer.
  • a mercapto group-containing compound (d) represented by formula (1) into a polymer having a polymerizable unsaturated group by an en-thiol reaction, the group represented by formula (1) is polymerized. It can also be introduced into coalescence.
  • the curable composition using the polymer (A) having the group represented by formula (1) at the molecular chain end has excellent mechanical properties.
  • the group represented by formula (1) in the monomer (a2) and the group represented by formula (1) in the mercapto group-containing compound (d) are the same. may be different.
  • a compound represented by formula (d-1) is preferable as the mercapto group-containing compound (d).
  • R 1 has the same definition as R 1 in formula (1).
  • compounds represented by formula (d-1) include, for example, mercaptomethyldimethylmethoxysilane, mercaptomethyldimethylethoxysilane, mercaptomethyldimethylisopropoxysilane, mercaptomethylmethyldimethoxysilane.
  • mercaptomethyldimethylmethoxysilane mercaptomethylmethylmethoxysilane
  • mercaptomethylmethyldimethoxysilane mercaptomethyltrimethoxysilane
  • mercaptomethyltriethoxysilane mercaptomethyltriethoxysilane
  • the group represented by the formula (1) can be introduced to the terminal of the molecular chain of the polymer (A).
  • mercapto group-containing compounds (d) include, for example, n-octylmercaptan, n-dodecylmercaptan, tert-dodecylmercaptan, laurylmercaptan, 2-mercaptoethanol, 3-mercapto-1,2-propanediol, 2, 2.
  • Mercapto group-containing compounds such as mercaptopropyldimethylmethoxysilane, mercaptopropyldimethylethoxysilane, mercaptopropylmethyldimethoxysilane, mercaptopropylmethyldiethoxysilane, mercaptopropyltrimethoxysilane and mercaptopropyltriethoxysilane.
  • One or two or more compounds (d) can be used.
  • the mercapto group-containing compound (d) is preferably used in the range of 0.1 to 5 parts by mass, more preferably 0.2 to 3 parts by mass, with respect to the total 100 parts by mass of the polymerizable monomer components. Used in range. With such an aspect, the number average molecular weight of the polymer (A) can be adjusted to an appropriate range.
  • Polymer (A) can be obtained by various polymerization methods, and the method is not particularly limited, but it is preferably obtained by, for example, the following method.
  • the methods (i) to (iv) may be used in any combination.
  • a compound having a polymerizable unsaturated group and a reactive functional group e.g., a hydroxy group, an isocyanate group, or an amino group
  • a reactive functional group e.g., a hydroxy group, an isocyanate group, or an amino group
  • a polymer having a group is reacted with a compound (e) having a group capable of undergoing an addition reaction with the reactive functional group and capable of introducing the group represented by the formula (1) into the polymer by an addition reaction.
  • Examples of the compound (e) include compounds represented by formulas (e-1) and (e-2) (hereinafter also referred to as “compound (e-1)” and “compound (e-2)", respectively). ) are mentioned.
  • Examples of the compound (e-1) include 1-isocyanatomethyldimethylmethoxysilane, 1-isocyanatomethyldimethylethoxysilane, 1-isocyanatomethyldimethylisopropoxysilane, (1-isocyanatomethyl)methyldimethoxysilane, (1-isocyanate methyl)methyldiethoxysilane, (1-isocyanatomethyl)methyldiisopropoxysilane, 1-isocyanatomethyltrimethoxysilane, 1-isocyanatomethyltriethoxysilane, 1-isocyanatomethyltriisopropoxysilane.
  • 1-isocyanatomethyldimethylmethoxysilane 1,3-isocyanatomethyldimethoxysilane
  • 1-isocyanatomethyltrimethoxysilane 1,3-isocyanatomethyltriethoxysilane are preferred.
  • R 4 —CH 2 —SiR 13 R 1 has the same meaning as the same symbol in formula (1), R 4 is a glycidyloxy group, amino group, alkylamino group, (aminoalkyl)amino group, (N,N-dialkylaminoalkyl)amino group or It is a halogenated hydrocarbon group.
  • Examples of the compound (e-2) include aminomethyltrimethoxysilane, aminomethyltriethoxysilane, (aminoethylamino)methyltrimethoxysilane, (N,N-dimethylamino)ethylaminomethyltrimethoxysilane, glycidyloxy Methyltrimethoxysilane can be mentioned.
  • One or two or more compounds (e) can be used.
  • the compound (e) is preferably used in an amount of 0.1 to 5 parts by mass, more preferably 0.2 to 3 parts by mass, based on 100 parts by mass of the total polymerizable monomer components.
  • the monomer (a1) is polymerized by a living polymerization method to introduce a functional group such as an alkenyl group or a hydroxy group at the molecular chain end, and then the resulting polymer and the compound (d) or the compound (e); Etc. How to react.
  • the polymer (A) can be produced by using a known polymerization method such as cationic polymerization, anionic polymerization, radical polymerization, etc., as in the methods (i) to (iv) described above, and the method is not particularly limited. , the versatility of the monomer and the industrial productivity, the radical polymerization method is preferred.
  • the radical polymerization method a living radical polymerization method capable of introducing a specific functional group (for example, a group represented by formula (1)) at a controlled position such as a terminal, or a polymerization initiator is used. Free-radical polymerization methods are included in which predetermined monomeric units are copolymerized.
  • Living radical polymerization methods include atom transfer radical polymerization (ATRP), reversible addition-fragmentation chain transfer (RAFT) polymerization, nitroxide-mediated polymerization (NMP), and organotellurium compound-mediated polymerization (TERP). , an iodine compound-mediated polymerization method (IRP), or the like can be used, and a polymer having terminal functional groups can be obtained by selecting the reaction conditions.
  • ATRP atom transfer radical polymerization
  • RAFT reversible addition-fragmentation chain transfer
  • NMP nitroxide-mediated polymerization
  • TERP organotellurium compound-mediated polymerization
  • IRP iodine compound-mediated polymerization method
  • IRP iodine compound-mediated polymerization method
  • a polymerizable monomer component and, if necessary, a mercapto group-containing compound (d) are charged in a reaction vessel, a polymerization initiator is added, and the reaction temperature is about 40 to 90° C. for 2 hours. Allow to react for ⁇ 20 hours.
  • a polymerization solvent may be charged.
  • polymerization is performed in an inert gas atmosphere such as nitrogen gas.
  • a polymerizable monomer component, a polymerization initiator, a chain transfer agent, and a polymerization solvent may be added as appropriate during the polymerization reaction.
  • polymerization initiators examples include azo compound polymerization initiators, peroxide polymerization initiators, and radical photopolymerization initiators.
  • a metal catalyst it is more preferable not to use a metal catalyst. Since the polymer (A) produced using such a polymerization initiator does not contain a metal component derived from the catalyst in the polymer (A), inhibition of the cross-linking reaction and coloration can be improved. can. Moreover, since the depolymerization reaction caused by the metal component can be suppressed, it is possible to provide a cured product having excellent durability in use in various applications.
  • azo compound polymerization initiators examples include 2,2′-azobisisobutyronitrile, 2,2′-azobis(4-methoxy-2,4-dimethylvaleronitrile), 2,2′-azobis ( 2-cyclopropylpropionitrile), 2,2′-azobis(2,4-dimethylvaleronitrile), 2,2′-azobis(2-methylbutyronitrile), 1,1′-azobis(cyclohexane-1 -carbonitrile), 2-(carbamoylazo)isobutyronitrile, 2-phenylazo-4-methoxy-2,4-dimethylvaleronitrile, 2,2′-azobis(2-amidinopropane) dihydrochloride, 2,2 '-azobis(N,N'-dimethyleneisobutyramidine), 2,2'-azobis[2-methyl-N-(2-hydroxyethyl)-propionamide], 2,2'-azobis(isobutyramide) dihydrate , 4,4′-azo
  • Peroxide-based polymerization initiators include, for example, t-butyl hydroperoxide, cumene hydroxide, dicumyl peroxide, benzoyl peroxide, lauroyl peroxide, caproyl peroxide, di-isopropyl peroxydicarbonate, di -2-ethylhexyl peroxydicarbonate, t-butyl peroxybivalate, 2,2-bis(4,4-di-t-butylperoxycyclohexyl)propane, 2,2-bis(4,4-di- t-amylperoxycyclohexyl)propane, 2,2-bis(4,4-di-t-octylperoxycyclohexyl)propane, 2,2-bis(4,4-di- ⁇ -cumylperoxycyclohexyl)propane , 2,2-bis(4,4-di-t-butylperoxycyclohexyl)butane and 2,
  • photoradical polymerization initiator compounds conventionally used as photoradical polymerization initiators are preferable.
  • the radical photopolymerization initiator may be used singly or in combination of two or more.
  • the photoradical polymerization initiator may be combined with a sensitizer.
  • Preferred sensitizers are anthracene compounds such as 9,10-dibutoxyanthracene and 9,10-bis(acyloxy)anthracene.
  • One or two or more polymerization initiators can be used.
  • the polymerization initiator may be used by successive addition over multiple times.
  • the amount of polymerization initiator used is usually 0.001 to 2 parts by mass, preferably 0.002 to 1 part by mass, per 100 parts by mass of the polymerizable monomer component.
  • the number average molecular weight of the polymer (A) can be adjusted within an appropriate range.
  • organic solvent is preferable as the polymerization solvent.
  • organic solvents include aromatic hydrocarbons such as benzene, toluene and xylene; aliphatic hydrocarbons such as n-pentane, n-hexane, n-heptane and n-octane; cyclopentane, cyclohexane, cycloheptane, cyclo Alicyclic hydrocarbons such as octane; ethers such as diethyl ether, diisopropyl ether, 1,2-dimethoxyethane, dibutyl ether, tetrahydrofuran, dioxane, anisole, phenylethyl ether, diphenyl ether; chloroform, carbon tetrachloride, 1,2- Halogenated hydrocarbons such as dichloroethane and chlorobenzene; esters such as ethyl acetate, propyl acetate, buty
  • One or two or more polymerization solvents can be used.
  • the number average molecular weight (Mn) of the polymer (A) is preferably 1,000 or more, more preferably 3,000 or more, and still more preferably 5,000 or more, from the viewpoint of the viscosity of the polymer and the mechanical properties of the resulting cured product. 000 or more, preferably 100,000 or less, more preferably 50,000 or less, still more preferably 40,000 or less from the viewpoint of the viscosity of the polymer.
  • the number average molecular weight (Mn) is measured by a gel permeation chromatography (GPC) method.
  • the glass transition temperature (Tg) of the polymer (A) is preferably -20°C or lower, more preferably -90 to -25°C, still more preferably -80 to -30°C. Such an aspect is preferable from the viewpoint of low viscosity and excellent handleability. Tg is determined by differential scanning calorimetry (DSC).
  • composition of the invention can contain one or more polymers (A).
  • the total content of the polymer (A) in the composition of the present invention is preferably 5% by mass or more, more preferably 8 to 95% by mass, and even more preferably 10 to 90% by mass.
  • silane coupling agent (B) The composition of the present invention contains a silane coupling agent (B) together with the polymer (A).
  • the silane coupling agent (B) acts as a dehydrating agent in the composition of the present invention.
  • the composition of the present invention is cured without using a tin-based curing catalyst.
  • the polymer (A) having a group represented by formula (1) alone has high reactivity, and the reaction proceeds even with moisture in the air.
  • the silane coupling agent (B) By containing the silane coupling agent (B), the reaction of the polymer (A) is suppressed, and a curable composition having excellent storage stability and excellent adhesiveness even after long-term storage can be obtained.
  • the dehydration effect of the silane coupling agent (B) is exhibited by the combination of the polymer (A) having the group represented by the formula (1) and the (B) having the group represented by the formula (2). do.
  • the silane coupling agent (B) is represented by formula (2).
  • R 1 has the same definition as in formula (1); Y is a (meth)acryloyl group, an alkoxy group having 1 to 20 carbon atoms, a mercapto group, or an isocyanate group.
  • Examples of the alkoxy group having 1 to 20 carbon atoms and the group represented by -SiR 13 include the same groups as those described in the column of the polymer (A).
  • Examples of the silane coupling agent (B) in which Y is a (meth)acryloyl group include (meth)acryloxymethyldimethylmethoxysilane, (meth)acryloxymethyldimethylethoxysilane, (( meth)acryloxymethyl)methyldimethoxysilane, ((meth)acryloxymethyl)methyldiethoxysilane, (meth)acryloxymethyltrimethoxysilane, (meth)acryloxymethyltriethoxysilane and the like.
  • Examples of the silane coupling agent (B) in which Y is an alkoxy group having 1 to 20 carbon atoms include methoxymethyltrimethoxysilane, ethoxymethyltrimethoxysilane, and n-propyloxymethyltrimethoxysilane.
  • silane isopropyloxymethyltrimethoxysilane, n-butyloxymethyltrimethoxysilane, isobutyloxymethyltrimethoxysilane, n-pentyloxymethyltrimethoxysilane, isopentyloxymethyltrimethoxysilane, neopentyloxymethyltrimethoxysilane, n-hexyloxymethyltrimethoxysilane, 1-methylpentyloxymethyltrimethoxysilane, 4-methyl-2-pentyloxymethyltrimethoxysilane, 3,3-dimethylbutyloxymethyltrimethoxysilane, 2-ethylbutyloxymethyl trimethoxysilane, n-heptyloxymethyltrimethoxysilane, 1-methylhexyloxymethyltrimethoxysilane, n-octyloxymethyltrimethoxysilane, isooctyloxymethyltrimethoxysilane, 1-
  • methoxymethyltrimethoxysilane, ethoxymethyltrimethoxysilane, n-propyloxymethyltrimethoxysilane, isopropyloxymethyltrimethoxysilane, n-butyloxymethyltrimethoxysilane and isobutyloxymethyltrimethoxysilane are preferred.
  • Examples of the silane coupling agent (B) in which Y is a mercapto group include mercaptomethyldimethylmethoxysilane, mercaptomethyldimethylethoxysilane, mercaptomethyldimethylisopropoxysilane, and mercaptomethylmethyldimethoxysilane. , mercaptomethylmethyldiethoxysilane, mercaptomethylmethyldiisopropoxysilane, mercaptomethyltrimethoxysilane, mercaptomethyltriethoxysilane, mercaptomethyltriisopropoxysilane. Among these, mercaptomethyldimethylmethoxysilane, mercaptomethylmethyldimethoxysilane, mercaptomethyltrimethoxysilane, and mercaptomethyltriethoxysilane are preferred.
  • Examples of the silane coupling agent (B) in which Y is an isocyanate group include 1-isocyanatomethyldimethylmethoxysilane, 1-isocyanatomethyldimethylethoxysilane, 1-isocyanatomethyldimethylisopropoxysilane, (1-isocyanatomethyl)methyldimethoxysilane, (1-isocyanatomethyl)methyldiethoxysilane, (1-isocyanatomethyl)methyldiisopropoxysilane, 1-isocyanatomethyltrimethoxysilane, 1-isocyanatomethyltriethoxysilane, 1 -isocyanatomethyltriisopropoxysilane.
  • 1-isocyanatomethyldimethylmethoxysilane 1,3-isocyanatomethyldimethoxysilane
  • 1-isocyanatomethyltrimethoxysilane 1,3-isocyanatomethyltriethoxysilane are preferred.
  • the silane coupling agent (B) is the same as the monomer (a2) and/or the mercapto compound (d). may be different.
  • the lower limit is preferably 80 or more, more preferably 100 or more, still more preferably 120 or more, and the upper limit is less than 1,000, preferably 750 or less, or more. Preferably it is 500 or less.
  • composition of the present invention can contain one or more silane coupling agents (B).
  • the total amount of the silane coupling agent (B) is preferably 0.1 to 20 parts by mass, more preferably 0.5 to 15 parts by mass, based on 100 parts by mass of the polymer (A). , more preferably 1 to 10 parts by mass.
  • the content of the silane coupling agent (B) is within the above range, a curable composition having excellent storage stability and excellent adhesiveness even after long-term storage can be obtained.
  • composition of the present invention preferably contains an aminosilane compound (C) together with the polymer (A) and the silane coupling agent (B).
  • the aminosilane compound (C) acts as a curing catalyst and dehydrating agent in the composition of the present invention.
  • the aminosilane compound (C) has a group represented by the following formula (3).
  • Examples of the aminosilane compound (C) represented by formula (3) include N-(2-aminoethyl)aminomethyltrimethoxysilane, N-(2-aminoethyl)-2-aminoethyltrimethoxysilane, N -(2-aminoethyl)-3-aminopropyltrimethoxysilane, aminomethyltrimethoxysilane, 2-aminoethyltrimethoxysilane, 3-aminopropyltrimethoxysilane, aminomethyltriethoxysilane, 2-aminoethyltriethoxy Silane, 3-aminopropyltriethoxysilane, N-[2-(N,N-dimethylamino)ethyl]aminomethyltrimethoxysilane, N-phenyl-3-aminopropyltrimethoxysilane, N-cyclohexyl-3-amino Propylmethyldimeth
  • aminosilane compounds (C) it is preferable to use an aminosilane compound represented by the following formula (3-1) from the viewpoint of improving the tack-free time of the composition of the present invention.
  • Formula (3-1) R4' - NH-( CH2 ) n' - SiR1'3
  • n' is an integer of 1 to 3
  • R 1' is an alkoxy group having 1 to 6 carbon atoms
  • R 4 is a hydrogen atom, a hydrocarbon group having 1 to 10 carbon atoms, Alternatively, at least one hydrogen atom of the hydrocarbon group is substituted with at least one group selected from the group consisting of unsubstituted amino groups, substituted amino groups and alkoxysilyl groups.
  • One or two or more aminosilane compounds (C) can be used.
  • the composition of the present invention is preferably 0.05 to 10 parts by mass, more preferably 0.1 to 8 parts by mass, and further the aminosilane compound (C) in total with respect to 100 parts by mass of the polymer (A). It preferably contains 0.5 to 5 parts by mass.
  • the content of the aminosilane compound (C) is within the above range, a curable composition having excellent storage stability and excellent adhesiveness even after long-term storage can be obtained.
  • the composition of the present invention contains, in addition to the polymer (A), if necessary, a polymer (D) having a polyether skeleton, a plasticizer, a filler, silica, a pigment, an antioxidant, a dehydrating agent, an amino Other components such as silane coupling agents having groups, curing catalysts, tackifying resins, dispersants, rheology control agents, antifoaming agents, and adhesion-imparting agents can be contained alone or in combination of two or more.
  • composition of the present invention may optionally contain a polymer having a polyether skeleton in addition to the polymer (A).
  • the polymer (D) preferably has a reactive silicon group, and more preferably has a group represented by the above formula (1).
  • the polymer (D) has a polyether skeleton as its main chain skeleton.
  • the polyether skeleton is preferably a polyoxyalkylene skeleton, such as a polyoxyethylene skeleton, a polyoxypropylene skeleton, a polyoxybutylene skeleton, a polyoxytetramethylene skeleton, a polyoxyethylene-polyoxypropylene skeleton, and a polyoxypropylene skeleton.
  • a polyoxybutylene skeleton is mentioned, and a polyoxypropylene skeleton is preferred.
  • the polyoxyalkylene skeleton may consist of only one kind of repeating unit, or may consist of two or more kinds of repeating units.
  • the repeating units here are oxyalkylene units.
  • Polymer (D) may have a urethane skeleton between polyether skeletons.
  • the number average molecular weight (Mn) of the polymer (D) is preferably 10,000 to 50,000. When the number average molecular weight (Mn) satisfies such conditions, it is preferable from the viewpoint of compatibility with the polymer (A), handling properties of the curable composition, and mechanical properties. Number average molecular weight (Mn) is measured by the GPC method.
  • the group represented by the formula (1) in the polymer (A) and the group represented by the formula (1) in the polymer (D) are the same. may be different.
  • the polymer (D) preferably has a group represented by formula (1) at the molecular chain end of the polymer, and represented by formula (1) at the molecular chain end of the polyether polymer. It is more preferable to have a group with
  • the polymer (D) is, for example, a terminal hydroxyl group of a polyether polymer and the compound (e- 1 ) represented by OCN--CH 2 --SiR 13 (R 1 is the same symbol in formula (1) is synonymous with) can be obtained by reacting with an isocyanate group.
  • the polymer (D) is also obtained by obtaining a polyether polymer having terminal isocyanate groups from a polyether polymer, and combining the terminal isocyanate groups of the polymer with R 4 —CH 2 —SiR 13 (R 1 is synonymous with the same symbol as explained in formula (1)), wherein R 4 is an amino group, an alkylamino group, a (aminoalkyl)amino group, or (N, It can also be obtained by reacting an N-dialkylaminoalkyl)amino group with an amino group.
  • a polyether polymer having a terminal isocyanate group can be obtained, for example, by a urethane reaction between a polyether polymer having a terminal hydroxyl group and a diisocyanate compound.
  • Such polyether polymers have urethane skeletons between polyether skeletons.
  • the polymer (D) is obtained by obtaining a polyether polymer having an amino group at the terminal from the polyether polymer, and combining the terminal amino group of the polymer with the isocyanate group of the compound (e-1). It can also be obtained by reacting.
  • diisocyanate compound examples include Ethylene diisocyanate, tetramethylene diisocyanate, pentamethylene diisocyanate, hexamethylene diisocyanate, 2-methyl-1,5-pentane diisocyanate, 3-methyl-1,5-pentane diisocyanate, 2,2,4-trimethyl-1,6-hexa Aliphatic diisocyanates having 4 to 30 carbon atoms such as methylene diisocyanate; Alicyclic diisocyanates having 7 to 30 carbon atoms such as isophorone diisocyanate, cyclopentyl diisocyanate, cyclohexyl diisocyanate, hydrogenated xylylene diisocyanate, hydrogenated tolylene diisocyanate, hydrogenated diphenylmethane diisocyanate, hydrogenated tetramethylxylylene diisocyanate; aromatic diisocyanates having 8 to 30 carbon atoms such as phenylene di
  • composition of the present invention can contain one or more polymers (D).
  • the content of polymer (D) in the composition of the present invention is preferably 10 to 900 parts by mass, more preferably 20 to 800 parts by mass, based on 100 parts by mass of polymer (A). Such an aspect is preferable from the viewpoint of obtaining a cured product having excellent mechanical properties.
  • compositions of the invention can further contain a plasticizer.
  • a plasticizer By using a plasticizer, the flexibility and elongation of the cured product formed from the curable composition can be improved.
  • plasticizers include phthalates such as dimethyl phthalate, diethyl phthalate, dibutyl phthalate, diisobutyl phthalate, dioctyl phthalate, diisodecyl phthalate, benzyl butyl phthalate, and diisononyl phthalate; Non-phthalates such as diisononyl cyclohexanedicarboxylate and trioctyl trimellitate; aliphatic carboxylic acid esters such as dioctyl adipate, diisodecyl succinate, dibutyl sebacate and butyl oleate; diethylene glycol dibenzoate and triethylene glycol dibenzoate , alcohol esters such as pentaerythritol esters; phosphate esters such as trioctyl phosphate and tricresyl phosphate; epoxy plasticizers such as epoxidized soybean oil, dioctyl 4,5-e
  • One or more plasticizers can be used.
  • the content of the plasticizer in the composition of the present invention is preferably 10 parts per 100 parts by mass of the polymer component from the viewpoint of the coatability of the curable composition and the weather resistance of the cured product. It is up to 400 parts by mass, more preferably 50 to 300 parts by mass.
  • compositions of the invention can further contain fillers.
  • Fillers include, for example, heavy calcium carbonate, light calcium carbonate, colloidal calcium carbonate, semi-colloidal calcium carbonate, slight calcium carbonate, and those obtained by surface-treating the surface of these calcium carbonates with fatty acids or resin acid-based organic substances.
  • Calcined clay such as ash balloons, alumina balloons, zirconia balloons, carbon balloons; Organic resin hollow bodies (plastic balloons) such as methacrylate balloons, polyvinyl alcohol balloons, styrene-(meth)acrylic resin balloons, polyacrylonitrile balloons; resin beads, wood flour, pulp, cotton chips, mica, walnut flour, rice flour, powdery fillers such as graphite, fine aluminum powder and flint powder; and fibrous fillers such as glass fiber, glass filament, carbon fiber, Kevlar fiber and polyethylene fiber.
  • plastic balloons such as methacrylate balloons, polyvinyl alcohol balloons, styrene-(meth)acrylic resin balloons, polyacrylonitrile balloons
  • resin beads wood flour, pulp, cotton chips, mica, walnut flour, rice flour, powdery fillers such as graphite, fine aluminum powder and flint powder
  • fibrous fillers such as glass fiber, glass filament, carbon fiber, Kevlar fiber and
  • calcium carbonate surface-treated with a fatty acid or the like is preferable from the viewpoint of dispersibility
  • shirasu balloons, glass balloons, polystyrene balloons, and acrylic resin balloons are preferable from the viewpoint of reducing specific gravity and imparting heat insulating properties.
  • One or more fillers can be used.
  • the content of the filler in the composition of the present invention is preferably 0.1 to 1,000 parts by mass, more preferably 0.2 to 500 parts by mass, relative to 100 parts by mass of the polymer (A). .
  • a curable composition having excellent filler dispersibility can be obtained.
  • the composition of the invention can further contain silica.
  • silica By using silica, the coatability of the curable composition is improved, and a cured product having excellent weather resistance and elongation can be obtained.
  • Silica includes, for example, fumed silica.
  • Silica includes hydrophobic silica and hydrophilic silica, with hydrophobic silica being preferred.
  • One or two or more types of silica can be used.
  • the content of silica in the composition of the present invention is preferably 1 to 100 parts by mass, more preferably 3 to 50 parts by mass, relative to 100 parts by mass of polymer (A).
  • composition of the invention can further contain pigments.
  • pigments examples include inorganic pigments such as iron oxide, chromium oxide, titanium oxide, and cobalt aluminate; and organic pigments such as phthalocyanine blue and phthalocyanine green.
  • inorganic pigments such as iron oxide, chromium oxide, titanium oxide, and cobalt aluminate
  • organic pigments such as phthalocyanine blue and phthalocyanine green.
  • the use of pigments is preferred from the viewpoint of improving toning and weather resistance.
  • One or two or more pigments can be used.
  • the content of the pigment in the composition of the present invention is preferably 1-200 parts by mass, more preferably 3-100 parts by mass, relative to 100 parts by mass of the polymer (A).
  • composition of the present invention may further contain anti-aging agents such as UV absorbers, light stabilizers and antioxidants.
  • ultraviolet absorbers examples include benzotriazole-based ultraviolet absorbers and benzophenone-based ultraviolet absorbers, with benzotriazole-based ultraviolet absorbers being preferred.
  • benzotriazole-based UV absorbers include 2-(2-hydroxy-5-tert-butylphenyl)-2H-benzotriazole, 2-(2H-benzotriazol-2-yl)-4,6-bis( 1-methyl-1-phenylethyl)phenol, 2-(2H-benzotriazol-2-yl)-6-(1-methyl-1-phenylethyl)-4-(1,1,3,3-tetramethyl Butyl)phenol, reaction product of methyl 3-(3-(2H-benzotriazol-2-yl)-5-tert-butyl-4-hydroxyphenyl)propionate with polyethylene glycol, 2-(2H-benzotriazole- 2-yl)-p-cresol.
  • Examples of light stabilizers include hindered amine light stabilizers.
  • Examples of hindered amine light stabilizers include bis(1,2,2,6,6-pentamethyl-4-piperidyl) sebacate and methyl (1,2,2,6,6-pentamethyl-4-piperidinyl) sebacate.
  • antioxidants examples include hindered phenol antioxidants, monophenol antioxidants, bisphenol antioxidants, polyphenol antioxidants, and phosphorus antioxidants.
  • One or more anti-aging agents can be used.
  • the content of the anti-aging agent in the composition of the present invention is preferably 0.05 to 20 parts by mass, more preferably 0.1 to 10 parts by mass, relative to 100 parts by mass of the polymer (A). part by mass.
  • composition of the present invention may contain a dehydrating agent as long as it does not adversely affect curability and flexibility.
  • dehydrating agents include hydrolyzable organosilicon compounds such as methyltrimethoxysilane, methyltriethoxysilane, tetramethoxysilane, tetraethoxysilane, dimethyldimethoxysilane, phenyltrimethoxysilane, diphenyldimethoxysilane, and vinyltrimethoxysilane.
  • alkyl orthoformate such as methyl orthoformate and ethyl orthoformate
  • alkyl orthoacetate such as methyl orthoacetate and ethyl orthoacetate
  • isocyanate compound such as p-toluenesulfonyl isocyanate.
  • the content of the dehydrating agent in the composition of the present invention is preferably 0.1- 20 parts by mass, more preferably 1 to 10 parts by mass.
  • the polymer component may contain the polymer (D) in addition to the polymer (A).
  • composition of the present invention can further contain a tackifying resin.
  • a cured product containing a tackifying resin has moderate tackiness, and a pressure-sensitive adhesive layer with excellent shear adhesive strength can be obtained.
  • tackifying resins include rosin-based tackifying resins such as rosin ester-based resins, terpene-based tackifying resins such as terpene-phenol-based resins, styrene-based tackifying resins, and alicyclic saturated hydrocarbon resins.
  • a rosin ester-based resin is a resin obtained by esterifying a rosin-based resin with alcohol.
  • rosin-based resins include rosin resins, disproportionated rosin resins, and hydrogenated rosin resins containing resin acids such as abietic acid as main components, and dimers of resin acids such as abietic acid (polymerized rosin resins).
  • alcohols include polyhydric alcohols such as ethylene glycol, glycerin, and pentaerythritol.
  • Resin obtained by esterifying rosin resin is rosin ester resin
  • resin obtained by esterifying disproportionated rosin resin is disproportionated rosin ester resin
  • resin obtained by esterifying hydrogenated rosin resin is hydrogenated rosin ester resin.
  • a polymerized rosin ester resin is obtained by esterifying a polymerized rosin resin.
  • a terpene phenolic resin is a resin obtained by polymerizing terpene in the presence of phenol.
  • disproportionated rosin ester resins examples include Superester A75 (10 or less), Superester A100 (10 or less), Superester A115 (20 or less), and Superester A125 (20 or less).
  • Polymerized rosin ester resins include, for example, Pencel D-125 (10 to 16), Pencel D-135 (10 to 16), and Pencel D-160 (10 to 16). The above products are manufactured by Arakawa Chemical Industries, Ltd., and the values in parentheses are acid values (mgKOH/g).
  • terpene-based tackifying resins examples include YS Polystar T30 (1 or less), YS Polystar T80 (1 or less), YS Polystar T130 (1 or less), Clearon 100 (1 or less), and Clearon 110 (1 or less).
  • the above products are manufactured by Yasuhara Chemical, and the values in parentheses are acid values (mgKOH/g).
  • styrene-based tackifying resins include FMR-0150 (0.1 or less), FTR-6100 (0.1 or less), FTR-6110 (0.1 or less), FTR-6125 (0.1 or less), FTR-7100 (0.1 or less), FTR-8120 (0.1 or less), FTR-0100 (0.1 or less), FTR-2120 (0.1 or less), FTR-2140 (0.1 or less) mentioned.
  • the above products are manufactured by Mitsui Chemicals, and the values in parentheses are acid values (mgKOH/g). Also, SX-100 (1 or less) manufactured by Yasuhara Chemical Co., Ltd. may be mentioned.
  • alicyclic saturated hydrocarbon resins examples include Alcon P-90, Alcon P-100, Alcon P-115, Alcon P-125, Alcon M-90, Alcon M-100, Alcon M-115, Alcon M- 135 can be mentioned.
  • the above products are manufactured by Arakawa Chemical Industries.
  • the tackifying resin can be used alone or in combination of two or more.
  • tackifying resins having an acid value of 1 mgKOH/g or less are preferable, and an acid value of 0.1 mgKOH/g or less is particularly preferable.
  • an acid value of 0.1 mgKOH/g or less is particularly preferable.
  • the acid value refers to the number of mg of potassium hydroxide required to neutralize 1 g of the tackifying resin, and can be measured based on JIS K0070.
  • the composition of the present invention preferably contains 1 to 500 parts by mass, more preferably 5 to 300 parts by mass, of the tackifying resin with respect to 100 parts by mass of the polymer (A).
  • the pressure-sensitive adhesive layer has appropriate tackiness and excellent adhesion to various adherends.
  • compositions of the present invention can further contain rheology control agents.
  • a rheology control agent can improve the smoothness of the film surface.
  • acrylic, urea, urethane, amide, polyester, and layered inorganic compound rheology control agents can be used.
  • a polyester type represented by "BYK R606 (polyhydroxycarboxylic acid ester)" manufactured by BYK-Chemie Japan is preferable.
  • the composition of the present invention preferably contains 0.1 to 10 parts by mass, more preferably 0.2 to 5 parts by mass, of the rheology control agent with respect to 100 parts by mass of the polymer (A). With such an aspect, a curable composition having excellent thixotropy and pseudoplasticity can be obtained.
  • composition of the present invention contains a polymer (A) and a salt compound (B) composed of an acid and a base that satisfies a predetermined pKa, it can be cured under a desired thermal environment, and has storage stability and mechanical properties. Excellent physical properties.
  • the composition of the present invention since the composition of the present invention has good crosslinkability, it can be used for applications such as curing by crosslinking or utilizing the elasticity of the cured body.
  • the group represented by formula (1) possessed by the polymer (A) and the polymer (D) When using, the group represented by the formula (1) in the polymer (D) is hydrolyzed to form a silanol group, and then the silanol groups are cured by dehydration condensation to form a siloxane bond, It is believed that a cured product is formed.
  • composition of the present invention or the mixed/stirred two-part curable composition is suitably used as a sealant, adhesive, hot-melt adhesive, paint, or the like, for example, in construction/building material applications, automobile applications, and the like.
  • inorganic materials e.g.
  • sheet-forming compositions sheet examples: breathable sheets, protective sheets, waterproof sheets, damping sheets, transfer sheets, light control sheet, antistatic sheet, conductive sheet, curing sheet, sound insulation sheet, light shielding sheet, decorative sheet, marking sheet, flame retardant sheet
  • film forming composition film examples: marking film, protective film, ink fixing film , laminate film
  • foam-forming composition examples of foam: rigid foam, soft foam, semi-rigid foam, flame-retardant foam
  • damping material sound insulation material, sound insulation material, sound absorption material
  • artificial Forming compositions for leather, artificial skin, synthetic leather, various industrial parts, daily necessities, toiletry moldings, etc. paint vehicles, primer resins, various binders (e.g. ink binders, magnetic recording media binders, casting binders, binders for fired bodies, and binders for glass fiber sizing materials).
  • the cured product of the present invention is obtained from the composition of the present invention or the two-component curable composition.
  • Curing conditions are not particularly limited, but the composition of the present invention is coated on a support, for example, in an environment of -20 to 120°C and 10 to 95% RH, preferably 20 to 90°C and 30 to 85% RH. Curing can proceed satisfactorily by leaving it in the environment for a predetermined period of time.
  • ⁇ Equipment DSC7000X (manufactured by Hitachi High-Tech Science)
  • ⁇ Temperature condition Temperature rise from -100°C to 30°C at 10°C/min
  • ⁇ Sample container Aluminum open cell
  • ⁇ Sample amount 5 mg ⁇ Silicon element content> The silicon element content of each polymer was determined by adding 7 mL of a mixed acid containing hydrogen fluoride to 0.2 g of the polymer, wet ashing with a microwave decomposition device (manufactured by Antor Japan), and adding ultrapure water to the ashed sample. After adding and adjusting the volume to 50 mL, measurement was performed with an inductively coupled plasma atomic emission spectrometer (ICP-AES).
  • ICP-AES inductively coupled plasma atomic emission spectrometer
  • ⁇ Equipment ICPE-9000 (manufactured by Shimadzu Corporation) ⁇ High frequency power: 1.20 kW ⁇ Plasma gas: 10.00 L/min ⁇ Auxiliary gas: 0.60 L/min ⁇ Carrier gas: 0.70 L/min ⁇ Observation direction: axial direction [manufacturing example 1] 74 parts of n-butyl acrylate, 25 parts of 2-ethylhexyl acrylate, and 1 part of acryloxymethyltrimethoxysilane are charged into a stainless steel flask equipped with a stirrer, nitrogen gas inlet tube, thermometer and reflux condenser, and nitrogen is replaced. After that, the temperature was raised to 70°C.
  • Examples 2 to 10 Comparative Examples 1 to 6
  • a curable composition was obtained in the same manner as in Example 1 except that the formulation composition was changed as described in Tables 1-1 and 1-2, and various evaluations were performed. The evaluation method will be described later.
  • ⁇ X-12-1169MS acryloxymethyltrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd., molecular weight: 206)
  • ⁇ X-12-1303MS methacryloxymethyltrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd., molecular weight: 220)
  • ⁇ X-12-1312MS methoxymethyltrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd., molecular weight: 166)
  • ⁇ X-12-1307 mercaptomethyltrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd., molecular weight: 168)
  • ⁇ KBM-1003 vinyltrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd., molecular weight: 148)
  • ⁇ KBM-5013 acryloxypropyltrimethoxys
  • ⁇ Gel fraction> The curable compositions obtained in Examples and Comparative Examples were coated on a Teflon (registered trademark) sheet with a doctor blade so that the cured product layer had a thickness of 2 mm, and was heated at 23° C./50% RH. Cured for 7 days under conditions. After that, 0.2 g of the obtained cured product was weighed in a sample bottle in terms of dry mass, 40 g of ethyl acetate was added to the sample bottle, and the sample bottle was allowed to stand in an environment of 23° C. for one day. After filtration through a stainless steel wire mesh of 200 mesh made of SUS, the residue on the wire mesh was dried at 90° C. for 2 hours, the mass of the residue obtained was weighed, and the gel fraction was determined by the following formula.
  • Gel fraction (%) (weighed value of residue after drying) / (weighed value of cured product after curing) x 100 ⁇ Shear adhesive strength after storage stability test>
  • the curable compositions obtained in Examples and Comparative Examples were filled into paper cartridges (capacity: 330 mL) and allowed to stand in an environment of 60° C. for one month as a storage stability test. After that, the shear adhesive strength was measured by the same method as above. The shear adhesive strength of the cured product after the storage stability test was left at 60°C for 1 month, and the shear adhesive strength of the cured product before the storage stability test after curing for 7 days at 23°C/50% RH. The change rate [%] of the shear adhesive strength was calculated by dividing by .

Abstract

The present invention addresses the problem of providing a curable composition that cures rapidly without the use of a tin-based curing catalyst and is capable of forming a cured product that exhibits superior storage stability and mechanical properties, and a curable composition that exhibits superior adhesion properties. A curable composition according to the present invention is characterized by containing: a (meth)acrylic polymer (A) that has a group represented by formula (1), has a number average molecular weight (Mn) of at least 1000, and contains at least 500 ppm elemental silicon; and a silane coupling agent (B) that is represented by formula (2) and has a molecular weight of less than 1000. Formula (1): -X-CH2-SiR1 3 Formula (2): Y-CH2-SiR1 3

Description

硬化性組成物および硬化物Curable composition and cured product
 本発明は、硬化性組成物および硬化物に関する。 The present invention relates to curable compositions and cured products.
 分子中に反応性ケイ素基を有する重合体は、大気中または被着体中に存在する水分によるシリル基の加水分解反応等を伴うシロキサン結合の形成によって架橋し、硬化する組成物として知られている。その中でも、アルコキシシリル基等の反応性ケイ素基を有する重合体は、建築・建材関連用途、自動車関連用途等における接着剤、シーリング材、塗料等として広く用いられている。 Polymers having reactive silicon groups in their molecules are known as compositions that crosslink and cure through the formation of siloxane bonds accompanied by hydrolysis of silyl groups by moisture present in the atmosphere or adherend. there is Among them, polymers having a reactive silicon group such as an alkoxysilyl group are widely used as adhesives, sealants, paints, etc. in construction/building material-related applications, automobile-related applications, and the like.
 なかでも、特定構造の反応性ケイ素基を有するポリオキシアルキレン系重合体または(メタ)アクリル重合体を用いることで、速硬化性を有し、接着性や貯蔵安定性に優れた硬化性組成物が得られることが知られている(例えば、特許文献1~3参照)。 Among them, by using a polyoxyalkylene polymer or (meth)acrylic polymer having a specific structure of reactive silicon group, it has a fast curing property, excellent adhesiveness and storage stability curable composition is known to be obtained (see, for example, Patent Documents 1 to 3).
特開2012-136685号公報JP 2012-136685 A 特開2014-101499号公報JP 2014-101499 A 特開2010-202863号公報JP 2010-202863 A
 分子中に反応性ケイ素基を有する重合体を含有する硬化性組成物は、通常、硬化反応が促進されることから錫系化合物等の触媒を用いて硬化させることが多い。しかしながら、錫系化合物等は、環境負荷や人体への毒性の観点からその使用は好ましくない。 A curable composition containing a polymer having a reactive silicon group in its molecule is usually cured using a catalyst such as a tin-based compound because the curing reaction is accelerated. However, the use of tin-based compounds and the like is not preferable from the viewpoint of environmental load and toxicity to the human body.
 上記の特許文献1に記載の組成物は縮合触媒として錫化合物を含む。一方、特許文献2および3に記載の硬化性組成物は、錫系化合物を使用せずとも良好に硬化する特徴がある。しかしながら、特許文献2に開示されている硬化性組成物は、所定の式で表されるシリル基を有する重合体の反応性が高く、空気中の水分でも反応が進行することから、空気を遮断する気密性の高い容器等での保管を要し、また、保管容器等から取り出した後は、硬化性組成物を使い切るもしくは廃棄しなければならず、貯蔵安定性が悪いという問題があった。 The composition described in Patent Document 1 above contains a tin compound as a condensation catalyst. On the other hand, the curable compositions described in Patent Documents 2 and 3 are characterized by good curing without using a tin-based compound. However, in the curable composition disclosed in Patent Document 2, the polymer having a silyl group represented by a predetermined formula has high reactivity, and the reaction progresses even with moisture in the air. In addition, the curable composition must be used up or discarded after being taken out of the storage container, resulting in poor storage stability.
 本発明の課題は、錫系硬化触媒を用いなくとも硬化が速く、貯蔵安定性および機械的物性に優れた硬化物を形成できる硬化性組成物、または接着性に優れた硬化性組成物を提供することにある。 An object of the present invention is to provide a curable composition that cures quickly without using a tin-based curing catalyst and can form a cured product with excellent storage stability and mechanical properties, or a curable composition that has excellent adhesiveness. to do.
 本発明は例えば以下の[1]~[7]に関する。 The present invention relates to, for example, [1] to [7] below.
 [1]式(1)で表される基を有し、数平均分子量(Mn)が1,000以上であり、ケイ素元素を500ppm以上含有する(メタ)アクリル重合体(A)と、
 式(2)で表される、分子量が1,000未満のシランカップリング剤(B)とを含有する硬化性組成物。
[1] A (meth)acrylic polymer (A) having a group represented by formula (1), having a number average molecular weight (Mn) of 1,000 or more and containing 500 ppm or more of silicon element;
A curable composition containing a silane coupling agent (B) represented by formula (2) and having a molecular weight of less than 1,000.
 式(1):-X-CH2-SiR1 3
 [式(1)中、R1は、それぞれ独立に炭素数1~20のアルキル基、炭素数1~20のアルコキシ基、または水酸基であり、R1のうち少なくとも一つは前記アルコキシ基または水酸基であり;Xは、-O-、-COO-、-S-、-N(R2)-、-CH(OH)-CH2-O-、-O-CO-NH-または-N(R2)-CO-N(R3)-で表される2価の基であり、R2およびR3は、水素原子、炭化水素基、またはハロゲン化炭化水素基であり、R2およびR3は、同一であっても異なっていてもよい。]
 式(2):Y-CH2-SiR1 3
 [式(2)中、R1は式(1)と同義であり;Yは、(メタ)アクリロイル基、炭素数1~20のアルコキシ基、メルカプト基、またはイソシアネート基である。]
 [2]前記(メタ)アクリル重合体(A)100質量部に対し、前記(B)を0.1~20質量部含む[1]に記載の硬化性組成物。
Formula ( 1 ): -X- CH2 - SiR13
[In formula (1), R 1 is each independently an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, or a hydroxyl group, and at least one of R 1 is the alkoxy group or hydroxyl group X is -O-, -COO-, -S-, -N(R 2 )-, -CH(OH)-CH 2 -O-, -O-CO-NH- or -N(R 2 ) A divalent group represented by —CO—N(R 3 )—, where R 2 and R 3 are a hydrogen atom, a hydrocarbon group, or a halogenated hydrocarbon group, and R 2 and R 3 may be the same or different. ]
Formula (2): Y CH 2 —SiR 13
[In formula (2), R 1 has the same definition as in formula (1); Y is a (meth)acryloyl group, an alkoxy group having 1 to 20 carbon atoms, a mercapto group, or an isocyanate group. ]
[2] The curable composition according to [1], which contains 0.1 to 20 parts by mass of (B) with respect to 100 parts by mass of the (meth)acrylic polymer (A).
 [3]前記(メタ)アクリル重合体(A)が、前記式(1)で表される基を少なくとも末端に有する[1]または[2]に記載の硬化性組成物。 [3] The curable composition according to [1] or [2], wherein the (meth)acrylic polymer (A) has at least a terminal group represented by the formula (1).
 [4]前記(メタ)アクリル重合体(A)のガラス転移温度(Tg)が、-20℃以下である[1]~[3]のいずれか1項に記載の硬化性組成物。 [4] The curable composition according to any one of [1] to [3], wherein the (meth)acrylic polymer (A) has a glass transition temperature (Tg) of -20°C or lower.
 [5]前記(メタ)アクリル重合体(A)の数平均分子量が1,000~100,000である[1]~[4]のいずれか1項に記載の硬化性組成物。 [5] The curable composition according to any one of [1] to [4], wherein the (meth)acrylic polymer (A) has a number average molecular weight of 1,000 to 100,000.
 [6]前記(メタ)アクリル重合体(A)100質量部に対し、下記式(3)で表されるアミノシラン化合物(C)を0.05~10質量部含有する[1]~[5]のいずれか1項に記載の硬化性組成物。 [6] Containing 0.05 to 10 parts by mass of an aminosilane compound (C) represented by the following formula (3) with respect to 100 parts by mass of the (meth)acrylic polymer (A) [1] to [5] The curable composition according to any one of.
 式(3):R4 2-N-(CH2n-SiR1 3
 [式(3)中、nは1~6の整数であり;R1は式(1)と同義であり;R4は、それぞれ独立に水素原子、炭素数1~20の炭化水素基、または前記炭化水素基の少なくとも一つの水素原子が、無置換アミノ基、置換アミノ基およびアルコキシシリル基からなる群より選ばれる基で置換された基である。]
 [7][1]~[6]のいずれか1項に記載の硬化性組成物から得られる硬化物。
Formula ( 3 ): R 42 --N--(CH 2 ) n --SiR 13
[In formula (3), n is an integer of 1 to 6; R 1 has the same meaning as in formula (1); R 4 is each independently a hydrogen atom, a hydrocarbon group having 1 to 20 carbon atoms, or At least one hydrogen atom of the hydrocarbon group is a group substituted with a group selected from the group consisting of an unsubstituted amino group, a substituted amino group and an alkoxysilyl group. ]
[7] A cured product obtained from the curable composition according to any one of [1] to [6].
 本発明によれば、錫系硬化触媒を用いなくとも硬化され、貯蔵安定性および機械的物性に優れた硬化物を形成できる硬化性組成物、または長期貯蔵後において接着性に優れた硬化性組成物を提供することができる。 According to the present invention, a curable composition that can be cured without using a tin-based curing catalyst and can form a cured product having excellent storage stability and mechanical properties, or a curable composition that has excellent adhesion after long-term storage. can provide things.
 以下、本発明について具体的に説明する。 The present invention will be specifically described below.
 本発明の硬化性組成物(以下「本発明の組成物」ともいう。)は、以下に説明する、(メタ)アクリル重合体(A)と、シランカップリング剤(B)とを含有する。 The curable composition of the present invention (hereinafter also referred to as "the composition of the present invention") contains a (meth)acrylic polymer (A) and a silane coupling agent (B), which will be described below.
 本明細書において(メタ)アクリルは、アクリルおよびメタクリルの総称で用い、アクリルでもメタクリルでもよく、(メタ)アクリレートは、アクリレートおよびメタクリレートの総称で用い、アクリレートでもメタクリレートでもよい。(メタ)アクリロイルは、アクリロイルおよびメタクリロイルの総称で用い、アクリロイルでもメタクリロイルでもよい。 In this specification, (meth)acrylic is used as a generic term for acrylic and methacrylic, and may be either acrylic or methacrylic, and (meth)acrylate is used as a generic term for acrylate and methacrylate, and may be either acrylate or methacrylate. (Meth)acryloyl is used as a generic term for acryloyl and methacryloyl, and may be acryloyl or methacryloyl.
 [(メタ)アクリル重合体(A)]
 (メタ)アクリル重合体(A)(以下「重合体(A)」ともいう。)は、式(1)で表される基を有し、数平均分子量(Mn)が1,000以上であり、かつケイ素元素を500ppm以上含有する重合体である。
[(Meth) acrylic polymer (A)]
The (meth)acrylic polymer (A) (hereinafter also referred to as “polymer (A)”) has a group represented by formula (1) and has a number average molecular weight (Mn) of 1,000 or more. and a polymer containing 500 ppm or more of silicon element.
 式(1):-X-CH2-SiR1 3
 式(1)中、R1は、それぞれ独立に炭素数1~20のアルキル基、炭素数1~20のアルコキシ基、または水酸基であり、R1のうち少なくとも一つは前記アルコキシ基または水酸基であり;Xは、-O-、-COO-、-S-、-N(R2)-、-CH(OH)-CH2-O-、-O-CO-NH-または-N(R2)-CO-N(R3)-で表される2価の基であり、R2およびR3は、水素原子、炭化水素基、またはハロゲン化炭化水素基であり、R2およびR3は、同一であっても異なっていてもよい。
Formula ( 1 ): -X- CH2 - SiR13
In formula (1), R 1 is each independently an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, or a hydroxyl group, and at least one of R 1 is the above alkoxy group or hydroxyl group. Yes; X is -O-, -COO-, -S-, -N(R 2 )-, -CH(OH)-CH 2 -O-, -O-CO-NH- or -N(R 2 )—CO—N(R 3 )—, wherein R 2 and R 3 are a hydrogen atom, a hydrocarbon group, or a halogenated hydrocarbon group, and R 2 and R 3 are , may be the same or different.
 炭素数1~20のアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、n-ペンチル基、イソペンチル基、ネオペンチル基、n-ヘキシル基、1-メチルペンチル基、4-メチル-2-ペンチル基、3,3-ジメチルブチル基、2-エチルブチル基、n-ヘプチル基、1-メチルヘキシル基、n-オクチル基、イソオクチル基、1-メチルヘプチル基、2-エチルヘキシル基、2-プロピルペンチル基、n-ノニル基、2,2-ジメチルヘプチル基、2,6-ジメチル-4-ヘプチル基、3,5,5-トリメチルヘキシル基、n-デシル基、n-ウンデシル基、1-メチルデシル基、n-ドデシル基、n-トリデシル基、1-ヘキシルヘプチル基、n-テトラデシル基、n-ペンタデシル基、n-ヘキサデシル基、n-ヘプタデシル基、n-オクタデシル基、n-エイコシル基等の直鎖、分岐アルキル基が挙げられ、炭素数1~10のアルキル基が好ましく、炭素数1~3のアルキル基がより好ましい。前記アルキル基は直鎖でも分岐鎖でもよい。 Examples of alkyl groups having 1 to 20 carbon atoms include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, n-pentyl group, isopentyl group, neopentyl group and n-hexyl group. , 1-methylpentyl group, 4-methyl-2-pentyl group, 3,3-dimethylbutyl group, 2-ethylbutyl group, n-heptyl group, 1-methylhexyl group, n-octyl group, isooctyl group, 1- methylheptyl group, 2-ethylhexyl group, 2-propylpentyl group, n-nonyl group, 2,2-dimethylheptyl group, 2,6-dimethyl-4-heptyl group, 3,5,5-trimethylhexyl group, n -decyl group, n-undecyl group, 1-methyldecyl group, n-dodecyl group, n-tridecyl group, 1-hexylheptyl group, n-tetradecyl group, n-pentadecyl group, n-hexadecyl group, n-heptadecyl group, Examples include linear and branched alkyl groups such as n-octadecyl group and n-eicosyl group, preferably alkyl groups having 1 to 10 carbon atoms, more preferably alkyl groups having 1 to 3 carbon atoms. The alkyl groups may be straight or branched.
 炭素数1~20のアルコキシ基としては、例えば、メトキシ基、エトキシ基、n-プロピルオキシ基、イソプロピルオキシ基、n-ブチルオキシ基、イソブチルオキシ基、n-ペンチルオキシ基、イソペンチルオキシ基、ネオペンチルオキシ基、n-ヘキシルオキシ基、1-メチルペンチルオキシ基、4-メチル-2-ペンチルオキシ基、3,3-ジメチルブチルオキシ基、2-エチルブチルオキシ基、n-ヘプチルオキシ基、1-メチルヘキシルオキシ基、n-オクチルオキシ基、イソオクチルオキシ基、1-メチルヘプチルオキシ基、2-エチルヘキシルオキシ基、2-プロピルペンチルオキシ基、n-ノニルオキシ基、2,2-ジメチルヘプチルオキシ基、2,6-ジメチル-4-ヘプチルオキシ基、3,5,5-トリメチルヘキシルオキシ基、n-デシルオキシ基、n-ウンデシルオキシ基、1-メチルデシルオキシ基、n-ドデシルオキシ基、n-トリデシルオキシ基、1-ヘキシルヘプチルオキシ基、n-テトラデシルオキシ基、n-ペンタデシルオキシ基、n-ヘキサデシルオキシ基、n-ヘプタデシルオキシ基、n-オクタデシルオキシ基、n-エイコシルオキシ基等の直鎖、分岐アルコキシ基が挙げられ、好ましくは炭素数1~10、より好ましくは炭素数1~3のアルコキシ基である。前記アルコキシ基は直鎖でも分岐鎖でもよい。 Examples of alkoxy groups having 1 to 20 carbon atoms include methoxy, ethoxy, n-propyloxy, isopropyloxy, n-butyloxy, isobutyloxy, n-pentyloxy, isopentyloxy, neo pentyloxy group, n-hexyloxy group, 1-methylpentyloxy group, 4-methyl-2-pentyloxy group, 3,3-dimethylbutyloxy group, 2-ethylbutyloxy group, n-heptyloxy group, 1 -methylhexyloxy group, n-octyloxy group, isooctyloxy group, 1-methylheptyloxy group, 2-ethylhexyloxy group, 2-propylpentyloxy group, n-nonyloxy group, 2,2-dimethylheptyloxy group , 2,6-dimethyl-4-heptyloxy group, 3,5,5-trimethylhexyloxy group, n-decyloxy group, n-undecyloxy group, 1-methyldecyloxy group, n-dodecyloxy group, n -tridecyloxy group, 1-hexylheptyloxy group, n-tetradecyloxy group, n-pentadecyloxy group, n-hexadecyloxy group, n-heptadecyloxy group, n-octadecyloxy group, n-eico Linear and branched alkoxy groups such as siloxy groups can be mentioned, and alkoxy groups having 1 to 10 carbon atoms are preferred, and alkoxy groups having 1 to 3 carbon atoms are more preferred. The alkoxy groups may be straight or branched.
 R2およびR3における炭化水素基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基、2-エチルヘキシル基、n-オクチル基、イソオクチル基等の、炭素数1~18、好ましくは炭素数1~3のアルキル基;シクロペンチル基、シクロヘキシル基等の、炭素数3~18、好ましくは炭素数5~8のシクロアルキル基;ビニル基、アリル基、3-ブテニル基、5-ヘキセニル基等の、炭素数2~18、好ましくは炭素数2~5のアルケニル基;フェニル基、ナフチル基、アントリル基等の、炭素数6~18、好ましくは炭素数6~10のアリール基が挙げられる。 Hydrocarbon groups for R 2 and R 3 include, for example, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, sec-butyl group, tert-butyl group, 2-ethylhexyl group, n- Alkyl groups having 1 to 18 carbon atoms, preferably 1 to 3 carbon atoms, such as octyl group and isooctyl group; Cycloalkyl groups having 3 to 18 carbon atoms, preferably 5 to 8 carbon atoms, such as cyclopentyl group and cyclohexyl group an alkenyl group having 2 to 18 carbon atoms, preferably 2 to 5 carbon atoms, such as vinyl group, allyl group, 3-butenyl group, and 5-hexenyl group; 6 carbon atoms, such as phenyl group, naphthyl group and anthryl group; to 18, preferably 6 to 10 carbon atoms.
 R2およびR3におけるハロゲン化炭化水素基は、前述した炭化水素基を構成する水素原子の少なくとも一部がハロゲン原子によって置換された基である。ハロゲン原子としては、例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。 The halogenated hydrocarbon group for R 2 and R 3 is a group in which at least part of the hydrogen atoms constituting the aforementioned hydrocarbon group has been substituted with halogen atoms. Halogen atoms include, for example, fluorine, chlorine, bromine and iodine atoms.
 R2およびR3としては水素原子または炭化水素基が好ましく、炭化水素基がより好ましい。 R 2 and R 3 are preferably hydrogen atoms or hydrocarbon groups, more preferably hydrocarbon groups.
 -SiR1 3で表される基としては、例えば、ジメチルメトキシシリル基、ジメチルエトキシシリル基、メチルジメトキシシリル基、メチルジエトキシシリル基、トリメトキシシリル基、トリエトキシシリル基、ジメチルイソプロポキシシリル基、メチルジイソプロポキシシリル基、トリイソプロポキシシリル基が挙げられる。 Examples of groups represented by -SiR 13 include dimethylmethoxysilyl , dimethylethoxysilyl, methyldimethoxysilyl, methyldiethoxysilyl, trimethoxysilyl, triethoxysilyl and dimethylisopropoxysilyl groups. , methyldiisopropoxysilyl group and triisopropoxysilyl group.
 重合体(A)は、硬化性と機械特性の観点から、式(1)で表される基を有し、かつケイ素元素を500ppm以上、好ましくは1,000~20,000ppm、より好ましくは1,500~10,000ppm含有する。なお、「ppm」とは、wtppmを意味する。なお、重合体(A)における式(1)で表される基由来のケイ素元素含有量は仕込み比から算出できるが、ICP発光分光分析により測定することができる。詳細については実施例欄に記載する。 From the viewpoint of curability and mechanical properties, the polymer (A) has a group represented by formula (1) and contains 500 ppm or more of silicon element, preferably 1,000 to 20,000 ppm, more preferably 1 , 500 to 10,000 ppm. In addition, "ppm" means wtppm. The silicon element content derived from the group represented by formula (1) in the polymer (A) can be calculated from the charge ratio, and can be measured by ICP emission spectrometry. Details are described in the Example column.
 <(メタ)アクリル酸アルキルエステル(a1)>
 重合体(A)は、アルキル基の炭素数が1~12である(メタ)アクリル酸アルキルエステル(a1)(以下「モノマー(a1)」ともいう。)を含む重合性単量体成分の重合体であることが好ましい。すなわち重合体(A)は、モノマー(a1)由来の構造単位を有することが好ましい。
<(Meth)acrylic acid alkyl ester (a1)>
The polymer (A) is a polymerizable monomer component containing a (meth)acrylic acid alkyl ester (a1) (hereinafter also referred to as “monomer (a1)”) having 1 to 12 carbon atoms in the alkyl group. It is preferably coalesced. That is, the polymer (A) preferably has structural units derived from the monomer (a1).
 前記アルキル基は直鎖でも分岐鎖でもよい。 The alkyl group may be linear or branched.
 モノマー(a1)としては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、tert-ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、n-オクチル(メタ)アクリレート、イソオクチル(メタ)アクリレート、ノニル(メタ)アクリレート、イソノニル(メタ)アクリレート、n-デシル(メタ)アクリレート、イソデシル(メタ)アクリレート、ラウリル(メタ)アクリレートが挙げられる。 Examples of the monomer (a1) include methyl (meth)acrylate, ethyl (meth)acrylate, propyl (meth)acrylate, n-butyl (meth)acrylate, isobutyl (meth)acrylate, tert-butyl (meth)acrylate, 2 - ethylhexyl (meth)acrylate, n-octyl (meth)acrylate, isooctyl (meth)acrylate, nonyl (meth)acrylate, isononyl (meth)acrylate, n-decyl (meth)acrylate, isodecyl (meth)acrylate, lauryl (meth)acrylate ) acrylates.
 モノマー(a1)は1種または2種以上用いることができる。 One or two or more monomers (a1) can be used.
 重合体(A)を構成する重合性単量体成分中のモノマー(a1)の割合は、好ましくは20質量%以上であり、より好ましくは20~85質量%であり、さらに好ましくは20~75質量%、特に好ましくは22~55質量%である。重合体(A)は、全構造単位中、モノマー(a1)由来の構造単位を同様の範囲で有することができる。アルキル基の炭素数が8~12である(メタ)アクリル酸アルキルエステル(a1)を前記範囲で用いると、機械的物性に優れる(メタ)アクリル重合体を得ることができる。 The proportion of the monomer (a1) in the polymerizable monomer component constituting the polymer (A) is preferably 20% by mass or more, more preferably 20 to 85% by mass, still more preferably 20 to 75% by mass. % by weight, particularly preferably 22 to 55% by weight. The polymer (A) can have structural units derived from the monomer (a1) in the same range among all structural units. When the (meth)acrylic acid alkyl ester (a1) in which the alkyl group has 8 to 12 carbon atoms is used within the above range, a (meth)acrylic polymer having excellent mechanical properties can be obtained.
 <加水分解性シリル基含有(メタ)アクリロイル単量体(a2)>
 重合体(A)は、モノマー(a1)と共重合可能であって、式(1)で表される基を有する加水分解性シリル基含有(メタ)アクリロイル単量体(a2)(以下「モノマー(a2)」ともいう。)由来の構造単位をさらに有することが好ましい。
<Hydrolyzable silyl group-containing (meth)acryloyl monomer (a2)>
The polymer (A) is a hydrolyzable silyl group-containing (meth)acryloyl monomer (a2) (hereinafter “monomer (a2)”).
 モノマー(a2)としては、例えば、式(a2-1)で表される化合物が好ましい。 As the monomer (a2), for example, a compound represented by formula (a2-1) is preferable.
Figure JPOXMLDOC01-appb-C000001
 式(a2-1)中、Raは水素原子またはメチル基であり、R1は、式(1)中のR1と同義である。
Figure JPOXMLDOC01-appb-C000001
In formula (a2-1), R a is a hydrogen atom or a methyl group, and R 1 has the same definition as R 1 in formula (1).
 式(a2-1)で表される化合物としては、例えば、(メタ)アクリロキシメチルジメチルメトキシシラン、(メタ)アクリロキシメチルジメチルエトキシシラン、((メタ)アクリロキシメチル)メチルジメトキシシラン、((メタ)アクリロキシメチル)メチルジエトキシシラン、(メタ)アクリロキシメチルトリメトキシシラン、(メタ)アクリロキシメチルトリエトキシシラン等の(メタ)アクリロキシ基含有シランが挙げられる。 Examples of the compound represented by formula (a2-1) include (meth)acryloxymethyldimethylmethoxysilane, (meth)acryloxymethyldimethylethoxysilane, ((meth)acryloxymethyl)methyldimethoxysilane, (( Examples include (meth)acryloxy group-containing silanes such as meth)acryloxymethyl)methyldiethoxysilane, (meth)acryloxymethyltrimethoxysilane, and (meth)acryloxymethyltriethoxysilane.
 モノマー(a2)としては、2-ヒドロキシエチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート等のヒドロキシアルキル(メタ)アクリレートのヒドロキシ基に、または2-アミノエチル(メタ)アクリレート等のアミノアルキル(メタ)アクリレートのアミノ基に、OCN-CH2-SiR1 3で表される化合物(R1は、式(1)中で説明した同一記号と同義である)のイソシアネート基が付加してなる化合物も挙げることができる。OCN-CH2-SiR1 3で表される化合物の具体例は後述する。 As the monomer (a2), a hydroxy group of a hydroxyalkyl (meth)acrylate such as 2-hydroxyethyl (meth)acrylate, 4-hydroxybutyl (meth)acrylate, or an aminoalkyl (meth)acrylate such as 2-aminoethyl (meth)acrylate An isocyanate group of a compound represented by OCN - CH 2 -SiR 13 (R 1 has the same meaning as the same symbol described in formula (1)) is added to the amino group of (meth)acrylate. Compounds may also be mentioned. Specific examples of the compound represented by OCN--CH 2 --SiR 13 will be described later.
 モノマー(a2)は1種または2種以上用いることができる。 One or two or more monomers (a2) can be used.
 重合体(A)を構成する重合性単量体成分中のモノマー(a2)の割合は、好ましくは0.01~10質量%であり、より好ましくは0.1~5質量%である。重合体(A)は、全構造単位中、モノマー(a2)由来の構造単位を同様の範囲で有することができる。モノマー(a2)を前記範囲で用いると、重合体(A)中に式(1)で表される基を導入することができ、したがって得られる重合体(A)は適度な架橋性を有し、架橋体を形成する用途に好適である。 The proportion of the monomer (a2) in the polymerizable monomer component constituting the polymer (A) is preferably 0.01-10% by mass, more preferably 0.1-5% by mass. The polymer (A) can have structural units derived from the monomer (a2) in the same range among all structural units. When the monomer (a2) is used within the above range, the group represented by the formula (1) can be introduced into the polymer (A), so that the resulting polymer (A) has appropriate crosslinkability. , suitable for use in forming a crosslinked body.
 <その他のモノマー(a3)>
 重合体(A)は、本発明の目的を損なわない範囲で、モノマー(a1)およびモノマー(a2)以外のその他のモノマー(a3)由来の構造単位をさらに有してもよい。
<Other Monomers (a3)>
The polymer (A) may further have a structural unit derived from a monomer (a3) other than the monomers (a1) and (a2) as long as the objects of the present invention are not impaired.
 その他のモノマー(a3)としては、例えば、
 n-トリデシル(メタ)アクリレート、イソデシル(メタ)アクリレート、n-ミリスチル(メタ)アクリレート、イソミリスチル(メタ)アクリレート、n-ペンタデシル(メタ)アクリレート、イソペンタデシル(メタ)アクリレート、n-セチル(メタ)アクリレート、イソセチル(メタ)アクリレート、n-ヘプタデシル(メタ)アクリレート、イソヘプタデシル(メタ)アクリレート、n-ステアリル(メタ)アクリレート、イソステアリル(メタ)アクリレート、n-ノナデシル(メタ)アクリレート、イソノナデシル(メタ)アクリレート、n-エイコシル(メタ)アクリレート、イソエイコシル(メタ)アクリレート等のアルキル基の炭素数が13以上、好ましくはアルキル基の炭素数の上限が22の(メタ)アクリル酸アルキルエステル;
 シクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート、ベンジル(メタ)アクリレート、フェニル(メタ)アクリレート等の脂環式炭化水素基または芳香族炭化水素基含有(メタ)アクリレート;
 メトキシメチル(メタ)アクリレート、2-メトキシエチル(メタ)アクリレート、2-エトキシエチル(メタ)アクリレート、3-メトキシプロピル(メタ)アクリレート、3-エトキシプロピル(メタ)アクリレート、4-メトキシブチル(メタ)アクリレート、4-エトキシブチル(メタ)アクリレート等のアルコキシアルキル(メタ)アクリレート;
 メトキシポリエチレングリコールモノ(メタ)アクリレート、エトキシポリエチレングリコールモノ(メタ)アクリレート、オクトキシポリエチレングリコールモノ(メタ)アクリレート、ラウロキシポリエチレングリコールモノ(メタ)アクリレート、ステアロキシポリエチレングリコールモノ(メタ)アクリレート、ポリエチレングリコールモノ(メタ)アクリレート、ポリプロピレングリコールモノ(メタ)アクリレート等のポリアルキレングリコール(メタ)アクリレート;
 2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート等のヒドロキシアルキル(メタ)アクリレート;
 (メタ)アクリル酸、イタコン酸、クロトン酸、フマル酸、マレイン酸;(メタ)アクリル酸β-カルボキシエチル、(メタ)アクリル酸5-カルボキシペンチル、コハク酸モノ(メタ)アクリロイルオキシエチルエステル、ω-カルボキシポリカプロラクトンモノ(メタ)アクリレート等のカルボキシ基含有(メタ)アクリレート等のカルボキシ基含有モノマー;
 無水フタル酸、無水マレイン酸等の酸無水物基含有モノマー;
 2-ジメチルアミノエチル(メタ)アクリレート、2-ジエチルアミノエチル(メタ)アクリレート等のジアルキルアミノアルキル(メタ)アクリレート;
 (メタ)アクリルアミド;N-メチル(メタ)アクリルアミド、N-エチル(メタ)アクリルアミド、N-プロピル(メタ)アクリルアミド、N-ヘキシル(メタ)アクリルアミド等のN-アルキル(メタ)アクリルアミド;N,N-ジメチル(メタ)アクリルアミド、N,N-ジエチル(メタ)アクリルアミド等のN,N-ジアルキル(メタ)アクリルアミド等のアミド基含有モノマー;
 (メタ)アクリロニトリル等のシアノ基含有モノマー;
 N-ビニルピロリドン、N-ビニルモルフォリン、N-ビニルカプロラクタム、(メタ)アクリロイルモルホリン、N-シクロヘキシルマレイミド、N-フェニルマレイミド、N-ラウリルマレイミド、N-ベンジルマレイミド等の窒素系複素環含有モノマー;
 スチレン、α-メチルスチレン、p-メチルスチレン、p-クロロスチレン、p-クロロメチルスチレン、p-メトキシスチレン、p-tert-ブトキシスチレン、ジビニルベンゼン、インデン等のスチレン誘導体;
 酢酸ビニル、プロピオン酸ビニル、酪酸ビニル、カプロン酸ビニル、安息香酸ビニル、珪皮酸ビニル等のビニルエステル化合物;が挙げられる。
Other monomers (a3) include, for example,
n-tridecyl (meth) acrylate, isodecyl (meth) acrylate, n-myristyl (meth) acrylate, isomyristyl (meth) acrylate, n-pentadecyl (meth) acrylate, isopentadecyl (meth) acrylate, n-cetyl (meth) ) acrylate, isocetyl (meth) acrylate, n-heptadecyl (meth) acrylate, isoheptadecyl (meth) acrylate, n-stearyl (meth) acrylate, isostearyl (meth) acrylate, n-nonadecyl (meth) acrylate, isononadecyl (meth) (meth)acrylic acid alkyl esters such as acrylates, n-eicosyl (meth)acrylates, isoeicosyl (meth)acrylates, etc., in which the number of carbon atoms in the alkyl group is 13 or more, preferably the upper limit of the number of carbon atoms in the alkyl group is 22;
Alicyclic hydrocarbon group- or aromatic hydrocarbon group-containing (meth)acrylates such as cyclohexyl (meth)acrylate, isobornyl (meth)acrylate, benzyl (meth)acrylate, and phenyl (meth)acrylate;
Methoxymethyl (meth)acrylate, 2-methoxyethyl (meth)acrylate, 2-ethoxyethyl (meth)acrylate, 3-methoxypropyl (meth)acrylate, 3-ethoxypropyl (meth)acrylate, 4-methoxybutyl (meth)acrylate Alkoxyalkyl (meth)acrylates such as acrylates and 4-ethoxybutyl (meth)acrylate;
Methoxy polyethylene glycol mono (meth) acrylate, ethoxy polyethylene glycol mono (meth) acrylate, octoxy polyethylene glycol mono (meth) acrylate, lauroxy polyethylene glycol mono (meth) acrylate, stearoxy polyethylene glycol mono (meth) acrylate, polyethylene glycol Polyalkylene glycol (meth)acrylates such as mono(meth)acrylates and polypropylene glycol mono(meth)acrylates;
Hydroxyalkyl (meth)acrylates such as 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, 4-hydroxybutyl (meth)acrylate;
(Meth)acrylic acid, itaconic acid, crotonic acid, fumaric acid, maleic acid; β-carboxyethyl (meth)acrylate, 5-carboxypentyl (meth)acrylate, mono(meth)acryloyloxyethyl succinate, ω - carboxy group-containing monomers such as carboxy group-containing (meth)acrylates such as carboxypolycaprolactone mono(meth)acrylate;
Acid anhydride group-containing monomers such as phthalic anhydride and maleic anhydride;
Dialkylaminoalkyl (meth)acrylates such as 2-dimethylaminoethyl (meth)acrylate and 2-diethylaminoethyl (meth)acrylate;
(meth)acrylamide; N-alkyl (meth)acrylamide such as N-methyl (meth)acrylamide, N-ethyl (meth)acrylamide, N-propyl (meth)acrylamide, N-hexyl (meth)acrylamide; N,N- Amide group-containing monomers such as N,N-dialkyl (meth)acrylamides such as dimethyl (meth)acrylamide and N,N-diethyl (meth)acrylamide;
(meth) cyano group-containing monomers such as acrylonitrile;
Nitrogen-based heterocyclic ring-containing monomers such as N-vinylpyrrolidone, N-vinylmorpholine, N-vinylcaprolactam, (meth)acryloylmorpholine, N-cyclohexylmaleimide, N-phenylmaleimide, N-laurylmaleimide, N-benzylmaleimide;
Styrene derivatives such as styrene, α-methylstyrene, p-methylstyrene, p-chlorostyrene, p-chloromethylstyrene, p-methoxystyrene, p-tert-butoxystyrene, divinylbenzene, and indene;
vinyl ester compounds such as vinyl acetate, vinyl propionate, vinyl butyrate, vinyl caproate, vinyl benzoate and vinyl cinnamate;
 その他のモノマー(a3)の中でも、モノマー(a1)以外の(メタ)アクリル酸アルキルエステル、ポリアルキレングリコール(メタ)アクリレートが好ましく、モノマー(a1)以外の(メタ)アクリル酸アルキルエステルがより好ましい。 Among other monomers (a3), (meth)acrylic acid alkyl esters other than monomer (a1) and polyalkylene glycol (meth)acrylates are preferred, and (meth)acrylic acid alkyl esters other than monomer (a1) are more preferred.
 その他のモノマー(a3)は1種または2種以上用いることができる。 One or two or more other monomers (a3) can be used.
 重合体(A)を構成する重合性単量体成分中のその他のモノマー(a3)の割合は、好ましくは1~65質量%であり、より好ましくは5~60質量%である。重合体(A)は、全構造単位中、その他のモノマー(a3)由来の構造単位を同様の範囲で有することができる。 The proportion of the other monomer (a3) in the polymerizable monomer components constituting the polymer (A) is preferably 1-65% by mass, more preferably 5-60% by mass. The polymer (A) can have structural units derived from other monomers (a3) in the same range among all the structural units.
 <メルカプト基含有化合物(d)>
 重合体(A)の製造時に、連鎖移動剤としてメルカプト基含有化合物(d)を用いてもよい。
<Mercapto group-containing compound (d)>
A mercapto group-containing compound (d) may be used as a chain transfer agent during the production of the polymer (A).
 メルカプト基含有化合物(d)は、ラジカル重合において連鎖移動性の高い官能基(-SH)を有することから連鎖移動剤として作用する。メルカプト基含有化合物(d)の存在下で重合性単量体成分の重合を行った場合に、メルカプト基含有化合物(d)由来の構造単位、特に式(1)で表される基を有するメルカプト基含有化合物を用いた場合は、式(1)で表される基を重合体の分子鎖末端に導入することができる。また、重合性不飽和基を有する重合体に、式(1)で表されるメルカプト基含有化合物(d)をエン-チオール反応により導入することで、式(1)で表される基を重合体に導入することもできる。分子鎖末端に式(1)で表される基を有する重合体(A)が使用された硬化性組成物は、機械的物性に優れる。 The mercapto group-containing compound (d) acts as a chain transfer agent because it has a functional group (-SH) with high chain transferability in radical polymerization. When the polymerizable monomer component is polymerized in the presence of the mercapto group-containing compound (d), a structural unit derived from the mercapto group-containing compound (d), particularly a mercapto group having a group represented by formula (1) When a group-containing compound is used, the group represented by formula (1) can be introduced at the molecular chain end of the polymer. Further, by introducing a mercapto group-containing compound (d) represented by formula (1) into a polymer having a polymerizable unsaturated group by an en-thiol reaction, the group represented by formula (1) is polymerized. It can also be introduced into coalescence. The curable composition using the polymer (A) having the group represented by formula (1) at the molecular chain end has excellent mechanical properties.
 なお、モノマー(a2)を用いる場合に、モノマー(a2)における式(1)で表される基と、メルカプト基含有化合物(d)における式(1)で表される基とは、同一であっても異なっていてもよい。 When the monomer (a2) is used, the group represented by formula (1) in the monomer (a2) and the group represented by formula (1) in the mercapto group-containing compound (d) are the same. may be different.
 メルカプト基含有化合物(d)としては、式(d-1)で表される化合物が好ましい。 A compound represented by formula (d-1) is preferable as the mercapto group-containing compound (d).
 式(d-1):HS-CH2-SiR1 3
 式(d-1)中、R1は式(1)中のR1と同義である。
Formula (d-1): HS--CH 2 --SiR 13
In formula (d-1), R 1 has the same definition as R 1 in formula (1).
 メルカプト基含有化合物(d)のうち、式(d-1)で表される化合物としては、例えば、メルカプトメチルジメチルメトキシシラン、メルカプトメチルジメチルエトキシシラン、メルカプトメチルジメチルイソプロポキシシシラン、メルカプトメチルメチルジメトキシシラン、メルカプトメチルメチルジエトキシシラン、メルカプトメチルメチルジイソプロポキシシシラン、メルカプトメチルトリメトキシシラン、メルカプトメチルトリエトキシシラン、メルカプトメチルトリイソプロポキシシシランが挙げられる。これらの中でも、メルカプトメチルジメチルメトキシシラン、メルカプトメチルメチルジメトキシシラン、メルカプトメチルトリメトキシシラン、メルカプトメチルトリエトキシシランが好ましい。式(d-1)で表される化合物を用いれば、重合体(A)の分子鎖末端に式(1)で表される基を導入することができる。 Among the mercapto group-containing compounds (d), compounds represented by formula (d-1) include, for example, mercaptomethyldimethylmethoxysilane, mercaptomethyldimethylethoxysilane, mercaptomethyldimethylisopropoxysilane, mercaptomethylmethyldimethoxysilane. silane, mercaptomethylmethyldiethoxysilane, mercaptomethylmethyldiisopropoxysilane, mercaptomethyltrimethoxysilane, mercaptomethyltriethoxysilane, mercaptomethyltriisopropoxysilane. Among these, mercaptomethyldimethylmethoxysilane, mercaptomethylmethyldimethoxysilane, mercaptomethyltrimethoxysilane, and mercaptomethyltriethoxysilane are preferred. By using the compound represented by the formula (d-1), the group represented by the formula (1) can be introduced to the terminal of the molecular chain of the polymer (A).
 その他のメルカプト基含有化合物(d)としては、例えば、n-オクチルメルカプタン、n-ドデシルメルカプタン、tert-ドデシルメルカプタン、ラウリルメルカプタン、2-メルカプトエタノール、3-メルカプト-1,2-プロパンジオール、2,2、メルカプトプロピルジメチルメトキシシラン、メルカプトプロピルジメチルエトキシシラン、メルカプトプロピルメチルジメトキシシラン、メルカプトプロピルメチルジエトキシシラン、メルカプトプロピルトリメトキシシラン、メルカプトプロピルトリエトキシシラン等のメルカプト基含有化合物が挙げられる。 Other mercapto group-containing compounds (d) include, for example, n-octylmercaptan, n-dodecylmercaptan, tert-dodecylmercaptan, laurylmercaptan, 2-mercaptoethanol, 3-mercapto-1,2-propanediol, 2, 2. Mercapto group-containing compounds such as mercaptopropyldimethylmethoxysilane, mercaptopropyldimethylethoxysilane, mercaptopropylmethyldimethoxysilane, mercaptopropylmethyldiethoxysilane, mercaptopropyltrimethoxysilane and mercaptopropyltriethoxysilane.
 化合物(d)は1種または2種以上用いることができる。 One or two or more compounds (d) can be used.
 メルカプト基含有化合物(d)は、重合性単量体成分の合計100質量部に対して、好ましくは0.1~5質量部の範囲で用いられ、より好ましくは0.2~3質量部の範囲で用いられる。このような態様であると、重合体(A)の数平均分子量を適切な範囲に調整することができる。 The mercapto group-containing compound (d) is preferably used in the range of 0.1 to 5 parts by mass, more preferably 0.2 to 3 parts by mass, with respect to the total 100 parts by mass of the polymerizable monomer components. Used in range. With such an aspect, the number average molecular weight of the polymer (A) can be adjusted to an appropriate range.
 <重合体(A)の製造>
 重合体(A)は、種々の重合法により得ることができ、その方法は特に限定されないが、例えば以下の方法により得ることが好ましい。なお、(i)~(iv)の方法は任意に組み合わせて用いてもよい。
<Production of polymer (A)>
Polymer (A) can be obtained by various polymerization methods, and the method is not particularly limited, but it is preferably obtained by, for example, the following method. The methods (i) to (iv) may be used in any combination.
 (i)重合性不飽和基と式(1)で表される基とを有するモノマー(a2)を、上述の(メタ)アクリル構造を有するモノマー(a1)と共重合する方法。 (i) A method of copolymerizing a monomer (a2) having a polymerizable unsaturated group and a group represented by formula (1) with the above-described monomer (a1) having a (meth)acrylic structure.
 (ii)連鎖移動剤として、式(1)で表される基を有するメルカプト基含有化合物(d)の存在下、(メタ)アクリル構造を有するモノマー(a1)を重合する方法。 (ii) A method of polymerizing a monomer (a1) having a (meth)acrylic structure in the presence of a mercapto group-containing compound (d) having a group represented by formula (1) as a chain transfer agent.
 (iii)重合性不飽和基と反応性官能基(例えば、ヒドロキシ基、イソシアネート基、またはアミノ基)とを有する化合物、およびモノマー(a1)を含むモノマー成分を共重合して得られる反応性官能基を有する重合体と、前記反応性官能基と付加反応する基を有し、かつ、付加反応により前記式(1)で表される基を重合体に導入できる化合物(e)とを反応させる方法。 (iii) a compound having a polymerizable unsaturated group and a reactive functional group (e.g., a hydroxy group, an isocyanate group, or an amino group) and a reactive functional group obtained by copolymerizing a monomer component containing the monomer (a1) A polymer having a group is reacted with a compound (e) having a group capable of undergoing an addition reaction with the reactive functional group and capable of introducing the group represented by the formula (1) into the polymer by an addition reaction. Method.
 前記化合物(e)としては、例えば、式(e-1)、式(e-2)で表される化合物(以下、それぞれ「化合物(e-1)」、「化合物(e-2)」ともいう。)が挙げられる。 Examples of the compound (e) include compounds represented by formulas (e-1) and (e-2) (hereinafter also referred to as "compound (e-1)" and "compound (e-2)", respectively). ) are mentioned.
 式(e-1):OCN-CH2-SiR1 3
 R1は式(1)中の同一記号と同義である。
Formula (e- 1 ): OCN- CH2 - SiR13
R 1 has the same meaning as the same symbol in formula (1).
 化合物(e-1)としては、例えば、1-イソシアネートメチルジメチルメトキシシラン、1-イソシアネートメチルジメチルエトキシシラン、1-イソシアネートメチルジメチルイソプロポキシシラン、(1-イソシアネートメチル)メチルジメトキシシラン、(1-イソシアネートメチル)メチルジエトキシシラン、(1-イソシアネートメチル)メチルジイソプロポキシシラン、1-イソシアネートメチルトリメトキシシラン、1-イソシアネートメチルトリエトキシシラン、1-イソシアネートメチルトリイソプロポキシシランが挙げられる。これらの中でも、1-イソシアネートメチルジメチルメトキシシラン、(1-イソシアネートメチル)メチルジメトキシシラン、1-イソシアネートメチルトリメトキシシラン、1-イソシアネートメチルトリエトキシシランが好ましい。 Examples of the compound (e-1) include 1-isocyanatomethyldimethylmethoxysilane, 1-isocyanatomethyldimethylethoxysilane, 1-isocyanatomethyldimethylisopropoxysilane, (1-isocyanatomethyl)methyldimethoxysilane, (1-isocyanate methyl)methyldiethoxysilane, (1-isocyanatomethyl)methyldiisopropoxysilane, 1-isocyanatomethyltrimethoxysilane, 1-isocyanatomethyltriethoxysilane, 1-isocyanatomethyltriisopropoxysilane. Among these, 1-isocyanatomethyldimethylmethoxysilane, (1-isocyanatomethyl)methyldimethoxysilane, 1-isocyanatomethyltrimethoxysilane, and 1-isocyanatomethyltriethoxysilane are preferred.
 式(e-2):R4-CH2-SiR1 3
 R1は式(1)中の同一記号と同義であり、R4は、グリシジルオキシ基、アミノ基、アルキルアミノ基、(アミノアルキル)アミノ基、(N,N-ジアルキルアミノアルキル)アミノ基またはハロゲン化炭化水素基である。
Formula (e- 2 ): R 4 —CH 2 —SiR 13
R 1 has the same meaning as the same symbol in formula (1), R 4 is a glycidyloxy group, amino group, alkylamino group, (aminoalkyl)amino group, (N,N-dialkylaminoalkyl)amino group or It is a halogenated hydrocarbon group.
 化合物(e-2)としては、例えば、アミノメチルトリメトキシシラン、アミノメチルトリエトキシシラン、(アミノエチルアミノ)メチルトリメトキシシラン、(N,N-ジメチルアミノ)エチルアミノメチルトリメトキシシラン、グリシジルオキシメチルトリメトキシシランが挙げられる。 Examples of the compound (e-2) include aminomethyltrimethoxysilane, aminomethyltriethoxysilane, (aminoethylamino)methyltrimethoxysilane, (N,N-dimethylamino)ethylaminomethyltrimethoxysilane, glycidyloxy Methyltrimethoxysilane can be mentioned.
 化合物(e)は1種または2種以上用いることができる。 One or two or more compounds (e) can be used.
 化合物(e)は、重合性単量体成分の合計100質量部に対して、好ましくは0.1~5質量部用いられ、より好ましくは0.2~3質量部用いられる。 The compound (e) is preferably used in an amount of 0.1 to 5 parts by mass, more preferably 0.2 to 3 parts by mass, based on 100 parts by mass of the total polymerizable monomer components.
 (iv)モノマー(a1)をリビング重合法により重合し、分子鎖末端にアルケニル基やヒドロキシ基などの官能基を導入した後、得られた重合体と前記化合物(d)または前記化合物(e)などを反応させる方法。 (iv) the monomer (a1) is polymerized by a living polymerization method to introduce a functional group such as an alkenyl group or a hydroxy group at the molecular chain end, and then the resulting polymer and the compound (d) or the compound (e); Etc. How to react.
 重合体(A)は、上述した方法(i)~(iv)のように、カチオン重合、アニオン重合、ラジカル重合などの公知の重合法を利用することで製造でき、その方法は特に限定されないが、モノマーの汎用性、工業生産性の点からラジカル重合法が好ましい。ラジカル重合法としては、末端等の制御された位置に特定の官能基(例えば、式(1)で表される基)を導入することが可能なリビングラジカル重合法や、重合開始剤を用いて所定の単量体単位を共重合させるフリーラジカル重合法が挙げられる。 The polymer (A) can be produced by using a known polymerization method such as cationic polymerization, anionic polymerization, radical polymerization, etc., as in the methods (i) to (iv) described above, and the method is not particularly limited. , the versatility of the monomer and the industrial productivity, the radical polymerization method is preferred. As the radical polymerization method, a living radical polymerization method capable of introducing a specific functional group (for example, a group represented by formula (1)) at a controlled position such as a terminal, or a polymerization initiator is used. Free-radical polymerization methods are included in which predetermined monomeric units are copolymerized.
 リビング重合法としては、リビングカチオン重合法、リビングアニオン重合法、リビングラジカル重合法が適応できるが、工業生産性の観点からリビングラジカル重合法が好ましい。リビングラジカル重合法としては、原子移動ラジカル重合法(ATRP)、可逆的付加-開裂連鎖移動(RAFT)重合法、ニトロキシドを介した重合法(NMP)、有機テルル化合物を介した重合法(TERP)、ヨウ素化合物を介した重合法(IRP)などを用いることができ、反応条件を選択することで末端に官能基を有する重合体が得られる。 As the living polymerization method, a living cationic polymerization method, a living anionic polymerization method, and a living radical polymerization method can be applied, but from the viewpoint of industrial productivity, the living radical polymerization method is preferable. Living radical polymerization methods include atom transfer radical polymerization (ATRP), reversible addition-fragmentation chain transfer (RAFT) polymerization, nitroxide-mediated polymerization (NMP), and organotellurium compound-mediated polymerization (TERP). , an iodine compound-mediated polymerization method (IRP), or the like can be used, and a polymer having terminal functional groups can be obtained by selecting the reaction conditions.
 フリーラジカル重合法としては、例えば、反応容器内に重合性単量体成分および必要に応じてメルカプト基含有化合物(d)を仕込み、重合開始剤を添加し、反応温度40~90℃程度で2~20時間反応させる。前記反応においては、必要に応じて重合溶媒が仕込まれていてもよい。例えば、窒素ガス等の不活性ガス雰囲気下で重合を行う。また、重合反応中に、重合性単量体成分、重合開始剤、連鎖移動剤、重合溶媒を適宜追加添加してもよい。 As a free radical polymerization method, for example, a polymerizable monomer component and, if necessary, a mercapto group-containing compound (d) are charged in a reaction vessel, a polymerization initiator is added, and the reaction temperature is about 40 to 90° C. for 2 hours. Allow to react for ~20 hours. In the reaction, if necessary, a polymerization solvent may be charged. For example, polymerization is performed in an inert gas atmosphere such as nitrogen gas. Moreover, a polymerizable monomer component, a polymerization initiator, a chain transfer agent, and a polymerization solvent may be added as appropriate during the polymerization reaction.
 重合開始剤としては、例えば、アゾ化合物系重合開始剤、過酸化物系重合開始剤、光ラジカル重合開始剤が挙げられる。なお、金属触媒を用いないことがより好ましい。このような重合開始剤を用いて製造された重合体(A)は、重合体(A)中に触媒に由来する金属成分が含まれないため、架橋反応の阻害や着色などを改善することができる。また、金属成分に起因する解重合反応を抑制できることから、各種用途での使用における耐久性に優れた硬化物を提供できる。 Examples of polymerization initiators include azo compound polymerization initiators, peroxide polymerization initiators, and radical photopolymerization initiators. In addition, it is more preferable not to use a metal catalyst. Since the polymer (A) produced using such a polymerization initiator does not contain a metal component derived from the catalyst in the polymer (A), inhibition of the cross-linking reaction and coloration can be improved. can. Moreover, since the depolymerization reaction caused by the metal component can be suppressed, it is possible to provide a cured product having excellent durability in use in various applications.
 アゾ化合物系重合開始剤としては、例えば、2,2'-アゾビスイソブチロニトリル、2,2'-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)、2,2'-アゾビス(2-シクロプロピルプロピオニトリル)、2,2'-アゾビス(2,4-ジメチルバレロニトリル)、2,2'-アゾビス(2-メチルブチロニトリル)、1,1'-アゾビス(シクロヘキサン-1-カルボニトリル)、2-(カルバモイルアゾ)イソブチロニトリル、2-フェニルアゾ-4-メトキシ-2,4-ジメチルバレロニトリル、2,2'-アゾビス(2-アミジノプロパン)ジヒドロクロリド、2,2'-アゾビス(N,N'-ジメチレンイソブチルアミジン)、2,2'-アゾビス[2-メチル-N-(2-ヒドロキシエチル)-プロピオンアミド]、2,2'-アゾビス(イソブチルアミド)ジヒドレート、4,4'-アゾビス(4-シアノペンタン酸)、2,2'-アゾビス(2-シアノプロパノール)、ジメチル-2,2'-アゾビス(2-メチルプロピオネート)、2,2'-アゾビス[2-メチル-N-(2-ヒドロキシエチル)プロピオンアミド]が挙げられる。 Examples of azo compound polymerization initiators include 2,2′-azobisisobutyronitrile, 2,2′-azobis(4-methoxy-2,4-dimethylvaleronitrile), 2,2′-azobis ( 2-cyclopropylpropionitrile), 2,2′-azobis(2,4-dimethylvaleronitrile), 2,2′-azobis(2-methylbutyronitrile), 1,1′-azobis(cyclohexane-1 -carbonitrile), 2-(carbamoylazo)isobutyronitrile, 2-phenylazo-4-methoxy-2,4-dimethylvaleronitrile, 2,2′-azobis(2-amidinopropane) dihydrochloride, 2,2 '-azobis(N,N'-dimethyleneisobutyramidine), 2,2'-azobis[2-methyl-N-(2-hydroxyethyl)-propionamide], 2,2'-azobis(isobutyramide) dihydrate , 4,4′-azobis(4-cyanopentanoic acid), 2,2′-azobis(2-cyanopropanol), dimethyl-2,2′-azobis(2-methylpropionate), 2,2′- azobis[2-methyl-N-(2-hydroxyethyl)propionamide].
 過酸化物系重合開始剤としては、例えば、t-ブチルハイドロパーオキサイド、クメンハイドロオキサイド、ジクミルパーオキサイド、ベンゾイルパーオキシド、ラウロイルパーオキシド、カプロイルパーオキシド、ジ-イソプロピルパーオキシジカーボネート、ジ-2-エチルヘキシルパーオキシジカーボネート、t-ブチルパーオキシビバレート、2,2-ビス(4,4-ジ-t-ブチルパーオキシシクロヘキシル)プロパン、2,2-ビス(4,4-ジ-t-アミルパーオキシシクロヘキシル)プロパン、2,2-ビス(4,4-ジ-t-オクチルパーオキシシクロヘキシル)プロパン、2,2-ビス(4,4-ジ-α-クミルパーオキシシクロヘキシル)プロパン、2,2-ビス(4,4-ジ-t-ブチルパーオキシシクロヘキシル)ブタン、2,2-ビス(4,4-ジ-t-オクチルパーオキシシクロヘキシル)ブタンが挙げられる。 Peroxide-based polymerization initiators include, for example, t-butyl hydroperoxide, cumene hydroxide, dicumyl peroxide, benzoyl peroxide, lauroyl peroxide, caproyl peroxide, di-isopropyl peroxydicarbonate, di -2-ethylhexyl peroxydicarbonate, t-butyl peroxybivalate, 2,2-bis(4,4-di-t-butylperoxycyclohexyl)propane, 2,2-bis(4,4-di- t-amylperoxycyclohexyl)propane, 2,2-bis(4,4-di-t-octylperoxycyclohexyl)propane, 2,2-bis(4,4-di-α-cumylperoxycyclohexyl)propane , 2,2-bis(4,4-di-t-butylperoxycyclohexyl)butane and 2,2-bis(4,4-di-t-octylperoxycyclohexyl)butane.
 光ラジカル重合開始剤としては、光ラジカル重合開始剤として従来用いられている化合物が好ましく、例えば、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインプロピルエーテル等のベンゾイン系開始剤;アセトフェノン、2,2-ジメトキシ-2-フェニルアセトフェノン、2,2-ジエトキシ-2-フェニルアセトフェノン、1,1-ジクロロアセトフェノン、2-ヒドロキシ-2-メチル-1-フェニル-プロパン-1-オン、1-ヒドロキシシクロヘキシルフェニルケトン、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルフォリノ-プロパン-1-オン、N,N-ジメチルアミノアセトフェノン等のアセトフェノン系開始剤;2-メチルアントラキノン、1-クロロアントラキノン、2-アミルアントラキノン等のアントラキノン系開始剤;2,4-ジメチルチオキサントン、2,4-ジエチルチオキサントン、2-クロロチオキサントン、2,4-ジクロロチオキサントン、2-イソプロピルチオキサントン、2,4-ジイソプロピルチオキサントン等のチオキサントン系開始剤;アセトフェノンジメチルケタール、ベンジルメチルケタール等のケタール系開始剤;ベンゾフェノン、メチルベンゾフェノン、4-フェニルベンゾフェノン、2,4,6-トリメチルベンゾフェノン、4,4'-ジクロロベンゾフェノン、4,4'-ビスジエチルアミノベンゾフェノン、ミヒラーズケトン、4-ベンゾイル-4'-メチルジフェニルサルファイド等のベンゾフェノン系開始剤;2,4,6-トリメチルベンゾイルジフェニルホスフィンオキサイド、ビス(2,6-ジメトキシベンゾイル)-2,4,4'-トリメチルペンチルホソフィンオキサイド、ビス(2,4,6-トリメチルベンゾイル)フェニルホスフィンオキサイド等のアシルホスフィンオキサイド系開始剤;1-[4-(フェニルチオ)フェニル]オクタン-1,2-ジオン=2-(O-ベンゾイルオキシム)等のオキシム・エステル系開始剤;カンファーキノン、α-ヒドロキシケトンが挙げられる。 As the photoradical polymerization initiator, compounds conventionally used as photoradical polymerization initiators are preferable. -dimethoxy-2-phenylacetophenone, 2,2-diethoxy-2-phenylacetophenone, 1,1-dichloroacetophenone, 2-hydroxy-2-methyl-1-phenyl-propan-1-one, 1-hydroxycyclohexylphenyl ketone , 2-methyl-1-[4-(methylthio)phenyl]-2-morpholino-propan-1-one, N,N-dimethylaminoacetophenone and other acetophenone initiators; 2-methylanthraquinone, 1-chloroanthraquinone, anthraquinone-based initiators such as 2-amyl anthraquinone; thioxanthone-based initiators; ketal-based initiators such as acetophenone dimethyl ketal and benzyl methyl ketal; benzophenone, methylbenzophenone, 4-phenylbenzophenone, 2,4,6-trimethylbenzophenone, 4,4'-dichlorobenzophenone, 4,4' - benzophenone initiators such as bisdiethylaminobenzophenone, Michler's ketone, 4-benzoyl-4'-methyldiphenylsulfide; 2,4,6-trimethylbenzoyldiphenylphosphine oxide, bis(2,6-dimethoxybenzoyl)-2,4, Acylphosphine oxide initiators such as 4′-trimethylpentylphosphine oxide and bis(2,4,6-trimethylbenzoyl)phenylphosphine oxide; 1-[4-(phenylthio)phenyl]octane-1,2-dione= Oxime ester initiators such as 2-(O-benzoyloxime); camphorquinone and α-hydroxyketone.
 光ラジカル重合開始剤は1種単独で用いてもよく、2種以上を用いてもよい。 The radical photopolymerization initiator may be used singly or in combination of two or more.
 光ラジカル重合開始剤は、増感剤と組み合わせてもよい。増感剤としては、例えば、9,10-ジブトキシアントラセン、9,10-ビス(アシルオキシ)アントラセン等のアントラセン系化合物が好ましい。 The photoradical polymerization initiator may be combined with a sensitizer. Preferred sensitizers are anthracene compounds such as 9,10-dibutoxyanthracene and 9,10-bis(acyloxy)anthracene.
 重合開始剤は1種または2種以上用いることができる。 One or two or more polymerization initiators can be used.
 重合開始剤は、複数回にわたって逐次添加して用いてもよい。 The polymerization initiator may be used by successive addition over multiple times.
 重合開始剤の使用量は、前記重合性単量体成分100質量部に対して、通常は0.001~2質量部、好ましくは0.002~1質量部である。重合開始剤を前記範囲内で使用することにより、重合体(A)の数平均分子量を適切な範囲内に調整することができる。 The amount of polymerization initiator used is usually 0.001 to 2 parts by mass, preferably 0.002 to 1 part by mass, per 100 parts by mass of the polymerizable monomer component. By using the polymerization initiator within the above range, the number average molecular weight of the polymer (A) can be adjusted within an appropriate range.
 重合溶媒としては、有機溶媒が好ましい。有機溶媒としては、例えば、ベンゼン、トルエン、キシレン等の芳香族炭化水素;n-ペンタン、n-ヘキサン、n-ヘプタン、n-オクタン等の脂肪族炭化水素;シクロペンタン、シクロヘキサン、シクロヘプタン、シクロオクタン等の脂環式炭化水素;ジエチルエーテル、ジイソプロピルエーテル、1,2-ジメトキシエタン、ジブチルエーテル、テトラヒドロフラン、ジオキサン、アニソール、フェニルエチルエーテル、ジフェニルエーテル等のエーテル;クロロホルム、四塩化炭素、1,2-ジクロロエタン、クロロベンゼン等のハロゲン化炭化水素;酢酸エチル、酢酸プロピル、酢酸ブチル、プロピオン酸メチル等のエステル;アセトン、アセチルアセトン、メチルエチルケトン、ジエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン;N,N-ジメチルホルムアミド、N,N-ジメチルアセタミド、N-メチルピロリドン等のアミド;アセトニトリル、ベンゾニトリル等のニトリル;ジメチルスルホキシド、スルホラン等のスルホキシドが挙げられる。 An organic solvent is preferable as the polymerization solvent. Examples of organic solvents include aromatic hydrocarbons such as benzene, toluene and xylene; aliphatic hydrocarbons such as n-pentane, n-hexane, n-heptane and n-octane; cyclopentane, cyclohexane, cycloheptane, cyclo Alicyclic hydrocarbons such as octane; ethers such as diethyl ether, diisopropyl ether, 1,2-dimethoxyethane, dibutyl ether, tetrahydrofuran, dioxane, anisole, phenylethyl ether, diphenyl ether; chloroform, carbon tetrachloride, 1,2- Halogenated hydrocarbons such as dichloroethane and chlorobenzene; esters such as ethyl acetate, propyl acetate, butyl acetate and methyl propionate; ketones such as acetone, acetylacetone, methyl ethyl ketone, diethyl ketone, methyl isobutyl ketone and cyclohexanone; N,N-dimethylformamide , N,N-dimethylacetamide and N-methylpyrrolidone; nitriles such as acetonitrile and benzonitrile; sulfoxides such as dimethylsulfoxide and sulfolane.
 重合溶媒は1種または2種以上用いることができる。 One or two or more polymerization solvents can be used.
 <重合体(A)の物性>
 重合体(A)の数平均分子量(Mn)は、重合体の粘度と得られる硬化物の機械的物性の観点から好ましくは1,000以上、より好ましくは3,000以上、さらに好ましくは5,000以上であり、重合体の粘度の観点から好ましくは100,000以下、より好ましくは50,000以下、さらに好ましくは40,000以下である。
<Physical properties of polymer (A)>
The number average molecular weight (Mn) of the polymer (A) is preferably 1,000 or more, more preferably 3,000 or more, and still more preferably 5,000 or more, from the viewpoint of the viscosity of the polymer and the mechanical properties of the resulting cured product. 000 or more, preferably 100,000 or less, more preferably 50,000 or less, still more preferably 40,000 or less from the viewpoint of the viscosity of the polymer.
 数平均分子量(Mn)は、ゲルパーミエーションクロマトグラフィー(GPC)法により測定される。 The number average molecular weight (Mn) is measured by a gel permeation chromatography (GPC) method.
 重合体(A)のガラス転移温度(Tg)は、好ましくは-20℃以下であり、より好ましくは-90~-25℃、さらに好ましくは-80~-30℃である。このような態様であると、低粘度でハンドリング性に優れる観点から好ましい。Tgは、示差走査熱量測定(DSC)により決定する。 The glass transition temperature (Tg) of the polymer (A) is preferably -20°C or lower, more preferably -90 to -25°C, still more preferably -80 to -30°C. Such an aspect is preferable from the viewpoint of low viscosity and excellent handleability. Tg is determined by differential scanning calorimetry (DSC).
 GPCおよびDSCの測定条件の詳細は、後述する実施例欄に記載する。 Details of the measurement conditions for GPC and DSC are described in the Examples section below.
 <重合体(A)の含有量>
 本発明の組成物は1種または2種以上の重合体(A)を含有することができる。
<Content of polymer (A)>
The composition of the invention can contain one or more polymers (A).
 本発明の組成物は、重合体(A)を合計で、5質量%以上含有することが好ましく、8~95質量%含有することがより好ましく、10~90質量%含有することがさらに好ましい。 The total content of the polymer (A) in the composition of the present invention is preferably 5% by mass or more, more preferably 8 to 95% by mass, and even more preferably 10 to 90% by mass.
 [シランカップリング剤(B)]
 本発明の組成物は重合体(A)とともにシランカップリング剤(B)を含有する。
[Silane coupling agent (B)]
The composition of the present invention contains a silane coupling agent (B) together with the polymer (A).
 シランカップリング剤(B)は、本発明の組成物中において脱水剤として作用する。 The silane coupling agent (B) acts as a dehydrating agent in the composition of the present invention.
 重合体(A)が式(1)で表される基を有することで、本発明の組成物は、錫系硬化触媒を用いなくとも硬化が進行する。しかしながら、式(1)で表される基を有する重合体(A)のみでは反応性が高く、空気中の水分でも反応が進行することから、硬化性組成物中に式(2)で表されるシランカップリング剤(B)を含めることにより重合体(A)の反応が抑制され、優れた貯蔵安定性を有し長期貯蔵後においても優れた接着性を有する硬化性組成物が得られる。 By having the group represented by formula (1) in the polymer (A), the composition of the present invention is cured without using a tin-based curing catalyst. However, the polymer (A) having a group represented by formula (1) alone has high reactivity, and the reaction proceeds even with moisture in the air. By containing the silane coupling agent (B), the reaction of the polymer (A) is suppressed, and a curable composition having excellent storage stability and excellent adhesiveness even after long-term storage can be obtained.
 シランカップリング剤(B)の脱水効果は、式(1)で表される基を有する重合体(A)と式(2)で表される基を有する(B)との組み合わせによって効果を発現する。 The dehydration effect of the silane coupling agent (B) is exhibited by the combination of the polymer (A) having the group represented by the formula (1) and the (B) having the group represented by the formula (2). do.
 シランカップリング剤(B)は、式(2)で表される。 The silane coupling agent (B) is represented by formula (2).
 式(2):Y-CH2-SiR1 3
 式(2)中、R1は式(1)と同義であり;Yは、(メタ)アクリロイル基、炭素数1~20のアルコキシ基、メルカプト基、またはイソシアネート基である。
Formula (2): Y CH 2 —SiR 13
In formula (2), R 1 has the same definition as in formula (1); Y is a (meth)acryloyl group, an alkoxy group having 1 to 20 carbon atoms, a mercapto group, or an isocyanate group.
 炭素数1~20のアルコキシ基および-SiR1 3で表される基としては、重合体(A)の欄で記載と同様の基が挙げられる。 Examples of the alkoxy group having 1 to 20 carbon atoms and the group represented by -SiR 13 include the same groups as those described in the column of the polymer (A).
 シランカップリング剤(B)において、前記Yが(メタ)アクリロイル基であるシランカップリング剤としては、例えば、(メタ)アクリロキシメチルジメチルメトキシシラン、(メタ)アクリロキシメチルジメチルエトキシシラン、((メタ)アクリロキシメチル)メチルジメトキシシラン、((メタ)アクリロキシメチル)メチルジエトキシシラン、(メタ)アクリロキシメチルトリメトキシシラン、(メタ)アクリロキシメチルトリエトキシシラン等が挙げられる。 Examples of the silane coupling agent (B) in which Y is a (meth)acryloyl group include (meth)acryloxymethyldimethylmethoxysilane, (meth)acryloxymethyldimethylethoxysilane, (( meth)acryloxymethyl)methyldimethoxysilane, ((meth)acryloxymethyl)methyldiethoxysilane, (meth)acryloxymethyltrimethoxysilane, (meth)acryloxymethyltriethoxysilane and the like.
 シランカップリング剤(B)において、前記Yが炭素数1~20のアルコキシ基であるシランカップリング剤としては、例えば、メトキシメチルトリメトキシシラン、エトキシメチルトリメトキシシラン、n-プロピルオキシメチルトリメトキシシラン、イソプロピルオキシメチルトリメトキシシラン、n-ブチルオキシメチルトリメトキシシラン、イソブチルオキシメチルトリメトキシシラン、n-ペンチルオキシメチルトリメトキシシラン、イソペンチルオキシメチルトリメトキシシラン、ネオペンチルオキシメチルトリメトキシシラン、n-ヘキシルオキシメチルトリメトキシシラン、1-メチルペンチルオキシメチルトリメトキシシラン、4-メチル-2-ペンチルオキシメチルトリメトキシシラン、3,3-ジメチルブチルオキシメチルトリメトキシシラン、2-エチルブチルオキシメチルトリメトキシシラン、n-ヘプチルオキシメチルトリメトキシシラン、1-メチルヘキシルオキシメチルトリメトキシシラン、n-オクチルオキシメチルトリメトキシシラン、イソオクチルオキシメチルトリメトキシシラン、1-メチルヘプチルオキシメチルトリメトキシシラン、2-エチルヘキシルオキシメチルトリメトキシシラン、2-プロピルペンチルオキシメチルトリメトキシシラン、n-ノニルオキシメチルトリメトキシシラン、2,2-ジメチルヘプチルオキシメチルトリメトキシシラン、2,6-ジメチル-4-ヘプチルオキシメチルトリメトキシシラン、3,5,5-トリメチルヘキシルオキシメチルトリメトキシシラン、n-デシルオキシメチルトリメトキシシラン、n-ウンデシルオキシメチルトリメトキシシラン、1-メチルデシルオキシメチルトリメトキシシラン、n-ドデシルオキシメチルトリメトキシシラン、n-トリデシルオキシメチルトリメトキシシラン、1-ヘキシルヘプチルオキシメチルトリメトキシシラン、n-テトラデシルオキシメチルトリメトキシシラン、n-ペンタデシルオキシメチルトリメトキシシラン、n-ヘキサデシルオキシメチルトリメトキシシラン、n-ヘプタデシルオキシメチルトリメトキシシラン、n-オクタデシルオキシメチルトリメトキシシラン、n-エイコシルオキシメチルトリメトキシシラン、これらのトリメトキシシリル基がそれぞれジメチルメトキシシリル基、ジメチルエトキシシリル基、メチルジメトキシシリル基、メチルジエトキシシリル基、トリエトキシシリル基、ジメチルイソプロポキシシリル基、メチルジイソプロポキシシリル基、トリイソプロポキシシリル基等に置換された化合物が挙げられる。これらの中でも、メトキシメチルトリメトキシシラン、エトキシメチルトリメトキシシラン、n-プロピルオキシメチルトリメトキシシラン、イソプロピルオキシメチルトリメトキシシラン、n-ブチルオキシメチルトリメトキシシラン、イソブチルオキシメチルトリメトキシシランが好ましい。 Examples of the silane coupling agent (B) in which Y is an alkoxy group having 1 to 20 carbon atoms include methoxymethyltrimethoxysilane, ethoxymethyltrimethoxysilane, and n-propyloxymethyltrimethoxysilane. silane, isopropyloxymethyltrimethoxysilane, n-butyloxymethyltrimethoxysilane, isobutyloxymethyltrimethoxysilane, n-pentyloxymethyltrimethoxysilane, isopentyloxymethyltrimethoxysilane, neopentyloxymethyltrimethoxysilane, n-hexyloxymethyltrimethoxysilane, 1-methylpentyloxymethyltrimethoxysilane, 4-methyl-2-pentyloxymethyltrimethoxysilane, 3,3-dimethylbutyloxymethyltrimethoxysilane, 2-ethylbutyloxymethyl trimethoxysilane, n-heptyloxymethyltrimethoxysilane, 1-methylhexyloxymethyltrimethoxysilane, n-octyloxymethyltrimethoxysilane, isooctyloxymethyltrimethoxysilane, 1-methylheptyloxymethyltrimethoxysilane, 2-ethylhexyloxymethyltrimethoxysilane, 2-propylpentyloxymethyltrimethoxysilane, n-nonyloxymethyltrimethoxysilane, 2,2-dimethylheptyloxymethyltrimethoxysilane, 2,6-dimethyl-4-heptyloxy methyltrimethoxysilane, 3,5,5-trimethylhexyloxymethyltrimethoxysilane, n-decyloxymethyltrimethoxysilane, n-undecyloxymethyltrimethoxysilane, 1-methyldecyloxymethyltrimethoxysilane, n- dodecyloxymethyltrimethoxysilane, n-tridecyloxymethyltrimethoxysilane, 1-hexylheptyloxymethyltrimethoxysilane, n-tetradecyloxymethyltrimethoxysilane, n-pentadecyloxymethyltrimethoxysilane, n-hexa Decyloxymethyltrimethoxysilane, n-heptadecyloxymethyltrimethoxysilane, n-octadecyloxymethyltrimethoxysilane, n-eicosyloxymethyltrimethoxysilane, these trimethoxysilyl groups are dimethylmethoxysilyl group and dimethyl ethoxysilyl group, methyldimethoxysilyl group, methyldiethoxysilyl group group, triethoxysilyl group, dimethylisopropoxysilyl group, methyldiisopropoxysilyl group, triisopropoxysilyl group, and the like. Among these, methoxymethyltrimethoxysilane, ethoxymethyltrimethoxysilane, n-propyloxymethyltrimethoxysilane, isopropyloxymethyltrimethoxysilane, n-butyloxymethyltrimethoxysilane and isobutyloxymethyltrimethoxysilane are preferred.
 シランカップリング剤(B)において、前記Yがメルカプト基であるシランカップリング剤としては、例えば、メルカプトメチルジメチルメトキシシラン、メルカプトメチルジメチルエトキシシラン、メルカプトメチルジメチルイソプロポキシシシラン、メルカプトメチルメチルジメトキシシラン、メルカプトメチルメチルジエトキシシラン、メルカプトメチルメチルジイソプロポキシシシラン、メルカプトメチルトリメトキシシラン、メルカプトメチルトリエトキシシラン、メルカプトメチルトリイソプロポキシシシランが挙げられる。これらの中でも、メルカプトメチルジメチルメトキシシラン、メルカプトメチルメチルジメトキシシラン、メルカプトメチルトリメトキシシラン、メルカプトメチルトリエトキシシランが好ましい。 Examples of the silane coupling agent (B) in which Y is a mercapto group include mercaptomethyldimethylmethoxysilane, mercaptomethyldimethylethoxysilane, mercaptomethyldimethylisopropoxysilane, and mercaptomethylmethyldimethoxysilane. , mercaptomethylmethyldiethoxysilane, mercaptomethylmethyldiisopropoxysilane, mercaptomethyltrimethoxysilane, mercaptomethyltriethoxysilane, mercaptomethyltriisopropoxysilane. Among these, mercaptomethyldimethylmethoxysilane, mercaptomethylmethyldimethoxysilane, mercaptomethyltrimethoxysilane, and mercaptomethyltriethoxysilane are preferred.
 シランカップリング剤(B)において、前記Yがイソシアネート基であるシランカップリング剤としては、例えば、1-イソシアネートメチルジメチルメトキシシラン、1-イソシアネートメチルジメチルエトキシシラン、1-イソシアネートメチルジメチルイソプロポキシシラン、(1-イソシアネートメチル)メチルジメトキシシラン、(1-イソシアネートメチル)メチルジエトキシシラン、(1-イソシアネートメチル)メチルジイソプロポキシシラン、1-イソシアネートメチルトリメトキシシラン、1-イソシアネートメチルトリエトキシシラン、1-イソシアネートメチルトリイソプロポキシシランが挙げられる。これらの中でも、1-イソシアネートメチルジメチルメトキシシラン、(1-イソシアネートメチル)メチルジメトキシシラン、1-イソシアネートメチルトリメトキシシラン、1-イソシアネートメチルトリエトキシシランが好ましい。 Examples of the silane coupling agent (B) in which Y is an isocyanate group include 1-isocyanatomethyldimethylmethoxysilane, 1-isocyanatomethyldimethylethoxysilane, 1-isocyanatomethyldimethylisopropoxysilane, (1-isocyanatomethyl)methyldimethoxysilane, (1-isocyanatomethyl)methyldiethoxysilane, (1-isocyanatomethyl)methyldiisopropoxysilane, 1-isocyanatomethyltrimethoxysilane, 1-isocyanatomethyltriethoxysilane, 1 -isocyanatomethyltriisopropoxysilane. Among these, 1-isocyanatomethyldimethylmethoxysilane, (1-isocyanatomethyl)methyldimethoxysilane, 1-isocyanatomethyltrimethoxysilane, and 1-isocyanatomethyltriethoxysilane are preferred.
 なお、重合体(A)を製造する際にモノマー(a2)および/またはメルカプト化合物(d)を用いる場合、シランカップリング剤(B)はモノマー(a2)および/またはメルカプト化合物(d)と同一であっても異なっていてもよい。 When the monomer (a2) and/or the mercapto compound (d) are used to produce the polymer (A), the silane coupling agent (B) is the same as the monomer (a2) and/or the mercapto compound (d). may be different.
 <シランカップリング剤(B)の物性>
 シランカップリング剤(B)の分子量としては、下限値が、好ましくは80以上、より好ましくは100以上、さらに好ましくは120以上であり、上限値が、1,000未満、好ましくは750以下、より好ましくは500以下である。
<Physical properties of silane coupling agent (B)>
As the molecular weight of the silane coupling agent (B), the lower limit is preferably 80 or more, more preferably 100 or more, still more preferably 120 or more, and the upper limit is less than 1,000, preferably 750 or less, or more. Preferably it is 500 or less.
 <シランカップリング剤(B)の含有量>
 本発明の組成物は1種または2種以上のシランカップリング剤(B)を含有することができる。
<Content of silane coupling agent (B)>
The composition of the present invention can contain one or more silane coupling agents (B).
 本発明の組成物は、重合体(A)100質量部に対して、シランカップリング剤(B)を合計で、好ましくは0.1~20質量部、より好ましくは0.5~15質量部、さらに好ましくは1~10質量部含む。シランカップリング剤(B)の含有量が上記範囲内であると、貯蔵安定性に優れ、長期貯蔵後においても優れた接着性を有する硬化性組成物が得られる。 In the composition of the present invention, the total amount of the silane coupling agent (B) is preferably 0.1 to 20 parts by mass, more preferably 0.5 to 15 parts by mass, based on 100 parts by mass of the polymer (A). , more preferably 1 to 10 parts by mass. When the content of the silane coupling agent (B) is within the above range, a curable composition having excellent storage stability and excellent adhesiveness even after long-term storage can be obtained.
 [アミノシラン化合物(C)]
 本発明の組成物は、重合体(A)とシランカップリング剤(B)とともに、アミノシラン化合物(C)を含有することが好ましい。
[Aminosilane compound (C)]
The composition of the present invention preferably contains an aminosilane compound (C) together with the polymer (A) and the silane coupling agent (B).
 アミノシラン化合物(C)は、本発明の組成物中において硬化触媒および脱水剤として作用する。 The aminosilane compound (C) acts as a curing catalyst and dehydrating agent in the composition of the present invention.
 アミノシラン化合物(C)は、下記式(3)で表される基を有する。 The aminosilane compound (C) has a group represented by the following formula (3).
 式(3):R4 2-N-(CH2n-SiR1 3
 [式(3)中、nは1~6の整数であり;R1は式(1)と同義であり;R4はそれぞれ独立に水素原子、炭素数1~20の炭化水素基、または前記炭化水素基の少なくとも一つの水素原子が、無置換アミノ基、置換アミノ基およびアルコキシシリル基からなる群より選ばれる基で置換された基である。]
 式(3)で表されるアミノシラン化合物(C)としては、例えば、N-(2-アミノエチル)アミノメチルトリメトキシシラン、N-(2-アミノエチル)-2-アミノエチルトリメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン、アミノメチルトリメトキシシラン、2-アミノエチルトリメトキシシラン、3-アミノプロピルトリメトキシシラン、アミノメチルトリエトキシシラン、2-アミノエチルトリエトキシシラン、3-アミノプロピルトリエトキシシラン、N-[2-(N,N-ジメチルアミノ)エチル]アミノメチルトリメトキシシラン、N-フェニル-3-アミノプロピルトリメトキシシラン、N-シクロヘキシル-3-アミノプロピルメチルジメトキシシラン、N-[2-(N-ビニルベンジルアミノ)エチル]-3-アミノプロピルトリメトキシシラン、ビス[3-(トリメトキシシリル)プロピル]アミン、3-[2-(2-アミノエチルアミノ)エチルアミノ]プロピルトリメトキシシラン、N-[3-(トリメトキシシリル)プロピル]-1-ブタンアミンが挙げられる。
Formula ( 3 ): R 42 --N--(CH 2 ) n --SiR 13
[In formula (3), n is an integer of 1 to 6; R 1 has the same meaning as in formula (1); R 4 is each independently a hydrogen atom, a hydrocarbon group having 1 to 20 carbon atoms, or A group in which at least one hydrogen atom of a hydrocarbon group is substituted with a group selected from the group consisting of an unsubstituted amino group, a substituted amino group and an alkoxysilyl group. ]
Examples of the aminosilane compound (C) represented by formula (3) include N-(2-aminoethyl)aminomethyltrimethoxysilane, N-(2-aminoethyl)-2-aminoethyltrimethoxysilane, N -(2-aminoethyl)-3-aminopropyltrimethoxysilane, aminomethyltrimethoxysilane, 2-aminoethyltrimethoxysilane, 3-aminopropyltrimethoxysilane, aminomethyltriethoxysilane, 2-aminoethyltriethoxy Silane, 3-aminopropyltriethoxysilane, N-[2-(N,N-dimethylamino)ethyl]aminomethyltrimethoxysilane, N-phenyl-3-aminopropyltrimethoxysilane, N-cyclohexyl-3-amino Propylmethyldimethoxysilane, N-[2-(N-vinylbenzylamino)ethyl]-3-aminopropyltrimethoxysilane, bis[3-(trimethoxysilyl)propyl]amine, 3-[2-(2-amino) Ethylamino)ethylamino]propyltrimethoxysilane, N-[3-(trimethoxysilyl)propyl]-1-butanamine.
 前記アミノシラン化合物(C)の中でも、本発明の組成物のタックフリータイムが向上するという観点から、下記式(3-1)で表されるアミノシラン化合物を用いることが好ましい。 Among the aminosilane compounds (C), it is preferable to use an aminosilane compound represented by the following formula (3-1) from the viewpoint of improving the tack-free time of the composition of the present invention.
 式(3-1):R4'-NH-(CH2n'-SiR1' 3
 式(3-1)中、n'は1~3の整数であり;R1'は炭素数1~6のアルコキシ基であり;R4は水素原子、炭素数1~10の炭化水素基、または前記炭化水素基の少なくとも一つの水素原子が、無置換アミノ基、置換アミノ基およびアルコキシシリル基からなる群より選ばれる少なくとも1つの基で置換された基である。
Formula (3-1): R4' - NH-( CH2 ) n' - SiR1'3
In formula (3-1), n' is an integer of 1 to 3; R 1' is an alkoxy group having 1 to 6 carbon atoms; R 4 is a hydrogen atom, a hydrocarbon group having 1 to 10 carbon atoms, Alternatively, at least one hydrogen atom of the hydrocarbon group is substituted with at least one group selected from the group consisting of unsubstituted amino groups, substituted amino groups and alkoxysilyl groups.
 アミノシラン化合物(C)は1種または2種以上用いることができる。 One or two or more aminosilane compounds (C) can be used.
 本発明の組成物は、重合体(A)100質量部に対して、アミノシラン化合物(C)を合計で、好ましくは0.05~10質量部、より好ましくは0.1~8質量部、さらに好ましくは0.5~5質量部含む。アミノシラン化合物(C)の含有量が上記範囲内であると、貯蔵安定性に優れ、長期貯蔵後においても優れた接着性を有する硬化性組成物が得られる。 The composition of the present invention is preferably 0.05 to 10 parts by mass, more preferably 0.1 to 8 parts by mass, and further the aminosilane compound (C) in total with respect to 100 parts by mass of the polymer (A). It preferably contains 0.5 to 5 parts by mass. When the content of the aminosilane compound (C) is within the above range, a curable composition having excellent storage stability and excellent adhesiveness even after long-term storage can be obtained.
 [他の成分]
 本発明の組成物は、重合体(A)の他に、必要に応じて、ポリエーテル骨格を有する重合体(D)、可塑剤、充填剤、シリカ、顔料、老化防止剤、脱水剤、アミノ基を有するシランカップリング剤、硬化触媒、粘着付与樹脂、分散剤、レオロジーコントロール剤、消泡剤、密着性付与剤等の他の成分を1種または2種以上含有することができる。
[Other ingredients]
The composition of the present invention contains, in addition to the polymer (A), if necessary, a polymer (D) having a polyether skeleton, a plasticizer, a filler, silica, a pigment, an antioxidant, a dehydrating agent, an amino Other components such as silane coupling agents having groups, curing catalysts, tackifying resins, dispersants, rheology control agents, antifoaming agents, and adhesion-imparting agents can be contained alone or in combination of two or more.
 <重合体(D)>
 本発明の組成物は、重合体(A)の他に、必要に応じて、ポリエーテル骨格を有する重合体を含有することができる。重合体(D)は、反応性ケイ素基を有していることが好ましく、特に前記式(1)で表される基を有していることが好ましい。
<Polymer (D)>
The composition of the present invention may optionally contain a polymer having a polyether skeleton in addition to the polymer (A). The polymer (D) preferably has a reactive silicon group, and more preferably has a group represented by the above formula (1).
 重合体(D)は主鎖骨格としてポリエーテル骨格を有する。ポリエーテル骨格は、好ましくは、ポリオキシアルキレン骨格であり、例えば、ポリオキシエチレン骨格、ポリオキシプロピレン骨格、ポリオキシブチレン骨格、ポリオキシテトラメチレン骨格、ポリオキシエチレン-ポリオキシプロピレン骨格、ポリオキシプロピレン-ポリオキシブチレン骨格が挙げられ、ポリオキシプロピレン骨格が好ましい。ポリオキシアルキレン骨格は、1種のみの繰返し単位からなっていてもよいし、2種以上の繰返し単位からなっていてもよい。ここでの繰返し単位は、オキシアルキレン単位である。重合体(D)は、ポリエーテル骨格間に、ウレタン骨格を有していてもよい。 The polymer (D) has a polyether skeleton as its main chain skeleton. The polyether skeleton is preferably a polyoxyalkylene skeleton, such as a polyoxyethylene skeleton, a polyoxypropylene skeleton, a polyoxybutylene skeleton, a polyoxytetramethylene skeleton, a polyoxyethylene-polyoxypropylene skeleton, and a polyoxypropylene skeleton. - A polyoxybutylene skeleton is mentioned, and a polyoxypropylene skeleton is preferred. The polyoxyalkylene skeleton may consist of only one kind of repeating unit, or may consist of two or more kinds of repeating units. The repeating units here are oxyalkylene units. Polymer (D) may have a urethane skeleton between polyether skeletons.
 重合体(D)の数平均分子量(Mn)は、好ましくは10,000~50,000である。数平均分子量(Mn)がこのような条件を満たすと、重合体(A)との相溶性や硬化性組成物のハンドリング性、機械的物性に優れる点から好ましい。数平均分子量(Mn)は、GPC法により測定される。 The number average molecular weight (Mn) of the polymer (D) is preferably 10,000 to 50,000. When the number average molecular weight (Mn) satisfies such conditions, it is preferable from the viewpoint of compatibility with the polymer (A), handling properties of the curable composition, and mechanical properties. Number average molecular weight (Mn) is measured by the GPC method.
 GPCの測定条件の詳細は、後述する実施例欄に記載する。 The details of the GPC measurement conditions are described in the Examples section below.
 重合体(A)とともに重合体(D)を用いることにより、機械的物性に優れた硬化性組成物が得られる。 By using the polymer (D) together with the polymer (A), a curable composition with excellent mechanical properties can be obtained.
 なお、重合体(D)を用いる場合に、重合体(A)における式(1)で表される基と、重合体(D)における式(1)で表される基とは、同一であっても異なっていてもよい。 When the polymer (D) is used, the group represented by the formula (1) in the polymer (A) and the group represented by the formula (1) in the polymer (D) are the same. may be different.
 重合体(D)は、一実施態様において、重合体の分子鎖末端に式(1)で表される基を有することが好ましく、ポリエーテル重合体の分子鎖末端に式(1)で表される基を有することがより好ましい。 In one embodiment, the polymer (D) preferably has a group represented by formula (1) at the molecular chain end of the polymer, and represented by formula (1) at the molecular chain end of the polyether polymer. It is more preferable to have a group with
 重合体(D)は、例えば、ポリエーテル重合体の末端水酸基と、OCN-CH2-SiR1 3で表される前記化合物(e-1)(R1は、式(1)中の同一記号と同義である)のイソシアネート基とを反応させることで得ることができる。 The polymer (D) is, for example, a terminal hydroxyl group of a polyether polymer and the compound (e- 1 ) represented by OCN--CH 2 --SiR 13 (R 1 is the same symbol in formula (1) is synonymous with) can be obtained by reacting with an isocyanate group.
 重合体(D)は、また、ポリエーテル重合体から、末端にイソシアネート基を有するポリエーテル重合体を得て、当該重合体の末端イソシアネート基と、R4-CH2-SiR1 3(R1は、式(1)中で説明した同一記号と同義)で表される前記化合物(e-2)のうち、R4としてアミノ基、アルキルアミノ基、(アミノアルキル)アミノ基、または(N,N-ジアルキルアミノアルキル)アミノ基のアミノ基とを反応させることで得ることもできる。末端イソシアネート基を有するポリエーテル重合体は、例えば、末端水酸基を有するポリエーテル重合体と、ジイソシアネート化合物とのウレタン反応により得ることができる。このようなポリエーテル重合体は、ポリエーテル骨格間にウレタン骨格を有する。 The polymer (D) is also obtained by obtaining a polyether polymer having terminal isocyanate groups from a polyether polymer, and combining the terminal isocyanate groups of the polymer with R 4 —CH 2 —SiR 13 (R 1 is synonymous with the same symbol as explained in formula (1)), wherein R 4 is an amino group, an alkylamino group, a (aminoalkyl)amino group, or (N, It can also be obtained by reacting an N-dialkylaminoalkyl)amino group with an amino group. A polyether polymer having a terminal isocyanate group can be obtained, for example, by a urethane reaction between a polyether polymer having a terminal hydroxyl group and a diisocyanate compound. Such polyether polymers have urethane skeletons between polyether skeletons.
 重合体(D)は、また、ポリエーテル重合体から、末端にアミノ基を有するポリエーテル重合体を得て、当該重合体の末端アミノ基と、前記化合物(e-1)のイソシアネート基とを反応させることで得ることもできる。 The polymer (D) is obtained by obtaining a polyether polymer having an amino group at the terminal from the polyether polymer, and combining the terminal amino group of the polymer with the isocyanate group of the compound (e-1). It can also be obtained by reacting.
 前記ジイソシアネート化合物としては、例えば、
 エチレンジイソシアネート、テトラメチレンジイソシアネート、ペンタメチレンジイソシアネート、ヘキサメチレンジイソシアネート、2-メチル-1,5-ペンタンジイソシアネート、3-メチル-1,5-ペンタンジイソシアネート、2,2,4-トリメチル-1,6-ヘキサメチレンジイソシアネート等の炭素数4~30の脂肪族ジイソシアネート;
 イソホロンジイソシアネート、シクロペンチルジイソシアネート、シクロヘキシルジイソシアネート、水素添加キシリレンジイソシアネート、水素添加トリレンジイソシアネート、水素添加ジフェニルメタンジイソシアネート、水素添加テトラメチルキシリレンジイソシアネート等の炭素数7~30の脂環族ジイソシアネート;
 フェニレンジイソシアネート、トリレンジイソシアネート、キシリレンジイソシアネート、ナフチレンジイソシアネート、ジフェニルエーテルジイソシアネート、ジフェニルメタンジイソシアネート、ジフェニルプロパンジイソシアネート等の炭素数8~30の芳香族ジイソシアネート;が挙げられる。
Examples of the diisocyanate compound include
Ethylene diisocyanate, tetramethylene diisocyanate, pentamethylene diisocyanate, hexamethylene diisocyanate, 2-methyl-1,5-pentane diisocyanate, 3-methyl-1,5-pentane diisocyanate, 2,2,4-trimethyl-1,6-hexa Aliphatic diisocyanates having 4 to 30 carbon atoms such as methylene diisocyanate;
Alicyclic diisocyanates having 7 to 30 carbon atoms such as isophorone diisocyanate, cyclopentyl diisocyanate, cyclohexyl diisocyanate, hydrogenated xylylene diisocyanate, hydrogenated tolylene diisocyanate, hydrogenated diphenylmethane diisocyanate, hydrogenated tetramethylxylylene diisocyanate;
aromatic diisocyanates having 8 to 30 carbon atoms such as phenylene diisocyanate, tolylene diisocyanate, xylylene diisocyanate, naphthylene diisocyanate, diphenylether diisocyanate, diphenylmethane diisocyanate, and diphenylpropane diisocyanate;
 本発明の組成物は1種または2種以上の重合体(D)を含有することができる。 The composition of the present invention can contain one or more polymers (D).
 本発明の組成物中における重合体(D)の含有量は、重合体(A)100質量部に対して、好ましくは10~900質量部、より好ましくは20~800質量部である。このような態様であると、機械的物性に優れた硬化物が得られる観点から好ましい。 The content of polymer (D) in the composition of the present invention is preferably 10 to 900 parts by mass, more preferably 20 to 800 parts by mass, based on 100 parts by mass of polymer (A). Such an aspect is preferable from the viewpoint of obtaining a cured product having excellent mechanical properties.
 <可塑剤>
 本発明の組成物は、可塑剤をさらに含有することができる。可塑剤を用いることにより、硬化性組成物から形成された硬化物の柔軟性および伸び性を向上させることができる。
<Plasticizer>
The compositions of the invention can further contain a plasticizer. By using a plasticizer, the flexibility and elongation of the cured product formed from the curable composition can be improved.
 可塑剤としては、例えば、フタル酸ジメチル、フタル酸ジエチル、フタル酸ジブチル、フタル酸ジイソブチル、フタル酸ジオクチル、フタル酸ジイソデシル、フタル酸ブチルベンジル、フタル酸ジイソノニル等のフタル酸エステル類;1,2-シクロヘキサンジカルボン酸ジイソノニルエステル、トリメリット酸トリオクチル等の非フタル酸エステル類;アジピン酸ジオクチル、コハク酸ジイソデシル、セバシン酸ジブチル、オレイン酸ブチル等の脂肪族カルボン酸エステル;ジエチレングリコールジベンゾエート、トリエチレングリコールジベンゾエート、ペンタエリスリトールエステル等のアルコールエステル類;リン酸トリオクチル、リン酸トリクレジル等のリン酸エステル類;エポキシ化大豆油、4,5-エポキシヘキサヒドロフタル酸ジオクチル、エポキシステアリン酸ベンジル等のエポキシ可塑剤;塩素化パラフィン;ノルマルパラフィン、イソパラフィン等の炭化水素;アルカン(C=10~21)スルホン酸フェニルエステル等のアルキルスルホン酸フェニルエステル;ポリエチレングリコールやその誘導体、ポリプロピレングリコールやその誘導体、例えばポリエチレングリコールまたはポリプロピレングリコールの水酸基をアルキルエーテルで封止したようなポリエーテル類、ポリ-α-メチルスチレン、ポリスチレン等のポリスチレンのオリゴマー類、ポリブタジエン、ブタジエン-アクリロニトリル共重合体、ポリクロロプレン、ポリイソプレン、ポリブテン、水添ポリブテン、エポキシ化ポリブタジエン等のオリゴマー類、重合体(A)以外の(メタ)アクリル重合体等の高分子可塑剤が挙げられる。 Examples of plasticizers include phthalates such as dimethyl phthalate, diethyl phthalate, dibutyl phthalate, diisobutyl phthalate, dioctyl phthalate, diisodecyl phthalate, benzyl butyl phthalate, and diisononyl phthalate; Non-phthalates such as diisononyl cyclohexanedicarboxylate and trioctyl trimellitate; aliphatic carboxylic acid esters such as dioctyl adipate, diisodecyl succinate, dibutyl sebacate and butyl oleate; diethylene glycol dibenzoate and triethylene glycol dibenzoate , alcohol esters such as pentaerythritol esters; phosphate esters such as trioctyl phosphate and tricresyl phosphate; epoxy plasticizers such as epoxidized soybean oil, dioctyl 4,5-epoxyhexahydrophthalate, and benzyl epoxystearate; Chlorinated paraffin; Hydrocarbons such as normal paraffin and isoparaffin; Alkane (C=10-21) alkylsulfonic acid phenyl ester such as phenyl sulfonate; polyethylene glycol and its derivatives, polypropylene glycol and its derivatives such as polyethylene glycol or polypropylene Polyethers such as glycol hydroxyl groups capped with alkyl ether, poly-α-methylstyrene, polystyrene oligomers such as polystyrene, polybutadiene, butadiene-acrylonitrile copolymer, polychloroprene, polyisoprene, polybutene, hydrogenation Oligomers such as polybutene and epoxidized polybutadiene, and polymer plasticizers such as (meth)acrylic polymers other than the polymer (A) can be used.
 可塑剤は1種または2種以上用いることができる。 One or more plasticizers can be used.
 一実施態様において、本発明の組成物中における可塑剤の含有量は、硬化性組成物の塗工性、硬化物の耐候性の観点から、重合体成分100質量部に対して、好ましくは10~400質量部、より好ましくは50~300質量部である。 In one embodiment, the content of the plasticizer in the composition of the present invention is preferably 10 parts per 100 parts by mass of the polymer component from the viewpoint of the coatability of the curable composition and the weather resistance of the cured product. It is up to 400 parts by mass, more preferably 50 to 300 parts by mass.
 <充填剤>
 本発明の組成物は、充填剤をさらに含有することができる。
<Filler>
The compositions of the invention can further contain fillers.
 充填剤としては、例えば、重質炭酸カルシウム、軽質炭酸カルシウム、膠質炭酸カルシウム、半膠質炭酸カルシウム、軽微性炭酸カルシウム、およびこれらの炭酸カルシウムの表面を脂肪酸や樹脂酸系有機物で表面処理したもの等の炭酸カルシウム;カーボンブラック;炭酸マグネシウム;ケイソウ土;焼成クレー;クレー;タルク;酸化チタン;ベントナイト;酸化第二鉄;酸化亜鉛;活性亜鉛華;水酸化アルミニウム;シラスバルーン、パーライト、ガラスバルーン、フライアッシュバルーン、アルミナバルーン、ジルコニアバルーン、カーボンバルーン等の無機中空体;フェノール樹脂バルーン、エポキシ樹脂バルーン、尿素樹脂バルーン、ポリ塩化ビニリデン樹脂バルーン、ポリ塩化ビニリデン-(メタ)アクリル樹脂バルーン、ポリスチレンバルーン、ポリメタクリレートバルーン、ポリビニルアルコールバルーン、スチレン-(メタ)アクリル系樹脂バルーン、ポリアクリロニトリルバルーン等の有機樹脂中空体(プラスチックバルーン);樹脂ビーズ、木粉、パルプ、木綿チップ、マイカ、くるみ穀粉、もみ穀粉、グラファイト、アルミニウム微粉末、フリント粉末等の粉体状充填剤;ガラス繊維、ガラスフィラメント、炭素繊維、ケブラー繊維、ポリエチレンファイバー等の繊維状充填剤が挙げられる。これらの中でも、分散性の観点から脂肪酸などで表面処理された炭酸カルシウムが好ましく、比重低減や断熱性付与の観点からシラスバルーン、ガラスバルーン、ポリスチレンバルーン、アクリル樹脂バルーンが好ましい。 Fillers include, for example, heavy calcium carbonate, light calcium carbonate, colloidal calcium carbonate, semi-colloidal calcium carbonate, slight calcium carbonate, and those obtained by surface-treating the surface of these calcium carbonates with fatty acids or resin acid-based organic substances. Calcined clay; Talc; Titanium oxide; Bentonite; Ferric oxide; Zinc oxide; Inorganic hollow bodies such as ash balloons, alumina balloons, zirconia balloons, carbon balloons; Organic resin hollow bodies (plastic balloons) such as methacrylate balloons, polyvinyl alcohol balloons, styrene-(meth)acrylic resin balloons, polyacrylonitrile balloons; resin beads, wood flour, pulp, cotton chips, mica, walnut flour, rice flour, powdery fillers such as graphite, fine aluminum powder and flint powder; and fibrous fillers such as glass fiber, glass filament, carbon fiber, Kevlar fiber and polyethylene fiber. Among these, calcium carbonate surface-treated with a fatty acid or the like is preferable from the viewpoint of dispersibility, and shirasu balloons, glass balloons, polystyrene balloons, and acrylic resin balloons are preferable from the viewpoint of reducing specific gravity and imparting heat insulating properties.
 充填剤は1種または2種以上用いることができる。 One or more fillers can be used.
 本発明の組成物中における充填剤の含有量は、重合体(A)100質量部に対して、好ましくは0.1~1,000質量部、より好ましくは0.2~500質量部である。本発明では、充填剤の分散性に優れた硬化性組成物を得ることができる。 The content of the filler in the composition of the present invention is preferably 0.1 to 1,000 parts by mass, more preferably 0.2 to 500 parts by mass, relative to 100 parts by mass of the polymer (A). . In the present invention, a curable composition having excellent filler dispersibility can be obtained.
 <シリカ>
 本発明の組成物は、シリカをさらに含有することができる。シリカを用いることによって、硬化性組成物の塗工性が向上し、優れた耐候性および伸び性を有する硬化物を得ることができる。
<Silica>
The composition of the invention can further contain silica. By using silica, the coatability of the curable composition is improved, and a cured product having excellent weather resistance and elongation can be obtained.
 シリカとしては、例えば、フュームドシリカが挙げられる。また、シリカとしては、疎水性シリカおよび親水性シリカが挙げられ、疎水性シリカが好ましい。 Silica includes, for example, fumed silica. Silica includes hydrophobic silica and hydrophilic silica, with hydrophobic silica being preferred.
 シリカは1種または2種以上用いることができる。 One or two or more types of silica can be used.
 一実施態様において、本発明の組成物中におけるシリカの含有量は、重合体(A)100質量部に対して、好ましくは1~100質量部、より好ましくは3~50質量部である。 In one embodiment, the content of silica in the composition of the present invention is preferably 1 to 100 parts by mass, more preferably 3 to 50 parts by mass, relative to 100 parts by mass of polymer (A).
 <顔料>
 本発明の組成物は、顔料をさらに含有することができる。
<Pigment>
The composition of the invention can further contain pigments.
 顔料としては、例えば、酸化鉄、酸化クロム、酸化チタン、アルミン酸コバルト等の無機顔料;フタロシアニンブルー、フタロシアニングリーン等の有機顔料が挙げられる。顔料の使用は、調色および耐候性の向上という観点から好ましい。 Examples of pigments include inorganic pigments such as iron oxide, chromium oxide, titanium oxide, and cobalt aluminate; and organic pigments such as phthalocyanine blue and phthalocyanine green. The use of pigments is preferred from the viewpoint of improving toning and weather resistance.
 顔料は1種または2種以上用いることができる。 One or two or more pigments can be used.
 一実施態様において、本発明の組成物中における顔料の含有量は、重合体(A)100質量部に対して、好ましくは1~200質量部、より好ましくは3~100質量部である。 In one embodiment, the content of the pigment in the composition of the present invention is preferably 1-200 parts by mass, more preferably 3-100 parts by mass, relative to 100 parts by mass of the polymer (A).
 <老化防止剤>
 本発明の組成物は、紫外線吸収剤、光安定化剤、酸化防止剤等の老化防止剤をさらに含有することができる。
<Anti-aging agent>
The composition of the present invention may further contain anti-aging agents such as UV absorbers, light stabilizers and antioxidants.
 紫外線吸収剤としては、例えば、ベンゾトリアゾール系紫外線吸収剤、ベンゾフェノン系紫外線吸収剤が挙げられ、ベンゾトリアゾール系紫外線吸収剤が好ましい。ベンゾトリアゾール系紫外線吸収剤としては、例えば、2-(2-ヒドロキシ-5-tert-ブチルフェニル)-2H-ベンゾトリアゾール、2-(2H-ベンゾトリアゾール-2-イル)-4,6-ビス(1-メチル-1-フェニルエチル)フェノール、2-(2H-ベンゾトリアゾール-2-イル)-6-(1-メチル-1-フェニルエチル)-4-(1,1,3,3-テトラメチルブチル)フェノール、メチル3-(3-(2H-ベンゾトリアゾール-2-イル)-5-tert-ブチル-4-ヒドロキシフェニル)プロピオネートとポリエチレングリコールとの反応生成物、2-(2H-ベンゾトリアゾール-2-イル)-p-クレゾールが挙げられる。 Examples of ultraviolet absorbers include benzotriazole-based ultraviolet absorbers and benzophenone-based ultraviolet absorbers, with benzotriazole-based ultraviolet absorbers being preferred. Examples of benzotriazole-based UV absorbers include 2-(2-hydroxy-5-tert-butylphenyl)-2H-benzotriazole, 2-(2H-benzotriazol-2-yl)-4,6-bis( 1-methyl-1-phenylethyl)phenol, 2-(2H-benzotriazol-2-yl)-6-(1-methyl-1-phenylethyl)-4-(1,1,3,3-tetramethyl Butyl)phenol, reaction product of methyl 3-(3-(2H-benzotriazol-2-yl)-5-tert-butyl-4-hydroxyphenyl)propionate with polyethylene glycol, 2-(2H-benzotriazole- 2-yl)-p-cresol.
 光安定化剤としては、例えば、ヒンダードアミン系光安定化剤が挙げられる。ヒンダードアミン系光安定化剤としては、例えば、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)セバケート、メチル(1,2,2,6,6-ペンタメチル-4-ピペリジニル)セバケート、デカン二酸ビス(2,2,6,6-テトラメチル-1-(オクチルオキシ)-4-ピペリジニル)エステル、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジニル)セバケート、2,4-ビス[N-ブチル-N-(1-シクロヘキシルオキシ-2,2,6,6-テトラメチルピペリジン-4-イル)アミノ]-6-(2-ヒドロキシエチルアミン)-1,3,5-トリアジン)が挙げられる。 Examples of light stabilizers include hindered amine light stabilizers. Examples of hindered amine light stabilizers include bis(1,2,2,6,6-pentamethyl-4-piperidyl) sebacate and methyl (1,2,2,6,6-pentamethyl-4-piperidinyl) sebacate. , decanedioic acid bis(2,2,6,6-tetramethyl-1-(octyloxy)-4-piperidinyl) ester, bis(1,2,2,6,6-pentamethyl-4-piperidinyl) sebacate, 2,4-bis[N-butyl-N-(1-cyclohexyloxy-2,2,6,6-tetramethylpiperidin-4-yl)amino]-6-(2-hydroxyethylamine)-1,3, 5-triazine).
 酸化防止剤としては、例えば、ヒンダードフェノール系酸化防止剤、モノフェノール系酸化防止剤、ビスフェノール系酸化防止剤、ポリフェノール系酸化防止剤、リン系酸化防止剤が挙げられる。 Examples of antioxidants include hindered phenol antioxidants, monophenol antioxidants, bisphenol antioxidants, polyphenol antioxidants, and phosphorus antioxidants.
 老化防止剤は1種または2種以上用いることができる。 One or more anti-aging agents can be used.
 一実施態様において、本発明の組成物中における老化防止剤の含有量は、重合体(A)100質量部に対して、好ましくは0.05~20質量部、より好ましくは0.1~10質量部である。 In one embodiment, the content of the anti-aging agent in the composition of the present invention is preferably 0.05 to 20 parts by mass, more preferably 0.1 to 10 parts by mass, relative to 100 parts by mass of the polymer (A). part by mass.
 <脱水剤>
 本発明の組成物は、貯蔵安定性をさらに改良するために、硬化性や柔軟性に悪影響を及ぼさない範囲で脱水剤を含有することができる。
<Dehydrating agent>
In order to further improve storage stability, the composition of the present invention may contain a dehydrating agent as long as it does not adversely affect curability and flexibility.
 脱水剤としては、例えば、メチルトリメトキシシラン、メチルトリエトキシシラン、テトラメトキシシラン、テトラエトキシシラン、ジメチルジメトキシシラン、フェニルトリメトキシシラン、ジフェニルジメトキシシラン、ビニルトリメトキシシラン等の加水分解性有機ケイ素化合物;オルトギ酸メチル、オルトギ酸エチル等のオルトギ酸アルキル;オルト酢酸メチル、オルト酢酸エチル等のオルト酢酸アルキル;イソシアン酸p-トルエンスルホニル等のイソシアネート化合物が挙げられる。 Examples of dehydrating agents include hydrolyzable organosilicon compounds such as methyltrimethoxysilane, methyltriethoxysilane, tetramethoxysilane, tetraethoxysilane, dimethyldimethoxysilane, phenyltrimethoxysilane, diphenyldimethoxysilane, and vinyltrimethoxysilane. alkyl orthoformate such as methyl orthoformate and ethyl orthoformate; alkyl orthoacetate such as methyl orthoacetate and ethyl orthoacetate; isocyanate compound such as p-toluenesulfonyl isocyanate.
 一実施態様において、本発明の組成物中における脱水剤の含有量は、硬化性組成物の貯蔵安定性および硬化性の観点から、重合体成分100質量部に対して、好ましくは0.1~20質量部、より好ましくは1~10質量部である。なお、重合体成分には重合体(A)の他に、重合体(D)が含まれてよい。 In one embodiment, the content of the dehydrating agent in the composition of the present invention is preferably 0.1- 20 parts by mass, more preferably 1 to 10 parts by mass. The polymer component may contain the polymer (D) in addition to the polymer (A).
 <粘着付与樹脂>
 本発明の組成物は、粘着付与樹脂をさらに含有することができる。
<Tackifying resin>
The composition of the present invention can further contain a tackifying resin.
 粘着付与樹脂を含有した硬化物は、適度なタック性を有し、せん断接着力に優れた粘着剤層を得ることができる。 A cured product containing a tackifying resin has moderate tackiness, and a pressure-sensitive adhesive layer with excellent shear adhesive strength can be obtained.
 粘着付与樹脂としては、例えば、ロジンエステル系樹脂等のロジン系粘着付与樹脂、テルペンフェノール系樹脂等のテルペン系粘着付与樹脂、スチレン系粘着付与樹脂、脂環族飽和炭化水素樹脂が挙げられる。 Examples of tackifying resins include rosin-based tackifying resins such as rosin ester-based resins, terpene-based tackifying resins such as terpene-phenol-based resins, styrene-based tackifying resins, and alicyclic saturated hydrocarbon resins.
 ロジンエステル系樹脂とは、ロジン系樹脂をアルコールによってエステル化させて得られた樹脂である。ロジン系樹脂としては、例えば、アビエチン酸等の樹脂酸を主成分とする、ロジン樹脂、不均化ロジン樹脂および水添ロジン樹脂や、アビエチン酸等の樹脂酸の二量体(重合ロジン樹脂)が挙げられる。アルコールとしては、例えば、エチレングリコール、グリセリン、ペンタエリスリトール等の多価アルコールが挙げられる。 A rosin ester-based resin is a resin obtained by esterifying a rosin-based resin with alcohol. Examples of rosin-based resins include rosin resins, disproportionated rosin resins, and hydrogenated rosin resins containing resin acids such as abietic acid as main components, and dimers of resin acids such as abietic acid (polymerized rosin resins). is mentioned. Examples of alcohols include polyhydric alcohols such as ethylene glycol, glycerin, and pentaerythritol.
 ロジン樹脂をエステル化した樹脂がロジンエステル樹脂であり、不均化ロジン樹脂をエステル化した樹脂が不均化ロジンエステル樹脂であり、水添ロジン樹脂をエステル化した樹脂が水添ロジンエステル樹脂であり、重合ロジン樹脂をエステル化した樹脂が重合ロジンエステル樹脂である。 Resin obtained by esterifying rosin resin is rosin ester resin, resin obtained by esterifying disproportionated rosin resin is disproportionated rosin ester resin, and resin obtained by esterifying hydrogenated rosin resin is hydrogenated rosin ester resin. A polymerized rosin ester resin is obtained by esterifying a polymerized rosin resin.
 テルペンフェノール系樹脂とは、フェノールの存在下においてテルペンを重合させて得られた樹脂である。 A terpene phenolic resin is a resin obtained by polymerizing terpene in the presence of phenol.
 不均化ロジンエステル樹脂としては、例えば、スーパーエステルA75(10以下)、スーパーエステルA100(10以下)、スーパーエステルA115(20以下)、スーパーエステルA125(20以下)が挙げられる。重合ロジンエステル樹脂としては、例えば、ペンセルD-125(10~16)、ペンセルD-135(10~16)、ペンセルD-160(10~16)が挙げられる。以上の製品は、荒川化学工業製であり、括弧内の数値は酸価(mgKOH/g)である。 Examples of disproportionated rosin ester resins include Superester A75 (10 or less), Superester A100 (10 or less), Superester A115 (20 or less), and Superester A125 (20 or less). Polymerized rosin ester resins include, for example, Pencel D-125 (10 to 16), Pencel D-135 (10 to 16), and Pencel D-160 (10 to 16). The above products are manufactured by Arakawa Chemical Industries, Ltd., and the values in parentheses are acid values (mgKOH/g).
 テルペン系粘着付与樹脂としては、例えば、YSポリスターT30(1以下)、YSポリスターT80(1以下)、YSポリスターT130(1以下)、クリアロン100(1以下)、クリアロン110(1以下)が挙げられる。以上の製品は、ヤスハラケミカル製であり、括弧内の数値は酸価(mgKOH/g)である。 Examples of terpene-based tackifying resins include YS Polystar T30 (1 or less), YS Polystar T80 (1 or less), YS Polystar T130 (1 or less), Clearon 100 (1 or less), and Clearon 110 (1 or less). . The above products are manufactured by Yasuhara Chemical, and the values in parentheses are acid values (mgKOH/g).
 スチレン系粘着付与樹脂としては、例えば、FMR-0150(0.1以下)、FTR-6100(0.1以下)、FTR-6110(0.1以下)、FTR-6125(0.1以下)、FTR-7100(0.1以下)、FTR-8120(0.1以下)、FTR-0100(0.1以下)、FTR-2120(0.1以下)、FTR-2140(0.1以下)が挙げられる。以上の製品は、三井化学製であり、括弧内の数値は酸価(mgKOH/g)である。また、SX-100(1以下)ヤスハラケミカル製も挙げられる。 Examples of styrene-based tackifying resins include FMR-0150 (0.1 or less), FTR-6100 (0.1 or less), FTR-6110 (0.1 or less), FTR-6125 (0.1 or less), FTR-7100 (0.1 or less), FTR-8120 (0.1 or less), FTR-0100 (0.1 or less), FTR-2120 (0.1 or less), FTR-2140 (0.1 or less) mentioned. The above products are manufactured by Mitsui Chemicals, and the values in parentheses are acid values (mgKOH/g). Also, SX-100 (1 or less) manufactured by Yasuhara Chemical Co., Ltd. may be mentioned.
 脂環族飽和炭化水素樹脂としては、例えば、アルコンP-90、アルコンP-100、アルコンP-115、アルコンP-125、アルコンM-90、アルコンM-100、アルコンM-115、アルコンM-135が挙げられる。以上の製品は、荒川化学工業製である。 Examples of alicyclic saturated hydrocarbon resins include Alcon P-90, Alcon P-100, Alcon P-115, Alcon P-125, Alcon M-90, Alcon M-100, Alcon M-115, Alcon M- 135 can be mentioned. The above products are manufactured by Arakawa Chemical Industries.
 粘着付与樹脂は1種単独で又は2種以上を用いることができる。 The tackifying resin can be used alone or in combination of two or more.
 これらの中でも、硬化性組成物の貯蔵安定性の観点から、酸価が1mgKOH/g以下の粘着付与樹脂が好ましく、酸価が0.1mgKOH/g以下であることが特に好ましい。酸価が0.1mgKOH/g以下である粘着付与樹脂を用いることで、特に貯蔵安定性に優れる硬化性組成物を得ることができる。酸価とは、粘着付与樹脂1gを中和するのに必要な水酸化カリウムのmg数をいい、JIS K0070に基づき測定することができる。 Among these, from the viewpoint of the storage stability of the curable composition, tackifying resins having an acid value of 1 mgKOH/g or less are preferable, and an acid value of 0.1 mgKOH/g or less is particularly preferable. By using a tackifying resin having an acid value of 0.1 mgKOH/g or less, a curable composition having particularly excellent storage stability can be obtained. The acid value refers to the number of mg of potassium hydroxide required to neutralize 1 g of the tackifying resin, and can be measured based on JIS K0070.
 本発明の組成物は、粘着付与樹脂を、重合体(A)100質量部に対して、好ましくは1~500質量部、より好ましくは5~300質量部の範囲で含有する。このような態様であれば、粘着剤層が適度なタック性を有し、各種被着体に対する接着力に優れる。 The composition of the present invention preferably contains 1 to 500 parts by mass, more preferably 5 to 300 parts by mass, of the tackifying resin with respect to 100 parts by mass of the polymer (A). In such a mode, the pressure-sensitive adhesive layer has appropriate tackiness and excellent adhesion to various adherends.
 <レオロジーコントロール剤>
 本発明の組成物は、レオロジーコントロール剤をさらに含有することができる。レオロジーコントロール剤は、膜面の平滑性を向上させることができる。レオロジーコントロール剤としては、アクリル系、ウレア系、ウレタン系、アマイド系、ポリエステル系、層状無機化合物系のレオロジーコントロール剤等を用いることができる。これらの中で、ビックケミー・ジャパン製「BYK R606(ポリヒドロキシカルボン酸エステル)」に代表されるポリエステル系が好ましく挙げられる。
<Rheology control agent>
The compositions of the present invention can further contain rheology control agents. A rheology control agent can improve the smoothness of the film surface. As the rheology control agent, acrylic, urea, urethane, amide, polyester, and layered inorganic compound rheology control agents can be used. Among these, a polyester type represented by "BYK R606 (polyhydroxycarboxylic acid ester)" manufactured by BYK-Chemie Japan is preferable.
 本発明の組成物は、レオロジーコントロール剤を、重合体(A)100質量部に対して、好ましくは0.1~10質量部、より好ましくは0.2~5質量部の範囲で含有する。このような態様であれば、チキソトロピー性や疑塑性に優れる硬化性組成物が得られる。 The composition of the present invention preferably contains 0.1 to 10 parts by mass, more preferably 0.2 to 5 parts by mass, of the rheology control agent with respect to 100 parts by mass of the polymer (A). With such an aspect, a curable composition having excellent thixotropy and pseudoplasticity can be obtained.
 [硬化性組成物の用途、硬化物]
 本発明の組成物は、重合体(A)と、所定のpKaを満たす酸および塩基からなる塩化合物(B)とを含むため所望熱環境下で硬化することができ、貯蔵安定性および機械的物性に優れる。
[Use of curable composition, cured product]
Since the composition of the present invention contains a polymer (A) and a salt compound (B) composed of an acid and a base that satisfies a predetermined pKa, it can be cured under a desired thermal environment, and has storage stability and mechanical properties. Excellent physical properties.
 また、本発明の組成物は、良好な架橋性を有することから、架橋により硬化させて用いる用途、または、硬化体の弾性を利用した用途等に使用することができる。前記組成物において、大気中または硬化性組成物が適用される被着体中に存在する水分により、例えば重合体(A)が有する式(1)で表される基、および重合体(D)を用いる場合は重合体(D)が有する式(1)で表される基が加水分解してシラノール基を形成した後、シラノール基同士が脱水縮合してシロキサン結合を形成することによって硬化し、硬化物が形成されると考えられる。 In addition, since the composition of the present invention has good crosslinkability, it can be used for applications such as curing by crosslinking or utilizing the elasticity of the cured body. In the composition, due to moisture present in the air or in the adherend to which the curable composition is applied, for example, the group represented by formula (1) possessed by the polymer (A) and the polymer (D) When using, the group represented by the formula (1) in the polymer (D) is hydrolyzed to form a silanol group, and then the silanol groups are cured by dehydration condensation to form a siloxane bond, It is believed that a cured product is formed.
 本発明の組成物または混合・撹拌した2液型硬化性組成物は、例えば、建築・建材用途、自動車用途などにおける、シーリング材、接着剤、ホットメルト接着剤、または塗料等として好適に用いられる。その他、無機材料(例:セメントやモルタル、金属、ガラス)表面を被覆するコーティング剤、シート形成用組成物(シートの例:通気性シート、保護シート、遮水シート、制振シート、転写シート、調光シート、帯電防止シート、導電シート、養生シート、遮音シート、遮光シート、化粧シート、マーキングシート、難燃シート)、フィルム形成用組成物(フィルムの例:マーキングフィルム、保護フィルム、インキ定着フィルム、ラミネートフィルム)、発泡体形成用組成物(発泡体の例:硬質発泡体、軟質発泡体、半硬質発泡体、難燃発泡体)、制振材、遮音材、防音材、吸音材、人工皮革、人工皮膚、合成皮革、各種工業用部品、日用品、トイレタリー用成型品等の形成用組成物、塗料用ビヒクル、プライマー用樹脂、各種バインダー(例:インキ用バインダー、磁気記録媒体用バインダー、鋳造用バインダー、焼成体用バインダー、グラスファイバーサイジング材用バインダー)が挙げられる。 The composition of the present invention or the mixed/stirred two-part curable composition is suitably used as a sealant, adhesive, hot-melt adhesive, paint, or the like, for example, in construction/building material applications, automobile applications, and the like. . In addition, inorganic materials (e.g. cement, mortar, metal, glass) surface coating agents, sheet-forming compositions (sheet examples: breathable sheets, protective sheets, waterproof sheets, damping sheets, transfer sheets, light control sheet, antistatic sheet, conductive sheet, curing sheet, sound insulation sheet, light shielding sheet, decorative sheet, marking sheet, flame retardant sheet), film forming composition (film examples: marking film, protective film, ink fixing film , laminate film), foam-forming composition (examples of foam: rigid foam, soft foam, semi-rigid foam, flame-retardant foam), damping material, sound insulation material, sound insulation material, sound absorption material, artificial Forming compositions for leather, artificial skin, synthetic leather, various industrial parts, daily necessities, toiletry moldings, etc., paint vehicles, primer resins, various binders (e.g. ink binders, magnetic recording media binders, casting binders, binders for fired bodies, and binders for glass fiber sizing materials).
 本発明の硬化物は、本発明の組成物または2液型硬化性組成物から得られる。硬化条件は特に限定されないが、本発明の組成物を支持体上に塗布し、例えば-20~120℃、10~95%RHの環境下に、好ましくは20~90℃、30~85%RHの環境下に所定の時間おくことで、硬化を良好に進めることができる。 The cured product of the present invention is obtained from the composition of the present invention or the two-component curable composition. Curing conditions are not particularly limited, but the composition of the present invention is coated on a support, for example, in an environment of -20 to 120°C and 10 to 95% RH, preferably 20 to 90°C and 30 to 85% RH. Curing can proceed satisfactorily by leaving it in the environment for a predetermined period of time.
 以下、実施例に基づいて本発明をさらに具体的に説明するが、本発明はこれらの実施例に限定されるものではない。以下の実施例および比較例等の記載において、特に言及しない限り、「部」は「質量部」を示す。 The present invention will be described in more detail below based on examples, but the present invention is not limited to these examples. In the following descriptions of Examples, Comparative Examples, etc., "parts" means "mass parts" unless otherwise specified.
 [重合体等の評価方法]
 重合体等の各物性の評価方法を以下に記載する。
[Evaluation method of polymer etc.]
Methods for evaluating each physical property of the polymer are described below.
 <数平均分子量(Mn)および重量平均分子量(Mw)>
 重合体等の数平均分子量(Mn)および重量平均分子量(Mw)は、ゲルパーミエーションクロマトグラフィー(GPC)法による分析を行い、下記条件でポリスチレン換算により算出した。
<Number average molecular weight (Mn) and weight average molecular weight (Mw)>
The number-average molecular weight (Mn) and weight-average molecular weight (Mw) of the polymer and the like were analyzed by gel permeation chromatography (GPC) and calculated by polystyrene conversion under the following conditions.
 ・装置:GPC-8220(東ソー製)
 ・カラム:G7000HXL/7.8mmID×1本 +
      GMHXL/7.8mmID×2本 +
      G2500HXL/7.8mmID×1本
 ・媒体:テトラヒドロフラン
 ・流速:1.0mL/min
 ・濃度:1.5mg/ml
 ・注入量:300μL
 ・カラム温度:40℃
 <ガラス転移温度(Tg)>
 各重合体のガラス転移温度(Tg)は、示差走査熱量計(DSC)で測定した。
・ Apparatus: GPC-8220 (manufactured by Tosoh)
・Column: G7000HXL/7.8mmID x 1 +
GMHXL/7.8mm ID x 2 +
G2500HXL/7.8 mm ID x 1 ・Medium: Tetrahydrofuran ・Flow rate: 1.0 mL/min
・Concentration: 1.5mg/ml
・Injection volume: 300 μL
・Column temperature: 40°C
<Glass transition temperature (Tg)>
The glass transition temperature (Tg) of each polymer was measured with a differential scanning calorimeter (DSC).
 ・装置:DSC7000X(日立ハイテクサイエンス製)
 ・温度条件:-100℃から30℃まで10℃/minで昇温
 ・試料容器:アルミ製オープンセル
 ・試料量:5mg
 <ケイ素元素含有量>
 各重合体のケイ素元素含有量は、重合体0.2gにフッ化水素を含む混酸7mLを加え、マイクロウェーブ分解装置(アントールジャパン製)で湿式灰化し、灰化したサンプルに超純水を加え50mLに定容した後、誘導結合プラズマ発光分光分析装置(ICP-AES)で測定した。
・Equipment: DSC7000X (manufactured by Hitachi High-Tech Science)
・Temperature condition: Temperature rise from -100°C to 30°C at 10°C/min ・Sample container: Aluminum open cell ・Sample amount: 5 mg
<Silicon element content>
The silicon element content of each polymer was determined by adding 7 mL of a mixed acid containing hydrogen fluoride to 0.2 g of the polymer, wet ashing with a microwave decomposition device (manufactured by Antor Japan), and adding ultrapure water to the ashed sample. After adding and adjusting the volume to 50 mL, measurement was performed with an inductively coupled plasma atomic emission spectrometer (ICP-AES).
 ・装置:ICPE-9000 (島津製作所製)
 ・高周波パワー:1.20kW
 ・プラズマガス:10.00L/min
 ・補助ガス:0.60L/min
 ・キャリアガス:0.70L/min
 ・観測方向:軸方向
 [製造例1]
 攪拌装置、窒素ガス導入管、温度計および還流冷却管を備えたステンレス製フラスコに、n-ブチルアクリレート74部、2-エチルヘキシルアクリレート25部、アクリロキシメチルトリメトキシシラン1部を仕込み、窒素置換を行った後に70℃まで昇温した。次いで、フラスコ内の内容物を75℃に維持しながら、3-メルカプトプロピルトリメトキシシラン0.9部を添加し、次いで、2,2'-アゾビスイソブチロニトリル(AIBN)0.05部を添加して反応を開始させた。反応開始から3時間後にAIBN0.05部を追加した。反応開始から6時間後、揮発成分を110℃で3時間減圧留去して、(メタ)アクリル重合体(A-1)を得た。重合体(A-1)のケイ素元素含有量は1,820ppm、Mnは21,000、Mwは54,000、Tgは-64℃であった。
・Equipment: ICPE-9000 (manufactured by Shimadzu Corporation)
・High frequency power: 1.20 kW
・Plasma gas: 10.00 L/min
・Auxiliary gas: 0.60 L/min
・Carrier gas: 0.70 L/min
・Observation direction: axial direction [manufacturing example 1]
74 parts of n-butyl acrylate, 25 parts of 2-ethylhexyl acrylate, and 1 part of acryloxymethyltrimethoxysilane are charged into a stainless steel flask equipped with a stirrer, nitrogen gas inlet tube, thermometer and reflux condenser, and nitrogen is replaced. After that, the temperature was raised to 70°C. Then, while maintaining the contents in the flask at 75° C., 0.9 part of 3-mercaptopropyltrimethoxysilane is added, followed by 0.05 part of 2,2′-azobisisobutyronitrile (AIBN). was added to initiate the reaction. 0.05 part of AIBN was added 3 hours after the start of the reaction. After 6 hours from the start of the reaction, volatile components were distilled off under reduced pressure at 110° C. for 3 hours to obtain a (meth)acrylic polymer (A-1). The silicon element content of the polymer (A-1) was 1,820 ppm, Mn was 21,000, Mw was 54,000, and Tg was -64°C.
 [実施例1]
 (メタ)アクリル重合体(A-1)100部と、可塑剤として1,2-シクロヘキサンジカルボン酸ジイソノニルエステル「Hexamoll DINCH」(BASF製)170部と、チキソトロピー剤としてポリヒドロキシカルボン酸エステル「BYK R606」(BYK製)3部と、フュームドシリカ「HDK H18」(旭化成ワッカー製)10部と、重質炭酸カルシウム「ホワイトン305」(東洋ファインケミカル製)350部とを、自転・公転ミキサー(ARE-310、シンキー製)で2,000rpmの回転速度で3分間混合した。次いで、シランカップリング剤(B)としてアクリロキシメチルトリメトキシシラン「X-12-1169MS」(信越化学工業製、分子量206)4部と、N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン「KBM-603」(信越化学工業製、分子量222)1部とを、ARE-310にて2,000rpmの回転速度で1分間混合することにより硬化性組成物を得た。
[Example 1]
(Meth) acrylic polymer (A-1) 100 parts, 1,2-cyclohexanedicarboxylic acid diisononyl ester "Hexamoll DINCH" (manufactured by BASF) 170 parts as a plasticizer, and polyhydroxycarboxylic acid ester "BYK R606" as a thixotropic agent ” (manufactured by BYK), 10 parts of fumed silica “HDK H18” (manufactured by Asahi Kasei Wacker), and 350 parts of heavy calcium carbonate “Whiten 305” (manufactured by Toyo Fine Chemicals) in a rotation / revolution mixer (ARE -310, manufactured by Thinky) at a rotation speed of 2,000 rpm for 3 minutes. Then, 4 parts of acryloxymethyltrimethoxysilane "X-12-1169MS" (manufactured by Shin-Etsu Chemical Co., Ltd., molecular weight 206) as a silane coupling agent (B), N-2-(aminoethyl)-3-aminopropyltri A curable composition was obtained by mixing 1 part of methoxysilane “KBM-603” (manufactured by Shin-Etsu Chemical Co., Ltd., molecular weight 222) with ARE-310 at a rotation speed of 2,000 rpm for 1 minute.
 得られた硬化性組成物について、各種評価を行った。 Various evaluations were performed on the obtained curable composition.
 [実施例2~10、比較例1~6]
 配合組成を表1-1、表1-2に記載したとおりに変更したこと以外は実施例1と同様にして、硬化性組成物を得て、各種評価を行った。評価方法については後述する。
[Examples 2 to 10, Comparative Examples 1 to 6]
A curable composition was obtained in the same manner as in Example 1 except that the formulation composition was changed as described in Tables 1-1 and 1-2, and various evaluations were performed. The evaluation method will be described later.
 表1-1および表1-2中の各成分の表記の意味は以下のとおりである。 The meaning of each component notation in Tables 1-1 and 1-2 is as follows.
 ・X-12-1169MS:アクリロキシメチルトリメトキシシラン(信越化学工業製、分子量:206)
 ・X-12-1303MS:メタクリロキシメチルトリメトキシシラン(信越化学工業製、分子量:220)
 ・X-12-1312MS:メトキシメチルトリメトキシシラン(信越化学工業製、分子量:166)
 ・X-12-1307:メルカプトメチルトリメトキシシラン(信越化学工業製、分子量:168)
 ・KBM-1003:ビニルトリメトキシシラン(信越化学工業製、分子量:148)
 ・KBM-5013:アクリロキシプロピルトリメトキシシラン(信越化学工業製、分子量:234)
 ・KBM-6103:N-2-(アミノエチル)-3-アミノメチルトリメトキシシラン(信越化学工業製、分子量:194)
 ・イソシアネートメチルトリメトキシシラン(分子量:177)
 ・KBM-603:N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン(信越化学工業製、分子量:222)
 [硬化性組成物の評価方法]
 硬化性組成物の各物性の評価方法を以下に記載する。
· X-12-1169MS: acryloxymethyltrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd., molecular weight: 206)
· X-12-1303MS: methacryloxymethyltrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd., molecular weight: 220)
· X-12-1312MS: methoxymethyltrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd., molecular weight: 166)
· X-12-1307: mercaptomethyltrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd., molecular weight: 168)
· KBM-1003: vinyltrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd., molecular weight: 148)
· KBM-5013: acryloxypropyltrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd., molecular weight: 234)
· KBM-6103: N-2-(aminoethyl)-3-aminomethyltrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd., molecular weight: 194)
・Isocyanatomethyltrimethoxysilane (molecular weight: 177)
· KBM-603: N-2-(aminoethyl)-3-aminopropyltrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd., molecular weight: 222)
[Method for evaluating curable composition]
Methods for evaluating each physical property of the curable composition are described below.
 <タックフリータイム>
 実施例および比較例で得られた硬化性組成物を、硬化物層の厚さが2mmとなるようにテフロン(登録商標)シート上にドクターブレードにて塗工し、23℃/50%RHの条件下で養生を開始してから、組成物(硬化物)に対してSUS製ヘラを接触させた際に付着が確認されなくなるまでの時間を測定した。
<Tuck free time>
The curable compositions obtained in Examples and Comparative Examples were coated on a Teflon (registered trademark) sheet with a doctor blade so that the cured product layer had a thickness of 2 mm, and was heated at 23° C./50% RH. The time from the start of curing under the conditions until no adhesion was confirmed when a SUS spatula was brought into contact with the composition (cured product) was measured.
 <破断点応力、伸び率>
 実施例および比較例で得られた硬化性組成物を、硬化物層の厚さが2mmとなるようにテフロン(登録商標)シート上にドクターブレードにて塗工し、23℃/50%RHの条件下で7日間養生した。その後、得られた硬化物をJIS3号ダンベル状に打ち抜きサンプルを作製した。得られたサンプルについてJIS K6251:2010(加硫ゴムおよび熱可塑性ゴム-引張特性の求め方)に準じて、引張り速度200mm/分、23℃の条件下で引張り試験を行い、破断点応力、および伸び率を測定した。
<Stress at break, elongation>
The curable compositions obtained in Examples and Comparative Examples were coated on a Teflon (registered trademark) sheet with a doctor blade so that the cured product layer had a thickness of 2 mm, and was heated at 23° C./50% RH. Cured for 7 days under conditions. After that, the obtained cured product was punched into a JIS No. 3 dumbbell shape to prepare a sample. According to JIS K6251: 2010 (vulcanized rubber and thermoplastic rubber-determination of tensile properties), the obtained sample was subjected to a tensile test at a tensile speed of 200 mm / min and at 23 ° C., and the stress at break and Elongation was measured.
 <せん断接着力>
 実施例および比較例で得られた硬化性組成物を、JIS-K6850:1999(接着剤-剛性被着材の引張せん断接着強さ試験方法)に準拠し、アルミニウム(A1050、厚さ1mm)製の試験片2枚に対して塗布し、2分間静置した後、硬化性組成物層の厚さが0.2mmになるように張り合わせた。23℃/50%RHの条件下で7日間養生後のせん断接着力を、JIS K6850:1999に準じて、引張り速度50mm/分、23℃の条件下で万能型引張り試験機AG-X(島津製作所製)で測定した。
<Shear adhesive strength>
The curable compositions obtained in Examples and Comparative Examples are made of aluminum (A1050, thickness 1 mm) in accordance with JIS-K6850: 1999 (adhesives-testing method for tensile shear bond strength of rigid adherends). was applied to two test pieces of No. 2, allowed to stand for 2 minutes, and laminated so that the thickness of the curable composition layer was 0.2 mm. The shear adhesive strength after curing for 7 days under the conditions of 23 ° C./50% RH was measured using a universal tensile tester AG-X (Shimadzu manufactured by Seisakusho).
 <ゲル分率>
 実施例および比較例で得られた硬化性組成物を、硬化物層の厚さが2mmとなるようにテフロン(登録商標)シート上にドクターブレードにて塗工し、23℃/50%RHの条件下で7日間養生した。その後、得られた硬化物を乾燥質量で0.2gサンプル瓶に計量し、サンプル瓶に酢酸エチルを40g追加して23℃の環境下で1日静置した。SUS製200メッシュのステンレス製金網でろ過をした後、金網上の残渣物を90℃で2時間乾燥させて得られる残渣物の質量を秤量し、ゲル分率を次式により求めた。
<Gel fraction>
The curable compositions obtained in Examples and Comparative Examples were coated on a Teflon (registered trademark) sheet with a doctor blade so that the cured product layer had a thickness of 2 mm, and was heated at 23° C./50% RH. Cured for 7 days under conditions. After that, 0.2 g of the obtained cured product was weighed in a sample bottle in terms of dry mass, 40 g of ethyl acetate was added to the sample bottle, and the sample bottle was allowed to stand in an environment of 23° C. for one day. After filtration through a stainless steel wire mesh of 200 mesh made of SUS, the residue on the wire mesh was dried at 90° C. for 2 hours, the mass of the residue obtained was weighed, and the gel fraction was determined by the following formula.
 ゲル分率(%)=(乾燥後の残渣物の秤量値)÷(養生後の硬化物の計量値)×100
 <貯蔵安定性試験後のせん断接着力>
 実施例および比較例で得られた硬化性組成物を紙カートリッジ(容量330mL)へ充填し、貯蔵安定性試験として60℃の環境下、1ヶ月間静置した。その後、上記と同様の方法によりせん断接着力を測定した。60℃環境下で1か月間静置した貯蔵安定性試験後の硬化物のせん断接着力を、23℃/50%RH条件下で7日間養生した貯蔵安定性試験前の硬化物のせん断接着力で割ることによって、せん断接着力の変化率[%]を算出した。
Gel fraction (%) = (weighed value of residue after drying) / (weighed value of cured product after curing) x 100
<Shear adhesive strength after storage stability test>
The curable compositions obtained in Examples and Comparative Examples were filled into paper cartridges (capacity: 330 mL) and allowed to stand in an environment of 60° C. for one month as a storage stability test. After that, the shear adhesive strength was measured by the same method as above. The shear adhesive strength of the cured product after the storage stability test was left at 60°C for 1 month, and the shear adhesive strength of the cured product before the storage stability test after curing for 7 days at 23°C/50% RH. The change rate [%] of the shear adhesive strength was calculated by dividing by .
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003

Claims (7)

  1.  式(1)で表される基を有し、数平均分子量(Mn)が1,000以上であり、ケイ素元素を500ppm以上含有する(メタ)アクリル重合体(A)と、
     式(2)で表される、分子量が1,000未満のシランカップリング剤(B)とを含有する硬化性組成物。
     式(1):-X-CH2-SiR1 3
     [式(1)中、R1は、それぞれ独立に炭素数1~20のアルキル基、炭素数1~20のアルコキシ基、または水酸基であり、R1のうち少なくとも一つは前記アルコキシ基または水酸基であり;Xは、-O-、-COO-、-S-、-N(R2)-、-CH(OH)-CH2-O-、-O-CO-NH-または-N(R2)-CO-N(R3)-で表される2価の基であり、R2およびR3は、水素原子、炭化水素基、またはハロゲン化炭化水素基であり、R2およびR3は、同一であっても異なっていてもよい。]
     式(2):Y-CH2-SiR1 3
     [式(2)中、R1は式(1)と同義であり;Yは、(メタ)アクリロイル基、炭素数1~20のアルコキシ基、メルカプト基、またはイソシアネート基である。]
    a (meth)acrylic polymer (A) having a group represented by formula (1), having a number average molecular weight (Mn) of 1,000 or more and containing 500 ppm or more of silicon element;
    A curable composition containing a silane coupling agent (B) represented by formula (2) and having a molecular weight of less than 1,000.
    Formula ( 1 ): -X- CH2 - SiR13
    [In formula (1), R 1 is each independently an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, or a hydroxyl group, and at least one of R 1 is the alkoxy group or hydroxyl group X is -O-, -COO-, -S-, -N(R 2 )-, -CH(OH)-CH 2 -O-, -O-CO-NH- or -N(R 2 ) A divalent group represented by —CO—N(R 3 )—, where R 2 and R 3 are a hydrogen atom, a hydrocarbon group, or a halogenated hydrocarbon group, and R 2 and R 3 may be the same or different. ]
    Formula (2): Y CH 2 —SiR 13
    [In formula (2), R 1 has the same definition as in formula (1); Y is a (meth)acryloyl group, an alkoxy group having 1 to 20 carbon atoms, a mercapto group, or an isocyanate group. ]
  2.  前記(メタ)アクリル重合体(A)100質量部に対し、前記(B)を0.1~20質量部含む請求項1に記載の硬化性組成物。 The curable composition according to claim 1, comprising 0.1 to 20 parts by mass of the (B) with respect to 100 parts by mass of the (meth)acrylic polymer (A).
  3.  前記(メタ)アクリル重合体(A)が、前記式(1)で表される基を少なくとも末端に有する請求項1に記載の硬化性組成物。 The curable composition according to claim 1, wherein the (meth)acrylic polymer (A) has at least a terminal group represented by the formula (1).
  4.  前記(メタ)アクリル重合体(A)のガラス転移温度(Tg)が、-20℃以下である請求項1に記載の硬化性組成物。 The curable composition according to claim 1, wherein the (meth)acrylic polymer (A) has a glass transition temperature (Tg) of -20°C or lower.
  5.  前記(メタ)アクリル重合体(A)の数平均分子量が1,000~100,000である請求項1に記載の硬化性組成物。 The curable composition according to claim 1, wherein the (meth)acrylic polymer (A) has a number average molecular weight of 1,000 to 100,000.
  6.  前記(メタ)アクリル重合体(A)100質量部に対し、下記式(3)で表されるアミノシラン化合物(C)を0.05~10質量部含有する請求項1に記載の硬化性組成物。
     式(3):R4 2-N-(CH2n-SiR1 3
     [式(3)中、nは1~6の整数であり;R1は式(1)と同義であり;R4は、それぞれ独立に水素原子、炭素数1~20の炭化水素基、または前記炭化水素基の少なくとも一つの水素原子が、無置換アミノ基、置換アミノ基およびアルコキシシリル基からなる群より選ばれる基で置換された基である。]
    The curable composition according to claim 1, which contains 0.05 to 10 parts by mass of an aminosilane compound (C) represented by the following formula (3) with respect to 100 parts by mass of the (meth)acrylic polymer (A). .
    Formula ( 3 ): R 42 --N--(CH 2 ) n --SiR 13
    [In formula (3), n is an integer of 1 to 6; R 1 has the same meaning as in formula (1); R 4 is each independently a hydrogen atom, a hydrocarbon group having 1 to 20 carbon atoms, or At least one hydrogen atom of the hydrocarbon group is a group substituted with a group selected from the group consisting of an unsubstituted amino group, a substituted amino group and an alkoxysilyl group. ]
  7.  請求項1~6のいずれか1項に記載の硬化性組成物から得られる硬化物。 A cured product obtained from the curable composition according to any one of claims 1 to 6.
PCT/JP2022/020196 2021-06-08 2022-05-13 Curable composition and cured product WO2022259815A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023527583A JPWO2022259815A1 (en) 2021-06-08 2022-05-13
CN202280040628.7A CN117529524A (en) 2021-06-08 2022-05-13 Curable composition and cured product

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-096153 2021-06-08
JP2021096153 2021-06-08

Publications (1)

Publication Number Publication Date
WO2022259815A1 true WO2022259815A1 (en) 2022-12-15

Family

ID=84424851

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/020196 WO2022259815A1 (en) 2021-06-08 2022-05-13 Curable composition and cured product

Country Status (3)

Country Link
JP (1) JPWO2022259815A1 (en)
CN (1) CN117529524A (en)
WO (1) WO2022259815A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010202863A (en) * 2009-02-04 2010-09-16 Cemedine Co Ltd Curable composition
JP2012122048A (en) * 2010-11-18 2012-06-28 Kaneka Corp Curable composition containing polyoxyalkylene-based polymer
JP2012136685A (en) * 2010-12-09 2012-07-19 Kaneka Corp Curable composition containing (meth)acrylic polymer
JP2012214755A (en) * 2011-03-31 2012-11-08 Kaneka Corp Curing composition

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010202863A (en) * 2009-02-04 2010-09-16 Cemedine Co Ltd Curable composition
JP2012122048A (en) * 2010-11-18 2012-06-28 Kaneka Corp Curable composition containing polyoxyalkylene-based polymer
JP2012136685A (en) * 2010-12-09 2012-07-19 Kaneka Corp Curable composition containing (meth)acrylic polymer
JP2012214755A (en) * 2011-03-31 2012-11-08 Kaneka Corp Curing composition

Also Published As

Publication number Publication date
CN117529524A (en) 2024-02-06
JPWO2022259815A1 (en) 2022-12-15

Similar Documents

Publication Publication Date Title
EP3728423B1 (en) Polymeric compositions prepared with a controlled radical initiator
JP2001040037A (en) Reactive acrylic polymer, curable acrylic polymer, curable composition, cured material and use thereof
US20220396654A1 (en) Modified Diene Copolymers and Their Use
CN103319923A (en) Active energy ray-curable composition and coating film
WO2015098314A1 (en) Composition for adhesive agent, adhesive agent, and adhesive sheet
EP2222803B1 (en) Moisture cure alpha-silane modified acrylic coatings
JP7241872B2 (en) Curable composition and cured product
WO2022259815A1 (en) Curable composition and cured product
WO2021132523A1 (en) Moisture-curable adhesive composition
WO2021192815A1 (en) Curable composition and cured product
WO2022259816A1 (en) Curable composition, cured product, and two-part curable composition
JP5922985B2 (en) Moisture curable adhesive composition
JPWO2019073980A1 (en) Photocurable pressure-sensitive adhesive composition and bonding method
JP3765343B2 (en) Non-aqueous dispersion type resin composition and curable coating
JP6814454B2 (en) Composition, gas barrier material, coating material, adhesive, molded product, laminate, and method for producing the molded product.
WO2022259783A1 (en) Curable composition and cured product
JP5691312B2 (en) Curing accelerator for sealant and sealant construction method using the same
WO2020262273A1 (en) Block copolymer and resin composition, and production method for block copolymer
WO2006033147A1 (en) Polysilsesquioxane graft polymer, process for producing the same, and pressure-sensitive adhesive
WO2019039537A1 (en) Polymer based on (meth)acrylic acid alkyl ester and use thereof
JP2022064209A (en) Curable composition and cured product
US20100029838A1 (en) Use of Copolymers as Adhesion Promoters in Lacquers
JP2018100322A (en) Reactive hot-melt adhesive composition
JP4964440B2 (en) Oil-based ink composition
WO2022202173A1 (en) Curable resin composition and use thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22819998

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023527583

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE