WO2022259444A1 - Eddy current inspection method - Google Patents

Eddy current inspection method Download PDF

Info

Publication number
WO2022259444A1
WO2022259444A1 PCT/JP2021/022046 JP2021022046W WO2022259444A1 WO 2022259444 A1 WO2022259444 A1 WO 2022259444A1 JP 2021022046 W JP2021022046 W JP 2021022046W WO 2022259444 A1 WO2022259444 A1 WO 2022259444A1
Authority
WO
WIPO (PCT)
Prior art keywords
eddy current
inspection method
preliminary
detection signal
electrode
Prior art date
Application number
PCT/JP2021/022046
Other languages
French (fr)
Japanese (ja)
Inventor
有佑 岩尾
Original Assignee
東芝三菱電機産業システム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東芝三菱電機産業システム株式会社 filed Critical 東芝三菱電機産業システム株式会社
Priority to JP2021568822A priority Critical patent/JP7123519B1/en
Priority to CN202180044704.7A priority patent/CN115943304A/en
Priority to PCT/JP2021/022046 priority patent/WO2022259444A1/en
Publication of WO2022259444A1 publication Critical patent/WO2022259444A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/72Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables
    • G01N27/82Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws
    • G01N27/90Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws using eddy currents

Definitions

  • the present disclosure relates to an eddy current inspection method in which an electrode provided on a substrate is applied to an inspection object using an eddy current measuring device.
  • inspection methods for inspecting an electrode or the like provided on a substrate there are, for example, the first inspection method disclosed in Patent Document 1 and the second inspection method disclosed in Patent Document 2.
  • the first inspection method determines the state of the electrode lead portion based on the insulation resistance value measured between the outer surface of the metal cylinder of the electrode lead portion to be inspected and the conductive lead pin of the electrode lead portion. It is an inspection method that
  • the first inspection method inspection is possible even in a narrow space, and it is a relatively inexpensive soldering inspection method using an inspection device.
  • the second inspection method uses the leads of the lead frame bonded to the substrate as the inspection object.
  • the second inspection method includes the following first to fourth steps.
  • First step Set it in the pressurizing device, pressurize the lead of the lead frame from above, and turn on the annular lighting device.
  • An imaging device captures an image including the lead joint, and the image data obtained by this imaging is converted into a digital image signal by an A/D converter.
  • the image data corresponding to the lead joint portion is extracted by the processing device as a binarized image so as to leave a portion brighter than a certain value.
  • Fourth step Determine the lead status based on the binarized image.
  • the first inspection method described above performs the inspection itself non-destructively, there is a problem that the inspection cannot be performed unless the object to be inspected is in contact with the object.
  • the inspection object when the inspection object includes a fractured portion, there is also a problem that the presence of the fractured portion cannot be detected if the contact portion is a normal portion instead of the fractured portion. .
  • the second inspection method described above pressurizes the lead, which is the object to be inspected, during the execution of the first step, so there is a problem that the object to be inspected cannot be inspected without contact.
  • the second inspection method although it is possible in principle to detect the non-bonded state at the end of the lead, it is extremely difficult to determine the bonded state in the intermediate region of the lead. . Furthermore, the second inspection method also has the problem that it is not possible to accurately determine the broken portion of the lead.
  • the present disclosure solves the problems of the conventional inspection methods including the first and second inspection methods described above, and determines the bonding state of the electrode to the substrate without contacting the electrode to be inspected.
  • the purpose is to provide an inspection method that can
  • An eddy current inspection method of the present disclosure is an eddy current inspection method using an eddy current measurement device that generates an eddy current in an inspection object and obtains a detection signal indicating the state of the eddy current, wherein the eddy current measurement device is A probe having a built-in coil and an electrode provided on a substrate serves as the test object, and (a) a step of applying an alternating current to the coil in the probe to bring it into an alternating current applied state, and (b) and scanning the probe with the alternating current applied along the direction of formation of the electrode, wherein during the execution period of step (b), the probe is not in contact with the electrode, and the surface of the electrode is scanned.
  • step (b) is executed, the detection signal is obtained from the eddy current measuring device every moment, and (c) is obtained every moment determining the state of bonding of the electrode to the substrate based on a comparison result between the detection signal obtained and a reference level.
  • step (b) detection signals are acquired by scanning the probe along the electrode formation direction without contacting the electrodes.
  • the eddy current inspection method of the present disclosure can determine the bonding state of the electrode to the substrate when step (c) is performed without touching the electrode, which is the inspection object.
  • FIG. 1 is an explanatory diagram schematically showing an eddy current inspection method according to an embodiment of the present disclosure
  • FIG. 2 is a flow chart showing a processing procedure of the eddy current inspection method of the embodiment shown in FIG. 1
  • FIG. 4 is an explanatory diagram showing an output waveform displayed on the display of the detected voltage display PC
  • FIG. 3 is a flow chart showing a processing procedure of selection processing of a calibration reference portion shown in FIG. 2
  • FIG. FIG. 4 is an explanatory diagram schematically showing inspection contents of an eddy current preliminary inspection; It is explanatory drawing which shows typically the test
  • FIG. 6 is an explanatory diagram schematically showing an inspection method based on the basic technique.
  • FIG. 6 shows an XYZ orthogonal coordinate system.
  • an electrode lead 40 is provided on a substrate 30, and the electrode lead 40 has a plurality of ultrasonic joints 41.
  • Each of the plurality of ultrasonic bonding portions 41 is a metal foil portion that becomes a bonding region with the surface of the substrate 30 using an ultrasonic bonding method. That is, the electrode lead 40 and the surface of the substrate 30 are joined by a plurality of ultrasonic joints 41 .
  • the inspection method of the basic technology is to use the 90-degree strength tensile tester 60 to contact the electrode lead 40 and inspect the joint state of each of the plurality of ultrasonic joints 41 with the substrate 30 .
  • the 90-degree strength tension measuring instrument 60 has a clip 62 connected via a connection cable 64, and the clip 62 can grip the tip portion 40t of the electrode lead 40.
  • the tip portion 40t of the electrode lead 40 is held by the clip 62, and the strength tension measuring instrument 60 is lifted by 90 degrees along the tensile direction F6 to force the electrode lead 40 from the substrate 30. It is done by pulling it off.
  • the bonding strength measured by the 90-degree strength tension measuring device 60 is the measured bonding strength when the ultrasonic bonding portion 41 existing on the leftmost side ( ⁇ X direction side) in the drawing is peeled off.
  • the measured joint strength is equal to or higher than the reference strength, it can be determined as the normal joint 41A, and if it is less than the reference strength, it can be judged as the unjoined section 41C. It should be noted that whether or not the ultrasonic bonding portion 41 is the fracture portion 41B can be recognized by visually confirming the presence or absence of the gap 44 .
  • the measured bonding strength of each of the first and fourth ultrasonic bonding portions 41 from the left is greater than or equal to the reference strength.
  • the measured bonding strength of the third ultrasonic bonding portion 41 from the left is below the reference strength. Since there is a floating space 48 between the unbonded portion 41C and the surface of the substrate 30, the unbonded portion 41C cannot be visually confirmed from above the electrode lead 40.
  • FIG. The inspection method of the basic technique can accurately determine the unbonded portion 41C.
  • the inspection method of the basic technique uses the 90-degree strength tensile tester 60 to peel off the electrode lead 40 from the substrate 30, thereby checking the bonding state of each of the plurality of ultrasonic bonding portions 41 to the substrate 30. inspecting.
  • the combination structure of the substrate 30 and the electrode lead 40 is destroyed by contacting the electrode lead 40 and then peeling off the electrode lead 40 from the substrate 30 . Therefore, the board 30 used in the inspection cannot be used.
  • the inspection method of the basic technology has the problem that it is not possible to determine the bonding state of the electrode to the substrate without contacting the electrode. is doing.
  • the inspection method of the embodiment described below aims to solve the above-described problems.
  • FIG. 1 is an explanatory diagram schematically showing an eddy current inspection method according to an embodiment of the present disclosure.
  • An XYZ orthogonal coordinate system is shown in FIG.
  • the eddy current measuring device 10, except for the probe 1 with a built-in coil, is out of the scope of the XYZ orthogonal coordinate system.
  • the oscilloscope 7, the connection cable 8, and the detected voltage display PC 9 are also excluded from the XYZ orthogonal coordinate system.
  • an electrode lead 40 is provided on a substrate 30, and the electrode lead 40 is an object to be inspected.
  • the electrode lead 40 has a plurality of ultrasonic bonding portions 41, and is bonded to the surface of the substrate 30 at the plurality of ultrasonic bonding portions 41 by ultrasonic bonding processing.
  • the electrode lead 40 corresponds to the "electrode” provided on the substrate 30, and the plurality of ultrasonic joints 41 correspond to the "plurality of joints" provided on the electrode lead 40 separately from each other.
  • a plurality of ultrasonic bonding portions 41 are a plurality of metal foil portions allocated as bonding regions with the surface of the substrate 30 . That is, the plurality of ultrasonic bonding portions 41 are bonding regions with the surface of the substrate 30 using the ultrasonic bonding method.
  • the electrode lead 40 has a film thickness of about 1.1 mm and is formed on the surface of the substrate 30 extending in the X direction.
  • Each ultrasonic bonding portion 41 has the same size, has an area including at least a 1 mm ⁇ 1 mm square, and has a thickness of, for example, about 1.1 mm.
  • the eddy current inspection method of the present embodiment uses the eddy current measuring device 10 to inspect the bonding state of each of the plurality of ultrasonic bonding portions 41 to the surface of the substrate 30 without contacting the electrode lead 40. is.
  • the eddy current measuring device 10 includes a coil-embedded probe 1, a connection cable 2, an eddy current measuring instrument 3, a connection probe 5, and a probe holder 11 as main components.
  • the eddy current measuring device 10 is a device that obtains a detection signal indicating the state of eddy currents generated on the surface of the electrode lead 40 .
  • the coil built-in probe 1 is a probe that has a built-in coil inside. By passing an alternating current of a predetermined frequency through the built-in coil in the coil built-in probe 1, the coil built-in probe 1 is put into an alternating current applied state, and a magnetic field is generated in the built-in coil. Note that the eddy current measuring device 3 has the function of applying an alternating current.
  • the probe folder 11 holds the coil-incorporating probe 1 with the tip portion of the coil-incorporating probe 1 exposed.
  • the coil-incorporated probe 1 is connected to an eddy current measuring instrument 3 via a connection cable 2, and the eddy current measuring instrument 3 executes a predetermined operation based on the eddy current detection result detected by the coil-incorporated probe 1.
  • a detection signal is obtained.
  • the detection signal is a signal that has a positive correlation with the eddy current detection result.
  • the impedance of the built-in coil in the probe with a built-in coil 1 can be considered, and the change in the state of the eddy current can be recognized from the change in the impedance of the built-in coil. Therefore, the detection signal obtained from the eddy current measuring device 3 is a signal indicating the state of the eddy current generated on the surface of the electrode lead 40 .
  • the state of eddy currents includes the magnitude and distribution of eddy currents.
  • a detected voltage display PC (Personal Computer) 9 is provided as an external device connected to the eddy current measurement device 10, and the detected voltage display PC 9 is connected to the eddy current measurement device 10 via an oscilloscope 7 and a connection cable 8. It is connected to the probe 5 for use.
  • a detection signal obtained by the eddy current measuring instrument 3 is applied to the oscilloscope 7 via the connection probe 5 .
  • the oscilloscope 7 converts the received detection signal into a display detection signal that can be displayed on the display of the detected voltage display PC 9 .
  • This display detection signal is output to the detected voltage display PC 9 via the connection cable 8 .
  • the detection voltage display PC 9 displays the output waveform LV of the detection signal on the display based on the detection signal for display.
  • the eddy current inspection method of the present embodiment is executed using the eddy current measuring device 10 having such a configuration.
  • the eddy current inspection method of the present embodiment is an inspection method for determining the bonding state of the plurality of ultrasonic bonding portions 41 provided on the electrode lead 40 to the surface of the substrate 30 .
  • FIG. 2 is a flow chart showing the processing procedure of the eddy current inspection method of this embodiment shown in FIG.
  • the processing contents of the eddy current inspection method of the present embodiment will be described with reference to FIG.
  • step S1 an alternating current is applied to the built-in coil in the probe with a built-in coil 1 to bring it into an alternating current applied state.
  • step S2 one joint is selected from a plurality of ultrasonic joints 41, which are a plurality of joints, as a calibration reference portion (reference joint). Details of the selection of the calibration reference part will be described later.
  • the leftmost ultrasonic joint 41 of the four ultrasonic joints 41 shown in FIG. 1 is selected as the calibration reference part 41S (reference joint).
  • step S3 initial setting of the calibration reference unit 41S is performed. That is, the tip of the probe with a built-in coil 1 is arranged above the surface of the calibration standard portion 41S with a predetermined distance therebetween, and an eddy current is generated on the surface of the calibration standard portion 41S.
  • the eddy current measuring instrument 3 obtains a detection signal for calibration reference. Therefore, the calibration process is executed by pressing the calibration button provided on the eddy current measuring instrument 3, etc., and the signal value of the calibration reference detection signal is initialized to the initial set value ("0"). do.
  • the signal value "0" indicated by the calibration reference detection signal corresponding to the calibration reference section 41S becomes the reference level. That is, the reference level is the signal value of the detection signal when the probe with built-in coil 1 is arranged above the calibration reference section 41S.
  • step S3 when the signal value of the detection signal obtained from the eddy current measuring device 3 is positive, the signal value is higher than the reference level, and when the signal value of the detection signal is negative, the signal value is lower than the reference level. Become.
  • step S4 an eddy current inspection is performed on the electrode lead 40. That is, scanning SC1 is performed for scanning the coil-embedded probe 1 in the alternating current applied state along the direction of formation of the electrode lead 40 (X direction).
  • the start position of scan SC1 is above the tip of the left end of electrode lead 40, and the scanning speed of scan SC1 along the X direction is set to, for example, 1 m/s.
  • the probe 1 with a built-in coil is positioned above the surface of the electrode lead 40 at a predetermined distance without contacting the electrode lead 40 .
  • the predetermined distance is set to approximately 1 mm.
  • an eddy current is generated on the surface of the electrode lead 40 when step S4 is executed, and the probe 1 with a built-in coil can obtain eddy current detection results moment by moment. Furthermore, by the arithmetic processing of the eddy current measuring device 3, a detection signal based on the eddy current detection result is obtained moment by moment. As described above, the detection signal indicates the state of eddy currents generated on the surface of the electrode lead 40 .
  • the time period during which the tip of the probe with a built-in coil 1 passes above each of the ultrasonic joints 41 during the execution of the scan SC1 is determined by the position and size of each ultrasonic joint 41 and the scanning speed of the probe with a built-in coil 1. can be derived.
  • a plurality of detection signals corresponding to a plurality of ultrasonic joints 41 can be obtained by executing step S4.
  • step S5 ultrasonic bonding state determination processing is executed. That is, in step S5, the connection state of the electrode lead 40 to the substrate 30 is determined based on the result of comparison between the detection signal obtained every moment and the reference level.
  • step S5 based on the result of comparison between each of the plurality of detection signals corresponding to the plurality of ultrasonic bonding portions 41 and the reference level, bonding on the surface of the substrate 30 of each of the plurality of ultrasonic bonding portions 41 is performed. judging the state.
  • the determination process executed in step S5 is a process of determining to which of the normal bonded portion 41A, broken portion 41B, and unbonded portion 41C each of the plurality of ultrasonically bonded portions 41 corresponds.
  • the determination process executed in step S5 includes the following first to third determinations.
  • Second judgment If there is a second type detection signal having a significant difference from the reference level in the negative direction among the plurality of detection signals described above, the second type detection is performed among the plurality of ultrasonic joints 41.
  • the ultrasonic joint 41 corresponding to the signal is determined to be broken.
  • the ultrasonically bonded portion 41 in the fractured state is classified as the fractured portion 41B.
  • a gap 44 exists in at least a portion of the breaking portion 41B. Air gaps 44 often extend through electrode leads 40 . Therefore, the fractured portion 41B has a first distance characteristic that there is a portion with a longer distance from the coil in the coil-embedded probe 1 compared to the normal bonded portion 41A due to the presence of the air gap 44 .
  • the fractured portion 41B has a second distance characteristic that there is a region where the distance from the coil in the coil-embedded probe 1 is shorter than that of the normal joint portion 41A due to the presence of the floating space 48.
  • the eddy current measuring device 3 obtains a detection signal having a positive correlation with the eddy current detection result, the signal value of the detection signal increases in the order of the broken portion 41B, the normal bonded portion 41A, and the unbonded portion 41C. is assumed to have
  • the above-described first to third determinations can be made based on the above-described first and second distance characteristics between the normal bonded portion 41A, the broken portion 41B, and the unbonded portion 41C.
  • a detection signal having a negative correlation with the eddy current detection result may be obtained.
  • the above-described first to third determinations can be expanded as follows by using the plurality of ultrasonic joints 41 as a plurality of joints.
  • Second judgment If there is a type 2 detection signal having a significant difference from the reference level in the other of the positive direction and the negative direction among the plurality of detection signals, the type 2 detection signal among the plurality of joints The joint corresponding to the detection signal is determined to be the broken portion 41B in the broken state.
  • Third judgment If there is a third-class detection signal that does not correspond to either the first or second-class detection signals among the plurality of detection signals, it corresponds to the third-class detection signal among the plurality of joints.
  • the joint portion is determined to be the normal joint portion 41A in the normal joint state.
  • FIG. 3 is an explanatory diagram showing the output waveform LV displayed on the display of the detected voltage display PC 9.
  • FIG. An output waveform LV indicates the inspection result for the electrode lead 40 shown in FIG.
  • the frequency is set to 600 kHz and the phase is set to 65.0 deg.
  • the frequency is set to 600 kHz and the phase is set to 225.0 deg.
  • the first alternating current to the built-in coil in the coil built-in probe 1
  • the first eddy current detection result is obtained in the coil built-in probe 1
  • the second alternating current is applied to the built-in coil.
  • the second eddy current detection result is obtained in the probe 1 with a built-in coil.
  • the eddy current measuring instrument 3 obtains a detection signal by performing a predetermined calculation based on the first and second eddy current detection results.
  • a detection signal obtained by the eddy current measuring instrument 3 is applied to the oscilloscope 7 via the connection probe 5 .
  • the oscilloscope 7 converts the received detection signal into a display detection signal that can be displayed on the detected voltage display PC 9 .
  • This display detection signal is output to the detected voltage display PC 9 via the connection cable 8, and the output waveform LV shown in FIG. 3 is displayed on the display of the detected voltage display PC 9.
  • the electrode lead 40 has four ultrasonic joints 41, and the leftmost ultrasonic joint 41 is selected as the calibration reference part 41S.
  • the time period during which the tip of the probe with a built-in coil 1 passes above each of the four ultrasonic joints 41 is derived from the position and size of each ultrasonic joint 41 and the scanning speed of the probe with a built-in coil 1. be able to.
  • the four ultrasonic joints 41 will be referred to as first, second, third and fourth joints from the left.
  • the output waveforms LV in the time periods T1 to T4 are the first to fourth detection signals corresponding to the first to fourth junctions.
  • the positive direction threshold indicating a significant difference in the positive direction is assumed to be "+0.3V”
  • the negative direction threshold indicating a significant difference in the negative direction is assumed to be "-0.2V”.
  • the first joint is the calibration reference part 41S, the signal value of the output waveform LV in the time period T1 indicates 0V. Therefore, since the first detection signal is a type 3 detection signal that does not correspond to any of the type 1 and type 2 detection signals described above, the first joint is determined to be the normal joint 41A in a normal state. be.
  • the minimum signal value of the output waveform LV in time period T2 is below -0.2V. Therefore, since the second detection signal is the second type detection signal described above, the second joint portion is determined to be the broken portion 41B in the broken state.
  • the maximum signal value of the output waveform LV in time zone T3 exceeds +0.3V. Therefore, since the third detection signal is the type 1 detection signal described above, the third joint is determined to be the unjoined unjoined portion 41C.
  • the signal value of the output waveform LV in time period T4 is around 1V, but the minimum signal value exceeds -0.2V and the maximum signal value is below +0.3V. Therefore, since the fourth detection signal is a type 3 detection signal that does not correspond to any of the type 1 and type 2 detection signals, the fourth joint is determined to be the normal joint 41A in the normal state. be.
  • step S4 by scanning the probe 1 with built-in coil along the formation direction of the electrode lead 40 without contacting the electrode lead 40, the eddy current measuring device 3 A detection signal is acquired.
  • the eddy current inspection method of the present embodiment it is possible to determine the bonding state of the electrode lead 40 to the surface of the substrate 30 during execution of step S5 without touching the electrode lead 40, which is the object to be inspected. .
  • step S5 by performing the first to third determinations when step S5 is executed, for each of the plurality of ultrasonic joints 41, Which state it is can be determined without touching the electrode lead 40 .
  • FIG. 4 is a flow chart showing the processing procedure of the selection process of the calibration reference unit 41S shown in step S2 of FIG.
  • selection contents of the calibration reference unit 41S in step S2 will be described with reference to FIG.
  • step S21 a spare substrate is prepared.
  • a non-bonded preliminary electrode is arranged on the surface of the preliminary substrate.
  • the spare substrate and spare electrode are members prepared separately from the substrate 30 and the electrode lead 40 , the spare substrate is the substrate corresponding to the substrate 30 , and the spare electrode is the electrode corresponding to the electrode lead 40 . Therefore, it is desirable that the preliminary substrate be made of the same material and the same size as the substrate 30 , and that the preliminary electrode be made of the same material and the same size as the electrode lead 40 .
  • step S22 a pressing process is performed on the spare electrode. That is, at least the preliminary reference area of the preliminary electrode is pressed from above using a roller or the like. Note that the preliminary reference area is a partial area of the preliminary electrode, and is preferably set to the same extent as the ultrasonic bonding portion 41 .
  • the preliminary reference area of the preliminary electrode is conditioned, and the preliminary reference area is brought into close contact with the surface of the preliminary substrate.
  • step S23 a preliminary reference signal is obtained. That is, the coil-incorporating probe 1 is arranged so that the tip of the coil-incorporating probe 1 is located above the surface of the preliminary reference region at a predetermined distance without contacting the preliminary electrode.
  • the predetermined distance is set to approximately 1 mm.
  • step S23 when step S23 is executed, an eddy current is generated on the surface of the preliminary reference area in the preliminary electrode, and the coil-embedded probe 1 acquires the eddy current detection result. Then, a preliminary reference signal based on the eddy current detection result is obtained by arithmetic processing of the eddy current measuring device 3 .
  • this preliminary reference signal is the same as or approximate to the signal value of the detection signal of the normal joint 41A. This is because the preliminary reference area is kept in close contact with the surface of the preliminary substrate by step S22.
  • step S24 the calibration button provided on the eddy current measuring instrument 3 is pressed to perform calibration processing so that the signal value of the preliminary reference signal becomes "0".
  • the detection signal obtained from the eddy current measuring instrument 3 has the following properties.
  • a positive signal value of the detection signal implies a signal value higher than that of the preliminary reference signal, and a negative signal value of the detection signal implies a signal value lower than that of the preliminary reference signal.
  • step S25 an eddy current preliminary inspection is performed to acquire a plurality of preliminary detection signals using the electrode leads 40 on the substrate 30 as inspection objects.
  • FIG. 5 is an explanatory diagram schematically showing the inspection contents of the eddy current preliminary inspection.
  • FIG. 5 shows an XYZ orthogonal coordinate system. Note that the eddy current measuring device 10 is outside the scope of the XYZ orthogonal coordinate system. It should be noted that illustration of the substrate 30 is omitted in FIG.
  • a plurality of ultrasonic waves are applied to each of the plurality of ultrasonic bonding portions 41 of the electrode lead 40 to be inspected along the Y direction perpendicular to the formation direction (X direction) of the electrode lead 40. It scans across above each joint 41 .
  • three ultrasonic joints 41 are shown, so three scans SC11 to SC13 are performed on the three ultrasonic joints 41.
  • step S25 the scans SC11 to SC13 are sequentially performed, so that the coil-embedded probe 1 in the alternating current applied state is sequentially arranged above each of the plurality of ultrasonic joints 41.
  • FIG. During scans SC11 to SC13 the lower tip of the probe with a built-in coil 1 is positioned so that it is at a height of about 1 mm from the plurality of ultrasonic joints 41 . Therefore, eddy currents are generated on the surface of each of the plurality of ultrasonic joints 41 during the execution of scans SC11 to SC13.
  • the coil-embedded probe 1 obtains the eddy current detection results for each of the scans SC11 to SC13.
  • the eddy current detection results obtained by the scans SC11 to SC13 are referred to as first to third eddy current detection results.
  • first to third preliminary detection signals based on the first to third eddy current detection results are obtained.
  • the first to third preliminary detection signals become a plurality of preliminary detection signals.
  • step S26 the calibration reference portion 41S is determined from the plurality of ultrasonic bonding portions 41. That is, among the signal values of the plurality of preliminary detection signals obtained in step S25, the preliminary detection signal having the signal value closest to "0" calibrated in step S24 is determined as the determined preliminary detection signal.
  • the ultrasonic joint 41 corresponding to the preliminary detection signal for determination is determined as the calibration reference part 41S.
  • This calibration reference portion 41S serves as a reference joint portion.
  • the signal value closest to "0" is selected as the selected preliminary detection signal.
  • step S2 including steps S21 to S26, there is no contact with the electrode lead 40, which is the object to be inspected, from the plurality of ultrasonic joints 41 to the reference joint. can be selected.
  • the eddy current inspection method of the present embodiment can accurately obtain the reference level by selecting the highly reliable calibration reference portion 41S. It is possible to accurately determine the state of bonding to the surface of the.
  • the electrode lead 40 is bonded to the surface of the substrate 30 at a plurality of ultrasonic bonding portions 41 by ultrasonic bonding processing. That is, each of the plurality of ultrasonic bonding portions 41 becomes a bonding region with the surface of the substrate 30 .
  • the eddy current inspection method of the present embodiment if the thickness of each of the plurality of ultrasonic joints 41 is 0.01 mm or more, the bonding state of each of the plurality of ultrasonic joints 41 to the substrate 30 can be accurately determined. It has been confirmed that it can be done.
  • each of the plurality of ultrasonic joints 41 has a planar shape including a square with a side length of 1 mm in plan view, the plurality of ultrasonic joints It has been confirmed that the state of bonding of each of the substrates 41 to the substrate 30 can be accurately determined.
  • the state of bonding to the substrate 30 can be determined.
  • the scanning speed of the coil built-in probe 1 during the eddy current inspection performed in step S4 is set to 1 m/s or more.
  • step S4 since the scanning speed of the probe with built-in coil 1 executed in step S4 is 1 m/s or more, the execution time of step S4 can be kept relatively short. Inspection time can be shortened.
  • the inspection time of the eddy current inspection method of the present embodiment does not become long even for the electrode lead 40 having a relatively long formed length.
  • the first and second alternating currents having the same frequency and different phases are used as the alternating currents applied in step S1. can obtain a high detection signal.
  • the eddy current inspection method of the present embodiment has the effect of being able to accurately determine the bonding state of the electrode lead 40 to the surface of the substrate 30 .
  • the first and second alternating currents having the same frequency and different phases are used as the alternating currents applied to the probe with a built-in coil 1.
  • the first and second alternating currents have different frequencies. and phase, if at least one is different, a similar effect can be expected.
  • the eddy current measuring instrument 3 may independently obtain a first detection signal based on the first eddy current detection result and a second detection signal based on the second eddy current detection result. good.
  • the first detection signal corresponds to the first alternating current
  • the second detection signal corresponds to the second alternating current.
  • the eddy current measuring device 3 can generally obtain a detection signal based on the eddy current detection result even when using a single alternating current.
  • a manual selection process may be used to select the ultrasonically bonded portion 41 in a stable bonded state as the calibration reference portion 41S.

Abstract

The purpose of the present disclosure is to provide an inspection method capable of determining the bonding state of an electrode, which is an object to be inspected to, to a substrate without contacting the electrode. A probe (1) with a built-in coil to which an AC current is being applied is scanned along the formation direction of an electrode lead (40) which is an object to be inspected. During scanning, the probe (1) with a built-in coil is positioned above the surface of the electrode lead (40) at a predetermined distance therefrom without contacting the electrode lead (40). A plurality of detection signals corresponding to a plurality of ultrasonic joints (41) are obtained by an eddy current measuring device (3). Finally, the bonding state of the electrode lead (40) to a substrate (30) is determined based on the result of comparison between each of the plurality of detection signals and a reference level. That is, it is determined whether each of the plurality of ultrasonic joints (41) provided on the electrode lead (40) is in an unbonded state, a fractured state, or a normal state.

Description

渦電流検査方法Eddy current inspection method
 本開示は、基板上に設けられた電極を検査対象物に対し渦電流測定装置を用いて行う渦電流検査方法に関する。 The present disclosure relates to an eddy current inspection method in which an electrode provided on a substrate is applied to an inspection object using an eddy current measuring device.
 基板上に設けられた電極等を検査対象物とした検査方法として、例えば、特許文献1で開示された第1の検査方法や、特許文献2で開示された第2の検査方法がある。 As inspection methods for inspecting an electrode or the like provided on a substrate, there are, for example, the first inspection method disclosed in Patent Document 1 and the second inspection method disclosed in Patent Document 2.
 第1の検査方法は、検査対象物となる電極リード部の金属製円筒の外側表面と上記電極リード部の導電性リードピンとの間で計測した絶縁抵抗値に基づいて電極リード部の状態を判定する検査方法である。 The first inspection method determines the state of the electrode lead portion based on the insulation resistance value measured between the outer surface of the metal cylinder of the electrode lead portion to be inspected and the conductive lead pin of the electrode lead portion. It is an inspection method that
 第1の検査方法では、狭小な場所でも検査が可能で、かつ、検査装置を用いた比較的安価な半田付による検査方法となっている。 In the first inspection method, inspection is possible even in a narrow space, and it is a relatively inexpensive soldering inspection method using an inspection device.
 第2の検査方法は、基板に接合されたリードフレームのリードを検査対象物としている。第2の検査方法は以下の第1~第4のステップを含んでいる。 The second inspection method uses the leads of the lead frame bonded to the substrate as the inspection object. The second inspection method includes the following first to fourth steps.
 第1のステップ…加圧装置にセットしてリードフレームのリードを上から加圧するとともに、環状の照明装置を点灯させる。  First step... Set it in the pressurizing device, pressurize the lead of the lead frame from above, and turn on the annular lighting device.
 第2のステップ…撮像装置によって、リード接合部を含むように撮像し、この撮像により得られた画像データをA/D変換器によりディジタル画像信号に変換する。  Second step... An imaging device captures an image including the lead joint, and the image data obtained by this imaging is converted into a digital image signal by an A/D converter.
 第3のステップ…処理装置によって、画像データのうちリード接合部に対応する画像データを、一定値より明るい部分を残すように2値化した画像を抽出する。 Third step: The image data corresponding to the lead joint portion is extracted by the processing device as a binarized image so as to leave a portion brighter than a certain value.
 第4のステップ…2値化した画像に基づき、リードの状態を判定する。  Fourth step... Determine the lead status based on the binarized image.
 上述した第2の検査方法によって、接合されていないリードと接合されているリードとを精度よく区別することができる。 By the second inspection method described above, it is possible to accurately distinguish between unbonded leads and bonded leads.
特開2016-151484号公報JP 2016-151484 A 特開平10-185527号公報JP-A-10-185527
 しかしながら、上述した第1の検査方法は、検査自体は非破壊で行っているが、検査対象物に接触しなければ検査できないという問題点があった。 However, although the first inspection method described above performs the inspection itself non-destructively, there is a problem that the inspection cannot be performed unless the object to be inspected is in contact with the object.
 加えて、第1の検査方法では、検査対象物に破断部が含まれている場合、接触した箇所が破断部でなく正常部位であれば、破断部の存在を検出できないという問題点もあった。 In addition, in the first inspection method, when the inspection object includes a fractured portion, there is also a problem that the presence of the fractured portion cannot be detected if the contact portion is a normal portion instead of the fractured portion. .
 また、上述した第2の検査方法は、上記第1のステップの実行時に検査対象物であるリードを加圧しているため、検査対象物に対し非接触で検査できないという問題点があった。 In addition, the second inspection method described above pressurizes the lead, which is the object to be inspected, during the execution of the first step, so there is a problem that the object to be inspected cannot be inspected without contact.
 加えて、第2の検査方法では、原理的にリードの端部における無接合状態を検出することはできるが、リードの中間領域の接合状態を判定することは極めて困難となる問題点もあった。さらに、第2の検査方法では、リードの破断部を精度良く判別することができないという問題点もあった。 In addition, in the second inspection method, although it is possible in principle to detect the non-bonded state at the end of the lead, it is extremely difficult to determine the bonded state in the intermediate region of the lead. . Furthermore, the second inspection method also has the problem that it is not possible to accurately determine the broken portion of the lead.
 本開示では、上述した第1及び第2の検査方法を含む従来の検査方法の問題点を解決し、検査対象物となる電極と接触することなく、電極の基板への接合状態を判定することができる検査方法を提供することを目的とする。 The present disclosure solves the problems of the conventional inspection methods including the first and second inspection methods described above, and determines the bonding state of the electrode to the substrate without contacting the electrode to be inspected. The purpose is to provide an inspection method that can
 本開示の渦電流検査方法は、検査対象物に渦電流を発生させ、渦電流の状態を示す検出信号を得る渦電流測定装置を用いた渦電流検査方法であって、前記渦電流測定装置はコイルを内蔵したプローブを有し、基板上に設けられた電極が前記検査対象物となり、(a) 交流電流を前記プローブ内のコイルに印加して交流電流印加状態にするステップと、(b) 前記電極の形成方向に沿って、前記交流電流印加状態の前記プローブを走査させるステップとを備え、前記ステップ(b)の実行期間において、前記プローブは前記電極に接触することなく、前記電極の表面から所定距離隔てて上方に位置し、前記ステップ(b)の実行時に前記電極の表面に渦電流が発生し、前記渦電流測定装置より前記検出信号が時々刻々得られ、(c) 時々刻々得られる前記検出信号と基準レベルとの比較結果に基づき、前記電極の前記基板への接合状態を判定するステップをさらに備える。 An eddy current inspection method of the present disclosure is an eddy current inspection method using an eddy current measurement device that generates an eddy current in an inspection object and obtains a detection signal indicating the state of the eddy current, wherein the eddy current measurement device is A probe having a built-in coil and an electrode provided on a substrate serves as the test object, and (a) a step of applying an alternating current to the coil in the probe to bring it into an alternating current applied state, and (b) and scanning the probe with the alternating current applied along the direction of formation of the electrode, wherein during the execution period of step (b), the probe is not in contact with the electrode, and the surface of the electrode is scanned. is positioned above at a predetermined distance from, eddy current is generated on the surface of the electrode when step (b) is executed, the detection signal is obtained from the eddy current measuring device every moment, and (c) is obtained every moment determining the state of bonding of the electrode to the substrate based on a comparison result between the detection signal obtained and a reference level.
 本開示の渦電流検査方法は、ステップ(b)において、電極と接触することなく、電極の形成方向に沿ってプローブを走査させることにより、検出信号を取得している。 In the eddy current inspection method of the present disclosure, in step (b), detection signals are acquired by scanning the probe along the electrode formation direction without contacting the electrodes.
 したがって、本開示の渦電流検査方法は、検査対象物となる電極に接触することなく、ステップ(c)の実行時に電極の基板への接合状態を判定することができる。 Therefore, the eddy current inspection method of the present disclosure can determine the bonding state of the electrode to the substrate when step (c) is performed without touching the electrode, which is the inspection object.
 本開示の目的、特徴、局面、および利点は、以下の詳細な説明と添付図面とによって、より明白となる。 The objects, features, aspects and advantages of the present disclosure will become more apparent with the following detailed description and accompanying drawings.
本開示の実施の形態である渦電流検査方法を模式的に示す説明図である。1 is an explanatory diagram schematically showing an eddy current inspection method according to an embodiment of the present disclosure; FIG. 図1で示した実施の形態の渦電流検査方法の処理手順を示すフローチャートである。2 is a flow chart showing a processing procedure of the eddy current inspection method of the embodiment shown in FIG. 1; 検出電圧表示用PCのディスプレイ上に表示される出力波形を示す説明図である。FIG. 4 is an explanatory diagram showing an output waveform displayed on the display of the detected voltage display PC; 図2で示す校正基準部の選択処理の処理手順を示すフローチャートである。FIG. 3 is a flow chart showing a processing procedure of selection processing of a calibration reference portion shown in FIG. 2; FIG. 渦電流予備検査の検査内容を模式的に示す説明図である。FIG. 4 is an explanatory diagram schematically showing inspection contents of an eddy current preliminary inspection; 基本技術による検査方法を模式的に示す説明図である。It is explanatory drawing which shows typically the test|inspection method by a basic technique.
 <基本技術>
 図6は基本技術による検査方法を模式的に示す説明図である。図6にXYZ直交座標系を記している。
<Basic technology>
FIG. 6 is an explanatory diagram schematically showing an inspection method based on the basic technique. FIG. 6 shows an XYZ orthogonal coordinate system.
 同図に示すように、基板30上に電極リード40が設けられ、電極リード40は複数の超音波接合部41を有している。複数の超音波接合部41はそれぞれ超音波接合法を用いた基板30の表面との接合領域となる金属箔部分である。すなわち、複数の超音波接合部41によって電極リード40と基板30の表面とは接合されている。 As shown in the figure, an electrode lead 40 is provided on a substrate 30, and the electrode lead 40 has a plurality of ultrasonic joints 41. As shown in FIG. Each of the plurality of ultrasonic bonding portions 41 is a metal foil portion that becomes a bonding region with the surface of the substrate 30 using an ultrasonic bonding method. That is, the electrode lead 40 and the surface of the substrate 30 are joined by a plurality of ultrasonic joints 41 .
 基本技術の検査方法は、90度強度引張計測器60を用いて、電極リード40と接触して複数の超音波接合部41それぞれにおける基板30との接合状態を検査する方法である。 The inspection method of the basic technology is to use the 90-degree strength tensile tester 60 to contact the electrode lead 40 and inspect the joint state of each of the plurality of ultrasonic joints 41 with the substrate 30 .
 90度強度引張計測器60は接続ケーブル64を介して接続されるクリップ62を有しており、クリップ62にて電極リード40の先端部分40tを把持することができる。 The 90-degree strength tension measuring instrument 60 has a clip 62 connected via a connection cable 64, and the clip 62 can grip the tip portion 40t of the electrode lead 40.
 基本技術の検査方法は、クリップ62にて電極リード40の先端部分40tを把持した状態で、引張方向F6に沿って90度強度引張計測器60を上昇させて、電極リード40を基板30から強制的に引き剥がすことにより行われる。 In the inspection method of the basic technique, the tip portion 40t of the electrode lead 40 is held by the clip 62, and the strength tension measuring instrument 60 is lifted by 90 degrees along the tensile direction F6 to force the electrode lead 40 from the substrate 30. It is done by pulling it off.
 基板30及び電極リード40は図6で示すXY平面に配置されているため、引張方向F6(+Z方向)は基板30に対し90度の方向を有することになる。 Since the substrate 30 and electrode leads 40 are arranged on the XY plane shown in FIG.
 例えば、図6において、図中、最も左(-X方向側)に存在する超音波接合部41を引き剥がす際、90度強度引張計測器60で計測される接合強度が測定接合強度となる。 For example, in FIG. 6, the bonding strength measured by the 90-degree strength tension measuring device 60 is the measured bonding strength when the ultrasonic bonding portion 41 existing on the leftmost side (−X direction side) in the drawing is peeled off.
 基本技術では、測定接合強度が基準強度以上であれば、正常接合部41Aと判定し、基準強度未満であれば、未接合部41Cと判定することができる。なお、超音波接合部41が破断部41Bであるか否かは目視にて空隙44の有無を確認することにより認識できる。 In the basic technology, if the measured joint strength is equal to or higher than the reference strength, it can be determined as the normal joint 41A, and if it is less than the reference strength, it can be judged as the unjoined section 41C. It should be noted that whether or not the ultrasonic bonding portion 41 is the fracture portion 41B can be recognized by visually confirming the presence or absence of the gap 44 .
 例えば、図6に示すように、4つの超音波接合部41のうち、図中左から正常接合部41A、破断部41B、未接合部41C及び正常接合部41Aであった場合を想定する。この場合、左から1番目と4番目の超音波接合部41それぞれの測定接合強度は基準強度以上となる。 For example, as shown in FIG. 6, of the four ultrasonically bonded portions 41, from the left in the drawing, a normal bonded portion 41A, a broken portion 41B, an unbonded portion 41C, and a normal bonded portion 41A are assumed. In this case, the measured bonding strength of each of the first and fourth ultrasonic bonding portions 41 from the left is greater than or equal to the reference strength.
 一方、左から3番目の超音波接合部41の測定接合強度は基準強度を下回る。未接合部41Cは基板30の表面との間に浮き空間48が存在する状態であるため、電極リード40の上方からの目視では確認することができない。基本技術の検査方法では、未接合部41Cを正確に判別することができる。 On the other hand, the measured bonding strength of the third ultrasonic bonding portion 41 from the left is below the reference strength. Since there is a floating space 48 between the unbonded portion 41C and the surface of the substrate 30, the unbonded portion 41C cannot be visually confirmed from above the electrode lead 40. FIG. The inspection method of the basic technique can accurately determine the unbonded portion 41C.
 上述したように、基本技術の検査方法は、90度強度引張計測器60を用いて電極リード40を基板30から引き剥がすことにより、複数の超音波接合部41それぞれの基板30への接合状態を検査している。 As described above, the inspection method of the basic technique uses the 90-degree strength tensile tester 60 to peel off the electrode lead 40 from the substrate 30, thereby checking the bonding state of each of the plurality of ultrasonic bonding portions 41 to the substrate 30. inspecting.
 しかしながら、基本技術の検査方法では、電極リード40と接触し、さらに、電極リード40を基板30から引き剥がすことにより、基板30と電極リード40との組合せ構造を破壊している。このため、検査で使用した基板30は使用できない。 However, in the inspection method of the basic technology, the combination structure of the substrate 30 and the electrode lead 40 is destroyed by contacting the electrode lead 40 and then peeling off the electrode lead 40 from the substrate 30 . Therefore, the board 30 used in the inspection cannot be used.
 すなわち、従来技術として説明した第1及び第2の検査方法と同様、基本技術の検査方法は、電極と接触することなく、電極の基板への接合状態を判定することができないという問題点を有している。以下で述べる実施の形態の検査方法は、上述した問題点の解消を図ったものである。 That is, like the first and second inspection methods described as the prior art, the inspection method of the basic technology has the problem that it is not possible to determine the bonding state of the electrode to the substrate without contacting the electrode. is doing. The inspection method of the embodiment described below aims to solve the above-described problems.
 <実施の形態>
 図1は本開示の実施の形態である渦電流検査方法を模式的に示す説明図である。図1にXYZ直交座標系を記している。なお、渦電流測定装置10はコイル内蔵プローブ1を除き、XYZ直交座標系の対象外である。オシロスコープ7、接続ケーブル8及び検出電圧表示用PC9もXYZ直交座標系の対象外である。
<Embodiment>
FIG. 1 is an explanatory diagram schematically showing an eddy current inspection method according to an embodiment of the present disclosure. An XYZ orthogonal coordinate system is shown in FIG. The eddy current measuring device 10, except for the probe 1 with a built-in coil, is out of the scope of the XYZ orthogonal coordinate system. The oscilloscope 7, the connection cable 8, and the detected voltage display PC 9 are also excluded from the XYZ orthogonal coordinate system.
 同図に示すように、基板30上に電極リード40が設けられ、電極リード40が検査対象物となる。電極リード40は複数の超音波接合部41を有しており、超音波接合処理によって複数の超音波接合部41にて基板30の表面との接合がなされている。 As shown in the figure, an electrode lead 40 is provided on a substrate 30, and the electrode lead 40 is an object to be inspected. The electrode lead 40 has a plurality of ultrasonic bonding portions 41, and is bonded to the surface of the substrate 30 at the plurality of ultrasonic bonding portions 41 by ultrasonic bonding processing.
 電極リード40は基板30上に設けられた「電極」に対応し、複数の超音波接合部41は、電極リード40に互いに離散して設けられる「複数の接合部」に対応する。 The electrode lead 40 corresponds to the "electrode" provided on the substrate 30, and the plurality of ultrasonic joints 41 correspond to the "plurality of joints" provided on the electrode lead 40 separately from each other.
 複数の超音波接合部41は基板30の表面との接合領域として割り当てられた複数の金属箔部分である。すなわち、複数の超音波接合部41は超音波接合法を用いた基板30の表面との接合領域となっている。 A plurality of ultrasonic bonding portions 41 are a plurality of metal foil portions allocated as bonding regions with the surface of the substrate 30 . That is, the plurality of ultrasonic bonding portions 41 are bonding regions with the surface of the substrate 30 using the ultrasonic bonding method.
 電極リード40は膜厚が1.1mm程度であり、X方向に延びて基板30の表面上に形成されている。各超音波接合部41は同一サイズであり、1mm×1mmの正方形を少なくとも含む面積を有し、その厚みは例えば1.1mm程度である。 The electrode lead 40 has a film thickness of about 1.1 mm and is formed on the surface of the substrate 30 extending in the X direction. Each ultrasonic bonding portion 41 has the same size, has an area including at least a 1 mm×1 mm square, and has a thickness of, for example, about 1.1 mm.
 本実施の形態の渦電流検査方法は、渦電流測定装置10を用いて、電極リード40と接触することなく、複数の超音波接合部41それぞれにおける基板30の表面との接合状態を検査する方法である。 The eddy current inspection method of the present embodiment uses the eddy current measuring device 10 to inspect the bonding state of each of the plurality of ultrasonic bonding portions 41 to the surface of the substrate 30 without contacting the electrode lead 40. is.
 渦電流測定装置10は、コイル内蔵プローブ1、接続ケーブル2、渦電流測定器3、接続用プローブ5、及びプローブフォルダ11を主要構成要素として含んでいる。渦電流測定装置10は、電極リード40の表面で発生する渦電流の状態を示す検出信号を得る装置である。 The eddy current measuring device 10 includes a coil-embedded probe 1, a connection cable 2, an eddy current measuring instrument 3, a connection probe 5, and a probe holder 11 as main components. The eddy current measuring device 10 is a device that obtains a detection signal indicating the state of eddy currents generated on the surface of the electrode lead 40 .
 コイル内蔵プローブ1は内部に内蔵コイルを有するプローブである。コイル内蔵プローブ1内の内蔵コイルに所定周波数の交流電流を流すことにより、コイル内蔵プローブ1は交流電流印加状態となり、内蔵コイルに磁界が発生する。なお、交流電流の印加機能は渦電流測定器3が有している。 The coil built-in probe 1 is a probe that has a built-in coil inside. By passing an alternating current of a predetermined frequency through the built-in coil in the coil built-in probe 1, the coil built-in probe 1 is put into an alternating current applied state, and a magnetic field is generated in the built-in coil. Note that the eddy current measuring device 3 has the function of applying an alternating current.
 プローブフォルダ11は、コイル内蔵プローブ1の先端部を露出させた状態でコイル内蔵プローブ1を保持している。 The probe folder 11 holds the coil-incorporating probe 1 with the tip portion of the coil-incorporating probe 1 exposed.
 コイル内蔵プローブ1は接続ケーブル2を介して渦電流測定器3に接続されており、渦電流測定器3はコイル内蔵プローブ1によって検出された渦電流検出結果に基づき、所定の演算を実行して検出信号を得ている。検出信号は渦電流検出結果に対し正の相関を有する信号である。 The coil-incorporated probe 1 is connected to an eddy current measuring instrument 3 via a connection cable 2, and the eddy current measuring instrument 3 executes a predetermined operation based on the eddy current detection result detected by the coil-incorporated probe 1. A detection signal is obtained. The detection signal is a signal that has a positive correlation with the eddy current detection result.
 渦電流検出結果として、例えば、コイル内蔵プローブ1内の内蔵コイルのインピーダンスが考えられ、内蔵コイルのインピーダンスの変化によって渦電流の状態変化を認識することができる。したがって、渦電流測定器3より得られる検出信号は、電極リード40の表面に発生する渦電流の状態を示す信号となる。なお、渦電流の状態とは渦電流の大きさ、分布等を含んでいる。 As an eddy current detection result, for example, the impedance of the built-in coil in the probe with a built-in coil 1 can be considered, and the change in the state of the eddy current can be recognized from the change in the impedance of the built-in coil. Therefore, the detection signal obtained from the eddy current measuring device 3 is a signal indicating the state of the eddy current generated on the surface of the electrode lead 40 . The state of eddy currents includes the magnitude and distribution of eddy currents.
 渦電流測定装置10に接続される外部装置として、検出電圧表示用PC(Personal Computer)9を設け、検出電圧表示用PC9は、オシロスコープ7及び接続ケーブル8を介して、渦電流測定装置10の接続用プローブ5に接続されている。 A detected voltage display PC (Personal Computer) 9 is provided as an external device connected to the eddy current measurement device 10, and the detected voltage display PC 9 is connected to the eddy current measurement device 10 via an oscilloscope 7 and a connection cable 8. It is connected to the probe 5 for use.
 渦電流測定器3で得られた検出信号は接続用プローブ5を介してオシロスコープ7に付与される。オシロスコープ7は、受信した検出信号を検出電圧表示用PC9のディスプレイ上で表示可能な表示用検出信号に変換する。この表示用検出信号が接続ケーブル8を介して検出電圧表示用PC9に出力される。 A detection signal obtained by the eddy current measuring instrument 3 is applied to the oscilloscope 7 via the connection probe 5 . The oscilloscope 7 converts the received detection signal into a display detection signal that can be displayed on the display of the detected voltage display PC 9 . This display detection signal is output to the detected voltage display PC 9 via the connection cable 8 .
 検出電圧表示用PC9は表示用検出信号に基づき、検出信号の出力波形LVをディスプレイ上に表示する。 The detection voltage display PC 9 displays the output waveform LV of the detection signal on the display based on the detection signal for display.
 このような構成の渦電流測定装置10を用いて本実施の形態の渦電流検査方法が実行される。本実施の形態の渦電流検査方法は、電極リード40に設けられる複数の超音波接合部41の基板30の表面への接合状態を判定する検査方法である。 The eddy current inspection method of the present embodiment is executed using the eddy current measuring device 10 having such a configuration. The eddy current inspection method of the present embodiment is an inspection method for determining the bonding state of the plurality of ultrasonic bonding portions 41 provided on the electrode lead 40 to the surface of the substrate 30 .
 図2は図1で示した本実施の形態の渦電流検査方法の処理手順を示すフローチャートである。以下、図2を参照しつつ、本実施の形態の渦電流検査方法の処理内容を説明する。 FIG. 2 is a flow chart showing the processing procedure of the eddy current inspection method of this embodiment shown in FIG. Hereinafter, the processing contents of the eddy current inspection method of the present embodiment will be described with reference to FIG.
 まず、ステップS1において、交流電流をコイル内蔵プローブ1内の内蔵コイルに印加して交流電流印加状態にする。 First, in step S1, an alternating current is applied to the built-in coil in the probe with a built-in coil 1 to bring it into an alternating current applied state.
 ステップS1の後、ステップS2において、複数の接合部である複数の超音波接合部41から一の接合部を校正基準部(基準接合部)として選択する。なお、校正基準部の選択内容については後に詳述する。 After step S1, in step S2, one joint is selected from a plurality of ultrasonic joints 41, which are a plurality of joints, as a calibration reference portion (reference joint). Details of the selection of the calibration reference part will be described later.
 以下、説明の都合上、図1で示す4つの超音波接合部41のうち、最も左にある超音波接合部41が校正基準部41S(基準接合部)として選択されたと仮定する。 For convenience of explanation, it is assumed that the leftmost ultrasonic joint 41 of the four ultrasonic joints 41 shown in FIG. 1 is selected as the calibration reference part 41S (reference joint).
 ステップS2の後、ステップS3において、校正基準部41Sの初期設定を行う。すなわち、コイル内蔵プローブ1の先端を校正基準部41Sの表面から所定距離隔てて上方に配置し、校正基準部41Sの表面に渦電流を発生させる。 After step S2, in step S3, initial setting of the calibration reference unit 41S is performed. That is, the tip of the probe with a built-in coil 1 is arranged above the surface of the calibration standard portion 41S with a predetermined distance therebetween, and an eddy current is generated on the surface of the calibration standard portion 41S.
 すると、コイル内蔵プローブ1にて得られた渦電流検出結果に基づき渦電流測定器3から校正基準用検出信号が得られる。そこで、渦電流測定器3に設けられた校正用ボタンを押圧する等により校正処理を実行して、この校正基準用検出信号の信号値が初期設定値(“0”)になるように初期設定する。このように、校正基準部41Sに対応する校正基準用検出信号が示す信号値“0”が基準レベルとなる。すなわち、基準レベルは校正基準部41Sの上方にコイル内蔵プローブ1を配置した時の検出信号の信号値となる。 Then, based on the eddy current detection result obtained by the probe 1 with a built-in coil, the eddy current measuring instrument 3 obtains a detection signal for calibration reference. Therefore, the calibration process is executed by pressing the calibration button provided on the eddy current measuring instrument 3, etc., and the signal value of the calibration reference detection signal is initialized to the initial set value ("0"). do. Thus, the signal value "0" indicated by the calibration reference detection signal corresponding to the calibration reference section 41S becomes the reference level. That is, the reference level is the signal value of the detection signal when the probe with built-in coil 1 is arranged above the calibration reference section 41S.
 ステップS3の実行後において、渦電流測定器3から得られる検出信号の信号値が正の場合は基準レベルより高い信号値となり、検出信号の信号値が負の場合は基準レベルより低い信号値となる。 After execution of step S3, when the signal value of the detection signal obtained from the eddy current measuring device 3 is positive, the signal value is higher than the reference level, and when the signal value of the detection signal is negative, the signal value is lower than the reference level. Become.
 その後、ステップS4において、電極リード40に対する渦電流検査が実行される。すなわち、電極リード40の形成方向(X方向)に沿って、交流電流印加状態のコイル内蔵プローブ1を走査させる走査SC1が実行される。走査SC1の開始位置は電極リード40の左端先端部の上方であり、走査SC1のX方向に沿った走査速度は、例えば、1m/sに設定される。 After that, in step S4, an eddy current inspection is performed on the electrode lead 40. That is, scanning SC1 is performed for scanning the coil-embedded probe 1 in the alternating current applied state along the direction of formation of the electrode lead 40 (X direction). The start position of scan SC1 is above the tip of the left end of electrode lead 40, and the scanning speed of scan SC1 along the X direction is set to, for example, 1 m/s.
 ステップS4の実行期間において、コイル内蔵プローブ1は電極リード40に接触することなく、電極リード40の表面から所定距離隔てて上方に位置している。所定距離は1mm程度に設定されている。 During the execution period of step S<b>4 , the probe 1 with a built-in coil is positioned above the surface of the electrode lead 40 at a predetermined distance without contacting the electrode lead 40 . The predetermined distance is set to approximately 1 mm.
 したがって、ステップS4の実行時に電極リード40の表面に渦電流が発生し、コイル内蔵プローブ1にて渦電流検出結果が時々刻々と得られる。さらに、渦電流測定器3の演算処理によって、渦電流検出結果に基づく検出信号が時々刻々得られる。前述したように、検出信号は電極リード40の表面に発生する渦電流の状態を示している。 Therefore, an eddy current is generated on the surface of the electrode lead 40 when step S4 is executed, and the probe 1 with a built-in coil can obtain eddy current detection results moment by moment. Furthermore, by the arithmetic processing of the eddy current measuring device 3, a detection signal based on the eddy current detection result is obtained moment by moment. As described above, the detection signal indicates the state of eddy currents generated on the surface of the electrode lead 40 .
 走査SC1の実行時に、複数の超音波接合部41それぞれの上方をコイル内蔵プローブ1の先端が通過する時間帯は、各超音波接合部41の位置及びサイズと、コイル内蔵プローブ1の走査速度から導き出すことができる。 The time period during which the tip of the probe with a built-in coil 1 passes above each of the ultrasonic joints 41 during the execution of the scan SC1 is determined by the position and size of each ultrasonic joint 41 and the scanning speed of the probe with a built-in coil 1. can be derived.
 したがって、ステップS4の実行によって、複数の超音波接合部41に対応する複数の検出信号を得ることができる。 Therefore, a plurality of detection signals corresponding to a plurality of ultrasonic joints 41 can be obtained by executing step S4.
 最後に、ステップS5において超音波接合状態の判定処理を実行する。すなわち、ステップS5において、時々刻々得られる検出信号と基準レベルとの比較結果に基づき、電極リード40の基板30への接合状態を判定する。 Finally, in step S5, ultrasonic bonding state determination processing is executed. That is, in step S5, the connection state of the electrode lead 40 to the substrate 30 is determined based on the result of comparison between the detection signal obtained every moment and the reference level.
 本実施の形態では、ステップS5において、複数の超音波接合部41に対応する複数の検出信号それぞれと基準レベルとの比較結果に基づき、複数の超音波接合部41それぞれの基板30の表面における接合状態を判定している。 In this embodiment, in step S5, based on the result of comparison between each of the plurality of detection signals corresponding to the plurality of ultrasonic bonding portions 41 and the reference level, bonding on the surface of the substrate 30 of each of the plurality of ultrasonic bonding portions 41 is performed. judging the state.
 ステップS5にて実行される判定処理は、複数の超音波接合部41それぞれに対し、正常接合部41A、破断部41B及び未接合部41Cのうち、いずれに該当するかを判定する処理である。ステップS5にて実行される判定処理は以下の第1~第3の判定を含んでいる。 The determination process executed in step S5 is a process of determining to which of the normal bonded portion 41A, broken portion 41B, and unbonded portion 41C each of the plurality of ultrasonically bonded portions 41 corresponds. The determination process executed in step S5 includes the following first to third determinations.
 第1の判定…複数の超音波接合部41に対応する複数の検出信号のうち、正方向で基準レベル(“0”)と有意な差を有する第1種検出信号が存在する場合、複数の超音波接合部41のうち上記第1種検出信号に対応する超音波接合部41を未接合状態と判定する。その結果、未接合状態の超音波接合部41は未接合部41Cに分類される。 First judgment: If there is a first type detection signal having a significant difference from the reference level (“0”) in the positive direction among the plurality of detection signals corresponding to the plurality of ultrasonic bonding portions 41, the plurality of Of the ultrasonic joints 41, the ultrasonic joints 41 corresponding to the first type detection signal are determined to be in an unbonded state. As a result, the unbonded ultrasonically bonded portion 41 is classified as an unbonded portion 41C.
 第2の判定…上述した複数の検出信号のうち、負方向に前記基準レベルと有意な差を有する第2種検出信号が存在する場合、複数の超音波接合部41のうち上記第2種検出信号に対応する超音波接合部41を破断状態と判定する。その結果、破断状態の超音波接合部41は破断部41Bに分類される。 Second judgment: If there is a second type detection signal having a significant difference from the reference level in the negative direction among the plurality of detection signals described above, the second type detection is performed among the plurality of ultrasonic joints 41. The ultrasonic joint 41 corresponding to the signal is determined to be broken. As a result, the ultrasonically bonded portion 41 in the fractured state is classified as the fractured portion 41B.
 第3の判定…上述した複数の検出信号のうち、上述した第1種及び第2種検出信号のいずれにも該当しない第3種検出信号が存在する場合、複数の超音波接合部41のうち上記第3種検出信号に対応する超音波接合部41を正常状態と判定する。その結果、正常状態の超音波接合部41は正常接合部41Aに分類される。 Third determination: If there is a third-class detection signal that does not correspond to any of the above-described first-class and second-class detection signals among the plurality of detection signals described above, The ultrasonic joint 41 corresponding to the third type detection signal is determined to be in a normal state. As a result, the ultrasonic joints 41 in the normal state are classified as normal joints 41A.
 以下、第1~第3の判定によって第1種検出信号~第3種検出信号に分類できる理由について説明する。 The reason why the signals can be classified into the first to third detection signals according to the first to third determinations will be described below.
 図1に示すように、破断部41Bの少なくとも一部に空隙44が存在している。空隙44は多くの場合、電極リード40を貫通している。したがって、破断部41Bは空隙44が存在する分、正常接合部41Aと比較してコイル内蔵プローブ1内のコイルからの距離が長くなる部分が存在するという第1の距離特性を有している。 As shown in FIG. 1, a gap 44 exists in at least a portion of the breaking portion 41B. Air gaps 44 often extend through electrode leads 40 . Therefore, the fractured portion 41B has a first distance characteristic that there is a portion with a longer distance from the coil in the coil-embedded probe 1 compared to the normal bonded portion 41A due to the presence of the air gap 44 .
 図1に示すように、未接合部41Cは、基板30の表面との間に浮き空間48が存在している。したがって、破断部41Bは、浮き空間48が存在する分、正常接合部41Aと比較してコイル内蔵プローブ1内のコイルからの距離が短くなる領域が存在するという第2の距離特性を有している。 As shown in FIG. 1 , a floating space 48 exists between the unbonded portion 41C and the surface of the substrate 30 . Therefore, the fractured portion 41B has a second distance characteristic that there is a region where the distance from the coil in the coil-embedded probe 1 is shorter than that of the normal joint portion 41A due to the presence of the floating space 48. there is
 超音波接合部41からコイル内蔵プローブ1内の内蔵コイルまでの距離が近い程、コイル内蔵プローブ1にて得られる渦電流検出結果は大きくなる性質を有する。このため、渦電流測定器3が渦電流検出結果に対し正の相関を有する検出信号を得る場合、破断部41B、正常接合部41A及び未接合部41Cの順に検出信号の信号値は高くなる性質を有すると推測される。 The closer the distance from the ultrasonic joint 41 to the built-in coil in the probe with a built-in coil 1 is, the larger the eddy current detection result obtained by the probe with a built-in coil 1 becomes. Therefore, when the eddy current measuring device 3 obtains a detection signal having a positive correlation with the eddy current detection result, the signal value of the detection signal increases in the order of the broken portion 41B, the normal bonded portion 41A, and the unbonded portion 41C. is assumed to have
 したがって、正常接合部41A、破断部41B及び未接合部41C間の上述した第1及び第2の距離特性に基づき、上述した第1~第3の判定が可能となる。 Therefore, the above-described first to third determinations can be made based on the above-described first and second distance characteristics between the normal bonded portion 41A, the broken portion 41B, and the unbonded portion 41C.
 なお、渦電流測定器3が用いる演算式によっては、渦電流検出結果に対し負の相関を有する検出信号が得られる場合もある。 Depending on the arithmetic expression used by the eddy current measuring instrument 3, a detection signal having a negative correlation with the eddy current detection result may be obtained.
 この場合は、破断部41B、正常接合部41A及び未接合部41Cの順に検出信号の信号値は低くなる性質を有すると推測されるため、上述した第1及び第2の距離特性に基づき、上述した第1~第3の判定と等価な判定が可能となる。 In this case, it is presumed that the signal value of the detection signal decreases in the order of the broken portion 41B, the normal bonded portion 41A, and the unbonded portion 41C. It is possible to make judgments equivalent to the first to third judgments.
 すなわち、複数の超音波接合部41を複数の接合部として、上述した第1~第3の判定を以下のように拡張することができる。 That is, the above-described first to third determinations can be expanded as follows by using the plurality of ultrasonic joints 41 as a plurality of joints.
 第1の判定…複数の検出信号のうち、正方向及び負方向のうち一方の方向で基準レベルと有意な差を有する第1種検出信号が存在する場合、複数の接合部のうち第1種検出信号に対応する接合部を未接合状態の未接合部41Cと判定する。 First judgment: If there is a type 1 detection signal that has a significant difference from the reference level in one of the positive direction and the negative direction among the plurality of detection signals, the type 1 detection signal among the plurality of joints The joint corresponding to the detection signal is determined as the unjoined unjoined portion 41C.
 第2の判定…複数の検出信号のうち、正方向及び負方向のうち他方の方向で基準レベルと有意な差を有する第2種検出信号が存在する場合、複数の接合部のうち第2種検出信号に対応する接合部を破断状態の破断部41Bと判定する。 Second judgment: If there is a type 2 detection signal having a significant difference from the reference level in the other of the positive direction and the negative direction among the plurality of detection signals, the type 2 detection signal among the plurality of joints The joint corresponding to the detection signal is determined to be the broken portion 41B in the broken state.
 第3の判定…複数の検出信号のうち、第1及び第2種検出信号のいずれにも該当しない第3種検出信号が存在する場合、複数の接合部のうち第3種検出信号に対応する接合部を正常接合状態の正常接合部41Aと判定する。 Third judgment: If there is a third-class detection signal that does not correspond to either the first or second-class detection signals among the plurality of detection signals, it corresponds to the third-class detection signal among the plurality of joints. The joint portion is determined to be the normal joint portion 41A in the normal joint state.
 図3は検出電圧表示用PC9のディスプレイ上に表示される出力波形LVを示す説明図である。出力波形LVは図1で示した電極リード40に対する検査結果を示している。 FIG. 3 is an explanatory diagram showing the output waveform LV displayed on the display of the detected voltage display PC 9. FIG. An output waveform LV indicates the inspection result for the electrode lead 40 shown in FIG.
 図3で示す出力波形LVを得るために、コイル内蔵プローブ1内の内蔵コイルに印加する交流電流として第1及び第2の交流電流を用いている。第1の交流電流において周波数は600kHz、位相65.0degに設定されている。第2の交流電流において周波数は600kHz、位相225.0degに設定されている。  In order to obtain the output waveform LV shown in FIG. In the first alternating current, the frequency is set to 600 kHz and the phase is set to 65.0 deg. In the second AC current, the frequency is set to 600 kHz and the phase is set to 225.0 deg.
 そして、第1の交流電流をコイル内蔵プローブ1内の内蔵コイルに印加することにより、コイル内蔵プローブ1にて第1の渦電流検出結果が得られ、第2の交流電流を内蔵コイルに印加することにより、コイル内蔵プローブ1にて第2の渦電流検出結果が得られる。 Then, by applying the first alternating current to the built-in coil in the coil built-in probe 1, the first eddy current detection result is obtained in the coil built-in probe 1, and the second alternating current is applied to the built-in coil. As a result, the second eddy current detection result is obtained in the probe 1 with a built-in coil.
 渦電流測定器3は第1及び第2の渦電流検出結果に基づき所定の演算を行うことにより、検出信号を得ている。 The eddy current measuring instrument 3 obtains a detection signal by performing a predetermined calculation based on the first and second eddy current detection results.
 渦電流測定器3で得られた検出信号は接続用プローブ5を介してオシロスコープ7に付与される。オシロスコープ7は、受信した検出信号を検出電圧表示用PC9で表示可能な表示用検出信号に変換する。この表示用検出信号が接続ケーブル8を介して検出電圧表示用PC9に出力され、検出電圧表示用PC9のディスプレイ上に図3に示す出力波形LVが表示される。 A detection signal obtained by the eddy current measuring instrument 3 is applied to the oscilloscope 7 via the connection probe 5 . The oscilloscope 7 converts the received detection signal into a display detection signal that can be displayed on the detected voltage display PC 9 . This display detection signal is output to the detected voltage display PC 9 via the connection cable 8, and the output waveform LV shown in FIG. 3 is displayed on the display of the detected voltage display PC 9. FIG.
 図1に示すように、電極リード40は4つの超音波接合部41を有しており、最も左の超音波接合部41が校正基準部41Sに選択されている。 As shown in FIG. 1, the electrode lead 40 has four ultrasonic joints 41, and the leftmost ultrasonic joint 41 is selected as the calibration reference part 41S.
 前述したように、4つの超音波接合部41それぞれの上方をコイル内蔵プローブ1の先端が通過する時間帯は、各超音波接合部41の位置及びサイズと、コイル内蔵プローブ1の走査速度から導き出すことができる。以下、説明の都合上、4つの超音波接合部41を左から第1、第2、第3及び第4の接合部と呼ぶ。 As described above, the time period during which the tip of the probe with a built-in coil 1 passes above each of the four ultrasonic joints 41 is derived from the position and size of each ultrasonic joint 41 and the scanning speed of the probe with a built-in coil 1. be able to. Hereinafter, for convenience of explanation, the four ultrasonic joints 41 will be referred to as first, second, third and fourth joints from the left.
 図3に示すように、時間帯T1~T4における出力波形LVが第1~第4の接合部に対応する第1~第4の検出信号となる。ここで、正方向の有意な差を示す正方向閾値を「+0.3V」とし、負方向の有意な差を示す負方向閾値を「-0.2V」とする。 As shown in FIG. 3, the output waveforms LV in the time periods T1 to T4 are the first to fourth detection signals corresponding to the first to fourth junctions. Here, the positive direction threshold indicating a significant difference in the positive direction is assumed to be "+0.3V", and the negative direction threshold indicating a significant difference in the negative direction is assumed to be "-0.2V".
 第1の接合部は校正基準部41Sであるため、時間帯T1における出力波形LVの信号値は0Vを示している。したがって、第1の検出信号は上述した第1種及び第2種検出信号のいずれにも該当しない第3種検出信号となるため、第1の接合部は正常状態の正常接合部41Aと判定される。  Since the first joint is the calibration reference part 41S, the signal value of the output waveform LV in the time period T1 indicates 0V. Therefore, since the first detection signal is a type 3 detection signal that does not correspond to any of the type 1 and type 2 detection signals described above, the first joint is determined to be the normal joint 41A in a normal state. be.
 時間帯T2における出力波形LVの最小信号値が-0.2Vを下回っている。したがって、第2の検出信号は上述した第2種検出信号となるため、第2の接合部は破断状態の破断部41Bと判定される。 The minimum signal value of the output waveform LV in time period T2 is below -0.2V. Therefore, since the second detection signal is the second type detection signal described above, the second joint portion is determined to be the broken portion 41B in the broken state.
 時間帯T3における出力波形LVは最大信号値が+0.3Vを上回っている。したがって、第3の検出信号は上述した第1種検出信号となるため、第3の接合部は未接合状態の未接合部41Cと判定される。 The maximum signal value of the output waveform LV in time zone T3 exceeds +0.3V. Therefore, since the third detection signal is the type 1 detection signal described above, the third joint is determined to be the unjoined unjoined portion 41C.
 時間帯T4における出力波形LVの信号値は1V前後を示しているが、最小信号値が-0.2Vを上回り、最大信号値が+0.3Vを下回っている。したがって、第4の検出信号は上述した第1種及び第2種検出信号のいずれにも該当しない第3種検出信号となるため、第4の接合部は正常状態の正常接合部41Aと判定される。 The signal value of the output waveform LV in time period T4 is around 1V, but the minimum signal value exceeds -0.2V and the maximum signal value is below +0.3V. Therefore, since the fourth detection signal is a type 3 detection signal that does not correspond to any of the type 1 and type 2 detection signals, the fourth joint is determined to be the normal joint 41A in the normal state. be.
 本実施の形態の渦電流検査方法は、ステップS4において、電極リード40と接触することなく、電極リード40の形成方向に沿って、コイル内蔵プローブ1を走査させることにより、渦電流測定器3から検出信号を取得している。 In the eddy current inspection method of the present embodiment, in step S4, by scanning the probe 1 with built-in coil along the formation direction of the electrode lead 40 without contacting the electrode lead 40, the eddy current measuring device 3 A detection signal is acquired.
 したがって、本実施の形態の渦電流検査方法は、検査対象物となる電極リード40に接触することなく、ステップS5の実行時に電極リード40の基板30の表面への接合状態を判定することができる。 Therefore, in the eddy current inspection method of the present embodiment, it is possible to determine the bonding state of the electrode lead 40 to the surface of the substrate 30 during execution of step S5 without touching the electrode lead 40, which is the object to be inspected. .
 本実施の形態の渦電流検査方法は、ステップS5の実行時に第1~第3の判定を行うことにより、複数の超音波接合部41それぞれに対し、未接合状態、破断状態及び正常状態のうちいずれの状態であるかを、電極リード40に接触することなく判定することができる。 In the eddy current inspection method of the present embodiment, by performing the first to third determinations when step S5 is executed, for each of the plurality of ultrasonic joints 41, Which state it is can be determined without touching the electrode lead 40 .
 図4は図2のステップS2で示した校正基準部41Sの選択処理の処理手順を示すフローチャートである。以下、図4を参照しつつ、ステップS2における校正基準部41Sの選択内容を説明する。 FIG. 4 is a flow chart showing the processing procedure of the selection process of the calibration reference unit 41S shown in step S2 of FIG. Hereinafter, selection contents of the calibration reference unit 41S in step S2 will be described with reference to FIG.
 まず、ステップS21において、予備基板を準備する。予備基板の表面上には無接合状態の予備電極が配置されている。 First, in step S21, a spare substrate is prepared. A non-bonded preliminary electrode is arranged on the surface of the preliminary substrate.
 予備基板及び予備電極は基板30及び電極リード40とは別に準備された部材であり、予備基板は基板30に対応する基板であり、予備電極は電極リード40に対応する電極である。したがって、予備基板は基板30と同じ材質、同じサイズで構成されることが望ましく、予備電極は電極リード40と同じ材質、同じサイズで構成されることが望ましい。 The spare substrate and spare electrode are members prepared separately from the substrate 30 and the electrode lead 40 , the spare substrate is the substrate corresponding to the substrate 30 , and the spare electrode is the electrode corresponding to the electrode lead 40 . Therefore, it is desirable that the preliminary substrate be made of the same material and the same size as the substrate 30 , and that the preliminary electrode be made of the same material and the same size as the electrode lead 40 .
 次に、ステップS22において予備電極に対する押圧処理を実行する。すなわち、予備電極における少なくとも予備基準領域を上部からローラ等を用いて押圧する。なお、予備基準領域は予備電極の一部領域であり、超音波接合箇所41と同程度の領域に設定することが望ましい。 Next, in step S22, a pressing process is performed on the spare electrode. That is, at least the preliminary reference area of the preliminary electrode is pressed from above using a roller or the like. Note that the preliminary reference area is a partial area of the preliminary electrode, and is preferably set to the same extent as the ultrasonic bonding portion 41 .
 その結果、予備電極の予備基準領域は慣らされ、予備基準領域は予備基板の表面に密着した状態になる。なお、予備基準領域の予備基板の表面への密着度を高めるべく、予備電極の全領域に対し押圧処理を実行することが望ましい。 As a result, the preliminary reference area of the preliminary electrode is conditioned, and the preliminary reference area is brought into close contact with the surface of the preliminary substrate. In order to increase the degree of adhesion of the preliminary reference area to the surface of the preliminary substrate, it is desirable to perform the pressing process on the entire area of the preliminary electrode.
 続いて、ステップS23において予備基準信号を取得する。すなわち、予備電極に接触することなく、予備基準領域の表面から所定距離隔てて上方にコイル内蔵プローブ1の先端が位置するように、コイル内蔵プローブ1を配置する。所定距離は1mm程度に設定される。 Then, in step S23, a preliminary reference signal is obtained. That is, the coil-incorporating probe 1 is arranged so that the tip of the coil-incorporating probe 1 is located above the surface of the preliminary reference region at a predetermined distance without contacting the preliminary electrode. The predetermined distance is set to approximately 1 mm.
 したがって、ステップS23の実行時に予備電極における予備基準領域の表面に渦電流が発生し、コイル内蔵プローブ1にて渦電流検出結果が取得される。そして、渦電流測定器3の演算処理によって渦電流検出結果に基づく予備基準信号が得られる。 Therefore, when step S23 is executed, an eddy current is generated on the surface of the preliminary reference area in the preliminary electrode, and the coil-embedded probe 1 acquires the eddy current detection result. Then, a preliminary reference signal based on the eddy current detection result is obtained by arithmetic processing of the eddy current measuring device 3 .
 この予備基準信号の信号値は、正常接合部41Aの検出信号の信号値と同一または近似値をとることが推測される。なぜなら、ステップS22によって予備基準領域は予備基板の表面に密着した状態にされているからである。 It is presumed that the signal value of this preliminary reference signal is the same as or approximate to the signal value of the detection signal of the normal joint 41A. This is because the preliminary reference area is kept in close contact with the surface of the preliminary substrate by step S22.
 ステップS23の実行後、ステップS24にて、渦電流測定器3に設けられた校正ボタンを押し、予備基準信号の信号値が“0”となるように校正処理を行う。 After executing step S23, in step S24, the calibration button provided on the eddy current measuring instrument 3 is pressed to perform calibration processing so that the signal value of the preliminary reference signal becomes "0".
 上述した校正処理後において、渦電流測定器3から得られる検出信号は以下の性質を有する。検出信号の信号値が正の場合、予備基準信号の信号値より高い信号値を意味し、検出信号の信号値が負の場合、予備基準信号の信号値より低い信号値を意味する。 After the calibration process described above, the detection signal obtained from the eddy current measuring instrument 3 has the following properties. A positive signal value of the detection signal implies a signal value higher than that of the preliminary reference signal, and a negative signal value of the detection signal implies a signal value lower than that of the preliminary reference signal.
 次に、ステップS25において、基板30上の電極リード40を検査対象物として、複数の予備検出信号を取得する渦電流予備検査を実行する。 Next, in step S25, an eddy current preliminary inspection is performed to acquire a plurality of preliminary detection signals using the electrode leads 40 on the substrate 30 as inspection objects.
 図5は渦電流予備検査の検査内容を模式的に示す説明図である。図5にXYZ直交座標系を記している。なお、渦電流測定装置10はXYZ直交座標系の対象外である。なお、図5では基板30の図示を省略している。 Fig. 5 is an explanatory diagram schematically showing the inspection contents of the eddy current preliminary inspection. FIG. 5 shows an XYZ orthogonal coordinate system. Note that the eddy current measuring device 10 is outside the scope of the XYZ orthogonal coordinate system. It should be noted that illustration of the substrate 30 is omitted in FIG.
 同図に示すように、検査対象物となる電極リード40の複数の超音波接合部41それぞれに対し、電極リード40の形成方向(X方向)と垂直なY方向に沿って、複数の超音波接合部41それぞれの上方を横切るように走査する。図5で示す例では、3つの超音波接合部41が示されているため、3つの超音波接合部41に対し3回の走査SC11~SC13が行われる。 As shown in the figure, a plurality of ultrasonic waves are applied to each of the plurality of ultrasonic bonding portions 41 of the electrode lead 40 to be inspected along the Y direction perpendicular to the formation direction (X direction) of the electrode lead 40. It scans across above each joint 41 . In the example shown in FIG. 5, three ultrasonic joints 41 are shown, so three scans SC11 to SC13 are performed on the three ultrasonic joints 41. FIG.
 このように、ステップS25において、走査SC11~SC13が順次実行されることにより、交流電流印加状態のコイル内蔵プローブ1が複数の超音波接合部41それぞれの上方に順次配置される。走査SC11~SC13の際、コイル内蔵プローブ1の下方先端部が複数の超音波接合部41から、1mm程度の高さになるように位置設定される。したがって、走査SC11~SC13の実行時に複数の超音波接合部41それぞれの表面に渦電流が発生する。 As described above, in step S25, the scans SC11 to SC13 are sequentially performed, so that the coil-embedded probe 1 in the alternating current applied state is sequentially arranged above each of the plurality of ultrasonic joints 41. FIG. During scans SC11 to SC13, the lower tip of the probe with a built-in coil 1 is positioned so that it is at a height of about 1 mm from the plurality of ultrasonic joints 41 . Therefore, eddy currents are generated on the surface of each of the plurality of ultrasonic joints 41 during the execution of scans SC11 to SC13.
 その後、コイル内蔵プローブ1にて渦電流検出結果が走査SC11~SC13毎に得られる。ここで、説明の都合上、走査SC11~SC13で得られる渦電流検出結果を第1~第3の渦電流検出結果と称する。 After that, the coil-embedded probe 1 obtains the eddy current detection results for each of the scans SC11 to SC13. Here, for convenience of explanation, the eddy current detection results obtained by the scans SC11 to SC13 are referred to as first to third eddy current detection results.
 さらに、渦電流測定器3の演算処理によって、第1~第3の渦電流検出結果に基づく第1~第3の予備検出信号が得られる。第1~第3の予備検出信号が複数の予備検出信号となる。 Furthermore, by the arithmetic processing of the eddy current measuring device 3, first to third preliminary detection signals based on the first to third eddy current detection results are obtained. The first to third preliminary detection signals become a plurality of preliminary detection signals.
 最後に、ステップS26において、複数の超音波接合部41から校正基準部41Sを決定する。すなわち、ステップS25で得られた複数の予備検出信号の信号値うち、ステップS24で校正された“0”に最も近い信号値を有する予備検出信号を決定予備検出信号として決定する。 Finally, in step S26, the calibration reference portion 41S is determined from the plurality of ultrasonic bonding portions 41. That is, among the signal values of the plurality of preliminary detection signals obtained in step S25, the preliminary detection signal having the signal value closest to "0" calibrated in step S24 is determined as the determined preliminary detection signal.
 その後、複数の超音波接合部41のうち上記決定予備検出信号に対応する超音波接合部41を校正基準部41Sとして決定する。この校正基準部41Sが基準接合部となる。このように、ステップS21~S26を含むステップS2を実行することにより、複数の超音波接合部41から一の校正基準部41Sを選択することができる。 After that, among the plurality of ultrasonic joints 41, the ultrasonic joint 41 corresponding to the preliminary detection signal for determination is determined as the calibration reference part 41S. This calibration reference portion 41S serves as a reference joint portion. By executing step S2 including steps S21 to S26 in this manner, one calibration reference portion 41S can be selected from the plurality of ultrasonic bonding portions 41. FIG.
 なお、図5で示す例では、走査SC11~SC13で得られた第1~第3の予備検出信号のうち、“0”に最も近い信号値が選択予備検出信号として選択される。 In the example shown in FIG. 5, among the first to third preliminary detection signals obtained by scanning SC11 to SC13, the signal value closest to "0" is selected as the selected preliminary detection signal.
 本実施の形態の渦電流検査方法は、ステップS21~S26を含むステップS2を実行することにより、検査対象物となる電極リード40と接触することなく、複数の超音波接合部41から基準接合部となる校正基準部41Sを選択することができる。 In the eddy current inspection method of the present embodiment, by executing step S2 including steps S21 to S26, there is no contact with the electrode lead 40, which is the object to be inspected, from the plurality of ultrasonic joints 41 to the reference joint. can be selected.
 その結果、本実施の形態の渦電流検査方法は、信頼性の高い校正基準部41Sを選択することにより、基準レベルを精度良く得ることができるため、複数の超音波接合部41それぞれの基板30の表面への接合状態を精度良く判定することができる。 As a result, the eddy current inspection method of the present embodiment can accurately obtain the reference level by selecting the highly reliable calibration reference portion 41S. It is possible to accurately determine the state of bonding to the surface of the.
 電極リード40は、超音波接合処理によって複数の超音波接合部41にて基板30の表面との接合がなされている。すなわち、複数の超音波接合部41はそれぞれ基板30の表面との接合領域となる。 The electrode lead 40 is bonded to the surface of the substrate 30 at a plurality of ultrasonic bonding portions 41 by ultrasonic bonding processing. That is, each of the plurality of ultrasonic bonding portions 41 becomes a bonding region with the surface of the substrate 30 .
 本実施の形態の渦電流検査方法に関し、複数の超音波接合部41それぞれの厚さが0.01mm以上であれば、複数の超音波接合部41それぞれの基板30への接合状態を精度良く判定することができることが確認されている。 Regarding the eddy current inspection method of the present embodiment, if the thickness of each of the plurality of ultrasonic joints 41 is 0.01 mm or more, the bonding state of each of the plurality of ultrasonic joints 41 to the substrate 30 can be accurately determined. It has been confirmed that it can be done.
 したがって、本実施の形態の渦電流検査方法によれば、例えば、各々が0.11mm程度の比較的薄い膜厚を有する複数の超音波接合部41に対しても、基板30の表面への接合状態を判定することができる。 Therefore, according to the eddy current inspection method of the present embodiment, for example, even for a plurality of ultrasonic bonding portions 41 each having a relatively thin film thickness of about 0.11 mm, bonding to the surface of the substrate 30 status can be determined.
 本実施の形態の渦電流検査方法に関し、複数の超音波接合部41がそれぞれ平面視して、一辺の長さが1mmの正方形を含む平面形状を有しておれば、複数の超音波接合部41それぞれの基板30への接合状態を精度良く判定することができることが確認されている。 Regarding the eddy current inspection method of the present embodiment, if each of the plurality of ultrasonic joints 41 has a planar shape including a square with a side length of 1 mm in plan view, the plurality of ultrasonic joints It has been confirmed that the state of bonding of each of the substrates 41 to the substrate 30 can be accurately determined.
 したがって、本実施の形態の渦電流検査方法によれば、例えば、各々が一辺の長さが1mmの正方形程度の平面形状の複数の超音波接合部41に対しても、基板30への接合状態を判定することができる。 Therefore, according to the eddy current inspection method of the present embodiment, for example, even for a plurality of ultrasonic bonding portions 41 each having a planar shape of about a square with a side length of 1 mm, the state of bonding to the substrate 30 can be determined.
 本実施の形態の渦電流検査方法は、ステップS4で実行される渦電流検査実行時のコイル内蔵プローブ1の走査速度は、1m/s以上に設定している。 In the eddy current inspection method of the present embodiment, the scanning speed of the coil built-in probe 1 during the eddy current inspection performed in step S4 is set to 1 m/s or more.
 したがって、本実施の形態の渦電流検査方法によれば、ステップS4で実行されるコイル内蔵プローブ1の走査速度は1m/s以上であるため、ステップS4の実行時間を比較的短時間に抑えて検査時間の短縮化を図ることができる。 Therefore, according to the eddy current inspection method of the present embodiment, since the scanning speed of the probe with built-in coil 1 executed in step S4 is 1 m/s or more, the execution time of step S4 can be kept relatively short. Inspection time can be shortened.
 すなわち、比較的長い形成長を有する電極リード40に対しても、本実施の形態の渦電流検査方法の検査時間が長期化することはない。 That is, the inspection time of the eddy current inspection method of the present embodiment does not become long even for the electrode lead 40 having a relatively long formed length.
 さらに、本実施の形態の渦電流検査方法は、ステップS1で印加される交流電流として、周波数が同一で位相が異なる第1及び第2の交流電流を用いることにより、ステップS4にて、より精度の高い検出信号を得ることができる。 Furthermore, in the eddy current inspection method of the present embodiment, the first and second alternating currents having the same frequency and different phases are used as the alternating currents applied in step S1. can obtain a high detection signal.
 その結果、本実施の形態の渦電流検査方法は、精度良く電極リード40の基板30の表面への接合状態を判定することができる効果を奏する。 As a result, the eddy current inspection method of the present embodiment has the effect of being able to accurately determine the bonding state of the electrode lead 40 to the surface of the substrate 30 .
 <その他>
 なお、上述した実施の形態では、コイル内蔵プローブ1に印加する交流電流として、周波数が同一で位相が異なる第1及び第2の交流電流を用いたが、第1及び第2の交流電流は周波数及び位相のうち、少なくとも一つが異なれば同様な効果が期待できる。
<Others>
In the above-described embodiment, the first and second alternating currents having the same frequency and different phases are used as the alternating currents applied to the probe with a built-in coil 1. However, the first and second alternating currents have different frequencies. and phase, if at least one is different, a similar effect can be expected.
 さらに、渦電流測定器3は、第1の渦電流検出結果に基づく第1の検出信号と、第2の渦電流検出結果に基づく第2の検出信号とを互いに独立して得るようにしても良い。第1の検出信号が第1の交流電流に対応し、第2の検出信号が第2の交流電流に対応する。 Furthermore, the eddy current measuring instrument 3 may independently obtain a first detection signal based on the first eddy current detection result and a second detection signal based on the second eddy current detection result. good. The first detection signal corresponds to the first alternating current, and the second detection signal corresponds to the second alternating current.
 この場合、2つの出力波形LVが得られることになるため、図1に示すように、接続用プローブ5として、互いに独立した2つのプローブ5a及び5bを用いることが望ましい。 In this case, two output waveforms LV are obtained, so it is desirable to use two independent probes 5a and 5b as the connection probes 5, as shown in FIG.
 また、ステップS1で印加される交流電流として、単一の交流電流を用いても、電極リード40の基板30の表面への接合状態を判定することができる効果が期待できる。なぜなら、一般的に渦電流測定器3は単一の交流電流を用いても、渦電流検出結果に基づく検出信号を得ることができるからである。 Also, even if a single alternating current is used as the alternating current applied in step S1, the effect of being able to determine the bonding state of the electrode lead 40 to the surface of the substrate 30 can be expected. This is because the eddy current measuring device 3 can generally obtain a detection signal based on the eddy current detection result even when using a single alternating current.
 すなわち、ステップS1で印加される交流電流として単一の交流電流を用いても、正常接合部41A、破断部41B及び未接合部41C間の上述した第1及び第2の距離特性に基づき、上述した第1~第3の判定と同様な判定が可能である。 That is, even if a single alternating current is used as the alternating current applied in step S1, the above-mentioned Similar determinations to the first to third determinations described above are possible.
 また、図2で示したステップS2の校正基準部41Sの選択処理として図4で示す処理に代えて、複数の超音波接合部41それぞれの近傍領域を手動で持ち上げ、複数の超音波接合部41のうち、安定した接合状態の超音波接合部41を校正基準部41Sとして選択する手動選択処理を用いても良い。 Further, instead of the process shown in FIG. 4 as the selection process of the calibration reference part 41S in step S2 shown in FIG. A manual selection process may be used to select the ultrasonically bonded portion 41 in a stable bonded state as the calibration reference portion 41S.
 ただし、手動選択処理を用いる場合、電極リード40と接触する必要がある。さらに、上述した手動選択処理は人手による主観的な処理であるため、校正基準部41Sの選択精度も高いとは言えない。したがって、図2で示した校正基準部41Sの選択処理として図4で示す処理を実行することが望ましい。 However, when using manual selection processing, it is necessary to contact the electrode lead 40 . Furthermore, since the manual selection process described above is a manual and subjective process, the accuracy of selection of the calibration reference unit 41S cannot be said to be high. Therefore, it is desirable to execute the process shown in FIG. 4 as the selection process for the calibration reference unit 41S shown in FIG.
 本開示は詳細に説明されたが、上記した説明は、すべての局面において、例示であって、本開示がそれに限定されるものではない。例示されていない無数の変形例が、本開示の範囲から外れることなく想定され得るものと解される。 Although the present disclosure has been described in detail, the above description is illustrative in all aspects, and the present disclosure is not limited thereto. It is understood that numerous variations not illustrated can be envisioned without departing from the scope of the present disclosure.
 1 コイル内蔵プローブ
 3 渦電流測定器
 9 検出電圧表示用PC
 10 渦電流測定装置
 30 基板
 40 電極リード
 41 超音波接合部
 41A 正常接合部
 41B 破断部
 41C 未接合部
 41S 校正基準部
1 probe with built-in coil 3 eddy current measuring device 9 PC for displaying detected voltage
REFERENCE SIGNS LIST 10 Eddy current measuring device 30 Substrate 40 Electrode lead 41 Ultrasonic joint 41A Normal joint 41B Broken portion 41C Unjoined portion 41S Calibration reference portion

Claims (7)

  1.  検査対象物に渦電流を発生させ、渦電流の状態を示す検出信号を得る渦電流測定装置を用いた渦電流検査方法であって、前記渦電流測定装置はコイルを内蔵したプローブを有し、基板上に設けられた電極が前記検査対象物となり、
     (a) 交流電流を前記プローブ内のコイルに印加して交流電流印加状態にするステップと、
     (b) 前記電極の形成方向に沿って、前記交流電流印加状態の前記プローブを走査させるステップとを備え、前記ステップ(b)の実行期間において、前記プローブは前記電極に接触することなく、前記電極の表面から所定距離隔てて上方に位置し、前記ステップ(b)の実行時に前記電極の表面に渦電流が発生し、前記渦電流測定装置より前記検出信号が時々刻々得られ、
     (c) 時々刻々得られる前記検出信号と基準レベルとの比較結果に基づき、前記電極の前記基板への接合状態を判定するステップをさらに備える、
    を備える渦電流検査方法。
    An eddy current inspection method using an eddy current measuring device for generating an eddy current in an object to be inspected and obtaining a detection signal indicating the state of the eddy current, the eddy current measuring device having a probe with a built-in coil, The electrode provided on the substrate is the object to be inspected,
    (a) applying an alternating current to a coil in the probe to bring it into an alternating current applied state;
    (b) scanning the probe with the alternating current applied along the direction in which the electrodes are formed; is positioned above the surface of the electrode at a predetermined distance, eddy currents are generated on the surface of the electrode when step (b) is executed, and the detection signal is obtained from the eddy current measuring device every moment,
    (c) further comprising a step of judging the bonding state of the electrode to the substrate based on the result of comparison between the detection signal and the reference level obtained from time to time;
    An eddy current inspection method comprising:
  2.  請求項1記載の渦電流検査方法であって、
     前記電極は互いに離散した複数の接合部を有し、前記複数の接合部は前記基板の表面との接合領域として割り当てられており、
     前記渦電流検査方法は、
     (d) 前記ステップ(a)の後、前記ステップ(b)の前に実行され、前記複数の接合部から一の接合部を基準接合部として選択するステップをさらに備え、
     前記基準レベルは前記基準接合部の上方に前記プローブを配置した時の前記検出信号の信号値であり、
     前記ステップ(b)の実行時に前記複数の接合部に対応して複数の検出信号が得られ、
     前記ステップ(c)は、
     (c-1) 前記複数の検出信号のうち、正方向及び負方向のうち一方の方向で前記基準レベルと有意な差を有する第1種検出信号が存在する場合、前記複数の接合部のうち前記第1種検出信号に対応する接合部を未接合状態と判定し、
     (c-2) 前記複数の検出信号のうち、正方向及び負方向のうち他方の方向で前記基準レベルと有意な差を有する第2種検出信号が存在する場合、前記複数の接合部のうち前記第2種検出信号に対応する接合部を破断状態と判定し、
     (c-3) 前記複数の検出信号のうち、前記第1及び第2種検出信号のいずれにも該当しない第3種検出信号が存在する場合、前記複数の接合部のうち前記第3種検出信号に対応する接合部を正常状態と判定する、
    渦電流検査方法。
    The eddy current inspection method according to claim 1,
    wherein the electrode has a plurality of joints spaced apart from each other, the plurality of joints being allocated as a joint area with the surface of the substrate;
    The eddy current inspection method includes:
    (d) performing after step (a) and before step (b), further comprising selecting a joint from the plurality of joints as a reference joint;
    the reference level is a signal value of the detection signal when the probe is placed above the reference junction;
    obtaining a plurality of detection signals corresponding to the plurality of junctions when performing step (b);
    The step (c) includes
    (c-1) when there is a type 1 detection signal having a significant difference from the reference level in one of the positive direction and the negative direction among the plurality of detection signals, determining that the joint corresponding to the type 1 detection signal is in an unjoined state;
    (c-2) If, among the plurality of detection signals, there is a type 2 detection signal having a significant difference from the reference level in the other of the positive direction and the negative direction, Determining that the joint corresponding to the second type detection signal is in a broken state,
    (c-3) When there is a third-class detection signal that does not correspond to any of the first and second-class detection signals among the plurality of detection signals, the third-class detection is performed among the plurality of joints. determining that the junction corresponding to the signal is in a normal state;
    Eddy current inspection method.
  3.  請求項2記載の渦電流検査方法であって、
     前記ステップ(d) は、
     (d-1) 表面上に無接合状態の予備電極が配置された予備基板を準備するステップと、
     (d-2) 前記予備電極における予備基準領域を上部から押圧し、前記予備基準領域を前記予備基板の表面に密着させるステップと、
     (d-3) 前記交流電流印加状態の前記プローブを前記予備電極の前記予備基準領域の上方に配置するステップとを含み、前記ステップ(d-3)の実行時に前記予備基準領域の表面に渦電流が発生し、前記渦電流測定装置より予備基準信号が得られ、
     (d-4) 前記交流電流印加状態の前記プローブを前記複数の接合部の上方に順次配置するステップをさらに含み、前記ステップ(d-4)の実行時に前記複数の接合部の表面に渦電流が発生し、前記渦電流測定装置より前記複数の接合部に対応する複数の予備検出信号が得られ、
     (d-5) 前記複数の予備検出信号のうち、前記予備基準信号に最も近い信号値を有する信号を決定予備検出信号と判定し、前記複数の接合部のうち前記決定予備検出信号に対応する接合部を前記基準接合部として決定するステップをさらに含む、
    渦電流検査方法。
    The eddy current inspection method according to claim 2,
    The step (d) includes
    (d-1) preparing a preliminary substrate having an unbonded preliminary electrode disposed thereon;
    (d-2) pressing the preliminary reference area of the preliminary electrode from above to bring the preliminary reference area into close contact with the surface of the preliminary substrate;
    (d-3) placing the probe to which the alternating current is applied above the preliminary reference region of the preliminary electrode, wherein the surface of the preliminary reference region is swirled when step (d-3) is performed; a current is generated and a preliminary reference signal is obtained from the eddy current measuring device;
    (d-4) further comprising the step of sequentially arranging the probes to which the alternating current is applied above the plurality of joints, wherein eddy currents are generated on the surfaces of the plurality of joints when step (d-4) is performed; is generated, a plurality of preliminary detection signals corresponding to the plurality of joints are obtained from the eddy current measuring device,
    (d-5) determining, among the plurality of preliminary detection signals, a signal having a signal value closest to the preliminary reference signal as a determined preliminary detection signal, and corresponding to the determined preliminary detection signal among the plurality of junctions; further comprising determining a junction as the reference junction;
    Eddy current inspection method.
  4.  請求項2または請求項3記載の渦電流検査方法であって、
     前記複数の接合部は超音波接合法を用いた前記基板の表面との接合領域であり、
     前記複数の接合部それぞれの厚さは0.01mm以上である、
    渦電流検査方法。
    The eddy current inspection method according to claim 2 or 3,
    The plurality of bonding portions are bonding regions with the surface of the substrate using an ultrasonic bonding method,
    The thickness of each of the plurality of joints is 0.01 mm or more,
    Eddy current inspection method.
  5.  請求項2から請求項4のうち、いずれか1項に記載の渦電流検査方法であって、
     前記複数の接合部それぞれ平面視して、一辺の長さが1mmの正方形を含む平面形状を有する、
    渦電流検査方法。
    The eddy current inspection method according to any one of claims 2 to 4,
    Each of the plurality of joints has a planar shape including a square with a side length of 1 mm in plan view,
    Eddy current inspection method.
  6.  請求項1から請求項5のうち、いずれか1項に記載の渦電流検査方法であって、
     前記ステップ(b)で実行される前記プローブの走査速度は1m/s以上である、
    渦電流検査方法。
    The eddy current inspection method according to any one of claims 1 to 5,
    The scanning speed of the probe performed in step (b) is 1 m/s or more,
    Eddy current inspection method.
  7.  請求項1から請求項6のうち、いずれか1項に記載の渦電流検査方法であって、
     前記交流電流は、第1の交流電流と第2の交流電流とを含み、前記第1及び第2の交流電流は周波数及び位相のうち少なくとも一つが異なる、
    渦電流検査方法。
    The eddy current inspection method according to any one of claims 1 to 6,
    The alternating current includes a first alternating current and a second alternating current, wherein the first and second alternating currents differ in at least one of frequency and phase.
    Eddy current inspection method.
PCT/JP2021/022046 2021-06-10 2021-06-10 Eddy current inspection method WO2022259444A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2021568822A JP7123519B1 (en) 2021-06-10 2021-06-10 Eddy current inspection method
CN202180044704.7A CN115943304A (en) 2021-06-10 2021-06-10 Eddy current inspection method
PCT/JP2021/022046 WO2022259444A1 (en) 2021-06-10 2021-06-10 Eddy current inspection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/022046 WO2022259444A1 (en) 2021-06-10 2021-06-10 Eddy current inspection method

Publications (1)

Publication Number Publication Date
WO2022259444A1 true WO2022259444A1 (en) 2022-12-15

Family

ID=82942152

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/022046 WO2022259444A1 (en) 2021-06-10 2021-06-10 Eddy current inspection method

Country Status (3)

Country Link
JP (1) JP7123519B1 (en)
CN (1) CN115943304A (en)
WO (1) WO2022259444A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5287662A (en) * 1975-01-15 1977-07-21 Mo Enerugechichiesukii I Eddy current converter for testing conductive layer coated on hole portion of printed substrate nonndestructively
JPH10288605A (en) * 1997-04-14 1998-10-27 Takenaka Komuten Co Ltd Magnetic testing device and method
JP2003035738A (en) * 2001-07-19 2003-02-07 Omron Corp Method and apparatus for checking component mounting substrate
US20050104585A1 (en) * 2003-11-13 2005-05-19 Yuli Bilik Methods and devices for eddy current PCB inspection
US20070096751A1 (en) * 2005-11-03 2007-05-03 The Boeing Company Systems and methods for inspecting electrical conductivity in composite materials
JP2009229337A (en) * 2008-03-25 2009-10-08 Hioki Ee Corp Electrode inspection apparatus
JP2015052467A (en) * 2013-09-05 2015-03-19 国立大学法人東京工業大学 Compound material inspection device and method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5287662B2 (en) 2009-10-30 2013-09-11 パナソニック株式会社 Dehumidifier

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5287662A (en) * 1975-01-15 1977-07-21 Mo Enerugechichiesukii I Eddy current converter for testing conductive layer coated on hole portion of printed substrate nonndestructively
JPH10288605A (en) * 1997-04-14 1998-10-27 Takenaka Komuten Co Ltd Magnetic testing device and method
JP2003035738A (en) * 2001-07-19 2003-02-07 Omron Corp Method and apparatus for checking component mounting substrate
US20050104585A1 (en) * 2003-11-13 2005-05-19 Yuli Bilik Methods and devices for eddy current PCB inspection
US20070096751A1 (en) * 2005-11-03 2007-05-03 The Boeing Company Systems and methods for inspecting electrical conductivity in composite materials
JP2009229337A (en) * 2008-03-25 2009-10-08 Hioki Ee Corp Electrode inspection apparatus
JP2015052467A (en) * 2013-09-05 2015-03-19 国立大学法人東京工業大学 Compound material inspection device and method

Also Published As

Publication number Publication date
JPWO2022259444A1 (en) 2022-12-15
CN115943304A (en) 2023-04-07
JP7123519B1 (en) 2022-08-23

Similar Documents

Publication Publication Date Title
JP5960292B2 (en) Bonding state inspection method
WO2009139432A1 (en) Magnetic flaw detecting method and magnetic flaw detection device
WO2010113250A1 (en) Joint quality examining device and joint quality examining method
KR20180122115A (en) Welding inspection device and inspection method for secondary battery
CN112098522B (en) Steel wire rope tension defect detection method
TW202024632A (en) Ultrasound inspection method and ultrasound inspection device
EP2818856B1 (en) Eddy-current inspection method and device
JP2929402B2 (en) Inspection method and apparatus for carbon fiber reinforced tubular composite
WO2022259444A1 (en) Eddy current inspection method
Janovec et al. Eddy current array inspection of riveted joints
CN109254073A (en) Portable compound nondestructive testing instrument based on eddy-current technique and ultrasonic technique
KR101031594B1 (en) Eddy current probe for surface inspection and eddy current inspection device including the same
JP5415134B2 (en) Inspection apparatus and inspection method
JPH102883A (en) Eddy current flaw detection apparatus
JP2010014508A (en) Measuring apparatus and method
JP3856013B2 (en) Electronic circuit inspection equipment
CN108732210B (en) Piezoelectric device structure defect detection method based on impedance spectrum
JPWO2022259444A5 (en)
JP2003075494A (en) Inspection apparatus and method
Luo et al. Evaluation of wire bond integrity through force detected wire vibration analysis
JP7077051B2 (en) Wire bonding equipment and wire bonding method
JP2007155429A (en) Method and device for inspecting concrete structure
Hsu et al. Nondestructive evaluation of repairs on aircraft composite structures
CN115825228A (en) Quantitative calibration method and test system for engineering structure interface damage detection
CN113376211A (en) Component-level crack detection method and device based on thermal diffusion gradient

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021568822

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21945120

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE