WO2022259353A1 - Optical voltage sensor - Google Patents

Optical voltage sensor Download PDF

Info

Publication number
WO2022259353A1
WO2022259353A1 PCT/JP2021/021692 JP2021021692W WO2022259353A1 WO 2022259353 A1 WO2022259353 A1 WO 2022259353A1 JP 2021021692 W JP2021021692 W JP 2021021692W WO 2022259353 A1 WO2022259353 A1 WO 2022259353A1
Authority
WO
WIPO (PCT)
Prior art keywords
electro
optic crystal
light
electrode
voltage
Prior art date
Application number
PCT/JP2021/021692
Other languages
French (fr)
Japanese (ja)
Inventor
康人 橋場
裕之 河野
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2021563255A priority Critical patent/JP7038925B1/en
Priority to PCT/JP2021/021692 priority patent/WO2022259353A1/en
Publication of WO2022259353A1 publication Critical patent/WO2022259353A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/24Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using light-modulating devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof

Definitions

  • the present disclosure relates to an optical voltage sensor.
  • An optical voltage sensor that uses the Pockels effect which is an electro-optical effect, has been developed as a method that can measure high voltage in a small size and at low cost while maintaining high insulation.
  • the change in refractive index due to the Pockels effect is slight, it can be measured as a change in the polarization state of transmitted light by utilizing the property that anisotropy occurs in the refractive index.
  • a polarizing element linearly polarized light is incident on the electro-optic crystal, and the change in the polarization state of the emitted light from the electro-optic crystal is measured as the change in the intensity of the light. That is, the potential difference between both ends of the electro-optic crystal can be obtained.
  • Optical voltage sensors using the Pockels effect have been put into practical use for AC voltage measurement, but not for DC voltage measurement. This is because, in direct voltage measurement applications, the voltage cannot be measured stably for a long period of time due to the effect of output drift caused by space charge polarization inside the electro-optic crystal.
  • a DC voltage is applied to the electro-optic crystal, the space charges in the electro-optic crystal move over time, and the electric field distribution inside the electro-optic crystal changes.
  • the horizontal modulation method in which the direction in which the light travels is perpendicular to the direction in which the electric field is applied, the electric field in the area through which the light passes is affected by the phenomenon (DC drift) that changes over time. Voltage cannot be measured stably for a long time.
  • the sensitivity to voltage does not depend on the shape of the electro-optic crystal, so it is difficult to set the sensitivity high and achieve highly accurate measurements.
  • the horizontal modulation method it is difficult to stably measure the DC voltage due to the influence of DC drift.
  • the present disclosure has been made to solve the above problems, and aims to provide an optical voltage sensor that can stably and accurately measure a DC voltage for a long period of time.
  • a photovoltage sensor includes a light source, an electro-optic crystal on which light emitted from the light source is incident, and first and second electrodes provided on end surfaces of the electro-optic crystal facing each other. an electrode pair for applying an electric field to the electro-optic crystal in a direction perpendicular to the traveling direction of the light in the electro-optic crystal; and a detector that outputs a detection signal based on the light, wherein the beam size in the vertical direction of the light at the time of incidence on the electro-optic crystal is equal to or larger than the distance between the first electrode and the second electrode. It is characterized by
  • a DC voltage can be stably and accurately measured for a long time.
  • FIG. 1 is a schematic diagram showing a configuration of a photovoltage sensor according to Embodiment 1;
  • FIG. 3A is a perspective view showing a light projecting section of the optical voltage sensor according to Embodiment 1, and FIG. 3B is a diagram showing a function of the light projecting section;
  • FIG. (A) is a perspective view showing a mask as a light shielding member arranged upstream of an electro-optic crystal, and
  • (B) is a schematic diagram showing the configuration of a photovoltage sensor provided with the mask.
  • (A) is a perspective view showing an array light source as a light source and a lens array as a beam shaping optical system, and
  • (B) is a schematic diagram showing a configuration of a photovoltage sensor provided with the array light source and the lens array.
  • FIG. 10 is a diagram showing an example of temporal change in measured voltage due to the influence of DC drift;
  • FIG. 8 is a schematic diagram showing the configuration of a photovoltage sensor according to Embodiment 2;
  • FIG. 11 is a perspective view showing an array detector as a detector of the photovoltage sensor according to Embodiment 2;
  • (A) is a diagram showing the intensity distribution of detection signals output from an array detector, and
  • (B) is a diagram showing the intensity distribution of detection signals that have been homogenized by a signal processing device.
  • FIG. 10 is a schematic diagram showing the configuration of a photovoltage sensor according to Embodiment 3;
  • FIG. 10 is a diagram showing an electrical equivalent circuit of a voltage applying section of the photovoltage sensor according to Embodiment 3;
  • FIG. 10 is a diagram showing the relationship between applied voltage and bias voltage according to the third embodiment;
  • a photovoltage sensor according to an embodiment will be described below with reference to the drawings.
  • the following embodiments are merely examples, and the embodiments can be modified as appropriate.
  • the diagram shows the coordinate axes of the XYZ orthogonal coordinate system.
  • the Z-axis is a coordinate axis parallel to the traveling direction of light
  • the X-axis and Y-axis are coordinate axes perpendicular to the Z-axis.
  • the Y-axis direction is the electric field direction in the electro-optical element.
  • the same reference numerals are given to the same or similar configurations.
  • FIG. 1 is a schematic diagram showing the configuration of a photovoltage sensor 1 according to Embodiment 1.
  • the optical voltage sensor 1 according to the first embodiment includes a light source 21, an electro-optic crystal 11 into which light emitted from the light source 21 is incident, and first electrodes provided on the end surface 11a and the end surface 11b of the electro-optic crystal 11 facing each other. and a second electrode 12b for applying an electric field in the direction (Y-axis direction) perpendicular to the light traveling direction (Z-axis direction) in the electro-optic crystal 11 to the electro-optic crystal 11. 12, and a detector 41 for receiving light emitted from the electro-optic crystal 11 and outputting a detection signal.
  • the first electrode 12a and the second electrode 12b are also referred to as "first and second electrodes 12a and 12b" or "a pair of electrodes 12a and 12b".
  • the beam width W which is the beam size of light in the vertical direction (Y-axis direction) at the time of incidence on the electro-optic crystal 11, is greater than or equal to the interval D between the first and second electrodes 12a and 12b.
  • the first and second electrodes 12a and 12b are in close contact with the end faces 11a and 11b of the electro-optic crystal 11, respectively.
  • the photovoltage sensor 1 also includes a beam shaping optical system 22 , a polarizer 31 , a quarter wave plate (wave plate 32 ), an analyzer 33 and a lens 42 .
  • the optical voltage sensor 1 also includes a voltage applying section 10 that applies a voltage V to the electro-optic crystal 11 .
  • the optical voltage sensor 1 detects the voltage (for example, DC voltage) applied between the first and second electrodes 12a and the second electrode 12b.
  • a signal processing unit 50 for calculating V50 is further provided.
  • the signal processing section 50 includes a signal processing device 51 and an output device 52 .
  • the light source 21 and the beam shaping optical system 22 constitute a light projecting section 20 that projects light onto the electro-optic crystal 11 .
  • the lens 42 and the detector 41 constitute the light receiving section 40 .
  • a polarizer 31 and a quarter-wave plate (wave plate 32) for controlling the polarization state of light incident on the electro-optic crystal 11, and an analyzer 33 for controlling the polarization state of light emitted from the electro-optic crystal 11. form the polarization control optical system 30 .
  • the voltage application unit 10 includes an electro-optic crystal 11 and first and second electrodes 12a and 12b provided on the facing end surfaces 11a and 11b of the electro-optic crystal 11, respectively.
  • the electro-optic crystal 11 is an optical crystal having the Pockels effect, which is a first-order electro-optic effect.
  • the Pockels effect is an effect that when an electric field is applied to the electro-optic crystal 11 from the outside, the polarization state of the electro-optic crystal 11 changes and the refractive index of the electro-optic crystal 11 changes in proportion to the electric field.
  • the refractive index of the electro-optic crystal 11 becomes anisotropic.
  • Light is generally represented by a combination of two polarized components whose vibration directions are orthogonal to each other.
  • the two polarized components When the light is transmitted through the electro-optic crystal 11 having anisotropy in the refractive index, the two polarized components have a phase difference (that is, a polarization phase difference). occurs.
  • the polarization phase difference is proportional to the intensity of the electric field applied to the electro-optic crystal 11. Therefore, by measuring the change in the polarization state of the light transmitted through the electro-optic crystal 11 using a polarizing element, A potential difference between the first and second electrodes 12a and 12b provided on the end surfaces 11a and 11b of the electro-optic crystal 11 facing each other can be obtained.
  • an optical crystal having the Pockels effect such as LiNbO3, LiTaO3 , ADP( NH4H2PO4 ), KDP ( H2PO4 ), SiO2 ( crystal), Bi 12 Crystals such as SiO20 , Bi12GeO20 , Bi4Ge3O12 , ZnS , ZnTe , etc. can be used.
  • the first and second electrodes 12a and 12b function as electrodes for applying a voltage V to the electro-optic crystal 11. It is formed in close contact with two opposing end surfaces 11a and 11b of the electro-optic crystal 11 so as to be vertical.
  • the electro-optic crystal 11 can be applied with a voltage of up to about 10 kV, which does not cause dielectric breakdown in the air.
  • the voltage to be measured is divided by the electro-optic crystal 11 and the spatial gap, and the voltage V can be obtained accurately. difficult to measure.
  • the constituent material of the first and second electrodes 12a and 12b may be a material having conductivity.
  • the constituent material of the first and second electrodes 12a and 12b may be aluminum (Al), gold (Au), silver (Ag), copper (Cu), chromium (Cr), or any of these. or an alloy of two or more metals can be used.
  • the light projecting section 20 includes a light source 21 and a beam shaping optical system 22 .
  • a light-emitting diode, a semiconductor laser, a solid-state laser, a gas laser, or the like can be used as the light source 21 .
  • the light emitted from the light source 21 has a long wavelength that does not cause the internal photoelectric effect (that is, the effect that the electrical resistance of the insulator decreases and the current flows easily due to the irradiation of light with a short wavelength). It is desirable to use infrared light with a wavelength of 750 nm or longer.
  • the beam shaping optical system 22 collimates the light emitted from the light source 21 (that is, converts the divergent light beams from the light source into parallel light beams) and has a beam size equal to or greater than the distance between the first and second electrodes 12a and 12b. to generate a beam that is
  • the beam size is the beam size (that is, the beam width W) on the XY plane perpendicular to the traveling direction of light.
  • the beam shaping optical system 22 generates a beam with a spatially uniform light intensity distribution between the first and second electrodes 12a, 12b.
  • the beam shaping optical system 22 includes a collimator lens 221 that collimates the light emitted from the light source 21, and a top lens with a uniform intensity distribution for the collimated Gaussian cyan beam. It can be configured with a beam shaper 222 that converts it into a hat beam. Beam shaper 222 can be constructed using, for example, a diffractive optical element or an aspherical lens.
  • the light emitted from the beam shaper 222 passes through a mask (first mask) 223 so that the beam size (that is, the beam width W) is equal to or equal to the interval D between the first and second electrodes 12a and 12b. You can adjust it to be slightly larger.
  • FIG. 3A is a perspective view showing a mask 223 serving as a light shielding member for shielding a portion of light (for example, a radially outer portion) arranged upstream of the electro-optic crystal 11, and FIG. ) is a schematic diagram showing the configuration of a photovoltage sensor 1a having a mask 223.
  • the beam shaping optical system 22 emits from the light source 21 using a collimator lens 221 whose outer diameter is sufficiently larger than the spacing between the first and second electrodes 12a, 12b. By collimating the light and extracting only the beam near the center using the mask 223, a beam with a desired cross-sectional shape is generated. Except for this point, the examples of FIGS. 3A and 3B are the same as those of FIG.
  • FIG. 4A is a perspective view showing an array light source 211 as a light source and a lens array 224 as a beam shaping optical system
  • FIG. 4B is a photovoltage sensor provided with the array light source 211 and lens array 224.
  • It is a schematic diagram which shows the structure of 1b.
  • the beam diameter is A beam may be produced having a desired intensity distribution with a directional flattened intensity distribution. Except for this point, the examples of FIGS. 4A and 4B are the same as those of FIG.
  • the polarization control optical system 30 includes a polarizer 31, a wavelength plate 32, and an analyzer 33.
  • the polarizer 31 is an optical element that is arranged between the light source 21 and the electro-optic crystal 11 and extracts linearly polarized light from the light emitted from the light projecting section 20 .
  • the wave plate 32 is an optical element that is arranged between the polarizer 31 and the electro-optic crystal 11 and converts linearly polarized light that has passed through the polarizer 31 into circularly polarized light or elliptically polarized light.
  • Wave plate 32 is generally a quarter wave plate that converts linearly polarized light into circularly polarized light.
  • the wavelength plate 32 may be a wavelength plate other than the quarter wavelength plate or a variable wavelength plate capable of adjusting the polarization state.
  • the analyzer 33 is an optical element that is arranged between the electro-optic crystal 11 and the detector 41 and extracts linearly polarized light from the light that has passed through the electro-optic crystal 11 .
  • the analyzer 33 is arranged so as to transmit linearly polarized light in a direction parallel to or perpendicular to the linearly polarized light transmitted through the polarizer 31 .
  • a polarizer that transmits only one polarized component of light, a polarization beam splitter that splits light into two orthogonal polarized components, or the like can be used.
  • the light receiving unit 40 includes a detector 41 and a lens 42.
  • the detector 41 is a photodetector that detects light intensity as an electrical signal by optical-electrical conversion (O/E conversion).
  • O/E conversion optical-electrical conversion
  • the lens 42 is an optical element that collects the light transmitted through the electro-optic crystal 11 onto the detector 41 . If the analyzer 33 is a polarizing beam splitter, two sets of the detector 41 and the lens 42 may be provided to detect the two orthogonal polarization components of the separated light.
  • FIG. 5A is a perspective view showing a mask (second mask) 43 as a light shielding member that shields part of the light (for example, the radially outer portion) arranged downstream of the electro-optic crystal 11.
  • FIG. 5B is a schematic diagram showing the configuration of the photovoltage sensor 1c provided with the mask 43. As shown in FIG. If light not incident on the electro-optic crystal 11 is likely to be received by the detector 41, only the light incident on the electro-optic crystal 11 is detected by the detector 41 as shown in FIGS.
  • a mask 43 may be provided upstream of the lens 42 so that the light is received at . In this case, the mask 43 may be inserted at any position between the light source 21 and the detector 41 without being limited to the upstream of the lens 42 .
  • the signal processing unit 50 includes a signal processing device 51 and an output device 52 .
  • the signal processing device 51 calculates the voltage V applied between the first and second electrodes 12a, 12b based on the electrical signal output by the detector 41. FIG.
  • the signal processing device 51 removes the signal component of the light that is not incident on the electro-optic crystal 11 as an offset, thereby reducing the voltage V to It is desirable to calculate
  • the output device 52 converts the voltage V calculated by the signal processing device 51 into an analog or digital value and outputs it. Also, the output device 52 may display the voltage V calculated by the signal processing device 51 in analog or digital form using a display.
  • FIG. 6 is a diagram showing an example of the hardware configuration of the control system of the photovoltage sensor 1 according to the first embodiment.
  • the signal processing unit 50 in FIG. 1 can be configured by the processing circuit 100 .
  • the processing circuit 100 can be realized by a dedicated circuit, a computer, or the like.
  • the processing circuit 100 includes a memory 102 that stores a program as software, a processor 101 such as a CPU (central processing unit) that executes the program, and an auxiliary storage device 103 such as a hard disk drive (HDD). , an interface 104 and an output circuit 105 .
  • the hardware configuration of the control system of the optical voltage sensor 1 is not limited to the example of FIG.
  • Emitted light from the light source 21 is converted by the beam shaping optical system 22 into collimated light with a beam size equal to or greater than the distance between the first and second electrodes 12 a and 12 b , and enters the polarizer 31 .
  • the polarizer 31 extracts linearly polarized light from incident light.
  • Wave plate 32 converts linearly polarized light incident through polarizer 31 into circularly polarized light.
  • the electro-optic crystal 11 transforms the incident circularly polarized light through the wavelength plate 32 into an elliptically polarized light according to the voltage applied between the first and second electrodes 12a and 12b provided on the opposing surfaces of the electro-optic crystal 11. convert to polarized light.
  • the light emitted from the electro-optic crystal 11 is incident on the analyzer 33, and the light is output only in one polarized state.
  • the amount of light output from the analyzer 33 changes according to the ellipticity of the elliptically polarized light converted by the electro-optic crystal 11 .
  • I OUT /I IN is expressed by the following equation (1).
  • is a polarization phase difference caused by applying a voltage to the electro-optic crystal 11 .
  • L is the size in the same direction as the light traveling direction (Z-axis direction) of the electro-optic crystal 11 (that is, the optical path length), and D is the direction of the electric field applied to the electro-optic crystal 11 (Y-axis direction). ), and A is the Pockels coefficient, which is a coefficient indicating the sensitivity of the electro-optic crystal 11 to voltage.
  • I OUT /I IN 1/2.
  • a voltage is applied between the first and second electrodes 12a and 12b, according to the principle of the Pockels effect described above, a polarization phase difference ⁇ is generated in proportion to the voltage, and I OUT /I IN changes. .
  • equation (1) can be approximated and I OUT /I IN varies proportionally with voltage.
  • the light output from the analyzer 33 is condensed by the lens 42 onto the detector 41 and converted into an electrical signal according to the light intensity.
  • the signal processing device 51 calculates the voltage applied between the first and second electrodes 12a and 12b based on the electrical signal output by the detector 41 and using the relationship of the equations (1) and (2). Calculate V.
  • the voltage value calculated by the signal processing device 51 is converted to an analog or digital value by the output device 52 and output.
  • the optical voltage sensor 1 has collimated light and a beam size equal to or greater than the distance between the first and second electrodes 12a and 12b, and furthermore, the light is distributed between the first and second electrodes 12a and 12b.
  • Light having a spatially uniform intensity distribution is made incident on the electro-optic crystal 11 . The reason why the influence of DC drift can be avoided by making the light having the above characteristics incident on the electro-optic crystal 11 will be described below.
  • FIG. 7A to 7C are diagrams showing the relationship between the light incident on the electro-optic crystal 11 and the electric field distribution in the electro-optic crystal 11 when a DC voltage is applied to the electro-optic crystal 11 for a long time.
  • FIG. 7A shows a case (comparative example) in which light is incident only on the central portion between the first and second electrodes 12a and 12b in close contact with the electro-optic crystal 11 in the lateral modulation method.
  • FIG. 7B shows a case (embodiment) in which spatially uniform light is incident on the entire space between the first and second electrodes 12a and 12b in close contact with the electro-optic crystal 11 in the lateral modulation method. .
  • the electric field distribution inside the electro-optic crystal 11 becomes non-uniform over time due to movement of space charges.
  • the electric fields E 1 and E 5 near the first and second electrodes 12 a and 12 b become the electric field E 2 near the center of the electro-optic crystal 11 .
  • FIG. 7A when the measurement light is affected by the electric field E3
  • the measurement light is A phase difference equal to the integrated value of the electric field between the first and second electrodes 12a, 12b, i.e., the voltage applied between the first and second electrodes 12a, 12b will be experienced, and the DC voltage will be applied for a long time. Stable measurement is possible.
  • FIG. 7(C) shows an example (comparative example) of a vertical modulation method in which the traveling direction of light and the direction in which an electric field is applied are the same in the electro-optic crystal 11 .
  • the measurement light passes through both the part where the electric field is strengthened and the part where the electric field is weakened in the electro-optic crystal, and the integrated value along the electric field direction is constant. voltage can be stably measured for a long period of time.
  • the polarization phase difference ⁇ with respect to the voltage V applied to the electro-optic crystal 11 is the electro-optic crystal 11 (eg path length L and thickness D), the measurement accuracy cannot be improved by changing the shape of the electro-optic crystal 11 .
  • the optical voltage sensor 1 adopts the horizontal modulation method, so that the shape of the electro-optic crystal 11 (for example, the path length L and the thickness By changing D), the polarization phase difference ⁇ with respect to the voltage V can be set large. Therefore, by changing the shape of the electro-optic crystal 11, it is possible to measure the DC voltage with high accuracy.
  • FIG. 9 is a schematic diagram showing the configuration of the optical voltage sensor 2 according to the second embodiment.
  • the photovoltage sensor 2 according to the second embodiment includes a collimator lens 221 as a beam shaping optical system of the light projecting section 20a and an array detector 411 as a detector of the light receiving section 40a. 1 is different from the optical voltage sensor 1 according to 1.
  • the explanation similar to that of the first embodiment is omitted.
  • the collimator lens 221 collimates the light emitted from the light source 21 and generates a beam having a beam size (that is, beam width W) equal to or larger than the distance D between the first and second electrodes 12a, 12b.
  • the beam generated by the collimator lens 221 has a spatially non-uniform intensity distribution.
  • FIG. 10 is a perspective view showing the array detector 411.
  • the array detector 411 is a photodetector in which a plurality of photodetection elements are arranged in a one-dimensional or two-dimensional array. If the size of the portion of the array detector 411 that detects light is greater than or equal to the distance D between the first and second electrodes 12a and 12b, the lens 42 need not be used to condense the beam.
  • FIG. 11A is a diagram showing the intensity distribution of the detection signal output from the array detector 411
  • FIG. 11B is a diagram showing the intensity distribution of the detection signal homogenized by the signal processing device 51.
  • the signal acquired by the array detector 411 depends on the illuminance distribution of the beam, and has different luminance values for pixels near the center and at the edges away from the center.
  • the signal processing device 51 calculates the voltage by summing the luminance values of the pixels, it is strongly affected by the electric field of the high-luminance portion in the electro-optic crystal 11, and therefore the influence of the DC drift cannot be avoided. .
  • the signal processing device 51 obtains the luminance value of each pixel depending on the illuminance distribution of the beam in advance in a state where no voltage is applied to the electro-optic crystal 11, and obtains the luminance value as shown in FIG. 11(B). After uniformly correcting the non-uniformity of the luminance value of each pixel, the amount of change in the intensity of the light emitted from the electro-optic crystal 11 is measured, and the voltage is calculated.
  • the collimator lens 221, which is a general-purpose beam shaping optical system, and the array detection are used without using the beam shaping optical system 22 having a special light source or a special optical element.
  • the device 411 an effect similar to that of the optical voltage sensor 1 according to the first embodiment can be obtained.
  • the second embodiment is the same as the first embodiment.
  • Embodiment 3 In the photovoltage sensors according to Embodiments 1 and 2, when a high voltage of, for example, 100 kV is to be directly measured, it is necessary to separate the first and second electrodes 12a and 12b by about 100 mm due to electrical insulation restrictions. be. However, creating collimated light with a beam size of about 100 mm is not realistic because the beam shaping optical system 22 or the collimator lens 221 becomes large.
  • Embodiment 3 by providing an electrode that is not in contact with the electro-optic crystal 11 as an electrode to which a high voltage is applied, even if the magnitude of the electric field direction of the electro-optic crystal 11 is about 10 mm, Provided is an optical voltage sensor capable of directly measuring high voltage exceeding 100 kV. Note that, for example, a technique related to Patent Document 2 is described.
  • FIG. 12 is a schematic diagram showing the configuration of the optical voltage sensor 3 according to the third embodiment.
  • the optical voltage sensor 3 according to Embodiment 3 differs from the optical voltage sensors according to Embodiments 1 and 2 in the following points (1) to (4).
  • a high-voltage conductor 13 to which a voltage to be detected is applied is provided at a distance from the electro-optic crystal 11 .
  • the signal processing section 50 determines the bias potential based on the detection signal output from the detector 41 .
  • a ground conductor 14 as an electrode is connected to the second electrode 12b.
  • the crystal top surface electrode 15 is connected to the top surface of the first electrode 12a.
  • the high voltage conductor 13 of the voltage application unit 10a shown in FIG. 12 is a voltage conductor to which a high voltage, which is the voltage to be detected, is applied.
  • the ground conductor 14 is a conductor fixed at ground potential.
  • the ground conductor 14 is placed on the second electrode 12b in close contact with the end face 11b of the electro-optic crystal 11.
  • the crystal upper surface electrode 15 is placed on the first electrode 12a that is in close contact with the end face 11a of the electro-optic crystal 11.
  • the bias electrode 16 is placed so as to be out of contact with the crystal top surface electrode 15 .
  • the signal processing section 50 controls a bias power supply 53 connected to the bias electrode 16 .
  • explanations similar to those of the first and second embodiments are omitted.
  • the high-voltage conductor 13 is assumed to be a charged part that is boosted to reduce Joule loss for power transmission and distribution, and when the voltage is high, a voltage exceeding several 100 kV is applied.
  • the high voltage conductors 13 are conductors around power equipment in substations, AC/DC conversion stations, frequency conversion stations, and the like.
  • the ground conductor 14 is installed so as to face the high-voltage conductor 13, and its potential is fixed to ground potential, ie, zero potential, through a ground wire and a ground electrode embedded in the ground. It is desirable that the impedance of the grounding wire and the grounding electrode is sufficiently low. For example, it is desirable to ensure Class A grounding (grounding resistance value: 10 ⁇ or less) specified in the electrical equipment technical standards of Japan.
  • the electro-optic crystal 11 is installed between the ground conductor 14 and the crystal upper surface electrode 15 .
  • first and second electrodes 12a and 12b are provided in close contact with the electro-optic crystal 11 on the contact surfaces between the electro-optic crystal 11 and the crystal top electrode 15 and the ground conductor 14. Therefore, it is desirable to electrically connect the electro-optic crystal 11 and the crystal upper surface electrode 15 and electrically connect the electro-optic crystal 11 and the ground conductor 14 .
  • the crystal upper surface electrode 15 is installed without contact with the high voltage conductor 13, the ground conductor 14, and the bias electrode 16.
  • the bias electrode 16 is placed between the high-voltage conductor 13 and the crystal top electrode 15 and supported and fixed by an insulating support provided between the ground conductor 14 and the ground conductor 14 .
  • the crystal top electrode 15 is at a floating potential and can be induced and controlled according to the potential of the bias electrode 16 .
  • a bias power supply 53 is connected to the bias electrode 16 and varies the potential of the bias electrode 16 . Since the crystal top surface electrode 15 and the bias electrode 16 are placed under a high electric field, it is desirable to have a shape that avoids electric field enhancement, such as round chamfering of the ends.
  • FIG. 13 is a diagram showing an electrical equivalent circuit of the voltage applying section 10a of the optical voltage sensor 3.
  • the voltage V o of the high-voltage conductor 13 is expressed by the following equation (3), where V f is the potential of the crystal upper surface electrode 15 and V b is the potential of the bias electrode 16 .
  • the capacitance between the crystal top electrode 15 and the high voltage conductor 13 is C 1
  • the capacitance between the crystal top surface electrode 15 and the ground conductor 14 is C 2
  • the capacitance between the crystal top surface electrode 15 and the bias electrode 16 is C 2
  • C 3 be the capacitance
  • R be the electrical resistance of the electro-optic crystal 11
  • Q be the charge amount of the crystal top electrode 15 .
  • the amount of charge Q causes a measurement error.
  • the voltage V o of the high voltage conductor 13 is a DC voltage
  • the potential V b of the bias electrode 16 is controlled following the potential fluctuation of the high voltage conductor 13
  • a DC electric field is generated inside the electro-optic crystal 11 .
  • the electrical resistance R of the electro-optic crystal 11 is finite, and electrical conduction occurs according to the applied electric field. Therefore, the potential V f of the crystal top surface electrode 15 changes over time so as to become the same potential as the ground conductor 14. do.
  • This attenuation time constant ⁇ is represented by the product of the permittivity and resistivity of the electro-optic crystal 11 .
  • the photovoltage sensor 3 by controlling the potential Vb of the bias electrode 16 and maintaining the internal electric field of the electro-optic crystal 11 at zero, the electricity through the electro-optic crystal 11 is Suppress conduction.
  • the signal processing device 51 calculates the potential Vf applied to the electro-optic crystal 11 based on the detection signal output from the detector 41, and when this value has a value other than zero, the bias power supply 53 is turned on. is used to vary the potential Vb of the bias electrode 16, and the potential Vf of the crystal upper surface electrode 15 is changed so that the internal electric field of the electro -optic crystal 11 is always zero. feedback control.
  • Equation (3) is given by Equation (4) when the potential Vf of the crystal top electrode 15 is zero and the charge amount Q is zero.
  • FIG . 14 is a diagram showing the relationship between the voltage Vo of the high-voltage conductor 13 and the potential of the bias electrode 16 (that is, the bias voltage) Vb. As shown in FIG. 14, a proportional relationship is established.
  • the signal processing device 51 calculates the voltage Vo of the high-voltage conductor 13 to be measured from the potential Vb that is the control voltage of the bias power supply 53 based on the equation (4), and outputs it to the output device 52 .
  • the electro-optic crystal 11 since the electro-optic crystal 11 is not in contact with the high voltage conductor 13, unlike the first and second embodiments, the high voltage can be directly measured without stepping down the voltage with a voltage divider. It becomes possible to In addition, since the internal electric field of the electro-optic crystal 11 is feedback-controlled so that it is always zero, the DC voltage can be stably measured for a long time while avoiding the influence of DC drift.
  • the voltage value applied to the electro-optic crystal 11 is reduced, and it becomes difficult to ensure measurement accuracy when adopting the vertical modulation method in which the sensitivity to voltage cannot be set high.
  • the shape of the electro-optic crystal 11 (for example, path length L and thickness D) By changing , the polarization phase difference ⁇ with respect to the voltage V can be set large, that is, the sensitivity can be set high. Therefore, it becomes easy to ensure measurement accuracy.
  • the electro-optic crystal 11 receives light having a beam width W whose beam size is equal to or greater than the distance D between the first and second electrodes 12a and 12b. is incident, output drift can be avoided, and highly accurate and stable voltage measurement can be performed for a long period of time.
  • Embodiment 3 is the same as Embodiment 1 or 2. Also, the configuration using the high-voltage conductor 13 and the ground conductor 14 described in the third embodiment can be applied to any of the optical voltage sensors described in the first and second embodiments.

Abstract

An optical voltage sensor (1) comprises a light source (21), an electro-optic crystal (11) that light emitted from the light source (21) falls on, an electrode pair (12) that comprises a first electrode (12a) and second electrode (12b) that are respectively provided on end surfaces (11a, 11b) of the electro-optic crystal (11) that face each other and applies an electrical field to the electro-optic crystal (11) in a direction (Y-axis direction) perpendicular to the direction in which light travels within the electro-optic crystal (11), and a detector (41) that receives light emitted from the electro-optic crystal (11) and outputs a detection signal based on the received light. The beam size (W) of the light in the perpendicular direction (Y-axis direction) when the light falls on the electro-optic crystal (11) is greater than or equal to the distance (D) between the first electrode (12a) and the second electrode (12b).

Description

光電圧センサoptical voltage sensor
 本開示は、光電圧センサに関するものである。 The present disclosure relates to an optical voltage sensor.
 高電圧を高い絶縁性を保ちつつ、小型かつ低コストで測定できる方式として、電気光学効果であるポッケルス効果を利用した光電圧センサが開発されている。ポッケルス効果による屈折率変化は、微少であるが、屈折率に異方性が生じる特性を利用することで、透過光の偏光状態の変化として測定することができる。例えば、偏光素子を用いて、電気光学結晶に直線偏光を入射させ、電気光学結晶からの出射光の偏光状態の変化を光の強度変化として測定することで、電気光学結晶に印加された電界、すなわち電気光学結晶の両端の電位差を求めることができる。 An optical voltage sensor that uses the Pockels effect, which is an electro-optical effect, has been developed as a method that can measure high voltage in a small size and at low cost while maintaining high insulation. Although the change in refractive index due to the Pockels effect is slight, it can be measured as a change in the polarization state of transmitted light by utilizing the property that anisotropy occurs in the refractive index. For example, using a polarizing element, linearly polarized light is incident on the electro-optic crystal, and the change in the polarization state of the emitted light from the electro-optic crystal is measured as the change in the intensity of the light. That is, the potential difference between both ends of the electro-optic crystal can be obtained.
 ポッケルス効果を用いた光電圧センサは、交流電圧の計測用途では実用化されているが、直流電圧の計測用途では実用化されていない。これは、直流電圧の計測用途では電気光学結晶内部の空間電荷分極に起因する出力ドリフトの影響により、長時間安定して電圧を測定できないからである。電気光学結晶に直流電圧を印加すると、時間が経つにつれて電気光学結晶内の空間電荷が移動し、電気光学結晶内部の電界分布が変化する。光の進行方向と電界が印加される方向が垂直になる横型変調方式では、光が透過する部分の電界が時間とともに変化する現象(直流ドリフト)の影響を受けるため、電極間に印加された直流電圧を長時間安定して測定することができない。 Optical voltage sensors using the Pockels effect have been put into practical use for AC voltage measurement, but not for DC voltage measurement. This is because, in direct voltage measurement applications, the voltage cannot be measured stably for a long period of time due to the effect of output drift caused by space charge polarization inside the electro-optic crystal. When a DC voltage is applied to the electro-optic crystal, the space charges in the electro-optic crystal move over time, and the electric field distribution inside the electro-optic crystal changes. In the horizontal modulation method, in which the direction in which the light travels is perpendicular to the direction in which the electric field is applied, the electric field in the area through which the light passes is affected by the phenomenon (DC drift) that changes over time. Voltage cannot be measured stably for a long time.
 直流ドリフトの影響を回避して直流電圧を測定する方法として、電気光学結晶内で光の進行方向と電界が印加される方向が同じ向きになる縦型変調方式を採用する方法が提案されている(例えば、特許文献1参照)。縦型変調方式では、光は、電気光学結晶内の電界が強められた部分と弱められた部分の両方を通過し、電界方向に沿った積分値は一定となるため、電極間に印加された電圧を直流ドリフトの影響を受けずに長時間安定して測定することができる。 As a method of measuring DC voltage while avoiding the influence of DC drift, a method of adopting a vertical modulation method in which the direction in which light travels and the direction in which an electric field is applied in an electro-optic crystal is the same has been proposed. (See Patent Document 1, for example). In the vertical modulation method, the light passes through both the part where the electric field is strengthened and the part where the electric field is weakened in the electro-optic crystal, and the integrated value along the electric field direction is constant. Voltage can be measured stably for a long time without being affected by DC drift.
特開2015-11019号公報JP 2015-11019 A
 しかし、縦型変調方式では、電圧に対する感度が電気光学結晶の形状に依存しないため、感度を高く設定して高精度な測定を実現することが難しい。一方、横型変調方式では、直流ドリフトの影響により直流電圧を安定して測定することは困難である。 However, in the vertical modulation method, the sensitivity to voltage does not depend on the shape of the electro-optic crystal, so it is difficult to set the sensitivity high and achieve highly accurate measurements. On the other hand, in the horizontal modulation method, it is difficult to stably measure the DC voltage due to the influence of DC drift.
 本開示は、上記の課題を解決するためになされたもので、直流電圧を長時間安定して高精度に測定可能な光電圧センサを提供することを目的とする。 The present disclosure has been made to solve the above problems, and aims to provide an optical voltage sensor that can stably and accurately measure a DC voltage for a long period of time.
 本開示の光電圧センサは、光源と、前記光源から出射した光が入射する電気光学結晶と、前記電気光学結晶の互いに向き合う端面にそれぞれ備えられた第1の電極及び第2の電極を有し、前記電気光学結晶内における前記光の進行方向に対して垂直方向の電界を前記電気光学結晶に印加する電極対と、前記電気光学結晶から出射した前記光を受光し、受光された前記光に基づく検出信号を出力する検出器と、を備え、前記電気光学結晶に入射する時点における前記光の前記垂直方向のビームサイズが、前記第1の電極と前記第2の電極との間隔以上であることを特徴とする。 A photovoltage sensor according to the present disclosure includes a light source, an electro-optic crystal on which light emitted from the light source is incident, and first and second electrodes provided on end surfaces of the electro-optic crystal facing each other. an electrode pair for applying an electric field to the electro-optic crystal in a direction perpendicular to the traveling direction of the light in the electro-optic crystal; and a detector that outputs a detection signal based on the light, wherein the beam size in the vertical direction of the light at the time of incidence on the electro-optic crystal is equal to or larger than the distance between the first electrode and the second electrode. It is characterized by
 本開示の光電圧センサによれば、直流電圧を長時間安定して高精度に測定することができる。 According to the optical voltage sensor of the present disclosure, a DC voltage can be stably and accurately measured for a long time.
実施の形態1に係る光電圧センサの構成を示す模式図である。1 is a schematic diagram showing a configuration of a photovoltage sensor according to Embodiment 1; FIG. (A)は、実施の形態1に係る光電圧センサの投光部を示す斜視図であり、(B)は、投光部の機能を示す図である。3A is a perspective view showing a light projecting section of the optical voltage sensor according to Embodiment 1, and FIG. 3B is a diagram showing a function of the light projecting section; FIG. (A)は、電気光学結晶の上流に配置された遮光部材としてのマスクを示す斜視図であり、(B)は、マスクを備えた光電圧センサの構成を示す模式図である。(A) is a perspective view showing a mask as a light shielding member arranged upstream of an electro-optic crystal, and (B) is a schematic diagram showing the configuration of a photovoltage sensor provided with the mask. (A)は、光源としてのアレイ光源とビーム整形光学系としてのレンズアレイを示す斜視図であり、(B)は、アレイ光源とレンズアレイを備えた光電圧センサの構成を示す模式図である。(A) is a perspective view showing an array light source as a light source and a lens array as a beam shaping optical system, and (B) is a schematic diagram showing a configuration of a photovoltage sensor provided with the array light source and the lens array. . (A)は、電気光学結晶の下流に配置された遮光部材としてのマスクを示す斜視図であり、(B)は、マスクを備えた光電圧センサの構成を示す模式図である。(A) is a perspective view showing a mask as a light shielding member arranged downstream of an electro-optic crystal, and (B) is a schematic diagram showing the configuration of a photovoltage sensor provided with the mask. 実施の形態1に係る光電圧センサの制御系のハードウェア構成の例を示す図である。3 is a diagram illustrating an example of a hardware configuration of a control system of the photovoltage sensor according to Embodiment 1; FIG. (A)から(C)は、電気光学結晶に入射する光と、直流電圧が電気光学結晶に長時間印加された場合の電気光学結晶内の電界分布との関係を示す図である。(A) to (C) are diagrams showing the relationship between the light incident on the electro-optic crystal and the electric field distribution in the electro-optic crystal when a DC voltage is applied to the electro-optic crystal for a long period of time. 直流ドリフトの影響による測定電圧の時間変化の例を示す図である。FIG. 10 is a diagram showing an example of temporal change in measured voltage due to the influence of DC drift; 実施の形態2に係る光電圧センサの構成を示す模式図である。FIG. 8 is a schematic diagram showing the configuration of a photovoltage sensor according to Embodiment 2; 実施の形態2に係る光電圧センサの検出器としてのアレイ検出器を示す斜視図である。FIG. 11 is a perspective view showing an array detector as a detector of the photovoltage sensor according to Embodiment 2; (A)は、アレイ検出器から出力される検出信号の強度分布を示す図であり、(B)は、信号処理装置によって均一化された検出信号の強度分布を示す図である。(A) is a diagram showing the intensity distribution of detection signals output from an array detector, and (B) is a diagram showing the intensity distribution of detection signals that have been homogenized by a signal processing device. 実施の形態3に係る光電圧センサの構成を示す模式図である。FIG. 10 is a schematic diagram showing the configuration of a photovoltage sensor according to Embodiment 3; 実施の形態3に係る光電圧センサの電圧印加部の電気的等価回路を示す図である。FIG. 10 is a diagram showing an electrical equivalent circuit of a voltage applying section of the photovoltage sensor according to Embodiment 3; 実施の形態3に係る印加電圧とバイアス電圧との関係を示す図である。FIG. 10 is a diagram showing the relationship between applied voltage and bias voltage according to the third embodiment;
 以下に、実施の形態に係る光電圧センサを、図面を参照しながら説明する。以下の実施の形態は、例にすぎず、実施の形態を適宜変更することが可能である。 A photovoltage sensor according to an embodiment will be described below with reference to the drawings. The following embodiments are merely examples, and the embodiments can be modified as appropriate.
 図には、XYZ直交座標系の座標軸が示されている。Z軸は、光の進行方向に平行な座標軸であり、X軸及びY軸は、Z軸に直交する方向の座標軸である。また、Y軸方向は、電気光学素子内の電界方向である。なお、図において、同一又は同様の構成には、同じ符号が付されている。 The diagram shows the coordinate axes of the XYZ orthogonal coordinate system. The Z-axis is a coordinate axis parallel to the traveling direction of light, and the X-axis and Y-axis are coordinate axes perpendicular to the Z-axis. Also, the Y-axis direction is the electric field direction in the electro-optical element. In addition, in the drawings, the same reference numerals are given to the same or similar configurations.
実施の形態1.
 図1は、実施の形態1に係る光電圧センサ1の構成を示す模式図である。実施の形態1に係る光電圧センサ1は、光源21と、光源21から出射した光が入射する電気光学結晶11と、電気光学結晶11の互いに向き合う端面11a及び端面11bにそれぞれ備えられた第1の電極12a及び第2の電極12bを有し、電気光学結晶11内における光の進行方向(Z軸方向)に対して垂直方向(Y軸方向)の電界を電気光学結晶11に印加する電極対12と、電気光学結晶11から出射した光を受光して検出信号を出力する検出器41とを備えている。なお、第1の電極12a及び第2の電極12bは、「第1及び第2の電極12a、12b」又は「1対の電極12a、12b」とも表記する。
Embodiment 1.
FIG. 1 is a schematic diagram showing the configuration of a photovoltage sensor 1 according to Embodiment 1. FIG. The optical voltage sensor 1 according to the first embodiment includes a light source 21, an electro-optic crystal 11 into which light emitted from the light source 21 is incident, and first electrodes provided on the end surface 11a and the end surface 11b of the electro-optic crystal 11 facing each other. and a second electrode 12b for applying an electric field in the direction (Y-axis direction) perpendicular to the light traveling direction (Z-axis direction) in the electro-optic crystal 11 to the electro-optic crystal 11. 12, and a detector 41 for receiving light emitted from the electro-optic crystal 11 and outputting a detection signal. The first electrode 12a and the second electrode 12b are also referred to as "first and second electrodes 12a and 12b" or "a pair of electrodes 12a and 12b".
 光電圧センサ1は、電気光学結晶11に入射する時点における光の垂直方向(Y軸方向)のビームサイズであるビーム幅Wが、第1及び第2の電極12a、12bの間隔D以上であるように構成されている。また、図1において、第1及び第2の電極12a、12bは、電気光学結晶11の端面11a、11bにそれぞれ密着している。 In the photovoltage sensor 1, the beam width W, which is the beam size of light in the vertical direction (Y-axis direction) at the time of incidence on the electro-optic crystal 11, is greater than or equal to the interval D between the first and second electrodes 12a and 12b. is configured as Also, in FIG. 1, the first and second electrodes 12a and 12b are in close contact with the end faces 11a and 11b of the electro-optic crystal 11, respectively.
 また、光電圧センサ1は、ビーム整形光学系22と、偏光子31と、1/4波長板(波長板32)と、検光子33と、レンズ42と、を備えている。また、光電圧センサ1は、電気光学結晶11に電圧Vを印加する電圧印加部10を備えている。 The photovoltage sensor 1 also includes a beam shaping optical system 22 , a polarizer 31 , a quarter wave plate (wave plate 32 ), an analyzer 33 and a lens 42 . The optical voltage sensor 1 also includes a voltage applying section 10 that applies a voltage V to the electro-optic crystal 11 .
 また、光電圧センサ1は、検出器41から出力された検出信号に基づいて、第1及び第2の電極12aと第2の電極12bとの間に印加されている電圧(例えば、直流電圧)V50を算出する信号処理部50をさらに備えている。図1では、信号処理部50は、信号処理装置51と、出力装置52とを備えている。 Further, based on the detection signal output from the detector 41, the optical voltage sensor 1 detects the voltage (for example, DC voltage) applied between the first and second electrodes 12a and the second electrode 12b. A signal processing unit 50 for calculating V50 is further provided. In FIG. 1 , the signal processing section 50 includes a signal processing device 51 and an output device 52 .
 光源21とビーム整形光学系22とは、電気光学結晶11に光を投光する投光部20を構成する。レンズ42と検出器41とは、受光部40を構成する。また、電気光学結晶11への入射光の偏光状態を制御する偏光子31及び1/4波長板(波長板32)と、電気光学結晶11からの出射光の偏光状態を制御する検光子33とは、偏光制御光学系30を形成する。 The light source 21 and the beam shaping optical system 22 constitute a light projecting section 20 that projects light onto the electro-optic crystal 11 . The lens 42 and the detector 41 constitute the light receiving section 40 . A polarizer 31 and a quarter-wave plate (wave plate 32) for controlling the polarization state of light incident on the electro-optic crystal 11, and an analyzer 33 for controlling the polarization state of light emitted from the electro-optic crystal 11. form the polarization control optical system 30 .
 電圧印加部10は、電気光学結晶11と、電気光学結晶11の対向する端面11a、11bにそれぞれ設けられた第1及び第2の電極12a、12bとを備える。電気光学結晶11は、1次の電気光学効果であるポッケルス効果を有する光学結晶である。ポッケルス効果とは、電気光学結晶11に外部から電界が加えられた場合に、電気光学結晶11の分極状態が変化し、電気光学結晶11の屈折率が電界に比例して変化する効果である。電気光学結晶11にポッケルス効果が生じると、電気光学結晶11の屈折率に異方性が生じる。光は、一般に振動方向が互いに直交する2つの偏光成分の合成で表され、屈折率に異方性のある電気光学結晶11を透過すると、2つの偏光成分に位相差(すなわち、偏光位相差)が生じる。ポッケルス効果では、偏光位相差は電気光学結晶11に加えられている電界の強度に比例するため、偏光素子を用いて、電気光学結晶11を透過した光の偏光状態の変化を測定することによって、電気光学結晶11の互いに対向する端面11a、11bにそれぞれ設けられた第1及び第2の電極12a、12bの間の電位差を求めることができる。なお、電気光学結晶11としては、ポッケルス効果を有する光学結晶、例えば、LiNbO、LiTaO、ADP(NHPO)、KDP(HPO)、SiO(水晶)、Bi12SiO20、Bi12GeO20、BiGe12、ZnS、ZnTe、などの結晶を使用することができる。 The voltage application unit 10 includes an electro-optic crystal 11 and first and second electrodes 12a and 12b provided on the facing end surfaces 11a and 11b of the electro-optic crystal 11, respectively. The electro-optic crystal 11 is an optical crystal having the Pockels effect, which is a first-order electro-optic effect. The Pockels effect is an effect that when an electric field is applied to the electro-optic crystal 11 from the outside, the polarization state of the electro-optic crystal 11 changes and the refractive index of the electro-optic crystal 11 changes in proportion to the electric field. When the Pockels effect occurs in the electro-optic crystal 11, the refractive index of the electro-optic crystal 11 becomes anisotropic. Light is generally represented by a combination of two polarized components whose vibration directions are orthogonal to each other. When the light is transmitted through the electro-optic crystal 11 having anisotropy in the refractive index, the two polarized components have a phase difference (that is, a polarization phase difference). occurs. In the Pockels effect, the polarization phase difference is proportional to the intensity of the electric field applied to the electro-optic crystal 11. Therefore, by measuring the change in the polarization state of the light transmitted through the electro-optic crystal 11 using a polarizing element, A potential difference between the first and second electrodes 12a and 12b provided on the end surfaces 11a and 11b of the electro-optic crystal 11 facing each other can be obtained. As the electro-optic crystal 11 , an optical crystal having the Pockels effect, such as LiNbO3, LiTaO3 , ADP( NH4H2PO4 ), KDP ( H2PO4 ), SiO2 ( crystal), Bi 12 Crystals such as SiO20 , Bi12GeO20 , Bi4Ge3O12 , ZnS , ZnTe , etc. can be used.
 第1及び第2の電極12a、12bは、電気光学結晶11に電圧Vを印加する電極として機能し、電気光学結晶11に入射する光の進行方向と電気光学結晶11に印加される電界方向が垂直となるように、電気光学結晶11の対向する2つの端面11a、11bに密着して形成される。例えば、第1及び第2の電極12a、12bの間隔を10mmに設定した場合、電気光学結晶11には、大気中で絶縁破壊が生じない10kV程度までの電圧を印加することができる。電気光学結晶11と第1及び第2の電極12a、12bとの間に空間的な隙間がある場合、電気光学結晶11と空間的な隙間とで被測定電圧が分圧され、電圧Vを正確に測定することが難しくなる。そのため、第1及び第2の電極12a、12bは、蒸着又はスパッタにより、電気光学結晶11に密着させて形成されていることが望ましい。第1及び第2の電極12a、12bの構成材料は、導電性を有する材料であればよい。例えば、第1及び第2の電極12a、12bの構成材料としては、アルミニウム(Al)、金(Au)、銀(Ag)、銅(Cu)、クロム(Cr)、又は、これらのうちのいずれか2つ以上の金属の合金などを使用することができる。 The first and second electrodes 12a and 12b function as electrodes for applying a voltage V to the electro-optic crystal 11. It is formed in close contact with two opposing end surfaces 11a and 11b of the electro-optic crystal 11 so as to be vertical. For example, when the distance between the first and second electrodes 12a and 12b is set to 10 mm, the electro-optic crystal 11 can be applied with a voltage of up to about 10 kV, which does not cause dielectric breakdown in the air. When there is a spatial gap between the electro-optic crystal 11 and the first and second electrodes 12a and 12b, the voltage to be measured is divided by the electro-optic crystal 11 and the spatial gap, and the voltage V can be obtained accurately. difficult to measure. Therefore, it is desirable that the first and second electrodes 12a and 12b are formed in close contact with the electro-optic crystal 11 by vapor deposition or sputtering. The constituent material of the first and second electrodes 12a and 12b may be a material having conductivity. For example, the constituent material of the first and second electrodes 12a and 12b may be aluminum (Al), gold (Au), silver (Ag), copper (Cu), chromium (Cr), or any of these. or an alloy of two or more metals can be used.
 投光部20は、光源21と、ビーム整形光学系22と、を備える。光源21としては、発光ダイオード、半導体レーザ、固体レーザ、又は気体レーザなどを用いることができる。光源21から発せられる光としては、内部光電効果(すなわち、波長の短い光の照射により、絶縁体の電気抵抗が下がり、電流が流れやすくなる効果)を生じない程度に波長の長い光である、波長750nm以上の赤外光を用いることが望ましい。ビーム整形光学系22は、光源21から発せられる光をコリメートし(すなわち、光源から発散する光線を平行光線に変換し)、かつ、ビームサイズが第1及び第2の電極12a、12bの間隔以上であるビームを生成する。ここで、ビームサイズは、光の進行方向に直交するXY平面上のビームサイズ(すなわち、ビーム幅W)である。さらに、ビーム整形光学系22は、第1及び第2の電極12a、12bの間で光の強度分布が空間的に均一なビームを生成する。 The light projecting section 20 includes a light source 21 and a beam shaping optical system 22 . As the light source 21, a light-emitting diode, a semiconductor laser, a solid-state laser, a gas laser, or the like can be used. The light emitted from the light source 21 has a long wavelength that does not cause the internal photoelectric effect (that is, the effect that the electrical resistance of the insulator decreases and the current flows easily due to the irradiation of light with a short wavelength). It is desirable to use infrared light with a wavelength of 750 nm or longer. The beam shaping optical system 22 collimates the light emitted from the light source 21 (that is, converts the divergent light beams from the light source into parallel light beams) and has a beam size equal to or greater than the distance between the first and second electrodes 12a and 12b. to generate a beam that is Here, the beam size is the beam size (that is, the beam width W) on the XY plane perpendicular to the traveling direction of light. Furthermore, the beam shaping optical system 22 generates a beam with a spatially uniform light intensity distribution between the first and second electrodes 12a, 12b.
 図2(A)は、光電圧センサ1の投光部20を示す斜視図であり、図2(B)は、投光部20の機能を示す図である。ビーム整形光学系22は、例えば、図2(A)及び(B)に示すように、光源21から発せられる光をコリメートするコリメータレンズ221と、コリメートされたガウスシアンビームを強度分布が均一なトップハット型ビームに変換するビームシェイパー222を用いて構成することができる。ビームシェイパー222は、例えば、回折光学素子又は非球面レンズを用いて構成することができる。なお、ビームシェイパー222から出射した光は、マスク(第1のマスク)223を介してビームサイズ(すなわち、ビーム幅W)が第1及び第2の電極12a、12bの間隔Dと同じ又は間隔Dより少し大きいサイズになるように調整してもよい。 2(A) is a perspective view showing the light projecting section 20 of the photovoltage sensor 1, and FIG. 2(B) is a diagram showing the function of the light projecting section 20. FIG. For example, as shown in FIGS. 2A and 2B, the beam shaping optical system 22 includes a collimator lens 221 that collimates the light emitted from the light source 21, and a top lens with a uniform intensity distribution for the collimated Gaussian cyan beam. It can be configured with a beam shaper 222 that converts it into a hat beam. Beam shaper 222 can be constructed using, for example, a diffractive optical element or an aspherical lens. The light emitted from the beam shaper 222 passes through a mask (first mask) 223 so that the beam size (that is, the beam width W) is equal to or equal to the interval D between the first and second electrodes 12a and 12b. You can adjust it to be slightly larger.
 図3(A)は、電気光学結晶11の上流に配置された光の一部(例えば、径方向外側の部分)を遮光する遮光部材としてのマスク223を示す斜視図であり、図3(B)は、マスク223を備えた光電圧センサ1aの構成を示す模式図である。図3(A)及び(B)の例は、ビーム整形光学系22は、第1及び第2の電極12a、12bの間隔よりも外径が十分大きいコリメータレンズ221を用いて光源21から発せられる光をコリメートし、マスク223を用いて中心付近のビームのみ取り出すことで、所望の断面形状のビームを生成している。この点を除いて、図3(A)及び(B)の例は、図1のものと同じである。 FIG. 3A is a perspective view showing a mask 223 serving as a light shielding member for shielding a portion of light (for example, a radially outer portion) arranged upstream of the electro-optic crystal 11, and FIG. ) is a schematic diagram showing the configuration of a photovoltage sensor 1a having a mask 223. FIG. 3A and 3B, the beam shaping optical system 22 emits from the light source 21 using a collimator lens 221 whose outer diameter is sufficiently larger than the spacing between the first and second electrodes 12a, 12b. By collimating the light and extracting only the beam near the center using the mask 223, a beam with a desired cross-sectional shape is generated. Except for this point, the examples of FIGS. 3A and 3B are the same as those of FIG.
 図4(A)は、光源としてのアレイ光源211とビーム整形光学系としてのレンズアレイ224を示す斜視図であり、図4(B)は、アレイ光源211とレンズアレイ224を備えた光電圧センサ1bの構成を示す模式図である。図4(A)及び(B)に示すように、2次元配列された複数の発光素子を有するアレイ光源211と2次元配列された複数のマイクロレンズを有するレンズアレイ224とを用いて、ビーム径方向の強度分布が平坦化された所望の強度分布を持つビームを生成してもよい。この点を除いて、図4(A)及び(B)の例は、図1のものと同じである。 FIG. 4A is a perspective view showing an array light source 211 as a light source and a lens array 224 as a beam shaping optical system, and FIG. 4B is a photovoltage sensor provided with the array light source 211 and lens array 224. It is a schematic diagram which shows the structure of 1b. As shown in FIGS. 4A and 4B, the beam diameter is A beam may be produced having a desired intensity distribution with a directional flattened intensity distribution. Except for this point, the examples of FIGS. 4A and 4B are the same as those of FIG.
 偏光制御光学系30は、偏光子31と、波長板32と、検光子33と、を備える。偏光子31は、光源21と電気光学結晶11との間に配置され、投光部20から出射される光から直線偏光を取り出す光学素子である。波長板32は、偏光子31と電気光学結晶11との間に配置され、偏光子31を通過した直線偏光を円偏光又は楕円偏光に変換する光学素子である。波長板32には、一般的に直線偏光を円偏光に変換する1/4波長板が用いられる。ただし、電気光学結晶11又はその他の光学素子に自然複屈折がある場合は、波長板32として、1/4波長板以外の波長板又は偏光状態を調整可能な可変波長板を用いてもよい。検光子33は、電気光学結晶11と検出器41との間に配置され、電気光学結晶11を透過した光から直線偏光を取り出す光学素子である。検光子33は、偏光子31を透過する直線偏光と平行、又は、垂直となる方向の直線偏光を透過するように配置される。検光子33としては、光の一方向の偏光成分のみを透過する偏光子又は光を2つの直交する偏光成分に分割する偏光ビームスプリッタなどを用いることができる。 The polarization control optical system 30 includes a polarizer 31, a wavelength plate 32, and an analyzer 33. The polarizer 31 is an optical element that is arranged between the light source 21 and the electro-optic crystal 11 and extracts linearly polarized light from the light emitted from the light projecting section 20 . The wave plate 32 is an optical element that is arranged between the polarizer 31 and the electro-optic crystal 11 and converts linearly polarized light that has passed through the polarizer 31 into circularly polarized light or elliptically polarized light. Wave plate 32 is generally a quarter wave plate that converts linearly polarized light into circularly polarized light. However, if the electro-optic crystal 11 or other optical elements have natural birefringence, the wavelength plate 32 may be a wavelength plate other than the quarter wavelength plate or a variable wavelength plate capable of adjusting the polarization state. The analyzer 33 is an optical element that is arranged between the electro-optic crystal 11 and the detector 41 and extracts linearly polarized light from the light that has passed through the electro-optic crystal 11 . The analyzer 33 is arranged so as to transmit linearly polarized light in a direction parallel to or perpendicular to the linearly polarized light transmitted through the polarizer 31 . As the analyzer 33, a polarizer that transmits only one polarized component of light, a polarization beam splitter that splits light into two orthogonal polarized components, or the like can be used.
 受光部40は、検出器41と、レンズ42と、を備える。検出器41は、光-電気変換(O/E変換)により、光強度を電気信号として検出する光検出器である。検出器41としては、例えば、光源21が発する光の波長に高い感度を有するフォトダイオードを用いることができる。レンズ42は、電気光学結晶11を透過した光を検出器41に集光する光学素子である。なお、検光子33が偏光ビームスプリッタである場合、検出器41とレンズ42は、分離された2つの直交する偏光成分の光を検出するため、2組備えてもよい。 The light receiving unit 40 includes a detector 41 and a lens 42. The detector 41 is a photodetector that detects light intensity as an electrical signal by optical-electrical conversion (O/E conversion). As the detector 41, for example, a photodiode having high sensitivity to the wavelength of the light emitted by the light source 21 can be used. The lens 42 is an optical element that collects the light transmitted through the electro-optic crystal 11 onto the detector 41 . If the analyzer 33 is a polarizing beam splitter, two sets of the detector 41 and the lens 42 may be provided to detect the two orthogonal polarization components of the separated light.
 図5(A)は、電気光学結晶11の下流に配置された光の一部(例えば、径方向外側の部分)を遮光する遮光部材としてのマスク(第2のマスク)43を示す斜視図であり、図5(B)は、マスク43を備えた光電圧センサ1cの構成を示す模式図である。電気光学結晶11に入射していない光が検出器41で受光されるおそれがある場合、図5(A)及び(B)に示すように、電気光学結晶11に入射した光のみが検出器41で受光されるように、レンズ42の上流にマスク43を設けてもよい。なお、その場合、マスク43は、レンズ42の上流に限らず、光源21から検出器41までの間のどの位置に挿入してもよい。 FIG. 5A is a perspective view showing a mask (second mask) 43 as a light shielding member that shields part of the light (for example, the radially outer portion) arranged downstream of the electro-optic crystal 11. FIG. FIG. 5B is a schematic diagram showing the configuration of the photovoltage sensor 1c provided with the mask 43. As shown in FIG. If light not incident on the electro-optic crystal 11 is likely to be received by the detector 41, only the light incident on the electro-optic crystal 11 is detected by the detector 41 as shown in FIGS. A mask 43 may be provided upstream of the lens 42 so that the light is received at . In this case, the mask 43 may be inserted at any position between the light source 21 and the detector 41 without being limited to the upstream of the lens 42 .
 信号処理部50は、信号処理装置51と、出力装置52と、を備える。信号処理装置51は、検出器41が出力する電気信号に基づいて、第1及び第2の電極12a、12bの間に印加された電圧Vを算出する。電気光学結晶11に入射していない光が検出器41で受光される場合、信号処理装置51は、電気光学結晶11に入射していない光の信号成分をオフセットとして除去することで、電圧Vを算出することが望ましい。 The signal processing unit 50 includes a signal processing device 51 and an output device 52 . The signal processing device 51 calculates the voltage V applied between the first and second electrodes 12a, 12b based on the electrical signal output by the detector 41. FIG. When light that is not incident on the electro-optic crystal 11 is received by the detector 41, the signal processing device 51 removes the signal component of the light that is not incident on the electro-optic crystal 11 as an offset, thereby reducing the voltage V to It is desirable to calculate
 出力装置52は、信号処理装置51が算出した電圧Vをアナログ又はデジタル値に変換して出力する。また、出力装置52は、信号処理装置51が算出した電圧Vを、表示器を用いてアナログ又はデジタル表示してもよい。 The output device 52 converts the voltage V calculated by the signal processing device 51 into an analog or digital value and outputs it. Also, the output device 52 may display the voltage V calculated by the signal processing device 51 in analog or digital form using a display.
 図6は、実施の形態1に係る光電圧センサ1の制御系のハードウェア構成の例を示す図である。図1の信号処理部50は、処理回路100によって構成可能である。また、処理回路100は、専用の回路、コンピュータ、などにより実現可能である。図6の例では、処理回路100は、ソフトウェアとしてのプログラムを格納するメモリ102と、プログラムを実行するCPU(中央演算装置)などのプロセッサ101と、ハードディスク装置(HDD)などの補助記憶装置103と、インタフェース104と、出力回路105とを備えている。ただし、光電圧センサ1の制御系のハードウェア構成は、図6の例に限定されない。 FIG. 6 is a diagram showing an example of the hardware configuration of the control system of the photovoltage sensor 1 according to the first embodiment. The signal processing unit 50 in FIG. 1 can be configured by the processing circuit 100 . Also, the processing circuit 100 can be realized by a dedicated circuit, a computer, or the like. In the example of FIG. 6, the processing circuit 100 includes a memory 102 that stores a program as software, a processor 101 such as a CPU (central processing unit) that executes the program, and an auxiliary storage device 103 such as a hard disk drive (HDD). , an interface 104 and an output circuit 105 . However, the hardware configuration of the control system of the optical voltage sensor 1 is not limited to the example of FIG.
 以下に、実施の形態1に係る光電圧センサ1の動作を説明する。光源21からの出射光は、ビーム整形光学系22により、コリメート光かつビームサイズが第1及び第2の電極12a、12bの間隔以上である光に変換され、偏光子31に入射する。偏光子31は、入射した光から直線偏光を取り出す。波長板32は、偏光子31を介して入射した直線偏光を円偏光に変換する。電気光学結晶11は、電気光学結晶11の対向面に設けられた第1及び第2の電極12a、12bの間に印加された電圧に応じて、波長板32を介して入射した円偏光を楕円偏光に変換する。電気光学結晶11を出射した光は、検光子33に入射し、一方向の偏光状態のみ光が出力される。検光子33から出力される光の光量は、電気光学結晶11によって変換された楕円偏光の楕円率に応じて変化する。電気光学結晶11に入射する光量IINと、検光子33から出力される光量をIOUTとすると、IOUT/IINは、以下の式(1)で表される。ここで、θは、電気光学結晶11に電圧が印加されることで生じる偏光位相差である。 The operation of the photovoltage sensor 1 according to the first embodiment will be described below. Emitted light from the light source 21 is converted by the beam shaping optical system 22 into collimated light with a beam size equal to or greater than the distance between the first and second electrodes 12 a and 12 b , and enters the polarizer 31 . The polarizer 31 extracts linearly polarized light from incident light. Wave plate 32 converts linearly polarized light incident through polarizer 31 into circularly polarized light. The electro-optic crystal 11 transforms the incident circularly polarized light through the wavelength plate 32 into an elliptically polarized light according to the voltage applied between the first and second electrodes 12a and 12b provided on the opposing surfaces of the electro-optic crystal 11. convert to polarized light. The light emitted from the electro-optic crystal 11 is incident on the analyzer 33, and the light is output only in one polarized state. The amount of light output from the analyzer 33 changes according to the ellipticity of the elliptically polarized light converted by the electro-optic crystal 11 . Assuming that the amount of light I IN incident on the electro-optic crystal 11 and the amount of light output from the analyzer 33 are I OUT , I OUT /I IN is expressed by the following equation (1). Here, θ is a polarization phase difference caused by applying a voltage to the electro-optic crystal 11 .
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 また、偏光位相差θと電気光学結晶11(すなわち、第1及び第2の電極12a、12bの間)に印加される電圧Vとの間には、以下の式(2)で示す関係がある。 Further, there is a relationship represented by the following formula (2) between the polarization phase difference θ and the voltage V applied to the electro-optic crystal 11 (that is, between the first and second electrodes 12a and 12b). .
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 ここで、Lは、電気光学結晶11の光の進行方向(Z軸方向)と同じ方向の大きさ(すなわち、光路長)、Dは、電気光学結晶11に印加される電界方向(Y軸方向)と同じ方向の大きさ(すなわち、厚さ)、Aは、電気光学結晶11の電圧に対する感度を示す係数であるポッケルス係数である。 Here, L is the size in the same direction as the light traveling direction (Z-axis direction) of the electro-optic crystal 11 (that is, the optical path length), and D is the direction of the electric field applied to the electro-optic crystal 11 (Y-axis direction). ), and A is the Pockels coefficient, which is a coefficient indicating the sensitivity of the electro-optic crystal 11 to voltage.
 第1及び第2の電極12a、12bの間に電圧が印加されていない状態では、IOUT/IIN=1/2となる。一方、第1及び第2の電極12a、12bの間に電圧が印加されると、前述のポッケルス効果の原理に従い、電圧に比例して偏光位相差θが生じ、IOUT/IINが変化する。特に、電圧が小さい場合には、式(1)は近似することができ、IOUT/IINは、電圧に比例して変化する。検光子33から出力された光は、レンズ42により、検出器41に集光され、光強度に応じて、電気信号に変換される。信号処理装置51は、検出器41が出力する電気信号に基づいて、式(1)と式(2)の関係を用いて、第1及び第2の電極12a、12bの間に印加された電圧Vを演算する。信号処理装置51により算出された電圧値は、出力装置52によってアナログ又はデジタル値に変換して出力される。 When no voltage is applied between the first and second electrodes 12a, 12b, I OUT /I IN =1/2. On the other hand, when a voltage is applied between the first and second electrodes 12a and 12b, according to the principle of the Pockels effect described above, a polarization phase difference θ is generated in proportion to the voltage, and I OUT /I IN changes. . Especially for small voltages, equation (1) can be approximated and I OUT /I IN varies proportionally with voltage. The light output from the analyzer 33 is condensed by the lens 42 onto the detector 41 and converted into an electrical signal according to the light intensity. The signal processing device 51 calculates the voltage applied between the first and second electrodes 12a and 12b based on the electrical signal output by the detector 41 and using the relationship of the equations (1) and (2). Calculate V. The voltage value calculated by the signal processing device 51 is converted to an analog or digital value by the output device 52 and output.
 実施の形態1に係る光電圧センサ1は、コリメート光かつビームサイズが第1及び第2の電極12a、12bの間隔以上であり、さらに第1及び第2の電極12a、12bの間で光の強度分布が空間的に均一な光を電気光学結晶11に入射させる。以下では、上記の特性の光を電気光学結晶11に入射させることで、直流ドリフトの影響を回避することができる理由を説明する。 The optical voltage sensor 1 according to the first embodiment has collimated light and a beam size equal to or greater than the distance between the first and second electrodes 12a and 12b, and furthermore, the light is distributed between the first and second electrodes 12a and 12b. Light having a spatially uniform intensity distribution is made incident on the electro-optic crystal 11 . The reason why the influence of DC drift can be avoided by making the light having the above characteristics incident on the electro-optic crystal 11 will be described below.
 図7(A)から(C)は、電気光学結晶11に入射する光と、電気光学結晶11に直流電圧が長時間印加された場合の電気光学結晶11内の電界分布の関係を示す図である。図7(A)は、横型変調方式において電気光学結晶11に密着した第1及び第2の電極12a、12bの間の中心部分のみに光が入射した場合(比較例)を表す。図7(B)は、横型変調方式において電気光学結晶11に密着した第1及び第2の電極12a、12bの間の全体に空間的に均一な光が入射した場合(実施の形態)を表す。電気光学結晶11に直流電圧が印加された場合、空間電荷の移動により、時間が経過するにつれて、電気光学結晶11内部の電界分布が不均一になる。例えば、第1及び第2の電極12a、12bの近傍に電界が集中した場合、第1及び第2の電極12a、12bの近傍の電界E1、E5が、電気光学結晶11の中心付近の電界E2~E4よりも大きくなる。そのため、図7(A)に示すように、電気光学結晶11の中心部分のみを光が通過した場合(測定光が電界E3の影響を受ける場合)、図8に示すように、測定される電圧値は時間が経過するにつれて低下する。一方、図7(B)に示すように、電気光学結晶11の全体に空間的に均一な光が通過した場合、電気光学結晶11内部に電界の不均一が生じたとしても、測定光は第1及び第2の電極12a、12bの間の電界の積分値、すなわち、第1及び第2の電極12a、12bの間に印加された電圧に等しい位相差を受けることとなり、直流電圧を長時間安定して測定することができる。 7A to 7C are diagrams showing the relationship between the light incident on the electro-optic crystal 11 and the electric field distribution in the electro-optic crystal 11 when a DC voltage is applied to the electro-optic crystal 11 for a long time. be. FIG. 7A shows a case (comparative example) in which light is incident only on the central portion between the first and second electrodes 12a and 12b in close contact with the electro-optic crystal 11 in the lateral modulation method. FIG. 7B shows a case (embodiment) in which spatially uniform light is incident on the entire space between the first and second electrodes 12a and 12b in close contact with the electro-optic crystal 11 in the lateral modulation method. . When a DC voltage is applied to the electro-optic crystal 11, the electric field distribution inside the electro-optic crystal 11 becomes non-uniform over time due to movement of space charges. For example, when electric fields are concentrated near the first and second electrodes 12 a and 12 b, the electric fields E 1 and E 5 near the first and second electrodes 12 a and 12 b become the electric field E 2 near the center of the electro-optic crystal 11 . ~ larger than E4. Therefore, when the light passes through only the central portion of the electro-optic crystal 11 as shown in FIG. 7A (when the measurement light is affected by the electric field E3), the measured voltage Value decreases over time. On the other hand, as shown in FIG. 7B, when spatially uniform light passes through the entire electro-optic crystal 11, even if non-uniformity occurs in the electric field inside the electro-optic crystal 11, the measurement light is A phase difference equal to the integrated value of the electric field between the first and second electrodes 12a, 12b, i.e., the voltage applied between the first and second electrodes 12a, 12b will be experienced, and the DC voltage will be applied for a long time. Stable measurement is possible.
 また、図7(C)は、電気光学結晶11内で光の進行方向と電界が印加される方向が同じ向きになる縦型変調方式の例(比較例)を示す。縦型変調方式においても、測定光は電気光学結晶内の電界が強められた部分と弱められた部分の両方を通過し、電界方向に沿った積分値は一定となるため、電極間に印加された電圧を長時間安定して測定することができる。一方、縦型変調方式の場合、電気光学結晶11(第1及び第2の電極12a、12bの間、この場合は、透明電極)に印加される電圧Vに対する偏光位相差θは、電気光学結晶11の形状(例えば、行路長L及び厚さD)に依存しないため、電気光学結晶11の形状を変更させることで測定精度を向上させることができない。 Also, FIG. 7(C) shows an example (comparative example) of a vertical modulation method in which the traveling direction of light and the direction in which an electric field is applied are the same in the electro-optic crystal 11 . In the vertical modulation method as well, the measurement light passes through both the part where the electric field is strengthened and the part where the electric field is weakened in the electro-optic crystal, and the integrated value along the electric field direction is constant. voltage can be stably measured for a long period of time. On the other hand, in the case of the vertical modulation method, the polarization phase difference θ with respect to the voltage V applied to the electro-optic crystal 11 (between the first and second electrodes 12a and 12b, transparent electrodes in this case) is the electro-optic crystal 11 (eg path length L and thickness D), the measurement accuracy cannot be improved by changing the shape of the electro-optic crystal 11 .
 これに対して、実施の形態1に係る光電圧センサ1は、横型変調方式を採用することで、式(2)に示すように、電気光学結晶11の形状(例えば、行路長L及び厚さD)の変更によって、電圧Vに対する偏光位相差θを大きく設定することができる。そのため、電気光学結晶11の形状を変更させることで、直流電圧を高精度に測定することが可能である。 On the other hand, the optical voltage sensor 1 according to the first embodiment adopts the horizontal modulation method, so that the shape of the electro-optic crystal 11 (for example, the path length L and the thickness By changing D), the polarization phase difference θ with respect to the voltage V can be set large. Therefore, by changing the shape of the electro-optic crystal 11, it is possible to measure the DC voltage with high accuracy.
実施の形態2.
 図9は、実施の形態2に係る光電圧センサ2の構成を示す模式図である。実施の形態2に係る光電圧センサ2は、投光部20aのビーム整形光学系としてコリメータレンズ221を備えた点、受光部40aの検出器としてアレイ検出器411を備えた点で、実施の形態1に係る光電圧センサ1と相違する。なお、実施の形態2に関する説明では、実施の形態1と同様の説明を、省略する。
Embodiment 2.
FIG. 9 is a schematic diagram showing the configuration of the optical voltage sensor 2 according to the second embodiment. The photovoltage sensor 2 according to the second embodiment includes a collimator lens 221 as a beam shaping optical system of the light projecting section 20a and an array detector 411 as a detector of the light receiving section 40a. 1 is different from the optical voltage sensor 1 according to 1. In addition, in the explanation regarding the second embodiment, the explanation similar to that of the first embodiment is omitted.
 コリメータレンズ221は、光源21から発せられる光をコリメートし、かつ、ビームサイズ(すなわち、ビーム幅W)が第1及び第2の電極12a、12bの間隔D以上であるビームを生成する。コリメータレンズ221により生成されるビームは、空間的に強度分布が不均一な光となる。 The collimator lens 221 collimates the light emitted from the light source 21 and generates a beam having a beam size (that is, beam width W) equal to or larger than the distance D between the first and second electrodes 12a, 12b. The beam generated by the collimator lens 221 has a spatially non-uniform intensity distribution.
 図10は、アレイ検出器411を示す斜視図である。アレイ検出器411は、複数の光検出素子を1次元又は2次元のアレイ状に配列した光検出器である。なお、アレイ検出器411の光を検出する部分のサイズが第1及び第2の電極12a、12bの間隔D以上である場合は、レンズ42を使用してビームを集光しなくてもよい。 10 is a perspective view showing the array detector 411. FIG. The array detector 411 is a photodetector in which a plurality of photodetection elements are arranged in a one-dimensional or two-dimensional array. If the size of the portion of the array detector 411 that detects light is greater than or equal to the distance D between the first and second electrodes 12a and 12b, the lens 42 need not be used to condense the beam.
 図11(A)は、アレイ検出器411から出力される検出信号の強度分布を示す図であり、図11(B)は、信号処理装置51によって均一化された検出信号の強度分布を示す図である。アレイ検出器411が取得する信号は、図11(A)に示すように、ビームの照度分布に依存し、中心付近と中心から離れた端の画素で異なる輝度値となる。信号処理装置51は、各画素の輝度値を足し合わせて電圧を算出する場合、電気光学結晶11内の輝度の高い部分の電界の影響を強く受けるため、直流ドリフトの影響を回避することができない。そのため、信号処理装置51は、予め電気光学結晶11に電圧がかかっていない状態で、ビームの照度分布に依存する各画素の輝度値を取得しておき、図11(B)に示すように、各画素の輝度値の不均一性を均一に補正した上で、電気光学結晶11から出射した光の強度の変化量を測定し、電圧を算出する。 FIG. 11A is a diagram showing the intensity distribution of the detection signal output from the array detector 411, and FIG. 11B is a diagram showing the intensity distribution of the detection signal homogenized by the signal processing device 51. is. The signal acquired by the array detector 411, as shown in FIG. 11A, depends on the illuminance distribution of the beam, and has different luminance values for pixels near the center and at the edges away from the center. When the signal processing device 51 calculates the voltage by summing the luminance values of the pixels, it is strongly affected by the electric field of the high-luminance portion in the electro-optic crystal 11, and therefore the influence of the DC drift cannot be avoided. . Therefore, the signal processing device 51 obtains the luminance value of each pixel depending on the illuminance distribution of the beam in advance in a state where no voltage is applied to the electro-optic crystal 11, and obtains the luminance value as shown in FIG. 11(B). After uniformly correcting the non-uniformity of the luminance value of each pixel, the amount of change in the intensity of the light emitted from the electro-optic crystal 11 is measured, and the voltage is calculated.
 実施の形態2に係る光電圧センサ2においては、特殊な光源又は特殊な光学素子を備えたビーム整形光学系22を使用することなく、汎用的なビーム整形光学系であるコリメータレンズ221とアレイ検出器411を用いることで、実施の形態1に係る光電圧センサ1と同様の効果が得られる。 In the optical voltage sensor 2 according to the second embodiment, the collimator lens 221, which is a general-purpose beam shaping optical system, and the array detection are used without using the beam shaping optical system 22 having a special light source or a special optical element. By using the device 411, an effect similar to that of the optical voltage sensor 1 according to the first embodiment can be obtained.
 上記以外に関し、実施の形態2は、実施の形態1と同じである。 Except for the above, the second embodiment is the same as the first embodiment.
実施の形態3.
 実施の形態1及び2に係る光電圧センサは、例えば、100kVの高電圧を直接計測しようとすると、電気絶縁の制約上、第1及び第2の電極12a、12bの間隔を100mm程度離す必要がある。しかし、ビームサイズが100mm程度のコリメート光を作成することは、ビーム整形光学系22又はコリメータレンズ221が大型化するため、現実的ではない。
Embodiment 3.
In the photovoltage sensors according to Embodiments 1 and 2, when a high voltage of, for example, 100 kV is to be directly measured, it is necessary to separate the first and second electrodes 12a and 12b by about 100 mm due to electrical insulation restrictions. be. However, creating collimated light with a beam size of about 100 mm is not realistic because the beam shaping optical system 22 or the collimator lens 221 becomes large.
 そこで、実施の形態3においては、高電圧が印加される電極として、電気光学結晶11と非接触の電極を設けることで、電気光学結晶11の電界方向の大きさが10mm程度であっても、100kVを超える高電圧を直接計測可能な光電圧センサを提供する。なお、例えば、特許文献2に関連する技術が説明されている。 Therefore, in Embodiment 3, by providing an electrode that is not in contact with the electro-optic crystal 11 as an electrode to which a high voltage is applied, even if the magnitude of the electric field direction of the electro-optic crystal 11 is about 10 mm, Provided is an optical voltage sensor capable of directly measuring high voltage exceeding 100 kV. Note that, for example, a technique related to Patent Document 2 is described.
国際公開第2020/152820号WO2020/152820
 図12は、実施の形態3に係る光電圧センサ3の構成を示す模式図である。実施の形態3に係る光電圧センサ3は、以下の(1)~(4)の点で、実施の形態1及び2の光電圧センサと相違する。
(1)電気光学結晶11から離れて配置された検出対象の電圧が印加される高電圧導体13を備えた点。
(2)第1の電極12aと高電圧導体13との間に、電気光学結晶11及び高電圧導体13の両方から離れて配置されたバイアス電極16と、バイアス電極16にバイアス電位Vを印加するバイアス電源53とを備えた点。
(3)信号処理部50が、検出器41から出力された検出信号に基づいてバイアス電位を決定する点。
(4)第2の電極12bに電極としての接地導体14が接続されている点。
(5)第1の電極12aの上面に結晶上面電極15が接続されている点。
FIG. 12 is a schematic diagram showing the configuration of the optical voltage sensor 3 according to the third embodiment. The optical voltage sensor 3 according to Embodiment 3 differs from the optical voltage sensors according to Embodiments 1 and 2 in the following points (1) to (4).
(1) A high-voltage conductor 13 to which a voltage to be detected is applied is provided at a distance from the electro-optic crystal 11 .
(2) a bias electrode 16 disposed between the first electrode 12a and the high-voltage conductor 13 and away from both the electro-optic crystal 11 and the high-voltage conductor 13, and applying a bias potential Vb to the bias electrode 16; and a bias power supply 53 that
(3) The signal processing section 50 determines the bias potential based on the detection signal output from the detector 41 .
(4) A ground conductor 14 as an electrode is connected to the second electrode 12b.
(5) The crystal top surface electrode 15 is connected to the top surface of the first electrode 12a.
 図12に示される、電圧印加部10aの高電圧導体13は、検出対象の電圧である高電圧が印加される電圧導体である。接地導体14は、接地電位で固定される導体である。接地導体14は、電気光学結晶11の端面11bに密着する第2の電極12b上に設置される。結晶上面電極15は、電気光学結晶11の端面11aに密着する第1の電極12a上に設置される。バイアス電極16は、結晶上面電極15と非接触となるよう設置される。信号処理部50は、バイアス電極16に接続されるバイアス電源53を制御する。なお、実施の形態3に関する説明では、実施の形態1及び2と同様の説明を、省略する。 The high voltage conductor 13 of the voltage application unit 10a shown in FIG. 12 is a voltage conductor to which a high voltage, which is the voltage to be detected, is applied. The ground conductor 14 is a conductor fixed at ground potential. The ground conductor 14 is placed on the second electrode 12b in close contact with the end face 11b of the electro-optic crystal 11. As shown in FIG. The crystal upper surface electrode 15 is placed on the first electrode 12a that is in close contact with the end face 11a of the electro-optic crystal 11. As shown in FIG. The bias electrode 16 is placed so as to be out of contact with the crystal top surface electrode 15 . The signal processing section 50 controls a bias power supply 53 connected to the bias electrode 16 . In addition, in the explanation regarding the third embodiment, explanations similar to those of the first and second embodiments are omitted.
 高電圧導体13は、送配電用にジュール損を低減すべく昇圧された充電部が想定され、電圧が高い場合は、数100kVを超える電圧が印加される。例えば、高電圧導体13は、変電所、交直変換所、周波数変換所などにおける電力機器周囲の導体である。 The high-voltage conductor 13 is assumed to be a charged part that is boosted to reduce Joule loss for power transmission and distribution, and when the voltage is high, a voltage exceeding several 100 kV is applied. For example, the high voltage conductors 13 are conductors around power equipment in substations, AC/DC conversion stations, frequency conversion stations, and the like.
 接地導体14は、高電圧導体13に対向するように設置され、その電位は接地線と地面に埋め込まれた接地極を通じて、対地電位すなわちゼロ電位に固定される。接地線及び接地極のインピーダンスは十分低いことが望ましく、例えば、日本の電気設備技術基準に規定されるA種接地(接地抵抗値:10Ω以下であること)が確保されていることが望ましい。 The ground conductor 14 is installed so as to face the high-voltage conductor 13, and its potential is fixed to ground potential, ie, zero potential, through a ground wire and a ground electrode embedded in the ground. It is desirable that the impedance of the grounding wire and the grounding electrode is sufficiently low. For example, it is desirable to ensure Class A grounding (grounding resistance value: 10Ω or less) specified in the electrical equipment technical standards of Japan.
 電気光学結晶11は、接地導体14と結晶上面電極15との間に設置される。電気光学結晶11と接地導体14との間及び電気光学結晶11と結晶上面電極15との間に空間的な隙間がある場合、電気光学結晶11と空間的な隙間で被測定電圧が分圧されるため、電圧測定の誤差要因となる。そのため、電気光学結晶11と結晶上面電極15及び接地導体14との接触面には、電気光学結晶11に密着させた第1及び第2の電極12a、12b(この場合は、導電膜)を設けることで、電気光学結晶11と結晶上面電極15とを電気的に接続し且つ電気光学結晶11と接地導体14とを電気的に接続することが望ましい。 The electro-optic crystal 11 is installed between the ground conductor 14 and the crystal upper surface electrode 15 . When there is a spatial gap between the electro-optic crystal 11 and the ground conductor 14 and between the electro-optic crystal 11 and the crystal top electrode 15, the voltage to be measured is divided by the spatial gap between the electro-optic crystal 11 and the crystal top electrode 15. Therefore, it becomes an error factor in voltage measurement. Therefore, first and second electrodes 12a and 12b (in this case, conductive films) are provided in close contact with the electro-optic crystal 11 on the contact surfaces between the electro-optic crystal 11 and the crystal top electrode 15 and the ground conductor 14. Therefore, it is desirable to electrically connect the electro-optic crystal 11 and the crystal upper surface electrode 15 and electrically connect the electro-optic crystal 11 and the ground conductor 14 .
 結晶上面電極15は、高電圧導体13、接地導体14、及びバイアス電極16とは非接触で設置される。バイアス電極16は、高電圧導体13と結晶上面電極15との間に設置され、接地導体14との間に設けられた絶縁性支持物により支持固定される。結晶上面電極15は、浮遊電位であり、バイアス電極16の電位に応じて誘導し、制御することができる。バイアス電源53は、バイアス電極16に接続されており、バイアス電極16の電位を可変する。結晶上面電極15及びバイアス電極16は、高電界下に設置されるため、端部はR面取りするなど、電界強調を避ける形状とすることが望ましい。 The crystal upper surface electrode 15 is installed without contact with the high voltage conductor 13, the ground conductor 14, and the bias electrode 16. The bias electrode 16 is placed between the high-voltage conductor 13 and the crystal top electrode 15 and supported and fixed by an insulating support provided between the ground conductor 14 and the ground conductor 14 . The crystal top electrode 15 is at a floating potential and can be induced and controlled according to the potential of the bias electrode 16 . A bias power supply 53 is connected to the bias electrode 16 and varies the potential of the bias electrode 16 . Since the crystal top surface electrode 15 and the bias electrode 16 are placed under a high electric field, it is desirable to have a shape that avoids electric field enhancement, such as round chamfering of the ends.
 図13は、光電圧センサ3の電圧印加部10aの電気的等価回路を示す図である。高電圧導体13の電圧Vは、結晶上面電極15の電位をV、バイアス電極16の電位をVとすると、以下の式(3)で示される。 FIG. 13 is a diagram showing an electrical equivalent circuit of the voltage applying section 10a of the optical voltage sensor 3. As shown in FIG. The voltage V o of the high-voltage conductor 13 is expressed by the following equation (3), where V f is the potential of the crystal upper surface electrode 15 and V b is the potential of the bias electrode 16 .
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 ここで、結晶上面電極15と高電圧導体13との静電容量をC、結晶上面電極15と接地導体14との静電容量をC、結晶上面電極15とバイアス電極16との静電容量をC、電気光学結晶11の電気抵抗をR、結晶上面電極15の帯電量をQとする。 Here, the capacitance between the crystal top electrode 15 and the high voltage conductor 13 is C 1 , the capacitance between the crystal top surface electrode 15 and the ground conductor 14 is C 2 , and the capacitance between the crystal top surface electrode 15 and the bias electrode 16 is C 2 . Let C 3 be the capacitance, R be the electrical resistance of the electro-optic crystal 11, and Q be the charge amount of the crystal top electrode 15 .
 高電圧導体13の電圧Vを測定するにあたり、帯電量Qは測定誤差要因となるため、測定開始時点では結晶上面電極15を接地除電し、Qをゼロとする。また、高電圧導体13の電圧Vが直流電圧である場合、高電圧導体13の電位変動に追従して、バイアス電極16の電位Vを制御しない限り、電気光学結晶11の内部に直流電界が印加されることになる。電気光学結晶11の電気抵抗Rは有限であり、印加電界に応じた電気伝導を生じるため、結晶上面電極15の電位Vは、時間が経つにつれて、接地導体14と同電位となるように変化する。この減衰時定数τは、電気光学結晶11の誘電率と抵抗率の積で表される。 In measuring the voltage Vo of the high-voltage conductor 13, the amount of charge Q causes a measurement error. Further, when the voltage V o of the high voltage conductor 13 is a DC voltage, unless the potential V b of the bias electrode 16 is controlled following the potential fluctuation of the high voltage conductor 13 , a DC electric field is generated inside the electro-optic crystal 11 . will be applied. The electrical resistance R of the electro-optic crystal 11 is finite, and electrical conduction occurs according to the applied electric field. Therefore, the potential V f of the crystal top surface electrode 15 changes over time so as to become the same potential as the ground conductor 14. do. This attenuation time constant τ is represented by the product of the permittivity and resistivity of the electro-optic crystal 11 .
 これに対し、実施の形態3に係る光電圧センサ3においては、バイアス電極16の電位Vを制御し、電気光学結晶11の内部電界をゼロに維持することで、電気光学結晶11を通じた電気伝導を抑制する。信号処理装置51は、検出器41から出力される検出信号に基づいて、電気光学結晶11に印加された電位Vを演算し、この値がゼロ以外の値を有する場合は、バイアス電源53を用いてバイアス電極16の電位Vを可変し、結晶上面電極15の電位Vを変化させることで、電気光学結晶11の内部電界が常にゼロになるように、バイアス電極16の電位Vをフィードバック制御する。なお、フィードバック制御の周期は、電気光学結晶11の電気伝導の時定数τより十分短い時間に設定する。式(3)は、結晶上面電極15の電位Vがゼロ、かつ、帯電量Qがゼロの場合、式(4)で示される。 On the other hand, in the photovoltage sensor 3 according to the third embodiment, by controlling the potential Vb of the bias electrode 16 and maintaining the internal electric field of the electro-optic crystal 11 at zero, the electricity through the electro-optic crystal 11 is Suppress conduction. The signal processing device 51 calculates the potential Vf applied to the electro-optic crystal 11 based on the detection signal output from the detector 41, and when this value has a value other than zero, the bias power supply 53 is turned on. is used to vary the potential Vb of the bias electrode 16, and the potential Vf of the crystal upper surface electrode 15 is changed so that the internal electric field of the electro -optic crystal 11 is always zero. feedback control. The cycle of feedback control is set to a time sufficiently shorter than the time constant τ of electrical conduction of the electro-optic crystal 11 . Equation (3) is given by Equation (4) when the potential Vf of the crystal top electrode 15 is zero and the charge amount Q is zero.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 図14は、高電圧導体13の電圧Vとバイアス電極16の電位(すなわち、バイアス電圧)Vとの関係を示す図である。図14に示されるように、比例関係が成立する。信号処理装置51は、バイアス電源53の制御電圧である電位Vから、式(4)に基づいて、測定対象である高電圧導体13の電圧Vを演算し、出力装置52に出力する。 FIG . 14 is a diagram showing the relationship between the voltage Vo of the high-voltage conductor 13 and the potential of the bias electrode 16 (that is, the bias voltage) Vb. As shown in FIG. 14, a proportional relationship is established. The signal processing device 51 calculates the voltage Vo of the high-voltage conductor 13 to be measured from the potential Vb that is the control voltage of the bias power supply 53 based on the equation (4), and outputs it to the output device 52 .
 実施の形態3に係る光電圧センサ3においては、高電圧導体13に電気光学結晶11が非接触のため、実施の形態1及び2と異なり、高電圧を分圧器により降圧することなく、直接測定することが可能となる。また、電気光学結晶11の内部電界は、常にゼロになるようフィードバック制御されるため、直流ドリフトの影響を回避して、直流電圧を長時間安定して測定することができる。 In the optical voltage sensor 3 according to the third embodiment, since the electro-optic crystal 11 is not in contact with the high voltage conductor 13, unlike the first and second embodiments, the high voltage can be directly measured without stepping down the voltage with a voltage divider. It becomes possible to In addition, since the internal electric field of the electro-optic crystal 11 is feedback-controlled so that it is always zero, the DC voltage can be stably measured for a long time while avoiding the influence of DC drift.
 その一方で、実施の形態3に係る光電圧センサ3を設置する高電圧設備の都合によっては、高電圧導体13と接地導体14の距離を十分離さなければならない可能性がある。また、高電圧導体13と接地導体14の距離を近づけることができる場合であっても、結晶上面電極15に、ある一定以上の高電圧が印加される場合、結晶上面電極15に帯電が生じ、測定精度悪化の原因となる。そのため、結晶上面電極15に帯電が生じないようにするためには、高電圧導体13と電気光学結晶11の間隔を帯電が生じない距離まで離す必要がある。これらの場合、電気光学結晶11に印加される電圧値が低下するため、電圧に対する感度を高く設定することができない縦型変調方式を採用する場合、測定精度を確保することが困難となる。これに対し、実施の形態3に係る光電圧センサ3では、横型変調方式を採用することで、式(2)に示すように電気光学結晶11の形状(例えば、行路長L及び厚さD)の変更によって、電圧Vに対する偏光位相差θを大きく設定することができる、つまり、感度を高く設定することができる。このため、測定精度を確保することが容易となる。 On the other hand, depending on the circumstances of the high voltage equipment in which the optical voltage sensor 3 according to Embodiment 3 is installed, there is a possibility that the distance between the high voltage conductor 13 and the ground conductor 14 must be sufficiently separated. Further, even if the distance between the high-voltage conductor 13 and the ground conductor 14 can be shortened, if a high voltage above a certain level is applied to the crystal top electrode 15, the crystal top electrode 15 will be charged. It causes deterioration of measurement accuracy. Therefore, in order to prevent the crystal upper surface electrode 15 from being charged, it is necessary to separate the high-voltage conductor 13 and the electro-optic crystal 11 by a distance that does not cause charging. In these cases, the voltage value applied to the electro-optic crystal 11 is reduced, and it becomes difficult to ensure measurement accuracy when adopting the vertical modulation method in which the sensitivity to voltage cannot be set high. On the other hand, in the optical voltage sensor 3 according to Embodiment 3, by adopting the horizontal modulation method, the shape of the electro-optic crystal 11 (for example, path length L and thickness D) By changing , the polarization phase difference θ with respect to the voltage V can be set large, that is, the sensitivity can be set high. Therefore, it becomes easy to ensure measurement accuracy.
 また、図7(A)に示すように、電気光学結晶11に部分的に光を通す比較例の横型変調方式を採用する場合、電気光学結晶11に電圧が印加されていない状態においても、レーザ光及び温度変化などの影響で空間電荷の移動が起こり、出力ドリフトが生じるため、直流電圧を高精度かつ長時間安定して測定することは困難となる。実施の形態3に係る光電圧センサ3では、図7(B)に示すように、電気光学結晶11にビームサイズが第1及び第2の電極12a、12bの間隔D以上のビーム幅Wの光を入射させることにより、出力ドリフトを回避し、高精度かつ長時間安定した電圧測定が可能となる。 Further, as shown in FIG. 7A, when the horizontal modulation method of the comparative example in which the light is partially transmitted through the electro-optic crystal 11 is adopted, the laser light is generated even in the state where no voltage is applied to the electro-optic crystal 11. Due to the effects of light, temperature changes, etc., space charges move and output drift occurs, making it difficult to measure a DC voltage accurately and stably for a long period of time. In the photovoltage sensor 3 according to the third embodiment, as shown in FIG. 7B, the electro-optic crystal 11 receives light having a beam width W whose beam size is equal to or greater than the distance D between the first and second electrodes 12a and 12b. is incident, output drift can be avoided, and highly accurate and stable voltage measurement can be performed for a long period of time.
 上記以外に関し、実施の形態3は、実施の形態1又は2と同じである。また、実施の形態3で説明した高電圧導体13と接地導体14を用いる構成は、実施の形態1及び2で説明したいずれの光電圧センサにも適用可能である。 Except for the above, Embodiment 3 is the same as Embodiment 1 or 2. Also, the configuration using the high-voltage conductor 13 and the ground conductor 14 described in the third embodiment can be applied to any of the optical voltage sensors described in the first and second embodiments.
変形例.
 以上の実施の形態に示した構成は、本開示の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本開示の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。
Modification.
The configuration shown in the above embodiment shows an example of the content of the present disclosure, and can be combined with another known technology. It is also possible to omit or change the part.
 1、1a、1b、1c、2、3 光電圧センサ、 10、10a 電圧印加部、 11 電気光学結晶、 11a、11b 端面、 12 電極対、 12a 第1の電極、 12b 第2の電極、 13 高電圧導体、 14 接地導体、 15 結晶上面電極、 16 バイアス電極、 20、20a 投光部、 21 光源、 211 アレイ光源、 22 ビーム整形光学系、 221 コリメータレンズ、 222 ビームシェイパー、 223 マスク、 224 レンズアレイ、 30 偏光制御光学系、 31 偏光子、 32 波長板、 33 検光子、 40、40a 受光部、 41 検出器、 411 アレイ検出器、 42 レンズ、 43 マスク、 50 信号処理部、 51 信号処理装置、 52 出力装置、 53 バイアス電源。 1, 1a, 1b, 1c, 2, 3 optical voltage sensor, 10, 10a voltage application section, 11 electro-optic crystal, 11a, 11b end face, 12 electrode pair, 12a first electrode, 12b second electrode, 13 height voltage conductor, 14 ground conductor, 15 crystal upper surface electrode, 16 bias electrode, 20, 20a light projection unit, 21 light source, 211 array light source, 22 beam shaping optical system, 221 collimator lens, 222 beam shaper, 223 mask, 224 lens array , 30 polarization control optical system, 31 polarizer, 32 wavelength plate, 33 analyzer, 40, 40a light receiving section, 41 detector, 411 array detector, 42 lens, 43 mask, 50 signal processing section, 51 signal processing device, 52 Output device, 53 Bias power supply.

Claims (13)

  1.  光源と、
     前記光源から出射した光が入射する電気光学結晶と、
     前記電気光学結晶の互いに向き合う端面にそれぞれ備えられた第1の電極及び第2の電極を有し、前記電気光学結晶内における前記光の進行方向に対して垂直方向の電界を前記電気光学結晶に印加する電極対と、
     前記電気光学結晶から出射した前記光を受光し、受光された前記光に基づく検出信号を出力する検出器と、
     を備え、
     前記電気光学結晶に入射する時点における前記光の前記垂直方向のビームサイズが、前記第1の電極と前記第2の電極との間隔以上である
     ことを特徴とする光電圧センサ。
    a light source;
    an electro-optic crystal on which light emitted from the light source is incident;
    a first electrode and a second electrode respectively provided on end faces of the electro-optic crystal facing each other, and applying an electric field to the electro-optic crystal in a direction perpendicular to the traveling direction of the light in the electro-optic crystal; an electrode pair to be applied;
    a detector that receives the light emitted from the electro-optic crystal and outputs a detection signal based on the received light;
    with
    A photovoltage sensor, wherein the beam size of the light in the vertical direction at the time of incidence on the electro-optic crystal is equal to or greater than the distance between the first electrode and the second electrode.
  2.  前記第1の電極及び前記第2の電極は、前記電気光学結晶の前記端面にそれぞれ密着している
     ことを特徴とする請求項1に記載の光電圧センサ。
    2. The optical voltage sensor according to claim 1, wherein the first electrode and the second electrode are in close contact with the end surface of the electro-optic crystal.
  3.  前記検出器は、2次元に配列された複数の光検出素子を有するアレイ検出器である
     ことを特徴とする請求項1又は2に記載の光電圧センサ。
    3. The optical voltage sensor according to claim 1, wherein the detector is an array detector having a plurality of photodetecting elements arranged two-dimensionally.
  4.  前記検出信号に基づいて前記電極対に印加されている電圧を算出する信号処理部をさらに備えた
     ことを特徴とする請求項1から3のいずれか1項に記載の光電圧センサ。
    The optical voltage sensor according to any one of claims 1 to 3, further comprising a signal processing section that calculates the voltage applied to the electrode pair based on the detection signal.
  5.  前記信号処理部は、前記検出器から出力された前記検出信号から前記電気光学結晶に入射していない光に基づく信号成分を除外して前記電圧を算出する
     ことを特徴とする請求項4に記載の光電圧センサ。
    5. The signal processing unit according to claim 4, wherein the signal processing unit calculates the voltage by excluding signal components based on light not incident on the electro-optic crystal from the detection signal output from the detector. optical voltage sensor.
  6.  前記信号処理部は、前記検出器から出力された前記検出信号の前記垂直方向の強度分布を均一化する処理を行う
     ことを特徴とする請求項4又は5に記載の光電圧センサ。
    6. The optical voltage sensor according to claim 4, wherein the signal processing unit performs processing for equalizing the vertical intensity distribution of the detection signal output from the detector.
  7.  前記電気光学結晶から離れて配置された高電圧導体と、
     前記第1の電極と前記高電圧導体との間に、前記電気光学結晶及び前記高電圧導体から離れて配置されたバイアス電極と、
     前記バイアス電極にバイアス電位を印加するバイアス電源と、
     前記検出器から出力された前記検出信号に基づいて前記バイアス電位を決定する信号処理部と、
     をさらに備え、
     前記信号処理部は、前記高電圧導体の電位を算出する
     ことを特徴とする請求項1から3のいずれか1項に記載の光電圧センサ。
    a high voltage conductor spaced from the electro-optic crystal;
    a bias electrode positioned between the first electrode and the high voltage conductor and spaced from the electro-optic crystal and the high voltage conductor;
    a bias power supply that applies a bias potential to the bias electrode;
    a signal processing unit that determines the bias potential based on the detection signal output from the detector;
    further comprising
    The optical voltage sensor according to any one of claims 1 to 3, wherein the signal processor calculates the potential of the high voltage conductor.
  8.  前記信号処理部は、前記電気光学結晶にかかる前記垂直方向の電界をゼロに保つように、前記バイアス電位を制御する
     ことを特徴とする請求項7に記載の光電圧センサ。
    8. The photovoltage sensor according to claim 7, wherein the signal processing section controls the bias potential so as to keep the vertical electric field applied to the electro-optic crystal zero.
  9.  前記光源と前記電気光学結晶との間に配置され、前記光源から出射した前記光の一部を遮る第1のマスクをさらに備えた
     ことを特徴とする請求項1から8のいずれか1項に記載の光電圧センサ。
    9. The device according to any one of claims 1 to 8, further comprising a first mask arranged between the light source and the electro-optic crystal and blocking part of the light emitted from the light source. An optical voltage sensor as described.
  10.  前記電気光学結晶と前記検出器との間に配置され、前記電気光学結晶から出射した前記光の一部を遮る第2のマスクをさらに備えた
     ことを特徴とする請求項1から9のいずれか1項に記載の光電圧センサ。
    10. The detector according to any one of claims 1 to 9, further comprising a second mask disposed between said electro-optic crystal and said detector for blocking part of said light emitted from said electro-optic crystal. 2. The optical voltage sensor according to item 1.
  11.  前記電気光学結晶に入射する時点における前記光の前記垂直方向の強度分布を、均一にする整形光学系をさらに備えた
     ことを特徴とする請求項1から10のいずれか1項に記載の光電圧センサ。
    11. The photovoltage according to any one of claims 1 to 10, further comprising a shaping optical system for uniformizing the vertical intensity distribution of the light at the time of incidence on the electro-optic crystal. sensor.
  12.  前記電気光学結晶の上流で前記光の偏光状態を制御する偏光子及び波長板と、
     前記電気光学結晶からの出射光の偏光状態を制御する検光子と、
     をさらに備えたことを特徴とする請求項1から11のいずれか1項に記載の光電圧センサ。
    a polarizer and a wave plate for controlling the polarization state of the light upstream of the electro-optic crystal;
    an analyzer for controlling the polarization state of light emitted from the electro-optic crystal;
    12. The optical voltage sensor of any one of claims 1-11, further comprising:
  13.  前記光源は、複数の発光素子が1次元又は2次元に配列されたアレイ光源である
     ことを特徴とする請求項1から12のいずれか1項に記載の光電圧センサ。
    The optical voltage sensor according to any one of claims 1 to 12, wherein the light source is an array light source in which a plurality of light emitting elements are arranged one-dimensionally or two-dimensionally.
PCT/JP2021/021692 2021-06-08 2021-06-08 Optical voltage sensor WO2022259353A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021563255A JP7038925B1 (en) 2021-06-08 2021-06-08 Optical voltage sensor
PCT/JP2021/021692 WO2022259353A1 (en) 2021-06-08 2021-06-08 Optical voltage sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/021692 WO2022259353A1 (en) 2021-06-08 2021-06-08 Optical voltage sensor

Publications (1)

Publication Number Publication Date
WO2022259353A1 true WO2022259353A1 (en) 2022-12-15

Family

ID=81213703

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/021692 WO2022259353A1 (en) 2021-06-08 2021-06-08 Optical voltage sensor

Country Status (2)

Country Link
JP (1) JP7038925B1 (en)
WO (1) WO2022259353A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57120864A (en) * 1981-01-20 1982-07-28 Matsushita Electric Ind Co Ltd Optical system voltage measuring device
JPS57168167A (en) * 1981-04-10 1982-10-16 Meidensha Electric Mfg Co Ltd Electric field/voltage detector
JP2003344459A (en) * 2002-05-31 2003-12-03 Telecommunication Advancement Organization Of Japan Photoelectric magnetic field sensor and photoelectric magnetic field detection device
JP2004286583A (en) * 2003-03-20 2004-10-14 Nippon Telegr & Teleph Corp <Ntt> Electric field detection optical device and transceiver
JP2015011019A (en) * 2013-07-02 2015-01-19 株式会社東芝 Direct-current voltage measurement device
WO2020152820A1 (en) * 2019-01-24 2020-07-30 三菱電機株式会社 Voltage measurement device and gas insulated switchgear

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100606420B1 (en) * 2004-07-12 2006-08-01 엘에스산전 주식회사 Optical potential transformer interleaved detector
CN201051119Y (en) * 2007-01-15 2008-04-23 湾世伟 Distributed optical voltage mutual inductor
JP2018091782A (en) * 2016-12-06 2018-06-14 三菱電機株式会社 Voltage measurement device and method for voltage measurement

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57120864A (en) * 1981-01-20 1982-07-28 Matsushita Electric Ind Co Ltd Optical system voltage measuring device
JPS57168167A (en) * 1981-04-10 1982-10-16 Meidensha Electric Mfg Co Ltd Electric field/voltage detector
JP2003344459A (en) * 2002-05-31 2003-12-03 Telecommunication Advancement Organization Of Japan Photoelectric magnetic field sensor and photoelectric magnetic field detection device
JP2004286583A (en) * 2003-03-20 2004-10-14 Nippon Telegr & Teleph Corp <Ntt> Electric field detection optical device and transceiver
JP2015011019A (en) * 2013-07-02 2015-01-19 株式会社東芝 Direct-current voltage measurement device
WO2020152820A1 (en) * 2019-01-24 2020-07-30 三菱電機株式会社 Voltage measurement device and gas insulated switchgear

Also Published As

Publication number Publication date
JPWO2022259353A1 (en) 2022-12-15
JP7038925B1 (en) 2022-03-18

Similar Documents

Publication Publication Date Title
US10281342B2 (en) Faraday current and temperature sensors
US5892357A (en) Electro-optic voltage sensor for sensing voltage in an E-field
US10969411B2 (en) Polarization insensitive current and magnetic sensors with active temperature compensation
WO2017054374A1 (en) Optical sensing device for two-dimensional electric field measurement
CN102426281B (en) Longitudinal modulation optical voltage sensor
JP6093308B2 (en) AC or DC power transmission system and method for measuring voltage
JPS6325307B2 (en)
KR0173672B1 (en) Fiber optic device for measuring current strength
WO2022259353A1 (en) Optical voltage sensor
CN102411080A (en) Optical electric field sensor
JP2018091782A (en) Voltage measurement device and method for voltage measurement
KR100606420B1 (en) Optical potential transformer interleaved detector
US11486906B2 (en) Voltage measuring device and gas-insulated switching apparatus
RU2433414C1 (en) Fibre-optic current sensor
JP2023183122A (en) voltage measuring device
JP6108521B2 (en) Potentiometer and potential difference measuring method for potentiometric measurement
JP3114104B2 (en) Electric field sensor device using electro-optic effect
JPH0829457A (en) Electric field sensor device
WO2023215681A2 (en) A temperature stable optical pockels electric field sensor and methods thereof
JPH03235064A (en) Optical voltage sensor
JP2921367B2 (en) Optical voltmeter
Hao et al. The research of methods to improve the control bandwidth for liquid crystal beam steering system
JP3538181B2 (en) Photoelectric field sensor and photoelectric field detection device
JPH07159452A (en) Method and instrument for measuring dc voltage
KR20180035106A (en) Dual-LC tunable wavelength and polarimetric filter

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021563255

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21945031

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE