JP2921367B2 - Optical voltmeter - Google Patents

Optical voltmeter

Info

Publication number
JP2921367B2
JP2921367B2 JP5306084A JP30608493A JP2921367B2 JP 2921367 B2 JP2921367 B2 JP 2921367B2 JP 5306084 A JP5306084 A JP 5306084A JP 30608493 A JP30608493 A JP 30608493A JP 2921367 B2 JP2921367 B2 JP 2921367B2
Authority
JP
Japan
Prior art keywords
voltage
optical
conductor
ground electrode
intermediate electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP5306084A
Other languages
Japanese (ja)
Other versions
JPH07140182A (en
Inventor
武司 野田
明 伊藤
英治 板倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TAKAOKA SEISAKUSHO KK
Original Assignee
TAKAOKA SEISAKUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TAKAOKA SEISAKUSHO KK filed Critical TAKAOKA SEISAKUSHO KK
Priority to JP5306084A priority Critical patent/JP2921367B2/en
Publication of JPH07140182A publication Critical patent/JPH07140182A/en
Application granted granted Critical
Publication of JP2921367B2 publication Critical patent/JP2921367B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、電気機器の導体に印加
される電圧を測定する光学式電圧測定器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical voltmeter for measuring a voltage applied to a conductor of an electric device.

【0002】[0002]

【従来の技術】図3に光学式電圧測定器の光学式電圧セ
ンサの構成の一例を示す。
2. Description of the Related Art FIG. 3 shows an example of the configuration of an optical voltage sensor of an optical voltage measuring device.

【0003】光学式電圧センサは、偏光子44、1/4
波長板45、電気光学結晶46、検光子47により構成
されている。電気光学結晶46は、光路49と垂直の向
かい合う二面に透明電極48が蒸着されている。
An optical voltage sensor is a polarizer 44, 1/4.
It is composed of a wave plate 45, an electro-optic crystal 46, and an analyzer 47. In the electro-optic crystal 46, transparent electrodes 48 are vapor-deposited on two opposite surfaces perpendicular to the optical path 49.

【0004】電圧を透明電極48に印加すると、電気光
学結晶46は電気光学効果により印加された電圧に応じ
て屈折率が変化する。この屈折率の変化はX方向、およ
びY方向によって異なった値を示す。
When a voltage is applied to the transparent electrode 48, the refractive index of the electro-optic crystal 46 changes according to the applied voltage due to the electro-optic effect. This change in the refractive index shows different values depending on the X direction and the Y direction.

【0005】光路49に従い入射された光は偏光子44
により直線偏光にされた後、1/4波長板45により円
偏光となる。次にこの円偏光は電圧が印加された電気光
学結晶46を通過することにより位相変調され楕円偏光
となる。この楕円偏光は、検光子47により強度変換さ
れるため、電気光学結晶46に印加された電圧が光強度
として測定することができる。
The light incident along the optical path 49 is a polarizer 44
After that, the light is converted into circularly polarized light by the 板 wavelength plate 45. Next, the circularly polarized light passes through the electro-optic crystal 46 to which a voltage is applied, and is phase-modulated to be elliptically polarized light. Since the intensity of the elliptically polarized light is converted by the analyzer 47, the voltage applied to the electro-optic crystal 46 can be measured as the light intensity.

【0006】光学式電圧センサにより測定できる電圧は
数百ボルト程度である。そのため、高電圧を測定する場
合は、中間電極およびコンデンサ等を用いて電圧を分圧
し、この分圧した電圧を測定した後、その分圧比より電
圧を換算する方法が用いられる。
The voltage that can be measured by an optical voltage sensor is about several hundred volts. Therefore, when measuring a high voltage, a method is used in which the voltage is divided using an intermediate electrode, a capacitor, and the like, the divided voltage is measured, and then the voltage is converted from the division ratio.

【0007】図2は従来の光学式電圧測定器の一例で、
ガス絶縁機器の密閉容器10内に設置された導体11の
電圧を測定するための光学式電圧測定器を示す。
FIG. 2 shows an example of a conventional optical voltmeter.
1 shows an optical voltmeter for measuring the voltage of a conductor 11 installed in a sealed container 10 of a gas insulating device.

【0008】密閉容器10の内側に位置し、導体11を
周回するように設置した中間電極50と、導体11を周
回し中間電極50の外側に設置した接地電極60と、密
閉容器10の壁面に設置した絶縁端子12と、絶縁端子
12を介して密閉容器10の外側に配置された光学式電
圧センサ40と中間電極50とを接続するリード線51
と、絶縁端子12を介して光学式電圧センサ40と接地
電極60とを接続するリード線61と、リード線51お
よびリード線61により光学式電圧センサ40と並列に
接続された分圧電圧調整用コンデンサ52と、光学式電
圧センサ40と光信号の授受をおこなうことにより導体
11の電圧を演算する信号処理回路43と、光学式電圧
センサ40と信号処理回路43をつなぐ送光用光ファイ
バ41および受光用光ファイバ42により構成されてい
る。
[0008] An intermediate electrode 50 located inside the closed container 10 and installed around the conductor 11, a ground electrode 60 installed around the conductor 11 and installed outside the intermediate electrode 50, A lead wire 51 connecting the installed insulation terminal 12 and the optical voltage sensor 40 and the intermediate electrode 50 arranged outside the closed casing 10 via the insulation terminal 12.
And a lead 61 connecting the optical voltage sensor 40 and the ground electrode 60 via the insulating terminal 12, and a divided voltage adjusting device connected in parallel with the optical voltage sensor 40 by the lead 51 and the lead 61. A capacitor 52, a signal processing circuit 43 for calculating the voltage of the conductor 11 by transmitting and receiving an optical signal to and from the optical voltage sensor 40, a light transmitting optical fiber 41 connecting the optical voltage sensor 40 and the signal processing circuit 43, and The light receiving optical fiber 42 is used.

【0009】なお、中間電極50および接地電極60
は、スペーサ等の絶縁物13にて密閉容器10内に固定
されている。
The intermediate electrode 50 and the ground electrode 60
Are fixed in the closed container 10 by an insulator 13 such as a spacer.

【0010】導体11と接地電極60との間の電圧は、
導体11と中間電極50の間の静電容量CT と、中間電
極50と接地電極60の間の静電容量CS と分圧電圧調
整用コンデンサ52の静電容量CB および光学式電圧セ
ンサ40の静電容量CK によって分圧される。そのため
光学式電圧センサ40に印加される電圧は、分圧電圧調
整用コンデンサ52の静電容量CB を変化させることに
より任意に調整できる。
The voltage between the conductor 11 and the ground electrode 60 is
The capacitance C T between the conductor 11 and the intermediate electrode 50, the capacitance C S between the intermediate electrode 50 and the ground electrode 60, the capacitance C B of the divided voltage adjusting capacitor 52, and the optical voltage sensor The voltage is divided by a capacitance C K of 40. Therefore the voltage applied to the optical voltage sensor 40 can be adjusted arbitrarily by changing the capacitance C B of the divided voltage adjustment capacitor 52.

【0011】導体11と接地電極60の間の電圧のうち
T 、CS 、CB 、CK により分圧された数百ボルトの
電圧は、リード線51およびリード線61により絶縁端
子12を介して光学式電圧センサ40に導かれる。光学
式電圧センサ40には信号処理回路43から送光用光フ
ァイバ41により光が供給され、光学式電圧センサ40
で、前述した方法により光強度に変換され、受光用光フ
ァイバ42を通って信号処理回路43に送られる。信号
処理回路43では、この光強度より光学式電圧センサ4
0に印加された電圧を求め、さらに既知の分圧比より導
体11の電圧が算出される。
[0011] C T of the voltage between the conductors 11 and the ground electrode 60, C S, C B, the voltage of the divided several hundred volts by C K, the insulating terminal 12 via a lead wire 51 and the lead wire 61 Through the optical voltage sensor 40. Light is supplied to the optical voltage sensor 40 from the signal processing circuit 43 by the light transmitting optical fiber 41.
Then, the light intensity is converted into light intensity by the method described above, and is sent to the signal processing circuit 43 through the light receiving optical fiber 42. In the signal processing circuit 43, the optical voltage sensor 4
The voltage applied to 0 is obtained, and the voltage of the conductor 11 is calculated from the known voltage division ratio.

【0012】[0012]

【発明が解決しようとする課題】ここで分圧電圧調整用
コンデンサ52を使用しない場合、導体11と接地電極
60との間の電圧は、CT 、CS 、CK により分圧され
るため、光学式電圧センサ40の静電容量を一定とした
場合、導体11と中間電極50との距離および中間電極
50と接地電極60との距離を変化させることのみによ
り光学式電圧センサ40に印加する電圧が調整できる。
しかし実用的に例えば、直径100ミリメートルの導体
11に72キロボルトの電圧を印加したときに、光学式
電圧センサ40に数百ボルトの電圧を印加しようとする
と、接地電極60の直径を200ミリメートルとして、
この接地電極60に対する中間電極50の距離は約0.
2ミリメートルとなる。このような中間電極50と接地
電極60を製作することは非常に困難である。そのた
め、従来法による光学式電圧測定器においては、導体1
1と中間電極50との距離および中間電極50と接地電
極60との距離を製作容易な距離とした場合において、
光学式電圧センサ40に印加する電圧を調整できるよう
にするために分圧電圧調整用コンデンサ52は必要不可
欠となっている。
BRIEF Problem to be Solved] When not using the divided voltage adjustment capacitor 52 here, a voltage between the conductor 11 and the ground electrode 60, C T, C S, since it is divided by C K When the capacitance of the optical voltage sensor 40 is constant, the voltage is applied to the optical voltage sensor 40 only by changing the distance between the conductor 11 and the intermediate electrode 50 and the distance between the intermediate electrode 50 and the ground electrode 60. The voltage can be adjusted.
However, in practice, for example, when a voltage of several hundred volts is applied to the optical voltage sensor 40 when a voltage of 72 kilovolts is applied to the conductor 11 having a diameter of 100 millimeters, the diameter of the ground electrode 60 is set to 200 millimeters.
The distance of the intermediate electrode 50 to the ground electrode 60 is about 0.
2 millimeters. It is very difficult to manufacture such an intermediate electrode 50 and a ground electrode 60. Therefore, in the conventional optical voltage measuring device, the conductor 1
When the distance between the first electrode 1 and the intermediate electrode 50 and the distance between the intermediate electrode 50 and the ground electrode 60 are distances that are easy to manufacture,
In order to be able to adjust the voltage applied to the optical voltage sensor 40, the divided voltage adjusting capacitor 52 is indispensable.

【0013】しかしながらこの従来の光学式電圧測定器
は、分圧電圧調整用コンデンサ52の温度特性が光学式
電圧測定器の測定誤差要因として大きく現れる欠点があ
る。
However, this conventional optical voltmeter has a drawback that the temperature characteristic of the divided voltage adjusting capacitor 52 greatly appears as a measurement error factor of the optical voltmeter.

【0014】そこで本発明は、分圧電圧調整用コンデン
サが不要な構造で、光学式電圧センサに印加する電圧を
得ることにより、光学式電圧測定器の測定精度を向上さ
せるものである。
Accordingly, the present invention improves the measurement accuracy of an optical voltmeter by obtaining a voltage to be applied to an optical voltage sensor with a structure that does not require a divided voltage adjusting capacitor.

【0015】[0015]

【課題を解決するための手段】密閉容器内において、課
電される導体の先端面に対向して前記導体と間隔をあけ
て取り付けた少なくとも1つの孔を有する接地電極と、
この接地電極の孔に面し前記導体の反対面に位置する部
分に前記接地電極と間隔をあけて取り付けた中間電極
と、この中間電極側に配置し前記接地電極と前記中間電
極とを電圧入力端子に電気的に接続した光学式電圧セン
サと、この光学的電圧センサと光学的に接続し前記密閉
容器の壁面に取り付けた密封端子と、前記密封容器外に
おいて、前記密封端子と光学的に接続した信号処理回路
とを備えたことを特徴とする。
[MEANS FOR SOLVING THE PROBLEMS] In a closed container, a section
Leave a gap between the conductor to be
A ground electrode having at least one hole mounted therein;
A part facing the hole of this ground electrode and located on the opposite side of the conductor.
Intermediate electrode attached at a distance from the ground electrode
And the ground electrode and the intermediate electrode arranged on the intermediate electrode side.
Optical voltage sensor with poles electrically connected to voltage input terminals
Optically connected to the optical voltage sensor and
A sealed terminal attached to the wall of the container, and outside the sealed container
A signal processing circuit optically connected to the sealed terminal.
And characterized in that:

【0016】[0016]

【作用】上記の構造による本発明の光学式電圧測定器に
おいては、分圧電圧調整用コンデンサを使用することな
く、光学式電圧センサに印加する数百ボルトの電圧を中
間電極のみで得られるため、分圧電圧調整用コンデンサ
の温度特性に影響されることなく、電圧を精度良く測定
することができる。
In the optical voltmeter of the present invention having the above structure, a voltage of several hundred volts applied to the optical voltage sensor can be obtained only by the intermediate electrode without using a divided voltage adjusting capacitor. The voltage can be measured accurately without being affected by the temperature characteristics of the divided voltage adjusting capacitor.

【0017】[0017]

【実施例】図1は本発明の光学式電圧測定器の一例で、
ガス絶縁機器の接地された密閉容器10の内側に位置
し、導体11の先端面に対向させた中間電極20を設置
すると共に、導体11の先端面と中間電極20との間
に、導体11と対向した部分に穴32を有した接地電極
30を配置する。接地電極30は密閉容器10に電気的
および機械的に接続し、中間電極20は絶縁スペーサ2
1により接地電極30に固定する。光学式電圧センサ4
0は支持台35を介して接地電極30と同電位である密
閉容器10の内側に固定し、その電圧入力端子を中間電
極20および接地電極30に接続する。また、信号処理
回路43は密閉容器10の外部に配置し、密封端子14
を介して送光用光ファイバ41および受光用光ファイバ
42により光学式電圧センサ40と光学的に接続する。
FIG. 1 shows an example of an optical voltmeter according to the present invention.
The intermediate electrode 20 is located inside the grounded closed container 10 of the gas-insulated equipment and is opposed to the front end surface of the conductor 11, and the conductor 11 is located between the front end surface of the conductor 11 and the intermediate electrode 20. The ground electrode 30 having the hole 32 at the opposing portion is arranged. The ground electrode 30 is electrically and mechanically connected to the closed container 10, and the intermediate electrode 20 is connected to the insulating spacer 2.
1 is fixed to the ground electrode 30. Optical voltage sensor 4
Numeral 0 is fixed to the inside of the sealed container 10 having the same potential as the ground electrode 30 via the support base 35, and its voltage input terminal is connected to the intermediate electrode 20 and the ground electrode 30. Further, the signal processing circuit 43 is disposed outside the sealed container 10 and the sealed terminal 14 is provided.
Is optically connected to the optical voltage sensor 40 by a light transmitting optical fiber 41 and a light receiving optical fiber.

【0018】導体11に電圧を印加すると導体11と接
地電極30との間に電界が発生するが、接地電極30に
は穴32が設けてあるため、穴32の大きさに応じて一
定割合の電界が中間電極20側へ漏れ、導体11と接地
電極30との距離、接地電極30と中間電極20との距
離に応じて接地電極30と中間電極20の間に電圧が生
じる。
When a voltage is applied to the conductor 11, an electric field is generated between the conductor 11 and the ground electrode 30. However, since the ground electrode 30 has the holes 32, a predetermined ratio is determined according to the size of the holes 32. The electric field leaks to the intermediate electrode 20 side, and a voltage is generated between the ground electrode 30 and the intermediate electrode 20 according to the distance between the conductor 11 and the ground electrode 30 and the distance between the ground electrode 30 and the intermediate electrode 20.

【0019】実施例では直径100ミリメートルの導体
11に72キロボルトの電圧を印加して、導体11の端
面から100ミリメートル離れた場所に直径20ミリメ
ートルの穴32を有する厚さ10ミリメートルの接地電
極30を設け、さらに接地電極30から10ミリメート
ル離れた場所に直径10ミリメートル厚さ2ミリメート
ルの中間電極20を配置することにより、接地電極30
と中間電極20の間に約300ボルトの電圧が得られ
る。これによって温度によって変化しない精度の高い電
圧が測定できる。
In the embodiment, a voltage of 72 kilovolts is applied to the conductor 11 having a diameter of 100 millimeters, and a ground electrode 30 having a thickness of 10 millimeters and having a hole 32 having a diameter of 20 millimeters is provided at a position 100 millimeters away from the end face of the conductor 11. By providing the intermediate electrode 20 having a diameter of 10 mm and a thickness of 2 mm at a position 10 mm away from the ground electrode 30,
A voltage of about 300 volts is obtained between the electrode and the intermediate electrode 20. As a result, a highly accurate voltage that does not change with temperature can be measured.

【0020】[0020]

【発明の効果】本発明では、分圧電圧調整用コンデンサ
を使用することなく、光学式電圧センサに印加する数百
ボルトの電圧を中間電極のみで得られるため、分圧電圧
調整用コンデンサの温度特性に影響されることなく、被
測定電圧を精度良く測定することができる。
According to the present invention, a voltage of several hundred volts applied to the optical voltage sensor can be obtained only by the intermediate electrode without using a divided voltage adjusting capacitor. The measured voltage can be accurately measured without being affected by the characteristics.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の光学式電圧測定器の一例を示す図であ
る。
FIG. 1 is a diagram showing an example of an optical voltmeter according to the present invention.

【図2】従来の光学式電圧測定器の一例を示す図であ
り、(A)は軸方向の概略断面図、(B)は径方向の概
略断面図である。
FIGS. 2A and 2B are diagrams showing an example of a conventional optical voltage measuring device, wherein FIG. 2A is a schematic sectional view in the axial direction, and FIG. 2B is a schematic sectional view in the radial direction.

【図3】光学式電圧センサの構成の一例を示す図であ
る。
FIG. 3 is a diagram illustrating an example of a configuration of an optical voltage sensor.

【符号の説明】[Explanation of symbols]

10 密閉容器 11 導体 20 中間電極 21 絶縁スペーサ 30 接地電極 32 穴 35 支持台 40 光学式電圧センサ 41 光ファイバ 42 光ファイバ 43 信号処理回路 DESCRIPTION OF SYMBOLS 10 Closed container 11 Conductor 20 Intermediate electrode 21 Insulating spacer 30 Ground electrode 32 Hole 35 Support base 40 Optical voltage sensor 41 Optical fiber 42 Optical fiber 43 Signal processing circuit

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) G01R 15/24 G01R 15/06 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 6 , DB name) G01R 15/24 G01R 15/06

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 密閉容器内において、課電される導体の
先端面に対向して前記導体と間隔をあけて取り付けた少
なくとも1つの孔を有する接地電極と、この接地電極の
孔に面し前記導体の反対面に位置する部分に前記接地電
極と間隔をあけて取り付けた中間電極と、この中間電極
側に配置し前記接地電極と前記中間電極とを電圧入力端
子に電気的に接続した光学式電圧センサと、 この光学的電圧センサと光学的に接続し前記密閉容器の
壁面に取り付けた密封端子と、 前記密封容器外において、前記密封端子と光学的に接続
した信号処理回路と、を備えたことを特徴とする 光学式
電圧測定器。
In a closed container, a conductor to be charged is provided.
A small space attached to the conductor facing the tip
A ground electrode having at least one hole;
The part facing the hole and located on the opposite side of the conductor
Intermediate electrode mounted at a distance from the poles and this intermediate electrode
And the ground electrode and the intermediate electrode are connected to a voltage input terminal.
And an optical voltage sensor electrically connected to the child, of the closed container connected the optical voltage sensor in optical
A sealed terminal mounted on a wall and optically connected to the sealed terminal outside the sealed container
An optical voltage measuring device comprising: a signal processing circuit ;
JP5306084A 1993-11-12 1993-11-12 Optical voltmeter Expired - Fee Related JP2921367B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5306084A JP2921367B2 (en) 1993-11-12 1993-11-12 Optical voltmeter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5306084A JP2921367B2 (en) 1993-11-12 1993-11-12 Optical voltmeter

Publications (2)

Publication Number Publication Date
JPH07140182A JPH07140182A (en) 1995-06-02
JP2921367B2 true JP2921367B2 (en) 1999-07-19

Family

ID=17952843

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5306084A Expired - Fee Related JP2921367B2 (en) 1993-11-12 1993-11-12 Optical voltmeter

Country Status (1)

Country Link
JP (1) JP2921367B2 (en)

Also Published As

Publication number Publication date
JPH07140182A (en) 1995-06-02

Similar Documents

Publication Publication Date Title
US4253061A (en) Light converting type detectors
JPS6325307B2 (en)
JPH112648A (en) Electrooptic voltage sensor with optical fiber
JP2004093257A (en) Optical sensor unit
JPH01189570A (en) Non-contact type measuring apparatus for electric field varying statically and/or hourly
JP2921367B2 (en) Optical voltmeter
Collins et al. Determination of Optical Constants of Metals by Reflectivity Measurements
JP2887829B2 (en) Optical voltmeter
JPH0721512B2 (en) Optical parts for optical sensors
KR100606420B1 (en) Optical potential transformer interleaved detector
KR100662744B1 (en) Bulk type optical current/potential sensor
JPH05273256A (en) Insulator built-in type photo voltage sensor
JPH08211107A (en) Optical voltage measuring apparatus for gas insulated electric machine
Brady et al. High‐Voltage Pulse Measurement with a Precision Capacitive Voltage Divider
CN101672868A (en) Optical voltage measuring apparatus
US3714561A (en) A transducer for measuring the displacement of an electrically conductive objective
JPWO2020152820A1 (en) Voltage measuring device and gas insulated switchgear
Wolzak The development of high-voltage measuring techniques
JPH03235064A (en) Optical voltage sensor
JPS5918366Y2 (en) Phototransformable electric field measuring device
JPS63133068A (en) Apparatus for detecting voltage of circuit
JP2001526770A (en) Electro-optic voltage sensor
US3487305A (en) Electrothermic instruments for measuring voltage or current
SU1045171A1 (en) Device for measuring charged surface electrical potential
JP2969035B2 (en) Optical PT

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees