WO2022257533A1 - 一种数据传输方法、装置、存储介质及电子装置 - Google Patents

一种数据传输方法、装置、存储介质及电子装置 Download PDF

Info

Publication number
WO2022257533A1
WO2022257533A1 PCT/CN2022/081861 CN2022081861W WO2022257533A1 WO 2022257533 A1 WO2022257533 A1 WO 2022257533A1 CN 2022081861 W CN2022081861 W CN 2022081861W WO 2022257533 A1 WO2022257533 A1 WO 2022257533A1
Authority
WO
WIPO (PCT)
Prior art keywords
index
data
transmission
compression
signal processing
Prior art date
Application number
PCT/CN2022/081861
Other languages
English (en)
French (fr)
Inventor
李瀛台
刘星
张钉铭
王华勇
Original Assignee
深圳市中兴微电子技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市中兴微电子技术有限公司 filed Critical 深圳市中兴微电子技术有限公司
Priority to EP22819138.3A priority Critical patent/EP4344074A1/en
Publication of WO2022257533A1 publication Critical patent/WO2022257533A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/04Protocols for data compression, e.g. ROHC
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/06Notations for structuring of protocol data, e.g. abstract syntax notation one [ASN.1]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/30Definitions, standards or architectural aspects of layered protocol stacks
    • H04L69/32Architecture of open systems interconnection [OSI] 7-layer type protocol stacks, e.g. the interfaces between the data link level and the physical level
    • H04L69/321Interlayer communication protocols or service data unit [SDU] definitions; Interfaces between layers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • H04W88/085Access point devices with remote components

Definitions

  • Embodiments of the present disclosure relate to the communication field, and specifically, to a data transmission method, device, storage medium, and electronic device.
  • Data transmission is essential to any form of communication, and compressed data communication only works if the encoding mechanism is understood by both the sender and recipient of the information.
  • Data compression refers to a technical method to reduce the amount of data to reduce storage space and improve its transmission, storage and processing efficiency under the premise of losing information as little as possible, or to reorganize data according to a certain algorithm to reduce data loss.
  • Space for redundancy and storage. Compression is important because it can help reduce the consumption of expensive resources such as hard disk space and connection bandwidth, but compression consumes information processing resources, which can also be expensive. Therefore, the design of the data compression mechanism needs to make a compromise between the compression capability, the degree of distortion, the required computing resources, and other different factors that need to be considered.
  • the open radio access network (ORAN for short) protocol specifies a data compression method and an IQ data encapsulation format.
  • Data compression methods include block floating point (BFP) compression, normalization (block scaling) compression, ⁇ law ( ⁇ law) compression, beam space (beamspace) compression, modulation (Modulation) compression and resource unit (resource element, referred to as RE) selective sending (selective RE sending) compression six compression methods;
  • IQ data encapsulation format describes the arrangement of compressed IQ data and compression index.
  • Embodiments of the present disclosure provide a data transmission method, device, storage medium, and electronic device to at least solve the problem in the related art that the ORAN protocol does not specify the transmission mode of the signal processing scaling index, resulting in the inability to directly realize effective data transmission.
  • a data transmission method including:
  • determining the transmission index when sending according to the compression index and the signal processing scaling index includes:
  • the transfer index is determined based on the merge index.
  • the method also includes:
  • Data overflow processing is performed on the compressed data during the shifting process.
  • determining the data shift factor according to the combination result includes:
  • performing shift processing on the compressed data according to the data shift factor includes:
  • performing data overflow processing on the compressed data during the shift processing includes:
  • a data transmission method including:
  • determining the signal processing scaling index and decompression index according to the transmission index includes:
  • a decompression index is determined based on the transmission index and the signal processing scaling index.
  • determining the maximum compression index according to the decompressed data bit width M and the number of decompression points N includes:
  • the first difference is determined to be the maximum compressibility index.
  • determining the signal processing scaling index according to the maximum transmission index and the maximum compression index includes: determining a second difference between the maximum transmission index and the maximum compression index; determining a scaling index for said signal processing;
  • Determining a decompression index based on the transmission index and the signal processing scaling index includes: determining a third difference between the transmission index and the signal processing scaling index; determining the third difference as the signal decompression index.
  • a data transmission device including:
  • the compression module is configured to compress the data according to the compression control instruction, obtain the compressed data, and obtain the compression index;
  • the first determination module is configured to determine the transmission index during data transmission according to the compression index and the signal processing scaling index;
  • the encapsulation module is configured to encapsulate the compressed data and the transmission index based on the ORAN protocol according to the encapsulation format control instruction, obtain the encapsulated data, and send the encapsulated data.
  • the first determination module includes:
  • the merging sub-module is configured to merge the compression index and the signal processing scaling index to obtain the merging index
  • the first determination submodule is configured to determine the transmission index according to the combination index.
  • the first determination submodule is further configured to determine a data shift factor according to the combination index while determining the transmission index according to the combination index;
  • the device also includes: a shift processing submodule, configured to perform shift processing on the compressed data according to the data shift factor;
  • the overflow processing sub-module is configured to perform data overflow processing on the compressed data during the shift processing.
  • the first determining submodule includes:
  • the first determination unit is configured to determine that the transmission index is 15 if the combination result is greater than 15, and determine that the difference between the combination result and the transmission index is the data shift factor;
  • the second determination unit is configured to determine that the transmission index is the combination result and determine that the data shift factor is 0 if the combination result is greater than or equal to 0 and the combination result is less than or equal to 15;
  • the third determination unit is configured to determine that the transmission index is 0 when the combination result is less than 0, and determine the data shift factor as the combination result.
  • the shift processing submodule includes:
  • Left shift unit set to if the data shift factor shift is greater than or equal to 0, the data after the compression is shifted to the left to obtain the data after the left shift;
  • the right shift unit is set to shift the compressed data to the right by -shift bit respectively when the shift is less than 0 to obtain the data after the right shift.
  • the overflow processing submodule is also set to
  • N is the number of compression points.
  • a data transmission device including:
  • the receiving module is configured to receive the encapsulated data and the encapsulation format control instruction
  • the decapsulation module is configured to adopt the ORAN protocol, decapsulates the encapsulated data according to the encapsulation format control instruction, and obtains the compressed data and the transmission index during data transmission;
  • the second determination module is configured to determine a signal processing scaling index and decompression index according to the transmission index
  • the decompression module is configured to decompress the compressed data according to the decompression index to obtain data.
  • the above-mentioned second determination module includes:
  • the second determination sub-module is configured to determine the maximum compression index according to the decompressed data bit width M and the number of decompression points N;
  • a third determining submodule configured to determine a signal processing scaling index according to the maximum transmission index and the maximum compression index
  • the fourth determining submodule is configured to determine a decompression index according to the transmission index and the signal processing scaling index.
  • the second determining submodule is further set to
  • the first difference is determined to be the maximum compressibility index.
  • the third determining submodule is further configured to
  • the fourth determining submodule is further configured to determine a third difference between the transmission index and the signal processing scaling index
  • the third difference is determined as the signal decompression index.
  • a computer-readable storage medium where a computer program is stored in the storage medium, wherein the computer program is set to execute any one of the above method embodiments when running in the steps.
  • an electronic device including a memory and a processor, wherein a computer program is stored in the memory, and the processor is configured to run the computer program to perform any of the above Steps in the method examples.
  • the data is compressed according to the compression control instruction, the compressed data is obtained, and the compression index is obtained; the transmission index during data transmission is determined according to the compression index and the signal processing scaling index; according to the encapsulation format control instruction, based on
  • the ORAN protocol encapsulates the compressed data and the transmission index, obtains the encapsulated data, and sends the encapsulated data, so that the receiving end receives the encapsulated data and can decapsulate it in a corresponding manner and decompression to obtain the data transmitted by the sender, which can solve the problem that the ORAN protocol does not specify the transmission method of the signal processing scaling index in the related technology, resulting in the inability to directly realize effective data transmission.
  • the signal can be effectively transmitted on the basis of ensuring the transmission accuracy
  • the scaling index is processed, and the data transmission meeting the ORAN protocol is realized.
  • FIG. 1 is a block diagram of a hardware structure of a mobile terminal according to a data transmission method according to an embodiment of the present disclosure
  • FIG. 2 is a first flowchart of a data transmission method according to an embodiment of the present disclosure
  • FIG. 3 is a second flowchart of a data transmission method according to an embodiment of the present disclosure.
  • Fig. 4 is the block diagram of the data transmission based on ORAN protocol according to the present embodiment
  • Fig. 5 is the flow chart of the data transmission based on ORAN protocol according to the present embodiment
  • FIG. 6 is a first schematic diagram of data encapsulation based on the ORAN protocol according to the present embodiment
  • FIG. 7 is a second schematic diagram of data encapsulation based on the ORAN protocol according to the present embodiment.
  • Fig. 8 is a flow chart of data reception based on the ORAN protocol according to the present embodiment.
  • FIG. 9 is a first block diagram of a data transmission device according to this embodiment.
  • FIG. 10 is a second block diagram of a data transmission device according to this embodiment.
  • FIG. 1 is a block diagram of the hardware structure of the mobile terminal according to the data transmission method of the embodiment of the present disclosure.
  • the mobile terminal may include one or more (only one is shown in FIG. 1 ) processor 102 (processor 102 may include but not limited to processing devices such as microprocessor MCU or programmable logic device FPGA, etc.) and memory 104 for storing data, wherein the above-mentioned mobile terminal may also include a communication function Transmission device 106 and input and output device 108 .
  • processor 102 may include but not limited to processing devices such as microprocessor MCU or programmable logic device FPGA, etc.
  • memory 104 for storing data
  • the above-mentioned mobile terminal may also include a communication function Transmission device 106 and input and output device 108 .
  • the structure shown in FIG. 1 is only for illustration, and it does not limit the structure of the above mobile terminal.
  • the mobile terminal may also include more or fewer components than those shown in FIG. 1 , or have a different configuration from that
  • the memory 104 can be used to store computer programs, for example, software programs and modules of application software, such as the computer program corresponding to the data transmission method in the embodiment of the present disclosure, and the processor 102 executes various This kind of functional application and service chain address pool slicing processing is to realize the above-mentioned method.
  • the memory 104 may include high-speed random access memory, and may also include non-volatile memory, such as one or more magnetic storage devices, flash memory, or other non-volatile solid-state memory.
  • the memory 104 may further include a memory that is remotely located relative to the processor 102, and these remote memories may be connected to the mobile terminal through a network. Examples of the aforementioned networks include, but are not limited to, the Internet, intranets, local area networks, mobile communication networks, and combinations thereof.
  • the transmission device 106 is used to receive or transmit data via a network.
  • the specific example of the above network may include a wireless network provided by the communication provider of the mobile terminal.
  • the transmission device 106 includes a network interface controller (NIC for short), which can be connected to other network devices through a base station so as to communicate with the Internet.
  • the transmission device 106 may be a radio frequency (Radio Frequency, referred to as RF) module, which is used to communicate with the Internet in a wireless manner.
  • RF Radio Frequency
  • a data transmission method operating on the above-mentioned mobile terminal or network architecture is provided, which is applied to the terminal, and the terminal accesses the current master node MN cell of the source area through a dual connection (Dual Connection, referred to as DC) With the current secondary node SN cell, Fig. 2 is a flow chart 1 of a data transmission method according to an embodiment of the present disclosure. As shown in Fig. 2 , the process includes the following steps:
  • Step S202 compress the data according to the compression control instruction, obtain the compressed data, and obtain the compression index
  • Step S204 determining the transmission index during data transmission according to the compression index and the signal processing scaling index
  • the above step S204 may specifically include: combining the compression index and the signal processing scaling index to obtain a combination index; determining the transmission index according to the combination index.
  • Step S206 Encapsulate the compressed data and the transmission index based on the ORAN protocol according to the encapsulation format control instruction, obtain the encapsulated data, and send the encapsulated data.
  • the problem that the ORAN protocol does not specify the transmission mode of the signal processing scaling index in the related art, resulting in the inability to directly realize effective data transmission, can effectively transmit the signal processing scaling index on the basis of ensuring the transmission accuracy,
  • the data transmission meeting the ORAN protocol is realized.
  • the above method also includes:
  • step S1 may specifically include: if the combined result is greater than 15, determine that the transmission index is 15, and determine that the difference between the combined result and the transmission index is the data shift factor; if the The combination result is greater than or equal to 0, and the combination result is less than or equal to 15, determine that the transmission index is the combination result, and determine that the data shift factor is 0; when the combination result is less than 0, determine The transmission index is 0, and the data shift factor is determined as the combination result.
  • step S2 may specifically include: if the data shift factor shift is greater than or equal to 0, shifting the compressed data to the left by shift bits to obtain the left-shifted data; when the shift is less than 0, The compressed data is shifted to the right by -shift bits to obtain the data after the right shift.
  • step S3 may specifically include: if the left-shifted data is greater than the maximum value 2 N-1 -1 of N bit signed data, setting the left-shifted data to 2 N-1 -1, wherein , the N bit is the size of the compressed data, and N is the number of compression points.
  • FIG. 3 is a flow chart 2 of the data transmission method according to an embodiment of the present disclosure. As shown in FIG. 3 , the process includes the following steps:
  • Step S302 receiving the encapsulated data and the encapsulation format control instruction
  • Step S304 using the ORAN protocol to decapsulate the encapsulated data according to the encapsulation format control instruction, to obtain the compressed data and the transmission index during data transmission;
  • Step S306 determining a signal processing scaling index and decompression index according to the transmission index
  • Step S308 decompress the compressed data according to the decompression index to obtain data.
  • step S306 may specifically include:
  • Determine the signal processing scaling index according to the maximum transmission index and the maximum compression index specifically, determine a second difference between the maximum transmission index and the maximum compression index; determine the second difference as the signal processing scaling index;
  • Determine a decompression index according to the transmission index and the signal processing scaling index specifically, determine a third difference between the transmission index and the signal processing scaling index; determine the third difference as the signal Unpack the index.
  • This embodiment is applied to the data transmission of 5G wireless mobile communication.
  • a specific data transmission scheme is proposed. This scheme can guarantee transmission accuracy.
  • Effective transmission of Fourier or inverse Fourier transform, power control and other digital signal processing and data scaling index in the process of data compression realizes data transmission that meets the ORAN protocol, can effectively reduce storage space, and improve its transmission, storage and processing efficiency.
  • the ORAN protocol describes the data compression method and the transmission method of the compression index, it does not specify the transmission method of the scaling index in the process of digital signal processing, so that effective data transmission cannot be directly realized.
  • Fig. 4 is the block diagram of the data transmission based on ORAN protocol according to the present embodiment, as shown in Fig. 4, involves the signal processing of two parts of sending end 42 and receiving end 44, and sending end 42 mainly comprises data input module 421, data compression module 422 , index combination and data scaling module 423 , and data encapsulation and sending module 424 , and the receiving end 44 mainly includes a data receiving module 441 and an index decomposition and decompression module 442 .
  • the data input module 421 is configured to mainly complete functions such as data input, signal processing scaling index input, compression mode and points control command input, and packaging format control command input.
  • the compression mode can be BFP compression and normalized compression proposed by ORAN.
  • the data compression module 422 is configured to complete data compression and obtain a corresponding compression index according to the compression control instruction.
  • the exponent combination and data scaling module 423 at the sending end is configured to combine the signal processing scaling index and the compression index, obtain an index for transmission according to the combination result and perform shift processing on the data, and perform data overflow processing during the shift processing.
  • the sending end data encapsulation and sending module 424 is configured to perform data encapsulation and sending according to the requirements of the ORAN protocol according to the encapsulation format control instruction.
  • the data receiving module 441 is configured to receive data, mainly including compressed data, decompression control instructions, combined scaling indices, packaging format control instructions, etc., and converts the format of the data according to the packaging format control instructions.
  • the data decomposition and decompression module 442 is configured to decompose the combined compression index to obtain the compression index and digital signal processing scaling index, and decompress the data under the control of the decompression control instruction according to the obtained compression index.
  • Fig. 5 is the flow chart of the data transmission based on ORAN agreement according to the present embodiment, as shown in Fig. 5, comprises the following steps:
  • Step S100 obtain the IQ data I and Q to be compressed from the pre-stage signal processing process, the pre-stage data compression index s_fac, the compression control instruction and the ORAN encapsulation instruction, wherein the IQ data bit width is W bit, and s_fac indicates that in the pre-stage signal processing process
  • the data encapsulation in the ORAN protocol has two types of endian arrangement
  • the ORAN encapsulation instruction controls the specific endian arrangement.
  • Step S101 perform data compression in units of RB (resource block, one RB corresponds to 12 pairs of IQ data for N point compression) according to the compression instruction, and the compression algorithm can adopt BFP compression and normalized compression in the ORAN protocol, specifically compression Refer to the ORAN protocol for the algorithm.
  • Step S102 sum the scaling index s_fac and the compression index c_fac in units of RB to obtain the combined index exp_temp, the scaling index s_fac is obtained by step S100, the compression index c_fac of each RB is obtained by step S101, and the index of the current RB is completed After merging, go to step S103.
  • Step S104 the data shift factor shift calculated according to step S103 shifts the compressed Nbit IQ data dataI and dataQ of the current RB obtained in step S101 and performs anti-overflow processing to obtain the transmission data I_tx and Q_tx of the current RB.
  • Anti-overflow processing can be used but not limited to when the left-shifted data is greater than the maximum value of N bit signed data 2 ⁇ (N-1)-1, the left-shifted data is set to 2 ⁇ (N-1 )-1, otherwise no change is made.
  • Step S105 repeating steps S101 to S104 to obtain the transmission data I_tx and Q_tx and transmission index exponent of all RBs, and then perform data encapsulation under the control of the ORAN encapsulation command according to the data encapsulation format under the ORAN protocol shown in Figure 6 and Figure 7 and send.
  • Fig. 8 is the flow chart of the data receiving based on ORAN agreement according to the present embodiment, as shown in Fig. 8, comprises the following steps:
  • Step S200 receiving the data sent by the sending end, data encapsulation instruction, decompression algorithm, decompression points N, decompressed data bit width M and other information, and analyzing the data according to the endian format specified by the encapsulation instruction to obtain compressed data per RB I_tx, Q_tx and sending exponent, go to step S201.
  • Step S204 Decompress the current RB data according to the decompression index c_fac obtained in step S203.
  • the decompression algorithm can use the BFP and normalized decompression algorithm in the ORAN protocol, and enter step S205.
  • Step S205 repeat step S203 and step S204 to complete decompression of all RB data and receive received data and signal processing scaling index for subsequent signal processing.
  • This embodiment overcomes the problem that the existing ORAN protocol cannot directly transmit the signal processing scaling index, and proposes a specific high-precision data transmission scheme, which can effectively transmit FFT/IFFT transformation, power
  • the data scaling index in digital signal processing such as control and data compression process realizes the data transmission that meets the ORAN protocol.
  • FIG. 9 is a block diagram 1 of the data transmission device according to this embodiment. As shown in FIG. 9 , it includes:
  • the compression module 92 is configured to compress the data according to the compression control instruction, obtain the compressed data, and obtain the compression index;
  • the first determination module 94 is configured to determine the transmission index during data transmission according to the compression index and the signal processing scaling index;
  • the encapsulation module 96 is configured to encapsulate the compressed data and the transmission index based on the ORAN protocol according to the encapsulation format control instruction, obtain the encapsulated data, and send the encapsulated data.
  • the first determining module 94 includes:
  • the merging sub-module is configured to merge the compression index and the signal processing scaling index to obtain the merging index
  • the first determination submodule is configured to determine the transmission index according to the combination index.
  • the first determination submodule is further configured to determine a data shift factor according to the combination index while determining the transmission index according to the combination index;
  • the device also includes: a shift processing submodule, configured to perform shift processing on the compressed data according to the data shift factor;
  • the overflow processing sub-module is configured to perform data overflow processing on the compressed data during the shift processing.
  • the first determining submodule includes:
  • the first determination unit is configured to determine that the transmission index is 15 if the combination result is greater than 15, and determine that the difference between the combination result and the transmission index is the data shift factor;
  • the second determination unit is configured to determine that the transmission index is the combination result and determine that the data shift factor is 0 if the combination result is greater than or equal to 0 and the combination result is less than or equal to 15;
  • the third determination unit is configured to determine that the transmission index is 0 when the combination result is less than 0, and determine the data shift factor as the combination result.
  • the shift processing submodule includes:
  • Left shift unit set to if the data shift factor shift is greater than or equal to 0, the data after the compression is shifted to the left to obtain the data after the left shift;
  • the right shift unit is set to shift the compressed data to the right by -shift bit respectively when the shift is less than 0 to obtain the data after the right shift.
  • the overflow processing submodule is also set to
  • N is the number of compression points.
  • FIG. 10 is a second block diagram of the data transmission device according to this embodiment. As shown in FIG. 10 , it includes:
  • the receiving module 102 is configured to receive the encapsulated data and the encapsulation format control instruction
  • the decapsulation module 104 is configured to adopt the ORAN protocol, decapsulates the encapsulated data according to the encapsulation format control instruction, and obtains the compressed data and the transmission index during data transmission;
  • the second determination module 106 is configured to determine a signal processing scaling index and a decompression index according to the transmission index
  • the decompression module 108 is configured to decompress the compressed data according to the decompression index to obtain data.
  • the above-mentioned second determination module 106 includes:
  • the second determination sub-module is configured to determine the maximum compression index according to the decompressed data bit width M and the number of decompression points N;
  • a third determining submodule configured to determine a signal processing scaling index according to the maximum transmission index and the maximum compression index
  • the fourth determining submodule is configured to determine a decompression index according to the transmission index and the signal processing scaling index.
  • the second determining submodule is further set to
  • the first difference is determined to be the maximum compressibility index.
  • the third determining submodule is further configured to
  • the fourth determining submodule is further configured to determine a third difference between the transmission index and the signal processing scaling index
  • the third difference is determined as the signal decompression index.
  • Embodiments of the present disclosure also provide a computer-readable storage medium, in which a computer program is stored, wherein the computer program is configured to execute the steps in any one of the above method embodiments when running.
  • the above-mentioned computer-readable storage medium may include but not limited to: U disk, read-only memory (Read-Only Memory, referred to as ROM), random access memory (Random Access Memory, referred to as RAM) , mobile hard disk, magnetic disk or optical disk and other media that can store computer programs.
  • ROM read-only memory
  • RAM random access memory
  • mobile hard disk magnetic disk or optical disk and other media that can store computer programs.
  • Embodiments of the present disclosure also provide an electronic device, including a memory and a processor, where a computer program is stored in the memory, and the processor is configured to run the computer program to execute the steps in any one of the above method embodiments.
  • the electronic device may further include a transmission device and an input and output device, wherein the transmission device is connected to the processor, and the input and output device is connected to the processor.
  • each module or each step of the above-mentioned disclosure can be realized by a general-purpose computing device, and they can be concentrated on a single computing device, or distributed in a network composed of multiple computing devices In fact, they can be implemented in program code executable by a computing device, and thus, they can be stored in a storage device to be executed by a computing device, and in some cases, can be executed in an order different from that shown here. Or described steps, or they are fabricated into individual integrated circuit modules, or multiple modules or steps among them are fabricated into a single integrated circuit module for implementation. As such, the present disclosure is not limited to any specific combination of hardware and software.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Compression, Expansion, Code Conversion, And Decoders (AREA)

Abstract

本公开实施例提供了一种数据传输方法、装置、存储介质及电子装置,该方法包括:根据压缩控制指令对数据进行压缩,得到压缩后的数据,并获取压缩指数;根据该压缩指数与信号处理缩放指数确定数据传输时的传输指数;根据封装格式控制指令,基于ORAN协议对该压缩后的数据与该传输指数进行封装,得到封装后的数据,并发送该封装后的数据,使得接收端接收到封装后的数据,可以按照对应的方式进行解封装与解压缩,得到发送端传输的数据,可以解决相关技术中ORAN协议未明确信号处理缩放指数的传输方式,导致无法直接实现有效的数据传输的问题,在保证传输精度的基础上可以有效传输信号处理缩放指数,实现了满足ORAN协议的数据传输。

Description

一种数据传输方法、装置、存储介质及电子装置
相关申请的交叉引用
本公开基于2021年06月10日提交的发明名称为“一种数据传输方法、装置、存储介质及电子装置”的中国专利申请CN202110654381.5,并且要求该专利申请的优先权,通过引用将其所公开的内容全部并入本公开。
技术领域
本公开实施例涉及通信领域,具体而言,涉及一种数据传输方法、装置、存储介质及电子装置。
背景技术
数据传输对于任何形式的通信来说都必不可少,只有当信息的发送方和接收方都能够理解编码机制的时候压缩数据通信才能够工作。
数据压缩是指在尽可能少丢失信息的前提下,缩减数据量以减少存储空间,提高其传输、存储和处理效率的一种技术方法,或按照一定的算法对数据进行重新组织,减少数据的冗余和存储的空间。由于可以帮助减少如硬盘空间与连接带宽这样的昂贵资源的消耗,所以压缩非常重要,然而压缩需要消耗信息处理资源,这也可能是费用昂贵的。所以数据压缩机制的设计需要在压缩能力、失真度、所需计算资源以及其它需要考虑的不同因素之间进行折衷。
随着无线通信系统的带宽或者天线数的增加,数据传输速率将按照正比例增加,将极大的增加设备的硬件成本和实现难度。因此,有效的数据压缩和传输方法是通信系统必不可少的一部分。
基于以上原因,开放无线接入网络(open radio access network,简称为ORAN)协议规定了数据压缩方法和IQ数据封装格式。数据压缩方法包括块浮点数(block floating point,简称为BFP)压缩、归一化(block scaling)压缩、μ律(μ law)压缩、波束空间(beamspace)压缩、调制(Modulation)压缩和资源单元(resource element,简称为RE)选择性发送(selective RE sending)压缩六种压缩方法;IQ数据封装格式说明了压缩后的IQ数据和压缩指数的排列方式。
在5G基带信号处理过程中,对数据进行傅里叶变换或快速傅里叶逆变换、功率控制等数字信号处理是必不可少的。在当前的常用方案中,这些信号处理过程往往需要对数据进行缩放处理以降低资源消耗并伴随产生相应的信号处理缩放指数。安全实时传输控制ORAN协议虽然说明了数据压缩方法和压缩指数的传输方式,但指数位宽被限定为4bit,且未明确上述数字信号处理过程中的信号处理缩放指数的传输方式,从而无法直接实现有效的数据传输。
针对相关技术中ORAN协议未明确信号处理缩放指数的传输方式,导致无法直接实现有效的数据传输的问题,尚未提出解决方案。
发明内容
本公开实施例提供了一种数据传输方法、装置、存储介质及电子装置,以至少解决相关 技术中ORAN协议未明确信号处理缩放指数的传输方式,导致无法直接实现有效的数据传输的问题。
根据本公开的一个实施例,提供了一种数据传输方法,包括:
根据压缩控制指令对数据进行压缩,得到压缩后的数据,并获取压缩指数;
根据所述压缩指数与信号处理缩放指数确定数据传输时的传输指数;
根据封装格式控制指令,基于ORAN协议对所述压缩后的数据与所述传输指数进行封装,得到封装后的数据,并发送所述封装后的数据。
在一示例性实施例中,根据所述压缩指数与信号处理缩放指数确定发送时的传输指数包括:
将所述压缩指数与信号处理缩放指数进行合并,得到合并指数;
根据所述合并指数确定所述传输指数。
在一示例性实施例中,所述方法还包括:
在根据所述合并指数确定所述传输指数的同时,根据所述合并指数确定数据移位因子;
根据所述数据移位因子对所述压缩后的数据进行移位处理;
在移位处理过程中对所述压缩后的数据进行数据溢出处理。
在一示例性实施例中,在根据所述合并结果确定发送时的传输指数的同时,根据所述合并结果确定数据移位因子包括:
若所述合并结果大于15,确定所述传输指数为15,并确定所述合并结果与所述传输指数的差值为所述数据移位因子;
若所述合并结果大于或等于0,且所述合并结果小于或等于15,确定所述传输指数为所述合并结果,并确定所述数据移位因子为0;
当所述合并结果小于0时,确定所述传输指数为0,并确定所述数据移位因子为所述合并结果。
在一示例性实施例中,根据所述数据移位因子对所述压缩后的数据进行移位处理包括:
若所述数据移位因子shift大于或等于0,将所述压缩后的数据左移shift位,得到左移后的数据;
当所述shift小于0时,分别将所述压缩后的数据右移-shift位,得到右移后的数据。
在一示例性实施例中,在移位处理过程中对所述压缩后的数据进行数据溢出处理包括:
若左移后的数据大于N bit有符号数据的最大值2 N-1-1,将所述左移后的数据设置为2 N-1-1,其中,所述Nbit为所述压缩后的数据的大小,N为压缩点数。
根据本公开的另一个实施例,还提供了一种数据传输方法,包括:
接收封装后的数据与封装格式控制指令;
采用ORAN协议,根据所述封装格式控制指令对所述封装后的数据进行解封装,得到压缩后的数据与数据传输时的传输指数;
根据所述传输指数确定信号处理缩放指数与解压缩指数;
根据所述解压缩指数对所述压缩后的数据进行解压缩,得到数据。
在一示例性实施例中,根据所述传输指数确定信号处理缩放指数与解压缩指数包括:
获取所述传输指数中的最大传输指数;
根据解压缩后数据位宽M与解压缩点数N确定最大压缩指数;
根据所述最大传输指数与所述最大压缩指数确定信号处理缩放指数;
根据所述传输指数与所述信号处理缩放指数确定解压缩指数。
在一示例性实施例中,根据所述解压缩后数据位宽M与所述解压缩点数N确定最大压缩指数包括:
确定所述解压缩后数据位宽M与所述解压缩点数N的第一差值;
确定所述第一差值为所述最大压缩指数。
在一示例性实施例中,根据所述最大传输指数与所述最大压缩指数确定信号处理缩放指数包括:确定所述最大传输指数与最大压缩指数的第二差值;将所述第二差值确定为所述信号处理缩放指数;
根据所述传输指数与所述信号处理缩放指数确定解压缩指数包括:确定所述传输指数与所述信号处理缩放指数的第三差值;将所述第三差值确定为所述信号解压缩指数。
根据本公开的另一个实施例,还提供了一种数据传输装置,包括:
压缩模块,设置为根据压缩控制指令对数据进行压缩,得到压缩后的数据,并获取压缩指数;
第一确定模块,设置为根据所述压缩指数与信号处理缩放指数确定数据传输时的传输指数;
封装模块,设置为根据封装格式控制指令,基于ORAN协议对所述压缩后的数据与所述传输指数进行封装,得到封装后的数据,并发送所述封装后的数据。
在一示例性实施例中,所述第一确定模块包括:
合并子模块,设置为将所述压缩指数与信号处理缩放指数进行合并,得到合并指数;
第一确定子模块,设置为根据所述合并指数确定所述传输指数。
在一示例性实施例中,所述第一确定子模块,还设置为在根据所述合并指数确定所述传输指数的同时,根据所述合并指数确定数据移位因子;
所述装置还包括:移位处理子模块,设置为根据所述数据移位因子对所述压缩后的数据进行移位处理;
溢出处理子模块,设置为在移位处理过程中对所述压缩后的数据进行数据溢出处理。
在一示例性实施例中,所述第一确定子模块包括:
第一确定单元,设置为若所述合并结果大于15,确定所述传输指数为15,并确定所述合并结果与所述传输指数的差值为所述数据移位因子;
第二确定单元,设置为若所述合并结果大于或等于0,且所述合并结果小于或等于15,确定所述传输指数为所述合并结果,并确定所述数据移位因子为0;
第三确定单元,设置为当所述合并结果小于0时,确定所述传输指数为0,并确定所述数据移位因子为所述合并结果。
在一示例性实施例中,所述移位处理子模块包括:
左移单元,设置为若所述数据移位因子shift大于或等于0,将所述压缩后的数据左移shift位,得到左移后的数据;
右移单元,设置为当所述shift小于0时,分别将所述压缩后的数据右移-shift位,得到右移后的数据。
在一示例性实施例中,所述溢出处理子模块,还设置为
若左移后的数据大于N bit有符号数据的最大值2 N-1-1,将所述左移后的数据设置为2 N-1-1,其中,所述N bit为所述压缩后的数据的大小,N为压缩点数。
根据本公开的另一个实施例,还提供了一种数据传输装置,包括:
接收模块,设置为接收封装后的数据与封装格式控制指令;
解封装模块,设置为采用ORAN协议,根据所述封装格式控制指令对所述封装后的数据进行解封装,得到压缩后的数据与数据传输时的传输指数;
第二确定模块,设置为根据所述传输指数确定信号处理缩放指数与解压缩指数;
解压缩模块,设置为根据所述解压缩指数对所述压缩后的数据进行解压缩,得到数据。
在一示例性实施例中,上述第二确定模块包括:
获取子模块,设置为获取所述传输指数中的最大传输指数;
第二确定子模块,设置为根据解压缩后数据位宽M与解压缩点数N确定最大压缩指数;
第三确定子模块,设置为根据所述最大传输指数与所述最大压缩指数确定信号处理缩放指数;
第四确定子模块,设置为根据所述传输指数与所述信号处理缩放指数确定解压缩指数。
在一示例性实施例中,所述第二确定子模块,还设置为
确定所述解压缩后数据位宽M与所述解压缩点数N的第一差值;
确定所述第一差值为所述最大压缩指数。
在一示例性实施例中,所述第三确定子模块,还设置为
确定所述最大传输指数与最大压缩指数的第二差值;
将所述第二差值确定为所述信号处理缩放指数;
所述第四确定子模块,还设置为确定所述传输指数与所述信号处理缩放指数的第三差值;
将所述第三差值确定为所述信号解压缩指数。
根据本公开的又一个实施例,还提供了一种计算机可读的存储介质,所述存储介质中存储有计算机程序,其中,所述计算机程序被设置为运行时执行上述任一项方法实施例中的步骤。
根据本公开的又一个实施例,还提供了一种电子装置,包括存储器和处理器,所述存储器中存储有计算机程序,所述处理器被设置为运行所述计算机程序以执行上述任一项方法实施例中的步骤。
本公开实施例,根据压缩控制指令对数据进行压缩,得到压缩后的数据,并获取压缩指数;根据所述压缩指数与信号处理缩放指数确定数据传输时的传输指数;根据封装格式控制指令,基于ORAN协议对所述压缩后的数据与所述传输指数进行封装,得到封装后的数据,并发送所述封装后的数据,使得接收端接收到封装后的数据,可以按照对应的方式进行解封装与解压缩,得到发送端传输的数据,可以解决相关技术中ORAN协议未明确信号处理缩放指数的传输方式,导致无法直接实现有效的数据传输的问题,在保证传输精度的基础上可以有效传输信号处理缩放指数,实现了满足ORAN协议的数据传输。
附图说明
图1是本公开实施例的数据传输方法的移动终端的硬件结构框图;
图2是根据本公开实施例的数据传输方法的流程图一;
图3是根据本公开实施例的数据传输方法的流程图二;
图4是根据本实施例的基于ORAN协议的数据传输的框图;
图5是根据本实施例的基于ORAN协议的数据发送的流程图;
图6是根据本实施例的基于ORAN协议的数据封装的示意图一;
图7是根据本实施例的基于ORAN协议的数据封装的示意图二;
图8是根据本实施例的基于ORAN协议的数据接收的流程图;
图9是根据本实施例的数据传输装置的框图一;
图10是根据本实施例的数据传输装置的框图二。
具体实施方式
下文中将参考附图并结合实施例来详细说明本公开的实施例。
需要说明的是,本公开的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
本公开实施例中所提供的方法实施例可以在移动终端、计算机终端或者类似的运算装置中执行。以运行在移动终端上为例,图1是本公开实施例的数据传输方法的移动终端的硬件结构框图,如图1所示,移动终端可以包括一个或多个(图1中仅示出一个)处理器102(处理器102可以包括但不限于微处理器MCU或可编程逻辑器件FPGA等的处理装置)和用于存储数据的存储器104,其中,上述移动终端还可以包括用于通信功能的传输设备106以及输入输出设备108。本领域普通技术人员可以理解,图1所示的结构仅为示意,其并不对上述移动终端的结构造成限定。例如,移动终端还可包括比图1中所示更多或者更少的组件,或者具有与图1所示不同的配置。
存储器104可用于存储计算机程序,例如,应用软件的软件程序以及模块,如本公开实施例中的数据传输方法对应的计算机程序,处理器102通过运行存储在存储器104内的计算机程序,从而执行各种功能应用以及业务链地址池切片处理,即实现上述的方法。存储器104可包括高速随机存储器,还可包括非易失性存储器,如一个或者多个磁性存储装置、闪存、或者其他非易失性固态存储器。在一些实例中,存储器104可进一步包括相对于处理器102远程设置的存储器,这些远程存储器可以通过网络连接至移动终端。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
传输装置106用于经由一个网络接收或者发送数据。上述的网络具体实例可包括移动终端的通信供应商提供的无线网络。在一个实例中,传输装置106包括一个网络适配器(Network Interface Controller,简称为NIC),其可通过基站与其他网络设备相连从而可与互联网进行通讯。在一个实例中,传输装置106可以为射频(Radio Frequency,简称为RF)模块,其用于通过无线方式与互联网进行通讯。
在本实施例中提供了一种运行于上述移动终端或网络架构的数据传输方法,应用于终端,所述终端通过双连接(Dual Connection,简称为DC)接入源区域的当前主节点MN小区与当前辅节点SN小区,图2是根据本公开实施例的数据传输方法的流程图一,如图2所示,该流程包括如下步骤:
步骤S202,根据压缩控制指令对数据进行压缩,得到压缩后的数据,并获取压缩指数;
步骤S204,根据所述压缩指数与信号处理缩放指数确定数据传输时的传输指数;
本实施例中,上述步骤S204具体可以包括:将所述压缩指数与信号处理缩放指数进行合并,得到合并指数;根据所述合并指数确定所述传输指数。
步骤S206,根据封装格式控制指令,基于ORAN协议对所述压缩后的数据与所述传输指数进行封装,得到封装后的数据,并发送所述封装后的数据。
通过上述步骤S202至S206,可以解决相关技术中ORAN协议未明确信号处理缩放指数的传输方式,导致无法直接实现有效的数据传输的问题,在保证传输精度的基础上可以有效传输信号处理缩放指数,实现了满足ORAN协议的数据传输。
在一可选的实施例中,上述方法还包括:
S1,在根据所述合并指数确定所述传输指数的同时,根据所述合并指数确定数据移位因子;
进一步的,上述步骤S1具体可以包括:若所述合并结果大于15,确定所述传输指数为15,并确定所述合并结果与所述传输指数的差值为所述数据移位因子;若所述合并结果大于或等于0,且所述合并结果小于或等于15,确定所述传输指数为所述合并结果,并确定所述数据移位因子为0;当所述合并结果小于0时,确定所述传输指数为0,并确定所述数据移位因子为所述合并结果。
S2,根据所述数据移位因子对所述压缩后的数据进行移位处理;
进一步的,上述步骤S2具体可以包括:若所述数据移位因子shift大于或等于0,将所述压缩后的数据左移shift位,得到左移后的数据;当所述shift小于0时,分别将所述压缩后的数据右移-shift位,得到右移后的数据。
S3,在移位处理过程中对所述压缩后的数据进行数据溢出处理。
进一步的,上述步骤S3具体可以包括:若左移后的数据大于N bit有符号数据的最大值2 N-1-1,将所述左移后的数据设置为2 N-1-1,其中,所述N bit为所述压缩后的数据的大小,N为压缩点数。
根据本公开的另一个实施例,还提供了一种数据传输方法,图3是根据本公开实施例的数据传输方法的流程图二,如图3所示,该流程包括如下步骤:
步骤S302,接收封装后的数据与封装格式控制指令;
步骤S304,采用ORAN协议,根据所述封装格式控制指令对所述封装后的数据进行解封装,得到压缩后的数据与数据传输时的传输指数;
步骤S306,根据所述传输指数确定信号处理缩放指数与解压缩指数;
步骤S308,根据所述解压缩指数对所述压缩后的数据进行解压缩,得到数据。
通过上述步骤S302至S308,可以解决相关技术中ORAN协议未明确信号处理缩放指数的传输方式,导致无法直接实现有效的数据传输的问题,在保证传输精度的基础上可以有效传输信号处理缩放指数,实现了满足ORAN协议的数据传输。
在一示例性实施例中,上述步骤S306具体可以包括:
获取所述传输指数中的最大传输指数;
根据解压缩后数据位宽M与解压缩点数N确定最大压缩指数,具体的,确定所述解压缩后数据位宽M与所述解压缩点数N的第一差值;确定所述第一差值为所述最大压缩指数;
根据所述最大传输指数与所述最大压缩指数确定信号处理缩放指数,具体的,确定所述 最大传输指数与最大压缩指数的第二差值;将所述第二差值确定为所述信号处理缩放指数;
根据所述传输指数与所述信号处理缩放指数确定解压缩指数,具体的,确定所述传输指数与所述信号处理缩放指数的第三差值;将所述第三差值确定为所述信号解压缩指数。
本实施例应用于5G无线移动通信的数据传输,基于ORAN协议提出的数据压缩/解压缩方法和IQ数据封装格式,提出了一种具体的数据传输方案,该方案在保证传输精度的基础上可以有效传输傅里叶或逆傅里叶变换、功率控制等数字信号处理和数据压缩过程中的数据缩放指数,实现了满足ORAN协议的数据传输,可以有效减少存储空间,提高其传输、存储和处理效率。ORAN协议虽然说明了数据压缩方法和压缩指数的传输方式,但并未明确数字信号处理过程中的缩放指数的传输方式,从而无法直接实现有效的数据传输。
图4是根据本实施例的基于ORAN协议的数据传输的框图,如图4所示,涉及发送端42和接收端44两个部分的信号处理,发送端42主要包括数据输入模块421、数据压缩模块422、指数合并和数据缩放模块423以及数据封装和发送模块424,接收端44主要包括数据接收模块441、指数分解与解压缩模块442。
数据输入模块421,设置为主要完成数据输入、信号处理缩放指数输入、压缩方式和点数控制指令输入及封装格式控制指令输入等功能,压缩方式可以是ORAN提出的BFP压缩和归一化压缩。
数据压缩模块422,设置为根据压缩控制指令完成数据压缩并得到相应的压缩指数。
发送端指数合并和数据缩放模块423,设置为将信号处理缩放指数和压缩指数合并,根据合并结果得到用于传输的指数并对数据进行移位处理,在移位处理过程中进行数据溢出处理。
发送端数据封装和发送模块424,设置为根据封装格式控制指令按照ORAN协议要求进行数据封装和发送。
数据接收模块441,设置为完成数据的接收,主要包括压缩后的数据、解压缩控制指令、合并后的缩放指数、封装格式控制指令等,并根据封装格式控制指令对数据进行格式转换。
数据分解与解压缩模块442,设置为分解合并后的压缩指数,得到压缩指数和数字信号处理缩放指数,并根据所得到的压缩指数在解压缩控制指令控制下对数据进行解压缩。
图5是根据本实施例的基于ORAN协议的数据发送的流程图,如图5所示,包括如下步骤:
步骤S100、从前级信号处理过程获取待压缩的IQ数据I和Q、前级数据压缩指数s_fac、压缩控制指令和ORAN封装指令,其中IQ数据位宽为W bit,s_fac表示前级信号处理过程中数据的缩放位数,压缩控制指令确定压缩点数N(即压缩后的数据为N bit,N<=W),ORAN协议中数据封装有两种大小端排列方式,ORAN封装指令控制具体的大小端排列。获得上述相关数据和信息后进入步骤S101。
步骤S101、根据压缩指令以RB(resource block,一个RB对应12对IQ数据为单位进行N点压缩)为单位进行数据压缩,压缩算法可以采用ORAN协议中的BFP压缩和归一化压缩,具体压缩算法参见ORAN协议,完成当前数据组压缩处理得到压缩指数c_fac和压缩数据后进入步骤S102。
步骤S102、以RB为单位对缩放指数s_fac和压缩指数c_fac求和得到合并后的指数exp_temp,缩放指数s_fac由步骤S100得到,每个RB的压缩指数c_fac由步骤S101计算得到,完成当前RB的指数合并后进入步骤S103。
步骤S103、根据合并后的指数exp_temp计算当前RB发送时的指数exponent和数据移位因子shift,当exp_temp>15时,exponent=15,shift=exp_temp-15;当15>=exp_temp>=0时,exponent=exp_temp,shift=0;当exp_temp<0时,exponent=0,shift=exp_temp。跳转到步骤S104。
步骤S104、根据步骤S103计算得到的数据移位因子shift对步骤S101得到的当前RB压缩后的Nbit IQ数据dataI和dataQ进行移位并进行防溢出处理后得到当前RB的发送数据I_tx和Q_tx。数据移位过程为当shift>=0时,dataI和dataQ分别左移shift位;当shift<0时,dataI和dataQ分别右移-shift位。防溢出处理可以采用但不限于的方法为当左移后的数据大于N bit有符号数据的最大值2^(N-1)-1时,左移后的数据置为2^(N-1)-1,否则不做改变。对当前RB所有12对压缩后的数据进行移位和防溢出处理后进入步骤S105。
步骤S105、重复步骤S101~步骤S104得到所有RB的发送数据I_tx和Q_tx及发送指数exponent后,在ORAN封装指令的控制下按照图6和图7所示的ORAN协议下的数据封装格式进行数据封装并发送。
图8是根据本实施例的基于ORAN协议的数据接收的流程图,如图8所示,包括如下步骤:
步骤S200、接收发送端发送的数据、数据封装指令、解压缩算法、解压缩点数N、解压缩后数据位宽M等信息,并根据封装指令指定的大小端格式解析数据得到每RB的压缩数据I_tx和Q_tx以及发送指数exponent,进入步骤S201。
步骤S201、找出步骤S200中所有RB的发送指数exponent的最大值expmax并计算最大压缩指数c_facmax=M-N,进入步骤S202。
步骤S202、计算所有RB的信号处理缩放指数s_fac=expmax-c_facmax,进入步骤S203。
步骤S203、以RB为单位计算解压缩指数。根据步骤S200得到的每个RB的发送指数exponent和步骤S202得到的所有RB的信号处理缩放指数s_fac计算每个RB的解压缩指数c_fac=exponent-s_fac,进入步骤S204。
步骤S204、根据步骤S203得到的解压缩指数c_fac对当前RB数据进行解压缩,解压缩算法可采用ORAN协议中的BFP和归一化解压算法,进入步骤S205。
步骤S205、重复步骤S203和步骤S204完成所有RB数据解压缩完成数据和信号处理缩放指数的接收并用于后续信号处理。
本实施例,克服了现有ORAN协议无法直接传输信号处理缩放指数的问题,提出了一种具体的高精度数据传输方案,该方案在保证传输精度的基础上可以有效传输FFT/IFFT变换、功率控制等数字信号处理和数据压缩过程中的数据缩放指数,实现了满足ORAN协议的数据传输。通过应用本方案可以在满足ORAN协议的前提下提升信号处理和压缩过程中动态范围和资源配置的灵活性,可以有效减少存储空间,提高其传输、存储和处理效率。
根据本公开的另一个实施例,还提供了一种数据传输装置,图9是根据本实施例的数据传输装置的框图一,如图9所示,包括:
压缩模块92,设置为根据压缩控制指令对数据进行压缩,得到压缩后的数据,并获取压缩指数;
第一确定模块94,设置为根据所述压缩指数与信号处理缩放指数确定数据传输时的传输指数;
封装模块96,设置为根据封装格式控制指令,基于ORAN协议对所述压缩后的数据与所述传输指数进行封装,得到封装后的数据,并发送所述封装后的数据。
在一示例性实施例中,所述第一确定模块94包括:
合并子模块,设置为将所述压缩指数与信号处理缩放指数进行合并,得到合并指数;
第一确定子模块,设置为根据所述合并指数确定所述传输指数。
在一示例性实施例中,所述第一确定子模块,还设置为在根据所述合并指数确定所述传输指数的同时,根据所述合并指数确定数据移位因子;
所述装置还包括:移位处理子模块,设置为根据所述数据移位因子对所述压缩后的数据进行移位处理;
溢出处理子模块,设置为在移位处理过程中对所述压缩后的数据进行数据溢出处理。
在一示例性实施例中,所述第一确定子模块包括:
第一确定单元,设置为若所述合并结果大于15,确定所述传输指数为15,并确定所述合并结果与所述传输指数的差值为所述数据移位因子;
第二确定单元,设置为若所述合并结果大于或等于0,且所述合并结果小于或等于15,确定所述传输指数为所述合并结果,并确定所述数据移位因子为0;
第三确定单元,设置为当所述合并结果小于0时,确定所述传输指数为0,并确定所述数据移位因子为所述合并结果。
在一示例性实施例中,所述移位处理子模块包括:
左移单元,设置为若所述数据移位因子shift大于或等于0,将所述压缩后的数据左移shift位,得到左移后的数据;
右移单元,设置为当所述shift小于0时,分别将所述压缩后的数据右移-shift位,得到右移后的数据。
在一示例性实施例中,所述溢出处理子模块,还设置为
若左移后的数据大于N bit有符号数据的最大值2 N-1-1,将所述左移后的数据设置为2 N-1-1,其中,所述N bit为所述压缩后的数据的大小,N为压缩点数。
根据本公开的另一个实施例,还提供了一种数据传输装置,图10是根据本实施例的数据传输装置的框图二,如图10所示,包括:
接收模块102,设置为接收封装后的数据与封装格式控制指令;
解封装模块104,设置为采用ORAN协议,根据所述封装格式控制指令对所述封装后的数据进行解封装,得到压缩后的数据与数据传输时的传输指数;
第二确定模块106,设置为根据所述传输指数确定信号处理缩放指数与解压缩指数;
解压缩模块108,设置为根据所述解压缩指数对所述压缩后的数据进行解压缩,得到数据。
在一示例性实施例中,上述第二确定模块106包括:
获取子模块,设置为获取所述传输指数中的最大传输指数;
第二确定子模块,设置为根据解压缩后数据位宽M与解压缩点数N确定最大压缩指数;
第三确定子模块,设置为根据所述最大传输指数与所述最大压缩指数确定信号处理缩放指数;
第四确定子模块,设置为根据所述传输指数与所述信号处理缩放指数确定解压缩指数。
在一示例性实施例中,所述第二确定子模块,还设置为
确定所述解压缩后数据位宽M与所述解压缩点数N的第一差值;
确定所述第一差值为所述最大压缩指数。
在一示例性实施例中,所述第三确定子模块,还设置为
确定所述最大传输指数与最大压缩指数的第二差值;
将所述第二差值确定为所述信号处理缩放指数;
所述第四确定子模块,还设置为确定所述传输指数与所述信号处理缩放指数的第三差值;
将所述第三差值确定为所述信号解压缩指数。
本公开的实施例还提供了一种计算机可读存储介质,该计算机可读存储介质中存储有计算机程序,其中,该计算机程序被设置为运行时执行上述任一项方法实施例中的步骤。
在一个示例性实施例中,上述计算机可读存储介质可以包括但不限于:U盘、只读存储器(Read-Only Memory,简称为ROM)、随机存取存储器(Random Access Memory,简称为RAM)、移动硬盘、磁碟或者光盘等各种可以存储计算机程序的介质。
本公开的实施例还提供了一种电子装置,包括存储器和处理器,该存储器中存储有计算机程序,该处理器被设置为运行计算机程序以执行上述任一项方法实施例中的步骤。
在一个示例性实施例中,上述电子装置还可以包括传输设备以及输入输出设备,其中,该传输设备和上述处理器连接,该输入输出设备和上述处理器连接。
本实施例中的具体示例可以参考上述实施例及示例性实施方式中所描述的示例,本实施例在此不再赘述。
显然,本领域的技术人员应该明白,上述的本公开的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本公开不限制于任何特定的硬件和软件结合。
以上所述仅为本公开的优选实施例而已,并不用于限制本公开,对于本领域的技术人员来说,本公开可以有各种更改和变化。凡在本公开的原则之内,所作的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。

Claims (14)

  1. 一种数据传输方法,包括:
    根据压缩控制指令对数据进行压缩,得到压缩后的数据,并获取压缩指数;
    根据所述压缩指数与信号处理缩放指数确定数据传输时的传输指数;
    根据封装格式控制指令,基于开放无线接入网络ORAN协议对所述压缩后的数据与所述传输指数进行封装,得到封装后的数据,并发送所述封装后的数据。
  2. 根据权利要求1所述的方法,其中,根据所述压缩指数与信号处理缩放指数确定发送时的传输指数包括:
    将所述压缩指数与信号处理缩放指数进行合并,得到合并指数;
    根据所述合并指数确定所述传输指数。
  3. 根据权利要求2所述的方法,其中,所述方法还包括:
    在根据所述合并指数确定所述传输指数的同时,根据所述合并指数确定数据移位因子;
    根据所述数据移位因子对所述压缩后的数据进行移位处理;
    在移位处理过程中对所述压缩后的数据进行数据溢出处理。
  4. 根据权利要求3所述的方法,其中,在根据所述合并结果确定发送时的传输指数的同时,根据所述合并结果确定数据移位因子包括:
    若所述合并结果大于15,确定所述传输指数为15,并确定所述合并结果与所述传输指数的差值为所述数据移位因子;
    若所述合并结果大于或等于0,且所述合并结果小于或等于15,确定所述传输指数为所述合并结果,并确定所述数据移位因子为0;
    当所述合并结果小于0时,确定所述传输指数为0,并确定所述数据移位因子为所述合并结果。
  5. 根据权利要求4所述的方法,其中,根据所述数据移位因子对所述压缩后的数据进行移位处理包括:
    若所述数据移位因子shift大于或等于0,将所述压缩后的数据左移shift位,得到左移后的数据;
    当所述shift小于0时,分别将所述压缩后的数据右移-shift位,得到右移后的数据。
  6. 根据权利要求4所述的方法,其中,在移位处理过程中对所述压缩后的数据进行数据溢出处理包括:
    若左移后的数据大于N bit有符号数据的最大值2 N-1-1,将所述左移后的数据设置为2 N-1-1,其中,所述N bit为所述压缩后的数据的大小,N为压缩点数。
  7. 一种数据传输方法,包括:
    接收封装后的数据与封装格式控制指令;
    采用开放无线接入网络ORAN协议,根据所述封装格式控制指令对所述封装后的数据进行解封装,得到压缩后的数据与数据传输时的传输指数;
    根据所述传输指数确定信号处理缩放指数与解压缩指数;
    根据所述解压缩指数对所述压缩后的数据进行解压缩,得到数据。
  8. 根据权利要求7所述的方法,其中,根据所述传输指数确定信号处理缩放指数与解压 缩指数包括:
    获取所述传输指数中的最大传输指数;
    根据解压缩后数据位宽M与解压缩点数N确定最大压缩指数;
    根据所述最大传输指数与所述最大压缩指数确定信号处理缩放指数;
    根据所述传输指数与所述信号处理缩放指数确定解压缩指数。
  9. 根据权利要求8所述的方法,其中,根据所述解压缩后数据位宽M与所述解压缩点数N确定最大压缩指数包括:
    确定所述解压缩后数据位宽M与所述解压缩点数N的第一差值;
    确定所述第一差值为所述最大压缩指数。
  10. 根据权利要求8所述的方法,其中,
    根据所述最大传输指数与所述最大压缩指数确定信号处理缩放指数包括:
    确定所述最大传输指数与最大压缩指数的第二差值;
    将所述第二差值确定为所述信号处理缩放指数;
    根据所述传输指数与所述信号处理缩放指数确定解压缩指数包括:
    确定所述传输指数与所述信号处理缩放指数的第三差值;
    将所述第三差值确定为所述信号解压缩指数。
  11. 一种数据传输装置,包括:
    压缩模块,设置为根据压缩控制指令对数据进行压缩,得到压缩后的数据,并获取压缩指数;
    第一确定模块,设置为根据所述压缩指数与信号处理缩放指数确定数据传输时的传输指数;
    封装模块,设置为根据封装格式控制指令,基于开放无线接入网络ORAN协议对所述压缩后的数据与所述传输指数进行封装,得到封装后的数据,并发送所述封装后的数据。
  12. 一种数据传输装置,包括:
    接收模块,设置为接收封装后的数据与封装格式控制指令;
    解封装模块,设置为采用开放无线接入网络ORAN协议,根据所述封装格式控制指令对所述封装后的数据进行解封装,得到压缩后的数据与数据传输时的传输指数;
    第二确定模块,设置为根据所述传输指数确定信号处理缩放指数与解压缩指数;
    解压缩模块,设置为根据所述解压缩指数对所述压缩后的数据进行解压缩,得到数据。
  13. 一种计算机可读的存储介质,所述存储介质中存储有计算机程序,其中,所述计算机程序被设置为运行时执行所述权利要求1至6、7至10任一项中所述的方法。
  14. 一种电子装置,包括存储器和处理器,所述存储器中存储有计算机程序,所述处理器被设置为运行所述计算机程序以执行所述权利要求1至6、7至10任一项中所述的方法。
PCT/CN2022/081861 2021-06-10 2022-03-19 一种数据传输方法、装置、存储介质及电子装置 WO2022257533A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP22819138.3A EP4344074A1 (en) 2021-06-10 2022-03-19 Data transmission method and apparatus, and storage medium and electronic apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110654381.5 2021-06-10
CN202110654381.5A CN115473944A (zh) 2021-06-10 2021-06-10 一种数据传输方法、装置、存储介质及电子装置

Publications (1)

Publication Number Publication Date
WO2022257533A1 true WO2022257533A1 (zh) 2022-12-15

Family

ID=84364142

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/081861 WO2022257533A1 (zh) 2021-06-10 2022-03-19 一种数据传输方法、装置、存储介质及电子装置

Country Status (3)

Country Link
EP (1) EP4344074A1 (zh)
CN (1) CN115473944A (zh)
WO (1) WO2022257533A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102244552A (zh) * 2010-05-13 2011-11-16 中兴通讯股份有限公司 一种数据发送、接收方法及装置
WO2020060296A1 (ko) * 2018-09-20 2020-03-26 삼성전자 주식회사 무선 통신 시스템에서 프런트 홀 전송을 위한 장치 및 방법
WO2020256609A1 (en) * 2019-06-20 2020-12-24 Telefonaktiebolaget Lm Ericsson (Publ) Methods, distributed base station system, remote radio unit and base band unit system for handling downlink signals
US20210135722A1 (en) * 2019-11-04 2021-05-06 Mavenir Networks, Inc. Method for beamforming weights transmission over o-ran fronthaul interface in c-rans

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102244552A (zh) * 2010-05-13 2011-11-16 中兴通讯股份有限公司 一种数据发送、接收方法及装置
WO2020060296A1 (ko) * 2018-09-20 2020-03-26 삼성전자 주식회사 무선 통신 시스템에서 프런트 홀 전송을 위한 장치 및 방법
WO2020256609A1 (en) * 2019-06-20 2020-12-24 Telefonaktiebolaget Lm Ericsson (Publ) Methods, distributed base station system, remote radio unit and base band unit system for handling downlink signals
US20210135722A1 (en) * 2019-11-04 2021-05-06 Mavenir Networks, Inc. Method for beamforming weights transmission over o-ran fronthaul interface in c-rans

Also Published As

Publication number Publication date
CN115473944A (zh) 2022-12-13
EP4344074A1 (en) 2024-03-27

Similar Documents

Publication Publication Date Title
US11303498B2 (en) Data transmission method and apparatus based on probability non-uniform modulation
RU2720644C1 (ru) Способ и устройство кодирования и декодирования
WO2020125527A1 (zh) 数据压缩方法、装置、计算机设备和存储介质
US10817460B2 (en) RDMA data sending and receiving methods, electronic device, and readable storage medium
RU2682017C1 (ru) Способ и устройство связи для передачи информации
CN112202623B (zh) 一种数据处理方法及装置
WO2020135616A1 (zh) 极化编码调制的方法和装置
WO2016095577A1 (zh) 数据传输方法及装置
EP3709686A1 (en) Data transmission control method and related product
CN106550376B (zh) 一种终端唤醒方法以及装置
US20190245802A1 (en) Methods, apparatuses and computer-readable storage mediums for communication via user services platform
WO2022257533A1 (zh) 一种数据传输方法、装置、存储介质及电子装置
WO2018201983A1 (zh) 极化码信道编码方法、设备以及通信系统
WO2023050045A1 (zh) 数据传输方法、装置以及系统
WO2021036189A1 (zh) Rdma数据发送及接收方法、电子设备及可读存储介质
WO2018137565A1 (zh) 一种信息的编码方法及设备
WO2017193932A1 (zh) 通信方法及其网络设备、用户设备
CN106550397B (zh) 用于传输无线数据的方法、装置及系统
TWI707566B (zh) 一種通道編碼方法及設備
CN114422452A (zh) 数据传输方法、装置、处理设备、存储介质和芯片
US20200204414A1 (en) Communication device and method for transmitting and receiving using the same
CN112118202B (zh) 基站数据调制方法及装置
CN115696396B (zh) 数据通信的处理方法及装置、存储介质、终端
US20230189070A1 (en) Data transmission method and apparatus
WO2022171019A1 (zh) 一种编码和译码方法及相关装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22819138

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023575905

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 18568941

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2022819138

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022819138

Country of ref document: EP

Effective date: 20231221

NENP Non-entry into the national phase

Ref country code: DE