WO2022257348A1 - 一种不确定网络环境中的任务卸载和资源分配方法 - Google Patents

一种不确定网络环境中的任务卸载和资源分配方法 Download PDF

Info

Publication number
WO2022257348A1
WO2022257348A1 PCT/CN2021/128683 CN2021128683W WO2022257348A1 WO 2022257348 A1 WO2022257348 A1 WO 2022257348A1 CN 2021128683 W CN2021128683 W CN 2021128683W WO 2022257348 A1 WO2022257348 A1 WO 2022257348A1
Authority
WO
WIPO (PCT)
Prior art keywords
task
user
resource allocation
offloading
mec server
Prior art date
Application number
PCT/CN2021/128683
Other languages
English (en)
French (fr)
Inventor
李云
姚枝秀
夏士超
吴广富
庄宏成
Original Assignee
重庆邮电大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 重庆邮电大学 filed Critical 重庆邮电大学
Priority to US17/908,249 priority Critical patent/US20240103915A1/en
Publication of WO2022257348A1 publication Critical patent/WO2022257348A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for program control, e.g. control units
    • G06F9/06Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
    • G06F9/46Multiprogramming arrangements
    • G06F9/48Program initiating; Program switching, e.g. by interrupt
    • G06F9/4806Task transfer initiation or dispatching
    • G06F9/4843Task transfer initiation or dispatching by program, e.g. task dispatcher, supervisor, operating system
    • G06F9/4881Scheduling strategies for dispatcher, e.g. round robin, multi-level priority queues
    • G06F9/4893Scheduling strategies for dispatcher, e.g. round robin, multi-level priority queues taking into account power or heat criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/06Testing, supervising or monitoring using simulated traffic
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2209/00Indexing scheme relating to G06F9/00
    • G06F2209/50Indexing scheme relating to G06F9/50
    • G06F2209/5019Workload prediction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present application relates to the technical field of wireless communication, and in particular to a task offloading and resource allocation method in an uncertain network environment.
  • MEC Mobile Edge Computing
  • Task allocation and computing frequency task algorithm in mobile edge computing This algorithm considers the scenario where a single user offloads tasks to multiple MEC servers, and optimizes the task offloading decision and the user's central processing unit (Central Process Unit, CPU) frequency value to minimize task calculation delay and user energy consumption.
  • CPU Central Process Unit
  • Task computing delay is one of the important indicators to ensure user QoE.
  • the above researches all consider the task computing delay, but ignore the queuing delay of the MEC server task queue.
  • the queuing time of tasks on the MEC server cannot be ignored. Due to the randomness of task arrival and the time-varying nature of task queues in MEC servers, it is unrealistic to obtain accurate predictions of task queuing time. This uncertainty factor poses severe challenges to traditional task offloading and resource allocation.
  • this application considers the uncertain calculation delay caused by the random queuing time of tasks in the MEC server, and proposes a task offloading and resource allocation method in an uncertain network environment, which specifically includes the following steps:
  • the optimization problem is modeled as a task offloading and resource allocation problem based on two-stage stochastic programming
  • the user performs task offloading based on the optimal allocation strategy of the local computing resource allocation subproblem, the optimal allocation strategy of the transmission power and edge computing resource joint allocation subproblem, and the optimal strategy of the offload decision subproblem.
  • the unloading decision-making process is divided into two stages, including:
  • the decision variable in the first stage is the transmission power of the task, that is, the user considers the influence of all possible queuing times in the future and makes the transmission power allocation strategy p i ;
  • the decision variable in the second stage is the CPU frequency resource of the MEC server, that is, when the task is uploaded to the MEC server, the queuing waiting time is known, and under the conditions of obtaining the queuing waiting time and the transmission power allocation strategy p i of the first stage, MEC
  • the server will take recourse actions according to the constraints to compensate for the first-stage strategy.
  • the optimal offloading strategy is calculated by genetic algorithm, specifically including:
  • Each feasible transmission power is encoded as a floating-point vector, each floating-point vector represents a chromosome, and the dimension of the floating-point vector is consistent with the dimension of the solution vector;
  • P c the crossover probability
  • P c ⁇ M chromosomes in the population to perform crossover operations that is, assuming that p i,1 and p i,2 are the two chromosomes to be crossed over, then from the interval (0,1)
  • the user transmission delay is less than the maximum transmission delay requirement, namely Then p′ i,1 and p′ i,2 will replace the original chromosomes p i,1 and p i,2 to become two new chromosomes;
  • a new population can be obtained and prepared for the next generation of evolution. If the above steps reach a given number of cycles, the genetic algorithm is terminated; after the algorithm is terminated, a population with the highest fitness is selected from the last generation Chromosomes, that is, the global optimal solution of the optimization problem is obtained.
  • This application aims at the uncertain calculation delay caused by the random queue waiting time of tasks at the edge server in mobile edge computing, and proposes a task offloading and resource allocation algorithm in an uncertain network environment.
  • the optimization problem is modeled as a two-stage stochastic programming problem with the goal of minimizing the total energy consumption of the system under the constraint of computational delay.
  • the stochastic simulation method is used to transform the original problem into a mixed integer nonlinear programming problem based on sample mean approximation, and the problem is decoupled into local computing resource allocation, transmission power and Joint allocation of edge computing resources and three sub-problems of offloading decision-making.
  • the Lagrange multiplier method is used to obtain the optimal allocation strategy of local computing resources
  • the genetic algorithm is used to obtain the optimal joint allocation strategy of transmission power and edge computing resources.
  • the optimal task offloading decision is obtained by analyzing the latency estimation and energy budget of local and edge computing.
  • Fig. 1 is a flow chart of task offloading and resource allocation algorithm in an uncertain network environment in the present application
  • Fig. 2 is a two-stage unloading model diagram of the present application
  • Figure 3 is a diagram of the change process of the total energy consumption of the system with the amount of tasks under different algorithms
  • Figure 4 is a diagram of the change process of the total energy consumption of the system with the delay constraint under different algorithms.
  • the embodiment of the present application provides a task offloading and resource allocation method in an uncertain network environment, which is used to solve the problem of uncertain computing delay caused by random queuing waiting time of tasks at the edge server in mobile edge computing.
  • This application proposes a task offloading and resource allocation method in an uncertain network environment, as shown in Figure 1, including the following steps:
  • the optimization problem is modeled as a task offloading and resource allocation problem based on two-stage stochastic programming
  • the user performs task offloading based on the optimal allocation strategy of the local computing resource allocation subproblem, the optimal allocation strategy of the transmission power and edge computing resource joint allocation subproblem, and the optimal strategy of the offload decision subproblem.
  • a MEC system model which includes a base station configured with a server, N users requesting task processing, and the set is expressed as Let UEi denote the i-th user, where UEs can communicate with the MEC server through the wireless network.
  • each user's processor supports Dynamic Voltage Frequency Scaling (DVFS) technology.
  • DVFS technology can dynamically adjust the CPU frequency value, thereby achieving the purpose of saving power consumption.
  • the calculation energy consumption generated by UEi during local calculation is:
  • f i l represents the CPU frequency value of UEi during local computing
  • ⁇ i represents the effective energy coefficient related to the chip architecture of UEi.
  • the user chooses to offload the task to the MEC server for processing and mainly goes through four processes: task upload, MEC server queuing, MEC server calculation, and calculation result return. Due to the small amount of tasks when returning the results, for the convenience of analysis, this application ignores the communication delay of returning the calculation results.
  • the transmission rate that UEi can obtain by offloading tasks to the MEC server is:
  • B 0 represents the communication bandwidth
  • h i represents the channel gain between UEi and the MEC server
  • N 0 is the Gaussian white noise power spectrum
  • pi is the transmission power when UEi offloads tasks. Therefore, when UEi chooses to offload the task to the MEC server for processing, the communication delay of task upload is:
  • T i wait indicates the waiting time of UEi in the MEC server queue; after the tasks are queued, the MEC server will provide computing services for them, and f i e is defined to indicate the CPU frequency value when the MEC server processes tasks, then the computing delay of UEi in the MEC server is :
  • the calculation energy consumption generated by the MEC server to provide computing services for UEi is:
  • represents the effective energy coefficient associated with the MEC server chip architecture.
  • This embodiment provides a specific implementation of task offloading and resource allocation problem modeling based on two-stage stochastic programming.
  • the uncertainty analysis of the queuing waiting time is firstly performed, and then the optimization problem is modeled as a two-stage stochastic programming based Task offloading and resource allocation issues, specifically:
  • this application uses stochastic programming theory to model the uncertain queuing time as a set of random parameters described by probability distribution.
  • ⁇ i to represent the set of all possible waiting times when UEi offloads tasks to the MEC server, which is called a scenario
  • T i wait ⁇ i be the scenario One of the implementations.
  • the combined scenario ⁇ to represent the set of queuing waiting time of all UEs in the MEC server, which can be expressed as a Cartesian product make Represents a composite implementation in a composite scene.
  • This application aims to minimize the total energy consumption of the system by optimizing the CPU frequency resources, task transmission power, and task offloading decisions of the local and MEC servers under the condition of meeting the user's processing delay requirements.
  • the user first considers the impact of all possible queuing time in the future without observing the uncertain MEC server queuing time, and measures the local and edge computing time
  • the unloading decision ⁇ i is obtained by the energy consumption budget and time delay estimation.
  • this application divides the unloading decision process into two stages based on the two-stage stochastic programming:
  • the decision variable of the first stage is the transmission power of the task. Similarly, when the user does not observe the uncertain MEC server queuing time, consider the impact of all possible queuing times in the future, and make the first-stage transmission power allocation strategy p i ;
  • the decision variable in the second stage is the CPU frequency resource of the MEC server.
  • the queuing waiting time is known, and under the conditions of obtaining the queuing waiting time T i wait and the first-stage policy p i , the MEC server will follow the constraints (such as unloading delay) Cable action to compensate for the inaccurate predictions of the first-stage strategy.
  • the expected value model in problem P1 is transformed into a MINLP problem based on sample mean approximation.
  • the MINLP problem is decoupled into three sub-problems: allocation of local computing resources, joint allocation of transmission power and edge computing resources, and offloading decision-making, including:
  • This application considers the task offloading and resource allocation optimization problem under the uncertain environment of MEC server queuing waiting time, and models the optimization problem as a two-stage stochastic programming problem.
  • solving two-stage stochastic programming problems usually faces the challenge of "curse of dimensionality", which will lead to high computational complexity. For example, when the number of user scene spaces ⁇ i is 1000, the number of combined scenes ⁇ will reach 1000 N , and it is difficult and unrealistic to solve the two-stage stochastic programming problem with such a large number of scenes.
  • the optimization problem P2 is a MINLP problem and is NP-hard. Since the local computing resource allocation variable f l , the transmission power allocation variable p, the edge computing resource allocation variable f e , and the unloading decision variable ⁇ are completely decoupled, in order to solve the MINLP problem, this application decouples the optimization problem P2 as The local computing resource allocation subproblem, the transmission power and edge computing resource joint allocation subproblem, and the offload decision subproblem are solved. For the convenience of analysis, this application only solves the optimal strategy for one user. Since each user is independent of each other, the optimal strategy can be easily extended to multi-user scenarios.
  • the optimization problem P2 can be written as a local computing resource allocation sub-problem, expressed as:
  • the objective function is an affine function about f i l
  • the constraint condition (8-c) is a convex constraint about f i l
  • the optimization problem P2-1 is a convex programming problem.
  • the Lagrange multiplier method is used to solve the optimization problem P2-1, and the Lagrange function is defined as:
  • ⁇ i ⁇ 0, ⁇ i ⁇ 0 and ⁇ i ⁇ 0 all represent Lagrangian multipliers.
  • KKT Karush-Kuhn-Tucker
  • the optimization problem P2 can be written as a transmission power and edge computing resource allocation sub-problem, expressed as:
  • the objective function of the first stage of edge computing is a non-convex function about pi
  • this application uses the genetic algorithm to find the global optimal solution of the P2-2 problem.
  • the genetic algorithm is It is a global optimization algorithm inspired by the theory of biological evolution, and is especially suitable for high-dimensional decision-making problems.
  • This embodiment proposes the specific implementation of using the genetic algorithm to obtain the global optimal solution of the P2-2 problem, which specifically includes the following steps:
  • each feasible transmission power is a floating-point vector
  • each floating-point vector represents a chromosome.
  • the dimension of the floating-point vector is the same as The dimensions of the solution vectors are the same.
  • M to represent the population size
  • the initialization process randomly generates M chromosomes. Randomly generate a point from the feasible domain of the user's transmission power, and check whether it satisfies the constraint condition, if it is satisfied, it is regarded as a chromosome, otherwise, a random point is regenerated until the constraint condition is satisfied. Repeat the above process M times to generate M chromosomes as the initial population, denoted as p i,1 , p i,2 ,...,p i,M .
  • the evaluation function is used to set a probability for each chromosome in the population, so that the probability of the chromosome being selected is proportional to the fitness of other chromosomes in the population, and the chromosome with strong fitness has a higher probability of being selected to produce offspring.
  • This application uses the optimal value of the optimization problem P2-2 as the fitness of the chromosome, uses the size of the fitness to determine a sequence, and determines the probability of the chromosome being selected according to the sequence. The smaller the optimal value, the stronger the fitness, that is, the greater the probability of breeding the next generation as a male parent.
  • the target value of the first stage of edge computing is constant, and the objective function of the second stage of edge computing is about
  • the affine function of the constraint condition (8-d) is about Convex constraints, therefore, the optimization problem (15) is a convex programming problem.
  • the closed expression of the optimal CPU frequency allocation strategy of the MEC server in each scenario can be obtained by using the Lagrange multiplier method and the KKT condition:
  • P c the crossover probability
  • P u as the mutation probability
  • P u M chromosomes in the population for mutation operation.
  • a new population can be obtained and prepared for the next generation of evolution. If the above steps reach a given number of cycles, the genetic algorithm terminates. After the algorithm is terminated, a chromosome with the highest fitness is selected from the last generation, and the global optimal solution of the optimization problem is obtained, which is the optimal transmit power of user i.
  • This embodiment provides a solution method for the unloading decision.
  • the user obtains the unloading decision through the energy budget and delay estimation of local computing and edge computing.
  • the optimization problem P2 can be written as the task offloading decision sub- question:
  • the optimization problem P2-3 is a 0-1 programming problem.
  • This application uses the enumeration method to bring 0 and 1 into the problem P2-3 respectively, and then compare the size of the objective function value.
  • the ⁇ i corresponding to the smaller objective function value is the optimal unloading decision.
  • the closed expression is as follows:
  • This application uses the MATLAB tool to simulate and verify the task offloading and resource allocation algorithm (SS_2SSP) proposed by this application in an uncertain network environment.
  • the comparison algorithm includes:
  • MTT_SO Maximum Waiting Time based Static Offloading Strategy
  • Greedy unloading strategy The user optimizes the transmission power based on the task in the static network with the maximum queuing time of the MEC server and the greedy unloading strategy using the maximum CPU frequency of the MEC server;
  • This application considers a single MEC server scenario, and the MEC server queuing waiting time obeys the exponential distribution, and the average queuing waiting time is 0.1-4s; unless otherwise specified, the number of samples K of queuing waiting time is 100; the calculation density L i is 700cycles/bit ; Local CPU frequency range is 100-2500MHz; MEC server CPU frequency range is 500-5000MHz; local effective energy coefficient k i is 10 -7 ; MEC server effective energy coefficient ⁇ is 10 -8 ; channel gain h i is 10 -2 ; The transmission power range is 5 ⁇ 33dBm; the transmission bandwidth B 0 is 30MHz; the white noise power N 0 is -50dBm; the population size M is 140; the number of iterations is 200; the crossover probability P c is 0.6; the mutation probability P u is 0.01; The number of independent repeated experiments was 10 times.
  • Figure 3 shows the process diagram of the total energy consumption of the system changing with the amount of tasks under different algorithms, where the calculation delay requirement of each task is 1s/Mbit, the maximum queuing time of the MEC server is 5s, and the average queuing time is 2s . It can be seen from Figure 3 that with the increase of the task load, the total system energy consumption of all algorithms increases, and the SS_2SSP algorithm proposed in this application has the lowest total system energy consumption, which is because the SS_2SSP algorithm in the first stage When formulating the transmission power strategy, the influence of all possible queuing waiting times in the future is considered. After the task is uploaded to the MEC server, the queuing waiting time is realized.
  • the MEC server calculates the delay according to the user’s Constraints adopt the recourse strategy of the second stage, that is, the CPU frequency allocation strategy, which will make up for the inaccurate prediction of the first-stage strategy.
  • the MWT_SO algorithm is a static unloading strategy based on the maximum queuing waiting time of the MEC server and has no recourse action. When the average queuing waiting time of the MEC server is small, the MWT_SO algorithm will use higher energy consumption to meet the delay requirement.
  • the Greedy algorithm is based on the maximum queuing waiting time and greedily uses the maximum CPU frequency resources of the MEC server, which has higher system energy consumption than the MWT_SO algorithm and the SS_2SSP algorithm.
  • the OnlyLocal algorithm has the highest system energy consumption compared with other algorithms because all tasks are processed locally.
  • Figure 4 shows the change process of total energy consumption of the system with delay constraints under different algorithms.
  • the number of users is 1
  • the task size is 20Mbit
  • the maximum queuing time of the MEC server is 2.5s
  • the average queuing time is 1s. It can be seen from Figure 4 that as the delay constraint increases, the total energy consumption of the system decreases.
  • the SS_2SSP algorithm proposed in this application has the lowest total system energy consumption, while the MWT_SO algorithm has a higher energy consumption based on the maximum queuing waiting time. The total energy consumption of the system.
  • the Greedy algorithm does not optimize the CPU frequency of the MEC server. Therefore, it has higher system energy consumption.
  • the OnlyLocal algorithm only processes tasks locally. Due to the limitations of local computing performance and computing resources, Compared with other algorithms, it has the highest total system energy consumption.

Landscapes

  • Engineering & Computer Science (AREA)
  • Software Systems (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

本申请涉及无线通信技术领域,尤其涉及一种不确定网络环境中的任务卸载和资源分配方法,包括将任务卸载过程建模为两阶段卸载模型,并将该模型优化为基于两阶段随机规划的任务卸载和资源分配问题,利用随机模拟方法将其化为样本均值近似问题,将该问题解耦为本地计算资源分配子问题、传输功率和边缘计算资源联合分配子问题以及卸载决策子问题;采用标准拉格朗日乘子法、遗传算法以及分析本地计算和边缘计算的时延估计和能耗预算求解三个子问题;用户根据求解三个子问题获得最优分配策略进行任务卸载;本申请能够在时延不确定的网络中满足任务计算时延的要求,同时保证系统能耗最小化。

Description

一种不确定网络环境中的任务卸载和资源分配方法
本申请要求于2021年06月08日提交中国专利局、申请号为202110635596.2、发明名称为“一种不确定网络环境中的任务卸载和资源分配方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及无线通信技术领域,尤其涉及一种不确定网络环境中的任务卸载和资源分配方法。
背景技术
随着物联网技术的快速发展和5G/6G新型应用的普及,时延敏感性应用已经被广泛设想,如虚拟现实、无人驾驶和人脸识别等正以前所未有的速度发展。移动边缘计算(Mobile Edge Computing,MEC)通过将任务卸载网络边缘节点,如基站和无线接入点,为时延敏感型应用提供了固有的低时延优势。
移动边缘计算中任务卸载和资源分配策略往往是影响用户卸载时延和能耗的关键因素,为提高用户的服务质量(Quality of Experience,QoE),同时最小化计算卸载能耗,需要根据任务的计算能耗预算、计算时延,以及MEC服务器的可用资源等性能约束条件来制定任务卸载和资源分配策略。国内外研究人员针对此问题进行了大量深入研究,一些主要的成果有:
(1)移动边缘计算中的任务分配和计算频率任务算法:该算法考虑了单个用户将任务卸载到多个MEC服务器的场景,通过优化任务的卸载决策和用户的中央处理单元(Central Process Unit,CPU)频率值来实现任务计算时延和用户能耗的最小化。
(2)联合任务卸载和无线资源分配算法:该算法考虑在多用户多MEC服务器场景下,对任务卸载决策、传输功率和信道分配进行了联合优化,目的是在满足任务计算时延约束条件下,最小化所有用户的能耗。
任务计算时延是保证用户QoE的重要指标之一,上述研究工作均考虑了任务的计算时延,然而都忽略了MEC服务器任务队列的排队等待时延。在实际的MEC网络环境中,由于MEC服务器的计算、存储等资源非常有限,通常无法快速响应海量突发的计算请求,因此,任务在MEC服务器端的排队等待时间是不可忽略的。由于任务到达的随机性,以及MEC服务器任务队列的时变性,欲得到任务排队等待时间的准确预测值是不现实的,这种不确定性因素对传统任务卸载和资源分配造成了严峻挑战。此外,大部分研究工作都只针对用户端能耗,而计算资源有限的MEC服务器端将面临着大量计算密集型和时延敏感型用户的访问,随之而来的是计算资源匮乏,以及高能耗等问题。因此,如何在任务计算时延不确定的MEC网络环境中制定高效、绿色的任务卸载和资源分配策略具有重要研究价值。
发明内容
为解上述问题,本申请考虑任务在MEC服务器的随机排队等待时间导致的计算时延不确定问题,提出了一种不确定网络环境中的任务卸载和资源分配方法,具体包括以下步骤:
利用随机规划理论将任务在MEC服务器的排队等待时间建模为一组随机参数,并将任务卸载过程建模为两阶段卸载模型;
基于两阶段卸载模型,在时延约束条件下,以最小化系统总能耗为目标,将优化问题建模为基于两阶段随机规划的任务卸载和资源分配问题;
利用随机模拟方法将基于两阶段随机规划的任务卸载和资源分配问题转化为样本均值近似问题;
将样本均值近似问题解耦为本地计算资源分配子问题、传输功率和边缘计算资源联合分配子问题,以及卸载决策子问题;
采用标准拉格朗日乘子法获得所述本地计算资源分配子问题的最优分配策略;
采用遗传算法获得所述传输功率和边缘计算资源联合分配子问题的最优分配策略;
通过分析本地计算和边缘计算的时延估计和能耗预算获得所述卸载决策子问题的最优策略;
用户基于所述本地计算资源分配子问题的最优分配策略、传输功率和边缘计算资源联合分配子问题的最优分配策略,以及卸载决策子问题的最优策略进行任务卸载。
进一步的,在两阶段卸载模型中,将卸载决策过程分为两个阶段,包括:
第一阶段的决策变量为任务的传输功率,即用户在没有观察到不确定性MEC服务器排队等待时间的情况下,考虑未来所有可能排队时间的影响,做出第一阶段的传输功率分配策略p i
第二阶段的决策变量为MEC服务器的CPU频率资源,即当任务上传至MEC服务器,排队等待时间实现已知,在获得排队等待时间和第一阶段的传输功率分配策略p i的条件下,MEC服务器将根据约束条件采取追索动作,对第一阶段策略进行补偿。
进一步的,若第i个用户的任务卸载决策为1,即第i个用户将任务卸载到服务器计算,则通过遗传算法计算最优的卸载策略,具体包括:
将每一个可行的传输功率进行浮点向量编码,每一个浮点向量表示一个染色体,浮点向量维数与解向量维数一致;
从用户i传输功率的可行域中随机产生一个点,检验其是否满足用户传输时延小于最大传输时延要求,即
Figure PCTCN2021128683-appb-000001
如果满足则作为一个染色体,否则,重新产生一个随机点,直到满足约束条件,重复以上过程M次,产生M个染色体作为初始种群,记为p i,1,p i,2,...,p i,M
对于每个染色体p i,m,求解其适应度函数,并根据适应度求其评价函数,且对于每个染色体评价函数值越大,被选择产生后代的概率越大,其中适应度为样本均值近似问题函数;
对于染色体p i,m,计算前m个染色的累积概率
Figure PCTCN2021128683-appb-000002
从区间(0,q i,M)中生成一个随机数r,若满足q i,m-1<r<q i,m,q 0=0,则选择染色体p i,m作为父本 繁殖下一代,依此规则选择M个染色体;
定义P c为交叉概率,则种群中有期望值为P c×M个染色体进行交叉操作,即假设p i,1和p i,2为要交叉的两个染色体,则从区间(0,1)中生成一个随机数c,直到p′ i,1=cp i,1+(1-c)p i,2和p′ i,2=(1-c)p i,1+cp i,2满足用户传输时延小于最大传输时延要求,即
Figure PCTCN2021128683-appb-000003
则p′ i,1和p′ i,2将代替原染色体p i,1和p i,2成为两个新的染色体;
定义P u为变异概率,则种群中有期望值为P u×M个染色体进行变异操作,即假设p i,1为要变异的染色体,随机选择一个变异方向d,从
Figure PCTCN2021128683-appb-000004
中生成一个随机数α,直到p′ i,1=p i,1+αd满足约束条件,则p′ i,1将取代原染色体p i,1成为新的染色体;
经过选择、交叉和变异操作,可以得到一个新的种群,并准备进行下一代进化,如果上述步骤达到了给定的循环次数,则遗传算法终止;算法终止后,从最后一代选择一个适应度最高的染色体,即得到优化问题的全局最优解。
本申请针对移动边缘计算中任务在边缘服务器的随机排队等待时间导致的计算时延不确定问题,提出了一种不确定网络环境中的任务卸载和资源分配算法。首先,在计算时延约束条件下,以最小化系统总能耗为目标,将优化问题建模为两阶段随机规划问题。其次,为了降低两阶段随机规划问题的计算复杂度,利用随机模拟方法将原问题转化为基于样本均值近似的混合整数非线性规划问题,并将该问题解耦为本地计算资源分配、传输功率和边缘计算资源联合分配,以及卸载决策3个子问题。接着,采用拉格朗日乘子法获得本地计算资源最优分配策略,同时采用遗传算法获得传输功率和边缘计算资源最优联合分配策略。最后,通过分析本地和边缘计算的时延估计和能耗预算获得最优任务卸载决策。通过仿真实验,与传统算法相比,所提算法能够在时延不确定的网络中满足任务计算时延的要求,同时保证系统能耗最小化。
附图说明
图1为本申请中一种不确定网络环境中的任务卸载和资源分配算法流程图;
图2为本申请两阶段卸载模型图;
图3为不同算法下系统总能耗随着任务量的变化过程图;
图4为不同算法下系统总能耗随着时延约束的变化过程图。
具体实施方式
本申请实施例提供了不确定网络环境中的任务卸载和资源分配方法,用于解决移动边缘计算中任务在边缘服务器的随机排队等待时间导致的计算时延不确定问题。
下面结合附图,对本申请的实施例进行描述。
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的术语在适当情况下可以互换,这仅仅是描述本申请的实施例中对相同属性的对象在描述时所采用的区分方式。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,以便包含一系列单元的过程、方法、系统、产品或设备不必限于那些单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它单元。
本申请提出一种不确定网络环境中的任务卸载和资源分配方法,如图1,包括以下步骤:
利用随机规划理论将任务在MEC服务器的排队等待时间建模为一组随机参数,并将任务卸载过程建模为两阶段卸载模型;
基于两阶段卸载模型,在时延约束条件下,以最小化系统总能耗为目标,将优化问题建模为基于两阶段随机规划的任务卸载和资源分配问题;
利用随机模拟方法将基于两阶段随机规划的任务卸载和资源分配问题转化为样本均值近似问题;
将样本均值近似问题解耦为本地计算资源分配子问题、传输功率和边缘计算资源联合分配子问题,以及卸载决策子问题;
采用标准拉格朗日乘子法获得所述本地计算资源分配子问题的最优分配策略;
采用遗传算法获得所述传输功率和边缘计算资源联合分配子问题的最优分配策略;
通过分析本地计算和边缘计算的时延估计和能耗预算获得所述卸载决策子问题的最优策略;
用户基于所述本地计算资源分配子问题的最优分配策略、传输功率和边缘计算资源联合分配子问题的最优分配策略,以及卸载决策子问题的最优策略进行任务卸载。
在本实施例中,考虑一个MEC系统模型,该模型包含一个配置了服务器的基站,N个请求任务处理的用户,集合表示为
Figure PCTCN2021128683-appb-000005
令UEi表示第i个用户,其中
Figure PCTCN2021128683-appb-000006
UEs可以通过无线网络与MEC服务器进行通信。定义用户需要处理的任务为一个三元组A i={D i,L ii},其中,D i表示需要计算的任务量大小;L i表示单位bit任务所需要的CPU周期数,单位为cycles/bit;τ i表示计算完成该任务的最大时延要求;假设任务不可分割,定义π i∈{0,1}表示UEi的卸载决策,若选择本地计算任务,则π i=0,若选择将任务卸载到MEC服务器处理,则π i=1。
在一些可行的实现方式中,每个用户的处理器均支持动态电压频率调整(Dynamic Voltage Frequency Scaling,DVFS)技术,DVFS技术可以动态调整CPU频率值,从而达到节省功耗的目的本地计算的时延为:
Figure PCTCN2021128683-appb-000007
本地计算时UEi产生的计算能耗为:
Figure PCTCN2021128683-appb-000008
其中,f i l表示本地计算时UEi的CPU频率值,κ i表示与UEi芯片架构相关的有效能量系数。
在一些可行的实现方式中,用户选择将任务卸载到MEC服务器处理主要经历四个过程:任务上传、MEC服务器排队等待、MEC服务器计算,以及计算结果返回。由于返回结果时的任务量较小,为便于分析,本申请忽略计算结果返回的通信时延。UEi将任务卸载到MEC服务器可获得的传输速率为:
Figure PCTCN2021128683-appb-000009
其中,B 0表示通信带宽,h i表示UEi和MEC服务器之间的信道增益,N 0为高斯白噪声功率谱,p i为UEi卸载任务时的传输功率。因此,当UEi选择将任务卸载到MEC服务器处理时,任务上传的通信时延为:
Figure PCTCN2021128683-appb-000010
在一些可行的实现方式中,当任务上传至MEC服务器后,由于MEC服务器计算资源的有限性,通常无法快速响应突发的计算请求,因此,MEC服务器排队等待时间是不可忽略的,定义T i wait表示UEi在MEC服务器的排队等待时间;任务经过排队等待,MEC服务器将为其提供计算服务,定义f i e表示MEC服务器处理任务时的CPU频率值,则UEi在MEC服务器的计算时延为:
Figure PCTCN2021128683-appb-000011
进一步,边缘计算时MEC服务器为UEi提供计算服务所产生的计算能耗为:
Figure PCTCN2021128683-appb-000012
其中,γ表示与MEC服务器芯片架构相关的有效能量系数。
实施例1
本实施例提供基于两阶段随机规划的任务卸载及资源分配问题建模的具体实施。
在本申请实施例中,由于任务到达的随机性,以及MEC服务器任务队列的时变性,欲得到任务排队等待时间的准确预测值是不现实的。本实施例首先对排队等待时间进行不确定性分析,然后在满足用户计算时延要求的条件下,以最小化系统总能耗为目标,将优化问题建模为一种基于两阶段随机规划的任务卸载和资源分配问题,具体包括:
(一)、对排队等待时间进行不确定性分析
在一些可行的实现方式中,为了处理MEC服务器排队等待时间的不确定性问题,本申 请利用随机规划理论将不确定的排队等待时间建模为一组由概率分布描述的随机参数。不失一般性,假设MEC服务器排队等待时间服从指数分布,定义Ω i表示UEi卸载任务到MEC服务器时,所有可能的排队等待时间的集合,称为场景,令T i wait∈Ω i为该场景中的一个实现。进一步,考虑所有的UEs,定义组合场景Ω表示所有UEs在MEC服务器的排队等待时间的集合,可表示为笛卡尔乘积
Figure PCTCN2021128683-appb-000013
Figure PCTCN2021128683-appb-000014
表示组合场景中的一个组合实现。
(二)、构建基于两阶段随机规划的任务卸载和资源分配问题
本申请旨在满足用户处理时延要求的条件下,通过优化本地和MEC服务器的CPU频率资源、任务传输功率,以及任务卸载决策来最小化系统的总能耗。如图2所示,在一些可行的实现方式中,用户首先在没有观察到不确定性MEC服务器排队等待时间的情况下,考虑未来所有可能排队等待时间的影响,并通过衡量本地和边缘计算时的能耗预算和时延估计得到卸载决策π i,当用户选择将任务卸载到MEC服务器处理时,本申请基于两阶段随机规划将卸载决策过程分为两个阶段:
1)第一阶段的决策变量为任务的传输功率。同样地,用户在没有观察到不确定性MEC服务器排队等待时间的情况下,考虑未来所有可能排队时间的影响,做出第一阶段的传输功率分配策略p i
2)第二阶段的决策变量为MEC服务器的CPU频率资源。当任务上传至MEC服务器,排队等待时间实现已知,在获得排队等待时间的实现T i wait和第一阶段的策略p i的条件下,MEC服务器将根据约束条件(比如卸载时延)采取追索动作
Figure PCTCN2021128683-appb-000015
以弥补第一阶段策略的不准确预测。
结合以上分析,可得到基于两阶段随机规划的任务卸载和资源分配问题的期望值模型,表示为:
Figure PCTCN2021128683-appb-000016
目标函数:
Figure PCTCN2021128683-appb-000017
Figure PCTCN2021128683-appb-000018
Figure PCTCN2021128683-appb-000019
Figure PCTCN2021128683-appb-000020
Figure PCTCN2021128683-appb-000021
π i∈{0,1}        (8-f)
其中,π={π 12,...,π N}表示任务卸载决策集合,
Figure PCTCN2021128683-appb-000022
表示本地CPU频率资源分配策略集合;
Figure PCTCN2021128683-appb-000023
表示所有组合场景下MEC服务器CPU频率资源分配策略集合,其中
Figure PCTCN2021128683-appb-000024
p={p 1,p 2,...p N}表示UEs任务传输功率分配策略集合;
Figure PCTCN2021128683-appb-000025
表示组合场景的期望;
Figure PCTCN2021128683-appb-000026
Figure PCTCN2021128683-appb-000027
分别表示传输功率的最小值和最大值;f i l,min和f i l,max分别表示本地CPU频率的最小值和最大值;f e,min和f e,max分别表示MEC服务器CPU频率的最小值和最大值;T i wait(ω)表示组合实现为ω时UEi的排队等待时间。约束条件式(8-d)和式(8-e)分别表示在本地和MEC服务器执行任务的时间须在其时延要求范围内。
实施例2
本实施例为了降低实施例1提出的两阶段随机规划问题的计算复杂度,将问题P1中的期望值模型转化为基于样本均值近似的MINLP问题。接着,将MINLP问题解耦为本地计算资源分配、传输功率和边缘计算资源联合分配,以及卸载决策3个子问题进行求解,具体包括:
(一)、将问题P1中的期望值模型转化为基于样本均值近似的MINLP问题
本申请考虑了MEC服务器排队等待时间的不确定环境下的任务卸载和资源分配优化问题,并将优化问题建模为一个两阶段随机规划问题。然而,求解两阶段随机规划问题通常面临着“维数灾难”的挑战,这将导致较高的计算复杂度。例如,当用户的场景空间Ω i的数量为1000时,组合场景Ω的数量将达到1000 N,求解场景数量如此庞大的两阶段随机规划问题是困难且不现实的。
在一些可行的实现方式中,为了解决两阶段随机规划中的“维数灾难”问题,本申请首先采用随机模拟方法从场景空间Ω i中抽取K个独立同分布的样本,并组成样本场景
Figure PCTCN2021128683-appb-000028
其中,
Figure PCTCN2021128683-appb-000029
表示该样本中的第k个实现。进一步考虑所有用户,可得到基于样本空间的样本组合场景Ω'={ω 12,...,ω S},其中,S=K N表示该样本组合场景的数量,ω s表示该样本组合场景中的第s个组合实现。接着,基于样本均值近似方法将问题P1中的期望值模型近似为样本均值模型,表示为:
Figure PCTCN2021128683-appb-000030
目标条件:式(8-a)-式(8-f)
在优化问题P2中,π i为{0,1}二元决策变量,边缘计算第一阶段目标函数是关于p i的非线性函数,因此,优化问题P2为MINLP问题,且为NP难问题。由于本地计算资源分配变量f l、传输功率分配变量p和边缘计算资源分配变量f e,以及卸载决策变量π之间完全解耦,因此,为解决MINLP问题,本申请将优化问题P2解耦为本地计算资源分配子问题、传输功率和边缘计算资源联合分配子问题,以及卸载决策子问题进行求解。为便于分析,本申请接下来只针对一个用户求解其最优策略,由于每个用户之间相互独立,最优策略容易扩展到多用户场景。
(二)、本地计算资源分配
示例性的,假设卸载决策变量π i=0,即UEi选择将任务在本地处理,则优化问题P2可写为本地计算资源分配子问题,表示为:
Figure PCTCN2021128683-appb-000031
约束条件:式(8-b)-式(8-d)
在优化问题P2-1中,目标函数是关于f i l的仿射函数,约束条件式(8-c)是关于f i l的凸约束,因此,优化问题P2-1为凸规划问题。采用拉格朗日乘子法求解优化问题P2-1,定义拉格朗日函数为:
Figure PCTCN2021128683-appb-000032
其中,μ i≥0、λ i≥0和ν i≥0均表示拉格朗日乘子。进一步可得问题式(X)的KKT(Karush-Kuhn-Tucker)条件如下:
Figure PCTCN2021128683-appb-000033
通过求解KKT条件,可得到任务在本地计算时最优CPU频率分配策略的闭合表达式为:
Figure PCTCN2021128683-appb-000034
(三)、传输功率和边缘计算资源联合分配
示例性的,假设卸载决策变量π i=1,即UEi选择将任务卸载到MEC服务器计算,则优化问题P2可写为传输功率和边缘计算资源分配子问题,表示为:
Figure PCTCN2021128683-appb-000035
约束条件:式(8-a)、式(8-c)和式(8-e)
在优化问题(12)中,由于边缘计算第一阶段目标函数是关于p i的非凸函数,为此,本申请接下来采用遗传算法求取P2-2问题的全局最优解,遗传算法是受到根据生物进化论的启发而得出的一种全局优化算法,并且特别适用于高维决策问题。
实施例3
本实施例提出采用遗传算法求取P2-2问题的全局最优解的具体实施,具体包括以下步骤:
1)编码
在两阶段卸载模型中,主要目标是确定第一阶段任务传输功率,因此,本申请将每一个可行的传输功率进行浮点向量编码,每一个浮点向量表示一个染色体,浮点向量维数与解向量维数一致。
2)初始种群
定义M表示种群大小,初始化过程随机产生M个染色体。从用户传输功率的可行域中随机产生一个点,并检验其是否满足约束条件,如果满足则作为一个染色体,否则,重新产生一个随机点,直到满足约束条件。重复以上过程M次,产生M个染色体作为初始种群,记为p i,1,p i,2,...,p i,M
3)评价函数
评价函数用来对种群中的每个染色体设定一个概率,以使该染色体被选择的可能性与种群中其他染色体的适应度成比例,适应度强的染色体被选择产生后代的几率较大。本申请利用优化问题P2-2的最优值作为染色体的适应度,利用适应度的大小决定一个序,并按照此序确定染色体被选择的概率。最优值越小,适应度越强,即作为父本繁殖下一代的概率越大。具体操作为对于每个染色体p i,m,m=1,2,...,M,首先求解如下最小化问题的目标函数最优值作为适应度值,即:
Figure PCTCN2021128683-appb-000036
S.t.:式(8-c)和式(8-e)
在优化问题式(15)中,边缘计算第一阶段的目标值为常数,边缘计算第二阶段目标函数是关于
Figure PCTCN2021128683-appb-000037
的仿射函数,约束条件式(8-d)是关于
Figure PCTCN2021128683-appb-000038
的凸约束,因此,优化问题式(15)为凸规划问题。同样地,采用拉格朗日乘子法和KKT条件可以求得每个场景下MEC服务器最优CPU频率分配策略的闭合表达式为:
Figure PCTCN2021128683-appb-000039
将所有场景下最优CPU频率值带入式(15),可求得每个染色体相应的适应度值,并按照适应度值从小到大对染色体进行排序,据此定义评价函数如下
eval(p i,m)=a(1-a) m-1,m=1,2,...,M    (17)
其中,a∈(0,1)。对于染色体p i,m,评价函数值越大,被选择产生后代的概率越大。
4)选择
对于每一个染色体p i,m,计算前m个染色体的累积概率,表示为:
Figure PCTCN2021128683-appb-000040
从区间(0,q i,M)中生成一个随机数r,若满足q i,m-1<r<q i,,q i,0=0,则选择染色体p i,m作为父本繁殖下一代,依此规则选择M个染色体。
5)交叉
定义P c为交叉概率,则种群中有期望值为P c×M个染色体进行交叉操作。假设p i,1和p i,2为要交叉的两个染色体,首先从区间(0,1)中生成一个随机数c,直到p′ i,1=cp i,1+(1-c)p i,2和p′ i,2=(1-c)p i,1+cp i,2满足约束条件,则p′ i,1和p′ i,2将代替原染色体p i,1和p i,2成为两个新的染色体。
6)变异
定义P u为变异概率,则种群中有期望值为P u×M个染色体进行变异操作。假设p i,1为要变异的染色体,随机选择一个变异方向d,然后从
Figure PCTCN2021128683-appb-000041
中生成一个随机数α,直到p′ i,1=p i,1+αd满足约束条件,则p′ i,1将取代原染色体p i,1成为新的染色体。
7)终止条件
经过选择、交叉和变异操作,可以得到一个新的种群,并准备进行下一代进化。如果上述步骤达到了给定的循环次数,则遗传算法终止。算法终止后,从最后一代选择一个适应度最高的染色体,即得到优化问题的全局最优解,该解即为用户i最优发射功率。
实施例4
本实施例给出卸载决策的求解方法。
用户通过对本地计算和边缘计算的能耗预算和时延估计得到卸载决策,在获得本地计算资源、传输功率和边缘计算资源最优分配策略的情况下,优化问题P2可写为任务卸载决策子问题:
Figure PCTCN2021128683-appb-000042
约束条件:式(8-f)
在优化问题P2-3中,唯一的变量是卸载决策π i∈{0,1},因此,优化问题P2-3为0-1规划问题。本申请采用枚举法分别将0和1带入问题P2-3,再比较目标函数值的大小,较小的目标函数值对应的π i即为最优卸载决策,闭合表达式如下:
Figure PCTCN2021128683-appb-000043
实施例5
本实施例为了验证本申请的有效性,进行了相关仿真实验。
本申请利用MATLAB工具对本申请提出的一种不确定网络环境下任务卸载和资源分配算法(SS_2SSP)进行仿真验证,为了验证所提算法的性能,对比算法包括:
(1)基于最大排队等待时间的静态卸载策略(Maximum Waiting Time based Static Offloading,MWT_SO):用户基于任务在MEC服务器最大排队时间的静态网络中,对传输功率和边缘计算资源进行优化;
(2)贪婪式卸载策略(Greedy):用户基于任务在MEC服务器最大排队时间的静态网络中,以及采用MEC服务器最大CPU频率的贪婪式卸载策略对传输功率进优化;
(3)本地计算策略(OnlyLocal):用户将任务只在本地处理。
本申请考虑单个MEC服务器场景,MEC服务器排队等待时间服从指数分布,平均排队等待时间为0.1~4s;若无特别说明,排队等待时间样本数量K均为100个;计算密度L i为700cycles/bit;本地CPU频率范围为100~2500MHz;MEC服务器CPU频率范围为500~5000MHz;本地有效能量系数k i为10 -7;MEC服务器有效能量系数γ为10 -8;信道增益h i为10 -2;传输功率范围为5~33dBm;传输带宽B 0为30MHz;白噪声功率N 0为-50dBm;种群大小M为140;迭代次数为200;交叉概率P c为0.6;变异概率P u为0.01;独立重复试验次数为10次。
图3所示为不同算法下系统总能耗随着任务量的变化过程图,其中,每个任务计算时 延要求为1s/Mbit,MEC服务器最大排队等待时间为5s,平均排队等待时间为2s。从图3中可以看出,随着任务量的增加,所有算法的系统总能耗随之增加,而本申请所提SS_2SSP算法具有最低的系统总能耗,这是由于SS_2SSP算法在第一阶段制定传输功率策略时考虑了未来所有可能排队等待时间的影响,待任务上传至MEC服务器后,获得了排队等待时间的实现,并结合第一阶段传输功率分配策略,MEC服务器根据用户的计算时延约束条件采取第二阶段的追索策略,即CPU频率分配策略,这将弥补第一阶段策略的不准确预测。而MWT_SO算法是基于MEC服务器最大排队等待时间且没有追索动作的静态卸载策略,当MEC服务器平均排队等待时间较小时,MWT_SO算法将会以更高的能耗去满足时延需求。Greedy算法基于最大的排队等待时间,且贪婪式地使用MEC服务器最大CPU频率资源,相比MWT_SO算法和SS_2SSP算法具有更高的系统能耗。OnlyLocal算法由于将任务全在本地处理,较其他算法具有最高的系统能耗。
图4所示为不同算法下系统总能耗随着时延约束的变化过程图,其中,用户数1个,任务量大小为20Mbit,MEC服务器最大排队等待时间为2.5s,平均排队等待时间为1s。从图4可以看出,随着时延约束的增加,系统总能耗随之减小,本申请所提SS_2SSP算法具有最低的系统总能耗,而MWT_SO算法基于最大排队等待时间具有较高的系统总能耗,与MWT_SO算法对比,Greedy算法没有对MEC服务器CPU频率进行优化,因此,具有更高的系统能耗,OnlyLocal算法将任务只在本地处理,由于本地计算性能和计算资源的限制,与其他算法相比,具有最高的系统总能耗。
尽管已经示出和描述了本申请的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本申请的原理和精神的情况下可以对这些实施例进行多种变化、修改、替换和变型,本申请的范围由所附权利要求及其等同物限定。

Claims (9)

  1. 一种不确定网络环境中的任务卸载和资源分配方法,其特征在于,包括以下步骤:
    利用随机规划理论将任务在MEC服务器的排队等待时间建模为一组随机参数,并将任务卸载过程建模为两阶段卸载模型;
    基于两阶段卸载模型,在时延约束条件下,以最小化系统总能耗为目标,将优化问题建模为基于两阶段随机规划的任务卸载和资源分配问题;
    利用随机模拟方法将基于两阶段随机规划的任务卸载和资源分配问题转化为样本均值近似问题;
    将样本均值近似问题解耦为本地计算资源分配子问题、传输功率和边缘计算资源联合分配子问题,以及卸载决策子问题;
    采用标准拉格朗日乘子法获得所述本地计算资源分配子问题的最优分配策略;
    采用遗传算法获得所述传输功率和边缘计算资源联合分配子问题的最优分配策略;
    通过分析本地计算和边缘计算的时延估计和能耗预算获得所述卸载决策子问题的最优策略;
    用户基于所述本地计算资源分配子问题的最优分配策略、传输功率和边缘计算资源联合分配子问题的最优分配策略,以及卸载决策子问题的最优策略进行任务卸载。
  2. 根据权利要求1所述的一种不确定网络环境中的任务卸载和资源分配方法,其特征在于,在两阶段卸载模型中,将卸载决策过程分为两个阶段,包括:
    第一阶段的决策变量为任务的传输功率,即用户在没有观察到不确定性MEC服务器排队等待时间的情况下,考虑未来所有可能排队时间的影响,做出第一阶段的传输功率分配策略p i
    第二阶段的决策变量为MEC服务器的CPU频率资源,即当任务上传至MEC服务器,排队等待时间实现已知,在获得排队等待时间和第一阶段的传输功率分配策略p i的条件下,MEC服务器将根据约束条件采取追索动作,对第一阶段策略进行补偿。
  3. 根据权利要求1所述的一种不确定网络环境中的任务卸载和资源分配方法,其特征在于,基于两阶段随机规划的任务卸载和资源分配问题表示为:
    Figure PCTCN2021128683-appb-100001
    约束条件:
    Figure PCTCN2021128683-appb-100002
    f i l,min≤f i l≤f i l,max
    f e,min≤f i l≤f e,max
    T i loca(f i l)≤τ i
    Figure PCTCN2021128683-appb-100003
    π i∈{0,1};
    其中,π={π 12,...,π N}表示任务卸载决策集合,N为请求任务处理的用户数;
    Figure PCTCN2021128683-appb-100004
    表示本地CPU频率资源分配策略集合,f i l表示第i个用户的本地CPU频率资源分配策略;
    Figure PCTCN2021128683-appb-100005
    表示所有组合场景下MEC服务器CPU频率资源分配策略集合,其中
    Figure PCTCN2021128683-appb-100006
    表示第i个用户在MEC服务器的排队等待时间的集合;p={p 1,p 2,...p N}表示用户任务传输功率分配策略集合,p N表示第N个用户任务传输功率分配策略;π i表示第i个用户的卸载决策;κ i为第i个用户芯片构架相关的有效能量系数;D i为待计算任务的任务量大小;L i表示单位bit任务所需要的CPU周期数;R i为第i个用户将任务卸载到MEC服务器的传输速率;γ为与MEC服务器芯片架构相关的有效能量系数;τ i表示计算完成该任务的最大时延要求;
    Figure PCTCN2021128683-appb-100007
    表示组合场景的期望;
    Figure PCTCN2021128683-appb-100008
    Figure PCTCN2021128683-appb-100009
    分别表示传输功率的最小值和最大值;f i l,min和f i l,max分别表示本地CPU频率的最小值和最大值;f e,min和f e,max分别表示MEC服务器CPU频率的最小值和最大值;T i wait(ω)表示组合实现为ω时第i个用户的排队等待时间;T i loca(f i l)为第i个用户本地计算的时延;T i tran(p i)为第i个用户选择将任务卸载到MEC服务器处理时任务上传的通信时延;
    Figure PCTCN2021128683-appb-100010
    为第i个用户在MEC服务器的计算时延。
  4. 根据权利要求1所述的一种不确定网络环境中的任务卸载和资源分配方法,其特征在于,利用随机模拟方法将基于两阶段随机规划的任务卸载和资源分配问题转化为样本均值近似问题包括:
    Figure PCTCN2021128683-appb-100011
    约束条件:
    Figure PCTCN2021128683-appb-100012
    f i l,min≤f i l≤f i l,max
    f e,min≤f i l≤f e,max
    T i loca(f i l)≤τ i
    Figure PCTCN2021128683-appb-100013
    π i∈{0,1};
    其中,π={π 12,...,π N}表示任务卸载决策集合,N为请求任务处理的用户数;
    Figure PCTCN2021128683-appb-100014
    表示本地CPU频率资源分配策略集合,f i l表示第i个用户的本地CPU频率资源分配策略;
    Figure PCTCN2021128683-appb-100015
    表示所有组合场景下MEC服务器CPU频率资源分配策略集合,其中
    Figure PCTCN2021128683-appb-100016
    表示第i个用户在MEC服务器的排队等待时间的集合;p={p 1,p 2,...p N}表示用户任务传输功率分配策略集合,p N表示第N个用户任务传输功率分配策略;π i表示第i个用户的卸载决策;κ i为第i个用户芯片构架相关的有效能量系数;D i为待计算任务的任务量大小;L i表示单位bit任务所需要的CPU周期数;R i为第i个用户将任务卸载到MEC服务器的传输速率;γ为与MEC服务器芯片架构相关的有效能量系数;τ i表示计算完成该任务的最大时延要求;
    Figure PCTCN2021128683-appb-100017
    Figure PCTCN2021128683-appb-100018
    分别表示传输功率的最小值和最大值;f i l,min和f i l,max分别表示本地CPU频率的最小值和最大值;f e,min和f e,max分别表示MEC服务器CPU频率的最小值和最大值;T i waits)表示组合实现为ω s时第i个用户的排队等待时间;T i loca(f i l)为第i个用户本地计算的时延;T i tran(p i)为第i个用户选择将任务卸载到MEC服务器处理时任务上传的通信时延;
    Figure PCTCN2021128683-appb-100019
    为第i个用户在MEC服务器的计算时延;S=K N表示该样本组合场景的数量,K为从第i个用户的场景集合Ω i中抽取的独立同分布样本数量。
  5. 根据权利要求4所述的一种不确定网络环境中的任务卸载和资源分配方法,其特征在于,若第i个用户的任务卸载决策为0,即第i个用户将任务在本地处理,则任务在本地计算时最优CPU频率分配策略为:
    Figure PCTCN2021128683-appb-100020
    其中,f i l*为任务在本地计算时最优CPU频率分配策略。
  6. 根据权利要求4所述的一种不确定网络环境中的任务卸载和资源分配方法,其特征在于,若第i个用户的任务卸载决策为1,即第i个用户将任务卸载到服务器计算,则通过遗传算法计算最优的卸载策略,具体包括:
    将每一个可行的传输功率进行浮点向量编码,每一个浮点向量表示一个染色体,浮点向量维数与解向量维数一致;
    从用户i传输功率的可行域中随机产生一个点,并检验其是否满足用户传输时延小于最大传输时延要求,如果满足则作为一个染色体,否则,重新产生一个随机点,直到满足约束条件,重复以上过程M次,产生M个染色体作为初始种群,记为p i,1,p i,2,...,p i,M
    对于每个染色体p i,m,求解其适应度函数,并根据适应度求其评价函数,且对于每个染色体评价函数值越大,被选择产生后代的概率越大,其中适应度为样本均值近似问题函数;
    对于染色体p i,m,计算前m个染色的累积概率
    Figure PCTCN2021128683-appb-100021
    从区间(0,q i,M)中生成一个随机数r,若满足q i,m-1<r<q i,m,q i,0=0,则选择染色体p i,m作为父本繁殖下一代,依此规则选择M个染色体;
    定义P c为交叉概率,则种群中有期望值为P c×M个染色体进行交叉操作,即假设p i,1和p i,2为要交叉的两个染色体,则从区间(0,1)中生成一个随机数c,直到p′ i,1=cp i,1+(1-c)p i,2和p′ i,2=(1-c)p i,1+cp i,2满足用户传输时延小于最大传输时延要求,则p′ i,1和p′ i,2将代替原染色体p i,1和p i,2成为两个新的染色体;
    定义P u为变异概率,则种群中有期望值为P u×M个染色体进行变异操作,即假设p i,1为要变异的染色体,随机选择一个变异方向d,从
    Figure PCTCN2021128683-appb-100022
    中生成一个随机数α,直到p′ i,1=p i,1+αd满足约束条件,则p′ i,1将取代原染色体p i,1成为新的染色体;
    经过选择、交叉和变异操作,可以得到一个新的种群,并准备进行下一代进化,如果上述步骤达到了给定的循环次数,则遗传算法终止;算法终止后,从最后一代选择一个适应度最高的染色体,即得到优化问题的全局最优解。
  7. 根据权利要求6所述的一种不确定网络环境中的任务卸载和资源分配方法,其特征在于,每个染色体相应的适应度值,并按照适应度值从小到大对染色体进行排序,则染色体p i,m的评价函数表示为:
    eval(p i,m)=a(1-a) m-1,m=1,2,...,M;
    其中,eval(p i,m)为染色体p i,m的评价函数;a为常数,且a∈(0,1)。
  8. 根据权利要求1所述的一种不确定网络环境中的任务卸载和资源分配方法,其特征在于,最优卸载决策表示为:
    Figure PCTCN2021128683-appb-100023
    其中,
    Figure PCTCN2021128683-appb-100024
    为最优卸载决策;f i l*为任务在本地计算时最优CPU频率分配策略;
    Figure PCTCN2021128683-appb-100025
    为每个场景下MEC服务器最优CPU频率分配策略;
    Figure PCTCN2021128683-appb-100026
    为第i个用户的最优发射功率。
  9. 根据权利要求7所述的一种不确定网络环境中的任务卸载和资源分配方法,其特征在于,每个场景下MEC服务器最优CPU频率分配策略
    Figure PCTCN2021128683-appb-100027
    表示为:
    Figure PCTCN2021128683-appb-100028
    其中,T i tran(p i,m)为第i个用户选择发射功率为p i,m时将任务卸载到MEC服务器处理时任务上传的通信时延。
PCT/CN2021/128683 2021-06-08 2021-11-04 一种不确定网络环境中的任务卸载和资源分配方法 WO2022257348A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/908,249 US20240103915A1 (en) 2021-06-08 2021-11-04 Task offloading and resource allocation method in uncertain network environment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110635596.2 2021-06-08
CN202110635596.2A CN113242568B (zh) 2021-06-08 2021-06-08 一种不确定网络环境中的任务卸载和资源分配方法

Publications (1)

Publication Number Publication Date
WO2022257348A1 true WO2022257348A1 (zh) 2022-12-15

Family

ID=77137231

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/128683 WO2022257348A1 (zh) 2021-06-08 2021-11-04 一种不确定网络环境中的任务卸载和资源分配方法

Country Status (3)

Country Link
US (1) US20240103915A1 (zh)
CN (1) CN113242568B (zh)
WO (1) WO2022257348A1 (zh)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115664486A (zh) * 2022-12-29 2023-01-31 南京邮电大学 一种ris辅助uav边缘计算系统中无线供能的能效优化方法
CN115696405A (zh) * 2023-01-05 2023-02-03 山东省计算中心(国家超级计算济南中心) 一种兼顾公平性的计算任务卸载优化方法及系统
CN115802465A (zh) * 2023-02-01 2023-03-14 中国传媒大学 基于强化学习框架的d2d边缘缓存网络能耗管理方法
CN116016538A (zh) * 2023-03-27 2023-04-25 南京邮电大学 面向动态环境的边端协同推理任务卸载优化方法与系统
CN116132439A (zh) * 2022-12-27 2023-05-16 华中科技大学 基于雾节点协作的异质资源协同调度方法、系统和装置
CN116362850A (zh) * 2023-04-06 2023-06-30 天津大学 一种面向元宇宙服务的资源分配方案
CN116455768A (zh) * 2023-06-16 2023-07-18 南京邮电大学 面向全局时延优化的云边端协同cnn推理方法及系统
CN116560839A (zh) * 2023-05-06 2023-08-08 湖南师范大学 一种基于主从博弈的边缘计算任务卸载方法和系统
CN116567725A (zh) * 2023-05-09 2023-08-08 中国人民解放军陆军工程大学 一种时延最小化的多边缘服务器网络任务卸载方法
CN116709391A (zh) * 2023-08-02 2023-09-05 华东交通大学 超密集网络联合资源分配和能效型安全计算卸载优化方法
CN116723526A (zh) * 2023-08-08 2023-09-08 北京航空航天大学 一种无人机辅助的网联车辆队列随机任务分配决策方法
CN116782412A (zh) * 2023-08-17 2023-09-19 北京航空航天大学 一种基于随机接入的高动态异构无线网络资源分配方法
CN116805923A (zh) * 2023-08-25 2023-09-26 淳安华数数字电视有限公司 基于边缘计算的宽带通信方法
CN116956756A (zh) * 2023-09-21 2023-10-27 浪潮电子信息产业股份有限公司 模型部署方法、任务处理方法、装置、设备及存储介质
CN116976649A (zh) * 2023-09-18 2023-10-31 武汉理工大学 退役家电产品局部破坏性拆解线平衡方法
CN117042047A (zh) * 2023-06-08 2023-11-10 广西大学 一种基于任务优先级的资源分配方法、装置、控制器及系统
CN117156495A (zh) * 2023-10-31 2023-12-01 苏州元脑智能科技有限公司 一种边缘计算任务卸载方法、装置、电子设备和存储介质
CN117354759A (zh) * 2023-12-06 2024-01-05 吉林大学 一种多无人机辅助mec的任务卸载与充电调度联合优化方法
CN117376985A (zh) * 2023-12-08 2024-01-09 吉林大学 莱斯信道下多无人机辅助mec任务卸载的能效优化方法
CN117649175A (zh) * 2024-01-26 2024-03-05 江苏中创供应链服务有限公司 一种基于边缘计算的跨境仓配服务方法及系统

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113242568B (zh) * 2021-06-08 2022-05-03 重庆邮电大学 一种不确定网络环境中的任务卸载和资源分配方法
CN113784372A (zh) * 2021-08-11 2021-12-10 华中科技大学 一种面向终端多业务模型的联合优化方法
CN113726858B (zh) * 2021-08-12 2022-08-16 西安交通大学 一种基于强化学习的自适应ar任务卸载和资源分配方法
CN113613260B (zh) * 2021-08-12 2022-08-19 西北工业大学 远近距离协作的感知延迟移动边缘计算优化方法及系统
CN113840334A (zh) * 2021-08-20 2021-12-24 济南浪潮数据技术有限公司 一种网络资源协同方法和装置
CN114125063B (zh) * 2021-08-30 2022-07-08 国网内蒙古东部电力有限公司 基于业务QoS的电力通信网任务卸载系统、方法及应用
CN113950103B (zh) * 2021-09-10 2022-11-04 西安电子科技大学 一种移动边缘环境下多服务器完全计算卸载方法及系统
CN113965961B (zh) * 2021-10-27 2024-04-09 中国科学院计算技术研究所 一种车联网环境下的边缘计算任务卸载方法与系统
CN114173357B (zh) * 2021-12-07 2023-09-01 南京邮电大学 一种面向多类型业务时延需求的移动边缘计算资源分配方法
CN114567564B (zh) * 2022-03-07 2024-04-05 深圳金英拓联科技有限公司 一种基于服务器协作的任务卸载和计算资源分配方法
CN114867039A (zh) * 2022-04-15 2022-08-05 河海大学 一种面向中间海域场景的边缘计算卸载方法
CN115022893A (zh) * 2022-05-31 2022-09-06 福州大学 多任务边缘计算系统中最小化总计算时间的资源分配方法
CN115276754B (zh) * 2022-06-20 2023-06-16 南京邮电大学 一种基于栅格时延预测的卫星传输优化方法
CN115665797A (zh) * 2022-10-31 2023-01-31 齐鲁工业大学 一种移动边缘计算的海上卸载和资源分配方法
CN115801829B (zh) * 2022-11-08 2023-09-05 大连海事大学 一种工业物联网中边缘自适应感知方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110035410A (zh) * 2019-03-07 2019-07-19 中南大学 一种软件定义车载边缘网络中联合资源分配和计算卸载的方法及系统
EP3605329A1 (en) * 2018-07-31 2020-02-05 Commissariat à l'énergie atomique et aux énergies alternatives Connected cache empowered edge cloud computing offloading
CN113242568A (zh) * 2021-06-08 2021-08-10 重庆邮电大学 一种不确定网络环境中的任务卸载和资源分配方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111401744B (zh) * 2020-03-17 2023-04-28 重庆邮电大学 一种移动边缘计算中不确定性环境下的动态任务卸载方法
CN111586720B (zh) * 2020-05-11 2022-04-22 重庆邮电大学 一种多小区场景下的任务卸载和资源分配的联合优化方法
CN111918311B (zh) * 2020-08-12 2022-04-12 重庆邮电大学 基于5g移动边缘计算的车联网任务卸载和资源分配方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3605329A1 (en) * 2018-07-31 2020-02-05 Commissariat à l'énergie atomique et aux énergies alternatives Connected cache empowered edge cloud computing offloading
CN110035410A (zh) * 2019-03-07 2019-07-19 中南大学 一种软件定义车载边缘网络中联合资源分配和计算卸载的方法及系统
CN113242568A (zh) * 2021-06-08 2021-08-10 重庆邮电大学 一种不确定网络环境中的任务卸载和资源分配方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Master Thesis", 26 March 2020, CHONGQING UNIVERSITY OF POSTS AND TELECOMMUNICATIONS, article YAO, ZHIXIU: "Research on Resource Allocation in Mobile Edge Computing Based on Game Theory", pages: 1 - 67, XP055973048, DOI: 10.27675/d.cnki.gcydx.2020.000032 *

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116132439B (zh) * 2022-12-27 2024-05-14 华中科技大学 基于雾节点协作的异质资源协同调度方法、系统和装置
CN116132439A (zh) * 2022-12-27 2023-05-16 华中科技大学 基于雾节点协作的异质资源协同调度方法、系统和装置
CN115664486A (zh) * 2022-12-29 2023-01-31 南京邮电大学 一种ris辅助uav边缘计算系统中无线供能的能效优化方法
CN115696405A (zh) * 2023-01-05 2023-02-03 山东省计算中心(国家超级计算济南中心) 一种兼顾公平性的计算任务卸载优化方法及系统
CN115802465A (zh) * 2023-02-01 2023-03-14 中国传媒大学 基于强化学习框架的d2d边缘缓存网络能耗管理方法
CN116016538A (zh) * 2023-03-27 2023-04-25 南京邮电大学 面向动态环境的边端协同推理任务卸载优化方法与系统
CN116362850A (zh) * 2023-04-06 2023-06-30 天津大学 一种面向元宇宙服务的资源分配方案
CN116560839A (zh) * 2023-05-06 2023-08-08 湖南师范大学 一种基于主从博弈的边缘计算任务卸载方法和系统
CN116560839B (zh) * 2023-05-06 2023-11-10 湖南师范大学 一种基于主从博弈的边缘计算任务卸载方法和系统
CN116567725B (zh) * 2023-05-09 2024-02-13 中国人民解放军陆军工程大学 一种时延最小化的多边缘服务器网络任务卸载方法
CN116567725A (zh) * 2023-05-09 2023-08-08 中国人民解放军陆军工程大学 一种时延最小化的多边缘服务器网络任务卸载方法
CN117042047B (zh) * 2023-06-08 2024-03-22 广西大学 一种基于任务优先级的资源分配方法、装置、控制器及系统
CN117042047A (zh) * 2023-06-08 2023-11-10 广西大学 一种基于任务优先级的资源分配方法、装置、控制器及系统
CN116455768A (zh) * 2023-06-16 2023-07-18 南京邮电大学 面向全局时延优化的云边端协同cnn推理方法及系统
CN116455768B (zh) * 2023-06-16 2023-09-12 南京邮电大学 面向全局时延优化的云边端协同cnn推理方法及系统
CN116709391B (zh) * 2023-08-02 2023-10-20 华东交通大学 超密集网络联合资源分配和能效型安全计算卸载优化方法
CN116709391A (zh) * 2023-08-02 2023-09-05 华东交通大学 超密集网络联合资源分配和能效型安全计算卸载优化方法
CN116723526B (zh) * 2023-08-08 2023-10-24 北京航空航天大学 一种无人机辅助的网联车辆队列随机任务分配决策方法
CN116723526A (zh) * 2023-08-08 2023-09-08 北京航空航天大学 一种无人机辅助的网联车辆队列随机任务分配决策方法
CN116782412A (zh) * 2023-08-17 2023-09-19 北京航空航天大学 一种基于随机接入的高动态异构无线网络资源分配方法
CN116782412B (zh) * 2023-08-17 2023-11-14 北京航空航天大学 一种基于随机接入的高动态异构无线网络资源分配方法
CN116805923A (zh) * 2023-08-25 2023-09-26 淳安华数数字电视有限公司 基于边缘计算的宽带通信方法
CN116805923B (zh) * 2023-08-25 2023-11-10 淳安华数数字电视有限公司 基于边缘计算的宽带通信方法
CN116976649A (zh) * 2023-09-18 2023-10-31 武汉理工大学 退役家电产品局部破坏性拆解线平衡方法
CN116976649B (zh) * 2023-09-18 2024-02-02 武汉理工大学 退役家电产品局部破坏性拆解线平衡方法
CN116956756A (zh) * 2023-09-21 2023-10-27 浪潮电子信息产业股份有限公司 模型部署方法、任务处理方法、装置、设备及存储介质
CN116956756B (zh) * 2023-09-21 2024-02-09 浪潮电子信息产业股份有限公司 模型部署方法、任务处理方法、装置、设备及存储介质
CN117156495B (zh) * 2023-10-31 2024-03-01 苏州元脑智能科技有限公司 一种边缘计算任务卸载方法、装置、电子设备和存储介质
CN117156495A (zh) * 2023-10-31 2023-12-01 苏州元脑智能科技有限公司 一种边缘计算任务卸载方法、装置、电子设备和存储介质
CN117354759B (zh) * 2023-12-06 2024-03-19 吉林大学 一种多无人机辅助mec的任务卸载与充电调度联合优化方法
CN117354759A (zh) * 2023-12-06 2024-01-05 吉林大学 一种多无人机辅助mec的任务卸载与充电调度联合优化方法
CN117376985A (zh) * 2023-12-08 2024-01-09 吉林大学 莱斯信道下多无人机辅助mec任务卸载的能效优化方法
CN117376985B (zh) * 2023-12-08 2024-03-19 吉林大学 莱斯信道下多无人机辅助mec任务卸载的能效优化方法
CN117649175A (zh) * 2024-01-26 2024-03-05 江苏中创供应链服务有限公司 一种基于边缘计算的跨境仓配服务方法及系统
CN117649175B (zh) * 2024-01-26 2024-03-29 江苏中创供应链服务有限公司 一种基于边缘计算的跨境仓配服务方法及系统

Also Published As

Publication number Publication date
US20240103915A1 (en) 2024-03-28
CN113242568A (zh) 2021-08-10
CN113242568B (zh) 2022-05-03

Similar Documents

Publication Publication Date Title
WO2022257348A1 (zh) 一种不确定网络环境中的任务卸载和资源分配方法
CN113950066B (zh) 移动边缘环境下单服务器部分计算卸载方法、系统、设备
Qu et al. DMRO: A deep meta reinforcement learning-based task offloading framework for edge-cloud computing
CN108920280B (zh) 一种单用户场景下的移动边缘计算任务卸载方法
CN112380008B (zh) 一种面向移动边缘计算应用的多用户细粒度任务卸载调度方法
CN110798849A (zh) 一种超密网边缘计算的计算资源分配与任务卸载方法
Xu et al. Multiobjective computation offloading for workflow management in cloudlet‐based mobile cloud using NSGA‐II
CN111813506B (zh) 一种基于粒子群算法资源感知计算迁移方法、装置及介质
CN110928654A (zh) 一种边缘计算系统中分布式的在线任务卸载调度方法
CN112882815A (zh) 基于深度强化学习的多用户边缘计算优化调度方法
Nath et al. Multi-user multi-channel computation offloading and resource allocation for mobile edge computing
CN115827108B (zh) 基于多目标深度强化学习的无人机边缘计算卸载方法
CN113645637B (zh) 超密集网络任务卸载方法、装置、计算机设备和存储介质
CN113220356A (zh) 一种移动边缘计算中的用户计算任务卸载方法
WO2023175335A1 (en) A time-triggered federated learning algorithm
CN112540845A (zh) 一种基于移动边缘计算的协作系统及方法
Li et al. Multi-edge collaborative offloading and energy threshold-based task migration in mobile edge computing environment
Hu et al. Dynamic task offloading in MEC-enabled IoT networks: A hybrid DDPG-D3QN approach
Fang et al. Smart collaborative optimizations strategy for mobile edge computing based on deep reinforcement learning
CN113778550B (zh) 一种基于移动边缘计算的任务卸载系统和方法
Li Optimization of task offloading problem based on simulated annealing algorithm in MEC
Xu et al. Accelerating Split Federated Learning over Wireless Communication Networks
CN115499876A (zh) Msde场景下基于dqn算法的计算卸载策略
CN112910716B (zh) 一种基于分布式dnn的移动雾计算损耗联合优化系统和方法
CN114745386A (zh) 一种多用户边缘智能场景下的神经网络分割及卸载方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 17908249

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21944847

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE