WO2022257322A1 - 一种伺服机构排焰管数字化装配制造方法 - Google Patents

一种伺服机构排焰管数字化装配制造方法 Download PDF

Info

Publication number
WO2022257322A1
WO2022257322A1 PCT/CN2021/125330 CN2021125330W WO2022257322A1 WO 2022257322 A1 WO2022257322 A1 WO 2022257322A1 CN 2021125330 W CN2021125330 W CN 2021125330W WO 2022257322 A1 WO2022257322 A1 WO 2022257322A1
Authority
WO
WIPO (PCT)
Prior art keywords
pipe
assembly
exhaust pipe
digital
manufacturing
Prior art date
Application number
PCT/CN2021/125330
Other languages
English (en)
French (fr)
Inventor
蔡奇彧
陈勇
沈勇
卢启强
张新兰
唐帅
王继岩
王拓坤
周成成
林磊
江松林
胡洲
宁浩
钟涵
朱志
王晓蕊
Original Assignee
四川航天长征装备制造有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 四川航天长征装备制造有限公司 filed Critical 四川航天长征装备制造有限公司
Priority to CA3187787A priority Critical patent/CA3187787C/en
Publication of WO2022257322A1 publication Critical patent/WO2022257322A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/418Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM]
    • G05B19/41865Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM] characterised by job scheduling, process planning, material flow
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/32Operator till task planning
    • G05B2219/32252Scheduling production, machining, job shop
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Definitions

  • the invention is mainly applied in the technical field of aerospace assembly and manufacturing, and specifically relates to a digital assembly and manufacturing method of a flame exhaust pipe of a servo mechanism.
  • the flame exhaust pipe of the servo mechanism is an important part of the aircraft piping system. Its working environment is mainly affected by the comprehensive environment such as high temperature, high pressure, and vibration. Affect the normal operation of the entire pipeline system and servo mechanism.
  • 2Pipeline assembly boundary conditions are highly dependent on the actual product. Each time, 2-3 people are required to work together to transport welding machines, tooling, tools and other materials from the manufacturing workshop to the final assembly site, and complete the repair, spot welding, trial assembly and other processes based on the actual products on site, resulting in a certain amount of time, manpower and resources. conflict and waste.
  • the present invention provides a digital assembly and manufacturing method for the flame exhaust pipe of the servo mechanism, which uses digital measurement and assembly coordination technology to simulate the actual assembly space of the two ends of the flame exhaust pipe, and establishes a A digital coordination model based on pipeline assembly, which proposes the selection and assembly of the pipeline coordination section in the digital virtual space, and uses the digital coordination parameters as the basis for the whole process of manufacturing to carry out laser cutting of the pipeline, and finally realizes the digital manufacturing of the exhaust pipe.
  • the assembly production efficiency is greatly improved and the assembly waiting time is shortened.
  • the technical solution adopted by the present invention to solve the technical problem is: a method for digitally assembling and manufacturing a flame exhaust pipe of a servo mechanism, comprising the following steps:
  • the first step is to construct the coordinate system V1XYZ of the docking surface between the horizontally placed engine and the tail section by using the laser tracker equipment, and then measure the outer end circle of the nozzle of the servo mechanism, which is expressed in the form of a proxy model circle Q1 vector;
  • the second step is to use the laser tracker equipment to measure the docking surface of the vertically placed tail section and the engine to construct the coordinate system V2XYZ, and then measure the inner surface and arc of the exhaust nozzle of the tail section, and express it in the form of a proxy model circle Q2 vector;
  • the measurement data of the first and second steps are respectively converted into three-dimensional models, and digital virtual assembly is carried out, and the measurement coordinate system V1XYZ is aligned with the measurement coordinate system V2XYZ to obtain the boundary conditions at both ends of the exhaust pipe;
  • the fourth step is to assemble the exhaust pipe joint and the transition tube on the proxy model circle Q1, and obtain the proxy model circle at the end of the transition tube as Q3;
  • the fifth step is to import the pipe to be repaired into the digital assembly coordination model, and assemble the long end of the pipe to the exhaust nozzle of the tail section, ensuring that the central axis passes through the center point of the proxy model circle Q2; the central axis of the short end of the pipe on the other side passes through the transition The center point of the proxy model circle Q3 at the end of the pipe;
  • the sixth step is to adjust the pipe to an appropriate position in the digital assembly coordination model to ensure that the short end and the transition pipe overlap moderately, and the long end can protrude from the wall of the tail section and meet the clearance requirements;
  • the seventh step is to coordinate and implement the pipe and transition pipe in the digital assembly coordination model, and obtain the pipe and its size parameters after virtual cutting;
  • the eighth step is to import the pipe size parameters after virtual cutting into the three-dimensional laser machine to laser cut the actual pipe, and finally weld the actual pipe after laser cutting with the pipe joint and transition pipe to complete the digital assembly and manufacture of the exhaust pipe .
  • the present invention adopts the manufacturing mode of parallel production, which can advance the manufacturing time of the flame exhaust pipe, and the pipeline assembly can be carried out after the final assembly butt joint is completed, which greatly saves the waiting time for the final assembly.
  • the present invention uses measuring equipment such as a laser tracker to measure product dimensions, which has high measurement accuracy, can quickly and accurately reflect product feature information, and improves the digital manufacturing accuracy of products.
  • the present invention eliminates the process of on-site repairing, spot welding and trial assembly by operators, and avoids the conflict and waste of a certain amount of time, manpower and resources.
  • the manufacturing process of the present invention is produced according to the measurement data, which eliminates the long time-consuming and labor-intensive production caused by excessive reliance on manual experience, improves the digital manufacturing degree of the product, and improves the production efficiency of the product.
  • the invention solves the backward problem that the assembly of pipelines in the aerospace field is highly dependent on on-site file repair, and has the characteristics of accurate measurement, data control, strong operability, high efficiency and economy, and has good promotion and practical value among similar methods. After application, it can produce good economic value, and has a good reference function in the field of segmented pipeline connection and assembly.
  • Fig. 1 is the schematic diagram of engine and servomechanism installation position of the present invention
  • Fig. 2 is a schematic diagram of the tail section and the exhaust nozzle position of the present invention
  • Fig. 3 is a schematic diagram of the boundary conditions at both ends of the three-dimensional model exhaust pipe of the present invention.
  • Fig. 4 is a schematic diagram of a digital assembly model of the present invention.
  • Fig. 5 is a schematic diagram after the coordinated implementation of the digital assembly model of the present invention.
  • Fig. 6 is a schematic diagram of pipe laser cutting and clamping of the present invention.
  • Fig. 7 is a schematic diagram of the actual assembly of the flame exhaust pipe of the servo mechanism of the present invention.
  • reference numerals include: engine 1, engine and tail section docking surface 2, servo mechanism nozzle 3, tail section 4, tail section and engine docking surface 5, tail section flame exhaust pipe inner surface 6, tail section flame exhaust pipe Inner side arc 7, pipe joint 8, transition pipe 9, pipe to be repaired before coordinated implementation 10, pipe after coordinated implementation 11, laser cutting positioning tool 12, pressing block 13, servo mechanism flame exhaust pipe 14.
  • the engine 1 and the tail section 4 are horizontally docked, measure the dimensions of the interfaces at both ends of the flame exhaust pipe of the servo mechanism that need to be assembled: as shown in Figure 1, the engine 1 is placed horizontally, and it needs to be built with the docking surface 2 as The reference coordinate system is used to describe the vector position of the nozzle 3 of the servo mechanism; the construction method of the measurement coordinate system V1XYZ: measure no less than 8 points on the docking surface of the engine 1 to construct the YOZ docking surface 2, and construct the docking holes of four quadrants
  • the projection point of the center point on the docking surface 2 is the origin o1 of the coordinate system, and the normal line of the docking surface 2 is the direction of the X1 axis, pointing to the tail (rear) is positive; the projection connection line between the origin o1 and the III quadrant hole point on the docking surface 2 is Y1 Axis direction, pointing to quadrant III is positive, according to the right-hand rule to establish the Z
  • the tail section 4 is in a vertically placed state.
  • a coordinate system based on the docking surface needs to be constructed to describe the vector position of the flame exhaust nozzle of the servo mechanism; the construction method of the measurement coordinate system V2XYZ: the tail section 4 Measure no less than 8 points on the docking surface to construct the YOZ docking surface 5.
  • the projection point of the center point of the four-quadrant docking holes on the docking surface 5 is the origin o2 of the coordinate system, and the normal line of the docking surface 5 is the direction of the X2 axis.
  • Pointing to the tail (bottom) is positive; the line connecting the origin o2 and the III quadrant hole on the docking surface 5 is the Y2 axis direction, pointing to the III quadrant is positive, and the Z2 axis is established according to the right-hand rule; measure the inner surface of the tail section of the flame exhaust nozzle 6 And the arc 7 is not less than 6 points to construct the proxy model circle Q2, the position of the center of the circle is expressed as (602.614, 553.297, 877.807), and the direction vector is (45.1464, 67.3537, 22.5425).
  • the above measurement data is converted into a three-dimensional model, and digital virtual assembly is carried out, and the measurement coordinate system V1XYZ is aligned with the measurement coordinate system V2XYZ to obtain the boundary conditions at both ends of the exhaust pipe (servo mechanism nozzle 3 and tail section
  • the relative position shown by the circular arc 7 on the inner side of the flame exhaust pipe mouth); the product of the flame exhaust pipe joint 8 and the transition pipe 9 belonging to machine-added parts is assembled on the agent model circle Q1, and these machine-added parts are all rotary bodies, and The essence is to offset the thickness value of the corresponding part along the normal direction of the proxy model circle.
  • the proxy model circle at the end of the transition tube 9 is obtained as Q3, and the remaining space is the flame exhaust tube.
  • Port arc 7 connection part is obtained.
  • the pipe 10 to be repaired is imported into the digital assembly coordination model, and the long end of the pipe 10 is assembled on the exhaust nozzle of the tail section, ensuring that the central axis passes through the center point of the proxy model circle Q2; the short end of the pipe 10 on the other side
  • the central axis passes through the center point of the proxy model circle Q3 at the end of the transition tube 9, and the assembly is coordinated to the appropriate position of the tube 10, and the length of the overlapping area between the short end and the transition tube 9 is controlled within 10 mm, and the long end can protrude from the wall of the tail section. And meet the wall clearance requirements of more than 5mm.
  • the pipe 10 to be repaired is manufactured through a model tooling with high consistency.
  • the pipe 10 to be repaired is coordinated and implemented. Specifically, the pipe 10 is activated in the assembly environment for editing. Referring to the circle Q3 of the proxy model at the end of the transition pipe 9, the normal line of this circle is used to stretch and cut the pipe outward. The pipe 11 and its size parameters obtained after coordinated implementation are shown in FIG. 5 .
  • the actual pipe 10 is clamped on the positioning tool 12 of the laser cutting platform using a pressure block 13.
  • the positioning and clamping reference is the long end face of the pipe 10, and the coordinated implementation of the pipe obtained in the digital assembly model 11.
  • the dimensional parameter reference is consistent with the description of the positioning tool on the laser cutting platform. Both are described based on the long end face of the pipe 11, and the dimensional parameters of the pipe 11 are imported into the three-dimensional laser machine for laser cutting.
  • the pipe 11 after laser cutting is welded with the pipe joint 8 of the exhaust pipe and the transition pipe 9, so as to complete the digital assembly and manufacture of the exhaust pipe of the servo mechanism.
  • the servo mechanism flame exhaust pipe 14 is delivered to the final assembly, and installed on the servo mechanism nozzle 3, as shown in FIG. 7 .
  • the required value of the clearance of the pipe extending from the wall surface of the tail section is measured. If the circumferential direction meets the clearance of more than 5mm, the product is considered qualified, otherwise it is unqualified. It is necessary to re-import the pipe 10 to be repaired into the digital assembly coordination model and repeat the preceding steps for remanufacturing.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Exhaust Silencers (AREA)
  • Laser Beam Processing (AREA)

Abstract

一种伺服机构排焰管(14)数字化装配制造方法,利用数字化测量与装配协调技术对该类排焰管(14)的两端边界实际装配空间进行模拟,建立一种基于管路装配的数字化协调模型,提出了在数字化虚拟空间对管路协调段的选择与装配,以数字化协调参数为全过程制造依据进行管路激光切割,最终实现排焰管(14)的数字化制造,极大提高了装配生产效率,缩短了装配等待时间。

Description

一种伺服机构排焰管数字化装配制造方法 技术领域
本发明主要应用于航空航天装配制造技术领域,具体为一种伺服机构排焰管数字化装配制造方法。
背景技术
伺服机构排焰管是飞行器管路系统的重要部件,它的工作环境主要受高温、高压、振动等综合环境影响,若管路连接出现强度下降、密封性能减弱、结构特性变化等问题,将直接影响整个管路系统与伺服机构的正常运作。
目前,该类排焰管的装配制造依旧依赖串行生产、实地取样的制造模式,该方法数字化程度低,对装配边界条件适应性差是普遍面临的问题,主要表现在以下几个方面:
①管路制造无法并行生产。现有模式的排焰管取样必须在总装车间现场进行,且必须在完成发动机与尾段装配对接之后开展,极大增加了产品总装等待时间。
②管路装配边界条件高度依赖产品实物。每次需要2-3名人员协同工作并将焊机、工装、工具等物资从制造车间运输至总装现场,基于现场产品实物完成修配、点焊、试装等过程,造成一定时间、人力和资源的冲突和浪费。
③人工经验要求高,修配过程耗时长。排焰管没有补偿能力,因此极大增加了现场修配的难度,对协调段的微小修配都会导致管路末端较大的倾角。目前完全依赖人工经验进行锉修,劳动强度大、经验要求高、耗费时间长,经验丰富的技师锉修一件至少需2小时。
发明内容
为了克服现有技术的上述缺点,本发明提供了一种伺服机构排焰管数字化装配制造方法,利用数字化测量与装配协调技术对该类排焰管的两端边界实际装配空间进行模拟,建立一种基于管路装配的数字化协调模型,提出了在数字化虚拟空间对管路协调段的选择与装配,以数字化协调参数为全过程制造依据进行管路激光切割,最终实现排焰管的数字化制造,极大提高了装配生产效率,缩短了装配等待时间。
本发明解决其技术问题所采用的技术方案是:一种伺服机构排焰管数字化装配制造方法,包括以下步骤:
第一步,运用激光跟踪仪设备对水平放置的发动机与尾段的对接面进行测量坐标系V1XYZ构建,再测量伺服机构管嘴外端圆,以代理模型圆Q1矢量形式表示;
第二步,运用激光跟踪仪设备对垂直放置的尾段与发动机的对接面进行测量坐标系V2XYZ构建,再测量尾段排焰管口内侧面及圆弧,以代理模型圆Q2矢量形式表示;
第三步,分别将第一、二步测量数据转换为三维模型,并进行数字化虚拟装配,将测量坐标系V1XYZ与测量坐标系V2XYZ对齐,得到排焰管两端边界条件;
第四步,将排焰管管接头、过渡管装配于代理模型圆Q1上,获得过渡管末端代理模型圆为Q3;
第五步,将待修配管子导入数字化装配协调模型,将管子长端装配于尾段排焰管口,保证中心轴线穿过代理模型圆Q2中心点;另一侧管子短端中心轴线穿过过渡管末端代理模型圆Q3中心点;
第六步,在数字化装配协调模型里调整管子到适度位置,保证短端与过渡管适度重叠,长端能够伸出尾段壁面,且满足间隙要求值;
第七步,在数字化装配协调模型里对管子与过渡管进行协调实施,得到虚拟切割后的管子及其尺寸参数;
第八步,将虚拟切割后的管子尺寸参数导入到三维激光机对管子实物进行激光切割,最后将激光切割后的管子实物与管接头、过渡管实物进行焊接,完成排焰管的数字化装配制造。
与现有技术相比,本发明的积极效果是:
(1)本发明采用并行生产的制造模式,能够将排焰管制造时间提前,待完成总装对接后即可进行管路装配,极大节约了总装等待时间。
(2)本发明采用激光跟踪仪等测量设备进行产品尺寸测量,测量精度高,能够快速、准确地反映产品特征信息,提高了产品的数字化制造精度。
(3)本发明消除了操作人员实地现场进行修配、点焊和试装的过程,避免了一定时间、人力与资源的冲突和浪费。
(4)本发明制造过程依据测量数据进行生产,消除了过分依赖人工经验进行生产而导致的耗费时间长,劳动强度大,同时提高了产品的数字化制造程度,提升了产品生产效率。
本发明解决了航天领域管路装配高度依赖实地锉修的落后问题,且具有测量精准、数据管控、操作性强、高效经济等特点,在同类方法中具备良好的推广与实用价值,广泛推广和应用后能产生良好的经济价值,在分段管路连接装配领域有很好的借鉴作用。
附图说明
本发明将通过例子并参照附图的方式说明,其中:
图1是本发明的发动机及伺服机构安装位置示意图;
图2是本发明的尾段及排焰管口位置示意图;
图3是本发明的三维模型排焰管两端边界条件示意图;
图4是本发明的数字化装配模型示意图;
图5是本发明的数字化装配模型协调实施后示意图;
图6是本发明的管子激光切割装夹示意图;
图7是本发明的伺服机构排焰管实际装配示意图。
其中,附图标记包括:发动机1、发动机与尾段对接面2、伺服机构管嘴3、尾段4、尾段与发动机对接面5、尾段排焰管口内侧面6、尾段排焰管口内侧面圆弧7、管接头8、过渡管9、待修配管子协调实施前10、管子协调实施后11、激光切割定位工装12、压块13、伺服机构排焰管14。
具体实施方式
下面结合附图对本发明的具体实施方式作进一步详细说明:
在发动机1和尾段4还未水平对接之前,分别对需要装配的伺服机构排焰管两端接口进行尺寸测量:如图1所示,发动机1为水平放置状态,需构建以对接面2为基准的坐标系用于描述伺服机构管嘴3的矢量位置;测量坐标系V1XYZ构建方法:发动机1的对接面上测量不少于8个点构建YOZ对接面2,四个象限的对接孔构建的中心点在对接面2的投影点为该坐标系原点o1,对接面2法线为X1轴方向,指向尾部(后)为正;原点o1与III象限孔点在对接面2投影连线为Y1轴方向,指向III象限为正,根据右手定则确立Z1轴;测量伺服机构管嘴3外端圆周向不少于6个点构建代理模型圆Q1,该圆心位置表示为(642.827,251.997,602.581),方向矢量为(134.6554,66.4247,336.6763);
如图2所示,尾段4为垂直放置状态,同样,需构建以对接面为基准的坐 标系用于描述伺服机构排焰管口的矢量位置;测量坐标系V2XYZ构建方法:尾段4的对接面上测量不少于8个点构建YOZ对接面5,四个象限的对接孔构建的中心点在对接面5的投影点为该坐标系原点o2,对接面5法线为X2轴方向,指向尾部(下)为正;原点o2与III象限孔点在对接面5投影连线为Y2轴方向,指向III象限为正,根据右手定则确立Z2轴;测量尾段排焰管口内侧面6及圆弧7不少于6个点构建代理模型圆Q2,该圆心位置表示为(602.614,553.297,877.807),方向矢量为(45.1464,67.3537,22.5425)。
如图3所示,将上述测量数据转换为三维模型,并进行数字化虚拟装配,将测量坐标系V1XYZ与测量坐标系V2XYZ对齐,得到排焰管两端边界条件(伺服机构管嘴3和尾段排焰管口内侧面圆弧7所示相对位置);将排焰管管接头8、过渡管9属于机加零件的产品装配于代理模型圆Q1上,该类机加零件均为回转体,其实质是沿代理模型圆的法线方向偏置相应零件厚度值即可,获得过渡管9末端代理模型圆为Q3,剩余空间即为排焰管管子所要实现从过渡管9到尾段排焰管口圆弧7连接部分。
如图4所示,将待修配管子10导入数字化装配协调模型,将管子10长端装配于尾段排焰管口,保证中心轴线穿过代理模型圆Q2中心点;另一侧管子10短端中心轴线穿过过渡管9末端代理模型圆Q3中心点,并装配协调至管子10到适度位置,且保证短端与过渡管9重叠区域长度控制在10mm以内,长端能够伸出尾段壁面,且满足与壁面间隙要求值5mm以上。其中,待修配管子10为通过样板工装制造具备较高一致性。
在数字化装配协调模型,对待修配管子10进行协调实施,具体为在装配环境下激活管子10进行编辑,参考过渡管9末端代理模型圆Q3,以该圆法线向管外侧方向进行拉伸切除,得到协调实施后的管子11及其尺寸参数,如图5 所示。
如图6所示,将管子10实物在激光切割平台的定位工装12上采用压块13进行装夹,该定位装夹基准为管子10长端端面,数字化装配模型里获得的协调实施后的管子11尺寸参数基准与在激光切割平台上的定位工装描述一致,均以管子11长端端面为基准进行描述,并将该管子11尺寸参数导入到三维激光机进行激光切割。将激光切割后的管子11实物与排焰管管接头8、过渡管9实物进行焊接,从而完成伺服机构排焰管的数字化装配制造。
将伺服机构排焰管14交付总装,并安装在伺服机构管嘴3上,如图7所示。对管子伸出尾段壁面的间隙要求值进行实测,若周向均满足间隙5mm以上则认为该产品合格,否则为不合格。需将待修配管子10重新导入数字化装配协调模型重复前述步骤重新制造。

Claims (6)

  1. 一种伺服机构排焰管数字化装配制造方法,其特征在于:包括以下步骤:
    第一步,运用激光跟踪仪设备对水平放置的发动机与尾段的对接面进行测量坐标系V1XYZ构建,再测量伺服机构管嘴外端圆,以代理模型圆Q1矢量形式表示;
    第二步,运用激光跟踪仪设备对垂直放置的尾段与发动机的对接面进行测量坐标系V2XYZ构建,再测量尾段排焰管口内侧面及圆弧,以代理模型圆Q2矢量形式表示;
    第三步,分别将第一、二步测量数据转换为三维模型,并进行数字化虚拟装配,将测量坐标系V1XYZ与测量坐标系V2XYZ对齐,得到排焰管两端边界条件;
    第四步,将排焰管管接头、过渡管装配于代理模型圆Q1上,获得过渡管末端代理模型圆为Q3;
    第五步,将待修配管子导入数字化装配协调模型,将管子长端装配于尾段排焰管口,保证中心轴线穿过代理模型圆Q2中心点;另一侧管子短端中心轴线穿过过渡管末端代理模型圆Q3中心点;
    第六步,在数字化装配协调模型里调整管子到适度位置,保证短端与过渡管适度重叠,长端能够伸出尾段壁面,且满足间隙要求值;
    第七步,在数字化装配协调模型里对管子与过渡管进行协调实施,在装配环境下激活管子进行编辑,参考过渡管末端代理模型圆Q3,以该圆法线向管外侧方向进行拉伸切除,得到虚拟切割后的管子及其尺寸参数;
    第八步,将虚拟切割后的管子尺寸参数导入到三维激光机对管子实物进行激光切割,最后将激光切割后的管子实物与管接头、过渡管实物进行焊接,完成排焰管的数字化装配制造。
  2. 根据权利要求1所述的一种伺服机构排焰管数字化装配制造方法,其特征在于:第一步所述测量坐标系V1XYZ的构建方法为:发动机与尾段对接面上各对接孔的中心为该坐标系原点o1,对接面法线为X1轴方向,指向尾部 为正;原点o1与III象限孔点连线为Y1轴方向,指向III象限为正,根据右手定则确立Z1轴。
  3. 根据权利要求1所述的一种伺服机构排焰管数字化装配制造方法,其特征在于:测量伺服机构管嘴外端圆周向不少于6个点构建代理模型圆Q1。
  4. 根据权利要求1所述的一种伺服机构排焰管数字化装配制造方法,其特征在于:第二步所述测量坐标系V2XYZ的构建方法为:尾段与发动机对接面上各对接孔的中心为该坐标系原点o2,对接面法线为X2轴方向,指向尾部为正;原点o2与III象限孔点连线为Y2轴方向,指向III象限为正,根据右手定则确立Z2轴。
  5. 根据权利要求1所述的一种伺服机构排焰管数字化装配制造方法,其特征在于:测量尾段排焰管口内侧面及圆弧上不少于6个点构建代理模型圆Q2。
  6. 根据权利要求1所述的一种伺服机构排焰管数字化装配制造方法,其特征在于:第四步所述将排焰管管接头、过渡管装配于代理模型圆Q1上的方法为:沿代理模型圆Q1的法线方向偏置相应零件厚度值。
PCT/CN2021/125330 2021-06-11 2021-10-21 一种伺服机构排焰管数字化装配制造方法 WO2022257322A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CA3187787A CA3187787C (en) 2021-06-11 2021-10-21 Digital assembly and manufacturing method for flame exhaust pipe of servo mechanism

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110650957.0A CN113253688B (zh) 2021-06-11 2021-06-11 一种伺服机构排焰管数字化装配制造方法
CN202110650957.0 2021-06-11

Publications (1)

Publication Number Publication Date
WO2022257322A1 true WO2022257322A1 (zh) 2022-12-15

Family

ID=77187524

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/125330 WO2022257322A1 (zh) 2021-06-11 2021-10-21 一种伺服机构排焰管数字化装配制造方法

Country Status (3)

Country Link
CN (1) CN113253688B (zh)
CA (1) CA3187787C (zh)
WO (1) WO2022257322A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113253688B (zh) * 2021-06-11 2021-10-01 四川航天长征装备制造有限公司 一种伺服机构排焰管数字化装配制造方法
CN115111453B (zh) * 2022-06-22 2023-06-30 四川航天长征装备制造有限公司 一种基于数字化制造的五通接头尺寸预测方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2418031A (en) * 2002-10-22 2006-03-15 Fisher Rosemount Systems Inc Smart process modules and objects in process plants
CN103434653A (zh) * 2013-08-22 2013-12-11 北京航空航天大学 一种基于激光跟踪测量技术的飞机部件数字化柔性装配测量方法
CN110539162A (zh) * 2019-09-06 2019-12-06 首都航天机械有限公司 一种基于箭上实际装配空间的导管数字化取样制造方法
CN111274671A (zh) * 2019-12-31 2020-06-12 东南大学 一种基于数字孪生的复杂产品装配过程精准修配方法及其运行系统
CN112078829A (zh) * 2020-09-11 2020-12-15 天津航天长征火箭制造有限公司 一种运载火箭部段精密对接协调方法
CN113253688A (zh) * 2021-06-11 2021-08-13 四川航天长征装备制造有限公司 一种伺服机构排焰管数字化装配制造方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202420409U (zh) * 2011-12-31 2012-09-05 浙江四通轴承集团有限公司 英制圆锥轴承套圈装配倒角检测器
CN105444981B (zh) * 2014-08-29 2017-12-22 北京强度环境研究所 一种伺服机构排焰管吹除力测量装置及其使用方法
US10732579B2 (en) * 2014-10-12 2020-08-04 Larry W. Vincent Apparatus and method for assembling, measuring, and monitoring integrity of mechanical pipe joints
CN104598675B (zh) * 2015-01-07 2017-11-24 北京卫星环境工程研究所 一种基于实测数据的航天器部组件的装配仿真方法
KR20170106092A (ko) * 2016-03-11 2017-09-20 오진훈 손잡이가 뜨겁게 가열되는 것이 방지되는 조리용기 어셈블리
CN107226219B (zh) * 2017-06-28 2018-05-22 北京蓝箭空间科技有限公司 一种运载器热分离级间段的抗扭转排焰口结构
CN109131948B (zh) * 2018-09-04 2021-08-10 上海宇航系统工程研究所 一种航天器尾焰防护隔热装置以及航天器
CN110455519B (zh) * 2019-08-27 2021-05-04 北京强度环境研究所 一种管路系统高温内压剪切变形侧向刚度试验测试系统
CN110990947B (zh) * 2019-11-19 2023-07-25 中国人民解放军总参谋部第六十研究所 一种火箭助推无人机发射过程多场耦合仿真分析方法
CN212401604U (zh) * 2020-04-14 2021-01-26 北京中科宇航技术有限公司 一种运载器热分离级间段
CN111673407A (zh) * 2020-05-20 2020-09-18 上海航天精密机械研究所 运载火箭贮箱箱底激光引导装配系统及方法
CN112192157B (zh) * 2020-10-10 2021-09-07 四川航天中天动力装备有限责任公司 一种深u形回转截面半封闭式火焰筒组焊加工方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2418031A (en) * 2002-10-22 2006-03-15 Fisher Rosemount Systems Inc Smart process modules and objects in process plants
CN103434653A (zh) * 2013-08-22 2013-12-11 北京航空航天大学 一种基于激光跟踪测量技术的飞机部件数字化柔性装配测量方法
CN110539162A (zh) * 2019-09-06 2019-12-06 首都航天机械有限公司 一种基于箭上实际装配空间的导管数字化取样制造方法
CN111274671A (zh) * 2019-12-31 2020-06-12 东南大学 一种基于数字孪生的复杂产品装配过程精准修配方法及其运行系统
CN112078829A (zh) * 2020-09-11 2020-12-15 天津航天长征火箭制造有限公司 一种运载火箭部段精密对接协调方法
CN113253688A (zh) * 2021-06-11 2021-08-13 四川航天长征装备制造有限公司 一种伺服机构排焰管数字化装配制造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
XU XIAOKUN, GU CHENGGE, ZHOU ZHIYU , MO JINQIU: "Design and Development of Digital Coordinate System for Space Pipeline", MACHINE DESIGN & RESEARCH, vol. 34, no. 4, 31 August 2018 (2018-08-31), pages 152 - 155, XP093013021, ISSN: 1006-2343, DOI: 10.13952/j.cnki.jofmdr.2018.0167 *

Also Published As

Publication number Publication date
CN113253688A (zh) 2021-08-13
CN113253688B (zh) 2021-10-01
CA3187787C (en) 2023-04-25
CA3187787A1 (en) 2022-12-15

Similar Documents

Publication Publication Date Title
WO2022257322A1 (zh) 一种伺服机构排焰管数字化装配制造方法
CN111532379B (zh) 一种船舶锚台结构及其加工方法
CN110411338B (zh) 机器人电弧增材修复的焊枪工具参数三维扫描标定方法
CN109623206B (zh) 用于机器人管道焊接中优化离线规划的焊枪位姿的方法
CN112395708B (zh) 一种基于精确测量的管路数字化重构方法
CN102601567B (zh) 异型法兰管路装焊方法及装焊工装
CN102661046A (zh) 小角度全弯管长相贯节点制作方法
WO2023137817A1 (zh) 焊接系统及焊接控制方法
CN114211089A (zh) 一种管道柔性装配及自动化焊接复合型工作方法
Chatelain A level-based optimization algorithm for complex part localization
WO2021098035A1 (zh) 一种航空发动机排气机匣焊接方法
CN110595320B (zh) 一种用于周向无基准的复材零件机械加工的方法
CN113334047B (zh) 一种拼焊型管路数字化装配制造方法
RU2667194C1 (ru) Способ изготовления двухшовных труб большого диаметра
CN104438480B (zh) 一种采用工程拼焊板实现复杂零件渐进成形的加工方法
CN111774813B (zh) 一种合拢管内场制作方法
CN113761610B (zh) 一种基于catia的同步工程自动化检查方法及系统
Zhao et al. Profile and thickness constrained adaptive localization for manufacturing curved thin-walled parts based on on-machine measurement
CN104475999B (zh) 城铁客车转向架的构架悬臂构件预制反变形焊接工艺
CN212145295U (zh) 管道焊接成套自动化系统
CN113609605A (zh) 一种通过三维建模辅助长输管道金口组对的方法
CN112025133A (zh) 变角度相贯坡口的机械加工轨迹优化方法
CN113210688A (zh) 一种喷管零件钎身喉部流道槽的铣槽轨迹确定方法
CN112249262A (zh) 船舶锚台快速定位方法
CN202517215U (zh) 异型法兰管路装焊工装

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 3187787

Country of ref document: CA

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21944821

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21944821

Country of ref document: EP

Kind code of ref document: A1