WO2022257080A1 - 压差滑套及使用其的油气井压裂施工方法 - Google Patents

压差滑套及使用其的油气井压裂施工方法 Download PDF

Info

Publication number
WO2022257080A1
WO2022257080A1 PCT/CN2021/099473 CN2021099473W WO2022257080A1 WO 2022257080 A1 WO2022257080 A1 WO 2022257080A1 CN 2021099473 W CN2021099473 W CN 2021099473W WO 2022257080 A1 WO2022257080 A1 WO 2022257080A1
Authority
WO
WIPO (PCT)
Prior art keywords
differential pressure
outer cylinder
sliding sleeve
inner cylinder
cylinder
Prior art date
Application number
PCT/CN2021/099473
Other languages
English (en)
French (fr)
Inventor
胡顺渠
林永茂
赵伟
雷炜
谢志
侯治民
陈晨
王强
胡丹
崔警宇
Original Assignee
中国石油化工股份有限公司
中国石油化工股份有限公司西南油气分公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国石油化工股份有限公司, 中国石油化工股份有限公司西南油气分公司 filed Critical 中国石油化工股份有限公司
Priority to MX2023014270A priority Critical patent/MX2023014270A/es
Priority to AU2021450553A priority patent/AU2021450553A1/en
Priority to CN202180100231.8A priority patent/CN117897548A/zh
Priority to PCT/CN2021/099473 priority patent/WO2022257080A1/zh
Priority to CA3220782A priority patent/CA3220782A1/en
Priority to US18/563,069 priority patent/US20240218773A1/en
Publication of WO2022257080A1 publication Critical patent/WO2022257080A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/25Methods for stimulating production
    • E21B43/26Methods for stimulating production by forming crevices or fractures
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B34/00Valve arrangements for boreholes or wells
    • E21B34/06Valve arrangements for boreholes or wells in wells
    • E21B34/08Valve arrangements for boreholes or wells in wells responsive to flow or pressure of the fluid obtained
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B34/00Valve arrangements for boreholes or wells
    • E21B34/06Valve arrangements for boreholes or wells in wells
    • E21B34/14Valve arrangements for boreholes or wells in wells operated by movement of tools, e.g. sleeve valves operated by pistons or wire line tools
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B2200/00Special features related to earth drilling for obtaining oil, gas or water
    • E21B2200/06Sleeve valves

Definitions

  • the invention relates to the technical field of oil and gas well completion and reservoir transformation, in particular to a differential pressure sliding sleeve and an oil and gas well fracturing construction method using the differential pressure sliding sleeve.
  • the first stage fracturing methods of shale gas wells generally include two methods, one is to use coiled tubing perforation, and the other is to use differential pressure sliding sleeves.
  • the coiled tubing perforation method is mainly used to open the first section of the wellbore, and it is a relatively mature technology at present.
  • the coiled tubing perforation method has low construction time efficiency and high construction cost.
  • the method of opening the first section of coiled tubing perforation cannot meet the needs of construction operations.
  • the differential pressure sliding sleeve can be opened directly by suppressing the pressure, which can omit the coiled tubing perforation step, thereby improving the construction timeliness and saving the construction cost.
  • the opening success rate is low, and the window left for the construction operation of the differential pressure sliding sleeve is small.
  • the full wellbore pressure test of shale gas wells is generally above 90MPa, and the pressure level of the wellhead device is 105MPa. This makes the pressure working range that allows the differential pressure sliding sleeve to be opened to be small, making it difficult to open the common differential pressure sliding sleeve within the above pressure range.
  • the cracking pressure of the differential pressure sliding sleeve needs to be higher than the pressure test pressure of the full wellbore, which has a greater risk.
  • the ordinary time-delay differential pressure sliding sleeve adopts a time-delay structure, and its liquid inlet hole is small, which is easy to cause blockage, so that it is not easy to open, and the time-delay differential pressure sliding sleeve also has a short delay time, so it cannot be repeatedly tested. And other issues.
  • the present invention aims to provide a differential pressure sliding sleeve, which can open the differential pressure sliding sleeve at a pressure lower than that of the full wellbore pressure test, so that the differential pressure sliding sleeve can be opened with a relatively small pressure.
  • the sleeve can ensure stable and reliable opening performance, reducing the difficulty of opening and construction risk of the differential pressure sliding sleeve.
  • the differential pressure sliding sleeve can simplify the construction operation steps, reduce the construction cost and improve the construction efficiency, and has a simple structure and convenient operation.
  • a differential pressure sliding sleeve comprising: an outer cylinder, a guide hole is arranged in the wall of the outer cylinder; an inner cylinder arranged in the inner cavity of the outer cylinder, wherein , in the initial state, the inner cylinder and the outer cylinder are fixed to each other to close the guide hole; the upper joint that extends into the inner cavity of the outer cylinder and is fixedly connected with the upper end of the outer cylinder , wherein there is a gap between the lower end surface of the upper joint and the upper end surface of the inner cylinder; a lower joint extending into the inner cavity of the outer cylinder and fixedly connected with the lower end of the outer cylinder; setting A bearing ring in the inner cavity of the outer cylinder and between the lower joint and the inner cylinder, the bearing ring can be dissolved under the action of working fluid.
  • the area of the upper axial end surface of the inner cylinder is set to be larger than the area of the axial lower end surface, so that the working fluid can form a pressure difference between the axial upper end surface and the axial lower end surface of the inner cylinder to provide the
  • the inner cylinder provides downward pressure, so that the inner cylinder can move downward under the action of the pressure after the carrier ring dissolves, so as to open the flow guide hole.
  • the upper end of the inner cylinder is provided with an annular boss extending radially outward, so that the area of the upper axial end surface of the inner cylinder is larger than the area of the axial lower end surface.
  • the inner surface of the outer cylinder is provided with a radially inwardly extending shoulder portion, wherein the outer diameter of the annular boss is the same as the inner diameter of the outer cylinder, and the platform The inner diameter of the shoulder portion is the same as the outer diameter of the inner cylinder.
  • the axial length of the annular boss is set to be smaller than the axial distance from the axial upper end surface of the shoulder portion to the flow guide hole.
  • the bearing ring is made of magnesium aluminum alloy or polytetrafluoroethylene or degradable plastic or degradable ceramic material.
  • fillers are filled in the diversion holes, a protection piece is provided radially outside the filler, and at least one guide hole is provided on the protection piece.
  • said filler is selected from the group consisting of viscous liquids, greases and resins.
  • the protective element is fixed on the outer cylinder by bonding or welding.
  • the size of the guide hole is smaller than the size of the diversion hole.
  • a guide hole corresponding to the center of the guide hole is provided.
  • the guide hole is an elongated slit, and circular through holes are provided at both ends of the slit.
  • the guide hole includes two axially oppositely arranged step portions on the outer wall of the outer cylinder, and the protection member is arranged on the two step portions.
  • a gap communicating with the flow guide hole is provided between the outer cylinder and the inner cylinder outside the two axial ends of the flow guide hole.
  • the gap is a reamed hole formed on the inner wall of the outer cylinder, wherein the reamed hole includes an inclined surface, so that the gap becomes larger in the direction away from the diversion hole. narrow.
  • a fracturing construction method for an oil and gas well using the differential pressure sleeve as described above comprising the following steps: connecting the differential pressure sleeve to a pipe string, and lowering the to the fracturing formation in the wellbore; inject working fluid into the pipe string from the wellhead, so that the bearing ring dissolves under the action of the working fluid; carry out pressure suppression in the wellbore, so that the inner cylinder is under the action of the working fluid Under the action, a downward pressure is formed, and moves downward after the pressure reaches a predetermined pressure value, thereby opening the diversion hole; connecting the pipe string with the fracturing formation, and performing fracturing construction.
  • Figure 1 schematically shows a differential pressure sleeve according to the invention in a closed state
  • Figure 2 schematically shows the differential pressure sleeve according to the present invention in an open state
  • Fig. 3 schematically shows a differential pressure sliding sleeve according to another embodiment of the present invention, which includes a diversion hole protection device;
  • Fig. 4 schematically shows the partial structure of the diversion hole protection device according to the present invention.
  • Fig. 1 schematically shows a differential pressure sliding sleeve 100 in a closed state according to an embodiment of the present invention.
  • the differential pressure sliding sleeve 100 includes an outer cylinder 110 .
  • both ends of the outer cylinder 110 are configured as negative step-shaped connecting buckles.
  • Two ends of the outer cylinder 110 are respectively connected with an upper joint 101 and a lower joint 102 for connecting a downhole string.
  • the two ends of the outer cylinder 110 are respectively configured as positive step-shaped connecting buckles, thus, the two ends of the outer cylinder 110 are respectively connected to the negative ends of the upper joint 101 and the lower joint 102 through the positive stepped connecting buckles.
  • the step-shaped connecting buckle is connected to form a fixed connection.
  • the connection structure of the outer cylinder 110 is simple and convenient, the installation efficiency is high, and the installation and connection with other components can be guaranteed to be stable and reliable.
  • seals 103 are respectively provided between the connecting surfaces of the outer cylinder 110 and the upper joint 101 and the lower joint 102 .
  • a radially inwardly extending sealing groove 104 is provided on the positively stepped connecting buckles of the upper joint 101 and the lower joint 102 , and the sealing member 103 is installed in the sealing groove 104 .
  • the sealing member 103 is an O-ring.
  • At least one, preferably several flow guide holes 111 are provided on the side wall of the outer cylinder 110 . These guide holes 111 are arranged at the same axial position on the outer cylinder 110 and are evenly spaced apart in the circumferential direction.
  • An inner cylinder 120 is sheathed inside the outer cylinder 110 and is located between the upper joint 101 and the lower joint 102 . The inner cylinder 120 is configured to be able to close the flow guide hole 111 of the outer cylinder 110 and to move inside the outer cylinder 110 to open the flow guide hole 111 .
  • the inner cylinder 120 is fixed on the inner wall of the outer cylinder 110 through shear pins 140 , so as to maintain a fixed connection with the outer cylinder 110 .
  • a through hole for installing the shear pin 140 is provided on the side wall of the outer cylinder 110 , and a mounting groove corresponding to the through hole is provided on the outer surface of the inner cylinder 120 .
  • the shear pin 140 passes through the through hole and fits into the mounting groove. In the initial state (that is, the closed state) of the differential pressure sliding sleeve 100 shown in FIG. There are gaps.
  • the shear pin 140 is sheared, so that the inner cylinder 120 can move down relative to the outer cylinder 110, thereby releasing the convection flow from the inside
  • the plugging of the hole 111 is to open the guide hole 111 .
  • the differential pressure sliding sleeve 100 is in an open state, as shown in FIG. 2 .
  • the upper end of the inner cylinder 120 is provided with an annular boss 121 extending radially outward, so that the area of the upper axial end surface of the inner cylinder 120 is larger than the area of the axial lower end surface of the inner cylinder 120 .
  • the two axial ends of the inner cylinder 120 can form a pressure difference under the action of the working fluid, thereby providing downward pressure to the inner cylinder 120 .
  • an annular shoulder portion 112 extending radially inward is provided on the inner wall surface of the lower end portion of the outer cylinder 110 .
  • the outer diameter of the annular boss 121 is set to be the same as the inner diameter of the outer cylinder 110
  • the inner diameter of the shoulder portion 112 is set to be the same as the outer diameter of the inner cylinder 120 , thereby enabling the inner cylinder 120 to move downward along the outer cylinder 110 .
  • the axial length of the annular boss 121 is set to be smaller than the axial distance from the axial upper end surface of the shoulder portion 112 to the guide hole 111, so as to ensure that the outer cylinder 110 can be fully opened when the inner cylinder 110 moves downward.
  • the guide hole 111 on.
  • the differential pressure sleeve 100 also includes a carrier ring 130 .
  • the bearing ring 130 is arranged between the inner cylinder 120 and the lower joint 102, wherein the upper end surface of the bearing ring 130 is in contact with the lower end surface of the inner cylinder 120, and the lower end surface of the bearing ring 130 is in contact with the lower joint 102.
  • the bearing ring 130 is made of dissolvable materials, such as magnesium aluminum alloy, polytetrafluoroethylene, degradable plastics, degradable ceramic materials and the like. In this way, the carrying ring 130 can naturally dissolve under the action of the working fluid, and provide support for the inner barrel 120 before it is completely dissolved.
  • the differential pressure sliding sleeve 100 can fix the inner cylinder 120 and the outer cylinder 110 with shear pins with a relatively small shearing pressure, and can ensure that the shear pins are sheared with a relatively small pressure after the bearing ring 130 is completely dissolved. .
  • the differential pressure sliding sleeve 100 can be opened with a relatively small pressure, which reduces the difficulty of opening the differential pressure sliding sleeve 100 .
  • the differential pressure sliding sleeve 100 can withstand the pressure of the inner cylinder through the bearing ring 130 after being lowered.
  • the shear pin 140 is not stressed, so that the pressure value of the wellhead pressing can exceed the shear pressure value of the shear pin 140 without causing the shear pin 140 to be sheared.
  • the shearing pin 140 can be selected to have a smaller shearing pressure and be more easily sheared, thereby reducing the risk of opening failure of the differential pressure sliding sleeve 100 .
  • the carrier ring 130 can effectively occupy the area between the lower end surface of the inner cylinder 120 and the upper end surface of the lower joint 102 before the carrier ring 130 is completely dissolved.
  • the bearing ring 130 can also effectively prevent the mud or other solid impurities in the working fluid from solidifying or adhering to the inner wall of the outer cylinder 110 and hindering the downward movement of the inner cylinder 120 . Therefore, the difficulty of opening the differential pressure sliding sleeve 100 is further reduced.
  • the dissolving speed of the carrier ring 130 can be adjusted by working fluid.
  • a suitable working fluid is prepared according to the construction schedule, so that the bearing ring 130 can be completely dissolved within a set time.
  • the pressure on the upper end surface of the inner cylinder 120 is greater than that of the lower end surface. under pressure.
  • the hydraulic fluid applies downward pressure to the inner cylinder 120 .
  • the pressure on the inner cylinder 120 reaches a predetermined pressure value (that is, the shear pressure value of the shear pin 140)
  • the inner cylinder 120 shears off the shear pin 140, and continues to move downward under the action of pressure to expose the outer cylinder 110 The guide hole 111 on.
  • the predetermined pressure value is set according to the actual situation, generally in the range of 10-120MPa.
  • the inner cylinder goes down until the lower end surface of the inner cylinder 120 abuts against the upper end surface of the lower joint 102 , thereby forming an axial limit for the inner cylinder 120 .
  • the diversion hole 111 is fully opened, and the differential pressure sleeve 100 is in an open state, so that the inside and outside of the downhole pipe string are communicated.
  • a seal 123 is provided between the contact surfaces between the inner cylinder 120 and the outer cylinder 110 .
  • the seal 123 is an O-ring.
  • several sealing grooves 122 are provided on the outer surface of the inner cylinder 120 .
  • two sealing grooves 122 are respectively provided on the outer surface of the inner cylinder 120 and on the axially outer sides of both ends, and the sealing elements 123 are respectively installed in the sealing grooves 122 .
  • the seal 123 can effectively ensure the sealing performance between the inner cylinder 120 and the outer cylinder 110 , thereby improving the working performance of the differential pressure sliding sleeve 100 .
  • a fracturing construction method for an oil and gas well using the differential pressure sliding sleeve 100 includes the following steps. Firstly, the differential pressure sleeve 100 is connected to the downhole string of the fracturing tool string, and then the differential pressure sleeve 100 is lowered into the fractured formation in the wellbore along with the downhole string. Afterwards, working fluid is injected from the wellhead into the downhole pipe string, so that the bearing ring 130 is naturally dissolved under the action of the working fluid.
  • the bearing ring 130 After the bearing ring 130 is dissolved, the pressure of the wellbore is suppressed, and the working fluid forms a pressure difference between the upper and lower end surfaces of the inner cylinder 120 , thereby exerting downward pressure on the inner cylinder 120 .
  • the inner cylinder 120 cuts off the shear pin 140 after the pressure reaches a predetermined pressure value, and moves downward along the outer cylinder 110 until the upper end surface of the annular boss 121 abuts with the upper end surface of the shoulder portion 112, thereby completely opening the diversion hole 111.
  • the downhole pipe string communicates with the fracturing formation through the diversion hole 111 to carry out oil and gas well fracturing construction.
  • the construction operation is simple, and in particular, the diversion hole 111 can be opened under a small pressure to realize communication with the fracturing formation.
  • the fracturing construction method according to the present invention shortens the fracturing operation cycle and improves the fracturing construction effect.
  • the differential pressure sliding sleeve 100 can be opened at a pressure lower than that of the full wellbore pressure test, so that the differential pressure sliding sleeve 100 can be opened with a smaller pressure, and the opening performance can be guaranteed to be stable and reliable, reducing the pressure of the differential pressure sliding sleeve 100.
  • the difficulty of opening is reduced, and the risk of construction operations is reduced.
  • the differential pressure sliding sleeve 100 forms a pressure difference through the structure of the inner cylinder 120 to open the diversion hole, which reduces the use of pressure holding parts and simplifies the structure of the differential pressure sliding sleeve 100 .
  • the differential pressure sliding sleeve 100 can effectively ensure the sealing performance between the inner cylinder 120 and the outer cylinder 110 , thereby ensuring the opening performance of the differential pressure sliding sleeve 100 .
  • the operation of the differential pressure sliding sleeve 100 is simple and convenient, which simplifies the construction steps, reduces the construction cost and improves the construction efficiency.
  • the oil and gas well fracturing construction method using the differential pressure sliding sleeve 100 according to the present invention has a simple construction process, and it can open the diversion hole 111 under the action of a small pressure to realize communication with the fracturing formation, which significantly improves the fracturing process. The efficiency of fracturing construction is improved, and the effect of fracturing construction is enhanced.
  • the pressure differential sleeve 100 uses the bearing ring 130 to occupy the area between the lower end surface of the inner cylinder 120 and the upper end surface of the lower joint 102, thereby effectively preventing mud or other solids in the working fluid from Impurities solidify or adhere to the inner wall of the outer cylinder 110 to prevent the inner cylinder 120 from being hindered from descending. Therefore, the difficulty of opening the differential pressure sliding sleeve 100 is further reduced.
  • debris such as wellbore mud and cuttings may enter the diversion hole.
  • cement slurry may also enter the diversion hole, causing the diversion hole to be solidified by cement. The above situations will cause the sliding sleeve to fail to open normally, which will affect the fracturing operation.
  • a diversion hole protection device is provided.
  • FIG. 3 shows a differential pressure sleeve 200 according to another embodiment of the present invention.
  • the differential pressure sliding sleeve 200 includes an upper joint 201 , an outer cylinder 210 , an inner cylinder 220 and a lower joint (not shown).
  • a plurality of guide holes 211 are arranged uniformly along the circumferential direction on the outer cylinder 210 .
  • Sealing rings 205 are respectively provided between the upper joint 201 and the outer cylinder 210 and between the outer cylinder 210 and the inner cylinder 220 .
  • a protective member 240 is provided at the guide hole 211 .
  • the outer diameter of the protective member 240 is set to be not larger than the outer diameter of the outer cylinder 210 .
  • the diversion hole 211 is filled with a high-viscosity liquid, and the protective member 240 is arranged radially outside the high-viscosity liquid, thereby effectively protecting the high-viscosity liquid in the diversion hole from falling off and preventing external mud or grout enters.
  • the protection member 240 can also prevent foreign debris and other impurities from entering the diversion hole 211 .
  • lubricating grease can be filled in the guide hole 211 .
  • Grease can also provide lubrication for the relative movement between the inner cylinder and the outer cylinder, and promote the smooth progress of the relative movement.
  • the guide hole 211 may also be filled with resin.
  • a guide hole 241 is provided on the protective member 240 at a position corresponding to the center of the guide hole 211 .
  • the size of the guide hole 241 is selected to be smaller than that of the flow guide hole 211 , so that the guide hole 241 is completely within the area of the flow guide hole 211 .
  • the guide hole 241 is configured as an elongated slot.
  • the structure of the pilot hole in this structural form is simple, easy to process, and can better avoid the problem of high formation fracture pressure caused by casing cementing.
  • circular through holes 242 are provided at both ends of the slit. By arranging circular through holes, the problem of easy stress concentration at both ends of the elongated slit can be avoided.
  • two oppositely arranged step portions 222 are provided on the outer wall of the outer cylinder 210 .
  • the two stepped portions 222 are respectively located at two axial ends of the guide hole 211 .
  • the protection member 240 can be erected between the two stepped portions 222 .
  • the depth of the stepped portion 222 is greater than the thickness of the protection member 240 .
  • the protection member 240 can be bonded and fixed to the outer cylinder 210 by metal adhesive.
  • metal adhesive to bond the protective part to the outer cylinder can simplify the structure of the entire protective device, the operation is simple and convenient, the structural strength is high, and it can avoid the existence of fasteners in other connection methods that protrude into the outer cylinder. In addition, thereby affecting the drilling or completion process.
  • the protection member 240 may also be fixed to the outer cylinder 210 by welding.
  • a gap communicating with the flow guide hole 211 is provided between the outer cylinder 210 and the inner cylinder 220 except for both axial ends of the flow guide hole 211 .
  • the gap may be provided only on the inner wall of the outer cylinder 210 , or only on the outer wall of the inner cylinder 220 , or on both the inner wall of the outer cylinder 210 and the outer wall of the inner cylinder 220 .
  • a reaming hole may be provided on the inner wall of the outer cylinder 220 immediately outside the circulation hole 211 .
  • the wall surface of the enlarged hole is preferably configured to have a section of an inclined surface, so that the gap becomes narrower in two directions away from the circulation hole 211 .
  • the above setting can make the lubricating grease set in the guide hole 211 easily enter the gap, and smoothly follow the movement of the inner cylinder 220 to be introduced between the inner cylinder 220 and the outer cylinder 210, so as to further ensure that the inner cylinder The smooth downward movement of cylinder 220.
  • the inclined surface makes the gap gradually smaller, which acts as a barrier for preventing impurities from entering between the inner cylinder and the outer cylinder.
  • the diversion hole protection device of the present invention can effectively protect the high-viscosity liquid in the diversion hole from falling off, so that the high-viscosity liquid fills the diversion hole, prevents external mud and cement slurry from entering, and also prevents external rock Impurities such as chips enter the diversion hole.

Landscapes

  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • Physics & Mathematics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Earth Drilling (AREA)
  • Pens And Brushes (AREA)
  • Gripping Jigs, Holding Jigs, And Positioning Jigs (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Sliding-Contact Bearings (AREA)

Abstract

本发明提供了一种压差滑套,包括:外筒,在外筒的壁中设置有导流孔;设置在外筒的内腔中的内筒,其中在初始状态下,内筒与外筒相互固定而关闭了导流孔;伸入到外筒中并与外筒的上端固定连接的上接头,其中在上接头的下端面与内筒的上端面之间留有缝隙;伸入到外筒中并与外筒的下端固定连接的下接头;设置在下接头与所述内筒之间的承载环,其能够在工作液的作用下溶解。内筒的轴向上端面的面积设置成大于轴向下端面的面积,以使工作液能够在内筒的轴向上端面和轴向下端面之间形成压力差而为内筒提供向下的压力,从而使内筒能够在承载环溶解之后在压力的作用下向下移动,以便打开导流孔。

Description

压差滑套及使用其的油气井压裂施工方法 技术领域
本发明涉及石油天然气完井与储层改造技术领域,具体地涉及一种压差滑套,以及一种使用这种压差滑套来进行的油气井压裂施工方法。
背景技术
近年来,油气井勘探开发工程发展迅速。尤其是,页岩气井受到了广泛的关注。页岩气井的首段压裂改造方式一般包括两种,一种是采用连续油管射孔,一种是采用压差滑套。连续油管射孔方式主要用于打开井筒的首段,是目前较为成熟的技术。然而,在应用于页岩气井中时,连续油管射孔方式的施工时效低,且施工成本较高。另外,随着页岩气井钻井数量及压裂规模的增加,连续油管射孔作业打开首段的方式无法满足施工作业需求。
压差滑套可通过憋压而直接开启,能够省略连续油管射孔步骤,从而提高施工时效,节约施工成本。然而,现有的压差滑套仍然存在一些问题。例如,开启成功率低,留给压差滑套施工作业的窗口较小。同时,页岩气井的全井筒试压一般都在90MPa以上,井口装置的压力级别为105MPa。这使得允许开启压差滑套的压力作业范围较小,导致普通的压差滑套在上述压力范围内难以开启。另外,压差滑套的开启压力需要高于全井筒试压压力,这存在较大的风险。此外,普通的延时压差滑套采用延时结构,其进液孔较小,容易造成堵塞,从而不易开启,且延时压差滑套还存在延时时间短,无法多次重复试压等问题。
发明内容
针对现有技术中存在的上述技术问题,本发明旨在提供一种压差滑套,其能够以低于全井筒试压压力开启压差滑套,从而能够用较小的压力开启压差滑套,并能保证开启性能稳定可靠,降低了压差滑套的开启难度和施工风险。该压差滑套能够简化施工作业步骤,降低施工成本,提高施工效率,其结构简单,操作方便。
根据本发明的一个方面,提供了一种压差滑套,包括:外筒,在所述外筒的 壁中设置有导流孔;设置在所述外筒的内腔中的内筒,其中,在初始状态下,所述内筒与所述外筒相互固定而关闭了所述导流孔;伸入到所述外筒的内腔中并与所述外筒的上端固定连接的上接头,其中在所述上接头的下端面与所述内筒的上端面之间留有缝隙;伸入到所述外筒的内腔中并与所述外筒的下端固定连接的下接头;设置在所述外筒的内腔中并处于所述下接头与所述内筒之间的承载环,所述承载环能够在工作液的作用下溶解。所述内筒的轴向上端面的面积设置成大于轴向下端面的面积,以使工作液能够在所述内筒的轴向上端面和轴向下端面之间形成压力差而为所述内筒提供向下的压力,从而使所述内筒能够在所述承载环溶解之后在所述压力的作用下向下移动,以便打开所述导流孔。
在一个优选的实施例中,所述内筒的上端部设有径向向外延伸的环形凸台,由此使得所述内筒的轴向上端面的面积大于轴向下端面的面积。
在一个优选的实施例中,所述外筒的内表面设有径向向内延伸的台肩部分,其中,所述环形凸台的外径与所述外筒的内径相同,而所述台肩部分的内径与所述内筒的外径相同。
在一个具体的实施例中,所述环形凸台的轴向长度设置成小于从所述台肩部分的轴向上端面到所述导流孔的轴向距离。
在一个优选的实施例中,所述承载环采用镁铝合金或聚四氟乙烯或可降解塑料、可降解陶瓷材料制成。
在一个优选的实施例中,在所述导流孔内填充有填充物,在所述填充物的径向外侧设有保护件,所述保护件上设有至少一个导向孔。
在一个具体的实施例中,所述填充物选自由粘性液体、润滑脂和树脂组成的群组。
在一个具体的实施例中,所述保护件通过粘结或焊接固定在所述外筒上。
在一个优选的实施例中,所述导向孔的尺寸小于所述导流孔的尺寸。
在一个具体的实施例中,设有一个对应于所述导流孔的中心的导向孔。
在一个优选的实施例中,所述导向孔为细长形的割缝,在所述割缝的两端均设有圆形通孔。
在一个优选的实施例中,所述导流孔包括处于所述外筒的外壁上的两个轴向相对布置的台阶部,所述保护件设置在两个所述台阶部上。
在一个优选的实施例中,在所述导流孔的轴向两端之外,在所述外筒与内筒之间设置有与所述导流孔连通的间隙。
在一个优选的实施例中,所述间隙是形成在所述外筒的内壁上的扩孔,其中,所述扩孔包括倾斜面,使得所述间隙在远离所述导流孔的方向上变窄。
根据本发明的另一方面,提供了一种使用如上所述的压差滑套来进行的油气井压裂施工方法,包括以下步骤:将所述压差滑套连接到管柱中,并下放到井筒中的压裂地层;从井口向所述管柱注入工作液,使得所述承载环在所述工作液的作用下溶解;进行井筒憋压,使得所述内筒在所述工作液的作用下形成向下的压力,并在所述压力达到预定压力值后向下移动,从而打开所述导流孔;连通所述管柱与所述压裂地层,进行压裂施工。
附图说明
下面将结合附图来对本发明的优选实施例进行详细地描述,在图中:
图1示意性显示了处于关闭状态下的根据本发明的压差滑套;
图2示意性显示了处于开启状态下的根据本发明的压差滑套;
图3示意性显示了根据本发明的另一实施例的压差滑套,其包括导流孔防护装置;
图4示意性显示了根据本发明的导流孔防护装置的局部结构。
在附图中,相同的部件使用相同的附图标记。附图并未按照实际的比例绘制。
具体实施方式
下面将结合附图对本发明做进一步说明。在本文中,朝向井口的方位描述为“上方”、“上游”、“上端”或类似用语,而远离口的方位描述为“下方”、“下游”、“下端”或类似用语。另外,沿着压差滑套的长度方向描述为“纵向”或“轴向”,与所述“纵向”或“轴向”垂直的方向描述为“径向”,其中,在径向上朝向地层的方位描述为“径向外侧”,而远离地层的方位描述为“径向内侧”。
图1示意性显示了根据本发明的一个实施例的压差滑套100,其处于关闭状态下。如图1所示,压差滑套100包括外筒110。在图示实施例中,外筒110的两端均构造成负台阶形连接扣。外筒110的两端分别连接有用于连接井下管柱的上接头101和下接头102。在一个未示出的实施例中,外筒110的两端分别构造成正台阶形连接扣,由此,外筒110的两端分别通过正台阶形连接扣与上接头101和下接头102的负台阶形连接扣连接,从而形成固定连接。外筒110的这种 连接结构简单方便,安装效率高,且能够保证与其他零部件之间的安装连接稳定可靠。
在本实施例中,为了保证外筒110与上接头101及下接头102之间连接的密封性能,在外筒110与上接头101及下接头102的连接面之间分别设有密封件103。在一个实施例中,在上接头101和下接头102的正台阶形连接扣上设有径向向内延伸的密封槽104,密封件103安装在密封槽104内。优选地,密封件103为O型密封圈。
如图1所示,在外筒110的侧壁上设有至少一个、优选为若干个导流孔111。这些导流孔111设置在外筒110上的同一轴向位置,并在周向上均匀间隔开分布。在外筒110的内部套设有内筒120,其处于上接头101和下接头102之间。内筒120构造成能够关闭外筒110的导流孔111,并能够在外筒110内运动以打开导流孔111。
在图1所示的实施例中,内筒120通过剪切销钉140设置在外筒110的内壁上,从而与外筒110保持固定连接。在本实施例中,在外筒110的侧壁上设有用于安装剪切销钉140的通孔,在内筒120的外表面上设有与通孔对应的安装槽。剪切销钉140穿过通孔并安装到安装槽内。在如图1所示的压差滑套100的初始状态(即关闭状态)下,内筒120关闭了导流孔111,并且在内筒120的上端面与上接头101的下端面之间留有缝隙。
在内筒120受到轴向向下的力并达到剪切销钉140的剪断压力后,剪切销钉140被剪断,使得内筒120能相对于外筒110下移,由此从内侧解除对导流孔111的封堵,即打开导流孔111。此时,压差滑套100处于打开状态,如图2所示。
根据本发明,内筒120的上端设有径向向外延伸的环形凸台121,从而使内筒120的轴向上端面的面积大于其轴向下端面的面积。由此,内筒120的轴向两端能够在工作液的作用下形成压力差,从而给内筒120提供向下的压力。同时,在外筒110的下端部分的内壁面上设有径向向内延伸的环形的台肩部分112。环形凸台121的外径与外筒110的内径设置成相同,台肩部分112的内径与内筒120的外径设置成相同,由此使得内筒120能够沿外筒110向下移动。根据本发明,环形凸台121的轴向长度设置成小于从台肩部分112的轴向上端面到导流孔111的轴向距离,以保证内筒110向下移动时能够完全打开外筒110上的导流孔111。
根据本发明,压差滑套100还包括承载环130。如图1所示,承载环130设 置在内筒120与下接头102之间,其中,承载环130的上端面与内筒120的下端面对接,而承载环130的下端面与下接头102的上端面对接。根据本发明,承载环130采用可溶解性材料制成,例如镁铝合金、聚四氟乙烯、可降解塑料、可降解陶瓷材料等。这样,承载环130能够在工作液的作用下自然溶解,并且在尚未完全溶解之前对内筒120提供支撑作用。由此,压差滑套100能够采用具有较小剪断压力的剪切销钉来将内筒120和外筒110相互固定,并能够保证剪切销钉在承载环130完全溶解后通过较小的压力剪断。在这种情况下,可以用较小的压力开启压差滑套100,降低了压差滑套100的开启难度。
因此,根据本发明的压差滑套100在下入后可以通过承载环130来承受内筒的压力。此时,剪切销钉140并不受力,使得井口打压的压力值可超过剪切销钉140的剪断压力值,而不会导致剪切销钉140被剪断。换句话说,剪切销钉140可以选择成具有较小的剪断压力,更容易被剪断,从而降低了压差滑套100开启失败的风险。另外,在承载环130完全溶解之前,承载环130能够有效地占据内筒120的下端面与下接头102的上端面之间的区域。由此,除了承受内筒的压力之外,承载环130还能够有效防止工作液中的泥浆或其他固体杂质凝固或附着于外筒110的内壁上而阻碍内筒120下行。因此,进一步降低了压差滑套100的开启难度。
根据本发明的一个实施例,承载环130的溶解速度可通过工作液来进行调节。具体地,根据施工进度需要来配制合适的工作液,以使承载环130能够在设定的时间内完全溶解。
在根据本发明的压差滑套100随管柱下入到井筒后,先从井口泵入高压工作液。这样,承载环130会与工作液接触,从而在工作液作用下自然溶解。此时,内筒120仅通过剪切销钉140的作用而固定在外筒110上。高压工作液在管柱内产生高压,并在内筒120的具有不同面积的上、下端面之间形成压力差。由于内筒120的上端面的面积大于下端面的面积,且内筒120的上端面与上接头101的下端面之间留有缝隙,因此,内筒120的上端面所受到的压力大于下端面所受到的压力。由此,工作液对内筒120施加了向下的压力。在内筒120所受到的压力达到预定压力值(即剪切销钉140的剪切压力值)后,内筒120剪断剪切销钉140,并且在压力的作用下继续向下移动而露出外筒110上的导流孔111。预定压力值根据实际情况设定,一般处于10-120MPa的范围内。内筒下行直至内筒120的下端面抵靠在下接头102的上端面上,从而对内筒120形成了轴向限位。 由此,导流孔111完全打开,压差滑套100处于打开状态,使得井下管柱内外连通。
为了保证内筒120与外筒110之间的密封性能,在内筒120与外筒110之间的接触表面之间设有密封件123。优选地,密封件123采用O型密封圈。如图2所示,在内筒120的外表面上设有若干密封槽122。例如,在内筒120的外表面上且处于两端的轴向外侧分别设有2个密封槽122,密封件123分别安装在密封槽122中。密封件123能有效保证内筒120与外筒110之间的密封性能,从而提高压差滑套100的工作性能。
根据本发明的第二方面,提供了一种使用根据本发明的压差滑套100来进行的油气井压裂施工方法。该施工方法包括以下步骤,首先,将压差滑套100连接到压裂工具串的井下管柱上,之后将压差滑套100随井下管柱下放到井筒中的压裂地层。之后,从井口向井下管柱注入工作液,使得承载环130在工作液的作用下自然溶解。在承载环130溶解后进行井筒憋压,工作液在内筒120的上、下端面之间形成压力差,从而对内筒120施加向下的压力。内筒120在压力达到预定压力值后剪断剪切销钉140,并沿外筒110向下运动,直至环形凸台121的上端面与台肩部分112的上端面对接,从而完全打开导流孔111。之后,井下管柱通过导流孔111与压裂地层形成连通,进行油气井压裂施工。
根据本发明的压裂施工方法施工操作简单,尤其是能够在较小的压力作用下打开导流孔111而实现与压裂地层连通。同时,根据本发明的压裂施工方法缩短了压裂作业周期、提高了压裂施工效果。
根据本发明的压差滑套100能够以低于全井筒试压压力开启,从而能够用较小的压力开启压差滑套100,并能保证开启性能稳定可靠,降低了压差滑套100的开启难度,并且降低了施工作业风险。压差滑套100通过内筒120的自身结构形成压差而打开导流孔,减少了憋压零部件的使用,简化了压差滑套100的结构。另外,压差滑套100能够有效保证内筒120与外筒110之间的密封性能,从而保证压差滑套100的打开性能。同时,压差滑套100的操作简单方便,简化了施工作业步骤,降低了施工成本,提高了施工效率。此外,根据本发明的使用压差滑套100的油气井压裂施工方法的施工工序简单,其能够在较小的压力作用下打开导流孔111而实现与压裂地层连通,显著提高了压裂施工效率,增强了压裂施工效果。
如上所述,根据本发明的压差滑套100使用了承载环130来占据内筒120 的下端面与下接头102的上端面之间的区域,从而能够有效防止工作液中的泥浆或其他固体杂质凝固或附着于外筒110的内壁上,防止阻碍内筒120下行。因此,进一步降低了压差滑套100的开启难度。然而,在滑套的下入过程中,井筒泥浆、岩屑等杂物可能会进入到导流孔中。同时,在固井过程中,水泥浆也可能会进入到导流孔中,导致导流孔被水泥凝固。以上情况均会导致滑套不能正常开启,影响压裂施工的进行。
为此,基于与承载环130类似的原理,根据本发明的第三方面,提供了一种导流孔防护装置。
图3显示了根据本发明的另一实施例的压差滑套200。为清楚起见,图3仅示出了压差滑套200的一部分。压差滑套200包括上接头201、外筒210、内筒220和下接头(未示出)。在外筒210上设有沿周向均匀布置的若干导流孔211。在上接头201与外筒210之间以及在外筒210与内筒220之间分别设有密封圈205。这些部件及其功能与针对根据本发明的压差滑套100所述的相同,在此略去详细的说明。
根据本发明,在导流孔211处设有保护件240。根据一个实施例,该保护件240的外径设置成不大于外筒210的外径。根据一个实施例,在导流孔211内填充有高粘度液体,而保护件240设置在高粘度液体的径向外侧,从而有效地保护了导流孔内的高粘度液体脱落,阻止了外部泥浆或水泥浆进入。同时,保护件240也可防止外部岩屑等杂质进入导流孔211内。在一个备选实施例中,可以在导流孔211内填充润滑脂。润滑脂还能够为内筒和外筒之间的相对运动提供润滑作用,促进该相对运动的顺利进行。在另一个备选实施例中,也可以在导流孔211内填充树脂。
在根据本发明的一个优选的实施例中,如图4所示,保护件240上与导流孔211的中心对应的位置处设有导向孔241。优选地,导向孔241的尺寸选择成小于导流孔211的尺寸,使得导向孔241完全处于导流孔211的区域内。通过在保护件上正对导流孔的中心的位置处设置导向孔,能够为液体的流出提供导向,从而能够解决套管固井造成的地层破裂压力高的问题。
在如图4所示的具体实施例中,导向孔241构造为细长形的割缝。这种结构形式的导向孔的结构简单,加工方便,并且能够更好地避免套管固井造成的地层破裂压力高的问题。进一步地,如图4所示,在本实施例中,割缝的两端设有圆形通孔242。通过设置圆形通孔,能够避免细长形割缝的两端容易形成应力集中 的问题。
在一个具体的实施例中,如图3所示,在外筒210的外壁上设置两个相对布置的台阶部222。这两个台阶部222分别位于导流孔211的轴向两端。这样,保护件240可以架设在两个台阶部222之间。优选地,台阶部222的深度大于保护件240的厚度。上述设置使得保护件240的外壁不会突出于外筒210的外壁,从而保证了保护件240的安全,并避免了保护件240在滑套的下入过程中被意外划破等状况的发生。同时,通过设置台阶部222,能够极大程度地保证保护件240的定位准确,安装牢靠且便捷。
根据本发明,保护件240可通过金属粘合剂与外筒210粘接固定。采用金属粘合剂来将保护件粘合在外筒上,能够简化整个防护装置的结构,操作简单便捷,结构强度高,并且能够避免其他连接方式中紧固件的存在而造成突出到外筒之外,从而影响钻井或完井进程。
在一个备选的实施例中,保护件240还可通过焊接与外筒210固定。
在根据本发明的一个未示出的实施例中,在导流孔211的轴向两端之外,在外筒210与内筒220之间设置有与导流孔211连通的间隙。间隙可以仅设置在外筒210的内壁上,或者仅设置在内筒220的外壁上,或者同时设置在外筒210的内壁和内筒220的外壁上。在一个具体的实施例中,可以在外筒220的内壁上在紧邻于循环孔211之外设置扩孔。该扩孔的壁面优选地构造成具有一段倾斜面,以使得间隙在朝向远离循环孔211的两个方向上均变窄。一方面,上述设置能够使设置在导流孔211内的润滑脂容易地进入到间隙中,并顺利地跟随内筒220的移动而引入到内筒220和外筒210之间,以进一步保证内筒220的顺利下移。另一方面,倾斜面使得间隙逐渐变小,这起到了阻挡作用,用于防止杂质进入到内筒和外筒之间。
根据本发明的导流孔防护装置,能够有效地保护导流孔内的高粘度液体的脱落,使高粘度液体占满导流孔,阻止了外部泥浆和水泥浆进入,同时也防止了外部岩屑等杂质进入导流孔内。
虽然在上文中已经参考示例性的实施例对本发明进行了描述,但在不脱离本发明的范围的情况下,可以对其进行各种改进并且可以用等效物替换其中的部件。尤其是,在不存在结构冲突的情况下,各个实施例中所提到的各项技术特征均可以任意方式组合起来。本发明并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。

Claims (15)

  1. 一种压差滑套,包括:
    外筒,在所述外筒的壁中设置有导流孔;
    设置在所述外筒的内腔中的内筒,其中,在初始状态下,所述内筒与所述外筒相互固定而关闭了所述导流孔;
    伸入到所述外筒的内腔中并与所述外筒的上端固定连接的上接头,其中在所述上接头的下端面与所述内筒的上端面之间留有缝隙;
    伸入到所述外筒的内腔中并与所述外筒的下端固定连接的下接头;
    设置在所述外筒的内腔中并处于所述下接头与所述内筒之间的承载环,所述承载环能够在工作液的作用下溶解;
    其中,所述内筒的轴向上端面的面积设置成大于轴向下端面的面积,以使工作液能够在所述内筒的轴向上端面和轴向下端面之间形成压力差而为所述内筒提供向下的压力,从而使所述内筒能够在所述承载环溶解之后在所述压力的作用下向下移动,以便打开所述导流孔。
  2. 根据权利要求1所述的压差滑套,其特征在于,所述内筒的上端部设有径向向外延伸的环形凸台,由此使得所述内筒的轴向上端面的面积大于轴向下端面的面积。
  3. 根据权利要求2所述的压差滑套,其特征在于,所述外筒的内表面设有径向向内延伸的台肩部分,其中,所述环形凸台的外径与所述外筒的内径相同,而所述台肩部分的内径与所述内筒的外径相同。
  4. 根据权利要求3所述的压差滑套,其特征在于,所述环形凸台的轴向长度设置成小于从所述台肩部分的轴向上端面到所述导流孔的轴向距离。
  5. 根据权利要求1到4中任一项所述的压差滑套,其特征在于,所述承载环采用镁铝合金或聚四氟乙烯或可降解塑料、可降解陶瓷材料制成。
  6. 根据权利要求1到5中任一项所述的压差滑套,其特征在于,在所述导流孔内填充有填充物,在所述填充物的径向外侧设有保护件,所述保护件上设有至少一个导向孔。
  7. 根据权利要求6所述的压差滑套,其特征在于,所述填充物选自由粘性液体、润滑脂和树脂组成的群组。
  8. 根据权利要求6所述的压差滑套,其特征在于,所述保护件通过粘结或焊接固定在所述外筒上。
  9. 根据权利要求6到8中任一项所述的压差滑套,其特征在于,所述导向孔的尺寸小于所述导流孔的尺寸。
  10. 根据权利要求6到9中任一项所述的压差滑套,其特征在于,设有一个对应于所述导流孔的中心的导向孔。
  11. 根据权利要求6到10中任一项所述的压差滑套,其特征在于,所述导向孔为细长形的割缝,在所述割缝的两端均设有圆形通孔。
  12. 根据权利要求6到11中任一项所述的压差滑套,其特征在于,所述导流孔包括处于所述外筒的外壁上的两个轴向相对布置的台阶部,所述保护件设置在两个所述台阶部上。
  13. 根据权利要求6到12中任一项所述的压差滑套,其特征在于,在所述导流孔的轴向两端之外,在所述外筒与内筒之间设置有与所述导流孔连通的间隙。
  14. 根据权利要求13所述的压差滑套,其特征在于,所述间隙是形成在所述外筒的内壁上的扩孔,其中,所述扩孔包括倾斜面,使得所述间隙在远离所述导流孔的方向上变窄。
  15. 一种使用根据权利要求1到14中任一项所述的压差滑套来进行的油气井压裂施工方法,包括以下步骤:
    将所述压差滑套连接到管柱中,并下放到井筒中的压裂地层;
    从井口向所述管柱注入工作液,使得所述承载环在所述工作液的作用下溶解;
    进行井筒憋压,使得所述内筒在所述工作液的作用下形成向下的压力,并在所述压力达到预定压力值后向下移动,从而打开所述导流孔;
    连通所述管柱与所述压裂地层,进行压裂施工。
PCT/CN2021/099473 2021-06-10 2021-06-10 压差滑套及使用其的油气井压裂施工方法 WO2022257080A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
MX2023014270A MX2023014270A (es) 2021-06-10 2021-06-10 Camisa de deslizamiento de presion diferencial, y metodo de construccion de fracturamiento de pozos de petroleo y gas mediante el uso de este.
AU2021450553A AU2021450553A1 (en) 2021-06-10 2021-06-10 Differential pressure sliding sleeve, and oil and gas well fracturing construction method using same
CN202180100231.8A CN117897548A (zh) 2021-06-10 2021-06-10 压差滑套及使用其的油气井压裂施工方法
PCT/CN2021/099473 WO2022257080A1 (zh) 2021-06-10 2021-06-10 压差滑套及使用其的油气井压裂施工方法
CA3220782A CA3220782A1 (en) 2021-06-10 2021-06-10 Differential pressure sliding sleeve, and oil and gas well fracturing construction method using same
US18/563,069 US20240218773A1 (en) 2021-06-10 2021-06-10 Differential pressure sliding sleeve, and oil and gas well fracturing construction method using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/099473 WO2022257080A1 (zh) 2021-06-10 2021-06-10 压差滑套及使用其的油气井压裂施工方法

Publications (1)

Publication Number Publication Date
WO2022257080A1 true WO2022257080A1 (zh) 2022-12-15

Family

ID=84425569

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/099473 WO2022257080A1 (zh) 2021-06-10 2021-06-10 压差滑套及使用其的油气井压裂施工方法

Country Status (6)

Country Link
US (1) US20240218773A1 (zh)
CN (1) CN117897548A (zh)
AU (1) AU2021450553A1 (zh)
CA (1) CA3220782A1 (zh)
MX (1) MX2023014270A (zh)
WO (1) WO2022257080A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118327518A (zh) * 2024-06-14 2024-07-12 德州景美石油机械有限公司 一种延时开启控制功能的趾端滑套

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6769490B2 (en) * 2002-07-01 2004-08-03 Allamon Interests Downhole surge reduction method and apparatus
CN201924905U (zh) * 2010-12-23 2011-08-10 中国石油集团渤海钻探工程有限公司 水平井压裂用压差式开启滑套
CN204851170U (zh) * 2015-07-03 2015-12-09 中国石油集团渤海钻探工程有限公司 油气井固井分段压裂投球滑套
CN204851209U (zh) * 2015-07-31 2015-12-09 中国神华能源股份有限公司 压裂滑套组件
CN105672943A (zh) * 2016-01-20 2016-06-15 中国石油化工股份有限公司 一种具有可溶解结构的全通径滑套
CN113323627A (zh) * 2020-02-28 2021-08-31 中国石油化工股份有限公司 一种压差滑套及油气井压裂施工方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5310000A (en) * 1992-09-28 1994-05-10 Halliburton Company Foil wrapped base pipe for sand control
US20150096767A1 (en) * 2013-10-07 2015-04-09 Swellfix Bv Single size actuator for multiple sliding sleeves
WO2015085169A2 (en) * 2013-12-05 2015-06-11 Weatherford/Lamb, Inc. Toe sleeve isolation system for cemented casing in borehole
US9920601B2 (en) * 2015-02-16 2018-03-20 Baker Hughes, A Ge Company, Llc Disintegrating plugs to delay production through inflow control devices
MX2018008629A (es) * 2016-01-20 2019-01-10 China Petroleum & Chem Corp Herramienta para perforar, embalar y fracturar y una sarta de tuberia que incluye la herramienta.
CA3010247C (en) * 2016-01-20 2023-12-05 China Petroleum & Chemical Corporation Sliding sleeve
BR112018014648B1 (pt) * 2016-01-20 2022-10-25 China Petroleum & Chemical Corporation Dispositivo para perfuração, obturação e fraturamento e coluna de produção compreendendo o dispositivo
US11933138B2 (en) * 2020-06-12 2024-03-19 China Petroleum & Chemical Corporation Sliding sleeve device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6769490B2 (en) * 2002-07-01 2004-08-03 Allamon Interests Downhole surge reduction method and apparatus
CN201924905U (zh) * 2010-12-23 2011-08-10 中国石油集团渤海钻探工程有限公司 水平井压裂用压差式开启滑套
CN204851170U (zh) * 2015-07-03 2015-12-09 中国石油集团渤海钻探工程有限公司 油气井固井分段压裂投球滑套
CN204851209U (zh) * 2015-07-31 2015-12-09 中国神华能源股份有限公司 压裂滑套组件
CN105672943A (zh) * 2016-01-20 2016-06-15 中国石油化工股份有限公司 一种具有可溶解结构的全通径滑套
CN113323627A (zh) * 2020-02-28 2021-08-31 中国石油化工股份有限公司 一种压差滑套及油气井压裂施工方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118327518A (zh) * 2024-06-14 2024-07-12 德州景美石油机械有限公司 一种延时开启控制功能的趾端滑套

Also Published As

Publication number Publication date
US20240218773A1 (en) 2024-07-04
CA3220782A1 (en) 2022-12-15
CN117897548A (zh) 2024-04-16
AU2021450553A1 (en) 2023-11-23
MX2023014270A (es) 2024-04-16

Similar Documents

Publication Publication Date Title
CA2547481C (en) Retractable joint and cementing shoe for use in completing a wellbore
CA2610320C (en) Casing shoe
RU2607832C2 (ru) Отсоединяющий инструмент
BR0306089B1 (pt) "broca expandível para o uso em um furo de poço e método de formação de um furo de poço".
US20160160601A1 (en) Telescoping latching mechanism for casing cementing plug
CN205189848U (zh) 破裂盘趾端固井压裂滑套
CN205117285U (zh) 延时启动压裂滑套
US10633948B2 (en) Flow-activated fill valve assembly for cased hole
CN107869323A (zh) 一种可溶桥塞及其施工工艺
CN207437005U (zh) 带扶正棱式延时开启固井滑套
WO2022257080A1 (zh) 压差滑套及使用其的油气井压裂施工方法
RU2745147C1 (ru) Способ крепления потайной обсадной колонны ствола с вращением и цементированием зоны выше продуктивного пласта
CN112302572A (zh) 一种可溶泵开塞
WO2021221691A1 (en) Downhole tool for use in a borehole
CN114562199B (zh) 一种水泥堵漏钻塞一体化井下装置
CN113863888B (zh) 一种双层管钻井井下三通道一体化防喷装置
RU2321726C1 (ru) Муфта для цементирования обсадных колонн
RU2626103C1 (ru) Способ бурения бокового ствола нефтяной скважины
RU2728178C1 (ru) Способ строительства бокового ствола скважины
CN115538975A (zh) 多点出水油井的堵漏采油装置及堵漏采油方法
CN114427379B (zh) 一种暂堵式固井压裂滑套及施工方法
RU46296U1 (ru) Муфта для цементирования обсадных колонн
CN113323627A (zh) 一种压差滑套及油气井压裂施工方法
US20200063538A1 (en) Apparatus, systems and methods for isolation during multistage hydraulic fracturing with flow control member having impedance feature
US11920436B2 (en) Differential fill valve and float collar with two deactivation sleeves

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21944589

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2021450553

Country of ref document: AU

Ref document number: AU2021450553

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 18563069

Country of ref document: US

Ref document number: 3220782

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2023/0790.1

Country of ref document: KZ

ENP Entry into the national phase

Ref document number: 2021450553

Country of ref document: AU

Date of ref document: 20210610

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: MX/A/2023/014270

Country of ref document: MX

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112023025164

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: 202180100231.8

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2023129219

Country of ref document: RU

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 112023025164

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20231130

122 Ep: pct application non-entry in european phase

Ref document number: 21944589

Country of ref document: EP

Kind code of ref document: A1