WO2022256977A1 - 信息更新方法、云台控制方法、装置、云台及存储介质 - Google Patents
信息更新方法、云台控制方法、装置、云台及存储介质 Download PDFInfo
- Publication number
- WO2022256977A1 WO2022256977A1 PCT/CN2021/098665 CN2021098665W WO2022256977A1 WO 2022256977 A1 WO2022256977 A1 WO 2022256977A1 CN 2021098665 W CN2021098665 W CN 2021098665W WO 2022256977 A1 WO2022256977 A1 WO 2022256977A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- joint angle
- pan
- motor
- tilt
- gimbal
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 105
- 238000004590 computer program Methods 0.000 claims description 12
- 230000004044 response Effects 0.000 claims description 4
- 238000010586 diagram Methods 0.000 description 16
- 238000001514 detection method Methods 0.000 description 12
- 230000000694 effects Effects 0.000 description 12
- 230000008569 process Effects 0.000 description 9
- 230000008859 change Effects 0.000 description 6
- 238000004891 communication Methods 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 6
- 238000013507 mapping Methods 0.000 description 6
- 238000005259 measurement Methods 0.000 description 5
- 238000012545 processing Methods 0.000 description 5
- 230000008878 coupling Effects 0.000 description 3
- 238000010168 coupling process Methods 0.000 description 3
- 238000005859 coupling reaction Methods 0.000 description 3
- 230000009471 action Effects 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 238000005096 rolling process Methods 0.000 description 2
- 230000001960 triggered effect Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000019771 cognition Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000013021 overheating Methods 0.000 description 1
- 238000011897 real-time detection Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/08—Control of attitude, i.e. control of roll, pitch, or yaw
Definitions
- the embodiments of the present invention relate to the field of cloud platform technology, and in particular to an information update method, a platform control method, a device, a platform and a storage medium.
- the application of the gimbal is more and more extensive.
- the load such as: camera, lens, fill light, etc.
- the load after the load is replaced, if the external dimensions of the load. If there is a large change, then, during the operation of the gimbal, there may be structural interference between the gimbal body and the load. If there is structural interference between the load and the gimbal body, it will easily cause the overheating protection of the motor to start and unload the force directly, which will increase the risk of crashing the load or the gimbal body.
- the embodiment of the present invention provides an information update method, a pan-tilt control method, a device, a pan-tilt, and a storage medium, which can solve the problem of the pan-tilt that can replace the load in the prior art.
- the first aspect of the present invention is to provide a method for updating information, including:
- the second aspect of the present invention is in order to provide a kind of cloud platform control method, comprising:
- the joint angle setting range corresponding to the pan/tilt is updated to obtain the updated joint angle range, wherein the joint angle setting range is used to identify the The allowable operating range of the motor on the gimbal;
- the gimbal is controlled according to the updated joint angle range.
- the third aspect of the present invention is to provide an information update device, including:
- a processor for running a computer program stored in said memory to:
- a fourth aspect of the present invention is to provide a pan-tilt control device, including:
- a processor for running a computer program stored in said memory to:
- the joint angle setting range corresponding to the pan/tilt is updated to obtain the updated joint angle range, wherein the joint angle setting range is used to identify the The allowable operating range of the motor on the gimbal;
- the gimbal is controlled according to the updated joint angle range.
- a fifth aspect of the present invention is to provide a computer-readable storage medium, the storage medium is a computer-readable storage medium, and program instructions are stored in the computer-readable storage medium, and the program instructions are used in the first aspect.
- a sixth aspect of the present invention is to provide a computer-readable storage medium, the storage medium is a computer-readable storage medium, and program instructions are stored in the computer-readable storage medium, and the program instructions are used in the first aspect.
- the above-mentioned PTZ control method is to provide a computer-readable storage medium, the storage medium is a computer-readable storage medium, and program instructions are stored in the computer-readable storage medium, and the program instructions are used in the first aspect.
- the seventh aspect of the present invention is to provide a kind of cloud platform, comprising:
- the main body of the cloud platform The main body of the cloud platform
- the information updating device described in the third aspect above is arranged on the main body of the pan/tilt.
- the eighth aspect of the present invention is to provide a kind of cloud platform, comprising:
- the main body of the cloud platform The main body of the cloud platform
- the motor is arranged on the main body of the pan-tilt;
- the pan-tilt control device described in the fourth aspect above is arranged on the pan-tilt main body and is used to control the motor.
- the joint angle setting range corresponding to the pan/tilt is updated, and the updated joint angle setting A certain range can avoid the possible structural interference between the gimbal body and the load, and then solve the problem that the load or the gimbal body is easily damaged due to the structural interference between the gimbal and the load. This is effective The safety degree of the operation of the cloud platform and the load on the platform is guaranteed, and the stability and reliability of the information update method are further improved.
- FIG. 1 is a schematic flowchart of an information update method provided by an embodiment of the present invention
- FIG. 2 is a schematic structural view of a four-axis pan/tilt provided by an embodiment of the present invention
- FIG. 3 is a schematic flow diagram of detecting whether there is structural interference in the pan/tilt provided by an embodiment of the present invention
- FIG. 4 is a first schematic flow diagram for obtaining the operating state of the motor on the pan/tilt provided by an embodiment of the present invention
- FIG. 5 is a second schematic flow diagram for obtaining the operating state of the motor on the pan/tilt provided by the embodiment of the present invention.
- FIG. 6 is a schematic flow diagram of updating the joint angle setting range corresponding to the pan/tilt provided by the embodiment of the present invention.
- FIG. 7 is a first schematic diagram of updating the joint angle setting range based on the current joint angle provided by an embodiment of the present invention.
- Fig. 8 is a second schematic diagram of updating the joint angle setting range based on the current joint angle provided by an embodiment of the present invention.
- FIG. 9 is a schematic flowchart of determining the range limit corresponding to the current joint angle provided by an embodiment of the present invention.
- FIG. 10 is a schematic flowchart of another method for updating information provided by an embodiment of the present invention.
- Fig. 11 is a schematic flow chart of a pan-tilt control method provided by an embodiment of the present invention.
- Fig. 12 is a schematic flow chart of a pan-tilt control method provided by an application embodiment of the present invention.
- FIG. 13 is a schematic structural diagram of an information update device provided by an embodiment of the present invention.
- Fig. 14 is a schematic structural diagram of a pan-tilt control device provided by an embodiment of the present invention.
- Fig. 15 is a schematic structural diagram of a pan/tilt provided by an embodiment of the present invention.
- Fig. 16 is a schematic structural diagram of another pan/tilt provided by an embodiment of the present invention.
- the user can replace the load set on the gimbal according to design requirements and application requirements. After replacing the load, if the external dimensions of the load change or the weight of the load changes greatly, there may be structural interference between the gimbal body and the load. Or, the user can add or change some auxiliary modules or auxiliary modules on the gimbal according to the design requirements and application requirements, so that the structure of the gimbal changes. At this time, structural interference may also occur between the gimbal body and the load. In addition, it is easy to cause the motor to trigger the stall protection and automatic force unloading operation. After the motor is automatically unloaded, it is easy to increase the risk of crashing the load or the gimbal body under the action of gravity.
- lens A is set on the gimbal.
- the safe rotation range allowed by the gimbal can be (0-90°).
- the size of lens B is larger than that of lens
- the safe rotation range allowed by the gimbal at this time can be (0-60°). If you continue to control the gimbal to rotate according to the above-mentioned rotation range before changing the lens, the gimbal will appear when it rotates to 60°. In the locked-rotor situation, that is, the gimbal is stuck at a position of 60° and cannot rotate. At this time, the lens has already interfered with the body structure. At this time, the motor will trigger the locked-rotor protection and automatic force unloading operation. After that, it is easy to cause lens damage under the action of gravity.
- this embodiment provides an information update method, a pan-tilt control method, a device, a pan-tilt, and a storage medium, wherein the information update method may include: detecting whether there is structural interference in the pan-tilt, When the structure interferes, the corresponding joint angle setting range of the gimbal is updated, wherein the joint angle setting range is used to identify the allowable operating range of the motor on the gimbal.
- FIG. 1 is a schematic flow diagram of an information update method provided by an embodiment of the present invention; referring to FIG. 1 , this embodiment provides an information update method, wherein the execution subject of the information update method may be an information update device,
- the information updating device can be applied in the field of cloud platform technology, that is, the information updating device can be set on the main body of the cloud platform, or the information updating device can be set on the control terminal for controlling the cloud platform.
- the information updating device can be implemented as software, or a combination of software and hardware.
- the information updating method can include the following steps:
- structural interference means that the distance between two structures is less than or equal to the set gap value, and the above-mentioned set gap value is not necessarily zero.
- structural interference means that two parts are in contact with each other.
- the above-mentioned pan-tilt can be a two-axis pan-tilt, a three-axis pan-tilt, a four-axis pan-tilt, etc.
- the four-axis pan-tilt can include a pan-tilt
- changing the load on the gimbal may also cause structural interference of the gimbal, wherein the load set on the gimbal can Including any one of the following: mobile phones, tablet computers, cameras, follow spot lights, ranging sensors, and other loads with different weights.
- the load set on the gimbal can Including any one of the following: mobile phones, tablet computers, cameras, follow spot lights, ranging sensors, and other loads with different weights.
- the structure of the gimbal changes, it may also cause structural interference of the gimbal.
- the structure of the gimbal changes, and the load on the gimbal There may be structural interference with the main body of the gimbal.
- the structural feature of the cloud platform can obtain the structural feature of the cloud platform, detect whether the structural feature of the cloud platform changes, when the structural feature of the cloud platform changes, then can determine the change degree of the structural feature of the cloud platform, when the change degree of the structural feature is greater than or When it is equal to the preset threshold, it can be determined that there is structural interference in the pan/tilt; when the change degree of the structural feature is less than the preset threshold, it can be determined that there is no structural interference in the pan/tilt.
- different numbers of motors for driving the shaft arm of the pan-tilt can be provided on the pan-tilt, for example: for a two-axis pan-tilt, two motors can be arranged on the pan-tilt A motor (yaw motor, roll motor) used to drive the arm of the gimbal to move; for a three-axis gimbal, three motors for driving the arm of the gimbal to move ( yaw motor, rolling roll motor, pitch pitch motor); for a four-axis gimbal, four motors for driving the gimbal shaft arm to move can be arranged on the gimbal.
- a motor yaw motor, roll motor
- three motors for driving the arm of the gimbal to move yaw motor, rolling roll motor, pitch pitch motor
- four motors for driving the gimbal shaft arm to move can be arranged on the gimbal.
- the joint angle setting ranges corresponding to different motors on the gimbal are the same or different.
- the above joint angle setting ranges are used to identify The allowable operating range of the motor on the gimbal.
- the joint angle setting range corresponding to the roll ROLL motor can be [roll_down_limit,-30deg]
- the setting range can be [pitch_down_limit,-50deg]
- the setting range of the joint angle corresponding to the platform can be updated.
- the joint angle setting range corresponding to the gimbal is reduced to obtain the reduced joint angle setting range, which can avoid the gap between the gimbal body and the load. Structural interference may occur between them, which may easily damage the load on the gimbal, thereby ensuring the safety and reliability of the gimbal and the load on the gimbal.
- the method in this embodiment may further include: generating prompt information, and the prompt information is used to remind the user that the joint angle setting range has been completed. update operation.
- prompt information can be generated, and the prompt information can be displayed through the display.
- the prompt information can be displayed by the setting terminal to remind the user that the update operation of the joint angle setting range has been completed, which effectively improves the practicability of the information update method.
- the information update method provided by this embodiment detects whether there is structural interference in the pan/tilt, and when there is structural interference in the pan/tilt, the corresponding joint angle setting range of the pan/tilt is updated, and the updated joint angle setting range can avoid Because there may be structural interference between the gimbal and the load, it will solve the problem that the load or the gimbal is easy to be damaged due to the structural interference between the gimbal and the load, thus effectively ensuring that the gimbal The safety degree of the platform and the load operation on the platform further improves the stability and reliability of the information update method.
- Fig. 3 is a schematic flow diagram of detecting whether there is structural interference in the pan/tilt provided by the embodiment of the present invention; referring to the accompanying drawing 3, this embodiment provides a specific implementation method for detecting whether there is structural interference in the pan/tilt, specifically, this Detecting whether there is structural interference in the pan/tilt in an embodiment may include:
- Step S301 Obtain the running state of the motor on the pan/tilt.
- the running state of the motor on the gimbal can include: normal running state and set locked-rotor state, when the running state of the motor on the gimbal is a normal running state, then it can be determined There is no structural interference in the gimbal.
- the running state of the motor on the gimbal is the set locked-rotor state, it can be determined that there is structural interference in the gimbal.
- the running state of the motor on the gimbal can be related to any other parameter:
- the torque information of the motor on the stage, the feedback current of the motor on the gimbal, the attitude control error of the gimbal, etc. can be obtained by setting the sensor (torque detector, current sensor, inertial measurement unit IMU, etc.) The running state of the motor on the stage.
- Step S302 Based on the running state of the motor on the pan-tilt, detect whether there is structural interference in the pan-tilt.
- detecting whether there is structural interference in the gimbal may include: when the running state of the motor on the gimbal is a preset locked-rotor state, then determining that there is structural interference in the gimbal; When the running state of the motor on the stage is normal, it is determined that there is no structural interference in the gimbal.
- the running state of the motor on the gimbal can include a set stalled state or a normal running state, and when the running state of the motor on the gimbal is a set stalled state, it can be based on the set stalled state of the motor on the gimbal. state to determine the existence of structural interference in the gimbal; when the running state of the motor on the gimbal is in the normal running state, it can be determined based on the normal running state of the motor on the gimbal that there is no structural interference in the gimbal, thereby effectively realizing The accuracy and reliability of detecting whether there is structural interference in the gimbal.
- the implementation method is simple and reliable, and it is effectively realized whether there is structural interference in the gimbal.
- the detection operation further improves the safety and reliability of the information updating method.
- Fig. 4 is the first schematic flow chart of obtaining the running state of the motor on the pan/tilt provided by the embodiment of the present invention; with reference to shown in accompanying drawing 4, the present embodiment provides a kind of implementation mode of obtaining the running state of the motor on the pan/tilt, specifically , obtaining the operating state of the motor on the pan/tilt in this embodiment may include:
- Step S401 Obtain the feedback current of the motor on the gimbal.
- Step S402 Determine the running state of the motor based on the feedback current.
- the motor When there is structural interference between the load on the gimbal and the gimbal body, the motor is likely to trigger the stall protection operation. After the motor triggers the stall protection operation, the corresponding feedback current of the motor will be relatively large. When there is no structural interference between the load on the gimbal and the gimbal body, the motor will not trigger the stall protection operation. At this time, the feedback current corresponding to the motor will be relatively small. Therefore, the motor on the gimbal can The feedback current to determine the running state of the motor on the gimbal.
- the current sensor can be used to obtain the feedback current of the motor on the pan-tilt. After the feedback current is acquired, the feedback current can be analyzed and processed to determine the operating state of the motor. In some examples, based on the feedback current, determining the running state of the motor may include: when the feedback current is greater than or equal to the current threshold, then determining that the running state is a set locked-rotor state; when the feedback current is less than the current threshold, then determining the running state for normal operation.
- a current threshold value for analyzing and processing the feedback current is preset, and the current threshold value can be stored in a setting area, and the current threshold value can be obtained by accessing the setting area. After the feedback current is obtained, the feedback current can be analyzed and compared with the current threshold. When the feedback current is greater than or equal to the current threshold, it means that the feedback current of the motor at this time is high, and then the running state of the motor on the gimbal can be determined. is to set the stalled state; when the feedback current is less than the current threshold, it means that the feedback current of the motor at this time is low, and then the running state of the motor on the gimbal can be determined to be normal.
- determining the operating state of the motor based on the feedback current may include: when the feedback current is greater than or equal to the current threshold, then statistically counting the time information corresponding to the feedback current greater than or equal to the current threshold, and based on the time information, determining the motor the running state; when the feedback current is less than the current threshold, it is determined that the running state is a normal running state.
- the feedback current can be analyzed and compared with the current threshold.
- the timer can be used to count the feedback current greater than the current threshold. Or equal to the time information corresponding to the current threshold, and then analyze and process the statistical time information to determine the running state of the motor.
- determining the running state of the motor may include: when the time information is greater than or equal to the time threshold, then determining that the running state is a set stall state; when the time information is less than the time threshold, then determining that the running state is normal operation state.
- the feedback current is less than the current threshold, it can be determined that the running state of the motor on the pan/tilt is in the normal running state.
- a time threshold for analyzing and processing the statistical time information is preset.
- the time threshold can be stored in the setting area, and the time threshold can be obtained by visiting the setting area. After the time information is obtained, the Analyze and compare the time information with the time threshold.
- the time information is greater than or equal to the time threshold, it means that the motor has a high feedback current for a long time, and then it can be determined that the motor’s running state is the set stall state; when the time information is less than
- the time threshold is set, it means that the motor may be caused by false detection and the feedback current is relatively high for a short time, and then it can be determined that the running state of the motor is a normal running state.
- the method in this embodiment may further include: clearing the time information. Specifically, in order to facilitate accurate analysis and identification of the running state of the motor on the gimbal, when the time information is less than the time threshold, the statistical time information can be cleared, so that the motor on the gimbal can be checked in the next time period. operating status for accurate identification of operations.
- the accuracy and reliability of determining the operating state of the motor is effectively guaranteed, and the information update method is further improved. flexibility and reliability.
- Fig. 5 is the second schematic flow chart of obtaining the running state of the motor on the pan/tilt provided by the embodiment of the present invention; with reference to shown in accompanying drawing 5, the present embodiment provides another kind of realization mode of obtaining the running state of the motor on the pan/tilt, specifically Yes, obtaining the running state of the motor on the pan/tilt in this embodiment may include:
- Step S501 Obtain the attitude control error of the gimbal.
- Step S502 Determine the running state of the motor on the pan-tilt based on the attitude control error.
- the gimbal When there is structural interference between the load on the gimbal and the gimbal body, the gimbal cannot operate normally to the preset target attitude, that is, there is an attitude control error between the current attitude that the gimbal can operate and the target attitude, so it can be
- the running state of the motor on the gimbal is determined by obtaining the attitude control error of the gimbal.
- the inertial measurement unit can be used to obtain the current running attitude of the motor on the gimbal, and the attitude control error of the gimbal can be determined based on the current running posture and the target running posture.
- the attitude control error can be analyzed and processed to determine the running state of the motor on the gimbal.
- determining the operating state of the motor on the gimbal based on the attitude control error may include: when the attitude control error is greater than or equal to the attitude error threshold, then determining that the operating state is a set stall state; when the attitude control error is less than the attitude error When the threshold value is reached, it is determined that the running state is a normal running state.
- an attitude error threshold for analyzing and processing the attitude control error is preset.
- the attitude error threshold can be stored in a setting area, and the attitude error threshold can be obtained by accessing the setting area. After the attitude control error is acquired, the attitude control error can be analyzed and compared with the attitude error threshold.
- the running state of the motor on the gimbal is the set stall state; when the attitude control error is less than the attitude error threshold, it means that the attitude control error of the gimbal is low at this time, and then it can be determined that the running state of the motor on the gimbal is normal Operating status.
- determining the operating state of the motor on the pan/tilt based on the attitude control error may include: when the attitude control error is greater than or equal to the attitude error threshold, the statistical attitude control error is greater than or equal to the time information corresponding to the attitude error threshold, And based on the time information, the running state of the motor is determined; when the attitude control error is less than the attitude error threshold, the running state is determined to be a normal running state.
- the attitude control error can be analyzed and compared with the attitude error threshold.
- the timer can be used To count the time information corresponding to the attitude control error greater than or equal to the attitude error threshold, and then analyze and process the statistical time information to determine the running state of the motor.
- determining the running state of the motor may include: when the time information is greater than or equal to the time threshold, then determining that the running state is a set stall state; when the time information is less than the time threshold, then determining that the running state is normal operation state.
- the feedback current is less than the current threshold, it can be determined that the running state of the motor on the pan/tilt is in the normal running state.
- a time threshold for analyzing and processing the statistical time information is preset.
- the time threshold can be stored in the setting area, and the time threshold can be obtained by visiting the setting area. After the time information is obtained, the The time information is analyzed and compared with the time threshold. When the time information is greater than or equal to the time threshold, it means that the gimbal has a relatively high attitude control error for a long time, and then it can be determined that the motor’s operating state is the set stall state; When the information is less than the time threshold, it indicates that the motor may have a relatively high attitude control error caused by false detection, and the time for which the motor is operating is determined to be normal.
- the method in this embodiment may further include: clearing the time information. Specifically, in order to facilitate accurate analysis and identification of the running state of the motor on the gimbal, when the time information is less than the time threshold, the statistical time information can be cleared, so that the motor on the gimbal can be checked in the next time period. operating status for accurate identification of operations.
- the accuracy and reliability of determining the operating state of the motor is also effectively guaranteed, and the information update is further improved.
- the running state of the motor on the platform may include: acquiring the torque value of the motor on the platform; and determining the running state of the motor based on the torque value.
- the torque value of the motor in the normal operation state is different from the torque value of the motor in the set locked-rotor state.
- the torque value of the motor in the set locked-rotor state The value is greater than the torque value of the motor in normal operation. Therefore, the torque value of the motor on the pan/tilt can be obtained through the torque detector, and then the torque value can be analyzed and processed to determine the running state of the motor.
- determining the running state of the motor may include: when the torque value is greater than or equal to the torque threshold, then determining that the running state is a set stall state; when the torque value is less than the torque threshold, then determining the running state for normal operation.
- determining the operating state of the motor based on the torque value may include: when the torque value is greater than or equal to the torque threshold, then the statistical torque value is greater than or equal to the time information corresponding to the torque threshold, and based on the time information, determine the motor running state; when the torque value is less than the torque threshold, it is determined that the running state is a normal running state.
- Fig. 6 is a schematic flow chart of updating the joint angle setting range corresponding to the pan/tilt provided by the embodiment of the present invention; referring to the accompanying drawing 6, the present embodiment provides a method for updating the joint angle setting range corresponding to the pan/tilt
- the implementation of the update, specifically, updating the setting range of the joint angle corresponding to the pan/tilt in this embodiment may include:
- Step S601 Determine the current joint angle corresponding to the motor on the gimbal.
- Step S602 when the current joint angle is within the joint angle setting range, update the joint angle setting range based on the current joint angle.
- an inertial measurement unit IMU or an angle sensor is set on the pan/tilt, and the current joint angle corresponding to the motor on the pan/tilt can be obtained through the IMU or the angle sensor. After obtaining the current joint angle, the current joint angle can be compared with the joint angle. The angle setting range is analyzed and compared. When the current joint angle is within the joint angle setting range, that is, the current joint angle that the motor on the gimbal can run to is less than the upper limit of the joint angle setting range and greater than The lower limit value of the joint angle setting range, and then the joint angle setting range can be updated based on the current joint angle.
- updating the joint angle setting range based on the current joint angle may include: determining a range limit corresponding to the current joint angle; and updating the joint angle setting range based on the range limit.
- the current joint angle can be analyzed and compared with the joint angle setting range to determine the range limit corresponding to the current joint angle, and the range limit is the joint angle setting range.
- the limit value that is closer to the current joint angle can be the upper limit value of the range or the lower limit value of the range, for example, as shown in Figure 7, if the obtained current joint angle is set at the joint angle.
- the obtained current joint angle is the joint angle 2 set in the joint angle setting range, due to the comparison of the distance between the joint angle 2 and the range upper limit in the joint angle setting range is close, then it can be determined that the range limit corresponding to the joint angle 2 is the upper limit value of the range.
- the joint angle setting range may be updated based on the range limit value.
- updating the joint angle setting range based on the range limit value may include: When the range limit corresponding to the current joint angle is the upper limit value, update the upper limit value in the joint angle setting range to the current joint angle; when the range limit corresponding to the current joint angle is the lower limit value, then Update the lower limit value in the joint angle setting range to the current joint angle.
- the upper limit value in the joint angle setting range can be updated to the current joint angle, so that the updated joint angle can be obtained.
- the joint angle setting range of the updated joint angle setting range is smaller than the initial joint angle setting range, thereby realizing the reduction operation of the joint angle setting range.
- the lower limit value in the joint angle setting range can be updated to the current joint angle, so that the updated joint angle can be obtained Setting range, the updated joint angle setting range is smaller than the initial joint angle setting range, thereby realizing the operation of reducing the joint angle setting range.
- the joint angle setting range can be updated based on the current joint angle, thereby effectively The accurate update operation of the joint angle setting range is realized, and the stability and reliability of the information update method are further improved.
- Fig. 9 is a schematic flowchart of determining the range limit corresponding to the current joint angle provided by the embodiment of the present invention. referring to Fig. 9, this embodiment provides an implementation method for determining the range limit corresponding to the current joint angle Specifically, determining the range limit corresponding to the current joint angle in this embodiment may include:
- Step S901 Obtain a set upper limit value and a set lower limit value of the joint angle setting range.
- Step S902 Determine a first difference and a second difference between the current joint angle and the set upper limit and the set lower limit respectively.
- Step S903 When the first difference is smaller than the second difference, determine that the range limit corresponding to the current joint angle is a set upper limit.
- Step S904 When the second difference is smaller than the first difference, determine that the range limit corresponding to the current joint angle is a set lower limit.
- the joint angle setting range may be analyzed and processed to determine the setting upper limit value and the setting lower limit value of the joint angle setting range.
- the set upper limit, the set lower limit and the current joint angle can be analyzed and compared, so that the difference between the current joint angle and the set upper limit can be determined respectively.
- the first difference and the second difference can be analyzed and compared.
- the first difference is smaller than the second difference, it means that the current joint angle is different from the set
- the distance between the limit values is relatively short, and then it can be determined that the range limit corresponding to the current joint angle is the set upper limit value.
- the second difference is smaller than the first difference, it means that the distance between the current joint angle and the set lower limit is relatively short, and then it can be determined that the range limit corresponding to the current joint angle is the set lower limit.
- Fig. 10 is a schematic flow chart of another information updating method provided by an embodiment of the present invention. referring to Fig. 10 , after updating the joint angle setting range corresponding to the pan/tilt, the method in this embodiment may also include :
- Step S1001 Generate an information storage request.
- Step S1002 In response to the information storage request, determine whether to store the updated joint angle setting range.
- an information storage request can be automatically generated, and the information storage request can be a storage query request, that is, asking the user whether to update the joint angle setting range after the update operation.
- storage operations After the information storage request is generated, the user can perform an operation on the input of the information storage request.
- the execution operation can be a click operation, a slide operation, or a double-click operation, etc.
- the execution operation can include: performing an operation on the updated joint angle setting range The stored first execution operation, the second execution operation that does not need to store the updated joint angle setting range, after obtaining the execution operation for the information storage request, it can be determined based on the execution operation whether to set the updated joint angle setting range. Perform storage operations within a certain range.
- the updated joint angle setting range can be stored.
- the default joint angle corresponding to the gimbal system The setting range is the updated joint angle setting range.
- the second execution operation there is no need to store the updated joint angle setting range.
- the default joint angle setting range corresponding to the gimbal system The ranges are still set for the previously stored joint angles.
- the updated joint angle setting range based on the information storage request, thereby effectively realizing that when the user has information storage needs, the updated joint angle can be stored. It is convenient for the user to control the gimbal based on the updated joint angle setting range; when the user does not have information storage requirements, there is no need to store the updated joint angle setting range. At this time, no matter what type of load the gimbal is replaced, after the gimbal is restarted, the pre-stored default joint angle setting range can be used to control the gimbal to operate, which further improves the control of the gimbal. flexibility and reliability.
- Fig. 11 is a schematic flow chart of a method for controlling a pan-tilt provided by an embodiment of the present invention; referring to the accompanying drawing 11, the present embodiment provides a method for controlling a pan-tilt, wherein the subject of execution of the method for controlling a pan-tilt may be a cloud Platform control device, the cloud platform control device can be applied to the field of cloud platform technology, that is, the cloud platform control device can control the cloud platform, in addition, the cloud platform control device can be implemented as software, or a combination of software and hardware, specifically , the cloud platform control method may include the following steps:
- Step S1101 Obtain the running state of the motor on the pan/tilt.
- the running state of the motor on the gimbal can include: normal running state and set locked-rotor state, when the running state of the motor on the gimbal is a normal running state, then it can be determined There is no structural interference in the gimbal.
- the running state of the motor on the gimbal is the set locked-rotor state, it can be determined that there is structural interference in the gimbal.
- the running state of the motor on the gimbal can be related to any other parameter:
- the torque information of the motor on the stage, the feedback current of the motor on the gimbal, the attitude control error of the gimbal, etc. can be obtained by setting the sensor (torque detector, current sensor, inertial measurement unit IMU, etc.) The running state of the motor on the stage.
- Step S1102 When the running state is the set locked-rotor state, update the joint angle setting range corresponding to the gimbal to obtain the updated joint angle range, wherein the joint angle setting range is used to identify the motor on the gimbal allowable range of operation.
- different numbers of motors for driving the shaft arm of the pan-tilt can be provided on the pan-tilt, for example: for a two-axis pan-tilt, two motors can be arranged on the pan-tilt A motor (yaw motor, roll motor) used to drive the arm of the gimbal to move; for a three-axis gimbal, three motors for driving the arm of the gimbal to move ( yaw motor, rolling roll motor, pitch pitch motor); for a four-axis gimbal, four motors for driving the gimbal shaft arm to move can be arranged on the gimbal.
- a motor yaw motor, roll motor
- three motors for driving the arm of the gimbal to move yaw motor, rolling roll motor, pitch pitch motor
- four motors for driving the gimbal shaft arm to move can be arranged on the gimbal.
- the joint angle setting ranges corresponding to different motors on the gimbal are the same or different.
- the above joint angle setting ranges are used to identify The allowable operating range of the motor on the gimbal.
- the joint angle setting range corresponding to the roll ROLL motor can be [roll_down_limit,-30deg]
- the setting range can be [pitch_down_limit,-50deg]
- the running state of the motor on the gimbal can include setting the locked-rotor state or the normal running state, and the different running states of the motor on the gimbal can correspond to the mutual state between different structures on the gimbal. Specifically, the motor on the gimbal When the running state of the gimbal is set to the stalled state, it is determined that there is structural interference in the gimbal.
- the joint angle setting range corresponding to the gimbal can be updated, so that the updated joint angle range can be obtained.
- the joint angle setting range corresponding to the gimbal is reduced to obtain the updated joint angle range, which can avoid possible structural interference between the gimbal body and the load This leads to the situation that it is easy to damage the load on the platform, thereby ensuring the safety and reliability of the operation of the platform and the load on the platform.
- Step S1103 Control the gimbal according to the updated joint angle range.
- the gimbal can be controlled based on the updated joint angle range, which can effectively avoid possible structural interference between the gimbal fuselage and the load, which may cause damage to the gimbal.
- the condition of the load thereby ensuring the safety and reliability of the cloud platform and the load on the platform.
- pan/tilt control method in this embodiment can also execute the method of the embodiment shown in Figure 2- Figure 10 above, and the parts not described in detail in this embodiment can refer to the implementation shown in Figure 2- Figure 10 Description of the example.
- the implementation process and technical effect of this technical solution refer to the description in the embodiments shown in FIGS. 2-10 , and details are not repeated here.
- the pan-tilt control method provided in this embodiment obtains the running state of the motor on the pan-tilt, and when the running state is set to a locked-rotor state, updates the joint angle setting range corresponding to the pan-tilt to obtain the updated joint angle range, and then control the gimbal according to the updated joint angle range, which can effectively avoid the possibility of structural interference between the gimbal body and the load, which may easily damage the load on the gimbal, thereby ensuring
- the safe and reliable operation of the cloud platform and the load on the platform further improves the practicability of the cloud platform control method and is beneficial to market promotion and application.
- this application embodiment provides a pan-tilt control method, which can avoid lens collision damage caused by pan-tilt motor blocking and unloading force.
- the cloud platform control method may include the following steps:
- Step 1 Perform real-time detection on the gimbal to obtain the motor torque value of the motor on the gimbal.
- the motor torque value of the motor on the gimbal can be obtained directly through the torque detector; or, the feedback current value of the motor on the gimbal can be obtained through the current sensor, and determined by the mapping relationship between the feedback current and the motor torque value
- the motor torque value of the motor on the gimbal; or, the control attitude error of the gimbal can be obtained through the inertial measurement unit, and the motor torque value of the motor on the gimbal can be determined through the mapping relationship between the control attitude error and the motor torque value.
- Step 2 Identify whether the absolute value of the motor torque value is greater than the torque threshold.
- a torque threshold is pre-configured according to debugging needs and actual needs, which can be calibrated as MAX_TORQUE. After obtaining the motor torque value, the absolute value between the motor torque values can be determined, and then the absolute value of the motor torque value and the torque The threshold is analyzed and compared, that is, it is judged whether the absolute value of the motor torque value currently obtained is greater than the torque threshold: abs(Torque)>MAX_TORQUE.
- Step 4 When the absolute value of the motor torque value is greater than the torque threshold, it means that the motor on the gimbal is stalled, and the timer can be controlled to perform the timing operation, so as to realize the calculation operation of the stall time, that is, Torque_reach_time++.
- Step 5 Analyze and compare the locked rotor time with the locked rotor time threshold, and identify whether the locked rotor time exceeds the locked rotor time threshold.
- a stall time threshold is pre-configured according to debugging requirements and actual needs, which can be calibrated as MAX_TIME, and then it is identified whether the stall time exceeds the stall time threshold, that is, Torque_reach_time>MAX_TIME.
- Step 6 When the locked-rotor time is less than the locked-rotor time threshold, the timer can be continued to be controlled for timing operation.
- Step 7 When the stall time is greater than the stall time threshold, you can check whether the joint angle range is valid.
- the preset detection range is configured through debugging and actual needs.
- the joint angle range of the motor on the gimbal can be automatically detected, for example: for a three-axis gimbal
- the three motors on the gimbal include the ROLL axis motor, the PITCH axis motor, and the Yaw axis motor.
- Different motors can correspond to different joint angle ranges.
- the joint angle ranges corresponding to different motors can be respectively as follows:
- ROLL [roll_down_limit,-30deg]
- PITCH [pitch_down_limit,-50deg]
- YAW [yaw_down_limit,-50deg]
- detecting whether the joint angle range is valid may include: obtaining the current joint angle corresponding to the gimbal motor, detecting whether the current joint angle is within the joint angle range, and determining the joint angle range if the current joint angle is within the joint angle range If it is valid, the joint angle range needs to be updated; if the current joint angle is not within the joint angle range, it is determined that the joint angle range is invalid.
- Step 8 If the joint angle range is valid, it will detect that it has hit the limit, and judge whether the current position is the upper limit or the lower limit according to the current joint angle position and the preset joint angle range; if the joint angle range is invalid, it will stall The time is cleared.
- Step 9 When it is judged that the current joint angle position is the lower limit, modify the current joint angle position to be the mechanical lower limit; modify the software upper limit to: mechanical lower limit - dead zone value.
- the software limit range is usually smaller than the mechanical limit range.
- the difference between the two is the dead zone value, which is generally obtained through debugging.
- the dead zone value can be about 5deg.
- Step 10 When judging that the current joint angle position is the upper limit, modify the current joint angle position to be the mechanical upper limit; modify the software upper limit to: mechanical upper limit - dead zone value.
- Step 11 Control the gimbal based on the updated joint angle range.
- Step 12 Generate a prompt message through the application program capable of implementing the control method of the pan/tilt, prompting the user that "the pan/tilt has moved to the limit, and the limit range has been modified".
- Step 13 Ask the user whether to save the set of limits (that is, the updated joint angle range).
- Step 14 If the set of limits is stored, write the set of limit values into the set storage area (set FLASH), and it will still take effect after restarting the machine, and the limit detection will not be triggered again with the same lens.
- Step 15 If you do not store this group of limit values, the limit value of this group will not be written into the storage area, and it will not take effect after restarting the machine. After restarting, the limit value before modification will be used, and the limit detection may be triggered again with the same lens .
- Step 16 Complete limit detection.
- the pan/tilt control method provided in this application embodiment can automatically detect and update the joint angle range corresponding to the pan/tilt, so as to avoid unloading due to the stalled operation of the motor on the pan/tilt, thereby causing the load to be bumped and damaged.
- this method can also ask the user whether to save the updated limit value, or automatically save the updated limit value, so as to avoid the detection of the limit value every time the restart operation is performed. operation, which is conducive to improving the user's physical examination, and further improves the flexibility and reliability of the use of the pan-tilt control method.
- Figure 13 is a schematic structural diagram of an information update device provided by an embodiment of the present invention. referring to Figure 13, this embodiment provides an information update device, specifically, the information update device can execute the above-mentioned information update device shown in Figure 1
- the information update method specifically, the information update device may include:
- the first memory 12 is used to store computer programs
- the first processor 11 is configured to run the computer program stored in the first memory 12 to realize:
- the corresponding joint angle setting range of the gimbal is updated, wherein the joint angle setting range is used to identify the allowable operating range of the motor on the gimbal.
- the structure of the information updating apparatus may further include a first communication interface 13, which is used for the electronic device to communicate with other devices or a communication network.
- the first processor 11 when the first processor 11 detects whether there is structural interference in the pan/tilt, the first processor 11 is configured to: obtain the operating state of the motor on the pan/tilt; detect the pan/tilt based on the operating state of the motor on the pan/tilt Whether there is structural interference.
- the first processor 11 when the first processor 11 acquires the operating state of the motor on the pan/tilt, the first processor 11 is configured to: acquire the feedback current of the motor on the pan/tilt; and determine the operating state of the motor based on the feedback current.
- the first processor 11 determines the operating state of the motor based on the feedback current
- the first processor 11 is configured to perform: when the feedback current is greater than or equal to the current threshold, then determine that the operating state is the set locked rotor state; when the feedback current is less than the current threshold, it is determined that the operating state is a normal operating state.
- the first processor 11 determines the operating state of the motor based on the feedback current
- the first processor 11 is configured to perform: when the feedback current is greater than or equal to the current threshold, the statistical feedback current is greater than or equal to the current threshold Corresponding time information, and based on the time information, determine the running state of the motor; when the feedback current is less than the current threshold, determine the running state as the normal running state.
- the first processor 11 when the first processor 11 obtains the operating state of the motor on the pan/tilt, the first processor 11 is used to perform: obtaining the attitude control error of the pan/tilt; determining the operating state of the motor on the pan/tilt based on the attitude control error .
- the first processor 11 determines the operating state of the motor on the gimbal based on the attitude control error
- the first processor 11 is configured to perform: when the attitude control error is greater than or equal to the attitude error threshold, then determine the operating state is to set the locked-rotor state; when the attitude control error is less than the attitude error threshold, it is determined that the operating state is the normal operating state.
- the first processor 11 determines the operating state of the motors on the gimbal based on the attitude control error
- the first processor 11 is configured to perform: when the attitude control error is greater than or equal to the attitude error threshold, then statistical attitude control The error is greater than or equal to the time information corresponding to the attitude error threshold, and based on the time information, the operating state of the motor is determined; when the attitude control error is less than the attitude error threshold, the operating state is determined to be a normal operating state.
- the first processor 11 determines the running state of the motor based on the time information
- the first processor 11 is configured to perform: when the time information is greater than or equal to the time threshold, then determine that the running state is the set locked rotor state; when the time information is less than the time threshold, it is determined that the running state is a normal running state.
- the first processor 11 when the time information is less than the time threshold, the first processor 11 is configured to: clear the time information.
- the first processor 11 when the first processor 11 detects whether there is structural interference in the gimbal based on the running state of the motor on the gimbal, the first processor 11 is configured to execute: the running state of the motor on the gimbal is set to block When it is in the rotating state, it is determined that there is structural interference in the gimbal; when the running state of the motor on the gimbal is normal, it is determined that there is no structural interference in the gimbal.
- the first processor 11 when the first processor 11 updates the joint angle setting range corresponding to the gimbal, the first processor 11 is configured to: determine the current joint angle corresponding to the motor on the gimbal; When the angle is within the joint angle setting range, the joint angle setting range is updated based on the current joint angle.
- the first processor 11 when the first processor 11 updates the joint angle setting range based on the current joint angle, the first processor 11 is configured to: determine the range limit corresponding to the current joint angle; The joint angle setting range is updated.
- the first processor 11 when the first processor 11 determines the range limit corresponding to the current joint angle, the first processor 11 is configured to: acquire the set upper limit value and the set lower limit value of the joint angle setting range ;Determine the first difference and the second difference between the current joint angle and the set upper limit and set lower limit respectively; when the first difference is smaller than the second difference, determine the corresponding value of the current joint angle When the second difference is smaller than the first difference, the range limit corresponding to the current joint angle is determined to be the set lower limit.
- the first processor 11 when the first processor 11 updates the joint angle setting range based on the range limit, the first processor 11 is configured to execute: when the range limit corresponding to the current joint angle is an upper limit value, Then update the upper limit value in the joint angle setting range to the current joint angle; when the range limit corresponding to the current joint angle is the lower limit value, update the lower limit value in the joint angle setting range to the current joint angle horn.
- the joint angle setting ranges corresponding to different motors on the gimbal are the same or different.
- the first processor 11 after updating the joint angle setting range corresponding to the gimbal, is configured to: generate prompt information, the prompt information is used to remind the user that the update operation of the joint angle setting range has been completed .
- the first processor 11 after updating the joint angle setting range corresponding to the gimbal, is configured to: generate an information storage request; determine whether to set the updated joint angle in response to the information storage request; range to store.
- the device shown in FIG. 13 can execute the method of the embodiment shown in FIG. 1-FIG. 10 and FIG. 12.
- the parts not described in detail in this embodiment refer to the relevant descriptions of the embodiments shown in FIG. 1-FIG. 10 and FIG. 12.
- FIG 14 is a schematic structural diagram of a pan-tilt control device provided by an embodiment of the present invention; referring to Figure 14, this embodiment provides a pan-tilt control device, specifically, the pan-tilt control device can execute the above-mentioned diagram
- the cloud platform control method shown in 11, specifically, the cloud platform control device may include:
- the second memory 22 is used to store computer programs
- the second processor 21 is configured to run the computer program stored in the second memory 22 to realize:
- the structure of the pan/tilt control device may further include a second communication interface 23 for the electronic device to communicate with other devices or a communication network.
- the device shown in FIG. 14 can execute the method of the embodiment shown in FIG. 11-FIG. 12 .
- the parts not described in detail in this embodiment refer to the relevant description of the embodiment shown in FIG. 11-FIG. 12 .
- an embodiment of the present invention provides a computer storage medium for storing computer software instructions used by electronic devices, which includes the programs involved in executing the information updating methods shown in the above-mentioned Figures 1-10 and Figure 12 .
- An embodiment of the present invention provides a computer storage medium for storing computer software instructions used by electronic devices, which includes programs for executing the above-mentioned pan/tilt control method shown in FIGS. 11-12 .
- Fig. 15 is a schematic structural view of a pan-tilt provided by an embodiment of the present invention; referring to the accompanying drawing 15, the present embodiment provides a pan-tilt, which can be any of the following: two-axis pan-tilt, three-axis pan-tilt Axis gimbal, four-axis gimbal or other multi-axis gimbal, etc.
- the gimbal may include:
- the information updating device 32 in the above embodiment corresponding to FIG. 13 is arranged on the main body 32 of the pan/tilt.
- the pan-tilt main body 31 is different with the type of the pan-tilt, for example, when the pan-tilt is a handheld pan-tilt, the pan-tilt main body 31 can be a handle; when the pan-tilt is an airborne pan-tilt, the pan-tilt main body 31 can be a For the fuselage equipped with gimbal. It can be understood that the pan/tilt includes but is not limited to the types described above.
- Fig. 16 is a schematic structural diagram of another pan/tilt provided by the embodiment of the present invention.
- the present embodiment provides another pan/tilt, which can be any one of the following: two-axis pan/tilt , three-axis gimbal, four-axis gimbal or other multi-axis gimbals, etc.
- the gimbal may include:
- the motor 42 is arranged on the main body 41 of the platform;
- the pan-tilt control device 43 in the above-mentioned embodiment in FIG. 14 is arranged on the pan-tilt main body 41 for controlling the motor 42 .
- the pan-tilt main body 41 is different with the type of the pan-tilt, for example, when the pan-tilt is a handheld pan-tilt, the pan-tilt main body 41 can be a handle; when the pan-tilt is an airborne pan-tilt, the pan-tilt main body 41 can be a For the fuselage equipped with gimbal. It can be understood that the pan/tilt includes but is not limited to the types described above.
- the disclosed related detection devices and methods can be implemented in other ways.
- the above-described embodiment of the detection device is only illustrative.
- the division of the modules or units is only a logical function division.
- the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of detection devices or units may be in electrical, mechanical or other forms.
- the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or may be distributed to multiple network units. Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
- each functional unit in each embodiment of the present invention may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
- the above-mentioned integrated units can be implemented in the form of hardware or in the form of software functional units.
- the integrated unit is realized in the form of a software function unit and sold or used as an independent product, it can be stored in a computer-readable storage medium.
- the computer software product is stored in a storage medium , including several instructions for causing a computer processor (processor) to execute all or part of the steps of the method described in each embodiment of the present invention.
- the aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), magnetic disk or optical disk and other media that can store program codes.
Landscapes
- Engineering & Computer Science (AREA)
- Aviation & Aerospace Engineering (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Studio Devices (AREA)
Abstract
一种信息更新方法、云台控制方法、装置、云台及存储介质。其中,信息更新方法包括:检测云台是否存在结构干涉(S101);在所述云台存在结构干涉时,则对所述云台所对应的关节角设定范围进行更新,其中,所述关节角设定范围用于标识所述云台上电机的允许运行范围(S102)。该方法通过检测云台是否存在结构干涉,在所述云台存在结构干涉时,则对所述云台所对应的关节角设定范围进行更新,更新后的关节角设定范围避免因云台机身与负载之间可能会发生结构干涉而导致容易撞坏位于云台上的负载的情况,进而保证云台和位于云台上的负载运行的稳定性,进一步提高了该信息更新方法使用的安全可靠性。
Description
本发明实施例涉及云台技术领域,尤其涉及一种信息更新方法、云台控制方法、装置、云台及存储介质。
随着科学技术的飞速发展,云台的应用越来越广泛,对于能够更换负载(例如:相机、镜头、补光灯等等)的云台而言,在更换负载之后,如果负载的外形尺寸有较大的改变,那么,在云台运行的过程中,云台机身与负载之间可能会发生结构干涉。如果负载与云台机身之间发生结构干涉,这样容易引起电机的过热保护启动而直接卸力,进而会增加撞坏负载或者云台机身的风险。
发明内容
本发明实施例提供了一种信息更新方法、云台控制方法、装置、云台及存储介质,可以解决现有技术中对于能够更换负载的云台而言,在更换负载之后,因云台机身与负载之间可能会发生结构干涉而增加撞坏负载或者云台机身的风险的问题。
本发明的第一方面是为了提供一种信息更新方法,包括:
检测云台是否存在结构干涉;
在所述云台存在结构干涉时,则对所述云台所对应的关节角设定范围进行更新,其中,所述关节角设定范围用于标识所述云台上电机的允许运行范围。
本发明的第二方面是为了提供一种云台控制方法,包括:
获取云台上电机的运行状态;
在所述运行状态为设定堵转状态时,则对所述云台所对应的关节角设定范围进行更新,获得更新后关节角范围,其中,所述关节角设定范围用于标识所述云台上电机的允许运行范围;
根据所述更新后关节角范围,对所述云台进行控制。
本发明的第三方面是为了提供一种信息更新装置,包括:
存储器,用于存储计算机程序;
处理器,用于运行所述存储器中存储的计算机程序以实现:
检测云台是否存在结构干涉;
在所述云台存在结构干涉时,则对所述云台所对应的关节角设定范围进行更新,其中,所述关节角设定范围用于标识所述云台上电机的允许运行范围。
本发明的第四方面是为了提供一种云台控制装置,包括:
存储器,用于存储计算机程序;
处理器,用于运行所述存储器中存储的计算机程序以实现:
获取云台上电机的运行状态;
在所述运行状态为设定堵转状态时,则对所述云台所对应的关节角设定范围进行更新,获得更新后关节角范围,其中,所述关节角设定范围用于标识所述云台上电机的允许运行范围;
根据所述更新后关节角范围,对所述云台进行控制。
本发明的第五方面是为了提供一种计算机可读存储介质,所述存储介质为计算机可读存储介质,该计算机可读存储介质中存储有程序指令,所述程序指令用于第一方面所述的信息更新方法。
本发明的第六方面是为了提供一种计算机可读存储介质,所述存储介质为计算机可读存储介质,该计算机可读存储介质中存储有程序指令,所述程序指令用于第一方面所述的云台控制方法。
本发明的第七方面是为了提供一种云台,包括:
云台主体;
上述第三方面所述的信息更新装置,设置于所述云台主体上。
本发明的第八方面是为了提供一种云台,包括:
云台主体;
电机,设置于所述云台主体上;
上述第四方面所述的云台控制装置,设置于所述云台主体上,用于对所述电机进行控制。
本发明实施例提供的技术方案,通过检测云台是否存在结构干涉,在所 述云台存在结构干涉时,则对所述云台所对应的关节角设定范围进行更新,更新后的关节角设定范围能够避免因云台机身与负载之间可能会发生结构干涉的情况,进而会解决因云台与负载之间发生结构干涉而导致容易撞坏负载或者云台机身的问题,这样有效地保证了云台和位于云台上的负载运行的安全程度,进一步提高了该信息更新方法使用的稳定可靠性。
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1为本发明实施例提供的一种信息更新方法的流程示意图;
图2为本发明实施例提供的一种四轴云台的结构示意图;
图3为本发明实施例提供的检测云台是否存在结构干涉的流程示意图;
图4为本发明实施例提供的获取所述云台上电机的运行状态的流程示意图一;
图5为本发明实施例提供的获取所述云台上电机的运行状态的流程示意图二;
图6为本发明实施例提供的对所述云台所对应的关节角设定范围进行更新的流程示意图;
图7为本发明实施例提供的基于所述当前关节角对所述关节角设定范围进行更新的示意图一;
图8为本发明实施例提供的基于所述当前关节角对所述关节角设定范围进行更新的示意图二;
图9为本发明实施例提供的确定所述当前关节角所对应的范围限值的流程示意图;
图10为本发明实施例提供的另一种信息更新方法的流程示意图;
图11为本发明实施例提供的一种云台控制方法的流程示意图;
图12为本发明应用实施例提供的一种云台控制方法的流程示意图;
图13为本发明实施例提供的一种信息更新装置的结构示意图;
图14为本发明实施例提供的一种云台控制装置的结构示意图;
图15为本发明实施例提供的一种云台的结构示意图;
图16为本发明实施例提供的另一种云台的结构示意图。
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。
为了能够理解本实施例中技术方案的具体实现过程,对相关技术进行说明:
对于可更换负载的云台而言,用户可以根据设计需求和应用需求对设置于云台上的负载进行更换。在更换负载之后,如果负载的外形尺寸有较大的改变或者负载的重量有较大的改变,这样云台机身与负载之间可能会发生结构干涉。再或者,用户可以根据设计需求和应用需求在云台上增加或者更改一些辅助模块或者辅助模组,使得云台结构发生变化,此时云台机身与负载之间也可能会发生结构干涉,进而容易使得电机触发堵转保护和自动卸力操作,在电机自动卸力之后,在重力作用下容易增加撞坏负载或者云台机身的风险。
举例来说,云台上设置有镜头A,此时云台所允许的安全转动范围可以为(0-90°),在将云台上的镜头A更换为镜头B时,镜头B的尺寸大于镜头A的尺寸,此时云台所允许的安全转动范围可以为(0-60°),如果继续按照上述更换镜头之前的转动范围来控制云台进行旋转时,云台转动至60°之后就会出现堵转情况,即云台卡在60°的位置无法进行转动,此时,镜头就已经与机身发生结构干涉,这时会引起电机触发堵转保护和自动卸力操作,在电机自动卸力之后,在重力作用下容易引起镜头损坏。
为了解决上述技术问题,本实施例提供了一种信息更新方法、云台控制方法、装置、云台及存储介质,其中,信息更新方法可以包括:检测云台是否存在结构干涉,在云台存在结构干涉时,则对云台所对应的关节角设定范 围进行更新,其中,关节角设定范围用于标识云台上电机的允许运行范围。
具体的,可以通过获取云台上电机的运行状态来检测云台是否存在结构干涉的情况,若云台存在结构干涉时,则说明云台所对应的关节角设定范围不能保证云台的安全运行,因此需要对云台所对应的关节角设定范围进行更新,这样可以有效地避免由于电机协力而引起负载或者云台撞击损坏的情况,进而提高了该信息更新方法的实用性。
下面结合附图,对本发明中一种信息更新方法、云台控制方法、装置、云台及存储介质的一些实施方式作详细说明。在各实施例之间不冲突的情况下,下述的实施例及实施例中的特征可以相互组合。
图1为本发明实施例提供的一种信息更新方法的流程示意图;参考附图1所示,本实施例提供了一种信息更新方法,其中,信息更新方法的执行主体可以为信息更新装置,该信息更新装置可以应用于云台技术领域,即信息更新装置可以设置于云台主体上,或者,信息更新装置可以设置于用于对云台进行控制的控制终端上。另外,该信息更新装置可以实现为软件、或者软件和硬件的组合,具体的,该信息更新方法可以包括以下步骤:
S101:检测云台是否存在结构干涉。
其中,结构干涉是指两个结构之间的距离小于或等于设定间隙值,上述的设定间隙值并一定是零值,简单来说,结构干涉是指两个部件之间相互接触。另外,上述的云台可以为二轴云台、三轴云台、四轴云台等等,在云台为四轴云台时,参考附图2所示,四轴云台可以包括云台主体10、设置于云台主体10上的镜头20和提手30,在更换镜头20时,更换后的镜头20和提手30之间可能会出现结构干涉,即在云台运行的过程中,更换后的镜头20可能会与提手30之间可能出现结构碰撞的情况,若更换后的镜头20与提手30之间发生结构碰撞,则可以确定云台存在结构干涉的情况;若更换后的镜头20与提手30之间未发生结构碰撞,则可以确定云台不存在结构干涉的情况。
需要注意的是,除了更换镜头操作可能会使得云台发生结构干涉的情况之外,在更换位于云台上的负载也可能会使得云台存在结构干涉,其中,设置于云台上的负载可以包括以下任意之一:手机、平板电脑、摄像机、追光灯、测距传感器等等重量不同的负载。例如,在将云台上设置的相机1更换为相机2时,可能会使得云台存在结构干涉,即相机2与云台主体之间可能会存在结构干涉。或者,在云台的结构发生变化时,也可能会使得云台存在结构 干涉,例如,在云台上增加某一配件或者减少某一配件时,云台的结构发生变化,云台上的负载与云台主体之间可能会存在结构干涉。
承接上述描述内容可知,对于云台和位于云台上的负载而言,在结构发生改变时,容易导致云台存在结构干涉的情况,因此,检测云台是否存在结构干涉的实现方式存在多种。例如:可以检测云台上的负载是否发生变化,在负载发生变化时,则确定更换后负载与更换前负载之间的重量差值和/或体积差值,基于重量差值和/或体积差值确定云台是否存在结构干涉,具体的,在重量差值和/或体积差值大于或等于设定的重量阈值和/或体积阈值时,则可以确定云台存在结构干涉情况;在重量差值和/或体积差值小于设定的重量阈值和/或体积阈值时,则可以确定云台不存在结构干涉情况。或者,可以获取云台的结构特征,检测云台的结构特征是否发生变化,在云台的结构特征发生变化时,则可以确定云台的结构特征的变化程度,在结构特征的变化程度大于或等于预设阈值时,则可以确定云台存在结构干涉情况;在结构特征的变化程度小于预设阈值时,则可以确定云台不存在结构干涉情况。
可以理解的是,检测云台是否存在结构干涉的实现方式并不限于上述所描述的内容,本领域技术人员也可以根据具体的应用场景或者应用需求对云台是否存在结构干涉的实现方式进行配置,在此不再赘述。
S102:在云台存在结构干涉时,则对云台所对应的关节角设定范围进行更新,其中,关节角设定范围用于标识云台上电机的允许运行范围。
其中,对于不同类型的云台而言,云台上可以设置有不同数量的用于驱动云台轴臂进行运动的电机,例如:对于二轴云台而言,云台上可以设置有两个用于驱动云台轴臂进行运动的电机(偏航yaw电机、横滚roll电机);对于三轴云台而言,云台上可以设置有三个用于驱动云台轴臂进行运动的电机(偏航yaw电机、横滚roll电机、俯仰pitch电机);对于四轴云台而言,云台上可以设置有四个用于驱动云台轴臂进行运动的电机。可以理解的是,无论是何种类型的云台,对于云台上的电机而言,云台上不同电机所对应的关节角设定范围相同或不同,上述的关节角设定范围用于标识云台上电机的允许运行范围。
举例来说,对于三轴云台而言,横滚ROLL电机所对应的关节角设定范围可以为[roll_down_limit,-30deg]||[+30deg,roll_up_limit],俯仰PITCH电机所对应的关节角设定范围可以为[pitch_down_limit,-50deg]|| [+30deg,pitch_up_limit],偏航YAW电机所对应的关节角设定范围可以为[yaw_down_limit,-50deg]||[+50deg,yaw_up_limit]。
在云台存在结构干涉情况时,即云台上的负载可能会与云台主体之间存在结构干涉,为了避免因云台机身与负载之间可能会发生结构干涉而导致容易撞坏位于云台上的负载的情况,则可以对云台所对应的关节角设定范围进行更新操作。在一些实例中,对云台所对应的关节角设定范围进行缩小处理,获得缩小后的关节角设定范围,所获得的缩小后的关节角设定范围能够避免因云台机身与负载之间可能会发生结构干涉而导致容易撞坏位于云台上的负载的情况,进而保证云台和位于云台上的负载运行的安全可靠性。
在另一些实例中,在对云台所对应的关节角设定范围进行更新之后,本实施例中的方法还可以包括:生成提示信息,提示信息用于提示用户已完成对关节角设定范围的更新操作。
具体的,在对云台所对应的关节角设定范围进行更新操作之后,为了能够使得用户可以及时地获知到信息更新过程的进度信息,则可以生成提示信息,该提示信息可以通过显示器进行显示,或者该提示信息可以通过设定终端进行显示,以用于提示用户已完成对关节角设定范围的更新操作,这样有效地提高了该信息更新方法的实用性。
本实施例提供的信息更新方法,通过检测云台是否存在结构干涉,在云台存在结构干涉时,则对云台所对应的关节角设定范围进行更新,更新后的关节角设定范围能够避免因云台机身与负载之间可能会发生结构干涉的情况,进而会解决因云台与负载之间发生结构干涉而导致容易撞坏负载或者云台机身的问题,这样有效地保证了云台和位于云台上的负载运行的安全程度,进一步提高了该信息更新方法使用的稳定可靠性。
图3为本发明实施例提供的检测云台是否存在结构干涉的流程示意图;参考附图3所示,本实施例提供了一种检测云台是否存在结构干涉的具体实现方式,具体的,本实施例中的检测云台是否存在结构干涉可以包括:
步骤S301:获取云台上电机的运行状态。
其中,对于云台上的任意一个电机而言,云台上电机的运行状态可以包括:正常运转状态和设定堵转状态,在云台上电机的运行状态为正常运转状态时,则可以确定云台不存在结构干涉情况。在云台上的电机的运行状态为设定堵转状态时,则可以确定云台存在结构干涉情况,可以理解的是,云台 上电机的不同运行状态与云台是否存在结构干涉情况之间存在映射关系。因此,为了能够准确地检测云台是否存在结构干涉的情况,则可以获取云台上电机的运行状态,在一些实例中,云台上电机的运行状态可以与其他任意之一的参数相关:云台上电机的力矩信息、云台上电机的反馈电流、云台的姿态控制误差等等,具体实现时,可以通过设定传感器(力矩检测器、电流传感器、惯性测量单元IMU等)来获取云台上电机的运行状态。
步骤S302:基于云台上电机的运行状态,检测云台是否存在结构干涉。
在获取到云台上电机的运行状态之后,可以对云台上电机的运行状态进行分析处理,以检测云台是否存在结构干涉的情况,具体的,可以先获取云台上电机的运行状态与云台是否存在结构干涉之间的映射关系,通过云台上电机的运行状态和上述的映射关系来检测云台是否存在结构干涉。在一些实例中,基于云台上电机的运行状态,检测云台是否存在结构干涉可以包括:在云台上电机的运行状态为设定堵转状态时,则确定云台存在结构干涉;在云台上电机的运行状态为正常运行状态时,则确定云台不存在结构干涉。
其中,云台上电机的运行状态可以包括设定堵转状态或者正常运行状态,而在云台上电机的运行状态为设定堵转状态时,则可以基于云台上电机的设定堵转状态来确定云台存在结构干涉情况;在云台上电机的运行状态为正常运行状态时,则可以基于云台上电机的正常运行状态来确定云台不存在结构干涉情况,进而有效地实现了对云台是否存在结构干涉进行检测的准确可靠性。
本实施例中,通过获取云台上电机的运行状态,基于云台上电机的运行状态检测云台是否存在结构干涉,实现方式简单、可靠,有效地实现了对云台是否存在结构干涉操作进行检测操作,进一步提高了信息更新方法使用的安全可靠性。
图4为本发明实施例提供的获取云台上电机的运行状态的流程示意图一;参考附图4所示,本实施例提供了一种获取云台上电机的运行状态的实现方式,具体的,本实施例中的获取云台上电机的运行状态可以包括:
步骤S401:获取云台上电机的反馈电流。
步骤S402:基于反馈电流,确定电机的运行状态。
在云台上的负载与云台机身之间发生结构干涉时,电机容易触发堵转保护操作,在电机触发堵转保护操作之后,电机所对应的反馈电流会比较大。 在云台上的负载与云台机身之间未发生结构干涉时,电机则不会触发堵转保护操作,此时,电机所对应的反馈电流会比较小,因此,可以通过云台上电机的反馈电流来确定云台上电机的运行状态。
具体的,在云台运行的过程中,可以通过电流传感器来获取云台上电机的反馈电流,在获取到反馈电流之后,可以对反馈电流进行分析处理,以确定电机的运行状态。在一些实例中,基于反馈电流,确定电机的运行状态可以包括:在反馈电流大于或等于电流阈值时,则确定运行状态为设定堵转状态;在反馈电流小于电流阈值时,则确定运行状态为正常运转状态。
其中,预先设置有用于对反馈电流进行分析处理的电流阈值,该电流阈值可以存储在设定区域中,通过访问设定区域可以获取电流阈值。在获取到反馈电流之后,可以将反馈电流与电流阈值进行分析比较,在反馈电流大于或等于电流阈值时,则说明此时的电机的反馈电流较高,进而可以确定云台上电机的运行状态为设定堵转状态;在反馈电流小于电流阈值时,则说明此时的电机的反馈电流较低,进而可以确定云台上电机的运行状态为正常运行状态。
在另一些实例中,基于反馈电流,确定电机的运行状态可以包括:在反馈电流大于或等于电流阈值时,则统计反馈电流大于或等于电流阈值所对应的时间信息,并基于时间信息,确定电机的运行状态;在反馈电流小于电流阈值时,则确定运行状态为正常运转状态。
在获取到反馈电流之后,可以将反馈电流与电流阈值进行分析比较,在反馈电流大于或等于电流阈值时,为了能够准确地对电机的运行状态进行检测,则可以通过计时器来统计反馈电流大于或等于电流阈值所对应的时间信息,而后对所统计的时间信息进行分析处理,以确定电机的运行状态。其中,基于时间信息,确定电机的运行状态可以包括:在时间信息大于或等于时间阈值时,则确定运行状态为设定堵转状态;在时间信息小于时间阈值时,则确定运行状态为正常运转状态。在反馈电流小于电流阈值时,则可以确定云台上电机的运行状态为正常运行状态。
具体的,预先设置有用于对所统计的时间信息进行分析处理的时间阈值,该时间阈值可以存储在设定区域中,通过访问设定区域可以获取时间阈值,在获取到时间信息之后,可以将时间信息与时间阈值进行分析比较,在时间信息大于或等于时间阈值时,则说明电机出现反馈电流较高的时间较长,进 而可以确定电机的运行状态为设定堵转状态;在时间信息小于时间阈值时,则说明电机可能是因为误检测所引起的反馈电流较高的时间较短,进而可以确定电机的运行状态为正常运行状态。
在另一些实例中,在时间信息小于时间阈值时,本实施例中的方法还可以包括:将时间信息清零。具体的,为了方便对云台上电机的运行状态进行准确地分析识别操作,在时间信息小于时间阈值时,则可以将所统计的时间信息清零,以便在下一时间段对云台上电机的运行状态进行准确地识别操作。
本实施例中,通过获取云台上电机的反馈电流,而后基于反馈电流来确定电机的运行状态,从而有效地保证了对电机的运行状态进行确定的准确可靠性,进一步提高了信息更新方法使用的灵活可靠性。
图5为本发明实施例提供的获取云台上电机的运行状态的流程示意图二;参考附图5所示,本实施例提供了另一种获取云台上电机的运行状态的实现方式,具体的,本实施例中的获取云台上电机的运行状态可以包括:
步骤S501:获取云台的姿态控制误差。
步骤S502:基于姿态控制误差确定云台上电机的运行状态。
在云台上的负载与云台机身之间发生结构干涉时,云台无法正常运转到预设的目标姿态,即云台所能够运转的当前姿态与目标姿态之间存在姿态控制误差,因此可以通过获取云台的姿态控制误差来确定云台上电机的运行状态。具体的,在云台运行的过程中,可以通过惯性测量单元来获取云台上电机的当前运行姿态,基于当前运行姿态与目标运行姿态来确定云台的姿态控制误差,可以理解的是,在当前运行姿态与目标运行姿态之间的姿态偏差越大时,云台的姿态控制误差较大;在当前运行姿态与目标运行姿态之间的姿态偏差越小时,云台的姿态控制误差较小。
在获取到云台的姿态控制误差之后,可以对姿态控制误差进行分析处理,以确定云台上电机的运行状态。在一些实例中,基于姿态控制误差确定云台上电机的运行状态可以包括:在姿态控制误差大于或等于姿态误差阈值时,则确定运行状态为设定堵转状态;在姿态控制误差小于姿态误差阈值时,则确定运行状态为正常运转状态。
具体的,预先设置有用于对姿态控制误差进行分析处理的姿态误差阈值,该姿态误差阈值可以存储在设定区域中,通过访问设定区域可以获取姿态误差阈值。在获取到姿态控制误差之后,可以将姿态控制误差与姿态误差阈值 进行分析比较,在姿态控制误差大于或等于姿态误差阈值时,则说明此时的云台的姿态控制误差较高,进而可以确定云台上电机的运行状态为设定堵转状态;在姿态控制误差小于姿态误差阈值时,则说明此时的云台的姿态控制误差较低,进而可以确定云台上电机的运行状态为正常运行状态。
在另一些实例中,基于姿态控制误差确定云台上电机的运行状态可以包括:在姿态控制误差大于或等于姿态误差阈值时,则统计姿态控制误差大于或等于姿态误差阈值所对应的时间信息,并基于时间信息,确定电机的运行状态;在姿态控制误差小于姿态误差阈值时,则确定运行状态为正常运转状态。
在获取到姿态控制误差之后,可以将姿态控制误差与姿态误差阈值进行分析比较,在姿态控制误差大于或等于姿态误差阈值时,为了能够准确地对电机的运行状态进行检测,则可以通过计时器来统计姿态控制误差大于或等于姿态误差阈值所对应的时间信息,而后对所统计的时间信息进行分析处理,以确定电机的运行状态。其中,基于时间信息,确定电机的运行状态可以包括:在时间信息大于或等于时间阈值时,则确定运行状态为设定堵转状态;在时间信息小于时间阈值时,则确定运行状态为正常运转状态。在反馈电流小于电流阈值时,则可以确定云台上电机的运行状态为正常运行状态。
具体的,预先设置有用于对所统计的时间信息进行分析处理的时间阈值,该时间阈值可以存储在设定区域中,通过访问设定区域可以获取时间阈值,在获取到时间信息之后,可以将时间信息与时间阈值进行分析比较,在时间信息大于或等于时间阈值时,则说明云台出现姿态控制误差较高的时间较长,进而可以确定电机的运行状态为设定堵转状态;在时间信息小于时间阈值时,则说明电机可能是因为误检测所引起的出现姿态控制误差较高的时间较短,进而可以确定电机的运行状态为正常运行状态。
在另一些实例中,在时间信息小于时间阈值时,本实施例中的方法还可以包括:将时间信息清零。具体的,为了方便对云台上电机的运行状态进行准确地分析识别操作,在时间信息小于时间阈值时,则可以将所统计的时间信息清零,以便在下一时间段对云台上电机的运行状态进行准确地识别操作。
本实施例中,通过获取云台的姿态控制误差,而后基于姿态控制误差确定云台上电机的运行状态,同样有效地保证了对电机的运行状态进行确定的准确可靠性,进一步提高了信息更新方法使用的灵活可靠性。
需要注意的是,获取云台上电机的运行状态的实现方式并不限于上述所描述的内容,本领域技术人员也可以采用其他的实现方式来获取云台上电机的运行状态,例如,获取云台上电机的运行状态可以包括:获取云台上电机的力矩值;基于力矩值,确定电机的运行状态。
具体的,对于云台上的电机而言,在正常运转状态下的电机的力矩值与设定堵转状态下的电机的力矩值不同,一般情况下,处于设定堵转状态的电机的力矩值大于处于正常运转状态的电机的力矩值。因此,可以通过力矩检测器获取云台上电机的力矩值,而后对力矩值进行分析处理,以确定电机的运行状态。在一些实例中,基于力矩值,确定电机的运行状态可以包括:在力矩值大于或等于力矩阈值时,则确定运行状态为设定堵转状态;在力矩值小于力矩阈值时,则确定运行状态为正常运转状态。在又一些实例中,基于力矩值,确定电机的运行状态可以包括:在力矩值大于或等于力矩阈值时,则统计力矩值大于或等于力矩阈值所对应的时间信息,并基于时间信息,确定电机的运行状态;在力矩值小于力矩阈值时,则确定运行状态为正常运转状态。
本实施例中,通过获取云台上电机的力矩值;而后基于力矩值来确定电机的运行状态,同样有效地保证了对电机的运行状态进行确定的准确可靠性,进一步提高了信息更新方法使用的灵活可靠性。
图6为本发明实施例提供的对云台所对应的关节角设定范围进行更新的流程示意图;参考附图6所示,本实施例提供了一种对云台所对应的关节角设定范围进行更新的实现方式,具体的,本实施例中的对云台所对应的关节角设定范围进行更新可以包括:
步骤S601:确定与云台上电机相对应的当前关节角。
步骤S602:在当前关节角位于关节角设定范围内时,则基于当前关节角对关节角设定范围进行更新。
其中,在云台上设置有惯性测量单元IMU或者角度传感器,通过IMU或者角度传感器可以获取与云台上电机相对应的当前关节角,在获取到当前关节角之后,可以将当前关节角与关节角设定范围进行分析比较,在当前关节角位于关节角设定范围内时,即此时云台上电机所能够运行到的当前关节角小于关节角设定范围的范围上限值、且大于关节角设定范围的范围下限值,进而可以基于当前关节角对关节角设定范围进行更新操作。在一些实例中,基 于当前关节角对关节角设定范围进行更新可以包括:确定当前关节角所对应的范围限值;基于范围限值对关节角设定范围进行更新。
具体的,在获取到当前关节角之后,可以将当前关节角与关节角设定范围进行分析比较,以确定当前关节角所对应的范围限值,该范围限值即为关节角设定范围中距离当前关节角较近的限值,该范围限值可以为范围上限值或者范围下限值,举例来说,参考附图7所示,若获取到的当前关节角为设置于关节角设定范围中的关节角1时,由于关节角1与关节角设定范围中的范围下限值之间的距离比较近,则可以确定关节角1所对应的范围限值为范围下限值。参考附图8所示,若获取到的当前关节角为设置于关节角设定范围中的关节角2时,由于关节角2与关节角设定范围中的范围上限值之间的距离比较近,则可以确定关节角2所对应的范围限值为范围上限值。
在获取到与当前关节角所对应的范围限值之后,可以基于范围限值对关节角设定范围进行更新,在一些实例中,基于范围限值对关节角设定范围进行更新可以包括:在当前关节角所对应的范围限值为上限值时,则将关节角设定范围中的上限值更新为当前关节角;在当前关节角所对应的范围限值为下限值时,则将关节角设定范围中的下限值更新为当前关节角。
具体的,参考附图8所示,在当前关节角所对应的范围限值为上限值时,则可以将关节角设定范围中的上限值更新为当前关节角,从而可以获得更新后的关节角设定范围,该更新后的关节角设定范围小于初始的关节角设定范围,从而实现了对关节角设定范围进行缩小操作。参考附图7所示,在当前关节角所对应的范围限值为下限值时,则可以将关节角设定范围中的下限值更新为当前关节角,从而可以获得更新后的关节角设定范围,该更新后的关节角设定范围小于初始的关节角设定范围,从而实现了将关节角设定范围进行缩小操作。
本实施例中,通过确定与云台上电机相对应的当前关节角,在当前关节角位于关节角设定范围内时,则可以基于当前关节角对关节角设定范围进行更新,从而有效地实现了对关节角设定范围进行准确地更新操作,进一步提高了信息更新方法使用的稳定可靠性。
图9为本发明实施例提供的确定当前关节角所对应的范围限值的流程示意图;参考附图9所示,本实施例提供了一种确定当前关节角所对应的范围限值的实现方式,具体的,本实施例中的确定当前关节角所对应的范围限值可 以包括:
步骤S901:获取关节角设定范围的设定上限值和设定下限值。
步骤S902:确定当前关节角分别与设定上限值和设定下限值之间的第一差值和第二差值。
步骤S903:在第一差值小于第二差值时,则确定当前关节角所对应的范围限值为设定上限值。
步骤S904:在第二差值小于第一差值时,则确定当前关节角所对应的范围限值为设定下限值。
其中,在获取到关节角设定范围之后,可以对关节角设定范围进行分析处理,以确定关节角设定范围的设定上限值和设定下限值。在确定设定上限值和设定下限值之后,可以对设定上限值、设定下限值和当前关节角进行分析比较,从而可以分别确定当前关节角与设定上限值之间的第一差值和当前关节角与设定下限值之间的第二差值。
在获取到第一差值和第二差值之后,可以将第一差值与第二差值进行分析比较,在第一差值小于第二差值时,则说明当前关节角与设定上限值之间的距离比较近,进而可以确定当前关节角所对应的范围限值为设定上限值。在第二差值小于第一差值时,则说明当前关节角与设定下限值之间的距离比较近,进而可以确定当前关节角所对应的范围限值为设定下限值。
本实施例中,通过获取关节角设定范围的设定上限值和设定下限值,而后确定当前关节角分别与设定上限值和设定下限值之间的第一差值和第二差值,并对当前关节角、第一差值和第二差值之间进行分析比较,从而可以准确地确定当前关节角所对应的范围限值。
图10为本发明实施例提供的另一种信息更新方法的流程示意图;参考附图10所示,在对云台所对应的关节角设定范围进行更新之后,本实施例中的方法还可以包括:
步骤S1001:生成信息存储请求。
步骤S1002:响应于信息存储请求,确定是否对更新后的关节角设定范围进行存储。
其中,在对云台所对应的关节角设定范围进行更新操作之后,可以自动生成信息存储请求,该信息存储请求可以为存储询问请求,即询问用户是否对更新操作之后的关节角设定范围进行存储操作。在生成信息存储请求之后, 用户可以对信息存储请求输入执行操作,执行操作可以为点击操作、滑动操作或者双击操作等等,该执行操作可以包括:用于对更新后的关节角设定范围进行存储的第一执行操作、无需对更新后的关节角设定范围进行存储的第二执行操作,在获取到针对信息存储请求的执行操作,则可以基于执行操作确定是否对更新后的关节角设定范围进行存储操作。
具体的,在获取到第一执行操作时,则可以对更新后的关节角设定范围进行存储操作,此时,在将云台系统进行关机开机操作之后,云台系统所对应的默认关节角设定范围为更新后的关节角设定范围。在获取到第二执行操作时,则无需对更新后的关节角设定范围进行存储操作,此时,在将云台系统进行关机开机操作之后,云台系统所对应的默认关节角设定范围仍为之前存储的关节角设定范围。
本实施例中,通过生成信息存储请求,基于信息存储请求来确定是否对更新后的关节角设定范围进行存储,从而有效地实现了在用户存在信息存储需求时,则可以对更新后的关节角设定范围进行存储操作,这样方便用户基于更新后的关节角设定范围对云台进行控制;在用户不存在信息存储需求时,则无需对更新后的关节角设定范围进行存储操作,此时可以实现无论云台更换了什么类型的负载,在将云台重新开机之后,均可以利用预先存储的默认的关节角设定范围来控制云台进行运行,进一步提高了对云台进行控制的灵活可靠性。
图11为本发明实施例提供的一种云台控制方法的流程示意图;参考附图11所示,本实施例提供了一种云台控制方法,其中,云台控制方法的执行主体可以为云台控制装置,该云台控制装置可以应用于云台技术领域,即云台控制装置可以对云台进行控制,另外,该云台控制装置可以实现为软件、或者软件和硬件的组合,具体的,该云台控制方法可以包括以下步骤:
步骤S1101:获取云台上电机的运行状态。
其中,对于云台上的任意一个电机而言,云台上电机的运行状态可以包括:正常运转状态和设定堵转状态,在云台上电机的运行状态为正常运转状态时,则可以确定云台不存在结构干涉情况。在云台上的电机的运行状态为设定堵转状态时,则可以确定云台存在结构干涉情况,可以理解的是,云台上电机的不同运行状态与云台是否存在结构干涉情况之间存在映射关系。因此,为了能够准确地检测云台是否存在结构干涉的情况,则可以获取云台上 电机的运行状态,在一些实例中,云台上电机的运行状态可以与其他任意之一的参数相关:云台上电机的力矩信息、云台上电机的反馈电流、云台的姿态控制误差等等,具体实现时,可以通过设定传感器(力矩检测器、电流传感器、惯性测量单元IMU等)来获取云台上电机的运行状态。
具体的,本实施例中“获取云台上电机的运行状态”的具体实现方式、实现原理和实现效果与上述实施例中“获取云台上电机的运行状态”的具体实现方式、实现原理和实现效果相类似,具体可参考上述陈述内容,在此不再赘述。
步骤S1102:在运行状态为设定堵转状态时,则对云台所对应的关节角设定范围进行更新,获得更新后关节角范围,其中,关节角设定范围用于标识云台上电机的允许运行范围。
其中,对于不同类型的云台而言,云台上可以设置有不同数量的用于驱动云台轴臂进行运动的电机,例如:对于二轴云台而言,云台上可以设置有两个用于驱动云台轴臂进行运动的电机(偏航yaw电机、横滚roll电机);对于三轴云台而言,云台上可以设置有三个用于驱动云台轴臂进行运动的电机(偏航yaw电机、横滚roll电机、俯仰pitch电机);对于四轴云台而言,云台上可以设置有四个用于驱动云台轴臂进行运动的电机。可以理解的是,无论是何种类型的云台,对于云台上的电机而言,云台上不同电机所对应的关节角设定范围相同或不同,上述的关节角设定范围用于标识云台上电机的允许运行范围。
举例来说,对于三轴云台而言,横滚ROLL电机所对应的关节角设定范围可以为[roll_down_limit,-30deg]||[+30deg,roll_up_limit],俯仰PITCH电机所对应的关节角设定范围可以为[pitch_down_limit,-50deg]||[+30deg,pitch_up_limit],偏航YAW电机所对应的关节角设定范围可以为[yaw_down_limit,-50deg]||[+50deg,yaw_up_limit]。
云台上电机的运行状态可以包括设定堵转状态或者正常运行状态,而云台上电机的不同运行状态可以对应有云台上不同结构之间的相互状态,具体的,在云台上电机的运行状态为设定堵转状态时,则确定云台存在结构干涉,此时则需要对云台所对应的关节角设定范围进行更新,获得更新后关节角范围;在云台上电机的运行状态为正常运行状态时,则确定云台不存在结构干涉,此时无需对云台所对应的关节角设定范围进行更新。
具体的,在云台存在结构干涉情况时,即云台上的负载可能会与云台主体之间存在结构干涉时,为了避免因云台机身与负载之间可能会发生结构干涉而导致容易撞坏位于云台上的负载的情况,则可以对云台所对应的关节角设定范围进行更新操作,从而可以获得更新后关节角范围。在一些实例中,对云台所对应的关节角设定范围进行缩小处理,获得更新后关节角范围,所获得的更新后关节角范围能够避免因云台机身与负载之间可能会发生结构干涉而导致容易撞坏位于云台上的负载的情况,进而保证云台和位于云台上的负载运行的安全可靠性。
步骤S1103:根据更新后关节角范围,对云台进行控制。
在获取到更新后关节角范围之后,可以基于更新后关节角范围对云台进行控制,从而可以有效地避免云台机身与负载之间可能会发生结构干涉而导致容易撞坏位于云台上的负载的情况,进而保证了云台和位于云台上的负载运行的安全可靠性。
需要注意的是,本实施例中的云台控制方法还可以执行上述图2-图10所示实施例的方法,本实施例未详细描述的部分,可参考对图2-图10所示实施例的相关说明。该技术方案的执行过程和技术效果参见图2-图10所示实施例中的描述,在此不再赘述。
本实施例提供的云台控制方法,通过获取云台上电机的运行状态,在运行状态为设定堵转状态时,则对云台所对应的关节角设定范围进行更新,获得更新后关节角范围,而后根据更新后关节角范围对云台进行控制,从而可以有效地避免云台机身与负载之间可能会发生结构干涉而导致容易撞坏位于云台上的负载的情况,进而保证了云台和位于云台上的负载运行的安全可靠性,进一步提高了该云台控制方法的实用性,有利于市场的推广与应用。
具体应用时,参考附图12所示,本应用实施例提供了一种云台控制方法,该云台控制方法能够避免因云台电机出现堵转卸力而引起镜头磕碰损坏的情况。具体的,该云台控制方法可以包括以下步骤:
步骤1:对云台进行实时检测,获得云台上电机的电机力矩值。
具体的,可以通过力矩检测器直接获取云台上电机的电机力矩值;或者,可以通过电流传感器获取到云台上电机的反馈电流值,通过反馈电流与电机力矩值之间的映射关系来确定云台上电机的电机力矩值;或者,可以通过惯性测量单元获取云台的控制姿态误差,通过控制姿态误差与电机力矩值之间 的映射关系来确定云台上电机的电机力矩值。
当然的,本领域技术人员也可以采用其他的方式来获取云台上电机的电机力矩值,只要能够保证对电机力矩值进行获取的准确可靠性即可,在此不再赘述。
步骤2:识别电机力矩值的绝对值是否大于力矩阈值。
具体的,根据调试需求和实际需求预先配置有力矩阈值,其可以标定为MAX_TORQUE,在获取到电机力矩值之后,可以确定电机力矩值之间的绝对值,而后将电机力矩值的绝对值与力矩阈值进行分析比较,即判断当前所获得的电机力矩值的绝对值是否大于力矩阈值:abs(Torque)>MAX_TORQUE。
步骤3:在电机力矩值的绝对值小于力矩阈值时,则可以将计时器所记录的堵转时间清零,即将通过计时器所获得的Torque_reach_time=0。
步骤4:在电机力矩值的绝对值大于力矩阈值时,则说明云台上电机出现堵转操作,则可以控制计时器进行计时操作,从而实现堵转时间的计算操作,即Torque_reach_time++。
步骤5:将堵转时间与堵转时间阈值进行分析比较,识别堵转时间是否超过堵转时间阈值。
具体的,根据调试需求和实际需求预先配置有堵转时间阈值,其可以标定为MAX_TIME,而后识别堵转时间是否超过堵转时间阈值,即Torque_reach_time>MAX_TIME。
步骤6:将堵转时间小于堵转时间阈值时,则可以继续控制计时器进行计时操作。
步骤7:将堵转时间大于堵转时间阈值时,则可以检测关节角范围是否有效。
其中,为了避免误检测而降低用户的使用体验,通过调试和实际需求来配置预设检测范围,在该范围内,可以生效自动检测云台上电机的关节角范围,例如:对于三轴云台而言,云台上的三个电机包括ROLL轴电机、PITCH轴电机和Yaw轴电机,对于不同的电机可以对应有不同的关节角范围,具体的,不同的电机所对应的关节角范围可以分别如下:
ROLL=[roll_down_limit,-30deg]||[+30deg,roll_up_limit];
PITCH=[pitch_down_limit,-50deg]||[+30deg,pitch_up_limit];
YAW=[yaw_down_limit,-50deg]||[+50deg,yaw_up_limit]。
具体的,检测关节角范围是否有效可以包括:获取云台电机所对应的当前关节角,检测当前关节角是否位于关节角范围内,若当前关节角位于关节角范围内时,则确定关节角范围有效,进而需要对关节角范围进行更新操作;若当前关节角未在关节角范围内时,则确定关节角范围无效。
步骤8:如果关节角范围有效,则检测到撞到限位,根据当前关节角位置以及预设的关节角范围,判断当前位置为上限位还是下限位;如果关节角范围无效,则将堵转时间清零。
步骤9:判断当前关节角位置为下限位时,则修改当前关节角位置为机械下限位;修改软件上限位为:机械下限位-死区值。
为了避免直接撞到机械限位,软件限位范围通常比机械限位范围要小,两者差值为死区值,一般调试得到,具体的,死区值可以为5deg左右。
步骤10:判断当前关节角位置为上限位时,则修改当前关节角位置为机械上限位;修改软件上限位为:机械上限位-死区值。
步骤11:基于更新后的关节角范围对云台进行控制。
步骤12:通过能够实现云台控制方法的应用程序生成提示消息,提示用户“云台已运动到限位,已修改限位范围”。
步骤13:询问用户是否需要保存该组限位(即为更新后的关节角范围)。
步骤14:若存储该组限位,则将该组限位值写进设定的存储区域(设定的FLASH)中,重启机器后仍然生效,用同样的镜头不会再次触发限位检测。
步骤15:若不存储该组限位,该组限位值不写进存储区域中,重启机器后不生效,重启后使用修改前的限位值,用同样的镜头可能会再次触发限位检测。
步骤16:完成限位检测。
本应用实施例提供的云台控制方法,能够自动检测并更新与云台相对应的关节角范围,从而可以避免因云台上电机出现堵转操作而卸力,进而引起负载磕碰损坏的情况,另外,该方法还能够询问用户是否对更新后的限位值进行保存操作,也可以自动地对更新后的限位值进行保存操作,这样可以避免每次重启操作都要进行限位值的检测操作,这样有利于提升用户的使用体检,进一步提高了该云台控制方法使用的灵活可靠性。
图13为本发明实施例提供的一种信息更新装置的结构示意图;参考附图13所示,本实施例提供了一种信息更新装置,具体的,该信息更新装置可以 执行上述图1所示的信息更新方法,具体的,该信息更新装置可以包括:
第一存储器12,用于存储计算机程序;
第一处理器11,用于运行第一存储器12中存储的计算机程序以实现:
检测云台是否存在结构干涉;
在云台存在结构干涉时,则对云台所对应的关节角设定范围进行更新,其中,关节角设定范围用于标识云台上电机的允许运行范围。
其中,信息更新装置的结构中还可以包括第一通信接口13,用于电子设备与其他设备或通信网络通信。
在一些实例中,在第一处理器11检测云台是否存在结构干涉时,第一处理器11用于执行:获取云台上电机的运行状态;基于云台上电机的运行状态,检测云台是否存在结构干涉。
在一些实例中,在第一处理器11获取云台上电机的运行状态时,第一处理器11用于执行:获取云台上电机的反馈电流;基于反馈电流,确定电机的运行状态。
在一些实例中,在第一处理器11基于反馈电流,确定电机的运行状态时,第一处理器11用于执行:在反馈电流大于或等于电流阈值时,则确定运行状态为设定堵转状态;在反馈电流小于电流阈值时,则确定运行状态为正常运转状态。
在一些实例中,在第一处理器11基于反馈电流,确定电机的运行状态时,第一处理器11用于执行:在反馈电流大于或等于电流阈值时,则统计反馈电流大于或等于电流阈值所对应的时间信息,并基于时间信息,确定电机的运行状态;在反馈电流小于电流阈值时,则确定运行状态为正常运转状态。
在一些实例中,在第一处理器11获取云台上电机的运行状态时,第一处理器11用于执行:获取云台的姿态控制误差;基于姿态控制误差确定云台上电机的运行状态。
在一些实例中,在第一处理器11基于姿态控制误差确定云台上电机的运行状态时,第一处理器11用于执行:在姿态控制误差大于或等于姿态误差阈值时,则确定运行状态为设定堵转状态;在姿态控制误差小于姿态误差阈值时,则确定运行状态为正常运转状态。
在一些实例中,在第一处理器11基于姿态控制误差确定云台上电机的运行状态时,第一处理器11用于执行:在姿态控制误差大于或等于姿态误差阈 值时,则统计姿态控制误差大于或等于姿态误差阈值所对应的时间信息,并基于时间信息,确定电机的运行状态;在姿态控制误差小于姿态误差阈值时,则确定运行状态为正常运转状态。
在一些实例中,在第一处理器11基于时间信息,确定电机的运行状态时,第一处理器11用于执行:在时间信息大于或等于时间阈值时,则确定运行状态为设定堵转状态;在时间信息小于时间阈值时,则确定运行状态为正常运转状态。
在一些实例中,在时间信息小于时间阈值时,第一处理器11用于执行:将时间信息清零。
在一些实例中,在第一处理器11基于云台上电机的运行状态,检测云台是否存在结构干涉时,第一处理器11用于执行:在云台上电机的运行状态为设定堵转状态时,则确定云台存在结构干涉;在云台上电机的运行状态为正常运行状态时,则确定云台不存在结构干涉。
在一些实例中,在第一处理器11对云台所对应的关节角设定范围进行更新时,第一处理器11用于执行:确定与云台上电机相对应的当前关节角;在当前关节角位于关节角设定范围内时,则基于当前关节角对关节角设定范围进行更新。
在一些实例中,在第一处理器11基于当前关节角对关节角设定范围进行更新时,第一处理器11用于执行:确定当前关节角所对应的范围限值;基于范围限值对关节角设定范围进行更新。
在一些实例中,在第一处理器11确定当前关节角所对应的范围限值时,第一处理器11用于执行:获取关节角设定范围的设定上限值和设定下限值;确定当前关节角分别与设定上限值和设定下限值之间的第一差值和第二差值;在第一差值小于第二差值时,则确定当前关节角所对应的范围限值为设定上限值;在第二差值小于第一差值时,则确定当前关节角所对应的范围限值为设定下限值。
在一些实例中,在第一处理器11基于范围限值对关节角设定范围进行更新时,第一处理器11用于执行:在当前关节角所对应的范围限值为上限值时,则将关节角设定范围中的上限值更新为当前关节角;在当前关节角所对应的范围限值为下限值时,则将关节角设定范围中的下限值更新为当前关节角。
在一些实例中,云台上不同电机所对应的关节角设定范围相同或不同。
在一些实例中,在对云台所对应的关节角设定范围进行更新之后,第一处理器11用于执行:生成提示信息,提示信息用于提示用户已完成对关节角设定范围的更新操作。
在一些实例中,在对云台所对应的关节角设定范围进行更新之后,第一处理器11用于执行:生成信息存储请求;响应于信息存储请求,确定是否对更新后的关节角设定范围进行存储。
图13所示装置可以执行图1-图10、图12所示实施例的方法,本实施例未详细描述的部分,可参考对图1-图10、图12所示实施例的相关说明。该技术方案的执行过程和技术效果参见图1-图10、图12所示实施例中的描述,在此不再赘述。
图14为本发明实施例提供的一种云台控制装置的结构示意图;参考附图14所示,本实施例提供了一种云台控制装置,具体的,该云台控制装置可以执行上述图11所示的云台控制方法,具体的,该云台控制装置可以包括:
第二存储器22,用于存储计算机程序;
第二处理器21,用于运行第二存储器22中存储的计算机程序以实现:
获取云台上电机的运行状态;
在运行状态为设定堵转状态时,则对云台所对应的关节角设定范围进行更新,获得更新后关节角范围,其中,关节角设定范围用于标识云台上电机的允许运行范围;
根据更新后关节角范围,对云台进行控制。
其中,云台控制装置的结构中还可以包括第二通信接口23,用于电子设备与其他设备或通信网络通信。
图14所示装置可以执行图11-图12所示实施例的方法,本实施例未详细描述的部分,可参考对图11-图12所示实施例的相关说明。该技术方案的执行过程和技术效果参见图11-图12所示实施例中的描述,在此不再赘述。
另外,本发明实施例提供了一种计算机存储介质,用于储存电子设备所用的计算机软件指令,其包含用于执行上述图1-图10、图12所示中的信息更新方法所涉及的程序。
本发明实施例提供了一种计算机存储介质,用于储存电子设备所用的计算机软件指令,其包含用于执行上述图11-图12所示中的云台控制方法所涉及的程序。
图15为本发明实施例提供的一种云台的结构示意图;参考附图15所示, 本实施例提供了一种云台,该云台可以为以下任意之一:二轴云台、三轴云台、四轴云台或者其他多轴云台等等,具体的,该云台可以包括:
云台主体31;
上述图13所对应实施例中的信息更新装置32,设置于云台主体32上。
其中,云台主体31随云台的类型而不同,例如,当云台为手持云台时,云台主体31可以为手柄,当云台为机载云台时,云台主体31可以为用于搭载云台的机身。可以理解,云台包括但不限于上述说明的类型。
图15所示实施例提供的云台的具体实现原理和实现效果与图13所对应的信息更新装置32的具体实现原理和实现效果相一致,具体可参考上述陈述内容,在这里不再赘述。
图16为本发明实施例提供的另一种云台的结构示意图,参考附图15所示,本实施例提供了另一种云台,该云台可以为以下任意之一:二轴云台、三轴云台、四轴云台或者其他多轴云台等等,具体的,该云台可以包括:
云台主体41;
电机42,设置于云台主体41上;
上述图14实施例中的云台控制装置43,设置于云台主体41上,用于对电机42进行控制。
其中,云台主体41随云台的类型而不同,例如,当云台为手持云台时,云台主体41可以为手柄,当云台为机载云台时,云台主体41可以为用于搭载云台的机身。可以理解,云台包括但不限于上述说明的类型。
图16所示实施例提供的云台的具体实现原理和实现效果与图14所对应的云台控制装置43的具体实现原理和实现效果相一致,具体可参考上述陈述内容,在这里不再赘述。
以上各个实施例中的技术方案、技术特征在与本相冲突的情况下均可以单独,或者进行组合,只要未超出本领域技术人员的认知范围,均属于本申请保护范围内的等同实施例。
在本发明所提供的几个实施例中,应该理解到,所揭露的相关检测装置和方法,可以通过其它的方式实现。例如,以上所描述的检测装置实施例仅仅是示意性的,例如,所述模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以 集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,检测装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得计算机处理器(processor)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁盘或者光盘等各种可以存储程序代码的介质。
以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。
Claims (42)
- 一种信息更新方法,其特征在于,包括:检测云台是否存在结构干涉;在所述云台存在结构干涉时,则对所述云台所对应的关节角设定范围进行更新,其中,所述关节角设定范围用于标识所述云台上电机的允许运行范围。
- 根据权利要求1所述的方法,其特征在于,检测云台是否存在结构干涉,包括:获取所述云台上电机的运行状态;基于所述云台上电机的运行状态,检测所述云台是否存在结构干涉。
- 根据权利要求2所述的方法,其特征在于,获取所述云台上电机的运行状态,包括:获取所述云台上电机的反馈电流;基于所述反馈电流,确定所述电机的运行状态。
- 根据权利要求3所述的方法,其特征在于,基于所述反馈电流,确定所述电机的运行状态,包括:在所述反馈电流大于或等于电流阈值时,则确定所述运行状态为设定堵转状态;在所述反馈电流小于电流阈值时,则确定所述运行状态为正常运转状态。
- 根据权利要求3所述的方法,其特征在于,基于所述反馈电流,确定所述电机的运行状态,包括:在所述反馈电流大于或等于电流阈值时,则统计所述反馈电流大于或等于电流阈值所对应的时间信息,并基于所述时间信息,确定所述电机的运行状态;在所述反馈电流小于电流阈值时,则确定所述运行状态为正常运转状态。
- 根据权利要求2所述的方法,其特征在于,获取所述云台上电机的运行状态,包括:获取所述云台的姿态控制误差;基于所述姿态控制误差确定所述云台上电机的运行状态。
- 根据权利要求6所述的方法,其特征在于,基于所述姿态控制误差确定所述云台上电机的运行状态,包括:在所述姿态控制误差大于或等于姿态误差阈值时,则确定所述运行状态为设定堵转状态;在所述姿态控制误差小于姿态误差阈值时,则确定所述运行状态为正常运转状态。
- 根据权利要求6所述的方法,其特征在于,基于所述姿态控制误差确定所述云台上电机的运行状态,包括:在所述姿态控制误差大于或等于姿态误差阈值时,则统计所述姿态控制误差大于或等于姿态误差阈值所对应的时间信息,并基于所述时间信息,确定所述电机的运行状态;在所述姿态控制误差小于姿态误差阈值时,则确定所述运行状态为正常运转状态。
- 根据权利要求5或8所述的方法,其特征在于,基于所述时间信息,确定所述电机的运行状态,包括:在所述时间信息大于或等于时间阈值时,则确定所述运行状态为设定堵转状态;在所述时间信息小于时间阈值时,则确定所述运行状态为正常运转状态。
- 根据权利要求9所述的方法,其特征在于,在所述时间信息小于时间阈值时,所述方法还包括:将所述时间信息清零。
- 根据权利要求2所述的方法,其特征在于,基于所述云台上电机的运行状态,检测所述云台是否存在结构干涉,包括:在所述云台上电机的运行状态为设定堵转状态时,则确定所述云台存在结构干涉;在所述云台上电机的运行状态为正常运行状态时,则确定所述云台不存在结构干涉。
- 根据权利要求1所述的方法,其特征在于,对所述云台所对应的关节角设定范围进行更新,包括:确定与所述云台上电机相对应的当前关节角;在所述当前关节角位于关节角设定范围内时,则基于所述当前关节角对所述关节角设定范围进行更新。
- 根据权利要求12所述的方法,其特征在于,基于所述当前关节角对 所述关节角设定范围进行更新,包括:确定所述当前关节角所对应的范围限值;基于所述范围限值对所述关节角设定范围进行更新。
- 根据权利要求13所述的方法,其特征在于,确定所述当前关节角所对应的范围限值,包括:获取所述关节角设定范围的设定上限值和设定下限值;确定所述当前关节角分别与所述设定上限值和所述设定下限值之间的第一差值和第二差值;在所述第一差值小于第二差值时,则确定所述当前关节角所对应的范围限值为设定上限值;在所述第二差值小于第一差值时,则确定所述当前关节角所对应的范围限值为设定下限值。
- 根据权利要求13所述的方法,其特征在于,基于所述范围限值对所述关节角设定范围进行更新,包括:在所述当前关节角所对应的范围限值为上限值时,则将所述关节角设定范围中的上限值更新为所述当前关节角;在所述当前关节角所对应的范围限值为下限值时,则将所述关节角设定范围中的下限值更新为所述当前关节角。
- 根据权利要求1所述的方法,其特征在于,所述云台上不同电机所对应的关节角设定范围相同或不同。
- 根据权利要求1所述的方法,其特征在于,在对所述云台所对应的关节角设定范围进行更新之后,所述方法还包括:生成提示信息,所述提示信息用于提示用户已完成对所述关节角设定范围的更新操作。
- 根据权利要求1所述的方法,其特征在于,在对所述云台所对应的关节角设定范围进行更新之后,所述方法还包括:生成信息存储请求;响应于所述信息存储请求,确定是否对更新后的关节角设定范围进行存储。
- 一种云台控制方法,其特征在于,包括:获取云台上电机的运行状态;在所述运行状态为设定堵转状态时,则对所述云台所对应的关节角设定范围进行更新,获得更新后关节角范围,其中,所述关节角设定范围用于标识所述云台上电机的允许运行范围;根据所述更新后关节角范围,对所述云台进行控制。
- 一种信息更新装置,其特征在于,包括:存储器,用于存储计算机程序;处理器,用于运行所述存储器中存储的计算机程序以实现:检测云台是否存在结构干涉;在所述云台存在结构干涉时,则对所述云台所对应的关节角设定范围进行更新,其中,所述关节角设定范围用于标识所述云台上电机的允许运行范围。
- 根据权利要求20所述的装置,其特征在于,在所述处理器检测云台是否存在结构干涉时,所述处理器用于执行:获取所述云台上电机的运行状态;基于所述云台上电机的运行状态,检测所述云台是否存在结构干涉。
- 根据权利要求21所述的装置,其特征在于,在所述处理器获取所述云台上电机的运行状态时,所述处理器用于执行:获取所述云台上电机的反馈电流;基于所述反馈电流,确定所述电机的运行状态。
- 根据权利要求22所述的装置,其特征在于,在所述处理器基于所述反馈电流,确定所述电机的运行状态时,所述处理器用于执行:在所述反馈电流大于或等于电流阈值时,则确定所述运行状态为设定堵转状态;在所述反馈电流小于电流阈值时,则确定所述运行状态为正常运转状态。
- 根据权利要求22所述的装置,其特征在于,在所述处理器基于所述反馈电流,确定所述电机的运行状态时,所述处理器用于执行:在所述反馈电流大于或等于电流阈值时,则统计所述反馈电流大于或等于电流阈值所对应的时间信息,并基于所述时间信息,确定所述电机的运行状态;在所述反馈电流小于电流阈值时,则确定所述运行状态为正常运转状态。
- 根据权利要求21所述的装置,其特征在于,在所述处理器获取所述 云台上电机的运行状态时,所述处理器用于执行:获取所述云台的姿态控制误差;基于所述姿态控制误差确定所述云台上电机的运行状态。
- 根据权利要求25所述的装置,其特征在于,在所述处理器基于所述姿态控制误差确定所述云台上电机的运行状态时,所述处理器用于执行:在所述姿态控制误差大于或等于姿态误差阈值时,则确定所述运行状态为设定堵转状态;在所述姿态控制误差小于姿态误差阈值时,则确定所述运行状态为正常运转状态。
- 根据权利要求25所述的装置,其特征在于,在所述处理器基于所述姿态控制误差确定所述云台上电机的运行状态时,所述处理器用于执行:在所述姿态控制误差大于或等于姿态误差阈值时,则统计所述姿态控制误差大于或等于姿态误差阈值所对应的时间信息,并基于所述时间信息,确定所述电机的运行状态;在所述姿态控制误差小于姿态误差阈值时,则确定所述运行状态为正常运转状态。
- 根据权利要求24或27所述的装置,其特征在于,在所述处理器基于所述时间信息,确定所述电机的运行状态时,所述处理器用于执行:在所述时间信息大于或等于时间阈值时,则确定所述运行状态为设定堵转状态;在所述时间信息小于时间阈值时,则确定所述运行状态为正常运转状态。
- 根据权利要求28所述的装置,其特征在于,在所述时间信息小于时间阈值时,所述处理器用于执行:将所述时间信息清零。
- 根据权利要求21所述的装置,其特征在于,在所述处理器基于所述云台上电机的运行状态,检测所述云台是否存在结构干涉时,所述处理器用于执行:在所述云台上电机的运行状态为设定堵转状态时,则确定所述云台存在结构干涉;在所述云台上电机的运行状态为正常运行状态时,则确定所述云台不存在结构干涉。
- 根据权利要求20所述的装置,其特征在于,在所述处理器对所述云台所对应的关节角设定范围进行更新时,所述处理器用于执行:确定与所述云台上电机相对应的当前关节角;在所述当前关节角位于关节角设定范围内时,则基于所述当前关节角对所述关节角设定范围进行更新。
- 根据权利要求31所述的装置,其特征在于,在所述处理器基于所述当前关节角对所述关节角设定范围进行更新时,所述处理器用于执行:确定所述当前关节角所对应的范围限值;基于所述范围限值对所述关节角设定范围进行更新。
- 根据权利要求32所述的装置,其特征在于,在所述处理器确定所述当前关节角所对应的范围限值时,所述处理器用于执行:获取所述关节角设定范围的设定上限值和设定下限值;确定所述当前关节角分别与所述设定上限值和所述设定下限值之间的第一差值和第二差值;在所述第一差值小于第二差值时,则确定所述当前关节角所对应的范围限值为设定上限值;在所述第二差值小于第一差值时,则确定所述当前关节角所对应的范围限值为设定下限值。
- 根据权利要求32所述的装置,其特征在于,在所述处理器基于所述范围限值对所述关节角设定范围进行更新时,所述处理器用于执行:在所述当前关节角所对应的范围限值为上限值时,则将所述关节角设定范围中的上限值更新为所述当前关节角;在所述当前关节角所对应的范围限值为下限值时,则将所述关节角设定范围中的下限值更新为所述当前关节角。
- 根据权利要求20所述的装置,其特征在于,所述云台上不同电机所对应的关节角设定范围相同或不同。
- 根据权利要求20所述的装置,其特征在于,在对所述云台所对应的关节角设定范围进行更新之后,所述处理器用于执行:生成提示信息,所述提示信息用于提示用户已完成对所述关节角设定范围的更新操作。
- 根据权利要求20所述的装置,其特征在于,在对所述云台所对应的 关节角设定范围进行更新之后,所述处理器用于执行:生成信息存储请求;响应于所述信息存储请求,确定是否对更新后的关节角设定范围进行存储。
- 一种云台控制装置,其特征在于,包括:存储器,用于存储计算机程序;处理器,用于运行所述存储器中存储的计算机程序以实现:获取云台上电机的运行状态;在所述运行状态为设定堵转状态时,则对所述云台所对应的关节角设定范围进行更新,获得更新后关节角范围,其中,所述关节角设定范围用于标识所述云台上电机的允许运行范围;根据所述更新后关节角范围,对所述云台进行控制。
- 一种计算机可读存储介质,其特征在于,所述存储介质为计算机可读存储介质,该计算机可读存储介质中存储有程序指令,所述程序指令用于实现权利要求1-18中任意一项所述的信息更新方法。
- 一种计算机可读存储介质,其特征在于,所述存储介质为计算机可读存储介质,该计算机可读存储介质中存储有程序指令,所述程序指令用于实现权利要求19所述的云台控制方法。
- 一种云台,其特征在于,包括:云台主体;权利要求20-37中任意一项所述的信息更新装置,设置于所述云台主体上。
- 一种云台,其特征在于,包括:云台主体;电机,设置于所述云台主体上;权利要求38所述的云台控制装置,设置于所述云台主体上,用于对所述电机进行控制。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2021/098665 WO2022256977A1 (zh) | 2021-06-07 | 2021-06-07 | 信息更新方法、云台控制方法、装置、云台及存储介质 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2021/098665 WO2022256977A1 (zh) | 2021-06-07 | 2021-06-07 | 信息更新方法、云台控制方法、装置、云台及存储介质 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022256977A1 true WO2022256977A1 (zh) | 2022-12-15 |
Family
ID=84424689
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2021/098665 WO2022256977A1 (zh) | 2021-06-07 | 2021-06-07 | 信息更新方法、云台控制方法、装置、云台及存储介质 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2022256977A1 (zh) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019140655A1 (zh) * | 2018-01-19 | 2019-07-25 | 深圳市大疆创新科技有限公司 | 一种限位角度校准方法及终端设备 |
CN110494816A (zh) * | 2018-06-01 | 2019-11-22 | 深圳市大疆创新科技有限公司 | 旋转角度控制方法、云台以及计算机可读的记录介质 |
CN112068608A (zh) * | 2020-08-04 | 2020-12-11 | 深圳市海洋王照明工程有限公司 | 一种云台控制方法、云台、照明设备及存储介质 |
CN112166395A (zh) * | 2019-07-30 | 2021-01-01 | 深圳市大疆创新科技有限公司 | 云台控制方法、云台及计算机可读存储介质 |
CN112292320A (zh) * | 2019-11-25 | 2021-01-29 | 深圳市大疆创新科技有限公司 | 云台的控制方法、云台、无人飞行器和存储介质 |
-
2021
- 2021-06-07 WO PCT/CN2021/098665 patent/WO2022256977A1/zh active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019140655A1 (zh) * | 2018-01-19 | 2019-07-25 | 深圳市大疆创新科技有限公司 | 一种限位角度校准方法及终端设备 |
CN110494816A (zh) * | 2018-06-01 | 2019-11-22 | 深圳市大疆创新科技有限公司 | 旋转角度控制方法、云台以及计算机可读的记录介质 |
CN112166395A (zh) * | 2019-07-30 | 2021-01-01 | 深圳市大疆创新科技有限公司 | 云台控制方法、云台及计算机可读存储介质 |
CN112292320A (zh) * | 2019-11-25 | 2021-01-29 | 深圳市大疆创新科技有限公司 | 云台的控制方法、云台、无人飞行器和存储介质 |
CN112068608A (zh) * | 2020-08-04 | 2020-12-11 | 深圳市海洋王照明工程有限公司 | 一种云台控制方法、云台、照明设备及存储介质 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108279832B (zh) | 图像采集方法和电子装置 | |
CN108234750B (zh) | 用于检测盖设备的打开和闭合的电子设备及其操作方法 | |
US11086202B2 (en) | Gimbal control method, device, and gimbal | |
GB2537227B (en) | Controlling the orientation of a device display based on usage context | |
KR102570777B1 (ko) | 복수의 터치 디스플레이들을 포함하는 전자 장치 및 이의 상태 전환 방법 | |
WO2017166589A1 (zh) | 一种移动终端应用程序的启动方法及装置 | |
US10318135B2 (en) | Method for adjusting window display position, and terminal | |
CN108537018B (zh) | 使用生物信息来认证的电子设备和操作电子设备的方法 | |
TW201443700A (zh) | 自動化裝置顯示器的定向偵測技術 | |
US10684164B2 (en) | Display brightness control method, electronic device, and computer-readable recording medium | |
WO2020107292A1 (zh) | 云台的控制方法、云台、移动平台和计算机可读存储介质 | |
TW201335762A (zh) | 可自動切換記憶模組之掛載模式的電子裝置及其方法 | |
CN108355352B (zh) | 虚拟物体控制方法及装置、电子设备、存储介质 | |
US20140302894A1 (en) | Method and Apparatus for Determining Whether Ear of User is Contiguous to Electronic Device or Whether User Watches Display of Electronic Device | |
WO2022256977A1 (zh) | 信息更新方法、云台控制方法、装置、云台及存储介质 | |
WO2021026748A1 (zh) | 拍摄检测方法、装置、云台、系统及存储介质 | |
CN110502286A (zh) | 应用唤醒方法、装置、终端和介质 | |
CN105791563B (zh) | 一种移动终端的蓝牙可见性控制方法及移动终端 | |
US9588520B2 (en) | Positioning navigation method and electronic apparatus thereof | |
WO2022205207A1 (zh) | 云台及其构型识别方法、装置 | |
US20220383539A1 (en) | Mixed-reality device positioning based on shared location | |
WO2022027579A1 (zh) | 云台的检测方法、增稳云台、可移动平台和存储介质 | |
US10877597B2 (en) | Unintended touch rejection | |
TW201500967A (zh) | 防盜方法及其電腦系統 | |
CN112153270B (zh) | 云台零点检测方法、装置、摄像机及存储介质 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21944488 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21944488 Country of ref document: EP Kind code of ref document: A1 |