WO2022255727A1 - Wire rod and steel wire for spring, spring with improved strength and fatigue limit, and method for manufacturing same - Google Patents

Wire rod and steel wire for spring, spring with improved strength and fatigue limit, and method for manufacturing same Download PDF

Info

Publication number
WO2022255727A1
WO2022255727A1 PCT/KR2022/007483 KR2022007483W WO2022255727A1 WO 2022255727 A1 WO2022255727 A1 WO 2022255727A1 KR 2022007483 W KR2022007483 W KR 2022007483W WO 2022255727 A1 WO2022255727 A1 WO 2022255727A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
spring
fatigue limit
wire
improved strength
Prior art date
Application number
PCT/KR2022/007483
Other languages
French (fr)
Korean (ko)
Inventor
이준모
최석환
최명수
Original Assignee
포스코홀딩스 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 포스코홀딩스 주식회사 filed Critical 포스코홀딩스 주식회사
Priority to EP22816386.1A priority Critical patent/EP4332265A1/en
Priority to JP2023574625A priority patent/JP2024521927A/en
Priority to CN202280049907.XA priority patent/CN117751206A/en
Publication of WO2022255727A1 publication Critical patent/WO2022255727A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • C21D8/065Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/001Continuous casting of metals, i.e. casting in indefinite lengths of specific alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/005Continuous casting of metals, i.e. casting in indefinite lengths of wire
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/25Hardening, combined with annealing between 300 degrees Celsius and 600 degrees Celsius, i.e. heat refining ("Vergüten")
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • C21D1/32Soft annealing, e.g. spheroidising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/34Methods of heating
    • C21D1/44Methods of heating in heat-treatment baths
    • C21D1/48Metal baths
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D7/00Modifying the physical properties of iron or steel by deformation
    • C21D7/13Modifying the physical properties of iron or steel by deformation by hot working
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/02Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for springs
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire
    • C21D9/573Continuous furnaces for strip or wire with cooling
    • C21D9/5732Continuous furnaces for strip or wire with cooling of wires; of rods
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • C21D1/76Adjusting the composition of the atmosphere
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/004Dispersions; Precipitations
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/009Pearlite

Definitions

  • the present invention relates to a spring wire rod, steel wire, spring with improved strength and fatigue limit, and a method for manufacturing the same, and more particularly, to a 2,200 MPa class ultra-high strength spring steel, which has excellent strength and workability and can be nitriding even at high temperatures. It relates to wire rods, steel wires, springs with improved nitriding treatment characteristics and fatigue limit, and a manufacturing method thereof.
  • nitriding treatment is performed at 500 ° C or higher for other parts, but in the case of spring steel, nitriding treatment is performed at 420 ⁇ 460 ° C to prevent deterioration in strength, and for a long time of 10 hours or more to ensure sufficient nitrogen penetration depth. heat treatment is carried out.
  • spring manufacturers want to shorten the process time by performing nitriding treatment at as high a temperature as possible in order to shorten the nitriding treatment time, and at the same time, they require high-strength wire rods that do not cause problems in on-site productivity.
  • Patent Document 0001 Korean Patent Publication No. 10-2000-0043776 (published on July 15, 2000)
  • the present invention is intended to provide a wire rod, steel wire, spring, and a method for manufacturing the same, which are excellent in strength and workability, are easily nitrided even at high temperatures, and have improved nitriding characteristics and fatigue limit.
  • the spring wire rod having improved strength and fatigue limit according to the present invention contains, by weight, C: 0.6 to 0.7%, Si: 2.0 to 2.5%, Mn: 0.2 to 0.7%, Cr: 0.9 to 1.5%, P: 0.015% or less, S: 0.01% or less, Al: 0.01% or less, N: 0.01% or less, Mo: 0.25% or less, W: 0.25% or less, V: 0.05% to 0.2% or less, Nb: 0.05% or less, including Fe and other unavoidable impurities, satisfying Mn+Cr ⁇ 1.8%, satisfying 0.05at% ⁇ Mo+W ⁇ 0.15at%, 1mm in the center of the section perpendicular to the longitudinal direction In the area of 2 , the ratio of the area satisfying at least one of C > 0.85%, Si > 3.0%, Mn > 0.8%, and Cr > 2.0% in weight% is 10% or less.
  • the wire rod may include 80% or more of pearlite structure and the remaining bainite structure or martensite structure in area fraction.
  • the wire rod may have an average particle diameter of prior austenite of 20 ⁇ m or less.
  • carbonitrides having a maximum diameter of 15 ⁇ m or more may be distributed in less than 2/cm 2 in a longitudinal and horizontal cross section within a surface depth of 1 mm.
  • the wire rod may have a tensile strength of 1,400 MPa or less and a cross-sectional reduction ratio of 35% or more.
  • the method for manufacturing a wire rod for a spring having improved strength and fatigue limit according to the present invention for achieving the above object is, in weight%, C: 0.6 to 0.7%, Si: 2.0 to 2.5%, Mn: 0.2 to 0.7%, Cr: 0.9 to 1.5%, P: 0.015% or less, S: 0.01% or less, Al: 0.01% or less, N: 0.01% or less, Mo: 0.25% or less, W: 0.25% or less, V: 0.05 % to 0.2% or less, Nb: 0.05% or less, preparing a bloom by continuously casting molten steel containing the remaining Fe and other unavoidable impurities; Heating the bloom to a temperature of 1,200 ° C.
  • the continuous casting step may include light reduction with a total reduction of 20 mm or more.
  • the light pressure is rolled to 4 mm or less for each rolling roll, and the cumulative reduction may be 60% or more when the solidification fraction is 0.6 or more.
  • the steel wire for a spring with improved strength and fatigue limit according to the present invention for achieving the above object in weight%, C: 0.6 to 0.7%, Si: 2.0 to 2.5%, Mn: 0.2 to 0.7%, Cr: 0.9 to 1.5%, P: 0.015% or less, S: 0.01% or less, Al: 0.01% or less, N: 0.01% or less, Mo: 0.25% or less, W: 0.25% or less, V: 0.05% to 0.2%
  • Nb 0.05% or less, including the remainder Fe and other unavoidable impurities, satisfying Mn + Cr ⁇ 1.8%, satisfying 0.05at% ⁇ Mo + W ⁇ 0.15at%, by area fraction, tempered martens It contains more than 85% of the site structure and the remaining austenite structure.
  • the steel wire may have a prior austenite average particle diameter of 15 ⁇ m or less.
  • carbonitrides having a maximum diameter of 15 ⁇ m or more may be distributed in less than 2 pieces/cm 2 in a longitudinal and horizontal cross section within a surface depth of 1 mm.
  • the number of carbides is 10 to 50
  • the maximum diameter of the carbides is 5 to 50 nm
  • the V or Nb content may be 10 at% or more.
  • the steel wire may have a tensile strength of 2,100 MPa or more and a cross-sectional reduction ratio of 45% or more.
  • a method for manufacturing a steel wire for a spring having improved strength and fatigue limit according to the present invention for achieving the above object includes LP heat treatment of the wire rod; preparing a steel wire by drawing the wire rod subjected to the LP heat treatment; and subjecting the steel wire to QT heat treatment, wherein the LP heat treatment includes: a first austenitizing step of heating to 950 to 1100° C. within 3 minutes and then maintaining the temperature for 3 minutes or less; and passing the first austenitized wire rod through a lead bath at 650 to 700° C. within 3 minutes.
  • the pearlite transformation completion time in the LP heat treatment step may be less than 130 seconds.
  • the step of LA heat treatment of the wire rod is further included, and the step of LA heat treatment includes heat treatment at 650 to 750° C.; and pickling; may further include.
  • the QT heat treatment step is a second austenitizing step of heating to 900 to 1000 ° C. within 3 minutes and then maintaining it for 3 minutes or less; First oil quenching at 70° C. or lower; Tempering step of heating to 450 to 550 ° C. within 3 minutes and then maintaining it for 3 minutes or less; and performing a second oil quenching at 70° C. or less.
  • the spring with improved strength and fatigue limit according to the present invention for achieving the above object in weight%, C: 0.6 to 0.7%, Si: 2.0 to 2.5%, Mn: 0.2 to 0.7%, Cr: 0.9 to 1.5%, P: 0.015% or less, S: 0.01% or less, Al: 0.01% or less, N: 0.01% or less, Mo: 0.25% or less, W: 0.25% or less, V: 0.05% to 0.2% or less, Nb: 0.05% or less, including the remainder Fe and other unavoidable impurities, satisfies Mn+Cr ⁇ 1.8%, satisfies 0.05at% ⁇ Mo+W ⁇ 0.15at%, and can withstand 10 million repeated stresses. degree is 700 MPa or more.
  • a method for manufacturing a spring having improved strength and fatigue limit according to the present invention for achieving the above object includes the steps of cold forming the steel wire into a spring shape; subjecting the molded spring to stress relief heat treatment; and nitriding at a temperature of 420 to 450° C. for 10 hours or more.
  • the fatigue limit after the nitriding treatment can be increased by 10% or more.
  • a wire rod, a steel wire, a spring, and a method for manufacturing the same which can suppress the generation of cold tissue in the center by reducing segregation in the center, secure an excellent cross-section reduction rate, and at the same time secure a tensile strength of 2,200 MPa or more.
  • a wire rod, a steel wire, a spring, and a manufacturing method thereof having improved nitriding characteristics and fatigue limit by controlling the size of crystal grains and the number of precipitates.
  • the wire rod for a spring with improved strength and fatigue limit contains, by weight, C: 0.6 to 0.7%, Si: 2.0 to 2.5%, Mn: 0.2 to 0.7%, Cr: 0.9 to 1.5%, P: 0.015 % or less, S: 0.01% or less, Al: 0.01% or less, N: 0.01% or less, Mo: 0.25% or less, W: 0.25% or less, V: 0.05% to 0.2% or less, Nb: 0.05% or less, balance Fe and other unavoidable impurities, satisfies Mn + Cr ⁇ 1.8%, satisfies 0.05 at% ⁇ Mo + W ⁇ 0.15 at%, in the center 1 mm 2 area of the cross section perpendicular to the longitudinal direction, in weight%, A ratio of an area satisfying at least one of C > 0.85%, Si > 3.0%, Mn > 0.8%, and Cr > 2.0% is 10% or less.
  • the content of C is 0.6 to 0.7%.
  • C is an element that improves the strength of the material, and may be added in an amount of 0.6% or more to ensure sufficient strength of the material.
  • the C content is excessive, the impact characteristics significantly decrease after QT (Quenching & Tempering) heat treatment, and the possibility of low-temperature texture greatly increases during wire production, resulting in inferior wire quality.
  • the LP heat treatment time which is one of the steel wire manufacturing processes, is greatly increased, and productivity may be lowered. Considering this, the upper limit of the C content may be limited to 0.7%.
  • the content of Si is 2.0 to 2.5%.
  • Si is not only used for deoxidation of steel, but also is an element that is advantageous for securing strength through solid solution strengthening, and may be added in an amount of 2.0% or more to suppress a decrease in strength during nitriding and improve deformation resistance of a spring.
  • the Si content is excessive, surface decarburization may be caused, and workability of the material may be deteriorated.
  • the upper limit of the Si content may be limited to 2.5%.
  • the content of Mn is 0.2 to 0.7%.
  • Mn is a hardenability improving element, and may be added in an amount of 0.2% or more to secure hardenability and high-strength tempered martensitic structure of the material, and fix S as Mn to make it harmless.
  • the Mn content is excessive, the quality may deteriorate due to segregation. Considering this, the upper limit of the Mn content may be limited to 0.7%.
  • the content of Cr is 0.9 to 1.5%.
  • Cr is a hardenability improving element together with Mn, and may be added in an amount of 0.9% or more to improve the softening resistance of steel during nitriding treatment.
  • the Cr content is excessive, the toughness of the steel wire is greatly reduced and the generation of a low-temperature structure is promoted during cooling of the wire rod.
  • the upper limit of the Cr content may be limited to 1.5%.
  • the content of P is 0.015% or less.
  • P is an element that is segregated at the grain boundaries to reduce the toughness of the material and the resistance to delayed hydrogen fracture, it is desirable to exclude it from the steel material as much as possible. Considering this, the upper limit of the P content may be limited to 0.015%.
  • the content of S is 0.01% or less.
  • S like P
  • MnS reduced hydrogen fracture resistance
  • the content of Al is 0.01% or less.
  • Al is a strong deoxidizing element that can remove oxygen in steel to increase cleanliness, but it can form Al 2 O 3 inclusions and reduce fatigue resistance.
  • the upper limit of the Al content may be limited to 0.01%.
  • the content of N is 0.01% or less.
  • N is an impurity, but combines with Al or V to form coarse AlN or VN precipitates that do not dissolve during heat treatment. Considering this, the upper limit of the N content may be limited to 0.01%.
  • the content of Mo is 0.25% or less.
  • Mo is an element that improves softening resistance in materials for nitriding treatment and increases strength during tempering by forming carbides together with V.
  • Mo is an element that forms MC carbide to maintain the strength of the material even during long-term heat treatment.
  • the Mo content is excessive, the formation of a pearlite structure is suppressed, and the quality of the wire rod may be deteriorated due to the formation of a low-temperature structure after rolling the wire rod.
  • the Mo content is excessive, pearlite transformation is suppressed even during LP heat treatment before wire drawing, so that the pearlite transformation time increases, resulting in a significant decrease in productivity.
  • the upper limit of the Mo content may be limited to 0.25%.
  • the content of W is 0.25% or less.
  • W is an element that can improve softening resistance in nitriding materials, and like Mo, it can form MC carbide to maintain the strength of the material even during long-term heat treatment.
  • the W content is excessive, the formation of pearlite may be suppressed and the formation of a low-temperature structure may be promoted in the wire rod.
  • the upper limit of the W content may be limited to 0.25%.
  • the content of V is 0.05 to 0.2%.
  • V is an element that improves softening resistance in the material for nitriding treatment, and increases strength during tempering by forming carbides, and can maintain strength even during long-term nitriding treatment.
  • V unlike Mo and W, has a high solid solution temperature of carbides and serves to maintain the size of old austenite grains.
  • V accelerates pearlite transformation low-temperature structure can be suppressed during wire rod production, and the constant temperature transformation time during LP heat treatment can be shortened, so productivity can be improved during the steel wire manufacturing process, so 0.05% or more can be added.
  • the content of V is excessive, coarse carbonitrides may be formed in the process of producing the wire rod, and the temperature of the heating furnace should be increased during wire rod rolling. Considering this, the upper limit of the V content may be limited to 0.2%.
  • the content of Nb is 0.05% or less.
  • Nb is a carbonitride forming element, and has a higher solid solution temperature than V, so the control effect of the grain size of prior austenite compared to V is excellent.
  • the content of Nb is excessive, a problem of coarsening the grain size of prior austenite may occur.
  • the upper limit of the Nb content may be limited to 0.05%, and when the grain size of prior austenite is controlled through the manufacturing process, the addition of Nb may be omitted.
  • the remaining components are iron (Fe).
  • Fe iron
  • the wire rod having improved strength and fatigue limit according to an embodiment of the present invention may satisfy Mn+Cr ⁇ 1.8% in terms of weight%.
  • the wire rod having improved strength and fatigue limit according to an embodiment of the present invention may satisfy 0.05at% ⁇ Mo+W ⁇ 0.15at%.
  • at% means atomic weight %.
  • the wire rod according to an embodiment of the present invention can secure a pearlite transformation completion time of less than 130 seconds during LP (Lead Patenting) heat treatment.
  • the LP heat treatment process may include heating at 950 to 1100 °C and then rapidly cooling to 650 to 750 °C.
  • the pearlite transformation completion time exceeds 130 seconds during the LP heat treatment, a problem of reduced productivity occurs.
  • the wire rod having improved strength and fatigue limit according to an embodiment of the present invention may include a pearlite structure of 80% or more in area fraction.
  • the wire rod having improved strength and fatigue limit according to an embodiment of the present invention may have an average particle diameter of prior austenite of 20 ⁇ m or less.
  • the prior austenite average particle diameter exceeds 20 ⁇ m, the time of the LP heat treatment process increases and the workability of the wire rod deteriorates.
  • the wire rod having improved strength and fatigue limit according to an embodiment of the present invention has, in weight%, C > 0.85%, Si > 3.0%, Mn > 0.8% in the center 1 mm 2 area of the cross section perpendicular to the longitudinal direction.
  • Cr > 2.0% may be less than 10%.
  • carbonitrides having a maximum diameter of 15 ⁇ m or more are distributed in less than 2/cm 2 in a cross section horizontal to the longitudinal direction within a surface depth of 1 mm.
  • carbonitrides of 15 ⁇ m or more When carbonitrides of 15 ⁇ m or more are present on the surface of the wire rod, fatigue fracture may occur in the material. Therefore, it is preferable that carbonitrides having a maximum diameter of 15 ⁇ m or more exist in an amount of less than 2/cm 2 in a longitudinal and horizontal cross section within a surface depth of 1 mm.
  • the wire rod having improved strength and fatigue limit according to an embodiment of the present invention may have a tensile strength of 1,400 MPa or less and an area reduction ratio (RA) of 35% or more.
  • a method for manufacturing a wire rod for a spring having improved strength and fatigue limit in weight%, C: 0.6 to 0.7%, Si: 2.0 to 2.5%, Mn: 0.2 to 0.7%, Cr: 0.9 to 1.5%, P: 0.015% or less, S: 0.01% or less, Al: 0.01% or less, N: 0.01% or less, Mo: 0.25% or less, W: 0.25% or less, V: 0.05% to 0.2% or less, Nb : preparing a bloom by continuously casting molten steel containing 0.05% or less of Fe and other unavoidable impurities; Heating the bloom to a temperature of 1,200 ° C.
  • the continuous casting step may include light reduction with a total reduction of 20 mm or more.
  • the total amount of reduction is the amount of reduction from the start of reduction to the end of reduction.
  • the total reduction is less than 20 mm, it is difficult to secure the effect of removing segregation under light pressure, so the total reduction under light pressure can be controlled to 20 mm or more to minimize segregation of the wire rod.
  • each of the light pressure rolling rolls may be rolled to 4 mm or less, and the cumulative reduction may be 60% or more when the solidification fraction is 0.6 or more.
  • the solidification fraction means the ratio of the weight of molten steel that has become a solid phase to the weight of all molten steel.
  • the casting speed is too slow, solidification is completed before light pressure, and the ratio of the liquid phase to the solid phase is too low, so it is difficult to secure the effect of removing segregation under light pressure.
  • the casting speed is too fast, the ratio of the liquid phase to the solid phase is too high, and segregation due to solidification shrinkage is generated, which is not preferable. Therefore, it is necessary to control the casting speed so that the reduction amount is 60% or more when the solidification fraction is 0.6 or more.
  • Mold-EMS Mold Electro Magnetic Stirrer
  • Strand-EMS can follow the conditions of the existing spring steel or can be set arbitrarily.
  • the prepared bloom can be heated to a temperature of 1,200 ° C. or higher and then rolled into a billet to minimize internal carbonitrides.
  • the billet may be heat treated at 1,030 ° C or higher and then rolled into a wire rod at a temperature of 1,000 ° C or lower.
  • the V component in the material is not sufficiently melted to dissolve carbides, resulting in a decrease in softening resistance in the final product.
  • the rolling with a wire rod may be performed at a temperature of 1000° C. or less so that the coiling temperature may be performed at 900° C. or less.
  • the rolled wire may be wound at a temperature of 800 to 900 °C.
  • the step of winding the rolled wire rod may be performed at a temperature of 800 to 900 °C.
  • the wound wire may be cooled at a rate of 0.5 to 2° C./s.
  • spring steel for nitriding treatment needs to suppress the low-temperature structure because a lot of high-alloy components are added.
  • Decarburization may occur when the wound wire is cooled at a rate of less than 0.5° C./s.
  • the cooling rate exceeds 2 ° C. / s, fracture may occur in the material due to the low-temperature structure.
  • the spring steel wire having improved strength and fatigue limit according to an embodiment of the present invention may satisfy Mn+Cr ⁇ 1.8%.
  • the spring steel wire having improved strength and fatigue limit according to an embodiment of the present invention may satisfy 0.05at% ⁇ Mo+W ⁇ 0.15at%.
  • the steel wire for a spring having improved strength and fatigue limit according to an embodiment of the present invention may include, in area fraction, 85% or more of a tempered martensite structure and the remaining austenite structure.
  • the spring steel wire having improved strength and fatigue limit according to an embodiment of the present invention may have an average particle diameter of prior austenite of 15 ⁇ m or less.
  • the quality of the material is deteriorated, such as a low-temperature structure due to central segregation, and workability is lowered, resulting in an increase in breakage frequency during spring processing of the steel wire.
  • the above-described area exceeds 10%, the carbide effect may be reduced due to the concentration of carbide-forming elements in the center.
  • the number of carbonitrides having a maximum diameter of 15 ⁇ m or more is 2 per 100 mm length in a cross section horizontal to the longitudinal direction within a surface depth of 1 mm. may be less than
  • fatigue fracture may occur in the material. It is preferable that less than two exist per 100 mm length in the cross section horizontal to the longitudinal direction within a surface depth of 1 mm.
  • the number of carbides is 10 to 50 in an area of 100 ⁇ m 2 , the carbide has a maximum diameter of 5 to 50 nm, and V or The Nb content may be 10 at% or more.
  • carbide containing V or Nb when it starts to grow larger than 10 nm, it grows with not only V but also other carbide-forming elements such as Cr and Mo, so it is a carbide-forming element to be used for suppressing the growth of former austenite grains and for precipitation hardening. should be properly distributed.
  • the number of carbides having a maximum diameter of 5 to 50 nm is less than 10, it is difficult to control the grain size of prior austenite.
  • the number of carbides having a maximum diameter of 5 to 50 nm exceeds 50, the amount to be utilized for precipitation hardening of 5 nm or less may be reduced, and the tensile strength of the steel wire may be lowered.
  • the steel wire for a spring having improved strength and fatigue limit according to an embodiment of the present invention may have a tensile strength of 2,100 MPa or more and a section reduction ratio (RA) of 45% or more.
  • a method for manufacturing a steel wire for a spring according to an embodiment of the present invention includes LA heat treatment of a wire rod according to an embodiment of the present invention; LP heat treatment; and preparing a steel wire by drawing the wire rod. and QT heat-treating the steel wire.
  • low temperature annealing may be performed on the wire rod according to an embodiment of the present invention at 650 to 750 ° C.
  • the LA heat treatment step is preferably performed within 2 hours because carbides coarsen as the process time increases, making it difficult to control carbides in subsequent processes.
  • the strength of the wire rod can be lowered to 1,200 MPa or less, and the LA heat treatment step can be omitted if necessary.
  • LP Lead Patenting, LP
  • the LP heat treatment is a first austenitizing step of heating to 950 to 1100 ° C within 3 minutes and then maintaining it for 3 minutes or less, and the first austenitized wire rod in a lead bath of 650 to 700 ° C within 3 minutes It may include a passing step.
  • an austenitizing process is performed to secure the austenite structure and at the same time to re-dissolve the coarsened carbides in the LA process. have.
  • the first austenized wire rod is rapidly cooled by passing through a lead bath at 650 to 750 ° C. within 3 minutes to undergo constant temperature transformation, and a pearlite structure can be secured.
  • a lead bath When the temperature of the lead bath is less than 650 ° C, a low-temperature structure may be formed.
  • the lead bath temperature exceeds 750 ° C., the carbide may be coarsened and the strength may be reduced.
  • a steel wire may be prepared by drawing the wire rod subjected to the LP heat treatment.
  • the wire diameter of the prepared steel wire may be 5 mm, and LP heat treatment may be performed again to secure the wire diameter of the steel wire to 2 mm or less.
  • the prepared steel wire may be subjected to a QT heat treatment process.
  • the QT heat treatment step a second austenitizing step of heating to 900 to 1000 ° C. within 3 minutes and then maintaining it for 3 minutes or less; First oil quenching at 70° C. or lower; Tempering step of heating to 450 to 550 ° C. within 3 minutes and then maintaining it for 3 minutes or less; and performing a second oil quenching at 70° C. or lower.
  • the austenitizing temperature may be performed at 900 to 1000 ° C. to maintain fine carbides precipitated during LP heat treatment.
  • the austenitizing process in the QT heat treatment step is preferably performed for 6 minutes or less.
  • the tempering temperature when the tempering temperature is less than 450° C., the nitriding treatment temperature is lowered, additional carbide formation cannot be induced, and toughness deteriorates.
  • the tempering temperature exceeds 550 ° C. in the QT heat treatment step, sufficient strength cannot be secured.
  • C 0.6 to 0.7%, Si: 2.0 to 2.5%, Mn: 0.2 to 0.7%, Cr: 0.9 to 1.5%, P : 0.015% or less, S: 0.01% or less, Al: 0.01% or less, N: 0.01% or less, Mo: 0.25% or less, W: 0.25% or less, V: 0.05% to 0.2% or less, Nb: 0.05% or less, It contains the remaining Fe and other unavoidable impurities, satisfies Mn+Cr ⁇ 1.8%, and satisfies 0.05at% ⁇ Mo+W ⁇ 0.15at%.
  • the fatigue limit of the spring according to an embodiment of the present invention increases by 10% or more after nitriding.
  • the fatigue limit means a limit that can withstand more than 10 million repeated loads during a fatigue test after designing a spring.
  • the spring according to an embodiment of the present invention may have a fatigue limit of 700 MPa or more capable of withstanding stress repeated 10 million times.
  • the change in strength before and after nitriding treatment is 15% or less, and the nitriding treatment temperature may be 430 ° C. or more.
  • a method for manufacturing a spring having improved strength and fatigue limit according to an embodiment of the present invention includes cold forming a steel wire according to an embodiment of the present invention to form a spring; subjecting the molded spring to stress relief heat treatment; and nitriding.
  • the steel wire according to an embodiment of the present invention can improve the fatigue limit through nitriding before the shot peening step in the spring manufacturing process.
  • the nitriding treatment temperature is too low, nitrogen cannot properly penetrate the surface, and if the nitriding treatment temperature is too high, the hardness of the center of the material decreases, making it impossible to secure the desired strength of the material.
  • the nitriding process may be performed at a temperature of 420 to 450° C. for 10 hours or more.
  • blooms were prepared by performing a casting process at a total diameter reduction of 10 to 25 mm.
  • the prepared bloom was subjected to homogenization heat treatment at 1,200 ° C, heat treatment at 1050 ° C, and then hot-rolled to a final wire diameter of 6.5 mm while lowering the temperature to 850 ° C, to prepare a wire rod having a final wire diameter of 6.5 mm. Thereafter, the rolled wire rod was wound at 800 to 900 ° C and then cooled at a rate of 1 ° C / s.
  • Table 2 below shows the at% content of W + Mo and the total reduction in pressure in Examples and Comparative Examples.
  • the segregation area in Table 2 below was derived by analyzing the center 1 mm 2 of the cross section perpendicular to the longitudinal direction of the manufactured wire rod.
  • the 'C segregation area' in Table 2 means the ratio of the area satisfying C > 0.85% by weight in the area of 1 mm 2 in the center of the section perpendicular to the longitudinal direction.
  • 'Si segregation area' means the ratio of the area satisfying Si > 3.0% by weight in the central 1 mm 2 area of the cross section perpendicular to the longitudinal direction.
  • 'Mn segregation area' means the ratio of the area satisfying Mn > 0.8% by weight in the center 1 mm 2 area of the cross section perpendicular to the longitudinal direction.
  • 'Cr segregation area' means the ratio of the area satisfying Cr > 2.0% by weight in the center 1 mm 2 area of the cross section perpendicular to the longitudinal direction.
  • the segregation area was measured using an electron probe X-ray Micro Analyzer (EPMA) having a model name of EMPA-1600.
  • EPMA electron probe X-ray Micro Analyzer
  • Example 1 0.11 25 mm ⁇ 1% 2.5 ⁇ 1% 2.5 ⁇ 7%
  • Example 2 0.08 25mm ⁇ 1% 4.3 ⁇ 1% 2.3 ⁇ 8.6%
  • Comparative Example 1 0.11 10mm 5.5 11.2 3.1% 10.2 30%
  • Comparative Example 2 0.08 25mm ⁇ 1% 4.5 ⁇ 1% 2.2 ⁇ 8.7%
  • Comparative Example 3 0.17 25mm ⁇ 1% 3.2 ⁇ 1% 3.4 ⁇ 8.6%
  • Comparative Example 4 0.11 25 mm ⁇ 1% 4.2 ⁇ 1% 2.4 ⁇ 8.6%
  • Examples 1 and 2 were satisfied with the alloy composition and total light reduction presented by the present invention, so that the sum of the segregated areas of C, Si, Mn, and Cr was less than 10%.
  • Comparative Example 1 as a result of the total hardness being less than 20 mm of 10 mm, the sum of the segregated areas of C, Si, Mn, and Cr reached 30%.
  • Table 3 shows the tensile strength, area reduction ratio (RA), center low-temperature structure, prior austenite average particle diameter, pearlite structure, and number of carbonitrides of the prepared wire rod.
  • the average particle diameter of old austenite, the pearlite structure, and the number of carbonitrides were measured using a scanning electron microscope (SEM) with model name JEOL, JSM-6610LV.
  • 'O' in Table 3 below means the case where the low-temperature structure exceeds 20% in area fraction, and 'X' means 'X' when the area fraction of the low-temperature structure is 20% or less.
  • the number of carbonitrides in Table 3 below is the maximum diameter of 15 when the microstructure of the longitudinal and horizontal cross-section is measured after preparing 10 specimens with a length of 1 cm by dividing a 10 cm-long wire rod into 10 equal parts, and then measuring the microstructure of the longitudinal direction and the horizontal cross section within 1 mm of the surface depth. It is the number of carbonitrides larger than ⁇ m.
  • Examples 1 and 2 did not form a low-temperature structure in the center, and the average particle diameter of prior austenite was formed to 20 ⁇ m or less.
  • Examples 1 and 2 had 6 or more specimens having a pearlite structure of 80% or more among 8 specimens, and had excellent workability with a tensile strength of 1400 MPa or less.
  • no carbonitride was formed on the surface.
  • Comparative Example 1 had a tensile strength exceeding 1400 MPa and a cross-sectional reduction rate of 35% or less, so the processability was inferior, and a low-temperature structure was formed in the center. In addition, in Comparative Example 1, only 5 specimens having a pearlite structure of 80% or more among 8 specimens did not form a pearlite structure of 80% or more uniformly.
  • Comparative Example 2 looking at the alloy components of Table 1, as V was added at less than 0.05%, the average particle diameter of prior austenite was coarsened to 24 ⁇ m exceeding 20 ⁇ m.
  • Comparative Example 3 had a tensile strength of 1510 MPa and a cross-sectional reduction rate of only 10%, resulting in poor processability and a low-temperature structure formed in the center. In addition, in Comparative Example 3, only two specimens having a pearlite structure of 80% or more among 8 specimens did not sufficiently form a pearlite structure.
  • Example and Comparative Examples were pickled after LA heat treatment at 720 ° C. for 2 hours, and LP heat treatment was performed.
  • the LP heat treatment was heated to the first austenitizing temperature within 3 minutes, and the rest was performed according to the conditions in Table 4 below.
  • Table 4 below shows the pearlite transformation times of Examples and Comparative Examples during LP heat treatment.
  • the pearlite transformation time was measured by deriving a TTT (Time-Temperature-Transformation) curve through a dilatometry experiment.
  • Example 1 the pearlite transformation times were measured as 110 seconds and 105 seconds, which are less than 130 seconds, respectively, and the productivity was excellent. In contrast, in Comparative Example 3, the pearlite transformation time was measured at 130 seconds, and productivity was inferior to the extent that on-site production was difficult.
  • the examples and comparative examples subjected to the LP heat treatment were wire-wired to produce a steel wire having a wire diameter of 3 mm.
  • tempering and second quenching were performed to obtain a QT steel wire. It was heated to the second austenitizing temperature within 3 minutes, and the first quenching and the second quenching were performed in oil at 60 °C. The rest was performed according to the conditions in Table 5 below.
  • the number of carbides means the number of carbides having a maximum diameter of 5 to 50 nm and a V or Nb content of 10 at% or more in an area of 100 ⁇ m 2 .
  • the number of carbides is a value obtained by measuring 8 random points of 100 ⁇ m 2 on the surface of the wire using a FEI Tecnai OSIRIS transmission electron microscope (TEM), and then averaging the measured values of the 8 points.
  • Examples 1 and 2 secured excellent tensile strength of 2200 MPa or more and at the same time secured a cross-sectional reduction rate of 45% or more.
  • the number of carbides was 10 to 50.
  • Comparative Example 1 In contrast, in Comparative Example 1, the area reduction rate was only 32%, and the number of carbides exceeded 50. In Comparative Example 2, the tensile strength was inferior to 2200 MPa or less, and the number of carbides was formed to be less than 10, so that it was difficult to control the average grain diameter of prior austenite. Comparative Example 4 was inferior in tensile strength to 2200 MPa or less, and the number of carbides exceeded 50.
  • the formed spring was subjected to heat treatment and then nitriding at 420 to 450 ° C.
  • Table 7 shows whether the spring was damaged during forming, the fatigue limit, and the fatigue limit value after nitriding treatment.
  • Examples 1 and 2 had excellent processability and were not damaged, and the fatigue limit was measured at 650 MPa or more before nitriding treatment, so the fatigue limit was excellent. In addition, Examples 1 and 2 had a fatigue limit of 750 MPa or more after nitriding treatment, and the fatigue limit after nitriding treatment was increased by 10% or more compared to before nitriding treatment, so the nitriding treatment characteristics were excellent.
  • Comparative Examples 1 and 2 were damaged due to poor workability, and after nitriding treatment, the fatigue limit increased to less than 10% compared to before nitriding treatment.
  • the alloy composition and manufacturing conditions by optimizing the alloy composition and manufacturing conditions, excellent tensile strength and section reduction rate are secured, and at the same time, nitriding treatment characteristics and fatigue limit are improved, so that it can be applied to materials such as automobile transmission gears and engine valves. .
  • a spring wire rod a steel wire, a spring with improved strength and fatigue limit, and a manufacturing method thereof.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Abstract

Disclosed are a wire rod and a steel wire for a spring, a spring with improved strength and fatigue limit, and a method for manufacturing same. The disclosed wire rod for a spring with improved strength and fatigue limit, according to one embodiment, comprises, in percentage by weight: C: 0.6-0.7%; Si: 2.0-2.5%; Mn: 0.2-0.7%; Cr: 0.9-1.5%; P: 0.015% or less; S: 0.01% or less; Al: 0.01% or less; N: 0.01% or less; Mo: 0.25% or less; W: 0.25% or less; V: 0.05-0.2% or less; Nb: 0.05% or less; and the balance consisting of Fe and unavoidable impurities, wherein Mn+Cr≤1.8% may be satisfied, and 0.05 at%≤Mo+W≤0.15 at% may be satisfied.

Description

강도 및 피로한도가 향상된 스프링용 선재, 강선, 스프링 및 그 제조방법Spring wire, steel wire, spring with improved strength and fatigue limit, and manufacturing method thereof
본 발명은 강도 및 피로한도가 향상된 스프링용 선재, 강선, 스프링 및 그 제조방법에 관한 것으로, 보다 상세하게는 2,200MPa급 초고강도 스프링강으로서, 강도 및 가공성이 우수함과 동시에 높은 온도에서도 질화처리가 용이하고, 질화처리 특성과 피로한도가 향상된 선재, 강선, 스프링 및 그 제조방법에 관한 것이다.The present invention relates to a spring wire rod, steel wire, spring with improved strength and fatigue limit, and a method for manufacturing the same, and more particularly, to a 2,200 MPa class ultra-high strength spring steel, which has excellent strength and workability and can be nitriding even at high temperatures. It relates to wire rods, steel wires, springs with improved nitriding treatment characteristics and fatigue limit, and a manufacturing method thereof.
차량의 경량화로 인해 자동차 부품에 대한 지속적인 경량화 요구로 자동차 변속기와 엔진밸브에 사용되는 스프링 또한 지속적인 고강도화를 요구하고 있다. 그러나, 스프링 소재의 고강도화로 선경이 얇아지면서 게재물에 대한 민감도가 커짐에 따라, 피로한도가 저하된다. 즉, 강도 향상을 통한 피로 한도 향상은 한계가 있다. 이를 극복하기 위해 스프링 제조사는 질화처리를 통해 강도는 유지하고 표면 경도를 향상시킴으로써 스프링 소재의 피로한도를 증가시키고자 하였다.Due to the continuous demand for weight reduction of automobile parts due to the weight reduction of vehicles, springs used in automobile transmissions and engine valves also require continuous high strength. However, as the wire diameter becomes thinner due to the high strength of the spring material and the sensitivity to the inclusions increases, the fatigue limit decreases. That is, there is a limit to improving the fatigue limit through strength improvement. To overcome this, spring manufacturers tried to increase the fatigue limit of spring materials by maintaining strength and improving surface hardness through nitriding treatment.
통상 질화처리는 다른 부품들에서는 500℃ 이상에서 수행되지만, 스프링강의 경우 강도 저하를 방지하기 위해 질화처리를 420~460℃에서 질화처리를 수행하고, 충분한 질소 침투 깊이를 확보하기 위해 10시간 이상 장시간 열처리를 수행한다.Normally, nitriding treatment is performed at 500 ° C or higher for other parts, but in the case of spring steel, nitriding treatment is performed at 420 ~ 460 ° C to prevent deterioration in strength, and for a long time of 10 hours or more to ensure sufficient nitrogen penetration depth. heat treatment is carried out.
통상의 스프링강의 템퍼링 열처리 온도는 450℃ 이하이기 때문에 420~450℃에서 장시간 열처리를 하면 대부분의 스프링강은 강도가 크게 떨어지므로, 탄화물을 형성하여 연화저항성을 향상시킬 수 있는 원소가 첨가된 고합금계 소재들을 활용해야 한다. 그러나, 탄화물 형성 원소인 Mo, V 등의 성분을 다량 첨가하게 되면 질화처리 시 강도 저하는 억제할 수 있으나, 중심부 편석에 의한 저온조직이 형성될 수 있고, 단면감소율이 저하되는 문제가 발생할 수 있다.Since the tempering heat treatment temperature of normal spring steel is below 450℃, most spring steels lose strength greatly when heat treated for a long time at 420~450℃. materials must be used. However, when a large amount of components such as Mo and V, which are carbide-forming elements, are added, the decrease in strength during nitriding treatment can be suppressed, but a low-temperature structure can be formed due to segregation in the center, and a problem in that the cross-section reduction rate can occur .
또한 스프링 소재는 공정 과정에서 고온 열처리 과정이 반복되기 때문에, 구 오스테나이트 결정립 크기(Prior Austenite Grain Size, PAGS) 제어가 문제되며, 열처리 과정 중의 탄화물 제어 기술도 필요하다.In addition, since the high-temperature heat treatment process is repeated in the process of the spring material, prior austenite grain size (PAGS) control is a problem, and carbide control technology during the heat treatment process is also required.
한편, 스프링 제조사는 질화처리 시간을 단축하기 위해 가능한 높은 온도에서 질화처리를 실시하여 공정 시간을 단축하기를 원하며, 동시에 현장 생산성에 문제가 없는 고강도 선재를 필요로 하고 있다.On the other hand, spring manufacturers want to shorten the process time by performing nitriding treatment at as high a temperature as possible in order to shorten the nitriding treatment time, and at the same time, they require high-strength wire rods that do not cause problems in on-site productivity.
따라서, 강도 및 가공성 등의 품질이 우수함과 동시에 질화처리 특성 및 피로한도가 향상된 선재 및 강선에 대한 개발이 요구된다.Therefore, it is required to develop a wire rod and a steel wire having excellent quality such as strength and workability, as well as improved nitriding characteristics and fatigue limit.
(특허문헌 0001) 한국 공개특허공보 제10-2000-0043776호 (공개일자: 2000년07월15일)(Patent Document 0001) Korean Patent Publication No. 10-2000-0043776 (published on July 15, 2000)
상술한 문제점을 해결하기 위해 본 발명은 강도 및 가공성이 우수함과 동시에 높은 온도에서도 질화처리가 용이하고, 질화처리 특성과 피로한도가 향상된 선재, 강선, 스프링 및 그 제조방법을 제공하고자 한다.In order to solve the above problems, the present invention is intended to provide a wire rod, steel wire, spring, and a method for manufacturing the same, which are excellent in strength and workability, are easily nitrided even at high temperatures, and have improved nitriding characteristics and fatigue limit.
상기와 같은 목적을 달성하기 위한 본 발명에 따른 강도 및 피로한도가 향상된 스프링용 선재는, 중량%로, C: 0.6 내지 0.7%, Si: 2.0 내지 2.5%, Mn: 0.2 내지 0.7%, Cr: 0.9 내지 1.5%, P: 0.015% 이하, S: 0.01% 이하, Al: 0.01% 이하, N: 0.01% 이하, Mo: 0.25% 이하, W: 0.25% 이하, V: 0.05% 내지 0.2% 이하, Nb: 0.05% 이하, 나머지 Fe 및 기타 불가피한 불순물을 포함하고, Mn+Cr≤1.8%를 만족하고, 0.05at%≤Mo+W≤0.15at%를 만족하고, 길이 방향과 수직한 단면의 중심부 1mm2 면적에서, 중량%로, C > 0.85%, Si > 3.0%, Mn > 0.8%, Cr > 2.0% 중 하나 이상을 만족하는 면적의 비율이 10% 이하이다.In order to achieve the above object, the spring wire rod having improved strength and fatigue limit according to the present invention contains, by weight, C: 0.6 to 0.7%, Si: 2.0 to 2.5%, Mn: 0.2 to 0.7%, Cr: 0.9 to 1.5%, P: 0.015% or less, S: 0.01% or less, Al: 0.01% or less, N: 0.01% or less, Mo: 0.25% or less, W: 0.25% or less, V: 0.05% to 0.2% or less, Nb: 0.05% or less, including Fe and other unavoidable impurities, satisfying Mn+Cr≤1.8%, satisfying 0.05at%≤Mo+W≤0.15at%, 1mm in the center of the section perpendicular to the longitudinal direction In the area of 2 , the ratio of the area satisfying at least one of C > 0.85%, Si > 3.0%, Mn > 0.8%, and Cr > 2.0% in weight% is 10% or less.
여기서, 상기 선재는 면적분율로 펄라이트 조직 80% 이상, 나머지 베이나이트 조직 또는 마르텐사이트 조직을 포함할 수 있다.Here, the wire rod may include 80% or more of pearlite structure and the remaining bainite structure or martensite structure in area fraction.
여기서, 상기 선재는 구오스테나이트 평균 입경이 20㎛ 이하일 수 있다.Here, the wire rod may have an average particle diameter of prior austenite of 20 μm or less.
여기서, 상기 선재는 표면 깊이 1mm 이내의 길이 방향과 수평한 단면에서, 최대 직경이 15㎛ 이상인 탄질화물이 2개/cm2 미만으로 분포할 수 있다.Here, in the wire rod, carbonitrides having a maximum diameter of 15 μm or more may be distributed in less than 2/cm 2 in a longitudinal and horizontal cross section within a surface depth of 1 mm.
여기서, 상기 선재는 인장강도는 1,400MPa 이하이고 단면감소율은 35% 이상일 수 있다.Here, the wire rod may have a tensile strength of 1,400 MPa or less and a cross-sectional reduction ratio of 35% or more.
또한, 상기 상기와 같은 목적을 달성하기 위한 본 발명에 따른 강도 및 피로한도가 향상된 스프링용 선재의 제조방법은, 중량%로, C: 0.6 내지 0.7%, Si: 2.0 내지 2.5%, Mn: 0.2 내지 0.7%, Cr: 0.9 내지 1.5%, P: 0.015% 이하, S: 0.01% 이하, Al: 0.01% 이하, N: 0.01% 이하, Mo: 0.25% 이하, W: 0.25% 이하, V: 0.05% 내지 0.2% 이하, Nb: 0.05% 이하, 나머지 Fe 및 기타 불가피한 불순물을 포함하는 용강을 연속 주조하여 블룸(bloom)을 마련하는 단계; 상기 블룸을 1,200℃ 이상의 온도로 가열한 후 빌렛으로 압연하는 단계; 상기 빌렛을 1,030℃ 이상에서 열처리한 후 1,000℃ 이하의 온도에서 선재로 압연하는 단계; 상기 선재를 800 내지 900℃의 온도에서 권취하는 단계; 및 상기 권취된 선재를 0.5 내지 2℃/s의 속도로 냉각하는 단계;를 포함한다.In addition, the method for manufacturing a wire rod for a spring having improved strength and fatigue limit according to the present invention for achieving the above object is, in weight%, C: 0.6 to 0.7%, Si: 2.0 to 2.5%, Mn: 0.2 to 0.7%, Cr: 0.9 to 1.5%, P: 0.015% or less, S: 0.01% or less, Al: 0.01% or less, N: 0.01% or less, Mo: 0.25% or less, W: 0.25% or less, V: 0.05 % to 0.2% or less, Nb: 0.05% or less, preparing a bloom by continuously casting molten steel containing the remaining Fe and other unavoidable impurities; Heating the bloom to a temperature of 1,200 ° C. or higher and then rolling it into a billet; heat-treating the billet at 1,030° C. or higher and then rolling it into a wire rod at a temperature of 1,000° C. or lower; winding the wire rod at a temperature of 800 to 900° C.; and cooling the wound wire rod at a rate of 0.5 to 2° C./s.
여기서, 상기 연속 주조 단계는 총 압하량 20mm 이상으로 경압하하는 것을 포함할 수 있다.Here, the continuous casting step may include light reduction with a total reduction of 20 mm or more.
여기서, 상기 경압하는, 각 압연롤 별로 4mm 이하로 압연하며, 응고분율이 0.6 이상일 때 누적 압하량이 60% 이상일 수 있다.Here, the light pressure is rolled to 4 mm or less for each rolling roll, and the cumulative reduction may be 60% or more when the solidification fraction is 0.6 or more.
또한, 상기와 같은 목적을 달성하기 위한 본 발명에 따른 강도 및 피로한도가 향상된 스프링용 강선은, 중량%로, C: 0.6 내지 0.7%, Si: 2.0 내지 2.5%, Mn: 0.2 내지 0.7%, Cr: 0.9 내지 1.5%, P: 0.015% 이하, S: 0.01% 이하, Al: 0.01% 이하, N: 0.01% 이하, Mo: 0.25% 이하, W: 0.25% 이하, V: 0.05% 내지 0.2% 이하, Nb: 0.05% 이하, 나머지 Fe 및 기타 불가피한 불순물을 포함하고, Mn+Cr≤1.8%를 만족하고, 0.05at%≤Mo+W≤0.15at%를 만족하고, 면적분율로, 템퍼드 마르텐사이트 조직 85% 이상 및 나머지 오스테나이트 조직을 포함한다.In addition, the steel wire for a spring with improved strength and fatigue limit according to the present invention for achieving the above object, in weight%, C: 0.6 to 0.7%, Si: 2.0 to 2.5%, Mn: 0.2 to 0.7%, Cr: 0.9 to 1.5%, P: 0.015% or less, S: 0.01% or less, Al: 0.01% or less, N: 0.01% or less, Mo: 0.25% or less, W: 0.25% or less, V: 0.05% to 0.2% Hereinafter, Nb: 0.05% or less, including the remainder Fe and other unavoidable impurities, satisfying Mn + Cr ≤ 1.8%, satisfying 0.05at% ≤ Mo + W ≤ 0.15at%, by area fraction, tempered martens It contains more than 85% of the site structure and the remaining austenite structure.
여기서, 상기 강선은 구오스테나이트 평균 입경이 15㎛ 이하일 수 있다.Here, the steel wire may have a prior austenite average particle diameter of 15 μm or less.
여기서, 상기 강선은 표면 깊이 1mm 이내의 길이 방향과 수평한 단면에서, 최대 직경이 15㎛ 이상인 탄질화물이 2개/cm2 미만으로 분포할 수 있다.Here, in the steel wire, carbonitrides having a maximum diameter of 15 μm or more may be distributed in less than 2 pieces/cm 2 in a longitudinal and horizontal cross section within a surface depth of 1 mm.
여기서, 100㎛2 면적에서, 탄화물의 개수가 10개 내지 50개이고, 상기 탄화물은 최대 직경이 5 내지 50nm이고, V 또는 Nb의 함량이 10at% 이상일 수 있다.Here, in an area of 100 μm 2 , the number of carbides is 10 to 50, the maximum diameter of the carbides is 5 to 50 nm, and the V or Nb content may be 10 at% or more.
여기서, 상기 강선은 인장강도가 2,100MPa 이상이고 단면감소율이 45% 이상일 수 있다.Here, the steel wire may have a tensile strength of 2,100 MPa or more and a cross-sectional reduction ratio of 45% or more.
또한, 상기와 같은 목적을 달성하기 위한 본 발명에 따른 강도 및 피로한도가 향상된 스프링용 강선의 제조방법은, 상기 선재를 LP 열처리하는 단계; 상기 LP 열처리한 선재를 신선하여 강선을 마련하는 단계; 및 상기 강선을 QT열처리하는 단계;를 포함하고, 상기 LP 열처리하는 단계는, 3분 이내로 950 내지 1100℃까지 가열한 후 3분 이하로 유지하는 제1 오스테나이타이징 단계; 및 상기 제1 오스테나이타이징한 선재를 650 내지 700℃의 납조에서 3분 이내로 통과시키는 단계를 포함한다.In addition, a method for manufacturing a steel wire for a spring having improved strength and fatigue limit according to the present invention for achieving the above object includes LP heat treatment of the wire rod; preparing a steel wire by drawing the wire rod subjected to the LP heat treatment; and subjecting the steel wire to QT heat treatment, wherein the LP heat treatment includes: a first austenitizing step of heating to 950 to 1100° C. within 3 minutes and then maintaining the temperature for 3 minutes or less; and passing the first austenitized wire rod through a lead bath at 650 to 700° C. within 3 minutes.
여기서, 상기 LP 열처리하는 단계에서 펄라이트 변태 완료 시간은 130초 미만일 수 있다.Here, the pearlite transformation completion time in the LP heat treatment step may be less than 130 seconds.
여기서, 상기 LP 열처리하는 단계 전에, 상기 선재를 LA열처리하는 단계를 더 포함하고, 상기 LA열처리하는 단계는, 650 내지 750℃에서 열처리하는 단계; 및 산세하는 단계;를 더 포함할 수 있다.Here, prior to the LP heat treatment step, the step of LA heat treatment of the wire rod is further included, and the step of LA heat treatment includes heat treatment at 650 to 750° C.; and pickling; may further include.
여기서, 상기 QT열처리하는 단계는, 3분 이내로 900 내지 1000℃까지 가열한 후 3분 이하로 유지하는 제2 오스테나이타이징 단계; 70℃ 이하에서 제1 오일 퀜칭하는 단계; 3분 이내로 450 내지 550℃까지 가열한 후 3분 이하로 유지하는 템퍼링 단계; 및 70℃ 이하에서 제2 오일 퀜칭하는 단계;를 포함할 수 있다.Here, the QT heat treatment step is a second austenitizing step of heating to 900 to 1000 ° C. within 3 minutes and then maintaining it for 3 minutes or less; First oil quenching at 70° C. or lower; Tempering step of heating to 450 to 550 ° C. within 3 minutes and then maintaining it for 3 minutes or less; and performing a second oil quenching at 70° C. or less.
또한, 상기와 같은 목적을 달성하기 위한 본 발명에 따른 강도 및 피로한도가 향상된 스프링은, 중량%로, C: 0.6 내지 0.7%, Si: 2.0 내지 2.5%, Mn: 0.2 내지 0.7%, Cr: 0.9 내지 1.5%, P: 0.015% 이하, S: 0.01% 이하, Al: 0.01% 이하, N: 0.01% 이하, Mo: 0.25% 이하, W: 0.25% 이하, V: 0.05% 내지 0.2% 이하, Nb: 0.05% 이하, 나머지 Fe 및 기타 불가피한 불순물을 포함하고, Mn+Cr≤1.8%를 만족하고, 0.05at%≤Mo+W≤0.15at%를 만족하고, 천만회 반복응력을 견딜 수 있는 피로한도가 700MPa 이상이다.In addition, the spring with improved strength and fatigue limit according to the present invention for achieving the above object, in weight%, C: 0.6 to 0.7%, Si: 2.0 to 2.5%, Mn: 0.2 to 0.7%, Cr: 0.9 to 1.5%, P: 0.015% or less, S: 0.01% or less, Al: 0.01% or less, N: 0.01% or less, Mo: 0.25% or less, W: 0.25% or less, V: 0.05% to 0.2% or less, Nb: 0.05% or less, including the remainder Fe and other unavoidable impurities, satisfies Mn+Cr≤1.8%, satisfies 0.05at%≤Mo+W≤0.15at%, and can withstand 10 million repeated stresses. degree is 700 MPa or more.
또한, 상기와 같은 목적을 달성하기 위한 본 발명에 따른 강도 및 피로한도가 향상된 스프링의 제조방법은, 상기 강선을 스프링의 형상으로 냉간 성형하는 단계; 성형된 스프링을 응력풀림 열처리하는 단계; 및 420 내지 450℃의 온도에서 10시간 이상 질화처리하는 단계;를 포함한다.In addition, a method for manufacturing a spring having improved strength and fatigue limit according to the present invention for achieving the above object includes the steps of cold forming the steel wire into a spring shape; subjecting the molded spring to stress relief heat treatment; and nitriding at a temperature of 420 to 450° C. for 10 hours or more.
또한, 상기와 같은 목적을 달성하기 위한 본 발명에 따른 강도 및 피로한도가 향상된 스프링의 제조방법은, 상기 질화처리 후 피로한도가 10% 이상 증가할 수 있다.In addition, in the method of manufacturing a spring with improved strength and fatigue limit according to the present invention for achieving the above object, the fatigue limit after the nitriding treatment can be increased by 10% or more.
본 발명의 일 측면에 따르면, 중심부 편석 저감으로 중심부의 저온조직 발생을 억제하고 우수한 단면감소율을 확보함과 동시에 2,200MPa 이상의 인장강도를 확보할 수 있는 선재, 강선, 스프링 및 그 제조방법을 제공할 수 있다.According to one aspect of the present invention, to provide a wire rod, a steel wire, a spring, and a method for manufacturing the same, which can suppress the generation of cold tissue in the center by reducing segregation in the center, secure an excellent cross-section reduction rate, and at the same time secure a tensile strength of 2,200 MPa or more. can
본 발명의 다른 측면에 따르면, 결정립 크기 및 석출물의 개수를 제어함으로써 질화처리 특성과 피로한도가 향상된 선재, 강선, 스프링 및 그 제조방법을 제공할 수 있다.According to another aspect of the present invention, it is possible to provide a wire rod, a steel wire, a spring, and a manufacturing method thereof having improved nitriding characteristics and fatigue limit by controlling the size of crystal grains and the number of precipitates.
본 발명에 따른 강도 및 피로한도가 향상된 스프링용 선재는, 중량%로, C: 0.6 내지 0.7%, Si: 2.0 내지 2.5%, Mn: 0.2 내지 0.7%, Cr: 0.9 내지 1.5%, P: 0.015% 이하, S: 0.01% 이하, Al: 0.01% 이하, N: 0.01% 이하, Mo: 0.25% 이하, W: 0.25% 이하, V: 0.05% 내지 0.2% 이하, Nb: 0.05% 이하, 나머지 Fe 및 기타 불가피한 불순물을 포함하고, Mn+Cr≤1.8%를 만족하고, 0.05at%≤Mo+W≤0.15at%를 만족하고, 길이 방향과 수직한 단면의 중심부 1mm2 면적에서, 중량%로, C > 0.85%, Si > 3.0%, Mn > 0.8%, Cr > 2.0% 중 하나 이상을 만족하는 면적의 비율이 10% 이하이다.The wire rod for a spring with improved strength and fatigue limit according to the present invention contains, by weight, C: 0.6 to 0.7%, Si: 2.0 to 2.5%, Mn: 0.2 to 0.7%, Cr: 0.9 to 1.5%, P: 0.015 % or less, S: 0.01% or less, Al: 0.01% or less, N: 0.01% or less, Mo: 0.25% or less, W: 0.25% or less, V: 0.05% to 0.2% or less, Nb: 0.05% or less, balance Fe and other unavoidable impurities, satisfies Mn + Cr ≤ 1.8%, satisfies 0.05 at% ≤ Mo + W ≤ 0.15 at%, in the center 1 mm 2 area of the cross section perpendicular to the longitudinal direction, in weight%, A ratio of an area satisfying at least one of C > 0.85%, Si > 3.0%, Mn > 0.8%, and Cr > 2.0% is 10% or less.
이하에서는 본 발명의 바람직한 실시형태들을 설명한다. 그러나, 본 발명의 실시형태는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 기술사상이 이하에서 설명하는 실시형태로 한정되는 것은 아니다. 또한, 본 발명의 실시형태는 당해 기술분야에서 평균적인 지식을 가진 자에게 본 발명을 더욱 완전하게 설명하기 위해서 제공되는 것이다.Preferred embodiments of the present invention are described below. However, the embodiments of the present invention can be modified in many different forms, and the technical spirit of the present invention is not limited to the embodiments described below. In addition, the embodiments of the present invention are provided to more completely explain the present invention to those skilled in the art.
본 출원에서 사용하는 용어는 단지 특정한 예시를 설명하기 위하여 사용되는 것이다. 때문에 가령 단수의 표현은 문맥상 명백하게 단수여야만 하는 것이 아닌 한, 복수의 표현을 포함한다. 덧붙여, 본 출원에서 사용되는 "포함하다" 또는 "구비하다" 등의 용어는 명세서 상에 기재된 특징, 단계, 기능, 구성요소 또는 이들을 조합한 것이 존재함을 명확히 지칭하기 위하여 사용되는 것이지, 다른 특징들이나 단계, 기능, 구성요소 또는 이들을 조합한 것의 존재를 예비적으로 배제하고자 사용되는 것이 아님에 유의해야 한다.Terms used in this application are only used to describe specific examples. Therefore, for example, expressions in the singular number include plural expressions unless the context clearly requires them to be singular. In addition, the terms "include" or "have" used in this application are used to clearly indicate that the features, steps, functions, components, or combinations thereof described in the specification exist, but other features It should be noted that it is not intended to be used to preliminarily exclude the presence of any steps, functions, components, or combinations thereof.
한편, 다르게 정의되지 않는 한, 본 명세서에서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가진 것으로 보아야 한다. 따라서, 본 명세서에서 명확하게 정의하지 않는 한, 특정 용어가 과도하게 이상적이거나 형식적인 의미로 해석되어서는 안 된다. 가령, 본 명세서에서 단수의 표현은 문맥상 명백하게 예외가 있지 않는 한, 복수의 표현을 포함한다.Meanwhile, unless otherwise defined, all terms used in this specification should be regarded as having the same meaning as commonly understood by a person of ordinary skill in the art to which the present invention belongs. Accordingly, certain terms should not be interpreted in an overly idealistic or formal sense unless clearly defined herein. For example, in this specification, a singular expression includes a plurality of expressions unless there is a clear exception from the context.
또한, 본 명세서의 "약", "실질적으로" 등은 언급한 의미에 고유한 제조 및 물질 허용오차가 제시될 때 그 수치에서 또는 그 수치에 근접한 의미로 사용되고, 본 발명의 이해를 돕기 위해 정확하거나 절대적인 수치가 언급된 개시 내용을 비양심적인 침해자가 부당하게 이용하는 것을 방지하기 위해 사용된다.In addition, "about", "substantially", etc. in this specification are used at or in the sense of or close to the value when manufacturing and material tolerances inherent in the stated meaning are presented, and are accurate to aid in understanding the present invention. or absolute numbers are used to prevent unfair use by unscrupulous infringers of the stated disclosure.
본 발명의 일 실시예에 따른 강도 및 피로한도가 향상된 스프링용 선재는, 중량%로, C: 0.6 내지 0.7%, Si: 2.0 내지 2.5%, Mn: 0.2 내지 0.7%, Cr: 0.9 내지 1.5%, P: 0.015% 이하, S: 0.01% 이하, Al: 0.01% 이하, N: 0.01% 이하, Mo: 0.25% 이하, W: 0.25% 이하, V: 0.05% 내지 0.2% 이하, Nb: 0.05% 이하, 나머지 Fe 및 기타 불가피한 불순물을 포함한다.In the wire rod for a spring having improved strength and fatigue limit according to an embodiment of the present invention, in weight%, C: 0.6 to 0.7%, Si: 2.0 to 2.5%, Mn: 0.2 to 0.7%, Cr: 0.9 to 1.5% , P: 0.015% or less, S: 0.01% or less, Al: 0.01% or less, N: 0.01% or less, Mo: 0.25% or less, W: 0.25% or less, V: 0.05% to 0.2% or less, Nb: 0.05% Hereinafter, the remaining Fe and other unavoidable impurities are included.
이하, 각 합금원소의 성분범위를 한정한 이유에 대하여 설명한다. 이하에서는 특별한 언급이 없는 한 단위는 중량%이다.Hereinafter, the reason for limiting the composition range of each alloy element will be described. Hereinafter, unless otherwise specified, units are % by weight.
C의 함량은 0.6 내지 0.7%이다.The content of C is 0.6 to 0.7%.
C는 소재의 강도를 향상시키는 원소로써, 소재의 충분한 강도를 확보하기 위해 0.6% 이상 첨가할 수 있다. 다만, C 함량이 과다할 경우, QT(Quenching & Tempering)열처리 이후 충격특성이 크게 하락하고, 선재 생산시 저온조직 발생가능성이 크게 증가하여 선재의 품질이 열위해질 수 있다. 또한, C 함량이 과다할 경우, 강선 제조공정 중 하나인 LP열처리 시간이 크게 증가하여 생산성이 저하될 수 있다. 이를 고려하여, C 함량의 상한은 0.7%로 한정할 수 있다.C is an element that improves the strength of the material, and may be added in an amount of 0.6% or more to ensure sufficient strength of the material. However, if the C content is excessive, the impact characteristics significantly decrease after QT (Quenching & Tempering) heat treatment, and the possibility of low-temperature texture greatly increases during wire production, resulting in inferior wire quality. In addition, when the C content is excessive, the LP heat treatment time, which is one of the steel wire manufacturing processes, is greatly increased, and productivity may be lowered. Considering this, the upper limit of the C content may be limited to 0.7%.
Si의 함량은 2.0 내지 2.5%이다.The content of Si is 2.0 to 2.5%.
Si은 강의 탈산을 위해서 사용될 뿐만 아니라 고용강화를 통한 강도 확보에 유리한 원소로써, 질화처리 시 강도 저하를 억제하고 스프링의 변형저항성을 향상시키기 위해 2.0% 이상 첨가할 수 있다. 다만, Si 함량이 과다할 경우, 표면 탈탄을 유발할 수 있으며, 재료의 가공성이 열위해질 수 있다. 이를 고려하여, Si 함량의 상한은 2.5%로 한정할 수 있다.Si is not only used for deoxidation of steel, but also is an element that is advantageous for securing strength through solid solution strengthening, and may be added in an amount of 2.0% or more to suppress a decrease in strength during nitriding and improve deformation resistance of a spring. However, when the Si content is excessive, surface decarburization may be caused, and workability of the material may be deteriorated. Considering this, the upper limit of the Si content may be limited to 2.5%.
Mn의 함량은 0.2 내지 0.7%이다.The content of Mn is 0.2 to 0.7%.
Mn은 경화능 향상 원소로써, 소재의 경화능과 고강도 템퍼드 마르텐사이트 조직을 확보하고, S을 Mn로서 고정하여 무해화하기 위해 0.2% 이상 첨가할 수 있다. 다만, Mn 함량이 과다할 경우, 편석에 의해 품질이 열위해질 수 있다. 이를 고려하여, Mn 함량의 상한은 0.7%로 한정할 수 있다.Mn is a hardenability improving element, and may be added in an amount of 0.2% or more to secure hardenability and high-strength tempered martensitic structure of the material, and fix S as Mn to make it harmless. However, when the Mn content is excessive, the quality may deteriorate due to segregation. Considering this, the upper limit of the Mn content may be limited to 0.7%.
Cr의 함량은 0.9 내지 1.5%이다.The content of Cr is 0.9 to 1.5%.
Cr은 Mn과 함께 경화능 향상 원소로써, 질화처리 시 강의 연화저항성을 향상시키기 위해 0.9% 이상 첨가할 수 있다. 다만, Cr 함량이 과다할 경우, 강선의 인성을 크게 저하시키고 선재를 냉각 중에 저온조직의 발생을 조장한다. 이를 고려하여, Cr 함량의 상한은 1.5%로 한정할 수 있다. Cr is a hardenability improving element together with Mn, and may be added in an amount of 0.9% or more to improve the softening resistance of steel during nitriding treatment. However, if the Cr content is excessive, the toughness of the steel wire is greatly reduced and the generation of a low-temperature structure is promoted during cooling of the wire rod. Considering this, the upper limit of the Cr content may be limited to 1.5%.
P의 함량은 0.015% 이하이다.The content of P is 0.015% or less.
P는 결정립계에 편석되어 소재의 인성을 저하시키고 수소지연파괴 저항성을 저하시키기는 원소이기 때문에 최대한 철강재료에서 배제하는 것이 바람직하다. 이를 고려하여, P 함량의 상한은 0.015%로 한정할 수 있다.Since P is an element that is segregated at the grain boundaries to reduce the toughness of the material and the resistance to delayed hydrogen fracture, it is desirable to exclude it from the steel material as much as possible. Considering this, the upper limit of the P content may be limited to 0.015%.
S의 함량은 0.01% 이하이다.The content of S is 0.01% or less.
S은 P과 마찬가지로 결정립계에 편석되어 인성을 저하시킬 뿐만 아니라 MnS를 형성시켜 수소지연파괴 저항성을 저하시킬 수 있다. 이를 고려하여, S 함량의 상한은 0.01%로 한정할 수 있다.S, like P, is segregated at grain boundaries to reduce toughness, and also to form MnS to reduce delayed hydrogen fracture resistance. Considering this, the upper limit of the S content may be limited to 0.01%.
Al의 함량은 0.01% 이하이다.The content of Al is 0.01% or less.
Al은 강력한 탈산 원소로 강 중의 산소를 제거해 청정도를 높일 수 있지만, Al2O3 개재물을 형성하여, 피로저항성을 저하시킬 수 있다. 이를 고려하여, Al 함량의 상한은 0.01%로 한정할 수 있다. Al is a strong deoxidizing element that can remove oxygen in steel to increase cleanliness, but it can form Al 2 O 3 inclusions and reduce fatigue resistance. In consideration of this, the upper limit of the Al content may be limited to 0.01%.
N의 함량은 0.01% 이하이다.The content of N is 0.01% or less.
N은 불순물이나, Al 또는 V과 결합하여 열처리 시에 용해되지 않는 조대한 AlN 또는 VN 석출물을 형성한다. 이를 고려하여, N 함량의 상한은 0.01%로 한정할 수 있다.N is an impurity, but combines with Al or V to form coarse AlN or VN precipitates that do not dissolve during heat treatment. Considering this, the upper limit of the N content may be limited to 0.01%.
Mo의 함량은 0.25% 이하이다.The content of Mo is 0.25% or less.
Mo는 질화처리용 소재에서 연화저항성을 향상시키고, V과 함께 탄화물을 형성하여 템퍼링시 강도를 높여주는 원소이다. 또한, Mo는 MC 탄화물을 형성하여 장시간 열처리에도 소재의 강도를 유지해주는 원소이다. 그러나, Mo 함량이 과다할 경우, 펄라이트 조직의 형성을 억제하여, 선재 압연 이후 저온조직 형성으로 선재의 품질이 열위해질 수 있다. 또한, Mo 함량이 과다할 경우, 신선가공전 LP열처리 시에도 펄라이트 변태를 억제하여 펄라이트 변태 시간이 증가한 결과, 생산성을 크게 저하시킨다. 이를 고려하여, Mo의 함량의 상한은 0.25%로 한정할 수 있다.Mo is an element that improves softening resistance in materials for nitriding treatment and increases strength during tempering by forming carbides together with V. In addition, Mo is an element that forms MC carbide to maintain the strength of the material even during long-term heat treatment. However, when the Mo content is excessive, the formation of a pearlite structure is suppressed, and the quality of the wire rod may be deteriorated due to the formation of a low-temperature structure after rolling the wire rod. In addition, when the Mo content is excessive, pearlite transformation is suppressed even during LP heat treatment before wire drawing, so that the pearlite transformation time increases, resulting in a significant decrease in productivity. Considering this, the upper limit of the Mo content may be limited to 0.25%.
W의 함량은 0.25% 이하이다.The content of W is 0.25% or less.
W은 Mo와 함께 질화처리용 소재에서 연화저항성을 향상시킬 수 있는 원소로써, Mo와 마찬가지로 MC탄화물을 형성하여 장시간 열처리시에도 소재의 강도를 유지시켜 줄 수 있다. 그러나, W 함량이 과다할 경우, 펄라이트 형성을 억제하여 선재에 저온조직 형성을 조장할 수 있다. 이를 고려하여, W 함량의 상한은 0.25%로 한정할 수있다.W, together with Mo, is an element that can improve softening resistance in nitriding materials, and like Mo, it can form MC carbide to maintain the strength of the material even during long-term heat treatment. However, when the W content is excessive, the formation of pearlite may be suppressed and the formation of a low-temperature structure may be promoted in the wire rod. Considering this, the upper limit of the W content may be limited to 0.25%.
V의 함량은 0.05 내지 0.2%이다.The content of V is 0.05 to 0.2%.
V은 Mo와 함께 질화처리용 소재에서 연화저항성을 향상시키는 원소로써, 탄화물을 형성하여 템퍼링시 강도를 높여주며, 장시간 질화처리에서도 강도를 유지시켜 줄 수 있다. 또한, V은 Mo와 W과 달리 탄화물의 고용온도가 높아 구 오스테나이트 결정립 크기를 유지시켜주는 역할을 한다. 또한, V은 펄라이트 변태를 가속화시키기 때문에 선재 생산 시 저온조직을 억제할 수 있고, LP열처리 중 항온변태 시간도 단축시키므로 강선 제조 공정 시 생산성을 향상시킬 수 있는 바, 0.05% 이상 첨가할 수 있다. 다만, V의 함량이 과다할 경우, 선재 생산 과정에서 조대한 탄질화물을 형성시킬 수 있고, 선재 압연 시 가열로 온도를 증가하여야 한다. 이를 고려하여, V 함량의 상한은 0.2%로 한정할 수 있다.V, together with Mo, is an element that improves softening resistance in the material for nitriding treatment, and increases strength during tempering by forming carbides, and can maintain strength even during long-term nitriding treatment. In addition, V, unlike Mo and W, has a high solid solution temperature of carbides and serves to maintain the size of old austenite grains. In addition, since V accelerates pearlite transformation, low-temperature structure can be suppressed during wire rod production, and the constant temperature transformation time during LP heat treatment can be shortened, so productivity can be improved during the steel wire manufacturing process, so 0.05% or more can be added. However, if the content of V is excessive, coarse carbonitrides may be formed in the process of producing the wire rod, and the temperature of the heating furnace should be increased during wire rod rolling. Considering this, the upper limit of the V content may be limited to 0.2%.
Nb의 함량은 0.05% 이하이다.The content of Nb is 0.05% or less.
Nb는 탄질화물 형성 원소로써, V보다 고용온도가 더 높아 V대비 구 오스테나이트 결정립 크기의 제어효과가 뛰어나다. 다만, Nb의 함량이 과다할 경우, 구 오스테나이트 결정립 크기가 조대화되는 문제가 발생할 수 있다. 이를 고려하여, Nb 함량의 상한은 0.05%로 한정할 수 있으며, 구 오스테나이트 결정립 크기가 제조 공정을 통해 제어할 경우에는 Nb의 첨가를 생략할 수 있다.Nb is a carbonitride forming element, and has a higher solid solution temperature than V, so the control effect of the grain size of prior austenite compared to V is excellent. However, when the content of Nb is excessive, a problem of coarsening the grain size of prior austenite may occur. In consideration of this, the upper limit of the Nb content may be limited to 0.05%, and when the grain size of prior austenite is controlled through the manufacturing process, the addition of Nb may be omitted.
상기 조성 이외에 나머지 성분은 철(Fe)이다. 다만, 통상의 제조과정에서는 원료 또는 주위 환경으로부터 의도되지 않는 불순물들이 불가피하게 혼입될 수 있으므로, 이를 배제할 수는 없다. 이들 불순물들은 통상의 제조과정의 기술자라면 누구라도 알 수 있는 것이기 때문에 그 모든 내용을 특별히 본 명세서에서 언급하지는 않는다.In addition to the above composition, the remaining components are iron (Fe). However, since unintended impurities from raw materials or the surrounding environment may inevitably be mixed in a normal manufacturing process, this cannot be excluded. Since these impurities are known to anyone skilled in the ordinary manufacturing process, not all of them are specifically mentioned in this specification.
한편, 본 발명의 일 실시예에 따른 강도 및 피로한도가 향상된 선재는, 중량%로, Mn+Cr≤1.8%를 만족할 수 있다.Meanwhile, the wire rod having improved strength and fatigue limit according to an embodiment of the present invention may satisfy Mn+Cr≤1.8% in terms of weight%.
Mn과 Cr의 합이 1.8%를 초과할 경우에는, 선재 냉각 과정에서 베이나이트 또는 마르텐사이트와 같은 저온조직이 생성될 수 있고, LP열처리 시 펄라이트 변태 완료 시간이 길어질 수 있다. 또한, Mn과 Cr의 합이 1.8%를 초과할 경우에는, 탄소당량(Carbon Equivalent, Ceq)이 크게 증가하여 W과 Mo의 첨가량이 제한됨에 따라, 질화처리 시 소재의 강도 저하를 방지할 수 없다. 또한, 탄소당량이 증가하면, 펄라이트 변태시간이 길어져 선재 냉각 과정 중에 온전한 펄라이트 조직을 확보하지 못하고, LP열처리 시간이 길어지면서 생산성이 저하되는 문제가 발생한다.When the sum of Mn and Cr exceeds 1.8%, a low-temperature structure such as bainite or martensite may be generated during the wire rod cooling process, and the time to complete pearlite transformation may increase during LP heat treatment. In addition, when the sum of Mn and Cr exceeds 1.8%, the carbon equivalent (Ceq) increases significantly and the amount of W and Mo added is limited, so it is impossible to prevent a decrease in the strength of the material during nitriding treatment. . In addition, when the carbon equivalent increases, the pearlite transformation time becomes longer, so that a complete pearlite structure cannot be secured during the wire rod cooling process, and productivity decreases as the LP heat treatment time becomes longer.
또한, 본 발명의 일 실시예에 따른 강도 및 피로한도가 향상된 선재는, 0.05at%≤Mo+W≤0.15at%를 만족할 수 있다. 여기서, at%는 원자량%를 의미한다.In addition, the wire rod having improved strength and fatigue limit according to an embodiment of the present invention may satisfy 0.05at%≤Mo+W≤0.15at%. Here, at% means atomic weight %.
Mo와 W의 at% 합이 0.05at% 미만인 경우에는, 질화처리 시 강도 저하를 억제하지 못하여 질화처리 강으로 사용되기 어렵다. 반면, Mo와 W의 at% 합이 0.15at%를 초과하는 경우에는 탄소당량이 증가하여 펄라이트 변태 시간이 지연됨에 따라, 생산성이 저하되는 문제가 발생한다.When the sum of at% of Mo and W is less than 0.05 at%, it is difficult to use the steel as nitriding steel because the decrease in strength cannot be suppressed during nitriding treatment. On the other hand, when the sum of at% of Mo and W exceeds 0.15 at%, the carbon equivalent increases and the pearlite transformation time is delayed, resulting in a decrease in productivity.
한편, at%로 제어하는 이유는, Mo와 W은 MC(M=Mo 또는 W, C=탄소)형태의 탄화물을 만들어 강도 향상에 기여하므로, Mo와 W를 탄화물과 1:1로 대응시키기 위함이다.On the other hand, the reason for controlling by at% is to match Mo and W with carbides in a 1:1 ratio, since Mo and W contribute to strength improvement by making carbides in the form of MC (M=Mo or W, C=carbon) to be.
또한, 본 발명의 일 실시예에 따른 선재는 LP(Lead Patenting)열처리 시 펄라이트 변태 완료 시간을 130초 미만으로 확보할 수 있다. 여기서, LP 열처리 공정은 950 내지 1100℃에서 가열한 후 650 내지 750℃로 급냉하는 단계를 포함할 수 있다. LP 열처리 시 펄라이트 변태 완료 시간이 130초를 초과하게 되면, 생산성이 저하되는 문제가 발생한다.In addition, the wire rod according to an embodiment of the present invention can secure a pearlite transformation completion time of less than 130 seconds during LP (Lead Patenting) heat treatment. Here, the LP heat treatment process may include heating at 950 to 1100 °C and then rapidly cooling to 650 to 750 °C. When the pearlite transformation completion time exceeds 130 seconds during the LP heat treatment, a problem of reduced productivity occurs.
또한, 본 발명의 일 실시예에 따른 강도 및 피로한도가 향상된 선재는, 면적분율로 80% 이상의 펄라이트 조직을 포함할 수 있다.In addition, the wire rod having improved strength and fatigue limit according to an embodiment of the present invention may include a pearlite structure of 80% or more in area fraction.
또한, 본 발명의 일 실시예에 따른 강도 및 피로한도가 향상된 선재는 구오스테나이트 평균 입경이 20㎛ 이하일 수 있다. 구오스테나이트 평균 입경이 20㎛를 초과하는 경우에는 LP열처리 공정의 시간이 증가하고, 선재의 가공성이 열위해지는 문제가 발생한다.In addition, the wire rod having improved strength and fatigue limit according to an embodiment of the present invention may have an average particle diameter of prior austenite of 20 μm or less. When the prior austenite average particle diameter exceeds 20 μm, the time of the LP heat treatment process increases and the workability of the wire rod deteriorates.
또한, 본 발명의 일 실시예에 따른 강도 및 피로한도가 향상된 선재는, 길이 방향과 수직한 단면의 중심부 1mm2 면적에서, 중량%로, C > 0.85%, Si > 3.0%, Mn > 0.8%, Cr > 2.0% 중 하나 이상을 만족하는 면적의 비율이 10% 이하일 수 있다.In addition, the wire rod having improved strength and fatigue limit according to an embodiment of the present invention has, in weight%, C > 0.85%, Si > 3.0%, Mn > 0.8% in the center 1 mm 2 area of the cross section perpendicular to the longitudinal direction. , Cr > 2.0% may be less than 10%.
상술한 면적 비율이 10%를 초과하게 되면, 중심부 편석에 의해 저온조직이 발생하는 등 소재의 품질이 열위해지며, 강선 제조 후 단면감소율(Reduction of Area, RA)이 열위해지고 그에 따라 가공성이 떨어져 스프링 가공 시 절손 빈도가 높아지는 문제가 발생한다. 또한, 상술한 면적이 10%를 초과하게 되면, 중심부에 탄화물 형성 원소의 쏠림으로 인해, 탄화물 효과가 감소할 수 있다.When the above-mentioned area ratio exceeds 10%, the quality of the material is deteriorated, such as a low-temperature structure caused by segregation in the center, and the reduction of area (RA) after manufacturing the steel wire is inferior, resulting in poor workability There is a problem that the breakage frequency increases during spring processing. In addition, when the above-described area exceeds 10%, the carbide effect may be reduced due to the concentration of carbide-forming elements in the center.
또한, 본 발명의 일 실시예에 따른 강도 및 피로한도가 향상된 선재는, 표면 깊이 1mm 이내의 길이 방향과 수평한 단면에서, 최대 직경이 15㎛ 이상인 탄질화물이 2개/cm2 미만으로 분포할 수 있다.In addition, in the wire rod having improved strength and fatigue limit according to an embodiment of the present invention, carbonitrides having a maximum diameter of 15 μm or more are distributed in less than 2/cm 2 in a cross section horizontal to the longitudinal direction within a surface depth of 1 mm. can
선재 표면에 15㎛ 이상의 탄질화물이 있는 경우에는, 소재에 피로 절손이 발생할 수 있다. 따라서, 표면 깊이 1mm 이내의 길이 방향과 수평한 단면에서, 최대 직경이 15㎛ 이상인 탄질화물이 2개/cm2 미만으로 존재하는 것이 바람직하다. When carbonitrides of 15 μm or more are present on the surface of the wire rod, fatigue fracture may occur in the material. Therefore, it is preferable that carbonitrides having a maximum diameter of 15 µm or more exist in an amount of less than 2/cm 2 in a longitudinal and horizontal cross section within a surface depth of 1 mm.
또한, 본 발명의 일 실시예에 따른 강도 및 피로한도가 향상된 선재는, 인장강도는 1,400MPa 이하이고 단면감소율(RA)은 35% 이상일 수 있다.In addition, the wire rod having improved strength and fatigue limit according to an embodiment of the present invention may have a tensile strength of 1,400 MPa or less and an area reduction ratio (RA) of 35% or more.
다음으로, 본 발명의 일 실시예에 따른 강도 및 피로한도가 향상된 스프링용 선재의 제조방법에 대하여 설명한다.Next, a method for manufacturing a wire rod for a spring having improved strength and fatigue limit according to an embodiment of the present invention will be described.
본 발명의 일 실시예에 따른 강도 및 피로한도가 향상된 스프링용 선재의 제조방법은, 중량%로, C: 0.6 내지 0.7%, Si: 2.0 내지 2.5%, Mn: 0.2 내지 0.7%, Cr: 0.9 내지 1.5%, P: 0.015% 이하, S: 0.01% 이하, Al: 0.01% 이하, N: 0.01% 이하, Mo: 0.25% 이하, W: 0.25% 이하, V: 0.05% 내지 0.2% 이하, Nb: 0.05% 이하, 나머지 Fe 및 기타 불가피한 불순물을 포함하는 용강을 연속 주조하여 블룸(bloom)을 마련하는 단계; 상기 블룸을 1,200℃ 이상의 온도로 가열한 후 빌렛으로 압연하는 단계; 상기 빌렛을 1,030℃ 이상에서 열처리한 후 1,000℃ 이하의 온도에서 선재로 압연하는 단계; 상기 압연된 선재를 800 내지 900℃의 온도에서 권취하는 단계; 및 상기 권취된 선재를 0.5 내지 2℃/sec의 속도로 냉각하는 단계;를 포함한다.According to an embodiment of the present invention, a method for manufacturing a wire rod for a spring having improved strength and fatigue limit, in weight%, C: 0.6 to 0.7%, Si: 2.0 to 2.5%, Mn: 0.2 to 0.7%, Cr: 0.9 to 1.5%, P: 0.015% or less, S: 0.01% or less, Al: 0.01% or less, N: 0.01% or less, Mo: 0.25% or less, W: 0.25% or less, V: 0.05% to 0.2% or less, Nb : preparing a bloom by continuously casting molten steel containing 0.05% or less of Fe and other unavoidable impurities; Heating the bloom to a temperature of 1,200 ° C. or higher and then rolling it into a billet; heat-treating the billet at 1,030° C. or higher and then rolling it into a wire rod at a temperature of 1,000° C. or lower; winding the rolled wire at a temperature of 800 to 900° C.; and cooling the wound wire rod at a rate of 0.5 to 2° C./sec.
각 합금원소의 성분범위를 한정한 이유는 상술한 바와 같으며, 이하 각 제조단계에 대하여 보다 상세히 설명한다.The reason for limiting the composition range of each alloy element is as described above, and each manufacturing step will be described in detail below.
본 발명의 일 실시예에 따르면, 상기 연속 주조 단계는 총 압하량 20mm 이상으로 경압하하는 것을 포함할 수 있다.According to one embodiment of the present invention, the continuous casting step may include light reduction with a total reduction of 20 mm or more.
연속 주조기 내에 있어, 미응고층을 갖는 응고 말기의 주편을 응고 수축량과 열수축량과의 합에 상당할 정도의 총 압하량 및 압하 속도로, 압하롤군(collection of reduction rolls)에 의해 서서히 압하하면서 주조하는 방법을 경압하라고 한다. 여기서, 총 압하량이란 압하 개시부터 압하 종료까지의 압하량이다. 총 압하량이 20mm 미만인 경우에는 경압하에 의한 편석 제거 효과를 확보하기 어려운 문제가 있는 바, 선재의 편석을 최소화하기 위해 경압하의 총 압하량을 20mm 이상으로 제어할 수 있다.In the continuous casting machine, a cast steel having an unsolidified layer at the end of solidification is cast while being gradually reduced by a collection of reduction rolls at a total reduction amount and reduction rate equivalent to the sum of the solidification shrinkage amount and the heat shrinkage amount. It tells you how to do it. Here, the total amount of reduction is the amount of reduction from the start of reduction to the end of reduction. When the total reduction is less than 20 mm, it is difficult to secure the effect of removing segregation under light pressure, so the total reduction under light pressure can be controlled to 20 mm or more to minimize segregation of the wire rod.
또한, 본 발명의 일 실시예에 따르면, 상기 경압하는 각 압연롤 별로 4mm 이하로 압연하며, 응고분율이 0.6 이상일 때 누적 압하량이 60% 이상이 되도록 수행될 수 있다. 응고분율이란 전체 용강의 중량 대비 고상(solid phase)가 된 용강의 중량의 비를 의미한다.In addition, according to one embodiment of the present invention, each of the light pressure rolling rolls may be rolled to 4 mm or less, and the cumulative reduction may be 60% or more when the solidification fraction is 0.6 or more. The solidification fraction means the ratio of the weight of molten steel that has become a solid phase to the weight of all molten steel.
한편, 주조 속도가 너무 느리면 경압하 이전에 응고가 완료되어 고상에 비해 액상의 비율이 너무 낮아 경압하에 의한 편석 제거 효과를 확보하기 어렵다. 반면, 주조 속도가 너무 빠르면 고상에 비해 액상의 비율이 너무 높아 응고 수축에 따른 편석이 생성되어 바람직하지 않다. 따라서, 응고분율이 0.6 이상일 때 압하량을 60% 이상이 되도록 주조속도를 제어할 필요가 있다. On the other hand, if the casting speed is too slow, solidification is completed before light pressure, and the ratio of the liquid phase to the solid phase is too low, so it is difficult to secure the effect of removing segregation under light pressure. On the other hand, if the casting speed is too fast, the ratio of the liquid phase to the solid phase is too high, and segregation due to solidification shrinkage is generated, which is not preferable. Therefore, it is necessary to control the casting speed so that the reduction amount is 60% or more when the solidification fraction is 0.6 or more.
냉각수는 경압하가 완료되는 지점까지 응고가 완료될 수 있도록 그 양을 적절하게 조절한다. Mold-EMS(Mold Electro Magnetic Stirrer)와 Strand-EMS는 설비에 따라 기존 스프링강의 조건을 따르거나, 임의로 설정할 수 있다.The amount of cooling water is appropriately adjusted so that solidification can be completed to the point where light pressure reduction is completed. Depending on the facility, Mold-EMS (Mold Electro Magnetic Stirrer) and Strand-EMS can follow the conditions of the existing spring steel or can be set arbitrarily.
한편, 통상 스프링용 선재와 달리 질화처리용 스프링강은 고합금 성분이 많이 첨가되므로 내부의 탄질화물을 제어할 필요가 있다. 이에, 본 발명의 일 실시예에 따르면, 상기 마련된 블룸을 1,200℃ 이상의 온도로 가열한 후 빌렛으로 압연하여 내부의 탄질화물을 최소화할 수 있다.On the other hand, unlike normal wire rods for springs, spring steel for nitriding treatment needs to control internal carbonitrides because many high-alloy components are added. Therefore, according to one embodiment of the present invention, the prepared bloom can be heated to a temperature of 1,200 ° C. or higher and then rolled into a billet to minimize internal carbonitrides.
이후, 상기 빌렛을 1,030℃ 이상에서 열처리한 후 1,000℃ 이하의 온도에서 선재로 압연할 수 있다.Thereafter, the billet may be heat treated at 1,030 ° C or higher and then rolled into a wire rod at a temperature of 1,000 ° C or lower.
빌렛의 열처리 온도가 1030℃ 미만인 경우에는 소재 내 V 성분이 충분히 녹지 못하여 탄화물을 고용시키지 못하여, 최종 제품에서 연화저항성이 저하되는 문제가 발생한다. 선재로 압연하는 단계는 권취온도를 900℃ 이하에서 수행할 수 있도록 1000℃ 이하의 온도로 수행될 수 있다.When the heat treatment temperature of the billet is less than 1030 ° C., the V component in the material is not sufficiently melted to dissolve carbides, resulting in a decrease in softening resistance in the final product. The rolling with a wire rod may be performed at a temperature of 1000° C. or less so that the coiling temperature may be performed at 900° C. or less.
이후, 상기 압연된 선재를 800 내지 900℃의 온도에서 권취할 수 있다.Thereafter, the rolled wire may be wound at a temperature of 800 to 900 °C.
선재로 압연하는 단계의 온도와 권취하는 온도 차이가 크면, 국부적 과냉각에 의한 F탈탄이 심하게 발생할 수 있다. 이를 고려하여, 압연된 선재를 권취하는 단계는 800 내지 900℃의 온도에서 수행될 수 있다.If the temperature difference between the rolling temperature and the winding temperature of the wire rod is large, F decarburization due to local supercooling may occur severely. In consideration of this, the step of winding the rolled wire rod may be performed at a temperature of 800 to 900 °C.
이후, 상기 권취된 선재를 0.5 내지 2℃/s의 속도로 냉각할 수 있다.Thereafter, the wound wire may be cooled at a rate of 0.5 to 2° C./s.
통상 스프링용 선재와 달리 질화처리용 스프링강은 고합금 성분이 많이 첨가되므로 저온조직을 억제할 필요가 있다. 권취된 선재를 0.5℃/s 미만의 속도로 냉각하는 경우에는 탈탄이 발생할 수 있다. 반면, 냉각속도가 2℃/s를 초과하는 경우에는 저온조직에 의해 소재에 파단이 발생할 수 있다.Unlike normal wire rods for springs, spring steel for nitriding treatment needs to suppress the low-temperature structure because a lot of high-alloy components are added. Decarburization may occur when the wound wire is cooled at a rate of less than 0.5° C./s. On the other hand, when the cooling rate exceeds 2 ° C. / s, fracture may occur in the material due to the low-temperature structure.
다음으로, 본 발명의 일 실시예에 따른 강도 및 피로한도가 향상된 스프링용 강선에 대하여 설명한다.Next, a steel wire for a spring having improved strength and fatigue limit according to an embodiment of the present invention will be described.
본 발명의 일 실시예에 따른 강도 및 피로한도가 향상된 스프링용 강선은, 중량%로, C: 0.6 내지 0.7%, Si: 2.0 내지 2.5%, Mn: 0.2 내지 0.7%, Cr: 0.9 내지 1.5%, P: 0.015% 이하, S: 0.01% 이하, Al: 0.01% 이하, N: 0.01% 이하, Mo: 0.25% 이하, W: 0.25% 이하, V: 0.05% 내지 0.2% 이하, Nb: 0.05% 이하, 나머지 Fe 및 기타 불가피한 불순물을 포함한다.In the spring steel wire having improved strength and fatigue limit according to an embodiment of the present invention, in weight%, C: 0.6 to 0.7%, Si: 2.0 to 2.5%, Mn: 0.2 to 0.7%, Cr: 0.9 to 1.5% , P: 0.015% or less, S: 0.01% or less, Al: 0.01% or less, N: 0.01% or less, Mo: 0.25% or less, W: 0.25% or less, V: 0.05% to 0.2% or less, Nb: 0.05% Hereinafter, the remaining Fe and other unavoidable impurities are included.
또한, 본 발명의 일 실시예에 따른 강도 및 피로한도가 향상된 스프링용 강선은, Mn+Cr≤1.8%를 만족할 수 있다.In addition, the spring steel wire having improved strength and fatigue limit according to an embodiment of the present invention may satisfy Mn+Cr≤1.8%.
또한, 본 발명의 일 실시예에 따른 강도 및 피로한도가 향상된 스프링용 강선은, 0.05at%≤Mo+W≤0.15at%를 만족할 수 있다.In addition, the spring steel wire having improved strength and fatigue limit according to an embodiment of the present invention may satisfy 0.05at%≤Mo+W≤0.15at%.
각 합금원소의 성분범위를 한정한 이유는 상술한 바와 같다.The reason for limiting the composition range of each alloy element is as described above.
또한, 본 발명의 일 실시예에 따른 강도 및 피로한도가 향상된 스프링용 강선은, 면적분율로, 템퍼드 마르텐사이트 조직 85% 이상 및 나머지 오스테나이트 조직 포함할 수 있다.In addition, the steel wire for a spring having improved strength and fatigue limit according to an embodiment of the present invention may include, in area fraction, 85% or more of a tempered martensite structure and the remaining austenite structure.
또한, 본 발명의 일 실시예에 따른 강도 및 피로한도가 향상된 스프링용 강선은, 구오스테나이트 평균 입경이 15㎛ 이하일 수 있다.In addition, the spring steel wire having improved strength and fatigue limit according to an embodiment of the present invention may have an average particle diameter of prior austenite of 15 μm or less.
또한, 본 발명의 일 실시예에 따른 강도 및 피로한도가 향상된 스프링용 강선은, 길이 방향과 수직한 단면의 중심부 1mm2 면적에서, 중량%로, C > 0.85%, Si > 3.0%, Mn > 0.8%, Cr > 2.0% 중 하나 이상을 만족하는 면적의 비율이 10% 이하일 수 있다.In addition, in the spring steel wire having improved strength and fatigue limit according to an embodiment of the present invention, in the center 1 mm 2 area of the cross section perpendicular to the longitudinal direction, in weight%, C > 0.85%, Si > 3.0%, Mn > A ratio of an area satisfying at least one of 0.8% and Cr > 2.0% may be 10% or less.
상술한 면적 비율이 10%를 초과하게 되면, 중심부 편석에 의해 저온조직이 발생하는 등 소재의 품질이 열위해지며, 가공성이 저하되어 강선을 스프링 가공 시 절손 빈도가 높아지는 문제가 발생한다. 또한, 상술한 면적이 10%를 초과하게 되면, 중심부에 탄화물 형성 원소의 쏠림으로 인해, 탄화물 효과가 감소할 수 있다.When the above-mentioned area ratio exceeds 10%, the quality of the material is deteriorated, such as a low-temperature structure due to central segregation, and workability is lowered, resulting in an increase in breakage frequency during spring processing of the steel wire. In addition, when the above-described area exceeds 10%, the carbide effect may be reduced due to the concentration of carbide-forming elements in the center.
또한, 본 발명의 일 실시예에 따른 강도 및 피로한도가 향상된 스프링용 강선은, 표면 깊이 1mm 이내의 길이 방향과 수평한 단면에서, 최대 직경이 15㎛ 이상인 탄질화물의 개수가 100mm 길이당 2개 미만일 수 있다.In addition, in the spring steel wire having improved strength and fatigue limit according to an embodiment of the present invention, the number of carbonitrides having a maximum diameter of 15 μm or more is 2 per 100 mm length in a cross section horizontal to the longitudinal direction within a surface depth of 1 mm. may be less than
강선 표면에 15㎛ 이상의 탄질화물이 있는 경우에는, 소재에 피로 절손이 발생할 수 있다. 표면 깊이 1mm 이내의 길이 방향과 수평한 단면에서, 100mm 길이당 2개 미만으로 존재하는 것이 바람직하다.In the case where carbonitrides of 15 μm or more are present on the surface of the steel wire, fatigue fracture may occur in the material. It is preferable that less than two exist per 100 mm length in the cross section horizontal to the longitudinal direction within a surface depth of 1 mm.
또한, 본 발명의 일 실시예에 따른 강도 및 피로한도가 향상된 스프링용 강선은, 100㎛2 면적에서, 탄화물의 개수가 10개 내지 50개이고, 상기 탄화물은 최대 직경이 5 내지 50nm이고, V 또는 Nb의 함량이 10at% 이상일 수 있다.In addition, in the steel wire for a spring having improved strength and fatigue limit according to an embodiment of the present invention, the number of carbides is 10 to 50 in an area of 100 μm 2 , the carbide has a maximum diameter of 5 to 50 nm, and V or The Nb content may be 10 at% or more.
V 또는 Nb를 포함하는 탄화물의 경우 10nm 이상으로 커지기 시작하면 V뿐만 아니라, Cr, Mo 등 다른 탄화물 형성원소도 함께 포함하여 성장하기 때문에 구 오스테나이트 결정립의 성장억제와 석출경화에 활용될 탄화물 형성원소의 배분이 적절하게 이루어져야 한다.In the case of carbide containing V or Nb, when it starts to grow larger than 10 nm, it grows with not only V but also other carbide-forming elements such as Cr and Mo, so it is a carbide-forming element to be used for suppressing the growth of former austenite grains and for precipitation hardening. should be properly distributed.
최대 직경이 5 내지 50nm인 탄화물의 개수가 10개 미만인 경우에는 구 오스테나이트 결정립 크기를 제어하기 어려운 문제가 있다. 반면, 최대 직경이 5 내지 50nm인 탄화물의 개수가 50개를 초과하는 경우에는 5nm 이하의 석출 경화에 활용될 양이 적어져 강선의 인장강도가 저하될 수 있다.When the number of carbides having a maximum diameter of 5 to 50 nm is less than 10, it is difficult to control the grain size of prior austenite. On the other hand, when the number of carbides having a maximum diameter of 5 to 50 nm exceeds 50, the amount to be utilized for precipitation hardening of 5 nm or less may be reduced, and the tensile strength of the steel wire may be lowered.
또한, 본 발명의 일 실시예에 따른 강도 및 피로한도가 향상된 스프링용 강선은, 인장강도는 2,100MPa 이상이고 단면감소율(RA)이 45% 이상일 수 있다.In addition, the steel wire for a spring having improved strength and fatigue limit according to an embodiment of the present invention may have a tensile strength of 2,100 MPa or more and a section reduction ratio (RA) of 45% or more.
다음으로, 본 발명의 일 실시예에 따른 강도 및 피로한도가 향상된 스프링용 강선을 제조하는 방법에 대하여 설명한다.Next, a method for manufacturing a spring steel wire having improved strength and fatigue limit according to an embodiment of the present invention will be described.
본 발명의 일 실시예에 따른 스프링용 강선의 제조방법은, 본 발명의 일 실시예에 따른 선재를 LA 열처리하는 단계; LP 열처리하는 단계; 및 상기 선재를 신선하여 강선을 마련하는 단계; 및 상기 강선을 QT열처리하는 단계;를 포함한다. A method for manufacturing a steel wire for a spring according to an embodiment of the present invention includes LA heat treatment of a wire rod according to an embodiment of the present invention; LP heat treatment; and preparing a steel wire by drawing the wire rod. and QT heat-treating the steel wire.
먼저, 본 발명의 일 실시예에 따른 선재를 650 내지 750℃에서 저온소둔 열처리(Low Temperature Annealing, LA)를 수행할 수 있다. First, low temperature annealing (LA) may be performed on the wire rod according to an embodiment of the present invention at 650 to 750 ° C.
이로써 한정하는 것은 아니지만, LA 열처리 단계는 공정 시간이 길어짐에 따라 탄화물이 조대화되어 이후 공정에서 탄화물의 제어가 어려워지므로, 2시간 이내로 수행하는 것이 바람직하다. LA 열처리를 통해 선재의 강도는 1,200MPa 이하로 낮아질 수 있으며, 필요에 따라 LA 열처리 단계는 생략될 수 있다.Although not limited thereto, the LA heat treatment step is preferably performed within 2 hours because carbides coarsen as the process time increases, making it difficult to control carbides in subsequent processes. Through the LA heat treatment, the strength of the wire rod can be lowered to 1,200 MPa or less, and the LA heat treatment step can be omitted if necessary.
이후, LA 열처리한 선재를 산세한 후, LP(Lead Patenting, LP) 열처리를 수행할 수 있다.Thereafter, after pickling the wire rod subjected to the LA heat treatment, LP (Lead Patenting, LP) heat treatment may be performed.
상기 LP 열처리는 3분 이내로 950 내지 1100℃까지 가열한 후 3분 이하로 유지하는 제1 오스테나이타이징 단계 및 및 상기 제1 오스테나이타이징한 선재를 650 내지 700℃의 납조에서 3분 이내로 통과시키는 단계를 포함할 수 있다.The LP heat treatment is a first austenitizing step of heating to 950 to 1100 ° C within 3 minutes and then maintaining it for 3 minutes or less, and the first austenitized wire rod in a lead bath of 650 to 700 ° C within 3 minutes It may include a passing step.
3분 이내로 950 내지 1100℃까지의 가열한 후 3분 이하로 유지하는 오스테나이타이징(Austenitizing) 공정을 수행함으로써, 오스테나이트 조직을 확보함과 동시에 LA공정에서 조대화된 탄화물을 다시 고용시킬 수 있다.By heating to 950 to 1100 ° C within 3 minutes and then holding it for 3 minutes or less, an austenitizing process is performed to secure the austenite structure and at the same time to re-dissolve the coarsened carbides in the LA process. have.
이어서, 상기 제1 오스테나이징한 선재를 650 내지 750℃의 납조에 3분 이내로 통과시켜 급냉하여 항온 변태시키고, 펄라이트 조직을 확보할 수 있다. 납조 온도가 650℃ 미만일 경우에는 저온조직이 형성될 수 있다. 반면, 납조 온도가 750℃를 초과할 경우에는 탄화물이 조대화되고 강도가 저하될 수 있다.Subsequently, the first austenized wire rod is rapidly cooled by passing through a lead bath at 650 to 750 ° C. within 3 minutes to undergo constant temperature transformation, and a pearlite structure can be secured. When the temperature of the lead bath is less than 650 ° C, a low-temperature structure may be formed. On the other hand, when the lead bath temperature exceeds 750 ° C., the carbide may be coarsened and the strength may be reduced.
이후, LP 열처리된 선재를 신선하여 강선을 마련할 수 있다. 이때, 마련된 강선의 선경은 5mm일 수 있고, 강선의 선경을 2mm 이하로 확보하기 위해 LP 열처리를 다시 수행할 수 있다.Thereafter, a steel wire may be prepared by drawing the wire rod subjected to the LP heat treatment. At this time, the wire diameter of the prepared steel wire may be 5 mm, and LP heat treatment may be performed again to secure the wire diameter of the steel wire to 2 mm or less.
이후, 템퍼드 마르텐사이트 조직을 확보하기 위해, 상기 마련된 강선을 QT열처리 공정을 수행할 수 있다.Thereafter, in order to secure a tempered martensitic structure, the prepared steel wire may be subjected to a QT heat treatment process.
본 발명의 일 실시예에 따르면, 상기 QT열처리하는 단계는, 3분 이내로 900 내지 1000℃까지 가열한 후 3분 이하로 유지하는 제2 오스테나이타이징 단계; 70℃ 이하에서 제1 오일 퀜칭하는 단계; 3분 이내로 450 내지 550℃까지 가열한 후 3분 이하로 유지하는 템퍼링 단계; 및 70℃ 이하에서 제2 오일 퀜칭하는 단계;를 포함할 수 있다.According to one embodiment of the present invention, the QT heat treatment step, a second austenitizing step of heating to 900 to 1000 ° C. within 3 minutes and then maintaining it for 3 minutes or less; First oil quenching at 70° C. or lower; Tempering step of heating to 450 to 550 ° C. within 3 minutes and then maintaining it for 3 minutes or less; and performing a second oil quenching at 70° C. or lower.
QT 열처리 단계에서 오스테나이타이징 온도는 LP열처리 시 석출된 미세한 탄화물을 유지할 수 있도록, 900 내지 1000℃에서 수행할 수 있다. 이로써 한정하는 것은 아니지만, QT 열처리하는 단계에서 오스테나이타이징 공정은 6분 이하로 수행하는 것이 바람직하다.In the QT heat treatment step, the austenitizing temperature may be performed at 900 to 1000 ° C. to maintain fine carbides precipitated during LP heat treatment. Although not limited thereto, the austenitizing process in the QT heat treatment step is preferably performed for 6 minutes or less.
QT 열처리 하는 단계에서 템퍼링 온도가 450℃ 미만인 경우에는 질화처리 온도가 낮아지고, 추가적인 탄화물 형성을 유도할 수 없으며, 인성이 저하되는 문제가 발생한다. 반면, QT 열처리 하는 단계에서 템퍼링 온도가 550℃를 초과하는 경우에는 충분한 강도를 확보할 수 없다.In the QT heat treatment step, when the tempering temperature is less than 450° C., the nitriding treatment temperature is lowered, additional carbide formation cannot be induced, and toughness deteriorates. On the other hand, when the tempering temperature exceeds 550 ° C. in the QT heat treatment step, sufficient strength cannot be secured.
다음으로, 본 발명의 일 실시예에 따른 강도 및 피로한도가 향상된 스프링에 대하여 설명한다.Next, a spring with improved strength and fatigue limit according to an embodiment of the present invention will be described.
본 발명의 일 실시예에 따른 강도 및 피로한도가 향상된 스프링은, 중량%로, C: 0.6 내지 0.7%, Si: 2.0 내지 2.5%, Mn: 0.2 내지 0.7%, Cr: 0.9 내지 1.5%, P: 0.015% 이하, S: 0.01% 이하, Al: 0.01% 이하, N: 0.01% 이하, Mo: 0.25% 이하, W: 0.25% 이하, V: 0.05% 내지 0.2% 이하, Nb: 0.05% 이하, 나머지 Fe 및 기타 불가피한 불순물을 포함하고, Mn+Cr≤1.8%를 만족하고, 0.05at%≤Mo+W≤0.15at%를 만족한다.In the spring with improved strength and fatigue limit according to an embodiment of the present invention, in weight%, C: 0.6 to 0.7%, Si: 2.0 to 2.5%, Mn: 0.2 to 0.7%, Cr: 0.9 to 1.5%, P : 0.015% or less, S: 0.01% or less, Al: 0.01% or less, N: 0.01% or less, Mo: 0.25% or less, W: 0.25% or less, V: 0.05% to 0.2% or less, Nb: 0.05% or less, It contains the remaining Fe and other unavoidable impurities, satisfies Mn+Cr≤1.8%, and satisfies 0.05at%≤Mo+W≤0.15at%.
각 합금원소의 성분범위를 한정한 이유는 상술한 바와 같다.The reason for limiting the composition range of each alloy element is as described above.
또한, 본 발명의 일 실시예에 따른 스프링은, 질화처리 후 피로한도가 10% 이상 증가한다. 여기서, 피로한도(Fatigue Limit)는 스프링 설계 후 피로 테스트 시 천만회 이상의 반복 하중을 버틸 수 있는 한도를 의미한다.In addition, the fatigue limit of the spring according to an embodiment of the present invention increases by 10% or more after nitriding. Here, the fatigue limit means a limit that can withstand more than 10 million repeated loads during a fatigue test after designing a spring.
또한, 본 발명의 일 실시예에 따른 스프링은, 천만회 반복응력을 견딜 수 있는 피로한도가 700MPa 이상일 수 있다.In addition, the spring according to an embodiment of the present invention may have a fatigue limit of 700 MPa or more capable of withstanding stress repeated 10 million times.
또한, 본 발명의 일 실시예에 따른 스프링은, 질화처리 전후 강도 변화가 15% 이하이며, 질화처리 온도가 430℃ 이상일 수 있다.In addition, in the spring according to an embodiment of the present invention, the change in strength before and after nitriding treatment is 15% or less, and the nitriding treatment temperature may be 430 ° C. or more.
다음으로, 본 발명의 일 실시예에 따른 강도 및 피로한도가 향상된 스프링을 제조하는 방법에 대하여 설명한다.Next, a method for manufacturing a spring having improved strength and fatigue limit according to an embodiment of the present invention will be described.
본 발명의 일 실시예에 따른 강도 및 피로한도가 향상된 스프링 제조방법은, 본 발명의 일 실시예에 따른 강선을 스프링의 형성으로 냉간 성형하는 단계; 성형된 스프링을 응력풀림 열처리하는 단계; 및 질화처리하는 단계;를 포함한다.A method for manufacturing a spring having improved strength and fatigue limit according to an embodiment of the present invention includes cold forming a steel wire according to an embodiment of the present invention to form a spring; subjecting the molded spring to stress relief heat treatment; and nitriding.
본 발명의 일 실시예에 따른 강선은 스프링 제조 공정 중 샷피닝 단계 전에 질화처리를 통해 피로한도를 향상시킬 수 있다. 이때, 질화처리 온도가 너무 낮을 경우에는 질소가 표면에 제대로 침투할 수 없으며, 질화처리 온도가 너무 높을 경우에는 소재의 중심부 경도가 떨어져 원하는 만큼의 소재 강도를 확보할 수 없다. 이를 고려하여, 질화처리 공정은 420 내지 450℃의 온도에서 10시간 이상으로 수행될 수 있다.The steel wire according to an embodiment of the present invention can improve the fatigue limit through nitriding before the shot peening step in the spring manufacturing process. At this time, if the nitriding treatment temperature is too low, nitrogen cannot properly penetrate the surface, and if the nitriding treatment temperature is too high, the hardness of the center of the material decreases, making it impossible to secure the desired strength of the material. In consideration of this, the nitriding process may be performed at a temperature of 420 to 450° C. for 10 hours or more.
이하, 본 발명을 실시예를 통하여 보다 상세하게 설명한다. 그러나, 이러한 실시예의 기재는 본 발명의 실시를 예시하기 위한 것일 뿐 이러한 실시예의 기재에 의하여 본 발명이 제한되는 것은 아니다. 본 발명의 권리범위는 특허청구범위에 기재된 사항과 이로부터 합리적으로 유추되는 사항에 의하여 결정되는 것이기 때문이다.Hereinafter, the present invention will be described in more detail through examples. However, the description of these examples is only for exemplifying the practice of the present invention, and the present invention is not limited by the description of these examples. This is because the scope of the present invention is determined by the matters described in the claims and the matters reasonably inferred therefrom.
{실시예}{Example}
하기 표 1에 나타낸 다양한 합금 성분 범위에 대하여, 총경압하량 10 내지 25mm에서 연주 공정을 수행하여 블룸을 제조하였다. 제조된 블룸을 1,200℃에서 균질화 열처리하고, 1050℃에서 열처리한 후 850℃까지 온도를 내려가며 최종 선경 6.5mm로 열간 압연하여, 최종 선경 6.5mm 선재를 제조하였다. 이후, 압연된 선재를 800 내지 900℃에서 권취한 다음, 1℃/s의 속도로 냉각하였다. For various alloy composition ranges shown in Table 1 below, blooms were prepared by performing a casting process at a total diameter reduction of 10 to 25 mm. The prepared bloom was subjected to homogenization heat treatment at 1,200 ° C, heat treatment at 1050 ° C, and then hot-rolled to a final wire diameter of 6.5 mm while lowering the temperature to 850 ° C, to prepare a wire rod having a final wire diameter of 6.5 mm. Thereafter, the rolled wire rod was wound at 800 to 900 ° C and then cooled at a rate of 1 ° C / s.
합금원소(중량%)Alloy element (% by weight)
CC SiSi MnMn CrCr PP SS MoMo VV AlAl NbNb WW
실시예1Example 1 0.630.63 2.22.2 0.30.3 1.21.2 0.0090.009 0.0050.005 0.20.2 0.150.15 <0.003<0.003 0.020.02
실시예2Example 2 0.630.63 2.22.2 0.30.3 1.21.2 0.0110.011 0.0050.005 0.150.15 0.150.15 <0.003<0.003 0.10.1
비교예1Comparative Example 1 0.630.63 2.22.2 0.30.3 1.21.2 0.0090.009 0.0050.005 0.20.2 0.150.15 <0.003<0.003 0.020.02
비교예2Comparative Example 2 0.630.63 2.22.2 0.30.3 1.21.2 0.0110.011 0.0050.005 0.150.15 0.020.02 <0.003<0.003 0.10.1
비교예3Comparative Example 3 0.630.63 2.22.2 0.30.3 1.21.2 0.0090.009 0.0050.005 0.20.2 0.150.15 <0.003<0.003 0.020.02 0.20.2
비교예4Comparative Example 4 0.630.63 2.22.2 0.30.3 1.21.2 0.0090.009 0.0050.005 0.20.2 0.150.15 <0.003<0.003 0.020.02
하기 표 2에는 실시예 및 비교예의 W+Mo의 at% 함량 및 총 경압하량을 나타내었다. 하기 표 2의 편석면적은 제조된 선재의 길이 방향에서 수직한 단면의 중심부 1mm2을 분석하여 도출하였다. 표 2의 'C 편석면적'은 길이 방향과 수직한 단면의 중심부 1mm2 면적에서, C > 0.85중량%를 만족하는 면적의 비율을 의미한다. 'Si 편석면적'은 길이 방향과 수직한 단면의 중심부 1mm2 면적에서, Si > 3.0중량%를 만족하는 면적의 비율을 의미한다. 'Mn 편석면적'은 길이 방향과 수직한 단면의 중심부 1mm2 면적에서, Mn > 0.8중량%를 만족하는 면적의 비율을 의미한다. 'Cr 편석면적'은 길이 방향과 수직한 단면의 중심부 1mm2 면적에서, Cr > 2.0중량%를 만족하는 면적의 비율을 의미한다. 편석면적은 모델명이 EMPA-1600인 전자현미분석기(Electron Probe X-ray Micro Analyzer, EPMA)를 이용하여 측정하였다.Table 2 below shows the at% content of W + Mo and the total reduction in pressure in Examples and Comparative Examples. The segregation area in Table 2 below was derived by analyzing the center 1 mm 2 of the cross section perpendicular to the longitudinal direction of the manufactured wire rod. The 'C segregation area' in Table 2 means the ratio of the area satisfying C > 0.85% by weight in the area of 1 mm 2 in the center of the section perpendicular to the longitudinal direction. 'Si segregation area' means the ratio of the area satisfying Si > 3.0% by weight in the central 1 mm 2 area of the cross section perpendicular to the longitudinal direction. 'Mn segregation area' means the ratio of the area satisfying Mn > 0.8% by weight in the center 1 mm 2 area of the cross section perpendicular to the longitudinal direction. 'Cr segregation area' means the ratio of the area satisfying Cr > 2.0% by weight in the center 1 mm 2 area of the cross section perpendicular to the longitudinal direction. The segregation area was measured using an electron probe X-ray Micro Analyzer (EPMA) having a model name of EMPA-1600.
W+Mo
(at%)
W+Mo
(at%)
총 경압하량
(mm)
total pressure load
(mm)
C
편석면적(%)
C
Segregation area (%)
Si
편석면적(%)
Si
Segregation area (%)
Mn
편석면적(%)
Mn
Segregation area (%)
Cr
편석면적(%)
Cr
Segregation area (%)
C, Si, Mn, Cr 편석면적 합(%)Sum of C, Si, Mn, Cr segregation area (%)
실시예1Example 1 0.110.11 25 mm25 mm <1%<1% 2.52.5 <1%<1% 2.52.5 <7%<7%
실시예2Example 2 0.080.08 25 mm25mm <1%<1% 4.34.3 <1%<1% 2.32.3 <8.6%<8.6%
비교예1Comparative Example 1 0.110.11 10 mm10mm 5.55.5 11.211.2 3.1%3.1% 10.210.2 30%30%
비교예2Comparative Example 2 0.080.08 25 mm25mm <1%<1% 4.54.5 <1%<1% 2.22.2 <8.7%<8.7%
비교예3Comparative Example 3 0.170.17 25 mm25mm <1%<1% 3.23.2 <1%<1% 3.43.4 <8.6%<8.6%
비교예4Comparative Example 4 0.110.11 25 mm25 mm <1%<1% 4.24.2 <1%<1% 2.42.4 <8.6%<8.6%
상기 표 2를 살펴보면, 실시예 1 및 2는 본원발명이 제시한 합금조성 및 총경압하량은 만족한 결과, C, Si, Mn, Cr 편석면적의 합이 10% 이하로 형성될 수 있었다. 이에 비해, 비교예 1은 총경합량이 20mm 미만인 10mm인 결과, C, Si, Mn, Cr 편석면적의 합이 30%에 달했다.Referring to Table 2, Examples 1 and 2 were satisfied with the alloy composition and total light reduction presented by the present invention, so that the sum of the segregated areas of C, Si, Mn, and Cr was less than 10%. In comparison, in Comparative Example 1, as a result of the total hardness being less than 20 mm of 10 mm, the sum of the segregated areas of C, Si, Mn, and Cr reached 30%.
하기 표 3에는 상기 제조된 선재의 인장강도, 단면감소율(RA), 중심부 저온조직, 구오스테나이트 평균 입경, 펄라이트 조직 및 탄질화물 개수 나타내었다. 구오스테나이트 평균 입경, 펄라이트 조직 및 탄질화물 개수는 모델명이 JEOL, JSM-6610LV인 주사전자현미경(Scanning Electron Microscope, SEM)을 이용하여 측정했다.Table 3 below shows the tensile strength, area reduction ratio (RA), center low-temperature structure, prior austenite average particle diameter, pearlite structure, and number of carbonitrides of the prepared wire rod. The average particle diameter of old austenite, the pearlite structure, and the number of carbonitrides were measured using a scanning electron microscope (SEM) with model name JEOL, JSM-6610LV.
하기 표 3의 'O'는 저온조직이 면적분율로 20%를 초과하는 경우를 의미하며, 'X'는 저온조직이 면적분율로 20% 이하인 경우 'X'를 의미한다.'O' in Table 3 below means the case where the low-temperature structure exceeds 20% in area fraction, and 'X' means 'X' when the area fraction of the low-temperature structure is 20% or less.
하기 표 3의 펄라이트 조직은 3m의 선재를 8등분하여 8개의 시편을 제조한 후, 각각의 시편을 길이 방향과 수직한 단면의 미세조직을 측정하였을 때, 면적분율로 펄라이트 조직이 80% 이상 검출된 시편의 개수를 의미한다.For the pearlite structure in Table 3 below, 8 specimens were prepared by dividing a 3m wire rod into 8 parts, and then when the microstructure of the cross section perpendicular to the longitudinal direction of each specimen was measured, the pearlite structure was detected as an area fraction of 80% or more means the number of specimens.
하기 표 3의 탄질화물 개수는 10cm 길이의 선재를 10등분하여 길이가 1cm인 10개의 시편을 제조한 후, 표면 깊이 1mm 이내에 길이 방향과 수평한 단면의 미세조직을 측정하였을 때, 최대 직경이 15㎛ 이상인 탄질화물의 개수이다.The number of carbonitrides in Table 3 below is the maximum diameter of 15 when the microstructure of the longitudinal and horizontal cross-section is measured after preparing 10 specimens with a length of 1 cm by dividing a 10 cm-long wire rod into 10 equal parts, and then measuring the microstructure of the longitudinal direction and the horizontal cross section within 1 mm of the surface depth. It is the number of carbonitrides larger than ㎛.
인장강도(MPa)Tensile strength (MPa) 선재 단면감소율(%)Wire rod section reduction rate (%) 중심부
저온조직
center
cold tissue
구오스테나이트 평균 입경
(㎛)
Old austenite average grain size
(μm)
펄라이트
조직
perlite
group
탄질화물 개수number of carbonitrides
실시예1Example 1 12211221 4242 XX 1414 7/87/8 00
실시예2Example 2 12311231 3535 XX 1818 8/88/8 00
비교예1Comparative Example 1 14551455 2525 OO 2020 5/85/8 22
비교예2Comparative Example 2 12531253 3535 XX 2424 7/87/8 00
비교예3Comparative Example 3 15101510 1010 OO 1515 2/82/8 00
비교예4Comparative Example 4 12331233 4242 XX 1616 8/88/8 00
상기 표 3을 살펴보면, 실시예 1 및 2는 중심부에 저온조직이 형성되지 않았으며, 구오스테나이트 평균 입경이 20㎛ 이하로 형성되었다. 또한, 실시예 1 및 2는 8개의 시편 중 펄라이트 조직이 80% 이상인 시편이 6개 이상이었으며, 인장강도가 1400MPa 이하로 가공성이 우수하였다. 또한, 실시예 1 및 2는 표면에 탄질화물이 형성되지 않았다.Looking at Table 3, Examples 1 and 2 did not form a low-temperature structure in the center, and the average particle diameter of prior austenite was formed to 20 μm or less. In addition, Examples 1 and 2 had 6 or more specimens having a pearlite structure of 80% or more among 8 specimens, and had excellent workability with a tensile strength of 1400 MPa or less. In Examples 1 and 2, no carbonitride was formed on the surface.
이에 비해, 비교예 1은 인장강도가 1400MPa를 초과하고 35% 이하의 단면감소율을 가져 가공성이 열위하였으며, 중심부에 저온조직이 형성되었다. 또한, 비교예 1은 8개의 시편 중 펄라이트 조직이 80% 이상인 시편이 5개에 불과하여, 균일하게 80% 이상의 펄라이트 조직이 형성되지 않았다.In contrast, Comparative Example 1 had a tensile strength exceeding 1400 MPa and a cross-sectional reduction rate of 35% or less, so the processability was inferior, and a low-temperature structure was formed in the center. In addition, in Comparative Example 1, only 5 specimens having a pearlite structure of 80% or more among 8 specimens did not form a pearlite structure of 80% or more uniformly.
비교예 2는 표 1의 합금성분을 살펴보면 V가 0.05% 미만으로 첨가됨에 따라, 구오스테나이트 평균 입경이 20㎛를 초과한 24㎛로 조대화되었다.In Comparative Example 2, looking at the alloy components of Table 1, as V was added at less than 0.05%, the average particle diameter of prior austenite was coarsened to 24 μm exceeding 20 μm.
비교예 3은 인장강도가 1510MPa이고 단면감소율이 10%에 불과하여 가공성이 열위할 뿐만 아니라, 중심부에 저온조직이 형성되었다. 또한, 비교예 3은 8개의 시편 중 펄라이트 조직이 80% 이상인 시편이 2개에 불과하여, 펄라이트 조직이 충분히 형성되지 않았다.Comparative Example 3 had a tensile strength of 1510 MPa and a cross-sectional reduction rate of only 10%, resulting in poor processability and a low-temperature structure formed in the center. In addition, in Comparative Example 3, only two specimens having a pearlite structure of 80% or more among 8 specimens did not sufficiently form a pearlite structure.
다음으로, 실시예와 비교예를 720℃에서 2시간 동안 LA 열처리 후 산세하고, LP 열처리를 진행하였다. LP 열처리는 3분 이내에 제1 오스테나이타이징 온도까지 가열하였고, 나머지는 하기 표 4의 조건에 따라 진행하였다. 또한, 하기 표 4에는 LP 열처리 시 실시예와 비교예의 펄라이트 변태 시간을 나타내었다. 펄라이트 변태 시간은 딜라토미터(dilatometry) 실험을 통해 TTT(Time-Temperature-Transformation)곡선을 도출하여 측정하였다.Next, the Examples and Comparative Examples were pickled after LA heat treatment at 720 ° C. for 2 hours, and LP heat treatment was performed. The LP heat treatment was heated to the first austenitizing temperature within 3 minutes, and the rest was performed according to the conditions in Table 4 below. In addition, Table 4 below shows the pearlite transformation times of Examples and Comparative Examples during LP heat treatment. The pearlite transformation time was measured by deriving a TTT (Time-Temperature-Transformation) curve through a dilatometry experiment.
LP 열처리LP heat treatment LP 열처리 시 펄라이트 변태 시간(초)Perlite transformation time (seconds) during LP heat treatment
제1 오스테나이타이징Primary austenitizing 납조lead
온도
(℃)
temperature
(℃)
유지시간
(분)
holding time
(minute)
온도
(℃)
temperature
(℃)
통과시간
(분)
transit time
(minute)
실시예1Example 1 10001000 33 675675 22 110110
실시예2Example 2 10001000 33 675675 22 105105
비교예1Comparative Example 1 10001000 33 675675 22 110110
비교예2Comparative Example 2 10001000 33 675675 22 112112
비교예3Comparative Example 3 10001000 33 675675 22 130130
비교예4Comparative Example 4 930930 33 690690 22 110110
실시예 1 및 2는 펄라이트 변태시간이 각각 130초 미만인 110초, 105초로 측정되어, 생산성이 우수하였다. 이에 비해, 비교예 3은 펄라이트 변태 시간이 130초로 측정되어, 현장 생산이 어려운 정도로 생산성이 열위했다.In Examples 1 and 2, the pearlite transformation times were measured as 110 seconds and 105 seconds, which are less than 130 seconds, respectively, and the productivity was excellent. In contrast, in Comparative Example 3, the pearlite transformation time was measured at 130 seconds, and productivity was inferior to the extent that on-site production was difficult.
이어서, LP 열처리한 실시예 및 비교예를 신선 가공하여 선경 3mm의 강선으로 제조하였다. 제조된 강선을 제2 오스테나이징 및 제1 퀜칭한 후 템퍼링 및 제2 퀜칭하여 QT 강선 얻었다. 3분 이내에 제2 오스테나이타이징 온도까지 가열하였고, 제1 퀜칭 및 제2 퀜칭은 60℃의 오일(Oil)에서 수행되었다. 나머지는 하기 표 5의 조건에 따라 진행하였다.Subsequently, the examples and comparative examples subjected to the LP heat treatment were wire-wired to produce a steel wire having a wire diameter of 3 mm. After the second austenizing and first quenching of the manufactured steel wire, tempering and second quenching were performed to obtain a QT steel wire. It was heated to the second austenitizing temperature within 3 minutes, and the first quenching and the second quenching were performed in oil at 60 °C. The rest was performed according to the conditions in Table 5 below.
QT 열처리QT heat treatment
제2 오스테나이타이징Second austenitizing 템퍼링Tempering
온도(℃)Temperature (℃) 유지시간(분)Hold time (minutes) 온도(℃)Temperature (℃) 유지시간(분)Hold time (minutes)
실시예1Example 1 930930 22 470470 22
실시예2Example 2 930930 22 470470 22
비교예1Comparative Example 1 930930 22 470470 22
비교예2Comparative Example 2 930930 22 470470 22
비교예3Comparative Example 3 930930 22 470470 22
비교예4Comparative Example 4 930930 22 470470 22
하기 표 6은 제조된 QT강선의 인장강도, 단면감소율(RA) 및 탄화물 개수를 나타내었다. 여기서, 탄화물 개수는 100㎛2의 면적에서, 최대직경이 5~50nm이고 V 또는 Nb의 함량이 10at% 이상인 탄화물의 수를 의미한다. 탄화물 개수는 FEI Tecnai OSIRIS 투과 전자 현미경(Transmission electron microscope, TEM)을 이용하여 선재 표면에 임의의 100㎛2 면적의 8개소를 측정한 후, 8개소의 측정 값을 평균한 값이다.Table 6 below shows the tensile strength, area reduction ratio (RA) and the number of carbides of the manufactured QT steel wire. Here, the number of carbides means the number of carbides having a maximum diameter of 5 to 50 nm and a V or Nb content of 10 at% or more in an area of 100 μm 2 . The number of carbides is a value obtained by measuring 8 random points of 100 μm 2 on the surface of the wire using a FEI Tecnai OSIRIS transmission electron microscope (TEM), and then averaging the measured values of the 8 points.
QT강선 인장강도(MPa)QT steel wire tensile strength (MPa) QT강선 단면감소율(%)QT steel wire section reduction rate (%) 탄화물 개수carbide count
실시예1Example 1 22422242 5151 3131
실시예2Example 2 22322232 4949 2323
비교예1Comparative Example 1 22322232 3232 6565
비교예2Comparative Example 2 21802180 4444 22
비교예3Comparative Example 3 23522352 4444 2424
비교예4Comparative Example 4 21202120 4646 6161
상기 표 6을 살펴보면, 실시예 1 및 2는 2200MPa 이상의 우수한 인장강도를 확보함과 동시에 45% 이상의 단면감소율을 확보하였다. 또한, 실시예 1 및 2는 탄화물 수가 10~50개로 형성되었다.Looking at Table 6, Examples 1 and 2 secured excellent tensile strength of 2200 MPa or more and at the same time secured a cross-sectional reduction rate of 45% or more. In Examples 1 and 2, the number of carbides was 10 to 50.
이에 비해, 비교예 1은 단면감소율이 32%에 불과하였으며, 탄화물 수가 50개를 초과하였다. 비교예 2는 인장강도가 2200MPa 이하로 열위하였으며, 탄화물 수가 10개 미만으로 형성되어 구오스테나이트 평균 입경을 제어하기 어려운 문제가 발생하였다. 비교예 4는 인장강도가 2200MPa 이하로 열위하였으며, 탄화물 수가 50개를 초과하였다.In contrast, in Comparative Example 1, the area reduction rate was only 32%, and the number of carbides exceeded 50. In Comparative Example 2, the tensile strength was inferior to 2200 MPa or less, and the number of carbides was formed to be less than 10, so that it was difficult to control the average grain diameter of prior austenite. Comparative Example 4 was inferior in tensile strength to 2200 MPa or less, and the number of carbides exceeded 50.
다음으로, 상기 QT 강선을 스프링의 형상으로 냉간 성형한 후, 성형된 스프링을 열처리 한 다음, 420 내지 450℃에서 질화처리하였다.Next, after cold forming the QT steel wire into the shape of a spring, the formed spring was subjected to heat treatment and then nitriding at 420 to 450 ° C.
하기 표 7은 스프링 성형 중 파손여부, 피로한도 및 질화처리 후 피로한도 값을 나타내었다. Table 7 below shows whether the spring was damaged during forming, the fatigue limit, and the fatigue limit value after nitriding treatment.
질화처리 전과 후의 피로 한도는 응력비 R(인장능력/압축능력)=-1 및 시험속도 30~60Hz의 조건으로 측정하였다.The fatigue limit before and after nitriding treatment was measured under the conditions of stress ratio R (tensile capacity/compressive capacity) = -1 and test speed of 30 to 60 Hz.
하기 표 7에서'X'는 스프링 성형 중 파손되지 않았음을 의미하며, 'O'는 스프링 성형 중 파손되었음을 의미한다.In Table 7 below, 'X' means that the spring was not broken during molding, and 'O' means that the spring was broken during molding.
파손여부Damage 질화처리 전 피로한도(MPa)Fatigue limit before nitriding (MPa) 질화처리 후 피로한도(MPa)Fatigue limit after nitriding (MPa)
실시예1Example 1 XX 700700 780780
실시예2Example 2 XX 710710 780780
비교예1Comparative Example 1 OO 680680 750750
비교예2Comparative Example 2 OO 650650 700700
비교예3Comparative Example 3 XX 700700 770770
비교예4Comparative Example 4 XX 660660 710710
실시예 1 및 실시예 2는 가공성이 우수하여 파손되지 않았으며, 질화처리 전에 피로한도가 650MPa 이상으로 측정되어, 피로한도가 우수하였다. 또한, 실시예 1 및 2는 질화처리 후에 피로한도가 750MPa 이상이었으며, 질화처리 후 질화처리 전에 비해 피로한도가 10% 이상 증가하여, 질화처리 특성이 우수하였다.Examples 1 and 2 had excellent processability and were not damaged, and the fatigue limit was measured at 650 MPa or more before nitriding treatment, so the fatigue limit was excellent. In addition, Examples 1 and 2 had a fatigue limit of 750 MPa or more after nitriding treatment, and the fatigue limit after nitriding treatment was increased by 10% or more compared to before nitriding treatment, so the nitriding treatment characteristics were excellent.
이에 비해, 비교예 1 및 2는 가공성이 열위하여 파손되었으며, 질화처리 후 질화처리 전에 비해 피로한도가 10% 미만으로 증가하였다.In contrast, Comparative Examples 1 and 2 were damaged due to poor workability, and after nitriding treatment, the fatigue limit increased to less than 10% compared to before nitriding treatment.
비교예 4는 스프링 가공 중 파손이 발생하지는 않았으나, 질화처리 후 질화처리 전에 비해 피로한도가 10% 이상으로 증가하지 못하여, 질화처리 특성이 열위했다.In Comparative Example 4, no breakage occurred during spring processing, but the fatigue limit after nitriding treatment did not increase to 10% or more compared to before nitriding treatment, and thus the nitriding treatment characteristics were inferior.
개시된 실시예에 따르면, 합금 조성 및 제조조건을 최적화함으로써, 우수한 인장강도와 단면감소율을 확보함과 동시에 질화처리 특성 및 피로한도가 향상되어, 자동차 변속기어 및 엔진벨브 등의 소재로 적용이 가능하다.According to the disclosed embodiment, by optimizing the alloy composition and manufacturing conditions, excellent tensile strength and section reduction rate are secured, and at the same time, nitriding treatment characteristics and fatigue limit are improved, so that it can be applied to materials such as automobile transmission gears and engine valves. .
본 발명의 일 예에 따르면, 강도 및 피로한도가 향상된 스프링용 선재, 강선, 스프링 및 그 제조방법을 제공할 수 있다.According to one embodiment of the present invention, it is possible to provide a spring wire rod, a steel wire, a spring with improved strength and fatigue limit, and a manufacturing method thereof.

Claims (15)

  1. 중량%로, C: 0.6 내지 0.7%, Si: 2.0 내지 2.5%, Mn: 0.2 내지 0.7%, Cr: 0.9 내지 1.5%, P: 0.015% 이하, S: 0.01% 이하, Al: 0.01% 이하, N: 0.01% 이하, Mo: 0.25% 이하, W: 0.25% 이하, V: 0.05% 내지 0.2% 이하, Nb: 0.05% 이하, 나머지 Fe 및 기타 불가피한 불순물을 포함하고,In weight percent, C: 0.6 to 0.7%, Si: 2.0 to 2.5%, Mn: 0.2 to 0.7%, Cr: 0.9 to 1.5%, P: 0.015% or less, S: 0.01% or less, Al: 0.01% or less, N: 0.01% or less, Mo: 0.25% or less, W: 0.25% or less, V: 0.05% to 0.2% or less, Nb: 0.05% or less, remaining Fe and other unavoidable impurities,
    Mn+Cr≤1.8%를 만족하고,Satisfying Mn+Cr≤1.8%,
    0.05at%≤Mo+W≤0.15at%를 만족하고, Satisfying 0.05at%≤Mo+W≤0.15at%,
    길이 방향과 수직한 단면의 중심부 1mm2 면적에서, 중량%로, C > 0.85%, Si > 3.0%, Mn > 0.8%, Cr > 2.0% 중 하나 이상을 만족하는 면적의 비율이 10% 이하인, 강도 및 피로한도가 향상된 스프링용 선재.In the center 1 mm 2 area of the cross section perpendicular to the longitudinal direction, in weight%, the ratio of the area satisfying one or more of C > 0.85%, Si > 3.0%, Mn > 0.8%, Cr > 2.0% is 10% or less, Spring wire with improved strength and fatigue limit.
  2. 제1항에 있어서,According to claim 1,
    면적분율로 펄라이트 조직 80% 이상, 나머지 베이나이트 조직 또는 마르텐사이트 조직을 포함하는, 강도 및 피로한도가 향상된 스프링용 선재.A wire rod for springs with improved strength and fatigue limit, containing 80% or more of pearlite structure by area fraction and remaining bainite structure or martensite structure.
  3. 제1항에 있어서,According to claim 1,
    구오스테나이트 평균 입경이 20㎛ 이하인, 강도 및 피로한도가 향상된 스프링용 선재.Wire rod for springs with improved strength and fatigue limit, with an average particle diameter of prior austenite of 20 μm or less.
  4. 제1항에 있어서,According to claim 1,
    표면 깊이 1mm 이내의 길이 방향과 수평한 단면에서, 최대 직경이 15㎛ 이상인 탄질화물이 2개/cm2 미만으로 분포하는, 강도 및 피로한도가 향상된 스프링용 선재.A spring wire with improved strength and fatigue limit, with less than 2/cm 2 carbonitrides having a maximum diameter of 15㎛ or more distributed in a longitudinal and horizontal cross section within a surface depth of 1mm.
  5. 제1항에 있어서,According to claim 1,
    인장강도는 1,400MPa 이하이고 단면감소율은 35% 이상인, 강도 및 피로한도가 향상된 스프링용 선재.A spring wire with improved strength and fatigue limit, with a tensile strength of 1,400 MPa or less and a cross section reduction of 35% or more.
  6. 중량%로, C: 0.6 내지 0.7%, Si: 2.0 내지 2.5%, Mn: 0.2 내지 0.7%, Cr: 0.9 내지 1.5%, P: 0.015% 이하, S: 0.01% 이하, Al: 0.01% 이하, N: 0.01% 이하, Mo: 0.25% 이하, W: 0.25% 이하, V: 0.05% 내지 0.2% 이하, Nb: 0.05% 이하, 나머지 Fe 및 기타 불가피한 불순물을 포함하는 용강을 연속 주조하여 블룸(bloom)을 마련하는 단계;In weight percent, C: 0.6 to 0.7%, Si: 2.0 to 2.5%, Mn: 0.2 to 0.7%, Cr: 0.9 to 1.5%, P: 0.015% or less, S: 0.01% or less, Al: 0.01% or less, Bloom by continuously casting molten steel containing N: 0.01% or less, Mo: 0.25% or less, W: 0.25% or less, V: 0.05% to 0.2% or less, Nb: 0.05% or less, the remainder Fe and other unavoidable impurities ) preparing;
    상기 블룸을 1,200℃ 이상의 온도로 가열한 후 빌렛으로 압연하는 단계;Heating the bloom to a temperature of 1,200 ° C. or higher and then rolling it into a billet;
    상기 빌렛을 1,030℃ 이상에서 열처리한 후 1,000℃ 이하의 온도에서 선재로 압연하는 단계;heat-treating the billet at 1,030° C. or higher and then rolling it into a wire rod at a temperature of 1,000° C. or lower;
    상기 선재를 800 내지 900℃의 온도에서 권취하는 단계; 및winding the wire rod at a temperature of 800 to 900° C.; and
    상기 권취된 선재를 0.5 내지 2℃/s의 속도로 냉각하는 단계;를 포함하는, 강도 및 피로한도가 향상된 스프링용 선재의 제조방법.A method for manufacturing a spring wire having improved strength and fatigue limit, comprising: cooling the wound wire at a rate of 0.5 to 2° C./s.
  7. 제6항에 있어서,According to claim 6,
    상기 연속 주조 단계는 총 압하량 20mm 이상으로 경압하하는 것을 포함하는, 스프링용 선재의 제조방법.The continuous casting step comprises lightly reducing the total reduction amount of 20 mm or more, a method for manufacturing a wire rod for a spring.
  8. 제7항에 있어서,According to claim 7,
    상기 경압하는,the above pressure,
    각 압연롤 별로 4mm 이하로 압연하며, 응고분율이 0.6 이상일 때 누적 압하량이 60% 이상인, 강도 및 피로한도가 향상된 스프링용 선재의 제조방법.A method of manufacturing a wire rod for a spring with improved strength and fatigue limit, wherein each rolling roll is rolled to a thickness of 4 mm or less, and the cumulative reduction is 60% or more when the solidification fraction is 0.6 or more.
  9. 중량%로, C: 0.6 내지 0.7%, Si: 2.0 내지 2.5%, Mn: 0.2 내지 0.7%, Cr: 0.9 내지 1.5%, P: 0.015% 이하, S: 0.01% 이하, Al: 0.01% 이하, N: 0.01% 이하, Mo: 0.25% 이하, W: 0.25% 이하, V: 0.05% 내지 0.2% 이하, Nb: 0.05% 이하, 나머지 Fe 및 기타 불가피한 불순물을 포함하고,In weight percent, C: 0.6 to 0.7%, Si: 2.0 to 2.5%, Mn: 0.2 to 0.7%, Cr: 0.9 to 1.5%, P: 0.015% or less, S: 0.01% or less, Al: 0.01% or less, N: 0.01% or less, Mo: 0.25% or less, W: 0.25% or less, V: 0.05% to 0.2% or less, Nb: 0.05% or less, remaining Fe and other unavoidable impurities,
    Mn+Cr≤1.8%를 만족하고,Satisfying Mn+Cr≤1.8%,
    0.05at%≤Mo+W≤0.15at%를 만족하고, Satisfying 0.05at%≤Mo+W≤0.15at%,
    면적분율로, 템퍼드 마르텐사이트 조직 85% 이상 및 나머지 오스테나이트 조직을 포함하는, 강도 및 피로한도가 향상된 스프링용 강선.Steel wire for springs with improved strength and fatigue limit, containing at least 85% of the tempered martensitic structure and the remaining austenite structure by area fraction.
  10. 제9항에 있어서,According to claim 9,
    구오스테나이트 평균 입경이 15㎛ 이하인, 강도 및 피로한도가 향상된 스프링용 강선.Steel wire for springs with improved strength and fatigue limit with an average particle diameter of prior austenite of 15㎛ or less.
  11. 제9항에 있어서,According to claim 9,
    표면 깊이 1mm 이내의 길이 방향과 수평한 단면에서, 최대 직경이 15㎛ 이상인 탄질화물이 2개/cm2 미만으로 분포하는, 강도 및 피로한도가 향상된 스프링용 강선.Steel wire for springs with improved strength and fatigue limit, with carbonitrides having a maximum diameter of 15㎛ or more distributed at less than 2/cm 2 in the lengthwise and horizontal cross section within a surface depth of 1mm.
  12. 제9항에 있어서,According to claim 9,
    100㎛2 면적에서, 탄화물의 개수가 10개 내지 50개이고,In an area of 100 μm 2 , the number of carbides is 10 to 50,
    상기 탄화물은 최대 직경이 5 내지 50nm이고, V 또는 Nb의 함량이 10at% 이상인, 강도 및 피로한도가 향상된 스프링용 강선.The carbide has a maximum diameter of 5 to 50 nm, and a V or Nb content of 10 at% or more, strength and fatigue limit improved spring steel wire.
  13. 제9항에 있어서,According to claim 9,
    인장강도가 2,100MPa 이상이고 단면감소율이 45% 이상인, 강도 및 피로한도가 향상된 스프링용 강선.Steel wire for springs with improved strength and fatigue limit, with a tensile strength of 2,100 MPa or more and a section reduction of 45% or more.
  14. 제1항 내지 제5항 중 어느 한 항의 선재를 LP 열처리하는 단계;LP heat treatment of the wire according to any one of claims 1 to 5;
    상기 LP 열처리한 선재를 신선하여 강선을 마련하는 단계; 및preparing a steel wire by drawing the wire rod subjected to the LP heat treatment; and
    상기 강선을 QT열처리하는 단계;를 포함하고, Including; QT heat treatment of the steel wire;
    상기 LP 열처리하는 단계는,The LP heat treatment step,
    3분 이내로 950 내지 1100℃까지 가열한 후 3분 이하로 유지하는 제1 오스테나이타이징 단계; 및A first austenitizing step of heating to 950 to 1100 ° C within 3 minutes and then maintaining it for 3 minutes or less; and
    상기 제1 오스테나이타이징한 선재를 650 내지 700℃의 납조에서 3분 이내로 통과시키는 단계를 포함하는, 강도 및 피로한도가 향상된 스프링용 강선의 제조방법.A method of manufacturing a steel wire for a spring with improved strength and fatigue limit, comprising the step of passing the first austenitized wire rod in a lead bath at 650 to 700 ° C within 3 minutes.
  15. 제14항에 있어서,According to claim 14,
    상기 LP 열처리하는 단계에서, In the LP heat treatment step,
    펄라이트 변태 완료 시간은 130초 미만인, 강도 및 피로한도가 향상된 스프링용 강선의 제조방법.A method for manufacturing a steel wire for a spring with improved strength and fatigue limit, in which the pearlite transformation completion time is less than 130 seconds.
PCT/KR2022/007483 2021-06-02 2022-05-26 Wire rod and steel wire for spring, spring with improved strength and fatigue limit, and method for manufacturing same WO2022255727A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP22816386.1A EP4332265A1 (en) 2021-06-02 2022-05-26 Wire rod and steel wire for spring, spring with improved strength and fatigue limit, and method for manufacturing same
JP2023574625A JP2024521927A (en) 2021-06-02 2022-05-26 Spring wire rod, steel wire, spring with improved strength and fatigue limit, and manufacturing method thereof
CN202280049907.XA CN117751206A (en) 2021-06-02 2022-05-26 Wire rod for spring, steel wire for spring, spring with improved strength and fatigue limit, and method for manufacturing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020210071715A KR20220163153A (en) 2021-06-02 2021-06-02 Wire rod and steel wire for spring, spring with improved strength and fatigue limit, and the method for manufacturing the same
KR10-2021-0071715 2021-06-02

Publications (1)

Publication Number Publication Date
WO2022255727A1 true WO2022255727A1 (en) 2022-12-08

Family

ID=84323349

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/007483 WO2022255727A1 (en) 2021-06-02 2022-05-26 Wire rod and steel wire for spring, spring with improved strength and fatigue limit, and method for manufacturing same

Country Status (5)

Country Link
EP (1) EP4332265A1 (en)
JP (1) JP2024521927A (en)
KR (1) KR20220163153A (en)
CN (1) CN117751206A (en)
WO (1) WO2022255727A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000043776A (en) 1998-12-29 2000-07-15 이구택 Method for producing wire rod for high strength spring
JP2009068030A (en) * 2007-09-10 2009-04-02 Kobe Steel Ltd Spring steel wire rod excellent in decarburization resistance and wire drawing workability and method for producing the same
KR20110048744A (en) * 2009-11-03 2011-05-12 주식회사 포스코 Wire rod for drawing with excellent drawability, ultra high strength steel wire and manufacturing method of the same
KR20120040728A (en) * 2010-07-06 2012-04-27 신닛뽄세이테쯔 카부시키카이샤 Drawn and heat-treated steel wire for high-strength spring, and undrawn steel wire for high-strength spring
KR20130026135A (en) * 2011-09-05 2013-03-13 주식회사 포스코 Wire rod, steel wire and manufacturing method of steel wire
KR20210036916A (en) * 2018-07-27 2021-04-05 바오샨 아이론 앤 스틸 유한공사 Spring steel with excellent fatigue life and its manufacturing method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000043776A (en) 1998-12-29 2000-07-15 이구택 Method for producing wire rod for high strength spring
JP2009068030A (en) * 2007-09-10 2009-04-02 Kobe Steel Ltd Spring steel wire rod excellent in decarburization resistance and wire drawing workability and method for producing the same
KR20110048744A (en) * 2009-11-03 2011-05-12 주식회사 포스코 Wire rod for drawing with excellent drawability, ultra high strength steel wire and manufacturing method of the same
KR20120040728A (en) * 2010-07-06 2012-04-27 신닛뽄세이테쯔 카부시키카이샤 Drawn and heat-treated steel wire for high-strength spring, and undrawn steel wire for high-strength spring
KR20130026135A (en) * 2011-09-05 2013-03-13 주식회사 포스코 Wire rod, steel wire and manufacturing method of steel wire
KR20210036916A (en) * 2018-07-27 2021-04-05 바오샨 아이론 앤 스틸 유한공사 Spring steel with excellent fatigue life and its manufacturing method

Also Published As

Publication number Publication date
KR20220163153A (en) 2022-12-09
JP2024521927A (en) 2024-06-04
CN117751206A (en) 2024-03-22
EP4332265A1 (en) 2024-03-06

Similar Documents

Publication Publication Date Title
WO2012002638A2 (en) Ultra-high-strength steel bar and method for manufacturing same
WO2014014246A1 (en) Martensitic stainless steel and method for manufacturing same
WO2019132465A1 (en) Steel material showing excellent hydrogen-induced cracking resistance and method for preparing same
WO2017111524A1 (en) Ultra high-strength steel sheet having excellent hole expandability and manufacturing method therefor
WO2016111388A1 (en) Super high strength plated steel sheet having tensile strength of 1300 mpa or more, and manufacturing method therefor
WO2012043984A2 (en) Steel plate for line pipe, having excellent hydrogen induced crack resistance, and preparation method thereof
WO2020111856A2 (en) High-strength steel sheet having excellent ductility and low-temperature toughness and method for manufacturing thereof
WO2021172604A1 (en) Non-heat treated wire rod with excellent wire drawability and impact toughness and manufacturing method therefor
WO2020111857A1 (en) Chromium-molybdenum steel plate having excellent creep strength and method for manufacturing same
WO2019125018A1 (en) Ultrahigh strength cold-rolled steel sheet and manufacturing method thereof
WO2022139214A1 (en) Martensitic stainless steel with improved strength and corrosion resistance, and manufacturing method therefor
WO2022255727A1 (en) Wire rod and steel wire for spring, spring with improved strength and fatigue limit, and method for manufacturing same
WO2017099433A1 (en) Wire rod and steel wire having excellent hydrogen induced cracking resistance, and manufacturing method therefor
WO2021125471A1 (en) Wire rod for ultra-high strength spring, steel wire and manufacturing method thereof
WO2020130614A2 (en) High strength hot-rolled steel sheet having excellent hole expansion ratio and manufacturing method for same
WO2022131592A1 (en) Wire rod and steel wire for spring, spring, having improved fatigue resistance and nitrification properties, and methods for manufacturing same
WO2023018270A1 (en) Steel sheet having high strength and high toughness, and manufacturing method therefor
WO2024085736A1 (en) Martensitic stainless steel and method of manufacturing same
WO2024136317A1 (en) Cold-rolled steel sheet and manufacturing method therefor
WO2023096453A1 (en) Ultra-high strength cold-rolled steel sheet having excellent elongation and manufacturing method thereof
WO2022265289A1 (en) Wire rod having excellent drawability, and manufacturing method therefor
WO2024080657A1 (en) Steel sheets and methods for manufacturing same
WO2022139282A1 (en) High toughness high carbon cold rolled steel sheet having excellent formability, and method for manufacturing same
WO2019039774A1 (en) Ferritic stainless steel having enhanced low-temperature impact toughness and method for producing same
WO2024072023A1 (en) Cold rolled steel sheet and method for manufacturing same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22816386

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022816386

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: MX/A/2023/014311

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 2023574625

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 2022816386

Country of ref document: EP

Effective date: 20231129

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 202280049907.X

Country of ref document: CN