WO2023096453A1 - Ultra-high strength cold-rolled steel sheet having excellent elongation and manufacturing method thereof - Google Patents

Ultra-high strength cold-rolled steel sheet having excellent elongation and manufacturing method thereof Download PDF

Info

Publication number
WO2023096453A1
WO2023096453A1 PCT/KR2022/019037 KR2022019037W WO2023096453A1 WO 2023096453 A1 WO2023096453 A1 WO 2023096453A1 KR 2022019037 W KR2022019037 W KR 2022019037W WO 2023096453 A1 WO2023096453 A1 WO 2023096453A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel sheet
cold
rolled steel
less
content
Prior art date
Application number
PCT/KR2022/019037
Other languages
French (fr)
Korean (ko)
Inventor
김은영
구민서
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Publication of WO2023096453A1 publication Critical patent/WO2023096453A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C47/00Winding-up, coiling or winding-off metal wire, metal band or other flexible metal material characterised by features relevant to metal processing only
    • B21C47/02Winding-up or coiling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0273Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Definitions

  • the present invention relates to an ultra-high-strength cold-rolled steel sheet having excellent elongation and a method for manufacturing the same, and more particularly, to a cold-rolled steel sheet having a tensile strength of 1.5 GPa and having an excellent elongation rate, which can be suitably used for cold stamping, and a cold-rolled steel sheet thereof It's about manufacturing methods.
  • dual steel (pre-steel) and transformation induced plasticity steel Transformation Induced Plasticity Steep; TRIP
  • transformation induced plasticity steel Transformation Induced Plasticity Steep; TRIP
  • HER elongation and hole expansion ratio
  • ultra-high strength steel composed of bainite, particularly martensite, which is a low-temperature transformation phase, has been manufactured, and it is mainly formed by roll forming even though its bendability is low. It is used as a possible part.
  • Patent Document 1 Korean Publication No. 2017-7022118
  • Patent Document 2 Japanese Unexamined Publication No. 2016-28760
  • an ultra-high-strength cold-rolled steel sheet having excellent elongation and a manufacturing method thereof.
  • a cold-rolled steel sheet that can be suitably used for cold stamping and a manufacturing method thereof, having a total elongation of 10% or more while having an ultra-high strength of 1.5 GPa or more.
  • C 0.15 to 0.3%
  • Si 0.1 to 1.5%
  • Mn 2.5 to 5.0%
  • P 0.1% or less (excluding 0%)
  • S 0.03% or less (excluding 0%)
  • Al 0.01 ⁇ 0.1%
  • N 0.01% or less (excluding 0%)
  • B 0.005% or less (excluding 0%)
  • Microstructure by area%, including retained austenite: 0.5-20% and martensite: 80-99.5%,
  • Another aspect of the present invention is,
  • C 0.15 to 0.3%
  • Si 0.1 to 1.5%
  • Mn 2.5 to 5.0%
  • P 0.1% or less (excluding 0%)
  • S 0.03% or less (excluding 0%)
  • Al 0.01 reheating to 1100-1300° C.
  • a steel slab having a composition comprising ⁇ 0.1%, N: 0.01% or less (excluding 0%), B: 0.005% or less (excluding 0%), the balance being Fe and other unavoidable impurities;
  • the secondary annealed cold-rolled steel sheet averaged over 30 °C / s It provides a method for manufacturing a cold-rolled steel sheet comprising a; secondary cooling step of cooling at a cooling rate.
  • an ultra-high strength cold-rolled steel sheet having excellent elongation and a manufacturing method thereof.
  • a cold-rolled steel sheet that has a total elongation of 10% or more while having an ultra-high strength of 1.5 GPa or more, and can be suitably used for cold stamping and a manufacturing method thereof.
  • the main structure is the same from the martensite main structure obtained in the annealing region and the Mn content gradient of the retained austenite, rather than controlling the microstructure having a uniform chemical composition by utilizing the C and Mn contents of the entire steel sheet.
  • a non-uniform gradient in chemical composition occurs, microstructure yielding with a relatively low Mn content occurs during processing, and local stress and deformation occur within the boundary as hard martensitic transformation progresses, resulting in a microstructure with a low Mn content.
  • the elongation rate can provide an additional strength increase effect, thereby providing a 1.5 GPa class ultra-high strength steel sheet.
  • C and Mn in martensite are additionally distributed to the remaining austenite, thereby finally securing more stable austenite than before, minimizing martensitic transformation in the uniform elongation section during plastic deformation, and high strength / high resistance It is possible to provide a method for manufacturing a cold-rolled steel sheet having a compound ratio and excellent workability.
  • FIG. 1 is a schematic diagram schematically showing a manufacturing process of a cold-rolled steel sheet according to an aspect of the present invention.
  • Figure 2 is a photograph of the final microstructure after secondary annealing-secondary cooling for Example 8 of Table 2 measured at high magnification by electron backscattering diffraction (EBSD)
  • Figure 2 (a) is a crystallographic orientation map (Inverse Pole Figure, IPF)
  • Figure 2(b) shows the phase distribution map for inventive steel
  • Figure 2(c) is a phase distribution map that enlarges a specific area where retained austenite is distributed in the final microstructure indicates
  • the cold-rolled steel sheet contains, by weight, C: 0.15-0.3%, Si: 0.1-1.5%, Mn: 2.5-5.0%, P: 0.1% or less (excluding 0%), S: 0.03 % or less (excluding 0%), Al: 0.01 to 0.1%, N: 0.01% or less (excluding 0%), B: 0.005% or less (excluding 0%), the balance including Fe and other unavoidable impurities.
  • Carbon (C) is an essential element for securing the strength and hardenability of martensitic steel, and it is preferable to add 0.15% or more in order to have a tensile strength of 1.5 GPa or more.
  • the upper limit is 0.3%. It is preferable to control below.
  • the degree of generation of carbides increases when martensite is formed as the carbon content increases, more preferably, the upper limit of the C content can be controlled to 0.27%.
  • Si is added as a deoxidizer in the steelmaking process, and is an element that suppresses the formation of carbides together with a solid solution strengthening element.
  • the addition of Si serves to uniformly disperse the structure during annealing heat treatment, increases the stability of austenite during cooling, and makes it possible to secure retained austenite at room temperature. Therefore, in order to secure the above effect, it is preferable to add 0.15% or more of Si.
  • the Si content exceeds 1.5%, excessive Si-based oxides are generated on the surface of the steel sheet during hot rolling, which may cause surface defects during cold rolling.
  • the Si content is controlled to 1.5% or less because the resistivity of the final cold-rolled steel sheet increases and spot weldability deteriorates.
  • the upper limit of the Si content may be 1.25%.
  • Manganese (Mn) is an austenite stable element, which is added to secure martensite hardenability, and is easy to suppress ferrite generation during annealing heat treatment after cold rolling.
  • Mn content is less than 2.5%, it is possible to secure martensitic hardenability, but it is difficult to generate a gradient of Mn concentration in the cold-rolled steel sheet, making it difficult to secure a non-uniform microstructure according to the Mn concentration difference sought in the present invention.
  • the Mn content exceeds 5.0%, excessive strength and Mn bands may occur in the base iron in the thickness direction from the steelmaking and casting stages, and thus the crash resistance deteriorates, so the upper limit of the Mn content is set to 5.0% or less. It is desirable to control However, more preferably, the lower limit of the Mn content may be controlled to 3.0% and the upper limit of the Mn content may be controlled to 4.12% in order to achieve the object of the present invention.
  • Phosphorus (P) is an impurity element in steel, and when it exceeds 0.1%, weldability deteriorates due to P segregation, and the upper limit of the P content is controlled to 0.1% because the potential to cause brittleness of the steel is high.
  • the lower limit of the P content may exclude 0% (ie, greater than 0%) in consideration of the case where it is inevitably included.
  • the lower limit of the P content may be controlled to 0.005.
  • the upper limit of the P content may be controlled to 0.03%, most preferably 0.02%.
  • S Sulfur
  • the upper limit of the S content is controlled to 0.03% or less.
  • the lower limit of the S content may exclude 0% (ie, greater than 0%) in consideration of the case where it is inevitably included.
  • the lower limit of the S content may be controlled to 0.002%, and the upper limit of the S content may be controlled to 0.005%.
  • Al is controlled to 0.01% or more.
  • the upper limit of the Al content is limited to 0.1%.
  • the lower limit of the Al content may be 0.02% and the upper limit of the Al content may be 0.06% in order to secure the desired effect of the present invention.
  • Nitrogen (N) is an impurity element in steel, and if its content exceeds 0.01%, the risk of cracking during playing due to AlN formation greatly increases, so the upper limit of the N content is limited to 0.01%.
  • the lower limit of the N content may exclude 0% (ie, greater than 0%) in consideration of the case where it is unavoidably included.
  • the lower limit of the N content may be controlled to 0.007%, and the upper limit of the N content may be controlled to 0.03%.
  • Boron (B) is an element that is advantageous for inhibiting ferrite phase transformation during annealing heat treatment, and can improve the hardenability of martensite through grain boundary reinforcement and solid solution strengthening.
  • the upper limit of the B content is 0.005%. limited to less than %.
  • the lower limit of the B content may exclude 0% (ie, more than 0%) in consideration of the case where it is inevitably included.
  • the lower limit of the B content may be controlled to 0.001%, and the upper limit of the B content may be controlled to 0.003%.
  • the remaining component of the present invention is iron (Fe).
  • Fe iron
  • unintended impurities may inevitably be mixed due to raw materials or surrounding environmental variables in a normal manufacturing process, this cannot be excluded. Since these impurities are known to anyone skilled in the ordinary steel manufacturing process, not all of them are specifically mentioned in this specification.
  • the cold-rolled steel sheet may optionally further include one or more selected from Cr: 0.1% or less and Mo: 0.1% or less.
  • Cr 0.1% or less
  • Mo 0.1% or less
  • Chromium is an element that increases the hardenability of martensite and suppresses ferrite transformation, thereby finally enabling martensite having appropriate strength to be produced. Therefore, when the Mn content is designed within a certain range, since the hardenability effect according to the Cr content is lowered, martensitic strength can be secured without adding it, so that a small amount of Cr can be added. On the other hand, if the Cr content exceeds 0.1%, there is a risk of causing cracks due to local deformation and stress generation at the boundary between the carbide and the steel structure during part molding due to the formation of coarse Cr-based carbides, so the upper limit of the Cr content is 0.1%.
  • the lower limit of the Cr content may be 0%.
  • the lower limit of the Cr content may be controlled to 0.005%, and the upper limit of the Cr content may be controlled to 0.05%.
  • Molybdenum is an element effective in increasing martensitic hardenability and suppressing ferrite generation in the cooling section during annealing heat treatment in the same way as Cr.
  • Mo Molybdenum
  • the upper limit of the Mo content is limited to 0.1% or less.
  • the lower limit of the Mo content may be 0% and the upper limit of the Mo content may be 0.05%. there is.
  • the microstructure of the cold-rolled steel sheet includes, in area fraction, retained austenite: 0.5 to 20% and martensite: 80 to 99.5%.
  • the retained austenite is less than 0.5% or the martensite exceeds 99.5%, the Mn content distribution does not occur properly, and a cold-rolled steel sheet having a martensite matrix is manufactured, resulting in insufficient elongation. can occur
  • the retained austenite is more than 20% or the martensite is less than 80%, carbon stability in the retained austenite is poor, resulting in martensite transformation due to strain-induced transformation during processing, resulting in formability. This can lead to exacerbation of the problem.
  • the lower limit of the area fraction of retained austenite may be 1.2%, or the upper limit of the area fraction of retained austenite may be 10%.
  • the lower limit of the area fraction of martensite may be 90%, or the upper limit of the area fraction of martensite may be 98.5%.
  • the cold-rolled steel sheet may satisfy the following relational expression 1-1.
  • the lower limit of the value of may be 9, or The upper limit of the value of may be 19.
  • the measurement method of is not particularly limited.
  • the EPMA surface analysis is performed quantitatively for the Mn content at an area magnification of 30 ⁇ m to 30 ⁇ m. Subsequently, it can be measured by analyzing a region having a martensitic structure having a locally high Mn content and a region having a martensitic structure having a locally low Mn content, respectively.
  • the cold-rolled steel sheet may satisfy the following relational expression 1-2.
  • additional strength is realized in the region where the Mn content is relatively low, making it possible to manufacture a 1.5 GPa class cold-rolled steel sheet, thereby reducing the difference in hardness within the structure and providing excellent elongation compared to conventional martensitic steel. it is possible to secure
  • the The lower limit of the value of may be 829 MPa, or the above The upper limit of the value of may be 1844 MPa.
  • the above and Is defined by the following relational expression 1-3 for each region can be obtained based on Therefore, the above can be obtained as the content of each component obtained through EPMA analysis in a region having a martensitic structure with a high Mn content locally. Also, the above can be obtained by the content of each component obtained through EPMA analysis in a region having a martensitic structure with a low Mn content locally.
  • a hard/soft phase is obtained according to the Mn concentration, and additional reinforcement is induced in the hard phase from the resulting strain distribution. Should be.
  • austenite stability in the hard Mn phase due to the Mn concentration gradient retained austenite can be secured at room temperature to provide ultra-high strength steel having excellent elongation.
  • the cold-rolled steel sheet according to the present invention has a tensile strength of 1500 MPa or more (or 1500 MPa or more and 1700 MPa or less, or 1554 MPa or more and 1660 MPa or less), and a total elongation of 10% or more (or 10% or more and 12% or less, or 10.2% or more and 11.2% or more). below) can be satisfied, and by satisfying this, it can be suitably used for cold stamping as an ultra-high-strength cold-rolled steel sheet having excellent elongation.
  • the yield strength of the cold-rolled steel sheet is 940MPa or more (or, 940MPa or more and 1200MPa or less, 1000MPa or more, or 1000MPa or more and 1200MPa or less) can be Further, according to one aspect of the present invention, the uniform elongation of the cold-rolled steel sheet may be 5.0% or more, or may be 5.0% or more and 7.0% or less.
  • the manufacturing method of the cold-rolled steel sheet according to the present invention does not necessarily mean that it must be manufactured by the following manufacturing method.
  • a method for manufacturing a cold-rolled steel sheet according to an aspect of the present invention includes reheating a steel slab having the above composition at 1,100 to 1,300 °C.
  • the composition of the steel slab is the same as the composition of the above-mentioned cold-rolled steel sheet, and the description of the above-described cold-rolled steel sheet can be equally applied to the reason for adding each component and the reason for limiting the content in the slab.
  • the present invention it is preferable to go through a process of reheating and homogenizing the steel slab prior to performing hot rolling, and at this time, it is preferable to perform the temperature at 1,100 ⁇ 1,300 °C during reheating. If the reheating temperature is less than 1100° C., a problem in that the load rapidly increases during subsequent hot rolling may occur. In addition, when the reheating temperature exceeds 1,300° C., the amount of surface scale increases, which may lead to material loss.
  • a hot-rolled steel sheet by hot-rolling the above-described reheated slab at 800 to 1,000 ° C. If the temperature of the hot rolling is less than 800 ° C., it is not preferable because there is a possibility that the rolling load may increase due to the introduction of non-recrystallized ferrite. On the other hand, if the temperature of the hot rolling exceeds 1,000 ° C., it is not preferable because the possibility of increasing surface defects and wear of the rolling roll due to scale increases.
  • the hot-rolled steel sheet manufactured according to the above-described hot rolling it is preferable to wind the hot-rolled steel sheet manufactured according to the above-described hot rolling at 400 to 700 ° C.
  • the coiling temperature exceeds 700° C.
  • an excessive oxide film is formed on the surface of the steel sheet to cause defects, so it is preferable to limit this.
  • the coiling temperature is lower than 400 ° C, the strength of the hot-rolled steel sheet is excessively high, so that the rolling load in the cold-rolling process is increased, and productivity is deteriorated because there are many control variables during the cold-rolling process to control it. .
  • cold rolling is performed at a reduction ratio of 20 to 75% to manufacture a cold-rolled steel sheet. If the reduction ratio is less than 20% during the cold rolling, it is difficult to secure the target thickness, and the remaining hot-rolled crystal grains affect the generation of austenite and final physical properties during annealing heat treatment. Therefore, the reduction ratio during cold rolling is preferably performed in the range of 20 to 75%.
  • the present invention is to manufacture a highly-stretched cold-rolled steel sheet having mechanical properties of 10% or more in elongation while securing a tensile strength of 1.5 GPa.
  • primary annealing - primary cooling - secondary A two-stage annealing process including an annealing-secondary cooling process is performed. It is explained in detail below.
  • the cold-rolled steel sheet obtained from the aforementioned cold rolling is heated to a range of 600 to 700° C. (or 620 to 700° C.) and maintained for 2 to 24 hours.
  • the temperature increase rate of 30 °C / s or more is longer than the cementite is decomposed
  • the holding time is controlled to 2 hours or more so that Mn decomposition can occur at an annealing temperature with an inverse temperature (T I A ) range of 600 ° C to 700 ° C.
  • the temperature increase rate during the primary annealing is less than 30° C./s, a problem of insignificant C and Mn inhomogeneity may occur during the primary annealing.
  • the temperature increase rate during the primary annealing exceeds 50° C./s, the accuracy of the primary annealing target temperature may be lowered, resulting in material problems of the final steel type due to temperature deviations in the annealing station.
  • cooling proceeds at an average cooling rate of 30°C/s or more in the first cooling step described later. This is to generate a difference in the Mn concentration of the nitrite and to obtain ferrite with a low Mn concentration and martensite with a high Mn content during cooling. In order to maximize the Mn concentration more preferably in the primary annealing, it is carried out in a holding time range of up to 24 hours.
  • the primary annealing step has a maximum temperature in the temperature range of 600 ⁇ 700 °C based on the surface temperature of the steel sheet. It is heated to be, and the time to maintain in the temperature range of 600 ⁇ 700 °C from the time of reaching the maximum temperature may be 2 to 24 hours.
  • the holding time during the primary annealing is less than 2 hours, the distribution effect of C and Mn in the ideal range temperature range is insignificant, so that the C and Mn concentrations in the ferrite martensite may be uniform during cooling.
  • the holding time during the primary annealing exceeds 24 hours, material deterioration may occur due to coarsening of grains, and a problem in that heterogeneity of C and Mn concentrations in ferrite and austenite may be weakened during annealing may occur.
  • the primary cooling to cool at the cooling rate is performed. More specifically, the first cooling step may be cooled at an average cooling rate in the range of 30 ⁇ 50 °C / s to 25 °C or less.
  • the average cooling rate in the primary cooling step is less than 30° C./s, redistribution of C and Mn may occur during cooling after primary annealing, which may cause problems in securing chemical heterogeneity.
  • the temperature range in the primary cooling step exceeds 25 ° C, due to the extreme distribution of Mn and C during primary annealing, the formation of martensite and the end point temperature between each grain are different, resulting in untransformed austenite fraction even in the low temperature range. This may cause problems with the introduction of phase 2.
  • the primary cooled cold-rolled steel sheet is heated at 30 ° C / s or more (more preferably 30 to 50%). Secondary annealing is performed by heating to a temperature higher than the austenite single phase region at an average temperature increase rate of °C/s range).
  • controlling the average temperature increase rate to 30 ° C / s or more is to maintain the Mn distribution obtained from the first annealing, and the average temperature increase rate in the second annealing step is 30 ° C / s If it is less than s, there may be a problem that the Mn concentration difference becomes uniform due to Mn redistribution.
  • the temperature above the austenite single phase region may be 820 ° C. or higher (more preferably, 850 ° C. or higher and 900 ° C. or lower), and the reason for controlling the temperature range is Mn distributed austenite. This is to produce martensite of 80% or more, which is the final microstructure.
  • the average temperature increase rate in the primary annealing step and the secondary annealing step may be controlled to satisfy the following relational expression 2.
  • TH1 represents the highest temperature of the steel sheet surface in the first annealing step
  • TH2 represents the highest temperature of the steel sheet surface in the second annealing step.
  • the secondary annealed cold-rolled steel sheet is averaged at 30 ° C / s or more (more preferably, in the range of 30 to 50 ° C / s). Secondary cooling to cool at the cooling rate is performed. At this time, if the average cooling rate in the secondary cooling step is less than 30° C./s, problems may arise in securing elongation due to redistribution of C and Mn during cooling.
  • the critical heating rate and heat treatment temperature, and the critical cooling rate and cooling in the cooling process Precise control of temperature is required. If it is out of this range, it may be difficult to secure the tensile strength and elongation within the desired range in the present invention.
  • the cold-rolled steel sheet thus prepared was heated at an average temperature increase rate of 30° C./s in various ideal temperature ranges, and then primary annealing was performed by varying the holding time. Subsequently, after performing primary cooling to 25 ° C at an average cooling rate of 30 ° C / s, secondary annealing was performed by heating at an average heating rate of 30 ° C / s in the austenite single-phase region of 870 ° C, and 30 ° C Secondary cooling was performed at an average cooling rate of /s to simulate continuous annealing heat treatment.
  • the fraction of retained austenite in the specimen including minute austenite was measured using a magnetic induction method (Metis), and the other fractions were calculated as martensite.
  • Methodis magnetic induction method
  • EPMA surface analysis was performed at 1,000 times or more and shown in Table 2 below, and the results of measuring mechanical properties are shown in Table 3 below.
  • the yield strength, tensile strength, and elongation were measured by processing perpendicular to the rolling direction according to the JIS standard and attaching a tensile tester and an extensometer. also, and was measured in the same way as the method and method described herein.
  • Example 1 A CAL 500 2 870 19 0 99.7 0 0.3
  • Example 2 A CAL 600 12 870 19 0 98 0 2 example 3
  • Example 4 A CAL 720 2 870 One 0 100 0 0
  • Example 5 B CAL 660 2 870 9 0 98.8 0 1.2
  • Example 6 B CAL 720 24 870 19 0 99.45 0 0.55 yes 7 B CAL 660 24 870 5.7 0 99.2 0 0.8 yes 8 C CAL 660 2 870 9 0 97 0 3 yes 9 D CAL 660 24 870 3 0 100 0 0
  • Example 10 D CAL 720 24
  • Example 1 1095 1643 9.1 1390 5.2
  • Example 2 943 1554 11.2 1844 6.7
  • Example 3 1021 1643 10.2 829 5.0 example 4 1020 1561 8.9 277 4.6
  • Example 5 1200 1660 10.5 922 6.2
  • Example 6 1050 1580 9.8 720 4.7 yes 7 1158 1645 10.1 645 5.3 yes 8 1011 1632 10.5 829 6.7 yes 9 1020 1520 8.9 450
  • Example 10 975 1508 7.8 225 3.8
  • Example 11 1011 1570 8.3 425 3.5
  • Example 12 987 1562 7.8 389 3.9
  • Example 13 950 1523 6 150 2.8
  • Example 14 980 1565 9.2 438 4.6 yes15 1080 1589 8.9 573 3.7
  • the relational expression 1-1 was satisfied, whereby the tensile strength was 1500 MPa or more, the yield strength was 1000 MPa or more, the total elongation was 10% or more, and In addition to satisfying the uniform elongation of 5.0% or more, uniformity was also secured by satisfying the relational expression 1-2.
  • FIG. 2 a photograph of the final microstructure after secondary annealing and secondary cooling for Example 8 measured at high magnification by electron backscattering diffraction (EBSD) is shown in FIG. 2 .
  • Figure 2 (a) shows the crystallographic orientation map (Inverse Pole Figure, IPF)
  • Figure 2 (b) shows the phase distribution map for the inventive steel
  • Figure 2 (c) shows the retained austenite in the final microstructure It shows a phase distribution map in which a specific area of distribution is enlarged.
  • Example 1 which meets the alloy composition of the present invention but does not meet the manufacturing conditions because the primary annealing temperature is too low, the cementite generated in the ferrite phase is not completely dissolved, and there is a problem remaining after secondary annealing. , which resulted in a total elongation of less than 10%.
  • the primary annealing temperature is 720 ° C.
  • the difference in Mn concentration was small, and due to this, it was difficult to secure the retained austenite fraction in the final microstructure, and the elongation was less than 10%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

The present invention relates to an ultra-high strength cold-rolled steel sheet and a manufacturing method thereof and, more specifically, to a cold-rolled steel sheet and a manufacturing method thereof, wherein the cold-rolled steel sheet has a tensile strength of 1.5 GPa and exhibits an excellent elongation rate, and as such, can be suitably used for cold stamping.

Description

연신율이 우수한 초고강도 냉연강판 및 이의 제조방법Ultra-high strength cold-rolled steel sheet with excellent elongation and its manufacturing method
본 발명은 연신율이 우수한 초고강도 냉연강판 및 이의 제조방법에 관한 것으로서, 보다 상세하게는 1.5GPa급의 인장강도를 가짐과 동시에, 연신율이 우수하여 냉간 스템핑에 적합하게 사용될 수 있는 냉연강판 및 이의 제조방법에 관한 것이다.The present invention relates to an ultra-high-strength cold-rolled steel sheet having excellent elongation and a method for manufacturing the same, and more particularly, to a cold-rolled steel sheet having a tensile strength of 1.5 GPa and having an excellent elongation rate, which can be suitably used for cold stamping, and a cold-rolled steel sheet thereof It's about manufacturing methods.
국내외 자동차 산업은 이산화 탄소 규제의 점진적 증가와 더불어, 연비 향상, 승객 보호를 위한 차체 안정성 및 경량화의 목적이 부각되고 있다. 이러한 목적 달성을 위해 기존 자동차 부품에 사용되고 있는 고강도강 대비 1.3GPa급 이상의 인장강도를 갖는 초고강도 냉간 스탬핑용 강판의 사용 및 그 개발이 증가하고 있다. 그러나, 냉간압연된 판재는 강도가 증가하면 연신율은 감소하는 반비례 관계를 갖기 때문에, 성형성이 열위하여 일반적으로 냉간 스템핑용 소재 적용이 매우 제한적이다.In the domestic and foreign automobile industries, along with the gradual increase in carbon dioxide regulations, the purpose of vehicle body stability and weight reduction for improving fuel efficiency and protecting passengers is emerging. To achieve this purpose, the use and development of ultra-high-strength cold stamping steel sheets having a tensile strength of 1.3 GPa or more compared to high-strength steel used in existing automobile parts are increasing. However, since the cold-rolled sheet material has an inversely proportional relationship in which elongation decreases as strength increases, application of cold stamping materials is generally very limited due to inferior formability.
전술한 문제를 해결하기 위하여, 우수한 강도 및 연신율 확보 차원에서, 연한 기지 내 저온 변태상을 도입하는 복합 조직강으로 이상 조직강(Dual Steel; 예강), 변태 유기 소성강(Transformation Induced Plasticity Steep; TRIP강)과 같은 고장력강(Advanced High Strength Steel)이 자동차 차체 부재로 채용되고 있다. 점차적으로 시대의 발전과 더불어, 연비 향상을 위한 경량화 차원에서 두께 감소 대비 강도 향상을 요구하면서도, 그와 상응하는 차량 부재에 적용하기 위해 상대적으로 우수한 연신율 및 성형성을 갖는 냉연강판에 대한 수요가 증가하고 있다. 그러나, 강도 1GPa 이상의 고장력강의 경우에는 국부적인 상간 경도차 발생으로 인해 연신율 및 고버링성(hole expansion ratio, HER)이 열위한 단점이 있다.In order to solve the above problems, in order to secure excellent strength and elongation, dual steel (pre-steel) and transformation induced plasticity steel (Transformation Induced Plasticity Steep; TRIP) are composite structure steels that introduce a low-temperature transformation phase in a soft matrix. Steel), such as advanced high strength steel, is employed as a vehicle body member. Gradually, with the development of the times, demand for cold-rolled steel sheets with relatively excellent elongation and formability is increasing for application to corresponding vehicle members, while requiring strength improvement against thickness reduction in terms of light weight for fuel efficiency improvement. are doing However, in the case of high-strength steel having a strength of 1 GPa or more, there is a disadvantage in that elongation and hole expansion ratio (HER) are inferior due to the occurrence of a local difference in hardness between phases.
이와 같은 단점을 극복하기 위하여, 저온 변태상인 베이나이트, 특히 마르텐사이트만으로 구성된 초고강도강(Ultra-High Strength Steel; UHSS)이 제조되고 있고, 이는 주로 굽힘성(bendability)이 낮아도 롤 포밍으로 성형이 가능한 부품으로 사용되고 있다.In order to overcome such disadvantages, ultra-high strength steel (UHSS) composed of bainite, particularly martensite, which is a low-temperature transformation phase, has been manufactured, and it is mainly formed by roll forming even though its bendability is low. It is used as a possible part.
한편, 점차적으로 고강도강의 부품 사용이 증가하고 있기 때문에, 다양한 부품의 특성을 만족시키기 위해서는 고연성을 갖는 초고강도강 및 이의 제조법에 대한 필요성이 증가하고 있다. 그러나, 지금까지 1.5GPa급 이상의 인장강도를 가지면서 고연성을 갖는 고급의 수요를 충족할 수 있는 수준의 기술 및 이에 대한 제조법은 개발되지 않은 실정이다.On the other hand, since the use of high-strength steel parts is gradually increasing, the need for ultra-high strength steel having high ductility and a manufacturing method thereof is increasing in order to satisfy the characteristics of various parts. However, a level of technology and a manufacturing method thereof capable of meeting the high-grade demand having high ductility while having a tensile strength of 1.5 GPa or more have not been developed.
(특허문헌 1) 한국 공개공보 2017-7022118호(Patent Document 1) Korean Publication No. 2017-7022118
(특허문헌 2) 일본 공개공보 2016-28760호(Patent Document 2) Japanese Unexamined Publication No. 2016-28760
본 발명의 일 측면에 따르면, 연신율이 우수한 초고강도 냉연강판 및 이의 제조방법을 제공하고자 한다.According to one aspect of the present invention, it is intended to provide an ultra-high-strength cold-rolled steel sheet having excellent elongation and a manufacturing method thereof.
혹은, 본 발명의 일 측면에 따르면, 1.5GPa 이상의 초고강도를 가지면서도, 10% 이상의 총 연신율을 가져, 냉간 스템핑에 적합하게 사용될 수 있는 냉연강판 및 이의 제조방법을 제공하고자 한다.Alternatively, according to one aspect of the present invention, it is intended to provide a cold-rolled steel sheet that can be suitably used for cold stamping and a manufacturing method thereof, having a total elongation of 10% or more while having an ultra-high strength of 1.5 GPa or more.
본 발명의 과제는 전술한 내용에 한정하지 아니한다. 본 발명이 속하는 기술분야에서 통상의 지식을 가지는 자라면 누구라도 본 발명 명세서 전반에 걸친 내용으로부터 본 발명의 추가적인 과제를 이해하는 데 어려움이 없을 것이다.The object of the present invention is not limited to the foregoing. Anyone with ordinary knowledge in the technical field to which the present invention belongs will have no difficulty in understanding the additional objects of the present invention from the contents throughout the present specification.
본 발명의 일 측면은, One aspect of the present invention,
중량%로, C: 0.15~0.3%, Si: 0.1~1.5%, Mn: 2.5~5.0%, P: 0.1% 이하(0% 제외), S: 0.03% 이하(0% 제외), Al: 0.01~0.1%, N: 0.01% 이하(0% 제외), B: 0.005% 이하(0% 제외), 잔부 Fe 및 기타 불가피한 불순물을 포함하고,In weight%, C: 0.15 to 0.3%, Si: 0.1 to 1.5%, Mn: 2.5 to 5.0%, P: 0.1% or less (excluding 0%), S: 0.03% or less (excluding 0%), Al: 0.01 ~0.1%, N: 0.01% or less (excluding 0%), B: 0.005% or less (excluding 0%), the balance including Fe and other unavoidable impurities,
미세조직으로 면적%로, 잔류 오스테나이트: 0.5~20% 및 마르텐사이트: 80~99.5%를 포함하고, Microstructure, by area%, including retained austenite: 0.5-20% and martensite: 80-99.5%,
하기 관계식 1-1을 충족하는, 냉연강판을 제공한다.Provided is a cold-rolled steel sheet that satisfies the following relational expression 1-1.
[관계식 1-1][Relationship 1-1]
Figure PCTKR2022019037-appb-img-000001
Figure PCTKR2022019037-appb-img-000001
(상기 관계식 1-1에 있어서, 상기
Figure PCTKR2022019037-appb-img-000002
는 상기 마르텐사이트 내 Mn 함량이 2% 초과 5% 미만인 저Mn 결정립의 면적분율을 나타내고, 그 단위는 면적%이다. 또한, 상기
Figure PCTKR2022019037-appb-img-000003
는 상기 마르텐사이트 내 Mn 함량이 5% 이상인 고Mn 결정립의 면적분율을 나타내고, 그 단위는 면적%이다.)
(In the relational expression 1-1, the
Figure PCTKR2022019037-appb-img-000002
Represents the area fraction of low Mn crystal grains in which the Mn content in the martensite is greater than 2% and less than 5%, and its unit is area%. Also, the above
Figure PCTKR2022019037-appb-img-000003
Represents the area fraction of high Mn crystal grains having a Mn content of 5% or more in the martensite, and the unit is area%.)
본 발명의 또 다른 일 측면은,Another aspect of the present invention is,
중량%로, C: 0.15~0.3%, Si: 0.1~1.5%, Mn: 2.5~5.0%, P: 0.1% 이하(0% 제외), S: 0.03% 이하(0% 제외), Al: 0.01~0.1%, N: 0.01% 이하(0% 제외), B: 0.005% 이하(0% 제외), 잔부 Fe 및 기타 불가피한 불순물을 포함하는 조성을 갖는 강 슬라브를 1100~1300℃로 재가열하는 단계;In weight%, C: 0.15 to 0.3%, Si: 0.1 to 1.5%, Mn: 2.5 to 5.0%, P: 0.1% or less (excluding 0%), S: 0.03% or less (excluding 0%), Al: 0.01 reheating to 1100-1300° C. a steel slab having a composition comprising ~0.1%, N: 0.01% or less (excluding 0%), B: 0.005% or less (excluding 0%), the balance being Fe and other unavoidable impurities;
재가열된 슬라브를 800~1000℃에서 열간압연하여 열연강판을 얻는 단계;Obtaining a hot-rolled steel sheet by hot-rolling the reheated slab at 800 to 1000 ° C;
상기 열연강판을 400~700℃에서 권취하는 단계;winding the hot-rolled steel sheet at 400 to 700° C.;
권취된 열연강판을 20~75%의 압하율로 냉간압연하여 냉연강판을 얻는 단계;Obtaining a cold-rolled steel sheet by cold-rolling the rolled hot-rolled steel sheet at a reduction ratio of 20 to 75%;
상기 냉연강판을 600~700℃ 범위로 가열하고, 2~24시간 동안 유지하는 1차 소둔 단계;Primary annealing step of heating the cold-rolled steel sheet in the range of 600 ~ 700 ℃, and maintaining for 2 ~ 24 hours;
상기 1차 소둔된 냉연강판을 30℃/s 이상의 평균 냉각 속도로 냉각하는 1차 냉각 단계;Average of 30 ℃ / s or more of the primary annealed cold-rolled steel sheet A first cooling step of cooling at a cooling rate;
상기 1차 냉각된 냉연강판을 30℃/s 이상의 평균 승온 속도로 오스테나이트 단상역 이상의 온도로 가열하는 2차 소둔 단계; 및A secondary annealing step of heating the primary cooled cold-rolled steel sheet to a temperature higher than the austenite single-phase region at an average temperature increase rate of 30° C./s or higher; and
상기 2차 소둔된 냉연강판을 30℃/s 이상의 평균 냉각 속도로 냉각하는 2차 냉각 단계;를 포함하는, 냉연강판의 제조방법을 제공한다.The secondary annealed cold-rolled steel sheet averaged over 30 ℃ / s It provides a method for manufacturing a cold-rolled steel sheet comprising a; secondary cooling step of cooling at a cooling rate.
본 발명의 일 측면에 따르면, 연신율이 우수한 초고강도 냉연강판 및 이의 제조방법을 제공할 수 있다.According to one aspect of the present invention, it is possible to provide an ultra-high strength cold-rolled steel sheet having excellent elongation and a manufacturing method thereof.
혹은, 본 발명의 일 측면에 따르면, 1.5GPa 이상의 초고강도를 가지면서도, 10% 이상의 총 연신율을 가져, 냉간 스템핑에 적합하게 사용될 수 있는 냉연강판 및 이의 제조방법을 제공할 수 있다.Alternatively, according to one aspect of the present invention, it is possible to provide a cold-rolled steel sheet that has a total elongation of 10% or more while having an ultra-high strength of 1.5 GPa or more, and can be suitably used for cold stamping and a manufacturing method thereof.
본 발명의 일 측면에 따르면, 강판 전체의 C, Mn 함량을 활용하여 균일한 화학 조성을 갖는 미세조직 제어가 아니라, 소둔 영역에서 얻어지는 마르텐사이트 주요 조직과 잔류 오스테나이트의 Mn 함량 구배로부터 주요 조직은 동일하나 화학조성의 불균일 구배가 발생하며, 가공 중에 상대적으로 Mn 함량이 낮은 미세 조직 항복이 발생하고, 경질의 마르텐사이트 변형이 진행되면서 경계 내 국부적인 응력, 변형이 발생하고 Mn함량이 낮은 미세조직에 연신율이 추가 강도 상승 효과를 가져와 1.5GPa급의 초고강도 강판을 제공할 수 있다.According to one aspect of the present invention, the main structure is the same from the martensite main structure obtained in the annealing region and the Mn content gradient of the retained austenite, rather than controlling the microstructure having a uniform chemical composition by utilizing the C and Mn contents of the entire steel sheet. However, a non-uniform gradient in chemical composition occurs, microstructure yielding with a relatively low Mn content occurs during processing, and local stress and deformation occur within the boundary as hard martensitic transformation progresses, resulting in a microstructure with a low Mn content. The elongation rate can provide an additional strength increase effect, thereby providing a 1.5 GPa class ultra-high strength steel sheet.
또한, Mn 분배로부터 마르텐사이트 내의 C, Mn이 잔부 오스테나이트로 추가 분배가 이루어져, 기존보다 더 안정된 오스테나이트를 최종 확보함으로써, 소성 변형 시 균일 연신 구간에서의 마르텐사이트 변태를 최소화함으로써, 고강도/고항복비를 가지면서 가공성이 우수한 냉연 강판 제조방법을 제공할 수 있다.In addition, from the Mn distribution, C and Mn in martensite are additionally distributed to the remaining austenite, thereby finally securing more stable austenite than before, minimizing martensitic transformation in the uniform elongation section during plastic deformation, and high strength / high resistance It is possible to provide a method for manufacturing a cold-rolled steel sheet having a compound ratio and excellent workability.
본 발명의 다양하면서도 유익한 장점과 효과는 상술한 내용에 한정되지 않고, 본 발명의 구체적인 실시 형태를 설명하는 과정에서 보다 쉽게 이해될 수 있을 것이다.Various and beneficial advantages and effects of the present invention are not limited to the above description, and will be more easily understood in the process of describing specific embodiments of the present invention.
도 1은 본 발명의 일 측면에 따른 냉연강판의 제조 공정을 모식적으로 나타낸 모식도이다.1 is a schematic diagram schematically showing a manufacturing process of a cold-rolled steel sheet according to an aspect of the present invention.
도 2는 표 2의 예 8에 대한 2차 소둔-2차 냉각 이후의 최종적인 미세조직을 전자후방산란회절법(EBSD)으로 고배율로 측정한 사진으로서, 도 2(a)는 결정학적방위맵(Inverse Pole Figure, IPF)을 나타내고, 도 2(b)는 발명강에 대한 상 분포맵을 나타내며, 도 2(c)는 최종 미세조직 내 잔류오스테나이트가 분포한 특정 영역을 확대한 상 분포 맵을 나타낸다.Figure 2 is a photograph of the final microstructure after secondary annealing-secondary cooling for Example 8 of Table 2 measured at high magnification by electron backscattering diffraction (EBSD), Figure 2 (a) is a crystallographic orientation map (Inverse Pole Figure, IPF), Figure 2(b) shows the phase distribution map for inventive steel, Figure 2(c) is a phase distribution map that enlarges a specific area where retained austenite is distributed in the final microstructure indicates
이하, 본 발명의 바람직한 실시형태들을 설명한다. 그러나, 본 발명의 실시형태는 여러 가지 다른 형태로 변형될 수 있고, 본 발명의 범위가 이하 설명하는 실시형태로 한정되는 것은 아니다. 또한, 본 발명의 실시형태는 당해 기술분야에서 평균적인 지식을 가진 자에게 본 발명을 더욱 완전하게 설명하기 위해서 제공되는 것이다.Hereinafter, preferred embodiments of the present invention will be described. However, the embodiments of the present invention can be modified in many different forms, and the scope of the present invention is not limited to the embodiments described below. In addition, the embodiments of the present invention are provided to more completely explain the present invention to those skilled in the art.
한편, 본 명세서에서 사용되는 용어는 특정 실시예를 설명하기 위한 것이고, 본 발명을 한정하는 것을 의도하지 않는다. 예를 들어, 본 명세서에서 사용되는 단수 형태들은 관련 정의가 이와 명백히 반대되는 의미를 나타내지 않는 한 복수 형태들도 포함한다. 또한, 명세서에서 사용되는 "포함하는"의 의미는 구성을 구체화하고, 다른 구성의 존재나 부가를 제외하는 것이 아니다.Meanwhile, terms used in this specification are for describing specific embodiments and are not intended to limit the present invention. For example, the singular forms used herein include the plural forms unless the relevant definition clearly dictates the contrary. Also, the meaning of "comprising" used in the specification specifies a component, and does not exclude the presence or addition of other components.
이하, 본 발명의 일 측면에 따른 연신율이 우수한 초고강도 냉연강판에 대하여 자세히 설명한다.Hereinafter, an ultra-high strength cold-rolled steel sheet having excellent elongation according to an aspect of the present invention will be described in detail.
본 발명의 일 측면에 따르면, 냉연강판은 중량%로, C: 0.15~0.3%, Si: 0.1~1.5%, Mn: 2.5~5.0%, P: 0.1% 이하(0% 제외), S: 0.03% 이하(0% 제외), Al: 0.01~0.1%, N: 0.01% 이하(0% 제외), B: 0.005% 이하(0% 제외), 잔부 Fe 및 기타 불가피한 불순물을 포함한다.According to one aspect of the present invention, the cold-rolled steel sheet contains, by weight, C: 0.15-0.3%, Si: 0.1-1.5%, Mn: 2.5-5.0%, P: 0.1% or less (excluding 0%), S: 0.03 % or less (excluding 0%), Al: 0.01 to 0.1%, N: 0.01% or less (excluding 0%), B: 0.005% or less (excluding 0%), the balance including Fe and other unavoidable impurities.
이하에서는 본 발명에 따른 냉연강판의 성분 첨가 이유와 함량 한정 이유에 대하여 구체적으로 설명한다. 이 때, 본 명세서에 있어서, 각 원소의 함량을 나타낼 때에는 특별히 달리 정하지 않는 한, 중량%를 나타낸다.Hereinafter, the reason for adding components and the reason for limiting the content of the cold-rolled steel sheet according to the present invention will be described in detail. At this time, in the present specification, when indicating the content of each element, unless otherwise specified, weight % is indicated.
탄소(C): 0.15~0.3%Carbon (C): 0.15 to 0.3%
탄소(C)는 마르텐사이트강의 강도 및 경화능 확보를 위해 필수적인 원소로서, 1.5GPa급 이상의 인장강도를 갖기 위해서는 0.15% 이상 첨가하는 것이 바람직하다. 다만, C 함량이 0.3%를 초과하면, 목표 대비 강도가 과도하게 증가하여 연신율이 저하할 뿐만 아니라, 취성 파괴를 유발할 수 있는 잠재성이 높고, 점용접성의 열위를 초래하기 때문에 그 상한은 0.3% 이하로 제어하는 것이 바람직하다. 한편, 탄소 함량이 높을수록 마르텐사이트 생성 시, 탄화물의 발생 정도가 증가하기 떄문에, 보다 바람직하게는 C 함량의 상한을 0.27%로 제어할 수 있다.Carbon (C) is an essential element for securing the strength and hardenability of martensitic steel, and it is preferable to add 0.15% or more in order to have a tensile strength of 1.5 GPa or more. However, if the C content exceeds 0.3%, the elongation rate decreases due to an excessive increase in strength compared to the target, the potential for causing brittle fracture is high, and the inferiority of spot weldability occurs, so the upper limit is 0.3%. It is preferable to control below. On the other hand, since the degree of generation of carbides increases when martensite is formed as the carbon content increases, more preferably, the upper limit of the C content can be controlled to 0.27%.
규소(Si): 0.1~1.5%Silicon (Si): 0.1 to 1.5%
규소(Si)는 제강 공정에서 탈산제로 첨가하고, 고용 강화 원소와 더불어 탄화물 생성을 억제하는 원소이다. 또한, Si 첨가는 소둔 열처리 시 조직을 균일하게 분산시키는 역할을 하고, 냉각 시 오스테나이트의 안정성을 증가시켜서, 상온에서의 잔류 오스테나이트 확보가 가능하게 한다. 따라서, 전술한 효과를 확보하기 위해서는 Si를 0.15% 이상 첨가하는 것이 바람직하다. 다만, Si 함량이 1.5%를 초과하면 열간압연 시 강판 표면에 과도하게 Si계 산화물이 생성되어 냉간압연 시 표면 결함을 유발할 수 있다. 뿐만 아니라, 최종 냉간압연 강판의 비저항성이 높아져서 점용접성이 악화되기 때문에 Si 함량을 1.5% 이하로 제어한다. 한편, 전술한 효과를 향상시키기 위해 보다 바람직하게는, Si 함량의 상한은 1.25%일 수 있다.Silicon (Si) is added as a deoxidizer in the steelmaking process, and is an element that suppresses the formation of carbides together with a solid solution strengthening element. In addition, the addition of Si serves to uniformly disperse the structure during annealing heat treatment, increases the stability of austenite during cooling, and makes it possible to secure retained austenite at room temperature. Therefore, in order to secure the above effect, it is preferable to add 0.15% or more of Si. However, if the Si content exceeds 1.5%, excessive Si-based oxides are generated on the surface of the steel sheet during hot rolling, which may cause surface defects during cold rolling. In addition, the Si content is controlled to 1.5% or less because the resistivity of the final cold-rolled steel sheet increases and spot weldability deteriorates. On the other hand, more preferably in order to improve the above effect, the upper limit of the Si content may be 1.25%.
망간(Mn): 2.5~5.0%Manganese (Mn): 2.5 to 5.0%
망간(Mn)은 오스테나이트 안정 원소로서, 마르텐사이트의 경화능을 확보하는 차원에서 첨가하고, 냉간압연 후 소둔 열처리 시 페라이트 생성을 억제하는 데 용이하다. Mn 함량이 2.5% 미만인 경우에는 마르텐사이트 경화능의 확보는 가능하나, 냉연강판 내 Mn 농도의 구배 발생이 어려워져 본 발명에서 추구하는 Mn 농도차에 따른 불균일 미세조직의 확보가 어렵다. 또한, Mn 함량이 5.0%를 초과하면 과도한 강도 및 제강 및 연주 단계에서부터 소지철 내 Mn 밴드가 두께방향으로 발생할 수 있고, 이에 따라 내충돌성이 악화되기 때문에, Mn 함량의 상한을 5.0% 이하로 제어하는 것이 바람직하다. 다만, 본 발명의 목적 달성을 위해 보다 바람직하게는 상기 Mn 함량의 하한을 3.0%로 제어할 수 있고, 상기 Mn 함량의 상한을 4.12%로 제어할 수 있다.Manganese (Mn) is an austenite stable element, which is added to secure martensite hardenability, and is easy to suppress ferrite generation during annealing heat treatment after cold rolling. When the Mn content is less than 2.5%, it is possible to secure martensitic hardenability, but it is difficult to generate a gradient of Mn concentration in the cold-rolled steel sheet, making it difficult to secure a non-uniform microstructure according to the Mn concentration difference sought in the present invention. In addition, if the Mn content exceeds 5.0%, excessive strength and Mn bands may occur in the base iron in the thickness direction from the steelmaking and casting stages, and thus the crash resistance deteriorates, so the upper limit of the Mn content is set to 5.0% or less. It is desirable to control However, more preferably, the lower limit of the Mn content may be controlled to 3.0% and the upper limit of the Mn content may be controlled to 4.12% in order to achieve the object of the present invention.
인(P): 0.1% 이하 (0% 제외)Phosphorus (P): 0.1% or less (excluding 0%)
인(P)은 강 중 불순물 원소로서 0.1% 초과 시 P 편석으로 인해 용접성이 악화될 뿐만 아니라, 강의 취성을 발생시킬 잠재력이 높기 때문에 P 함량의 상한을 0.1%로 제어한다. 한편, 상기 P 함량의 하한은 불가피하게 포함되는 경우를 감안하여 0%를 제외할 수 있다(즉, 0% 초과). 다만, 본 발명의 목적 달성을 위해 보다 바람직하게는, 상기 P 함량의 하한을 0.005로 제어할 수 있다. 혹은, 상기 P 함량의 상한을 0.03%로 제어할 수 있고, 가장 바람직하게는 0.02%로 제어할 수 있다.Phosphorus (P) is an impurity element in steel, and when it exceeds 0.1%, weldability deteriorates due to P segregation, and the upper limit of the P content is controlled to 0.1% because the potential to cause brittleness of the steel is high. On the other hand, the lower limit of the P content may exclude 0% (ie, greater than 0%) in consideration of the case where it is inevitably included. However, more preferably in order to achieve the object of the present invention, the lower limit of the P content may be controlled to 0.005. Alternatively, the upper limit of the P content may be controlled to 0.03%, most preferably 0.02%.
황(S): 0.03% 이하 (0% 제외)Sulfur (S): 0.03% or less (excluding 0%)
황(S)은 P와 마찬가지로 강 중 부득이하게 첨가되는 불순물 원소로서, 최종 냉연강판의 연성 및 용접성을 저해하는 특성을 갖는다. 또한, 상기 S 함량이 0.03% 초과하면, MnS의 석출로 인해 열연 공정에서 생성된 석출물이 소둔 열처리 시 완전히 분해되지 않아, 강판의 연성을 악화시킨다. 뿐만 아니라, 용접성에도 문제를 초래할 수 있기 때문에, 상기 S 함량의 상한을 0.03% 이하로 제어한다. 한편, 상기 S 함량의 하한은 불가피하게 포함되는 경우를 감안하여 0%를 제외할 수 있다(즉, 0% 초과). 다만, 본 발명의 목적 달성을 위해 보다 바람직하게는, 상기 S 함량의 하한을 0.002%로 제어할 수 있고, 상기 S 함량의 상한을 0.005%로 제어할 수 있다.Sulfur (S), like P, is an impurity element that is inevitably added to steel, and has characteristics that impair ductility and weldability of the final cold-rolled steel sheet. In addition, when the S content exceeds 0.03%, precipitates generated in the hot rolling process due to the precipitation of MnS are not completely decomposed during the annealing heat treatment, deteriorating the ductility of the steel sheet. In addition, since it may cause problems in weldability, the upper limit of the S content is controlled to 0.03% or less. On the other hand, the lower limit of the S content may exclude 0% (ie, greater than 0%) in consideration of the case where it is inevitably included. However, more preferably in order to achieve the object of the present invention, the lower limit of the S content may be controlled to 0.002%, and the upper limit of the S content may be controlled to 0.005%.
알루미늄(Al): 0.01~0.1%Aluminum (Al): 0.01 to 0.1%
알루미늄(Al)은 Si와 같이 제강 공정 시 용강 내 산소 제거를 위해 첨가되고, 강 내 불순물 원소를 제거하는 데 유리한 원소이다. 또한, Si보다는 상대적으로 약하기는 하지만 탄화물 생성 억제에 도움이 되고, 오스테나이트 C 안정화에 기여하기 때문에, 연신율이 우수한 강판 제조가 가능해진다. 따라서, 전술한 효과 확보를 위해, Al 함량을 0.01% 이상으로 제어한다. 다만, Al가 과도하게 첨가되면, AlN의 과다 석출로 인해 주편 크랙이 발생하여 공정 제품의 결함을 유발할 수 있으므로, 상기 Al 함량의 상한을 0.1%로 제한한다. 한편, 본 발명의 목적하는 효과 확보를 위해 보다 바람직하게는 상기 Al 함량의 하한은 0.02%일 수 있고, 상기 Al 함량의 상한은 0.06%일 수 있다.Aluminum (Al), like Si, is added to remove oxygen from molten steel during the steelmaking process, and is an element that is advantageous for removing impurity elements from steel. In addition, although it is relatively weaker than Si, it helps to suppress the formation of carbides and contributes to the stabilization of austenite C, so it is possible to manufacture a steel sheet with excellent elongation. Therefore, in order to secure the above effect, the Al content is controlled to 0.01% or more. However, if excessive Al is added, cracks may occur in the slab due to excessive precipitation of AlN, which may cause defects in the process product, so the upper limit of the Al content is limited to 0.1%. Meanwhile, more preferably, the lower limit of the Al content may be 0.02% and the upper limit of the Al content may be 0.06% in order to secure the desired effect of the present invention.
질소(N): 0.01% 이하(0% 제외)Nitrogen (N): 0.01% or less (excluding 0%)
질소(N)는 강 중 불순물 원소로서, 그 함량이 0.01%를 초과하면 AlN 형성에 의해 연주 시 크랙이 발생할 위험성이 크게 증가하므로, N 함량의 상한을 0.01%로 제한한다. 한편, 상기 N 함량의 하한은 불가피하게 포함되는 경우를 감안하여 0%를 제외할 수 있다(즉, 0% 초과). 다만, 본 발명의 목적 달성을 위해 보다 바람직하게는, 상기 N 함량의 하한을 0.007%로 제어할 수 있고, 상기 N 함량의 상한을 0.03%로 제어할 수 있다.Nitrogen (N) is an impurity element in steel, and if its content exceeds 0.01%, the risk of cracking during playing due to AlN formation greatly increases, so the upper limit of the N content is limited to 0.01%. On the other hand, the lower limit of the N content may exclude 0% (ie, greater than 0%) in consideration of the case where it is unavoidably included. However, more preferably in order to achieve the object of the present invention, the lower limit of the N content may be controlled to 0.007%, and the upper limit of the N content may be controlled to 0.03%.
붕소(B): 0.005% 이하(0% 제외)Boron (B): 0.005% or less (excluding 0%)
붕소(B)는 소둔 열처리 시 페라이트 상변태 억제에 유리한 원소로서, 결정립계 강화 및 고용 강화를 통해 마르텐사이트의 경화능을 향상시킬 수 있다. 그러나, B 함량이 0.005%를 초과하면 B계 석출상인 Fe23(B, C)6이 오스테나이트 결정립계에 형성됨에 따라, 열간압연 상태에서 취성 파괴를 야기할 수 있기 때문에, B 함량의 상한을 0.005% 이하로 제한한다. 한편, 상기 B 함량의 하한은 불가피하게 포함되는 경우를 감안하여 0%를 제외할 수 있다(즉, 0% 초과). 다만, 본 발명의 목적 달성을 위해 보다 바람직하게는, 상기 B 함량의 하한을 0.001%로 제어할 수 있고, 상기 B 함량의 상한을 0.003%로 제어할 수 있다.Boron (B) is an element that is advantageous for inhibiting ferrite phase transformation during annealing heat treatment, and can improve the hardenability of martensite through grain boundary reinforcement and solid solution strengthening. However, if the B content exceeds 0.005%, as Fe 23 (B, C) 6 , a B-based precipitate phase, is formed at the austenite grain boundary, it may cause brittle fracture in the hot rolling state. Therefore, the upper limit of the B content is 0.005%. limited to less than %. On the other hand, the lower limit of the B content may exclude 0% (ie, more than 0%) in consideration of the case where it is inevitably included. However, more preferably in order to achieve the object of the present invention, the lower limit of the B content may be controlled to 0.001%, and the upper limit of the B content may be controlled to 0.003%.
본 발명의 나머지 성분은 철(Fe)이다. 다만, 통상의 제조 과정에서는 원료나 주위 환경 변수로 인해 의도하지 않은 불순물들이 불가피하게 혼입될 수 있으므로, 이를 배제할 수는 없다. 이들 불순물들은 통상의 철강 제조과정의 기술자라면 누구라도 알 수 있는 것이기 때문에, 그 모든 내용을 특별히 본 명세서에서 언급하지는 않는다.The remaining component of the present invention is iron (Fe). However, since unintended impurities may inevitably be mixed due to raw materials or surrounding environmental variables in a normal manufacturing process, this cannot be excluded. Since these impurities are known to anyone skilled in the ordinary steel manufacturing process, not all of them are specifically mentioned in this specification.
한편, 본 발명의 일 측면에 따르면, 상기 냉연강판은 선택적으로 Cr: 0.1% 이하 및 Mo: 0.1% 이하 중에서 선택된 1종 이상을 더 포함할 수 있다. 이하에서는, 각 원소의 첨가 이유 및 함량 한정 이유에 대해 설명한다.Meanwhile, according to one aspect of the present invention, the cold-rolled steel sheet may optionally further include one or more selected from Cr: 0.1% or less and Mo: 0.1% or less. Hereinafter, the reason for adding each element and the reason for limiting the content will be described.
크롬(Cr): 0.1% 이하(0% 포함)Chromium (Cr): 0.1% or less (including 0%)
크롬(Cr)은 Mn과 같이 마르텐사이트의 경화능을 증가시키고, 페라이트 변태를 억제함으로써 최종적으로 적당한 강도를 갖는 마르텐사이트를 생성 가능하게 하는 원소이다. 따라서, Mn 함량이 일정 범위로 설계하는 경우, Cr 함량에 따른 경화능 영향이 낮아지기 때문에 이를 첨가하지 않고도 마르텐사이트 강도를 확보할 수 있으므로, 소량의 Cr 첨가도 가능하다. 한편, Cr 함량이 0.1%를 초과하면 조대한 Cr계 탄화물 형성으로 인해 부품 성형 시 탄화물과 강 내 조직 경계에서 국부적인 변형 및 응력 발생으로 인해 균열 유발 우려가 있어, 상기 Cr 함량의 상한을 0.1%로 제어할 수 있다. 다만, 상기 Cr을 첨가하지 않는 경우도 포함될 수 있으므로, 상기 Cr 함량의 하한은 0%일 수 있다. 한편, Cr을 첨가하는 경우로서 본 발명의 목적 달성을 위해 보다 바람직하게는, 상기 Cr 함량의 하한을 0.005%로 제어할 수 있고, 상기 Cr 함량의 상한을 0.05%로 제어할 수 있다.Chromium (Cr), like Mn, is an element that increases the hardenability of martensite and suppresses ferrite transformation, thereby finally enabling martensite having appropriate strength to be produced. Therefore, when the Mn content is designed within a certain range, since the hardenability effect according to the Cr content is lowered, martensitic strength can be secured without adding it, so that a small amount of Cr can be added. On the other hand, if the Cr content exceeds 0.1%, there is a risk of causing cracks due to local deformation and stress generation at the boundary between the carbide and the steel structure during part molding due to the formation of coarse Cr-based carbides, so the upper limit of the Cr content is 0.1%. can be controlled with However, since the case in which Cr is not added may also be included, the lower limit of the Cr content may be 0%. On the other hand, in the case of adding Cr, more preferably to achieve the object of the present invention, the lower limit of the Cr content may be controlled to 0.005%, and the upper limit of the Cr content may be controlled to 0.05%.
몰리브덴(Mo): 0.1% 이하(0% 포함)Molybdenum (Mo): 0.1% or less (including 0%)
몰리브덴(Mo)은 Cr과 동일하게 마르텐사이트 경화능을 높이고, 소둔 열처리 시 냉각 구간에서 페라이트 생성을 억제에 유효한 원소이다. 그러나, 상기 Mo를 과도하게 첨가하면, 다른 원소 대비 고가이므로 합금 투입량 과다에 따른 합금철 원가 상승의 문제가 초래하므로, 본 발명에서는 상기 Mo 함량의 상한을 0.1% 이하로 제한한다. 다만, 상기 Mo은 고가로서 이를 첨가하지 않더라도 본 발명의 목적 달성이 가능하다면 본 발명의 범위에 포함될 수 있는 것이므로 상기 Mo 함량의 하한은 0%일 수 있고, 상기 Mo 함량의 상한은 0.05%일 수 있다.Molybdenum (Mo) is an element effective in increasing martensitic hardenability and suppressing ferrite generation in the cooling section during annealing heat treatment in the same way as Cr. However, if Mo is added excessively, since it is expensive compared to other elements, the problem of increasing the cost of ferroalloy due to the excessive amount of alloy input is caused. In the present invention, the upper limit of the Mo content is limited to 0.1% or less. However, since Mo is expensive and can be included in the scope of the present invention if it is possible to achieve the purpose of the present invention even without adding it, the lower limit of the Mo content may be 0% and the upper limit of the Mo content may be 0.05%. there is.
본 발명의 일 측면에 따르면, 상기 냉연강판의 미세조직은, 면적분율로, 잔류 오스테나이트: 0.5~20% 및 마르텐사이트: 80~99.5%를 포함한다.According to one aspect of the present invention, the microstructure of the cold-rolled steel sheet includes, in area fraction, retained austenite: 0.5 to 20% and martensite: 80 to 99.5%.
상기 냉연강판의 미세조직 중에, 잔류 오스테나이트가 0.5% 미만이거나, 마르텐사이트가 99.5%를 초과하면, Mn함량 분배가 제대로 일어나지 않아, 기지가 마르텐사이트로 이루어진 냉연강판이 제조되어 연신율이 미달되는 문제가 생길 수 있다. 반면, 상기 냉연강판의 미세조직 중에, 잔류 오스테나이트가 20%를 초과이거나, 마르텐사이트가 80% 미만이면, 잔류 오스테나이트 내 탄소 안전성이 떨어져서, 가공 중 변형 유기 변태로 인한 마르텐사이트 변태로 성형성이 악화되는 문제가 생길 수 있다. 한편, 본 발명의 일 측면에 따르면, 전술한 효과를 보다 개선하는 측면에서, 상기 잔류 오스테나이트의 면적분율의 하한은 1.2%일 수 있고, 혹은 상기 잔류 오스테나이트의 면적분율의 상한은 10%일 수 있다. 한편, 본 발명의 또 다른 일 측면에 따르면, 전술한 효과를 보다 개선하는 측면에서, 상기 마르텐사이트의 면적분율의 하한은 90%일 수 있고, 혹은 상기 마르텐사이트의 면적분율의 상한은 98.5%일 수 있다.Among the microstructures of the cold-rolled steel sheet, if the retained austenite is less than 0.5% or the martensite exceeds 99.5%, the Mn content distribution does not occur properly, and a cold-rolled steel sheet having a martensite matrix is manufactured, resulting in insufficient elongation. can occur On the other hand, in the microstructure of the cold-rolled steel sheet, if the retained austenite is more than 20% or the martensite is less than 80%, carbon stability in the retained austenite is poor, resulting in martensite transformation due to strain-induced transformation during processing, resulting in formability. This can lead to exacerbation of the problem. On the other hand, according to one aspect of the present invention, in terms of further improving the above-mentioned effect, the lower limit of the area fraction of retained austenite may be 1.2%, or the upper limit of the area fraction of retained austenite may be 10%. can On the other hand, according to another aspect of the present invention, in terms of further improving the above-described effect, the lower limit of the area fraction of martensite may be 90%, or the upper limit of the area fraction of martensite may be 98.5%. can
또한, 본 발명의 일 측면에 따르면, 상기 냉연강판은 하기 관계식 1-1을 충족할 수 있다.In addition, according to one aspect of the present invention, the cold-rolled steel sheet may satisfy the following relational expression 1-1.
[관계식 1-1][Relationship 1-1]
Figure PCTKR2022019037-appb-img-000004
Figure PCTKR2022019037-appb-img-000004
(상기 관계식 1-1에 있어서, 상기
Figure PCTKR2022019037-appb-img-000005
는 상기 마르텐사이트 내 Mn 함량이 2% 초과 5% 미만인 저Mn 결정립의 면적분율을 나타내고, 그 단위는 면적%이다. 또한, 상기
Figure PCTKR2022019037-appb-img-000006
는 상기 마르텐사이트 내 Mn 함량이 5% 이상인 고Mn 결정립의 면적분율을 나타내고, 그 단위는 면적%이다.)
(In the relational expression 1-1, the
Figure PCTKR2022019037-appb-img-000005
Represents the area fraction of low Mn crystal grains in which the Mn content in the martensite is greater than 2% and less than 5%, and its unit is area%. Also, the above
Figure PCTKR2022019037-appb-img-000006
Represents the area fraction of high Mn crystal grains having a Mn content of 5% or more in the martensite, and the unit is area%.)
본 발명에 따르면, 상기
Figure PCTKR2022019037-appb-img-000007
의 값이 5 미만이면, Mn 함량의 차이로부터 발생하는 추가 강도 효과 발현이 발생하기 어렵고, 잔류 오스테나이트 확보가 어려워 총 연신율 10% 이상을 갖는 냉연강판 제조에 한계가 생길 수 있다. 반면, 상기
Figure PCTKR2022019037-appb-img-000008
의 값이 25를 초과하면, 그에 상응하는 C, Mn 함량이 높아져서, 냉연강판 내 Mn 밴드 및 탄화물의 형성으로 인해 가공성이 악화되는 문제가 발생할 수 있다. 한편, 본 발명의 일 측면에 따르면, 전술한 효과를 보다 개선하는 측면에서, 상기
Figure PCTKR2022019037-appb-img-000009
의 값의 하한은 9일 수 있고, 혹은 상기
Figure PCTKR2022019037-appb-img-000010
의 값의 상한은 19일 수 있다.
According to the present invention, the
Figure PCTKR2022019037-appb-img-000007
If the value of is less than 5, it is difficult to develop an additional strength effect resulting from a difference in Mn content, and it is difficult to secure retained austenite, which may limit the production of a cold-rolled steel sheet having a total elongation of 10% or more. On the other hand, the above
Figure PCTKR2022019037-appb-img-000008
When the value of is greater than 25, the corresponding C and Mn contents are high, resulting in deterioration of workability due to the formation of Mn bands and carbides in the cold-rolled steel sheet. On the other hand, according to one aspect of the present invention, in terms of further improving the above-mentioned effect,
Figure PCTKR2022019037-appb-img-000009
The lower limit of the value of may be 9, or
Figure PCTKR2022019037-appb-img-000010
The upper limit of the value of may be 19.
상기
Figure PCTKR2022019037-appb-img-000011
Figure PCTKR2022019037-appb-img-000012
의 측정 방법에 대하여 특별히 한정하지는 않는다. 다만, 대표적 일례로서, 강판 전체 두께 t를 기준으로, 강판 표면으로부터 1/4t 위치까지 기계적 연마를 실시한 후, 30㎛Х30㎛ 면적 배율에서 Mn함량을 정량적으로 EPMA 면 분석을 진행한다. 이어서, 국부적으로 Mn 함량이 높은 마르텐사이트 조직을 갖는 영역과, 국부적으로 Mn 함량이 낮은 마르텐사이트 조직을 갖는 영역을 각각 분석함으로써 측정 가능하다.
remind
Figure PCTKR2022019037-appb-img-000011
and
Figure PCTKR2022019037-appb-img-000012
The measurement method of is not particularly limited. However, as a representative example, after mechanical polishing is performed from the steel sheet surface to the 1/4t position based on the total thickness t of the steel sheet, the EPMA surface analysis is performed quantitatively for the Mn content at an area magnification of 30 μm to 30 μm. Subsequently, it can be measured by analyzing a region having a martensitic structure having a locally high Mn content and a region having a martensitic structure having a locally low Mn content, respectively.
한편, 특별히 한정하는 것은 아니나, 본 발명의 일 측면에 따르면, 상기 냉연강판은 하기 관계식 1-2를 충족할 수 있다. 이 때, 하기 관계식 1-2를 충족함으로써, Mn함량이 상대적으로 낮은 영역 내 추가 강도가 구현되어 1.5GPa급의 냉연강판 제조가 가능하기 때문에 조직 내 경도 차를 저감시켜 기존 마르텐사이트강 대비 우수한 연신율 확보가 가능하다. 한편, 본 발명의 일 측면에 따르면, 상기
Figure PCTKR2022019037-appb-img-000013
의 값의 하한은 829MPa일 수 있고, 혹은, 상기
Figure PCTKR2022019037-appb-img-000014
의 값의 상한은 1844MPa일 수 있다.
Meanwhile, although not particularly limited, according to one aspect of the present invention, the cold-rolled steel sheet may satisfy the following relational expression 1-2. At this time, by satisfying the following relational expression 1-2, additional strength is realized in the region where the Mn content is relatively low, making it possible to manufacture a 1.5 GPa class cold-rolled steel sheet, thereby reducing the difference in hardness within the structure and providing excellent elongation compared to conventional martensitic steel. it is possible to secure On the other hand, according to one aspect of the present invention, the
Figure PCTKR2022019037-appb-img-000013
The lower limit of the value of may be 829 MPa, or the above
Figure PCTKR2022019037-appb-img-000014
The upper limit of the value of may be 1844 MPa.
[관계식 1-2][Relationship 1-2]
Figure PCTKR2022019037-appb-img-000015
Figure PCTKR2022019037-appb-img-000015
(상기 관계식 1-2에 있어서, 상기
Figure PCTKR2022019037-appb-img-000016
는 상기 마르텐사이트 내 Mn 함량이 5% 이상인 고Mn 결정립에 대한 인장강도 평균값(
Figure PCTKR2022019037-appb-img-000017
)와 상기 마르텐사이트 내 Mn 함량이 2% 초과 5% 미만인 저Mn 결정립에 대한 인장강도 평균값(
Figure PCTKR2022019037-appb-img-000018
)의 차를 나타내고, 그 단위는 MPa이다.)
(In the above relational expression 1-2, the above
Figure PCTKR2022019037-appb-img-000016
Is the average value of tensile strength for high Mn grains having a Mn content of 5% or more in the martensite (
Figure PCTKR2022019037-appb-img-000017
) and the average value of tensile strength for low Mn crystal grains having a Mn content of more than 2% and less than 5% in the martensite (
Figure PCTKR2022019037-appb-img-000018
), and its unit is MPa.)
한편, 상기
Figure PCTKR2022019037-appb-img-000019
Figure PCTKR2022019037-appb-img-000020
는 각 영역에 대하여, 하기 관계식 1-3으로 정의되는
Figure PCTKR2022019037-appb-img-000021
를 기초로 구할 수 있다. 따라서, 상기
Figure PCTKR2022019037-appb-img-000022
는 국부적으로 Mn 함량이 높은 마르텐사이트 조직을 갖는 영역에서 EPMA 분석을 통해 확보되는 각 성분에 대한 함량으로 구할 수 있다. 또한, 상기
Figure PCTKR2022019037-appb-img-000023
는 국부적으로 Mn 함량이 낮은 마르텐사이트 조직을 갖는 영역에서 EPMA 분석을 통해 확보되는 각 성분에 대한 함량으로 구할 수 있다.
On the other hand, the above
Figure PCTKR2022019037-appb-img-000019
and
Figure PCTKR2022019037-appb-img-000020
Is defined by the following relational expression 1-3 for each region
Figure PCTKR2022019037-appb-img-000021
can be obtained based on Therefore, the above
Figure PCTKR2022019037-appb-img-000022
can be obtained as the content of each component obtained through EPMA analysis in a region having a martensitic structure with a high Mn content locally. Also, the above
Figure PCTKR2022019037-appb-img-000023
can be obtained by the content of each component obtained through EPMA analysis in a region having a martensitic structure with a low Mn content locally.
[관계식 1-3][Relationship 1-3]
Figure PCTKR2022019037-appb-img-000024
Figure PCTKR2022019037-appb-img-000024
(상기 관계식 1-3에 있어서, [P], [Si], [Cu], [Ni], [Cr], [Mn] 및 [Mo]는 강판 내 괄호 안의 각 원소에 대한 중량% 함량을 나타내고, [Nss]는 강판의 고용체 내 질소에 대한 중량% 함량을 나타낸다.)(In the above relational expression 1-3, [P], [Si], [Cu], [Ni], [Cr], [Mn] and [Mo] represent the weight % content for each element in parentheses in the steel sheet , [Nss] represents the weight percent content of nitrogen in the solid solution of the steel sheet.)
본 발명의 목적하는 효과를 달성하기 위해서는, 소둔 열처리공정을 제어함으로써, 마르텐사이트 내 Mn 농도를 분배함으로써, Mn 농도에 따라 경질/연질의 상을 얻고 이로 인한 변형 분배로부터 경질상에 추가적인 강화를 유도해야 한다. 이러한 Mn 농도의 구배로 인해 경질의 Mn상 내 오스테나이트 안정성을 확보함으로써, 상온에서 잔류 오스테나이트를 확보하여 우수한 연신율을 갖는 초고강도강을 제공할 수 있다.In order to achieve the desired effect of the present invention, by distributing the Mn concentration in martensite by controlling the annealing heat treatment process, a hard/soft phase is obtained according to the Mn concentration, and additional reinforcement is induced in the hard phase from the resulting strain distribution. Should be. By securing austenite stability in the hard Mn phase due to the Mn concentration gradient, retained austenite can be secured at room temperature to provide ultra-high strength steel having excellent elongation.
본 발명에 따른 냉연강판은 인장강도가 1500MPa 이상(혹은, 1500MPa 이상 1700MPa 이하, 또는 1554MPa 이상 1660MPa 이하)이고, 총 연신율이 10% 이상(혹은, 10% 이상 12% 이하, 또는 10.2% 이상 11.2% 이하)을 충족할 수 있고, 이를 충족함으로써 연신율이 우수한 초고강도 냉연강판으로서 냉간 스템핑에 적합하게 사용될 수 있다. 한편, 특별히 한정하는 것은 아니나, 본 발명의 목적 달성을 위해 보다 바람직하게는, 상기 냉연강판의 항복강도는 940MPa 이상(혹은, 940MPa 이상 1200MPa 이하일 수 있고, 1000MPa 이상이거나, 1000MPa 이상 1200MPa 이하일 수 있음)일 수 있다. 또한, 본 발명의 일 측면에 따르면, 상기 냉연강판의 균일 연신율은 5.0% 이상일 수 있고, 혹은 5.0% 이상 7.0% 이하일 수 있다.The cold-rolled steel sheet according to the present invention has a tensile strength of 1500 MPa or more (or 1500 MPa or more and 1700 MPa or less, or 1554 MPa or more and 1660 MPa or less), and a total elongation of 10% or more (or 10% or more and 12% or less, or 10.2% or more and 11.2% or more). below) can be satisfied, and by satisfying this, it can be suitably used for cold stamping as an ultra-high-strength cold-rolled steel sheet having excellent elongation. On the other hand, although not particularly limited, more preferably for achieving the object of the present invention, the yield strength of the cold-rolled steel sheet is 940MPa or more (or, 940MPa or more and 1200MPa or less, 1000MPa or more, or 1000MPa or more and 1200MPa or less) can be Further, according to one aspect of the present invention, the uniform elongation of the cold-rolled steel sheet may be 5.0% or more, or may be 5.0% or more and 7.0% or less.
이하, 본 발명의 일 측면에 따른 냉연강판의 제조방법을 상세히 설명한다. 다만, 본 발명에 따른 냉연강판의 제조방법이 반드시 이하의 제조방법에 의해 제조되어야 함을 의미하는 것은 아니다.Hereinafter, a method for manufacturing a cold-rolled steel sheet according to an aspect of the present invention will be described in detail. However, the manufacturing method of the cold-rolled steel sheet according to the present invention does not necessarily mean that it must be manufactured by the following manufacturing method.
슬라브 재가열 단계Slab reheating step
본 발명의 일 측면에 따른 냉연강판의 제조방법은, 전술한 조성을 갖는 강 슬라브를 1,100~1,300℃로 재가열하는 단계를 포함한다. 이 때, 상기 강 슬라브의 조성은 전술한 냉연강판의 조성과 동일하고, 상기 슬라브에 있어서 각 성분의 첨가 이유 및 함량 한정 이유에 대해서는 전술한 냉연강판에 대한 설명을 동일하게 적용할 수 있다.A method for manufacturing a cold-rolled steel sheet according to an aspect of the present invention includes reheating a steel slab having the above composition at 1,100 to 1,300 °C. At this time, the composition of the steel slab is the same as the composition of the above-mentioned cold-rolled steel sheet, and the description of the above-described cold-rolled steel sheet can be equally applied to the reason for adding each component and the reason for limiting the content in the slab.
한편, 본 발명에서는 열간압연을 행하기에 앞서 강 슬라브를 재가열하여 균질화 처리하는 공정을 거치는 것이 바람직하고, 이 때 재가열 시 온도를 1,100~1,300℃에서 행하는 것이 바람직하다. 만일, 상기 재가열 온도가 1100℃ 미만이면 후속하는 열간압연 시 하중이 급격히 증가하는 문제가 생길 수 있다. 또한, 상기 재가열 온도가 1,300℃를 초과하면 표면 스케일의 양이 증가하여 재료의 손실로 이어질 수 있다.On the other hand, in the present invention, it is preferable to go through a process of reheating and homogenizing the steel slab prior to performing hot rolling, and at this time, it is preferable to perform the temperature at 1,100 ~ 1,300 ℃ during reheating. If the reheating temperature is less than 1100° C., a problem in that the load rapidly increases during subsequent hot rolling may occur. In addition, when the reheating temperature exceeds 1,300° C., the amount of surface scale increases, which may lead to material loss.
열간압연 단계hot rolling step
전술한 재가열된 슬라브를 800~1,000℃에서 열간압연하여 열연강판을 제조하는 것이 바람직하다. 상기 열간압연의 온도가 800℃ 미만이면 미재결정 페라이트의 도입으로 인해, 압연 하중이 증가할 우려가 있기에 바람직하지 못하다. 반면, 상기 열간압연의 온도가 1,000℃를 초과하면, 스케일에 의한 표면 결함과 압연롤 마모도를 증가시킬 가능성이 높아지므로 바람직하지 못하다.It is preferable to manufacture a hot-rolled steel sheet by hot-rolling the above-described reheated slab at 800 to 1,000 ° C. If the temperature of the hot rolling is less than 800 ° C., it is not preferable because there is a possibility that the rolling load may increase due to the introduction of non-recrystallized ferrite. On the other hand, if the temperature of the hot rolling exceeds 1,000 ° C., it is not preferable because the possibility of increasing surface defects and wear of the rolling roll due to scale increases.
권취 단계winding step
전술한 열간압연에 따라 제조된 열연강판을 400~700℃에서 권취하는 것이 바람직하다. 상기 권취 온도가 700℃를 초과하면 강판 표면에 과다한 산화막이 형성되어 결함을 유발하기 때문에, 이를 제한함이 바람직하다. 한편, 권취온도가 400℃ 미만으로 낮으면 열연강판의 강도가 지나치게 높아져서 냉간압연 공정에서 압연하중이 높아질 뿐만 아니라, 이를 제어하기 위해 냉간압연 공정 시 제어 변수가 많아지기 때문에 생산성이 열위해질 우려가 있다.It is preferable to wind the hot-rolled steel sheet manufactured according to the above-described hot rolling at 400 to 700 ° C. When the coiling temperature exceeds 700° C., an excessive oxide film is formed on the surface of the steel sheet to cause defects, so it is preferable to limit this. On the other hand, if the coiling temperature is lower than 400 ° C, the strength of the hot-rolled steel sheet is excessively high, so that the rolling load in the cold-rolling process is increased, and productivity is deteriorated because there are many control variables during the cold-rolling process to control it. .
냉간압연 단계cold rolling step
상기 열간압연 후 권취된 열연강판의 표면에 형성된 산화층을 산세공정으로 제거한 후, 20~75%의 압하율로 냉간압연을 실시하여 냉연강판을 제조한다. 상기 냉간압연 시 압하율이 20% 미만이면 목표하는 두께 확보가 어려울 뿐만 아니라, 열간압연 결정립의 잔존으로 인해 소둔 열처리 시 오스테나이트 생성 및 최종 물성에 영향을 준다. 따라서, 냉간압연 시 압하율은 20~75%의 범위에서 시행하는 것이 바람직하다.After removing the oxide layer formed on the surface of the hot-rolled steel sheet wound after the hot rolling by an pickling process, cold rolling is performed at a reduction ratio of 20 to 75% to manufacture a cold-rolled steel sheet. If the reduction ratio is less than 20% during the cold rolling, it is difficult to secure the target thickness, and the remaining hot-rolled crystal grains affect the generation of austenite and final physical properties during annealing heat treatment. Therefore, the reduction ratio during cold rolling is preferably performed in the range of 20 to 75%.
본 발명은 1.5GPa급 인장강도를 확보하면서도, 연신율 10% 이상의 기계적 물성을 갖는 고연신 냉연강판을 제조하기 위한 것으로서, 이를 위해서는 도 1에 도시한 바와 같이, 1차 소둔-1차 냉각-2차 소둔-2차 냉각 공정을 포함하는 2단 소둔 공정을 실시한다. 이하에서 구체적으로 설명한다.The present invention is to manufacture a highly-stretched cold-rolled steel sheet having mechanical properties of 10% or more in elongation while securing a tensile strength of 1.5 GPa. To this end, as shown in FIG. 1, primary annealing - primary cooling - secondary A two-stage annealing process including an annealing-secondary cooling process is performed. It is explained in detail below.
1차 소둔 단계1st annealing step
전술한 냉간압연으로부터 얻어진 냉연강판을 600~700℃(혹은, 620~700℃) 범위로 가열하고, 2~24시간 동안 유지한다. 본 발명에서는 1차 소둔 단계에서의 승온 시 평균 승온 속도로 인한 역변태 영향을 줄이기 위해 30℃/s 이상(보다 바람직하게는 30~50℃/s 범위)의 승온 속도로 세멘타이트가 분해되는 이상역 온도(TIA) 범위가 600℃~700℃인 소둔온도에서 Mn 분해가 일어날 수 있도록 유지시간을 2시간 이상으로 제어한다.The cold-rolled steel sheet obtained from the aforementioned cold rolling is heated to a range of 600 to 700° C. (or 620 to 700° C.) and maintained for 2 to 24 hours. In the present invention, in order to reduce the reverse transformation effect due to the average temperature increase rate during the temperature increase in the primary annealing step, the temperature increase rate of 30 ℃ / s or more (more preferably 30 ~ 50 ℃ / s range) is longer than the cementite is decomposed The holding time is controlled to 2 hours or more so that Mn decomposition can occur at an annealing temperature with an inverse temperature (T I A ) range of 600 ° C to 700 ° C.
특별히 한정하는 것은 아니나, 상기 1차 소둔 시의 승온 속도가 30℃/s 미만이면, 1차 이상역 소둔 시 C, Mn 비균질성 효과가 미미한 문제가 생길 수 있다. 반면, 상기 1차 소둔 시의 승온 속도가 50℃/s를 초과하면, 1차 소둔 목표 온도 정확도가 떨어져 소둔역 온도 편차로 인해 최종 강종의 재질 문제가 생길 수 있다.Although not particularly limited, if the temperature increase rate during the primary annealing is less than 30° C./s, a problem of insignificant C and Mn inhomogeneity may occur during the primary annealing. On the other hand, if the temperature increase rate during the primary annealing exceeds 50° C./s, the accuracy of the primary annealing target temperature may be lowered, resulting in material problems of the final steel type due to temperature deviations in the annealing station.
전술한 1차 소둔 단계에서의 열처리 조건을 충족하도록 제어함과 동시에, 후술하는 1차 냉각 단계에서 30℃/s 이상의 평균 냉각 속도로 냉각을 진행하는데 이와 같은 열처리는 이상역에서 생성된 페라이트와 오스테나이트의 Mn 농도차를 발생시키고, 냉각 시 Mn 농도가 낮은 페라이트와 Mn 함량이 높은 마르텐사이트를 얻기 위함이다. 1차 소둔에서 보다 바람직하게 Mn 농도를 극대화하기 위해 최대 24시간 유지 시간 범위에서 실시한다.At the same time as controlling to satisfy the heat treatment conditions in the first annealing step described above, cooling proceeds at an average cooling rate of 30°C/s or more in the first cooling step described later. This is to generate a difference in the Mn concentration of the nitrite and to obtain ferrite with a low Mn concentration and martensite with a high Mn content during cooling. In order to maximize the Mn concentration more preferably in the primary annealing, it is carried out in a holding time range of up to 24 hours.
한편, 특별히 한정하는 것은 아니나, 본 발명의 목적하는 효과를 보다 개선하기 위해 바람직하게는, 이 때, 상기 1차 소둔 단계는 강판의 표면 온도를 기준으로, 최고 온도가 600~700℃의 온도 범위가 되도록 가열하고, 상기 최고 온도에 도달한 시점부터 상기 600~700℃의 온도 범위에서 유지하는 시간이 2~24시간일 수 있다.On the other hand, it is not particularly limited, but preferably in order to further improve the desired effect of the present invention, at this time, the primary annealing step has a maximum temperature in the temperature range of 600 ~ 700 ℃ based on the surface temperature of the steel sheet. It is heated to be, and the time to maintain in the temperature range of 600 ~ 700 ℃ from the time of reaching the maximum temperature may be 2 to 24 hours.
또한, 상기 1차 소둔 시의 유지 시간이 2시간 미만이면, 이상역 온도구간에서 C, Mn 분배 효과가 미미하여 냉각 시 페라이트 마르텐사이트 내 C, Mn 농도가 균일한 문제가 생길 수 있다. 반면, 상기 1차 소둔 시의 유지 시간이 24시간을 초과하면, 결정립 조대화로 재질 열화가 발생할 수 있으며 소둔 시 페라이트, 오스테나이트 내 C, Mn농도의 불균질성이 약화되는 문제가 생길 수 있다.In addition, if the holding time during the primary annealing is less than 2 hours, the distribution effect of C and Mn in the ideal range temperature range is insignificant, so that the C and Mn concentrations in the ferrite martensite may be uniform during cooling. On the other hand, if the holding time during the primary annealing exceeds 24 hours, material deterioration may occur due to coarsening of grains, and a problem in that heterogeneity of C and Mn concentrations in ferrite and austenite may be weakened during annealing may occur.
1차 냉각 단계1st cooling step
상기 1차 소둔된 냉연강판을 30℃/s 이상의 평균 냉각 속도로 냉각하는 1차 냉각을 실시한다. 보다 구체적으로, 상기 1차 냉각 단계는 25℃ 이하까지 30~50℃/s 범위의 평균 냉각 속도로 냉각할 수 있다.Average of 30 ℃ / s or more of the primary annealed cold-rolled steel sheet The primary cooling to cool at the cooling rate is performed. More specifically, the first cooling step may be cooled at an average cooling rate in the range of 30 ~ 50 ℃ / s to 25 ℃ or less.
상기 1차 냉각 단계에서 평균 냉각 속도가 30℃/s 미만이면, 1차 소둔 이후 냉각 도중 C, Mn의 재분배가 발생하여 화학적 비균질성 확보에 문제가 생길 수 있다. 또한, 상기 1차 냉각 단계에서의 온도 범위가 25℃를 초과하면, 1차 소둔 시 극도의 Mn 및 C 분배로 인해 각 결정립 간의 마르텐사이트 생성 및 종점 온도가 달라 낮은 온도 영역에서도 미변태 오스테나이트 분율로 인해 제2상의 도입문제가 생길 수 있다.If the average cooling rate in the primary cooling step is less than 30° C./s, redistribution of C and Mn may occur during cooling after primary annealing, which may cause problems in securing chemical heterogeneity. In addition, when the temperature range in the primary cooling step exceeds 25 ° C, due to the extreme distribution of Mn and C during primary annealing, the formation of martensite and the end point temperature between each grain are different, resulting in untransformed austenite fraction even in the low temperature range. This may cause problems with the introduction of phase 2.
2차 소둔 단계2nd annealing step
최종적으로 마르텐사이트가 면적분율로 80% 이상(및 잔류 오스테나이트 20% 이하)인 소둔 냉연강판의 확보를 위해, 상기 1차 냉각된 냉연강판을 30℃/s 이상(보다 바람직하게는 30~50℃/s 범위)의 평균 승온 속도로 오스테나이트 단상역 이상의 온도로 가열하는 2차 소둔을 실시한다.Finally, in order to secure an annealed cold-rolled steel sheet having an area fraction of martensite of 80% or more (and retained austenite of 20% or less), the primary cooled cold-rolled steel sheet is heated at 30 ° C / s or more (more preferably 30 to 50%). Secondary annealing is performed by heating to a temperature higher than the austenite single phase region at an average temperature increase rate of ℃/s range).
이 때, 상기 2차 소둔 단계에 있어서, 평균 승온 속도를 30℃/s 이상으로 제어하는 것은 1차 소둔으로부터 얻어진 Mn 분배를 유지하기 위함이고, 2차 소둔 단계에서의 평균 승온 속도가 30℃/s 미만이면 Mn 재분배로 인해 Mn 농도차가 균일해지는 문제가 생길 수 있다.At this time, in the second annealing step, controlling the average temperature increase rate to 30 ° C / s or more is to maintain the Mn distribution obtained from the first annealing, and the average temperature increase rate in the second annealing step is 30 ° C / s If it is less than s, there may be a problem that the Mn concentration difference becomes uniform due to Mn redistribution.
또한, 상기 2차 소둔 단계에 있어서, 오스테나이트 단상역 이상의 온도란 820℃ 이상(보다 바람직하게는, 850℃ 이상 900℃ 이하)일 수 있고, 상기 온도 범위로 제어하는 이유는 Mn 분배된 오스테나이트로부터 최종 미세조직인 80% 이상의 마르텐사이트를 생성하기 위함이다.In addition, in the secondary annealing step, the temperature above the austenite single phase region may be 820 ° C. or higher (more preferably, 850 ° C. or higher and 900 ° C. or lower), and the reason for controlling the temperature range is Mn distributed austenite. This is to produce martensite of 80% or more, which is the final microstructure.
한편, 본 발명의 목적하는 효과를 보다 개선하기 위해 바람직하게는, 상기 1차 소둔 단계와, 2차 소둔 단계에서의 평균 승온 속도가 하기 관계식 2를 충족하도록 제어할 수 있다.On the other hand, in order to further improve the desired effect of the present invention, preferably, the average temperature increase rate in the primary annealing step and the secondary annealing step may be controlled to satisfy the following relational expression 2.
[관계식 2][Relationship 2]
1.0 ≤ TH1/TH2 ≤ 1.51.0 ≤ TH1/TH2 ≤ 1.5
(상기 관계식 2-1에 있어서, TH1은 1차 소둔 단계에서의 강판 표면의 최고 온도를 나타내고, TH2는 2차 소둔 단계에서의 강판 표면의 최고 온도를 나타낸다.)(In the relational expression 2-1, TH1 represents the highest temperature of the steel sheet surface in the first annealing step, and TH2 represents the highest temperature of the steel sheet surface in the second annealing step.)
2차 냉각 단계2nd cooling step
이어서, 상기 2차 소둔된 냉연강판을 30℃/s 이상(보다 바람직하게는, 30~50℃/s 범위)의 평균 냉각 속도로 냉각하는 2차 냉각을 실시한다. 이 때, 상기 2차 냉각 단계에서의 평균 냉각 속도가 30℃/s 미만이면, 냉각 도중 C, Mn재분배로 인해 연신율 확보에 문제가 생길 수 있다.Then, the secondary annealed cold-rolled steel sheet is averaged at 30 ° C / s or more (more preferably, in the range of 30 to 50 ° C / s). Secondary cooling to cool at the cooling rate is performed. At this time, if the average cooling rate in the secondary cooling step is less than 30° C./s, problems may arise in securing elongation due to redistribution of C and Mn during cooling.
본 발명에 의하면, 1.5급 강도와 총 연신율 10% 이상의 기계적 물성을 갖는 냉연강판을 확보하기 위해서는, 2단의 소둔 공정에 있어서, 임계 승온속도 및 열처리 온도와, 냉각 공정에서의 임계 냉각속도 및 냉각 온도의 정밀한 제어가 요구된다. 이를 벗어나는 경우에는 본 발명에서 목적하는 범위의 인장강도 및 연신율 확보가 어려울 수 있다.According to the present invention, in order to secure a cold-rolled steel sheet having mechanical properties of 1.5 grade strength and total elongation of 10% or more, in the two-stage annealing process, the critical heating rate and heat treatment temperature, and the critical cooling rate and cooling in the cooling process Precise control of temperature is required. If it is out of this range, it may be difficult to secure the tensile strength and elongation within the desired range in the present invention.
이하, 실시예를 통하여 본 발명을 보다 구체적으로 설명한다. 다만, 하기 실시예는 예시를 통하여 본 발명을 설명하기 위한 것일 뿐, 본 발명의 권리범위를 제한하기 위한 것이 아니라는 점에서 유의할 필요가 있다. 본 발명의 권리범위는 특허 청구범위에 기재된 사항과 이로부터 합리적으로 유추되는 사항에 의해 결정되는 것이기 때문이다.Hereinafter, the present invention will be described in more detail through examples. However, it should be noted that the following examples are only for explaining the present invention through examples, and are not intended to limit the scope of the present invention. This is because the scope of the present invention is determined by the matters described in the claims and the matters reasonably inferred therefrom.
(실시예)(Example)
하기 표 1의 조성을 갖는 강을 잉곳으로 진공 용해한 후, 이를 1200℃의 온도에서 1시간 유지한 후, 900℃에서 마무리 압연하고, 600℃로 미리 가열된 로에 장입하여 1시간 유지 후 로냉에 의하여 열연권취를 모사하였다. 이를 산세한 후, 50% 압하율로 냉간압연을 진행하여 냉연강판을 제조하였다.After vacuum melting the steel having the composition of Table 1 below into an ingot, maintaining it at a temperature of 1200 ° C. for 1 hour, finishing rolling at 900 ° C., charging into a furnace preheated to 600 ° C., maintaining for 1 hour, and then hot rolling by furnace cooling Winding was simulated. After pickling, cold rolling was performed at a reduction rate of 50% to prepare a cold rolled steel sheet.
이렇게 제조된 냉연강판을 하기 표 2에 기재된 조건으로, 다양한 이상역 온도 범위에서 30℃/s의 평균 승온 속도로 가열한 후, 유지시간을 달리하여 1차 소둔을 진행하였다. 이어서, 30℃/s의 평균 냉각 속도로 25℃까지 1차 냉각을 수행한 후, 870℃의 오스테나이트 단상역에서 30℃/s의 평균 승온 속도로 가열하는 2차 소둔을 진행하였고, 30℃/s의 평균 냉각 속도로 2차 냉각을 실시하여 연속 소둔 열처리를 모사하였다.Under the conditions shown in Table 2 below, the cold-rolled steel sheet thus prepared was heated at an average temperature increase rate of 30° C./s in various ideal temperature ranges, and then primary annealing was performed by varying the holding time. Subsequently, after performing primary cooling to 25 ° C at an average cooling rate of 30 ° C / s, secondary annealing was performed by heating at an average heating rate of 30 ° C / s in the austenite single-phase region of 870 ° C, and 30 ° C Secondary cooling was performed at an average cooling rate of /s to simulate continuous annealing heat treatment.
이러한 열처리를 행한 각 시편들에 대해, 자화측정방법(magnetic induction method, Metis)을 이용하여 미소 오스테나이트를 포함하여 시편 내 잔류오스테나이트 분율을 측정한 후 그 외 분율을 마르텐사이트로 계산하였다. 동일 마르텐사이트 내 Mn농도 차를 분석하기 위해 1,000배 이상에서 EPMA 면분석을 실시하여 하기 표 2에 나타내었고, 기계적 성질을 측정한 결과를 하기 표 3에 나타내었다. 이 때, 기계적 물성 측정을 위하여 JIS 표준규격으로 압연방향에 수직하게 가공하여 인장시험기 및 신율계를 부착하여, 항복강도, 인장강도, 및 연신율을 측정하였다. 또한,
Figure PCTKR2022019037-appb-img-000025
Figure PCTKR2022019037-appb-img-000026
는 본 명세서에 기재된 방법과 방법과 동일하게 측정하였다.
For each of the specimens subjected to this heat treatment, the fraction of retained austenite in the specimen including minute austenite was measured using a magnetic induction method (Metis), and the other fractions were calculated as martensite. In order to analyze the difference in Mn concentration in the same martensite, EPMA surface analysis was performed at 1,000 times or more and shown in Table 2 below, and the results of measuring mechanical properties are shown in Table 3 below. At this time, in order to measure the mechanical properties, the yield strength, tensile strength, and elongation were measured by processing perpendicular to the rolling direction according to the JIS standard and attaching a tensile tester and an extensometer. also,
Figure PCTKR2022019037-appb-img-000025
and
Figure PCTKR2022019037-appb-img-000026
was measured in the same way as the method and method described herein.
강종steel grade 성분조성(중량%)Ingredient Composition (% by weight)
CC SiSi MnMn PP SS AlAl CrCr TiTi NbNb BB NN MoMo
AA 0.180.18 0.10.1 3.53.5 0.010.01 0.0020.002 0.0250.025 00 0.020.02 00 0.0020.002 4040 00 발명강invention steel
BB 0.180.18 0.10.1 4.04.0 0.010.01 0.0020.002 0.0250.025 0.050.05 0.020.02 00 0.0020.002 4040 00 발명강invention steel
CC 0.150.15 1.41.4 3.53.5 0.010.01 0.0020.002 0.0250.025 0.050.05 0.020.02 00 0.0020.002 4040 00 발명강invention steel
DD 0.240.24 0.10.1 2.02.0 0.010.01 0.0020.002 0.0250.025 0.10.1 0.0250.025 0.040.04 0.0020.002 4040 0.050.05 비교강comparative steel
EE 0.260.26 0.20.2 1.51.5 0.010.01 0.0010.001 0.0250.025 0.20.2 0.0250.025 0.040.04 0.0020.002 4040 0.10.1 비교강comparative steel
FF 0.150.15 0.10.1 1.71.7 0.010.01 0.0010.001 0.0250.025 0.30.3 0.0250.025 00 0.0020.002 4040 0.20.2 비교강comparative steel
GG 0.180.18 0.60.6 2.02.0 0.010.01 0.0010.001 0.0250.025 0.250.25 0.0250.025 0.040.04 0.0040.004 4040 0.150.15 비교강comparative steel
비고note 강종steel grade 소둔
공정
Annealing
process
소둔열처리 조건Annealing heat treatment conditions 미세조직 특성 (면적분율 %)Microstructure characteristics (area fraction %)
1차 소둔
온도
(IA)
1st annealing
temperature
(IA)
유지
시간
maintain
hour
2차
소둔
온도
Secondary
Annealing
temperature
AFMn_s/AFMn_h AF Mn_s /AF Mn_h FF MM PP γγ
(℃)(℃) hrhr (℃)(℃) (%)(%) (%)(%) (%)(%) (%)(%)
예1Example 1 AA CALCAL 500500 22 870870 1919 00 99.799.7 00 0.30.3
예2Example 2 AA CALCAL 600600 1212 870870 1919 00 9898 00 22
예3example 3 AA CALCAL 660660 2424 870870 99 00 98.598.5 00 1.51.5
예4example 4 AA CALCAL 720720 22 870870 1One 00 100100 00 00
예5Example 5 BB CALCAL 660660 22 870870 99 00 98.898.8 00 1.21.2
예6Example 6 BB CALCAL 720720 2424 870870 1919 00 99.4599.45 00 0.550.55
예7yes 7 BB CALCAL 660660 2424 870870 5.75.7 00 99.299.2 00 0.80.8
예8yes 8 CC CALCAL 660660 22 870870 99 00 9797 00 33
예9yes 9 DD CALCAL 660660 2424 870870 33 00 100100 00 00
예10Example 10 DD CALCAL 720720 2424 870870 1One 00 100100 00 00
예11Example 11 EE CALCAL 600600 1212 870870 1One 00 100100 00 00
예12Example 12 EE CALCAL 660660 1212 870870 1One 00 100100 00 00
예13Example 13 EE CALCAL 720720 1212 870870 1One 00 100100 00 00
예14Example 14 FF CALCAL 660660 22 870870 1One 00 100100 00 00
예15yes15 GG CALCAL 660660 22 870870 1One 00 100100 00 00
(상기 표 2 중에서, F: 페라이트, M: 마르텐사이트, P: 펄라이트, γ: 잔류 오스테나이트를 나타낸다.)(In Table 2, F: ferrite, M: martensite, P: pearlite, and γ: retained austenite.)
비고note 항복강도
(MPa)
yield strength
(MPa)
인강장도 (MPa)Tensile Strength (MPa) 총 연신율 (%)Total Elongation (%)
Figure PCTKR2022019037-appb-img-000027
(MPa)
Figure PCTKR2022019037-appb-img-000027
(MPa)
균일 연신율 (%)Uniform elongation (%)
예1Example 1 10951095 16431643 9.19.1 13901390 5.25.2
예2Example 2 943943 15541554 11.211.2 18441844 6.76.7
예3Example 3 10211021 16431643 10.210.2 829829 5.05.0
예4example 4 10201020 15611561 8.98.9 277277 4.64.6
예5Example 5 12001200 16601660 10.510.5 922922 6.26.2
예6Example 6 10501050 15801580 9.89.8 720720 4.74.7
예7yes 7 11581158 16451645 10.110.1 645645 5.35.3
예8yes 8 10111011 16321632 10.510.5 829829 6.76.7
예9yes 9 10201020 15201520 8.98.9 450450 4.24.2
예10Example 10 975975 15081508 7.87.8 225225 3.83.8
예11Example 11 10111011 15701570 8.38.3 425425 3.53.5
예12Example 12 987987 15621562 7.87.8 389389 3.93.9
예13Example 13 950950 15231523 66 150150 2.82.8
예14Example 14 980980 15651565 9.29.2 438438 4.64.6
예15yes15 10801080 15891589 8.98.9 573573 3.73.7
본 발명의 합금 조성 및 제조 조건을 충족하는 예 2, 3, 5, 7 및 8의 경우, 관계식 1-1을 충족하였고, 이로 인해 인장강도 1500MPa 이상, 항복강도 1000MPa 이상, 총 연신율 10% 이상 및 균일 연신율 5.0% 이상을 충족할 뿐만 아니라, 관계식 1-2를 충족하여 균일성 역시 확보할 수 있었다.In the case of examples 2, 3, 5, 7, and 8 that satisfy the alloy composition and manufacturing conditions of the present invention, the relational expression 1-1 was satisfied, whereby the tensile strength was 1500 MPa or more, the yield strength was 1000 MPa or more, the total elongation was 10% or more, and In addition to satisfying the uniform elongation of 5.0% or more, uniformity was also secured by satisfying the relational expression 1-2.
특히, 상기 예 8에 대한 2차 소둔-2차 냉각 이후의 최종적인 미세조직을 전자후방산란회절법(EBSD)으로 고배율로 측정한 사진을 도 2에 나타내었다. 도 2(a)는 결정학적방위맵(Inverse Pole Figure, IPF)을 나타내고, 도 2(b)는 발명강에 대한 상 분포맵을 나타내며, 도 2(c)는 최종 미세조직 내 잔류오스테나이트가 분포한 특정 영역을 확대한 상 분포 맵을 나타낸다.In particular, a photograph of the final microstructure after secondary annealing and secondary cooling for Example 8 measured at high magnification by electron backscattering diffraction (EBSD) is shown in FIG. 2 . Figure 2 (a) shows the crystallographic orientation map (Inverse Pole Figure, IPF), Figure 2 (b) shows the phase distribution map for the inventive steel, Figure 2 (c) shows the retained austenite in the final microstructure It shows a phase distribution map in which a specific area of distribution is enlarged.
반면, 본 발명의 합금 조성을 충족하지 않는 예 9~15는, 인장강도 1500MPa 이상, 항복강도 1000MPa 이상, 총 연신율 10% 이상 및 균일 연신율 5.0% 이상 중 하나 이상을 충족하지 못함을 확인하였다.On the other hand, it was confirmed that Examples 9 to 15, which do not satisfy the alloy composition of the present invention, do not satisfy one or more of tensile strength of 1500 MPa or more, yield strength of 1000 MPa or more, total elongation of 10% or more, and uniform elongation of 5.0% or more.
또한, 본 발명의 합금 조성을 충족하지만, 1차 소둔 온도가 너무 낮아 제조 조건을 충족하지 못하는 예 1의 경우, 페라이트상 내 생성된 세멘타이트가 완전히 용해되지 않아, 2차 소둔 후에 잔존하는 문제가 있었고, 이로 인해 총 연신율이 10% 이하였다.In addition, in the case of Example 1, which meets the alloy composition of the present invention but does not meet the manufacturing conditions because the primary annealing temperature is too low, the cementite generated in the ferrite phase is not completely dissolved, and there is a problem remaining after secondary annealing. , which resulted in a total elongation of less than 10%.
또한, 본 발명의 합금 조성을 충족하지만, 1차 소둔 온도가 너무 높아 제조 조건을 충족하지 못하는 예 4 및 6의 경우, 1차 소둔 온도가 720℃로 Mn분 배가 최대로 일어날 수 있는 소둔 범위를 벗어나서, Mn농도 차가 적었고, 이로 인해 최종 미세조직 내 잔류오스테나이트 분율 확보가 어려워 연신율이 10%에 미달하였다.In addition, in the case of Examples 4 and 6, which satisfy the alloy composition of the present invention but do not meet the manufacturing conditions because the primary annealing temperature is too high, the primary annealing temperature is 720 ° C. , the difference in Mn concentration was small, and due to this, it was difficult to secure the retained austenite fraction in the final microstructure, and the elongation was less than 10%.

Claims (8)

  1. 중량%로, C: 0.15~0.3%, Si: 0.1~1.5%, Mn: 2.5~5.0%, P: 0.1% 이하(0% 제외), S: 0.03% 이하(0% 제외), Al: 0.01~0.1%, N: 0.01% 이하(0% 제외), B: 0.005% 이하(0% 제외), 잔부 Fe 및 기타 불가피한 불순물을 포함하고,In weight%, C: 0.15 to 0.3%, Si: 0.1 to 1.5%, Mn: 2.5 to 5.0%, P: 0.1% or less (excluding 0%), S: 0.03% or less (excluding 0%), Al: 0.01 ~0.1%, N: 0.01% or less (excluding 0%), B: 0.005% or less (excluding 0%), the balance including Fe and other unavoidable impurities,
    미세조직으로 면적%로, 잔류 오스테나이트: 0.5~20% 및 마르텐사이트: 80~99.5%를 포함하고, Microstructure, by area%, including retained austenite: 0.5-20% and martensite: 80-99.5%,
    하기 관계식 1-1을 충족하는, 냉연강판.A cold-rolled steel sheet that satisfies the following relational expression 1-1.
    [관계식 1-1][Relationship 1-1]
    Figure PCTKR2022019037-appb-img-000028
    Figure PCTKR2022019037-appb-img-000028
    (상기 관계식 1-1에 있어서, 상기
    Figure PCTKR2022019037-appb-img-000029
    는 상기 마르텐사이트 내 Mn 함량이 2% 초과 5% 미만인 저Mn 결정립의 면적분율을 나타내고, 그 단위는 면적%이다. 또한, 상기
    Figure PCTKR2022019037-appb-img-000030
    는 상기 마르텐사이트 내 Mn 함량이 5% 이상인 고Mn 결정립의 면적분율을 나타내고, 그 단위는 면적%이다.)
    (In the relational expression 1-1, the
    Figure PCTKR2022019037-appb-img-000029
    Represents the area fraction of low Mn crystal grains in which the Mn content in the martensite is greater than 2% and less than 5%, and its unit is area%. Also, the above
    Figure PCTKR2022019037-appb-img-000030
    Represents the area fraction of high Mn crystal grains having a Mn content of 5% or more in the martensite, and the unit is area%.)
  2. 청구항 1에 있어서,The method of claim 1,
    하기 관계식 1-2를 충족하는, 냉연강판.A cold-rolled steel sheet that satisfies the following relational expression 1-2.
    [관계식 1-2][Relationship 1-2]
    Figure PCTKR2022019037-appb-img-000031
    Figure PCTKR2022019037-appb-img-000031
    (상기 관계식 1-2에 있어서, 상기
    Figure PCTKR2022019037-appb-img-000032
    는 상기 마르텐사이트 내 Mn 함량이 5% 이상인 고Mn 결정립에 대한 인장강도 평균값(
    Figure PCTKR2022019037-appb-img-000033
    )와 상기 마르텐사이트 내 Mn 함량이 2% 초과 5% 미만인 저Mn 결정립에 대한 인장강도 평균값(
    Figure PCTKR2022019037-appb-img-000034
    )의 차를 나타내고, 그 단위는 MPa이다.)
    (In the above relational expression 1-2, the above
    Figure PCTKR2022019037-appb-img-000032
    Is the average value of tensile strength for high Mn grains having a Mn content of 5% or more in the martensite (
    Figure PCTKR2022019037-appb-img-000033
    ) and the average value of tensile strength for low Mn crystal grains having a Mn content of more than 2% and less than 5% in the martensite (
    Figure PCTKR2022019037-appb-img-000034
    ), and its unit is MPa.)
  3. 청구항 1에 있어서,The method of claim 1,
    Cr: 0.1% 이하(0%를 포함) 및 Mo: 0.1% 이하(0%를 포함) 중에서 선택된 1종 이상을 더 포함하는, 냉연강판.Cr: 0.1% or less (including 0%) and Mo: 0.1% or less (including 0%), further comprising at least one selected from among, cold-rolled steel sheet.
  4. 청구항 1에 있어서,The method of claim 1,
    인장강도가 1500MPa 이상이고, 총 연신율이 10% 이상인, 냉연강판.A cold-rolled steel sheet having a tensile strength of 1500 MPa or more and a total elongation of 10% or more.
  5. 청구항 1에 있어서,The method of claim 1,
    항복강도가 1000MPa 이상인, 냉연강판.Cold-rolled steel sheet with a yield strength of 1000 MPa or more.
  6. 중량%로, C: 0.15~0.3%, Si: 0.1~1.5%, Mn: 2.5~5.0%, P: 0.1% 이하(0% 제외), S: 0.03% 이하(0% 제외), Al: 0.01~0.1%, N: 0.01% 이하(0% 제외), B: 0.005% 이하(0% 제외), 잔부 Fe 및 기타 불가피한 불순물을 포함하는 조성을 갖는 강 슬라브를 1100~1300℃로 재가열하는 단계;In weight%, C: 0.15 to 0.3%, Si: 0.1 to 1.5%, Mn: 2.5 to 5.0%, P: 0.1% or less (excluding 0%), S: 0.03% or less (excluding 0%), Al: 0.01 reheating to 1100-1300° C. a steel slab having a composition comprising ~0.1%, N: 0.01% or less (excluding 0%), B: 0.005% or less (excluding 0%), the balance being Fe and other unavoidable impurities;
    재가열된 슬라브를 800~1000℃에서 열간압연하여 열연강판을 얻는 단계;Obtaining a hot-rolled steel sheet by hot-rolling the reheated slab at 800 to 1000 ° C;
    상기 열연강판을 400~700℃에서 권취하는 단계;winding the hot-rolled steel sheet at 400 to 700° C.;
    권취된 열연강판을 20~75%의 압하율로 냉간압연하여 냉연강판을 얻는 단계;Obtaining a cold-rolled steel sheet by cold-rolling the rolled hot-rolled steel sheet at a reduction ratio of 20 to 75%;
    상기 냉연강판을 600~700℃ 범위로 가열하고, 2~24시간 동안 유지하는 1차 소둔 단계;Primary annealing step of heating the cold-rolled steel sheet in the range of 600 ~ 700 ℃, and maintaining for 2 ~ 24 hours;
    상기 1차 소둔된 냉연강판을 30℃/s 이상의 평균 냉각 속도로 냉각하는 1차 냉각 단계;Average of 30 ℃ / s or more of the primary annealed cold-rolled steel sheet A first cooling step of cooling at a cooling rate;
    상기 1차 냉각된 냉연강판을 30℃/s 이상의 평균 승온 속도로 오스테나이트 단상역 이상의 온도로 가열하는 2차 소둔 단계; 및A secondary annealing step of heating the primary cooled cold-rolled steel sheet to a temperature higher than the austenite single-phase region at an average temperature increase rate of 30° C./s or higher; and
    상기 2차 소둔된 냉연강판을 30℃/s 이상의 평균 냉각 속도로 냉각하는 2차 냉각 단계;를 포함하는, 냉연강판의 제조방법.The secondary annealed cold-rolled steel sheet averaged over 30 ℃ / s A method of manufacturing a cold-rolled steel sheet comprising a; secondary cooling step of cooling at a cooling rate.
  7. 청구항 6에 있어서,The method of claim 6,
    상기 1차 소둔 단계는 평균 승온 속도가 30℃/s 이상인, 냉연강판의 제조방법.The primary annealing step has an average temperature increase rate of 30 ° C. / s or more, a method for producing a cold-rolled steel sheet.
  8. 청구항 6에 있어서,The method of claim 6,
    하기 관계식 2를 충족하는, 냉연강판의 제조방법.A method for manufacturing a cold-rolled steel sheet that satisfies the following relational expression 2.
    [관계식 2][Relationship 2]
    1.0 ≤ TH1/TH2 ≤ 1.51.0 ≤ TH1/TH2 ≤ 1.5
    (상기 관계식 2-1에 있어서, TH1은 1차 소둔 단계에서의 강판 표면의 최고 온도를 나타내고, TH2는 2차 소둔 단계에서의 강판 표면의 최고 온도를 나타낸다.)(In the relational expression 2-1, TH1 represents the highest temperature of the steel sheet surface in the first annealing step, and TH2 represents the highest temperature of the steel sheet surface in the second annealing step.)
PCT/KR2022/019037 2021-11-29 2022-11-29 Ultra-high strength cold-rolled steel sheet having excellent elongation and manufacturing method thereof WO2023096453A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2021-0166731 2021-11-29
KR1020210166731A KR20230081744A (en) 2021-11-29 2021-11-29 Ultra-high strength steel sheet having excellent elongation and manufacturing method of the same

Publications (1)

Publication Number Publication Date
WO2023096453A1 true WO2023096453A1 (en) 2023-06-01

Family

ID=86540167

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/019037 WO2023096453A1 (en) 2021-11-29 2022-11-29 Ultra-high strength cold-rolled steel sheet having excellent elongation and manufacturing method thereof

Country Status (2)

Country Link
KR (1) KR20230081744A (en)
WO (1) WO2023096453A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016147549A1 (en) * 2015-03-18 2016-09-22 Jfeスチール株式会社 High-strength cold-rolled steel sheet and method for manufacturing same
KR20170113858A (en) * 2016-03-28 2017-10-13 주식회사 포스코 Cold-rolled steel sheet and plated steel sheet having excellent yield strength and ductility and method for manufacturing thereof
KR20180021161A (en) * 2015-08-11 2018-02-28 제이에프이 스틸 가부시키가이샤 Material for high-strength steel sheet, hot rolled material for high-strength steel sheet, material annealed after hot rolling and for high-strength steel sheet, high-strength steel sheet, high-strength hot-dip plated steel sheet, high-strength electroplated steel sheet, and manufacturing method for same
KR20210036966A (en) * 2018-08-31 2021-04-05 제이에프이 스틸 가부시키가이샤 High-strength steel sheet and its manufacturing method
KR20210132856A (en) * 2020-04-28 2021-11-05 현대제철 주식회사 Steel sheet having high strength and high formability and method for manufacturing the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6130465B2 (en) 2015-10-30 2017-05-17 株式会社トプコン Sight display device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016147549A1 (en) * 2015-03-18 2016-09-22 Jfeスチール株式会社 High-strength cold-rolled steel sheet and method for manufacturing same
KR20180021161A (en) * 2015-08-11 2018-02-28 제이에프이 스틸 가부시키가이샤 Material for high-strength steel sheet, hot rolled material for high-strength steel sheet, material annealed after hot rolling and for high-strength steel sheet, high-strength steel sheet, high-strength hot-dip plated steel sheet, high-strength electroplated steel sheet, and manufacturing method for same
KR20170113858A (en) * 2016-03-28 2017-10-13 주식회사 포스코 Cold-rolled steel sheet and plated steel sheet having excellent yield strength and ductility and method for manufacturing thereof
KR20210036966A (en) * 2018-08-31 2021-04-05 제이에프이 스틸 가부시키가이샤 High-strength steel sheet and its manufacturing method
KR20210132856A (en) * 2020-04-28 2021-11-05 현대제철 주식회사 Steel sheet having high strength and high formability and method for manufacturing the same

Also Published As

Publication number Publication date
KR20230081744A (en) 2023-06-08

Similar Documents

Publication Publication Date Title
WO2018110853A1 (en) High strength dual phase steel having excellent low temperature range burring properties, and method for producing same
WO2009145563A2 (en) Ultra high strength steel sheet with an excellent heat treatment property for hot press forming, quenched member, and manufacturing method for same
WO2010074370A1 (en) High-strength elongation steel sheet, hot-rolled steel sheet, cold-rolled steel sheet, zinc-coated steel sheet, and method for manufacturing alloyed zinc-coated steel sheet
WO2017188654A1 (en) Ultrahigh-strength and high-ductility steel sheet having excellent yield ratio and manufacturing method therefor
WO2017222159A1 (en) High-strength cold-rolled steel sheet with excellent workability and manufacturing method therefor
WO2015099222A1 (en) Hot-rolled steel plate having excellent welding property and burring property and method for manufacturing same
WO2020111856A2 (en) High-strength steel sheet having excellent ductility and low-temperature toughness and method for manufacturing thereof
WO2017051998A1 (en) Plated steel plate and manufacturing method thereof
WO2021085800A1 (en) Austenitic stainless steel having increased yield ratio and manufacturing method thereof
WO2016182098A1 (en) Ultra-high strength hot-rolled steel sheet having excellent bending workability and method for manufacturing same
WO2021117989A1 (en) Cold rolled steel sheet with ultra-high strength, and manufacturing method therefor
WO2013154254A1 (en) High carbon hot rolled steel sheet having excellent uniformity and method for manufacturing same
WO2021010599A2 (en) Austenitic stainless steel having improved strength, and method for manufacturing same
WO2019088552A1 (en) Ultra-high strength cold-rolled steel sheet having excellent cold rolling property, and method for manufacturing same
WO2019125018A1 (en) Ultrahigh strength cold-rolled steel sheet and manufacturing method thereof
WO2023096453A1 (en) Ultra-high strength cold-rolled steel sheet having excellent elongation and manufacturing method thereof
WO2022124609A1 (en) High-strength hot-dip galvanized steel sheet with high ductility and excellent formability, and manufacturing method for same
WO2022065797A1 (en) High-strength thick hot-rolled steel sheet and method for manufacturing same
WO2017111303A1 (en) High-strength hot-rolled steel sheet with excellent bending workability and production method therefor
WO2021261884A1 (en) High-strength austenitic stainless steel with excellent productivity and cost reduction effect and method for producing same
WO2020130614A2 (en) High strength hot-rolled steel sheet having excellent hole expansion ratio and manufacturing method for same
WO2023234502A1 (en) Ultra-high strength cold-rolled steel sheet and manufacturing method therefor
WO2024080657A1 (en) Steel sheets and methods for manufacturing same
WO2019039774A1 (en) Ferritic stainless steel having enhanced low-temperature impact toughness and method for producing same
WO2023048450A1 (en) High-strength cold-rolled steel sheet having excellent surface quality and low material variation, and method for manufacturing same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22899135

Country of ref document: EP

Kind code of ref document: A1