WO2022255397A1 - Method for producing 1-chloro-2,3,3-trifluoropropene - Google Patents

Method for producing 1-chloro-2,3,3-trifluoropropene Download PDF

Info

Publication number
WO2022255397A1
WO2022255397A1 PCT/JP2022/022263 JP2022022263W WO2022255397A1 WO 2022255397 A1 WO2022255397 A1 WO 2022255397A1 JP 2022022263 W JP2022022263 W JP 2022022263W WO 2022255397 A1 WO2022255397 A1 WO 2022255397A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
trifluoropropene
reaction
acid
metal salt
Prior art date
Application number
PCT/JP2022/022263
Other languages
French (fr)
Japanese (ja)
Inventor
達也 鎌塚
英史 塩田
聡史 河口
優 竹内
Original Assignee
Agc株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agc株式会社 filed Critical Agc株式会社
Priority to CN202280038111.4A priority Critical patent/CN117396453A/en
Priority to JP2023525883A priority patent/JPWO2022255397A1/ja
Publication of WO2022255397A1 publication Critical patent/WO2022255397A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/23Preparation of halogenated hydrocarbons by dehalogenation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C21/00Acyclic unsaturated compounds containing halogen atoms
    • C07C21/02Acyclic unsaturated compounds containing halogen atoms containing carbon-to-carbon double bonds
    • C07C21/18Acyclic unsaturated compounds containing halogen atoms containing carbon-to-carbon double bonds containing fluorine

Definitions

  • the present invention relates to a method for producing 1-chloro-2,3,3-trifluoropropene.
  • 1233yd. is a cleaning agent, refrigerant, and foaming agent with a small global warming potential (GWP). It is a compound used in agent, solvent, and aerosol applications.
  • GWP global warming potential
  • Patent Document 1 the reaction described in Patent Document 1 is not suitable for industrial-scale mass production because the amount of 1233yd produced is a by-product and is very small.
  • An object of the present invention is to provide a novel method for producing 1233yd.
  • the temperature at which the 1,3-dichloro-2,3,3-trifluoropropene, the metal salt and the zerovalent metal are brought into contact is 0 to 200° C.
  • (1) to ( 6) The manufacturing method according to any one of the items.
  • (8) The production method according to any one of (1) to (7), wherein the 1-chloro-2,3,3-trifluoropropene is produced in a liquid phase.
  • (9) The production method according to (8), wherein the 1-chloro-2,3,3-trifluoropropene is produced in the presence of a solvent.
  • a novel method for producing 1233yd can be provided.
  • 1233yd has Z- and E-isomers, which are geometric isomers, depending on the position of the substituent on the double bond.
  • Z- and E-isomers which are geometric isomers, depending on the position of the substituent on the double bond.
  • E isomers
  • E isomers
  • HCFO-1233yd(Z) indicates the Z form
  • HCFO-1233yd(E) indicates the E form.
  • HCFO-- 1223yd (hereinafter also referred to as 1223yd)
  • a metal salt and a zero-valent metal are brought into contact with each other, and then with an acid to produce 1233yd.
  • an intermediate for obtaining 1233yd is formed by contacting 1223yd with a metal salt and a zero-valent metal, and an acid acts on the intermediate. and 1233 yd is obtained.
  • the materials and procedures used are described below.
  • 1223yd is used as a raw material.
  • 1223yd can be produced by a known method.
  • the raw material for the production method of the present invention only needs to contain 1223yd, and for example, a composition containing 1223yd and impurities may be used as the raw material.
  • impurities include raw materials for producing 1223yd, and by-products produced in addition to 1223yd when producing 1223yd.
  • the resulting product is 1223yd, It may contain unreacted 224ca and by-product 1,3-dichloro-1,1,2,2-tetrafluoropropane (234cc). This product may be used as a raw material for the production method of the present invention.
  • the impurities may be removed by known means such as distillation, extractive distillation, azeotropic distillation, membrane separation, two-layer separation, and adsorption.
  • 1223yd is contained as a main component in the raw material.
  • the content of 1223yd is 50% by mass or more, preferably 75% by mass or more, more preferably 80% by mass or more, further preferably 90% by mass or more, and 95% by mass or more, based on the total mass of the raw material. More than % by mass is particularly preferred. 100 mass % is mentioned as an upper limit.
  • the content of 224ca in the raw material is preferably 5% by mass or less, and 3% by mass or less, relative to the total mass of the raw material. is more preferable, and 1% by mass or less is even more preferable.
  • metal salts include halides, carbonates, hydroxides and alkoxides. Among them, halides are preferable, and metal chlorides are more preferable, because the yield of 1233 yd is more excellent.
  • metal atoms contained in metal salts include transition metals, and more specifically copper, iron, cobalt and nickel atoms are preferred. Among them, a nickel atom and a copper atom are preferable, and a copper atom is more preferable, because the yield of 1233yd is more excellent.
  • metal salts include copper (I) chloride, copper (II) chloride, nickel (I) chloride, and nickel (II) chloride. Two or more kinds of metal salts may be used in combination.
  • the metal salt may be used in the form of powder, may be formed into pellets and used, or may be supported on a carrier and used as a metal salt-carrying carrier.
  • the carrier include carbon materials such as activated carbon, carbon black and carbon fiber; and oxide materials such as alumina, silica, titania, zirconia, alkali metal oxides and alkaline earth metal oxides. Zirconia, alkali metal oxides and alkaline earth metal oxides are preferred.
  • activated carbon, alumina, and zirconia are more preferable because they have a large specific surface area and can easily support a metal salt.
  • the average particle size (D50) of the powdered metal salt is preferably 0.05 to 1000 ⁇ m, more preferably 0.1 to 500 ⁇ m, even more preferably 0.5 to 200 ⁇ m.
  • Examples of the method for forming the metal salt into pellets include a method in which the metal salt is pulverized into powder and formed using a tableting machine or the like.
  • the pellet-shaped metal salt for example, one formed into a cylindrical shape having a diameter of about 3.0 mm and a height of about 4.0 mm can be used.
  • the metal salt may be mixed with a binder and used as a metal salt composition containing the metal salt and the binder.
  • the amount of the binder used is preferably 100 parts by mass or less, more preferably 50 parts by mass or less, and even more preferably 10 parts by mass or less with respect to 100 parts by mass of the metal salt.
  • a mixture of the metal salt and the binder can be formed into pellets using a tableting machine or the like.
  • Specific examples of binders include graphite, carbon, cellulose, alumina, and silica.
  • the metal salt is preferably dried in advance in an inert atmosphere (for example, in a nitrogen stream) in order to improve reactivity. From the point of view of simplification of operation and improvement of work efficiency, the metal salt may be dried in the same manner as described above while being contained in the reactor.
  • the specific surface area of the metal salt depends on the type of each metal salt. In general, the smaller the specific surface area, the lower the conversion rate, and the larger the specific surface area, the lower the selectivity and the faster the deterioration.
  • the specific surface area of the metal salt is preferably 0.1 to 300 m 2 /g.
  • a specific surface area is a value measured by BET method.
  • zero-valent metals include transition metals and alkaline earth metals, and more specifically zinc, magnesium, iron, cobalt and nickel are preferred. Among them, zinc is preferable because the yield of 1233 yd is more excellent. Two or more kinds of zerovalent metals may be used in combination.
  • the zero-valent metal may be used in the form of powder, metal pieces, or pellets.
  • the average particle size (D50) of the powdery zero-valent metal is preferably 0.05 to 1000 ⁇ m, more preferably 0.1 to 500 ⁇ m, even more preferably 0.5 to 200 ⁇ m.
  • a method of forming a 0-valent metal into pellets there is a method of pulverizing the 0-valent metal into powder and forming it with a tableting machine or the like.
  • the pellet-shaped zero-valent metal for example, a cylinder having a diameter of about 3.0 mm and a height of about 4.0 mm can be used.
  • a binder may be mixed with the zerovalent metal and used as a composition containing the zerovalent metal and the binder.
  • the amount of the binder used is preferably 100 parts by mass or less, more preferably 50 parts by mass or less, and even more preferably 10 parts by mass or less with respect to 100 parts by mass of the zerovalent metal.
  • a mixture of a zerovalent metal and a binder can be formed into pellets using a tableting machine or the like.
  • Specific examples of binders include graphite, carbon, cellulose, alumina, and silica.
  • a solvent may exist in the reaction system in addition to the 1223yd, metal salt, and zero-valent metal described above.
  • preferred solvents include aromatic hydrocarbons such as benzene, toluene, xylene, and benzene; aliphatic hydrocarbons such as pentane, hexane, cyclohexane, heptane, and cyclopentane; and halogenated hydrocarbons such as chloroform, dichloromethane, and carbon tetrachloride.
  • Hydrocarbons N,N-dimethylformamide (DMF), dimethylacetamide, amides such as N-methylpyrrolidone, sulfoxides such as dimethylsulfoxide (DMSO), sulfones such as sulfolane, dimethyl ether (DME), diethyl ether, diisopropyl ether, diglyme , tetrahydrofuran (THF), 1,4-dioxane, ethers such as t-butyl methyl ether, nitriles such as acetonitrile, esters such as methyl acetate, ethyl acetate and propion carbonate, ketones such as acetone and methyl ethyl ketone, methanol, ethanol, 2 - Alcohols such as propanol and the like.
  • DMF dimethylsulfoxide
  • sulfones such as sulfolane
  • DME dimethyl ether
  • DME dieth
  • a method of contacting 1223yd with a metal salt and a zerovalent metal is not particularly limited, and a method of adding a metal salt and a zerovalent metal to 1223yd in a liquid state and contacting the 1223yd in a liquid state with a metal in the presence of a solvent
  • a method of contacting a salt with a zerovalent metal and a method of contacting by supplying gaseous 1223yd into a reactor filled with a metal salt and a zerovalent metal can be mentioned. From the viewpoint of reactivity, a method of contacting liquid 1223yd with a metal salt and a zero-valent metal in the presence of a solvent is preferred.
  • 1223yd When 1223yd is brought into contact with the metal salt and the zerovalent metal, these components may be brought into contact all at once, or 1223yd may be divided little by little to form a mixed system containing the metal salt and the zerovalent metal. may be added. When 1223yd, the metal salt and the zero-valent metal are brought into contact with each other, it is preferable to carry out while stirring.
  • the amount of the metal salt to be used is preferably 0.001 to 1.0 equivalents, more preferably 0.01 to 0.3 equivalents, with respect to 1 equivalent of 1223 yd, since the yield of 1233 yd is better.
  • the amount of the zerovalent metal used is preferably 0.01 to 10 equivalents, more preferably 0.1 to 5 equivalents, more preferably 0.3 to 3 equivalents is more preferred.
  • the amount of solvent used is preferably 1 to 1000% by mass, more preferably 10 to 750% by mass, with respect to the amount of 1223yd used, in terms of better yield of 1233yd and productivity. preferable.
  • the temperature at which 1223yd, the metal salt, and the zero-valent metal are brought into contact is not particularly limited, but is preferably 0 to 200°C, more preferably 10 to 160°C, in terms of shortening the production time.
  • the contact time between 1223yd, a metal salt, and a zero-valent metal is not particularly limited. is preferably 0.01 to 100 hours, more preferably 0.1 to 50 hours. In the case of a continuous system, it is preferably 0.01 to 50 hours, more preferably 0.1 to 20 hours.
  • the contact time is the contact time of the 1223 yd, the metal salt and the zero-valent metal in the reactor in the batch mode, and the contact time of the 1223 yd, the metal salt and the zero-valent metal in the reactor in the continuous mode. residence time.
  • the reactor pressure is preferably 0 to 30 MPaG, more preferably 0 to 10 MPaG, from the viewpoint of reaction activity and availability of pressure-resistant reactors.
  • reaction system a reaction mixture obtained by contacting 1223yd, a metal salt, and a zero-valent metal (hereinafter also referred to as "pre-reaction system") to obtain a product and an acid in the pre-reaction system. to produce 1233yd.
  • pre-reaction system a reaction mixture obtained by contacting 1223yd, a metal salt, and a zero-valent metal
  • a weakly acidic pH buffer solution may be added to the first-stage reaction system to change the components in the first-stage reaction system before the acid is added to the first-stage reaction system.
  • the action of this pH buffer may improve the yield of 1233yd.
  • Conditions such as contact time and contact temperature between the components in the first-stage reaction system and the pH buffer solution are not particularly limited.
  • a specific example of the pH buffer is an acetic acid buffer containing a weak acid, acetic acid, and its salt, sodium acetate.
  • acids include organic acids and inorganic acids, and more specifically, hydrochloric acid, sulfuric acid, nitric acid, acetic acid, and phosphoric acid are preferred. Among them, hydrochloric acid is preferable because the yield of 1233 yd is more excellent.
  • the method of contacting with an acid is not particularly limited, and examples include a method of contacting the pre-reaction system with an acid dissolved in water, and a method of contacting the pre-reaction system with a gaseous acid. be done.
  • these components may be mixed together, or the acid may be divided little by little and added to the former-stage reaction system for contact. It may be divided into small portions and added to the acid for contact. From the viewpoint of suppressing heat generation in the first-stage reaction system, it is preferable to add the acid little by little to the first-stage reaction system.
  • the amount of acid used is preferably 0.01 to 10 equivalents, more preferably 0.1 to 5 equivalents, and even more preferably 0.3 to 3 equivalents, relative to 1 equivalent of 1223 yd.
  • the temperature at which the first-stage reaction system and the acid are brought into contact is not particularly limited, but -40 to 100°C is preferable, and -20 to 60°C is more preferable, in terms of better yield of 1233 yd.
  • the reaction pressure is preferably from 0 to 30 MPaG, more preferably from 0 to 10 MPaG, from the viewpoint of reaction activity and availability of a pressure-resistant reactor.
  • the contact time between the first stage reaction system and the acid is not particularly limited, but in the case of a batch system, from the viewpoint of better yield of 1233 yd and productivity, 0.001 to 100 hours is preferable, and 0.002 to 0.002 50 hours is more preferred.
  • the contact time is the contact time between the first-stage reaction system and the acid in the reactor when the reaction is performed batchwise, and the residence time between the first-stage reaction system and the acid in the reactor when the reaction is continuously performed.
  • the contact between the former-stage reaction system and the acid may be carried out in the presence of the solvent described above.
  • the pre-reaction system contains a solvent
  • the pre-reaction system containing the solvent may be brought into contact with the acid.
  • 1233yd is obtained by carrying out the above procedure.
  • the product obtained by mixing the first-stage reaction system and the acid may contain impurities.
  • Impurities include raw materials for producing 1223yd, raw materials for producing 1233yd (specifically, 1223yd), by-products produced other than 1233yd when producing 1233yd, metal salts, zero-valent metals, solvents, acids, and the like. be done.
  • Raw materials for producing 1223yd include, for example, unreacted 224ca and by-product 1,3-dichloro-1,1,2,2-tetrafluoropropane ( 234cc) and 3-chloro-1,1,2,2-tetrafluoropropane (244ca).
  • the impurities When the above impurities are contained in the product, the impurities may be removed by known means such as distillation, extractive distillation, azeotropic distillation, membrane separation, two-layer separation, and adsorption.
  • 1233yd obtained by purification by the above known means may contain impurities.
  • Impurities may include 1223yd, 234cc, 244ca, and the like.
  • the content of the impurities is preferably 10% by mass or less, more preferably 5% by mass or less, even more preferably 1% by mass or less, and particularly preferably 0.1% by mass or less, relative to the total amount of the purified product.
  • 1223yd which is a starting material in the present invention
  • 1223yd obtained by subjecting 224ca to defluorination and dechlorination reactions in an aprotic solvent.
  • Defluorination and dechlorination of 224ca in an aprotic solvent such as DMF or diglyme suppresses the formation of by-product 234cc and improves the selectivity of 1223yd.
  • an aprotic solvent since there is no proton source, when 224ca is subjected to defluorination and dechlorination reactions, it binds to the carbon atom at the 3-position of 224ca. After the chlorine atom is abstracted, a side reaction in which a hydrogen atom bonds to the carbon atom at the 3-position is unlikely to occur, and the selectivity of 1223yd is considered to be improved.
  • the defluorination reaction and dechlorination reaction of 224ca are carried out in a liquid phase reaction.
  • Carrying out a liquid phase reaction means reacting 224ca in a liquid state.
  • a method for producing 224ca includes, for example, the method described in Japanese Patent No. 5413451.
  • Preferred aprotic solvents used in the defluorination and dechlorination reactions of 224ca include aromatic hydrocarbons such as benzene, toluene, xylene, and benzene; Aliphatic hydrocarbons, chloroform, dichloromethane, halogenated hydrocarbons such as carbon tetrachloride, N,N-dimethylformamide (DMF), dimethylacetamide, amides such as N-methylpyrrolidone, sulfoxides such as dimethylsulfoxide (DMSO); sulfolane Sulfones such as dimethyl ether (DME), diethyl ether, diisopropyl ether, diglyme, tetrahydrofuran (THF), 1,4-dioxane, ethers such as t-butyl methyl ether, nitriles such as acetonitrile, methyl acetate, ethyl acetate, propion carbonate keto
  • the content of the aprotic solvent is preferably 1-500% by mass, more preferably 10-250% by mass, relative to the content of 224ca.
  • One preferred embodiment of the defluorination reaction and dechlorination reaction is at least one metal selected from the group consisting of alkaline earth metals and transition metals (hereinafter collectively referred to as "specific metals"). and defluorinating and dechlorinating 224ca in the presence of.
  • alkaline earth metals include magnesium, calcium and strontium.
  • transition metals include zinc, copper and nickel.
  • magnesium, zinc, copper and nickel are preferred, and magnesium and zinc are more preferred, from the viewpoint of reactivity.
  • Two or more of the specific metals may be used in combination. In order to improve the reactivity, the specific metal may be used in the form of powder, metal pieces, or pellets.
  • the amount of the specific metal used is preferably 0.01 to 10 equivalents, more preferably 0.1 to 5 equivalents, more preferably 0.3 equivalents, relative to 1 equivalent of 224ca, from the viewpoint of reaction yield and 1223yd selectivity. ⁇ 3 equivalents is more preferred.
  • the reaction temperature in the defluorination reaction and dechlorination reaction of 224ca (especially the reaction temperature in the presence of a specific metal) is preferably 0 to 250° C., preferably 30 to 200° C., from the viewpoint of reaction activity and 1223 yd selectivity. More preferably, it is 50 to 170°C.
  • the reaction pressure in step 3 is preferably 0 to 30 MPaG, more preferably 0 to 10 MPaG, in terms of reaction activity and the availability of pressure-resistant reactors.
  • the reaction time in step 3 (especially the reaction time in the presence of a specific metal) is preferably 0.1 to 100 hours, more preferably 1 to 30 hours, in the case of a batch system. In the case of a continuous system, it is preferably 0.01 to 50 hours, more preferably 0.1 to 20 hours. In addition, the reaction time in the case of the continuous system means the retention time of the raw material in the reactor.
  • Examples of methods for carrying out the defluorination reaction and dechlorination reaction of 224ca in the presence of the specific metal include a method of dispersing the specific metal in powder form in an aprotic solvent.
  • a further preferred embodiment of the defluorination reaction and dechlorination reaction in the method for producing 1223yd is a mode in which 224ca is subjected to defluorination reaction and dechlorination reaction in the presence of an activator.
  • an activated metal can be obtained by pre-mixing the specific metal and an activator. By using an activated metal, it is possible to obtain the same effects as when the specific metal and the activator are used in combination.
  • the activator may be one that activates the defluorination reaction and dechlorination reaction of 224ca.
  • Magnesium chloride when used when used), 1,2-dibromoethane, and hydrogen chloride. Among them, zinc chloride is preferred.
  • the said activator may use 2 or more types together.
  • the amount of the activator used is preferably 0.001 to 10 equivalents, more preferably 0.01 to 2 equivalents, relative to 1 equivalent of 224ca, from the viewpoints of reaction yield, 1223yd selectivity, and economy. Preferred is 0.01 to 1.5 equivalents.
  • the products obtained by the defluorination and dechlorination reactions of 224ca may contain impurities in addition to the target 1223yd.
  • impurities include unreacted 224ca and 234cc. If the product contains impurities, it is preferable to carry out a treatment to separate 1223yd from the obtained product. More specifically, a treatment of filtering the obtained product, a treatment of distilling the obtained product to obtain a fraction containing 1223yd as a main component, and the like can be mentioned.
  • 1223 yd is the main component means that the mass of 1223 yd is the largest in the fraction, and the content of 1223 yd with respect to the total mass of the fraction is preferably 90% by mass or more, and 95 mass % is more preferred.
  • the boiling point difference between the target 1223yd and the raw material 224ca is as large as 40 to 50° C., 1223yd and 224ca can be easily separated by distillation.
  • a distillation apparatus such as a packed column or a plate column can be used.
  • multi-stage distillation is preferable.
  • the theoretical number of stages is preferably 20 or more.
  • the temperature (for example, the temperature of the still) during the distillation operation is preferably 80° C. or lower, more preferably 70° C. or lower, from the viewpoint of energy cost.
  • the temperature during the distillation operation is preferably 58° C. or higher, which is the boiling point of 1223 yd (Z).
  • anhydrous aluminum chloride 25 g, 0.19 mol
  • CHCl 3 500 g, 4.19 mol
  • 224ca 100 g, 0.45 mol
  • TFE was supplied until the inside of the autoclave reached 0.05 MPa, and the inside of the autoclave was heated to 80°C.
  • TFE was further supplied while maintaining the pressure in the autoclave at 0.8 MPa.
  • the total amount of TFE supplied to the autoclave was 0.17 kg (1.65 mol).
  • the temperature was raised in about 30 minutes, and the magnetic rotor was rotated at 300 rpm by a magnetic stirrer during the temperature rise and reaction. After holding at 130° C. for 5.5 hours, the temperature of the oil bath was lowered and cooled to room temperature. After cooling down to room temperature, the reaction liquid was analyzed by GC. The composition of the reaction solution was analyzed by GC analysis, and the conversion rate and selectivity were calculated. 1223 yd was contained in the reaction solution. The conversion rate of 224ca was 65.4% and the selectivity of 1223yd was 94.4% (the selectivity of 1223yd (Z) was 83.5% and the selectivity of 1223yd (E) was 10.9%). Met. Also, the selectivity to 234cc was 1.5%.
  • the product was purified by distillation, and 93.2% by mass of 1223 yd (Z) and 6.0% of 1223 yd (E) were removed from the top of the distillation column. A distillate containing 0% by mass and 0.2% by mass of 234 cc was obtained. Using the above distillate, the following 1233yd was produced.
  • Example 1 0.165 g of zinc powder (D50; 6 to 9 ⁇ m, for organic synthesis: manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.), 0.021 g of CuCl (manufactured by Kanto Chemical Co., Ltd.), and DMF (manufactured by Kanto Chemical Co., Ltd.) are placed in a 10 ml glass container. 1.9 g and 0.349 g of the above distillate were added and the resulting mixture was stirred at room temperature. After 4.5 hours of mixing, 0.05 g of ion-exchanged water and 0.03 g of pH 4 buffer solution (acetic acid/sodium acetate) were added to the mixture.
  • Example 2 0.161 g of zinc powder (D50; 6 to 9 ⁇ m, for organic synthesis: manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.), 0.024 g of CuCl (manufactured by Kanto Chemical Co., Ltd.), and DMF (manufactured by Kanto Chemical Co., Ltd.) are placed in a 10 ml glass container. 1.89 g and 0.361 g of the above distillate were added, and the mixture was stirred while being heated (temperature: 60°C). After 2 hours of mixing, 0.05 g of pH 4 buffer solution (acetic acid/sodium acetate) was added to the mixture.
  • pH 4 buffer solution acetic acid/sodium acetate
  • Example 3 In a 10 ml glass container, 0.060 g of magnesium (shavings, for Grignard reaction: manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.), 0.022 g of CuCl (manufactured by Kanto Chemical Co., Ltd.), 1.90 g of DMF (manufactured by Kanto Chemical Co., Ltd.), 0.360 g of the above distillate was added, and the mixture was stirred while being heated (temperature: 60°C). After 2 hours of mixing, 0.05 g of pH 4 buffer solution (acetic acid/sodium acetate) was added to the mixture. Thereafter, stirring was continued, and after 4 hours from the start of mixing, the heating was stopped and the mixture was cooled to room temperature.
  • pH 4 buffer solution acetic acid/sodium acetate
  • Example 4 In a 10 ml glass container, 0.160 g of zinc powder (D50; 6 to 9 ⁇ m, for organic synthesis: manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.), 0.034 g of NiCl 2 (anhydride, manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) , DMF (manufactured by Kanto Chemical Co., Ltd.) 1.89 g, and the above distillate 0.355 g were added, and the mixture was stirred while being heated (temperature: 60° C.). After 2 hours of mixing, 0.05 g of pH 4 buffer solution (acetic acid/sodium acetate) was added to the mixture.
  • pH 4 buffer solution acetic acid/sodium acetate

Abstract

The present invention addresses the problem of providing a novel method for producing 1233yd. Provided is a method for producing 1-chloro-2,3,3-trifluoropropene by causing contact between 1,3-dichloro-2,3,3-trifluoropropene, a metal salt, and a zerovalent metal, and subsequently causing contact with an acid.

Description

1-クロロ-2,3,3-トリフルオロプロペンの製造方法Method for producing 1-chloro-2,3,3-trifluoropropene
 本発明は、1-クロロ-2,3,3-トリフルオロプロペンの製造方法に関する。 The present invention relates to a method for producing 1-chloro-2,3,3-trifluoropropene.
 1-クロロ-2,3,3-トリフルオロプロペン(CHCl=CF-CHF。HCFO-1233yd。以下、1233ydとも記す。)は、地球温暖化係数(GWP)の小さな、洗浄剤、冷媒、発泡剤、溶剤、およびエアゾール用途に用いられる化合物である。
 1233ydの製造例としては、特許文献1の実施例に、水酸化クロム触媒を充填したハステロイC製反応管に窒素気流下で3-クロロ-1,1,2,2-テトラフルオロプロパンとフッ化水素をガス状態で導入すると、1,1,2,2,3-ペンタフルオロプロパンと共に、微量の1233ydが副生したことが記載されている。
1-chloro-2,3,3-trifluoropropene (CHCl=CF-CHF 2 .HCFO-1233yd. Hereinafter also referred to as 1233yd.) is a cleaning agent, refrigerant, and foaming agent with a small global warming potential (GWP). It is a compound used in agent, solvent, and aerosol applications.
As an example of producing 1233yd, in the example of Patent Document 1, 3-chloro-1,1,2,2-tetrafluoropropane and fluorinated It is described that when hydrogen is introduced in a gaseous state, 1,1,2,2,3-pentafluoropropane and a trace amount of 1233yd are by-produced.
国際公開第1994/014737号WO 1994/014737
 しかし、特許文献1に記載される反応は、1233ydの生成量が副生量であってごく微量であるため、工業的規模の大量生産に適さない。
 本発明は、新規な1233ydの製造方法の提供を課題とする。
However, the reaction described in Patent Document 1 is not suitable for industrial-scale mass production because the amount of 1233yd produced is a by-product and is very small.
An object of the present invention is to provide a novel method for producing 1233yd.
 本発明者らは、上記課題を解決すべく鋭意検討した結果、以下の構成により上記課題を解決できることを見出した。 As a result of intensive studies aimed at solving the above problems, the inventors found that the above problems can be solved with the following configuration.
(1) 1,3-ジクロロ-2,3,3-トリフルオロプロペンと金属塩と0価の金属とを接触させ、次いで酸と接触させて、1-クロロ-2,3,3-トリフルオロプロペンを製造する、1-クロロ-2,3,3-トリフルオロプロペンの製造方法。
(2) 前記金属塩に含まれる金属原子が、銅原子、鉄原子、コバルト原子またはニッケル原子である、(1)に記載の製造方法。
(3) 前記金属塩が、塩化銅である、(1)または(2)に記載の製造方法。
(4) 前記0価の金属が、亜鉛、マグネシウム、鉄、コバルトまたはニッケルである、(1)~(3)のいずれかに記載の製造方法。
(5) 前記0価の金属が、亜鉛である、(4)に記載の製造方法。
(6) 前記酸が、塩化水素、硫酸、硝酸、酢酸またはリン酸である、(1)~(5)のいずれかに記載の製造方法。
(1) 1,3-dichloro-2,3,3-trifluoropropene, a metal salt and a zero-valent metal are brought into contact, then with an acid to give 1-chloro-2,3,3-trifluoro A method for producing 1-chloro-2,3,3-trifluoropropene, which produces propene.
(2) The production method according to (1), wherein the metal atom contained in the metal salt is a copper atom, an iron atom, a cobalt atom, or a nickel atom.
(3) The production method according to (1) or (2), wherein the metal salt is copper chloride.
(4) The production method according to any one of (1) to (3), wherein the zerovalent metal is zinc, magnesium, iron, cobalt or nickel.
(5) The production method according to (4), wherein the zerovalent metal is zinc.
(6) The production method according to any one of (1) to (5), wherein the acid is hydrogen chloride, sulfuric acid, nitric acid, acetic acid or phosphoric acid.
(7) 前記1,3-ジクロロ-2,3,3-トリフルオロプロペンと前記金属塩と前記0価の金属とを接触させる際の温度が、0~200℃である、(1)~(6)のいずれかに記載の製造方法。
(8) 前記1-クロロ-2,3,3-トリフルオロプロペンの製造を液相で行う、(1)~(7)のいずれかに記載の製造方法。
(9) 前記1-クロロ-2,3,3-トリフルオロプロペンの製造を溶媒の存在下で行う、(8)に記載の製造方法。
(10) 前記1,3-ジクロロ-2,3,3-トリフルオロプロペンとして、1,3,3-トリクロロ-1,1,2,2-テトラフルオロプロパンを非プロトン性溶媒中で脱フッ素反応および脱塩素反応させて得られた1,3-ジクロロ-2,3,3-トリフルオロプロペンを用いる、(1)~(9)のいずれかに記載の製造方法。
(7) The temperature at which the 1,3-dichloro-2,3,3-trifluoropropene, the metal salt and the zerovalent metal are brought into contact is 0 to 200° C. (1) to ( 6) The manufacturing method according to any one of the items.
(8) The production method according to any one of (1) to (7), wherein the 1-chloro-2,3,3-trifluoropropene is produced in a liquid phase.
(9) The production method according to (8), wherein the 1-chloro-2,3,3-trifluoropropene is produced in the presence of a solvent.
(10) Defluorination reaction of 1,3,3-trichloro-1,1,2,2-tetrafluoropropane as the 1,3-dichloro-2,3,3-trifluoropropene in an aprotic solvent and 1,3-dichloro-2,3,3-trifluoropropene obtained by dechlorination reaction, the production method according to any one of (1) to (9).
 本発明によれば、新規な1233ydの製造方法を提供できる。 According to the present invention, a novel method for producing 1233yd can be provided.
 本明細書における用語の意味は以下の通りである。
 1233ydは二重結合上の置換基の位置により、幾何異性体であるZ体とE体とが存在する。本明細書中では特に断らずに化合物名や化合物の略称を用いた場合には、Z体およびE体から選ばれる少なくとも1種を示し、化合物名や化合物の略称の後ろに(E)または(Z)を付した場合には、其々の化合物の(E)体または(Z)体であることを示す。例えば、HCFO-1233yd(Z)はZ体を示し、HCFO-1233yd(E)はE体を示す。
The terms used herein have the following meanings.
1233yd has Z- and E-isomers, which are geometric isomers, depending on the position of the substituent on the double bond. In the present specification, when a compound name or an abbreviation of a compound is used without particular mention, at least one selected from Z isomers and E isomers is indicated, and (E) or ( When Z) is added, it indicates the (E)-form or (Z)-form of the respective compound. For example, HCFO-1233yd(Z) indicates the Z form, and HCFO-1233yd(E) indicates the E form.
 本発明の1233ydの製造方法(以下、単に「本発明の製造方法」とも記す。)は、1,3-ジクロロ-2,3,3-トリフルオロプロペン(CF2Cl-CF=CHCl。HCFO-1223yd。以下、1223ydとも記す。)と金属塩と0価の金属とを接触させ、次いで酸と接触させて、1233ydを製造する、製造方法である。
 上記製造方法により1233ydが得られる理由の詳細は不明だが、1223ydと金属塩と0価の金属とを接触させることにより、1233ydが得られるための中間体が形成され、その中間体に酸が作用して、1233ydが得られると推測される。
 以下では、使用している材料および手順を説明する。
The method for producing 1233yd of the present invention (hereinafter also simply referred to as the “production method of the present invention”) comprises 1,3-dichloro-2,3,3-trifluoropropene (CF 2 Cl--CF=CHCl. HCFO-- 1223yd (hereinafter also referred to as 1223yd), a metal salt and a zero-valent metal are brought into contact with each other, and then with an acid to produce 1233yd.
Although the details of why 1233yd is obtained by the above production method are unknown, an intermediate for obtaining 1233yd is formed by contacting 1223yd with a metal salt and a zero-valent metal, and an acid acts on the intermediate. and 1233 yd is obtained.
The materials and procedures used are described below.
 本発明の製造方法において、1223ydと金属塩と0価の金属とを接触させるときに使用している材料および手順を詳述する。 In the production method of the present invention, the materials and procedures used when 1223yd, metal salt and zero-valent metal are brought into contact will be described in detail.
 本発明の製造方法においては、原料として、1223ydが用いられる。
 1223ydは、公知の方法で製造できる。
 1223ydが使用される際には、不純物を含んでいてもよい。つまり、本発明の製造方法の原料には、1223ydが含まれていればよく、例えば、1223ydと不純物とを含む組成物を原料として用いてもよい。
 不純物としては、1223ydの製造原料、1223ydを製造する際に1223yd以外に生成する副生物等が挙げられる。
 例えば、後述する1,3,3-トリクロロ-1,1,2,2-テトラフルオロプロパン(以下、224caとも記す。)を用いて1223ydを製造する際には、得られる生成物は1223ydと、未反応である224caと、副生成物である1,3-ジクロロ-1,1,2,2-テトラフルオロプロパン(234cc)とを含みうる。この生成物を、本発明の製造方法の原料として用いてもよい。
In the production method of the present invention, 1223yd is used as a raw material.
1223yd can be produced by a known method.
When 1223yd is used, it may contain impurities. In other words, the raw material for the production method of the present invention only needs to contain 1223yd, and for example, a composition containing 1223yd and impurities may be used as the raw material.
Examples of impurities include raw materials for producing 1223yd, and by-products produced in addition to 1223yd when producing 1223yd.
For example, when producing 1223yd using 1,3,3-trichloro-1,1,2,2-tetrafluoropropane (hereinafter also referred to as 224ca) described later, the resulting product is 1223yd, It may contain unreacted 224ca and by-product 1,3-dichloro-1,1,2,2-tetrafluoropropane (234cc). This product may be used as a raw material for the production method of the present invention.
 なお、原料中に上記不純物が含まれる場合、不純物は、蒸留、抽出蒸留、共沸蒸留、膜分離、二層分離、吸着等の既知の手段により除去してもよい。 If the raw material contains the above impurities, the impurities may be removed by known means such as distillation, extractive distillation, azeotropic distillation, membrane separation, two-layer separation, and adsorption.
 原料中において、1223ydは主成分として含まれることが、効率的に1233ydを製造する観点から好ましい。主成分としては、原料の全質量に対して、1223ydの含有量が50質量%以上を意味し、75質量%以上が好ましく、80質量%以上がより好ましく、90質量%以上がさらに好ましく、95質量%以上が特に好ましい。上限としては、100質量%が挙げられる。
 また、前述の製造方法により製造された1223ydを使用する場合、原料中の224caの含有量は、原料の全質量に対して、5質量%以下とすることが好ましく、3質量%以下とすることがより好ましく、1質量%以下とすることがさらに好ましい。前記上限値以下とすることで、1223ydから1233ydへの反応を阻害することなく、効率的に1233ydを製造できる。
From the viewpoint of efficiently producing 1233yd, it is preferable that 1223yd is contained as a main component in the raw material. As a main component, the content of 1223yd is 50% by mass or more, preferably 75% by mass or more, more preferably 80% by mass or more, further preferably 90% by mass or more, and 95% by mass or more, based on the total mass of the raw material. More than % by mass is particularly preferred. 100 mass % is mentioned as an upper limit.
In addition, when using 1223yd produced by the above-described production method, the content of 224ca in the raw material is preferably 5% by mass or less, and 3% by mass or less, relative to the total mass of the raw material. is more preferable, and 1% by mass or less is even more preferable. By setting the content to the above upper limit or less, 1233yd can be efficiently produced without inhibiting the reaction from 1223yd to 1233yd.
 金属塩の具体例としては、ハロゲン化物、炭酸塩、水酸化物、アルコキシドが挙げられる。なかでも、1233ydの収率がより優れる点で、ハロゲン化物が好ましく、金属塩化物がより好ましい。
 金属塩に含まれる金属原子の具体例としては、遷移金属が挙げられ、より具体的には、銅原子、鉄原子、コバルト原子、および、ニッケル原子が好ましい。なかでも、1233ydの収率がより優れる点で、ニッケル原子、銅原子が好ましく、銅原子がより好ましい。
 金属塩の具体例としては、塩化銅(I)、塩化銅(II)、塩化ニッケル(I)、塩化ニッケル(II)が挙げられる。
 金属塩は、2種以上を併用してもよい。
Specific examples of metal salts include halides, carbonates, hydroxides and alkoxides. Among them, halides are preferable, and metal chlorides are more preferable, because the yield of 1233 yd is more excellent.
Specific examples of metal atoms contained in metal salts include transition metals, and more specifically copper, iron, cobalt and nickel atoms are preferred. Among them, a nickel atom and a copper atom are preferable, and a copper atom is more preferable, because the yield of 1233yd is more excellent.
Specific examples of metal salts include copper (I) chloride, copper (II) chloride, nickel (I) chloride, and nickel (II) chloride.
Two or more kinds of metal salts may be used in combination.
 金属塩は、反応性を向上させるために、粉末状で使用されてもよく、ペレット状に成形されて使用されてもよく、担体に担持して金属塩担持担体として使用されてもよい。
 担体としては、活性炭、カーボンブラック、カーボンファイバー等のカーボン材料、アルミナ、シリカ、チタニア、ジルコニア、アルカリ金属酸化物、アルカリ土類金属酸化物等の酸化物材料が挙げられ、活性炭、アルミナ、シリカ、ジルコニア、アルカリ金属酸化物、および、アルカリ土類金属酸化物が好ましい。これらの中でも、比表面積が大きく、金属塩を担持させやすいことから、活性炭、アルミナ、および、ジルコニアがより好ましい。
In order to improve reactivity, the metal salt may be used in the form of powder, may be formed into pellets and used, or may be supported on a carrier and used as a metal salt-carrying carrier.
Examples of the carrier include carbon materials such as activated carbon, carbon black and carbon fiber; and oxide materials such as alumina, silica, titania, zirconia, alkali metal oxides and alkaline earth metal oxides. Zirconia, alkali metal oxides and alkaline earth metal oxides are preferred. Among these, activated carbon, alumina, and zirconia are more preferable because they have a large specific surface area and can easily support a metal salt.
 粉末状の金属塩の平均粒子径(D50)は、0.05~1000μmが好ましく、0.1~500μmがより好ましく、0.5~200μmがさらに好ましい。 The average particle size (D50) of the powdered metal salt is preferably 0.05 to 1000 µm, more preferably 0.1 to 500 µm, even more preferably 0.5 to 200 µm.
 金属塩をペレット状に成形する方法としては、金属塩を粉末に解砕して、打錠機等により成形する方法が挙げられる。
 ペレット状の金属塩としては、例えば、直径3.0mm程度、高さ4.0mm程度の円柱状に成形したものを用いることができる。また、必要に応じて、金属塩にバインダーを混合して、金属塩とバインダーとを含む金属塩組成物として使用してもよい。バインダーの使用量は、金属塩100質量部に対して、100質量部以下が好ましく、50質量部以下がより好ましく、10質量部以下がさらに好ましい。この場合、金属塩とバインダーとの混合物から打錠機等によりペレット状に成形できる。
 なお、バインダーの具体例としては、グラファイト、カーボン、セルロース、アルミナ、シリカが挙げられる。
Examples of the method for forming the metal salt into pellets include a method in which the metal salt is pulverized into powder and formed using a tableting machine or the like.
As the pellet-shaped metal salt, for example, one formed into a cylindrical shape having a diameter of about 3.0 mm and a height of about 4.0 mm can be used. In addition, if necessary, the metal salt may be mixed with a binder and used as a metal salt composition containing the metal salt and the binder. The amount of the binder used is preferably 100 parts by mass or less, more preferably 50 parts by mass or less, and even more preferably 10 parts by mass or less with respect to 100 parts by mass of the metal salt. In this case, a mixture of the metal salt and the binder can be formed into pellets using a tableting machine or the like.
Specific examples of binders include graphite, carbon, cellulose, alumina, and silica.
 金属塩は、反応性を向上させるために、あらかじめ不活性雰囲気中(例えば、窒素気流中)で乾燥されていることが好ましい。操作の簡便化および作業効率の向上の点からは、金属塩は、反応器内に収容した状態で、上記同様に乾燥されてもよい。 The metal salt is preferably dried in advance in an inert atmosphere (for example, in a nitrogen stream) in order to improve reactivity. From the point of view of simplification of operation and improvement of work efficiency, the metal salt may be dried in the same manner as described above while being contained in the reactor.
 金属塩の比表面積は、各金属塩の種類に依存し、一般的に小さいほど転化率が低く、大きいほど選択率が低くなり劣化が早くなる傾向がある。
 例えば、上記バインダーを用いず、金属塩を用いる場合、上記金属塩の比表面積は0.1~300m/gが好ましい。
 なお、本明細書において、比表面積はBET法で測定される値である。
The specific surface area of the metal salt depends on the type of each metal salt. In general, the smaller the specific surface area, the lower the conversion rate, and the larger the specific surface area, the lower the selectivity and the faster the deterioration.
For example, when the binder is not used and a metal salt is used, the specific surface area of the metal salt is preferably 0.1 to 300 m 2 /g.
In addition, in this specification, a specific surface area is a value measured by BET method.
 0価の金属の具体例としては、遷移金属、アルカリ土類金属が挙げられ、より具体的には、亜鉛、マグネシウム、鉄、コバルト、および、ニッケル好ましい。なかでも、1233ydの収率がより優れる点で、亜鉛が好ましい。
 0価の金属は、2種以上を併用してもよい。
Specific examples of zero-valent metals include transition metals and alkaline earth metals, and more specifically zinc, magnesium, iron, cobalt and nickel are preferred. Among them, zinc is preferable because the yield of 1233 yd is more excellent.
Two or more kinds of zerovalent metals may be used in combination.
 0価の金属は、反応性を向上させるために、粉末状で使用されてもよく、金属片を使用してもよく、ペレット状に成形されて使用されてもよい。 In order to improve the reactivity, the zero-valent metal may be used in the form of powder, metal pieces, or pellets.
 粉末状の0価の金属の平均粒子径(D50)は、0.05~1000μmが好ましく、0.1~500μmがより好ましく、0.5~200μmがさらに好ましい。 The average particle size (D50) of the powdery zero-valent metal is preferably 0.05 to 1000 µm, more preferably 0.1 to 500 µm, even more preferably 0.5 to 200 µm.
 0価の金属をペレット状に成形する方法としては、0価の金属を粉末に解砕して、打錠機等により成形する方法が挙げられる。
 ペレット状の0価の金属としては、例えば、直径3.0mm程度、高さ4.0mm程度の円柱状に成形したものを用いることができる。また、必要に応じて、0価の金属にバインダーを混合して、0価の金属とバインダーとを含む組成物として使用してもよい。バインダーの使用量は、0価の金属100質量部に対して、100質量部以下が好ましく、50質量部以下がより好ましく、10質量部以下がさらに好ましい。この場合、0価の金属とバインダーとの混合物から打錠機等によりペレット状に成形できる。
 なお、バインダーの具体例としては、グラファイト、カーボン、セルロース、アルミナ、シリカが挙げられる。
As a method of forming a 0-valent metal into pellets, there is a method of pulverizing the 0-valent metal into powder and forming it with a tableting machine or the like.
As the pellet-shaped zero-valent metal, for example, a cylinder having a diameter of about 3.0 mm and a height of about 4.0 mm can be used. In addition, if necessary, a binder may be mixed with the zerovalent metal and used as a composition containing the zerovalent metal and the binder. The amount of the binder used is preferably 100 parts by mass or less, more preferably 50 parts by mass or less, and even more preferably 10 parts by mass or less with respect to 100 parts by mass of the zerovalent metal. In this case, a mixture of a zerovalent metal and a binder can be formed into pellets using a tableting machine or the like.
Specific examples of binders include graphite, carbon, cellulose, alumina, and silica.
 反応系には、上述した、1223yd、金属塩、0価の金属以外に溶媒が存在してもよい。
 好ましい溶媒の具体例としては、ベンゼン、トルエン、キシレン、ベンゼン等の芳香族炭化水素、ペンタン、ヘキサン、シクロヘキサン、ヘプタン、シクロペンタン等の脂肪族炭化水素、クロロホルム、ジクロロメタン、四塩化炭素等のハロゲン化炭化水素、N,N-ジメチルホルムアミド(DMF)、ジメチルアセトアミド、N-メチルピロリドン等のアミド、ジメチルスルホキシド(DMSO)等のスルホキシド、スルホラン等のスルホン、ジメチルエーテル(DME)、ジエチルエーテル、ジイソプロピルエーテル、ジグライム、テトラヒドロフラン(THF)、1,4-ジオキサン、t-ブチルメチルエーテル等のエーテル、アセトニトリル等のニトリル、酢酸メチル、酢酸エチル、プロピオンカーボネート等のエステル、アセトン、メチルエチルケトン等のケトン、メタノール、エタノール、2-プロパノール等のアルコール等が挙げられる。
 中でも、1233ydの収率がより優れる点で、DMF、アセトニトリルおよびDMSOが好ましい。
 溶媒は、2種以上を併用してもよい。
A solvent may exist in the reaction system in addition to the 1223yd, metal salt, and zero-valent metal described above.
Specific examples of preferred solvents include aromatic hydrocarbons such as benzene, toluene, xylene, and benzene; aliphatic hydrocarbons such as pentane, hexane, cyclohexane, heptane, and cyclopentane; and halogenated hydrocarbons such as chloroform, dichloromethane, and carbon tetrachloride. Hydrocarbons, N,N-dimethylformamide (DMF), dimethylacetamide, amides such as N-methylpyrrolidone, sulfoxides such as dimethylsulfoxide (DMSO), sulfones such as sulfolane, dimethyl ether (DME), diethyl ether, diisopropyl ether, diglyme , tetrahydrofuran (THF), 1,4-dioxane, ethers such as t-butyl methyl ether, nitriles such as acetonitrile, esters such as methyl acetate, ethyl acetate and propion carbonate, ketones such as acetone and methyl ethyl ketone, methanol, ethanol, 2 - Alcohols such as propanol and the like.
Among them, DMF, acetonitrile and DMSO are preferable in terms of better yield of 1233yd.
Two or more solvents may be used in combination.
 1223ydと金属塩と0価の金属との接触方法は特に制限されず、液体状態の1223ydに金属塩および0価の金属を加えて接触させる方法や、溶媒の存在下、液体状態の1223ydと金属塩と0価の金属とを接触させる方法や、気体状態の1223ydを金属塩と0価の金属とが充填された反応器内に供給することで接触させる方法が挙げられる。反応性の観点からは、溶媒の存在下、液体状態の1223ydと金属塩と0価の金属とを接触させる方法が好ましい。
 1223ydと金属塩と0価の金属とを接触させる際には、一括でこれらの成分を接触させてもよいし、1223ydを少量ずつ分割して金属塩と0価の金属とを含む混合系に添加してもよい。
 1223ydと金属塩と0価の金属とを接触させる際には、撹拌しながら行うことが好ましい。
A method of contacting 1223yd with a metal salt and a zerovalent metal is not particularly limited, and a method of adding a metal salt and a zerovalent metal to 1223yd in a liquid state and contacting the 1223yd in a liquid state with a metal in the presence of a solvent A method of contacting a salt with a zerovalent metal and a method of contacting by supplying gaseous 1223yd into a reactor filled with a metal salt and a zerovalent metal can be mentioned. From the viewpoint of reactivity, a method of contacting liquid 1223yd with a metal salt and a zero-valent metal in the presence of a solvent is preferred.
When 1223yd is brought into contact with the metal salt and the zerovalent metal, these components may be brought into contact all at once, or 1223yd may be divided little by little to form a mixed system containing the metal salt and the zerovalent metal. may be added.
When 1223yd, the metal salt and the zero-valent metal are brought into contact with each other, it is preferable to carry out while stirring.
 金属塩の使用量は、1233ydの収率がより優れる点で、1223ydの1当量に対して、0.001~1.0当量が好ましく、0.01~0.3当量がより好ましい。
 0価の金属の使用量は、1233ydの収率がより優れる点で、1223ydの1当量に対して、0.01~10当量が好ましく、0.1~5当量がより好ましく、0.3~3当量がさらに好ましい。
 溶媒を使用する場合、1233ydの収率がより優れる点および生産性の点で、溶媒の使用量は、1223ydの使用量に対して、1~1000質量%が好ましく、10~750質量%がより好ましい。
The amount of the metal salt to be used is preferably 0.001 to 1.0 equivalents, more preferably 0.01 to 0.3 equivalents, with respect to 1 equivalent of 1223 yd, since the yield of 1233 yd is better.
The amount of the zerovalent metal used is preferably 0.01 to 10 equivalents, more preferably 0.1 to 5 equivalents, more preferably 0.3 to 3 equivalents is more preferred.
When a solvent is used, the amount of solvent used is preferably 1 to 1000% by mass, more preferably 10 to 750% by mass, with respect to the amount of 1223yd used, in terms of better yield of 1233yd and productivity. preferable.
 1223ydと金属塩と0価の金属とを接触させる際の温度は特に制限されないが、製造時間の短縮ができる点で、0~200℃が好ましく、10~160℃がより好ましい。
 1223ydと金属塩と0価の金属との接触時間は特に制限されないが、液体状態の1223ydと反応させる場合には、1233ydの収率がより優れる点および生産性の点で、バッチ式の場合には0.01~100時間が好ましく、0.1~50時間がより好ましい。連続式の場合には、0.01~50時間が好ましく、0.1~20時間がより好ましい。接触時間は、バッチ式で行う場合、1223ydと金属塩と0価の金属の反応器内の接触時間であり、連続式で行う場合、1223ydと金属塩と0価の金属の反応器内での滞留時間である。
 反応器圧力としては、反応活性および耐圧反応器の入手性の点から、0~30MPaGが好ましく、0~10MPaGがより好ましい。
The temperature at which 1223yd, the metal salt, and the zero-valent metal are brought into contact is not particularly limited, but is preferably 0 to 200°C, more preferably 10 to 160°C, in terms of shortening the production time.
The contact time between 1223yd, a metal salt, and a zero-valent metal is not particularly limited. is preferably 0.01 to 100 hours, more preferably 0.1 to 50 hours. In the case of a continuous system, it is preferably 0.01 to 50 hours, more preferably 0.1 to 20 hours. The contact time is the contact time of the 1223 yd, the metal salt and the zero-valent metal in the reactor in the batch mode, and the contact time of the 1223 yd, the metal salt and the zero-valent metal in the reactor in the continuous mode. residence time.
The reactor pressure is preferably 0 to 30 MPaG, more preferably 0 to 10 MPaG, from the viewpoint of reaction activity and availability of pressure-resistant reactors.
 次いで、1223ydと金属塩と0価の金属とを接触させて得られる反応混合物を含む系(以下、「前段反応系」とも記す。)に酸を加えて、前段反応系中の生成物と酸とを接触させ、1233ydを生成させる。この後段の反応に使用している材料および手順を詳述する。 Next, an acid is added to a system containing a reaction mixture obtained by contacting 1223yd, a metal salt, and a zero-valent metal (hereinafter also referred to as "pre-reaction system") to obtain a product and an acid in the pre-reaction system. to produce 1233yd. The materials and procedures used in this latter reaction are detailed.
 なお、前段反応系に酸を加える前に、前段反応系に弱酸性のpH緩衝液を加えて前段反応系中の成分を変化させてもよい。このpH緩衝液の作用により、1233ydの収率が向上する場合がある。前段反応系中の成分とpH緩衝液の接触時間や接触温度等の条件は特に限定されない。
 pH緩衝液の具体例としては、弱酸である酢酸と、その塩である酢酸ナトリウムとからなる酢酸性緩衝液が挙げられる。
A weakly acidic pH buffer solution may be added to the first-stage reaction system to change the components in the first-stage reaction system before the acid is added to the first-stage reaction system. The action of this pH buffer may improve the yield of 1233yd. Conditions such as contact time and contact temperature between the components in the first-stage reaction system and the pH buffer solution are not particularly limited.
A specific example of the pH buffer is an acetic acid buffer containing a weak acid, acetic acid, and its salt, sodium acetate.
 酸の具体例としては、有機酸、無機酸が挙げられ、より具体的には、塩酸、硫酸、硝酸、酢酸、および、リン酸が好ましい。なかでも、1233ydの収率がより優れる点で、塩酸が好ましい。 Specific examples of acids include organic acids and inorganic acids, and more specifically, hydrochloric acid, sulfuric acid, nitric acid, acetic acid, and phosphoric acid are preferred. Among them, hydrochloric acid is preferable because the yield of 1233 yd is more excellent.
 本発明の製造方法において、酸と接触させる方法は特に制限されず、前段反応系と水に溶解させた酸とを接触させる方法や、前段反応系と気体状態の酸とを接触させる方法が挙げられる。
 前段反応系と酸とを接触させる際には、一括でこれらの成分を混合してもよいし、酸を少量ずつ分割して前段反応系に添加して接触してもよく、前段反応系を少量に分割して酸に添加して接触させてもよい。前段反応系の発熱を抑制する点からは、前段反応系に酸を少量ずつ添加することが好ましい。
In the production method of the present invention, the method of contacting with an acid is not particularly limited, and examples include a method of contacting the pre-reaction system with an acid dissolved in water, and a method of contacting the pre-reaction system with a gaseous acid. be done.
When the former-stage reaction system and the acid are brought into contact with each other, these components may be mixed together, or the acid may be divided little by little and added to the former-stage reaction system for contact. It may be divided into small portions and added to the acid for contact. From the viewpoint of suppressing heat generation in the first-stage reaction system, it is preferable to add the acid little by little to the first-stage reaction system.
 酸の使用量は、1223ydの1当量に対して、0.01~10当量が好ましく、0.1~5当量がより好ましく、0.3~3当量がさらに好ましい。 The amount of acid used is preferably 0.01 to 10 equivalents, more preferably 0.1 to 5 equivalents, and even more preferably 0.3 to 3 equivalents, relative to 1 equivalent of 1223 yd.
 前段反応系と酸とを接触させる際の温度は特に制限されないが、1233ydの収率がより優れる点で、-40~100℃が好ましく、-20~60℃がより好ましい。
 反応圧力としては、反応活性および耐圧反応器の入手性の点から、0~30MPaGが好ましく、0~10MPaGがより好ましい。
 前段反応系と酸との接触時間は特に制限されないが、1233ydの収率がより優れる点および生産性の点で、バッチ式の場合には、0.001~100時間が好ましく、0.002~50時間がより好ましい。連続式の場合には、0.001~50時間が好ましく、0.002~20時間がより好ましい。接触時間は、バッチ式で行う場合、前段反応系と酸の反応器内の接触時間であり、連続式で行う場合、前段反応系と酸の反応器内での滞留時間である。
The temperature at which the first-stage reaction system and the acid are brought into contact is not particularly limited, but -40 to 100°C is preferable, and -20 to 60°C is more preferable, in terms of better yield of 1233 yd.
The reaction pressure is preferably from 0 to 30 MPaG, more preferably from 0 to 10 MPaG, from the viewpoint of reaction activity and availability of a pressure-resistant reactor.
The contact time between the first stage reaction system and the acid is not particularly limited, but in the case of a batch system, from the viewpoint of better yield of 1233 yd and productivity, 0.001 to 100 hours is preferable, and 0.002 to 0.002 50 hours is more preferred. In the case of a continuous system, 0.001 to 50 hours is preferable, and 0.002 to 20 hours is more preferable. The contact time is the contact time between the first-stage reaction system and the acid in the reactor when the reaction is performed batchwise, and the residence time between the first-stage reaction system and the acid in the reactor when the reaction is continuously performed.
 前段反応系と酸との接触において、上述した溶媒の存在下にて実施してもよい。
 例えば、前段反応系が溶媒を含む場合、溶媒を含む前段反応系と酸とを接触してもよい。
The contact between the former-stage reaction system and the acid may be carried out in the presence of the solvent described above.
For example, when the pre-reaction system contains a solvent, the pre-reaction system containing the solvent may be brought into contact with the acid.
 上記手順を実施することにより、1233ydが得られる。
 なお、前段反応系と酸との混合で得られる生成物中には、不純物が含まれている場合がある。
 不純物とは、1223ydの製造原料、1233ydの製造原料(具体的には、1223yd)、1233ydを製造する際に1233yd以外に生成する副生物、金属塩、0価の金属、溶媒、酸等が挙げられる。
 1223ydの製造原料としては、例えば、後述する224caを経て1223ydを製造する場合は、未反応の224caと、副生成物である1,3-ジクロロ-1,1,2,2-テトラフルオロプロパン(234cc)と、3-クロロ-1,1,2,2-テトラフルオロプロパン(244ca)とを含みうる。
1233yd is obtained by carrying out the above procedure.
The product obtained by mixing the first-stage reaction system and the acid may contain impurities.
Impurities include raw materials for producing 1223yd, raw materials for producing 1233yd (specifically, 1223yd), by-products produced other than 1233yd when producing 1233yd, metal salts, zero-valent metals, solvents, acids, and the like. be done.
Raw materials for producing 1223yd include, for example, unreacted 224ca and by-product 1,3-dichloro-1,1,2,2-tetrafluoropropane ( 234cc) and 3-chloro-1,1,2,2-tetrafluoropropane (244ca).
 なお、生成物中に上記不純物が含まれる場合、不純物は、蒸留、抽出蒸留、共沸蒸留、膜分離、二層分離、吸着等の既知の手段により除去してもよい。 When the above impurities are contained in the product, the impurities may be removed by known means such as distillation, extractive distillation, azeotropic distillation, membrane separation, two-layer separation, and adsorption.
 上記既知の手段で精製して得られた1233ydには、不純物が含まれている場合がある。
 不純物としては、1223yd、234cc、244ca等が含まれうる。
 上記不純物の含有量は、精製された生成物全量に対して、10質量%以下が好ましく、5質量%以下がより好ましく、1質量%以下がさらに好ましく、0.1質量%以下が特に好ましい。
1233yd obtained by purification by the above known means may contain impurities.
Impurities may include 1223yd, 234cc, 244ca, and the like.
The content of the impurities is preferably 10% by mass or less, more preferably 5% by mass or less, even more preferably 1% by mass or less, and particularly preferably 0.1% by mass or less, relative to the total amount of the purified product.
 本発明における出発原料である1223ydとしては、224caを、非プロトン性溶媒中で脱フッ素反応および脱塩素反応させて得られた1223ydを用いることが好ましい。
 DMFやジグライムのような非プロトン性溶媒中で、224caを脱フッ素反応および脱塩素反応させると、副生成物である234ccの生成が抑制され、1223ydの選択率が向上する。
 上記理由の詳細は不明であるが、非プロトン性溶媒中では、プロトン源が存在しないため、224caを脱フッ素反応および脱塩素反応させた際に、224caの3位の炭素原子に結合している塩素原子が引き抜かれた後、3位の炭素原子に水素原子が結合する副反応が起こりにくく、1223ydの選択率が向上すると考えられる。
As 1223yd which is a starting material in the present invention, it is preferable to use 1223yd obtained by subjecting 224ca to defluorination and dechlorination reactions in an aprotic solvent.
Defluorination and dechlorination of 224ca in an aprotic solvent such as DMF or diglyme suppresses the formation of by-product 234cc and improves the selectivity of 1223yd.
Although the details of the above reason are unknown, in an aprotic solvent, since there is no proton source, when 224ca is subjected to defluorination and dechlorination reactions, it binds to the carbon atom at the 3-position of 224ca. After the chlorine atom is abstracted, a side reaction in which a hydrogen atom bonds to the carbon atom at the 3-position is unlikely to occur, and the selectivity of 1223yd is considered to be improved.
 なお、224caの脱フッ素反応および脱塩素反応は、液相反応で行う。液相反応で行うとは、液体状態の224caを反応させることをいう。 The defluorination reaction and dechlorination reaction of 224ca are carried out in a liquid phase reaction. Carrying out a liquid phase reaction means reacting 224ca in a liquid state.
 224caの製造方法としては、例えば、特許第5413451号に記載の方法が挙げられる。 A method for producing 224ca includes, for example, the method described in Japanese Patent No. 5413451.
 224caの脱フッ素反応および脱塩素反応で使用される非プロトン性溶媒として、好ましい溶媒としては、ベンゼン、トルエン、キシレン、ベンゼン等の芳香族炭化水素、ペンタン、ヘキサン、シクロヘキサン、ヘプタン、シクロペンタン等の脂肪族炭化水素、クロロホルム、ジクロロメタン、四塩化炭素等のハロゲン化炭化水素、N,N-ジメチルホルムアミド(DMF)、ジメチルアセトアミド、N-メチルピロリドン等のアミド、ジメチルスルホキシド(DMSO)等のスルホキシド;スルホラン等のスルホン、ジメチルエーテル(DME)、ジエチルエーテル、ジイソプロピルエーテル、ジグライム、テトラヒドロフラン(THF)、1,4-ジオキサン、t-ブチルメチルエーテル等のエーテル、アセトニトリル等のニトリル、酢酸メチル、酢酸エチル、プロピオンカーボネート等のエステル、アセトン、メチルエチルケトン等のケトン等が挙げられる。中でも、1233ydの収率がより優れる点で、DMF、アセトニトリル、DMSOが好ましい。 Preferred aprotic solvents used in the defluorination and dechlorination reactions of 224ca include aromatic hydrocarbons such as benzene, toluene, xylene, and benzene; Aliphatic hydrocarbons, chloroform, dichloromethane, halogenated hydrocarbons such as carbon tetrachloride, N,N-dimethylformamide (DMF), dimethylacetamide, amides such as N-methylpyrrolidone, sulfoxides such as dimethylsulfoxide (DMSO); sulfolane Sulfones such as dimethyl ether (DME), diethyl ether, diisopropyl ether, diglyme, tetrahydrofuran (THF), 1,4-dioxane, ethers such as t-butyl methyl ether, nitriles such as acetonitrile, methyl acetate, ethyl acetate, propion carbonate ketones such as esters such as acetone and methyl ethyl ketone. Among them, DMF, acetonitrile, and DMSO are preferable because the yield of 1233yd is more excellent.
 非プロトン性溶媒の含有量は、224caの含有量に対して、1~500質量%が好ましく、10~250質量%がより好ましい。 The content of the aprotic solvent is preferably 1-500% by mass, more preferably 10-250% by mass, relative to the content of 224ca.
 脱フッ素反応および脱塩素反応の好適態様の1つとしては、アルカリ土類金属および遷移金属からなる群から選ばれる少なくとも1種の金属(以下、これらを総称して「特定金属」ともいう。)の存在下にて224caを脱フッ素反応および脱塩素反応させる態様が挙げられる。 One preferred embodiment of the defluorination reaction and dechlorination reaction is at least one metal selected from the group consisting of alkaline earth metals and transition metals (hereinafter collectively referred to as "specific metals"). and defluorinating and dechlorinating 224ca in the presence of.
 アルカリ土類金属の具体例としては、マグネシウム、カルシウム、ストロンチウムが挙げられる。遷移金属の具体例としては、亜鉛、銅、ニッケルが挙げられる。これらのうち、反応性の点から、マグネシウム、亜鉛、銅、ニッケルが好ましく、マグネシウム、亜鉛がより好ましい。
 なお、上記特定金属は、2種以上を併用してもよい。
 上記特定金属は、反応性を向上させるために、粉末状で使用されてもよく、金属片を使用してもよく、ペレット状に成形されて使用されてもよい。
Specific examples of alkaline earth metals include magnesium, calcium and strontium. Specific examples of transition metals include zinc, copper and nickel. Among these, magnesium, zinc, copper and nickel are preferred, and magnesium and zinc are more preferred, from the viewpoint of reactivity.
Two or more of the specific metals may be used in combination.
In order to improve the reactivity, the specific metal may be used in the form of powder, metal pieces, or pellets.
 上記特定金属の使用量は、反応収率および1223ydの選択率の点から、224caの1当量に対して、0.01~10当量が好ましく、0.1~5当量がより好ましく、0.3~3当量がさらに好ましい。 The amount of the specific metal used is preferably 0.01 to 10 equivalents, more preferably 0.1 to 5 equivalents, more preferably 0.3 equivalents, relative to 1 equivalent of 224ca, from the viewpoint of reaction yield and 1223yd selectivity. ~3 equivalents is more preferred.
 224caの脱フッ素反応および脱塩素反応における反応温度(特に、特定金属の存在下での反応温度)は、反応活性および1223ydの選択率の点から、0~250℃が好ましく、30~200℃がより好ましく、50~170℃がさらに好ましい。 The reaction temperature in the defluorination reaction and dechlorination reaction of 224ca (especially the reaction temperature in the presence of a specific metal) is preferably 0 to 250° C., preferably 30 to 200° C., from the viewpoint of reaction activity and 1223 yd selectivity. More preferably, it is 50 to 170°C.
 工程3における反応圧力は、反応活性および耐圧反応器の入手性の点から、0~30MPaGが好ましく、0~10MPaGがより好ましい。 The reaction pressure in step 3 is preferably 0 to 30 MPaG, more preferably 0 to 10 MPaG, in terms of reaction activity and the availability of pressure-resistant reactors.
 工程3における反応時間(特に、特定金属の存在下での反応時間)は、バッチ式の場合には0.1~100時間が好ましく、1~30時間がより好ましい。連続式の場合には、0.01~50時間が好ましく、0.1~20時間がより好ましい。なお、連続式の場合の反応時間は、反応器内での原料の滞留時間を意味する。 The reaction time in step 3 (especially the reaction time in the presence of a specific metal) is preferably 0.1 to 100 hours, more preferably 1 to 30 hours, in the case of a batch system. In the case of a continuous system, it is preferably 0.01 to 50 hours, more preferably 0.1 to 20 hours. In addition, the reaction time in the case of the continuous system means the retention time of the raw material in the reactor.
 上記特定金属の存在下、224caの脱フッ素反応および脱塩素反応を実施する方法としては、例えば、非プロトン性溶媒中に粉末状態の上記特定金属を分散させる方法が挙げられる。 Examples of methods for carrying out the defluorination reaction and dechlorination reaction of 224ca in the presence of the specific metal include a method of dispersing the specific metal in powder form in an aprotic solvent.
 上記1223ydの製造方法における脱フッ素反応および脱塩素反応のさらに好適態様の1つとしては、活性化剤の存在下にて、224caを脱フッ素反応および脱塩素反応させる態様が挙げられる。この態様においては、活性化剤と共に上記特定金属を併用するのが好ましい。つまり、上記特定金属および活性化剤の存在下にて、224caを脱フッ素反応および脱塩素反応させる態様が好ましい。また、上記特定金属と活性化剤とを事前に混合することにより活性化した金属を得ることもできる。活性化した金属を用いることで、上記特定金属および活性化剤を併用した際と同様の効果を得ることができる。 A further preferred embodiment of the defluorination reaction and dechlorination reaction in the method for producing 1223yd is a mode in which 224ca is subjected to defluorination reaction and dechlorination reaction in the presence of an activator. In this aspect, it is preferable to use the above specific metal together with the activator. That is, it is preferable to defluorinate and dechlorinate 224ca in the presence of the specific metal and activator. Also, an activated metal can be obtained by pre-mixing the specific metal and an activator. By using an activated metal, it is possible to obtain the same effects as when the specific metal and the activator are used in combination.
 活性化剤は、224caの脱フッ素反応および脱塩素反応を活性化させるものであればよく、例えば、脱フッ素反応および脱塩素反応に用いる金属の塩化物(例えば、亜鉛使用時は塩化亜鉛、マグネシウム使用時は塩化マグネシウム)、1,2-ジブロモエタン、塩化水素が挙げられる。なかでも、塩化亜鉛が好ましい。
 なお、上記活性化剤は、2種以上を併用してもよい。
 活性化剤の使用量は、反応収率、1223ydの選択率、および、経済性の点から、224caの1当量に対して、0.001~10当量が好ましく、0.01~2当量がより好ましく、0.01~1.5当量がさらに好ましい。
The activator may be one that activates the defluorination reaction and dechlorination reaction of 224ca. Magnesium chloride when used), 1,2-dibromoethane, and hydrogen chloride. Among them, zinc chloride is preferred.
In addition, the said activator may use 2 or more types together.
The amount of the activator used is preferably 0.001 to 10 equivalents, more preferably 0.01 to 2 equivalents, relative to 1 equivalent of 224ca, from the viewpoints of reaction yield, 1223yd selectivity, and economy. Preferred is 0.01 to 1.5 equivalents.
 224caの脱フッ素反応および脱塩素反応にて得られた生成物中には、目的物である1223yd以外に、不純物が含まれ得る。
 不純物の具体例としては、未反応の224ca、234ccが挙げられる。
 生成物に不純物が含まれる場合、得られた生成物から、1223ydを分離する処理を実施することが好ましい。より具体的には、得られた生成物を濾過する処理、得られた生成物を蒸留して、1223ydを主成分とする留分を得る処理等が挙げられる。なお、ここで「1223ydを主成分」とは、留分中で1223ydの質量が最も多いことを意味し、留分全質量に対して1223ydの含有量が、90質量%以上が好ましく、95質量%がより好ましい。
 上述したように、目的物である1223ydと原料である224caとの沸点の差が40~50℃と大きいため、蒸留によって1223ydと224caとを容易に分離できる。
The products obtained by the defluorination and dechlorination reactions of 224ca may contain impurities in addition to the target 1223yd.
Specific examples of impurities include unreacted 224ca and 234cc.
If the product contains impurities, it is preferable to carry out a treatment to separate 1223yd from the obtained product. More specifically, a treatment of filtering the obtained product, a treatment of distilling the obtained product to obtain a fraction containing 1223yd as a main component, and the like can be mentioned. Here, "1223 yd is the main component" means that the mass of 1223 yd is the largest in the fraction, and the content of 1223 yd with respect to the total mass of the fraction is preferably 90% by mass or more, and 95 mass % is more preferred.
As described above, since the boiling point difference between the target 1223yd and the raw material 224ca is as large as 40 to 50° C., 1223yd and 224ca can be easily separated by distillation.
 蒸留操作では、充填塔または棚段塔等の蒸留装置できる。なお、複数の不純物から目的化合物である1223ydを効率よく精製、回収するために、例えば、多段蒸留が好ましい。多段蒸留を用いる場合は、その理論段数は20段以上が好ましい。
 蒸留操作の際の温度(例えば、蒸留釜の温度)としては、エネルギーコストの点から、80℃以下が好ましく、70℃以下がより好ましい。なお、蒸留操作の際の温度は、1223yd(Z)の沸点である58℃以上が好ましい。
For the distillation operation, a distillation apparatus such as a packed column or a plate column can be used. In order to efficiently purify and recover the target compound 1223yd from a plurality of impurities, for example, multi-stage distillation is preferable. When multi-stage distillation is used, the theoretical number of stages is preferably 20 or more.
The temperature (for example, the temperature of the still) during the distillation operation is preferably 80° C. or lower, more preferably 70° C. or lower, from the viewpoint of energy cost. The temperature during the distillation operation is preferably 58° C. or higher, which is the boiling point of 1223 yd (Z).
 以下に、例により本発明をより詳細に説明するが、本発明はこれらに限定されない。後述する例1および2は、実施例に該当する。 The present invention will be described in more detail below with examples, but the present invention is not limited to these. Examples 1 and 2, which will be described later, correspond to examples.
(ガスクロマトグラフの条件)
 以下の各種化合物の製造において、得られた生成物の組成分析はガスクロマトグラフ(GC)を用いて行った。カラムはDB-1301(長さ60m×内径250μm×厚み1μm、アジレント・テクノロジー株式会社製)を用いた。
(Gas chromatograph conditions)
Composition analysis of the products obtained in the production of various compounds described below was performed using a gas chromatograph (GC). DB-1301 (length 60 m×inner diameter 250 μm×thickness 1 μm, manufactured by Agilent Technologies) was used as a column.
<1223ydの製造例>
(224caの製造)
 下記反応式にしたがって、次の手順で224caを製造した。
 CHCl3 + トリフルオロエチレン(TFE) → 224ca
<Production example of 1223yd>
(Manufacture of 224ca)
According to the following reaction scheme, 224ca was produced by the following procedure.
CHCl 3 + trifluoroethylene (TFE) → 224ca
 まず、500mLステンレス製オートクレーブに、無水塩化アルミニウム(25g、0.19mol)、CHCl3(500g、4.19mol)および224ca(100g、0.45mol)を入れて、反応液を撹拌しながら減圧脱気した後、TFEをオートクレーブ内が0.05MPaとなるまで供給し、オートクレーブ内を80℃に昇温した。その後、オートクレーブ内の圧力を0.8MPaで維持しながら、TFEをさらに供給した。オートクレーブに供給されたTFEは総量で0.17kg(1.65mol)であった。 First, anhydrous aluminum chloride (25 g, 0.19 mol), CHCl 3 (500 g, 4.19 mol) and 224ca (100 g, 0.45 mol) were placed in a 500 mL stainless steel autoclave, and the reaction solution was degassed under reduced pressure while stirring. After that, TFE was supplied until the inside of the autoclave reached 0.05 MPa, and the inside of the autoclave was heated to 80°C. After that, TFE was further supplied while maintaining the pressure in the autoclave at 0.8 MPa. The total amount of TFE supplied to the autoclave was 0.17 kg (1.65 mol).
 さらに反応液を1時間撹拌した後、室温まで冷却して、反応液をガスクロマトグラフで分析したところ、CHCl3の転化率は33%であり、224caの選択率は84%であった。反応後の反応液を濾別し得られた粗液に、モレキュラーシーブ4Aを102g加え一晩撹拌して、脱水した。撹拌後の粗液を濾別し、得られた粗生成物を蒸留精製することにより224ca(230g、1.05mol)を製造した。 After further stirring the reaction solution for 1 hour, it was cooled to room temperature, and the reaction solution was analyzed by gas chromatography to find that the conversion of CHCl 3 was 33% and the selectivity of 224ca was 84%. 102 g of molecular sieve 4A was added to the crude liquid obtained by filtering the reaction liquid after the reaction, and the mixture was stirred overnight for dehydration. 224ca (230 g, 1.05 mol) was produced by filtering the crude liquid after stirring and purifying the resulting crude product by distillation.
(1223ydの製造)
 10℃に冷却した還流管を上部に接続した30ccのガラス製フラスコに、DMF(関東化学製)を9.44g、亜鉛粉末(D50;6~9μm、有機合成用:富士フィルム和光純薬株式会社製)を1.57g、塩化亜鉛(純正化学製)を1.36g、224caを4.39g、および、磁気回転子を仕込んだ。
 次いでフラスコをオイルバスに設置し、反応温度である130℃まで昇温させた。昇温は約30分で行い、昇温中および反応中は、マグネチックスターラーによって磁気回転子を300rpmで回転させた。130℃で5.5時間保持後、オイルバスの温度を下げ、室温まで冷却した。室温まで下がった後に、反応液をGCにて分析を行った。GC分析により、反応液の組成を分析し、転化率および選択率を算出した。
 反応液中には1223ydが含まれていた。
 なお、224caの転化率は65.4%であり、1223ydの選択率は94.4%(1223yd(Z)の選択率は83.5%、1223yd(E)の選択率は10.9%)であった。また、234ccへの選択率は1.5%であった。
 生成物の合計が150g程度となるまで上記反応を繰り返した後、該生成物について蒸留精製を行い、蒸留塔の塔頂から1223yd(Z)を93.2質量%、1223yd(E)を6.0質量%、234ccを0.2質量%含む留出液を得た。
 上記留出液を使用して、以下の1233ydの製造を行った。
(Production of 1223 yd)
9.44 g of DMF (manufactured by Kanto Kagaku), zinc powder (D50; 6 to 9 μm, for organic synthesis: Fujifilm Wako Pure Chemical Industries, Ltd.) are placed in a 30 cc glass flask connected to the top with a reflux tube cooled to 10 ° C. ), 1.36 g of zinc chloride (manufactured by Junsei Chemical Co., Ltd.), 4.39 g of 224ca, and a magnetic rotor.
The flask was then placed in an oil bath and heated to 130° C., which is the reaction temperature. The temperature was raised in about 30 minutes, and the magnetic rotor was rotated at 300 rpm by a magnetic stirrer during the temperature rise and reaction. After holding at 130° C. for 5.5 hours, the temperature of the oil bath was lowered and cooled to room temperature. After cooling down to room temperature, the reaction liquid was analyzed by GC. The composition of the reaction solution was analyzed by GC analysis, and the conversion rate and selectivity were calculated.
1223 yd was contained in the reaction solution.
The conversion rate of 224ca was 65.4% and the selectivity of 1223yd was 94.4% (the selectivity of 1223yd (Z) was 83.5% and the selectivity of 1223yd (E) was 10.9%). Met. Also, the selectivity to 234cc was 1.5%.
After repeating the above reaction until the total amount of the product reached about 150 g, the product was purified by distillation, and 93.2% by mass of 1223 yd (Z) and 6.0% of 1223 yd (E) were removed from the top of the distillation column. A distillate containing 0% by mass and 0.2% by mass of 234 cc was obtained.
Using the above distillate, the following 1233yd was produced.
<例1>
 10mlのガラス容器に、亜鉛粉末(D50;6~9μm、有機合成用:富士フィルム和光純薬株式会社製)0.165g、CuCl(関東化学社製)0.021g、DMF(関東化学社製)1.9g、上記留出液0.349gを加えて、室温で得られた混合物を撹拌した。
 混合して4.5時間経過後、混合物に、イオン交換水0.05g、pH4緩衝溶液(酢酸/酢酸ナトリウム)0.03gを加えた。その後、撹拌を続けて、混合開始から28時間後、混合物に1M HCl水溶液を1ml加えて、反応を停止した。得られた混合物の上澄み部分を採取し、GCにて分析を行った。
 得られた混合物中には1233ydが含まれていた。
 なお、1223ydの転化率は82.2%であり、1233ydの選択率は78.0%であった(1233yd(Z)への選択率は76.2%、1233yd(E)への選択率は1.8%)。
<Example 1>
0.165 g of zinc powder (D50; 6 to 9 μm, for organic synthesis: manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.), 0.021 g of CuCl (manufactured by Kanto Chemical Co., Ltd.), and DMF (manufactured by Kanto Chemical Co., Ltd.) are placed in a 10 ml glass container. 1.9 g and 0.349 g of the above distillate were added and the resulting mixture was stirred at room temperature.
After 4.5 hours of mixing, 0.05 g of ion-exchanged water and 0.03 g of pH 4 buffer solution (acetic acid/sodium acetate) were added to the mixture. Thereafter, stirring was continued, and 28 hours after the start of mixing, 1 ml of 1M HCl aqueous solution was added to the mixture to stop the reaction. A supernatant portion of the resulting mixture was sampled and analyzed by GC.
The resulting mixture contained 1233yd.
The conversion rate of 1223yd was 82.2% and the selectivity of 1233yd was 78.0% (selectivity to 1233yd (Z) was 76.2%, selectivity to 1233yd (E) was 1.8%).
<例2>
 10mlのガラス容器に、亜鉛粉末(D50;6~9μm、有機合成用:富士フィルム和光純薬株式会社製)0.161g、CuCl(関東化学社製)0.024g、DMF(関東化学社製)1.89g、上記留出液0.361gを加えて、混合物を加熱(温度:60℃)しながら撹拌した。
 混合して2時間経過後、混合物に、pH4緩衝溶液(酢酸/酢酸ナトリウム)0.05gを加えた。その後、撹拌を続けて、混合開始から4時間後、加熱を止め室温まで冷却した後、混合物に1M HCl水溶液を1ml加えて、反応を停止した。得られた混合物の上澄み部分を採取し、GCにて分析を行った。
 得られた混合物中には1233ydが含まれていた。
 なお、1223ydの転化率は62.8%であり、1233ydの選択率は76.8%であった。(1233yd(Z)への選択率は75.4%、1233yd(E)への選択率は1.4%)
<Example 2>
0.161 g of zinc powder (D50; 6 to 9 μm, for organic synthesis: manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.), 0.024 g of CuCl (manufactured by Kanto Chemical Co., Ltd.), and DMF (manufactured by Kanto Chemical Co., Ltd.) are placed in a 10 ml glass container. 1.89 g and 0.361 g of the above distillate were added, and the mixture was stirred while being heated (temperature: 60°C).
After 2 hours of mixing, 0.05 g of pH 4 buffer solution (acetic acid/sodium acetate) was added to the mixture. Thereafter, stirring was continued, and after 4 hours from the start of mixing, the heating was stopped and the mixture was cooled to room temperature. A supernatant portion of the resulting mixture was sampled and analyzed by GC.
The resulting mixture contained 1233yd.
The conversion of 1223yd was 62.8% and the selectivity of 1233yd was 76.8%. (selectivity to 1233yd(Z) is 75.4%, selectivity to 1233yd(E) is 1.4%)
<例3>
 10mlのガラス容器に、マグネシウム(削り状、グリニャール反応用:富士フィルム和光純薬株式会社製)0.060g、CuCl(関東化学社製)0.022g、DMF(関東化学社製)1.90g、上記留出液0.360gを加えて、混合物を加熱(温度:60℃)しながら撹拌した。
 混合して2時間経過後、混合物に、pH4緩衝溶液(酢酸/酢酸ナトリウム)0.05gを加えた。その後、撹拌を続けて、混合開始から4時間後、加熱を止め室温まで冷却した後、混合物に1M HCl水溶液を1ml加えて、反応を停止した。得られた混合物の上澄み部分を採取し、GCにて分析を行った。
 得られた混合物中には1233ydが含まれていた。
 なお、1223ydの転化率は45.6%であり、1233ydの選択率は73.1%であった。(1233yd(Z)への選択率は71.9%、1233yd(E)への選択率は1.2%)
<Example 3>
In a 10 ml glass container, 0.060 g of magnesium (shavings, for Grignard reaction: manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.), 0.022 g of CuCl (manufactured by Kanto Chemical Co., Ltd.), 1.90 g of DMF (manufactured by Kanto Chemical Co., Ltd.), 0.360 g of the above distillate was added, and the mixture was stirred while being heated (temperature: 60°C).
After 2 hours of mixing, 0.05 g of pH 4 buffer solution (acetic acid/sodium acetate) was added to the mixture. Thereafter, stirring was continued, and after 4 hours from the start of mixing, the heating was stopped and the mixture was cooled to room temperature. A supernatant portion of the resulting mixture was sampled and analyzed by GC.
The resulting mixture contained 1233yd.
The conversion of 1223yd was 45.6% and the selectivity of 1233yd was 73.1%. (Selectivity to 1233yd(Z) is 71.9%, selectivity to 1233yd(E) is 1.2%)
<例4>
 10mlのガラス容器に、亜鉛粉末(D50;6~9μm、有機合成用:富士フィルム和光純薬株式会社製)0.160g、NiCl(無水物、富士フィルム和光純薬株式会社製)0.034g、DMF(関東化学社製)1.89g、上記留出液0.355gを加えて、混合物を加熱(温度:60℃)しながら撹拌した。
 混合して2時間経過後、混合物に、pH4緩衝溶液(酢酸/酢酸ナトリウム)0.05gを加えた。その後、撹拌を続けて、混合開始から4時間後、加熱を止め室温まで冷却した後、混合物に1M HCl水溶液を1ml加えて、反応を停止した。得られた混合物の上澄み部分を採取し、GCにて分析を行った。
 得られた混合物中には1233ydが含まれていた。
 なお、1223ydの転化率は29.8%であり、1233ydの選択率は65.0%であった。(1233yd(Z)への選択率は63.4%、1233yd(E)への選択率は1.6%)
<Example 4>
In a 10 ml glass container, 0.160 g of zinc powder (D50; 6 to 9 μm, for organic synthesis: manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.), 0.034 g of NiCl 2 (anhydride, manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) , DMF (manufactured by Kanto Chemical Co., Ltd.) 1.89 g, and the above distillate 0.355 g were added, and the mixture was stirred while being heated (temperature: 60° C.).
After 2 hours of mixing, 0.05 g of pH 4 buffer solution (acetic acid/sodium acetate) was added to the mixture. Thereafter, stirring was continued, and after 4 hours from the start of mixing, the heating was stopped and the mixture was cooled to room temperature. A supernatant portion of the resulting mixture was sampled and analyzed by GC.
The resulting mixture contained 1233yd.
The conversion of 1223yd was 29.8% and the selectivity of 1233yd was 65.0%. (Selectivity to 1233yd(Z) is 63.4%, selectivity to 1233yd(E) is 1.6%)
 なお、2021年06月04日に出願された日本特許出願2021-094497号の明細書、特許請求の範囲および要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。 In addition, the entire contents of the specification, claims and abstract of Japanese Patent Application No. 2021-094497 filed on June 04, 2021 are cited here and incorporated as disclosure of the specification of the present invention. is.

Claims (10)

  1.  1,3-ジクロロ-2,3,3-トリフルオロプロペンと金属塩と0価の金属とを接触させ、次いで酸と接触させて、1-クロロ-2,3,3-トリフルオロプロペンを製造する、1-クロロ-2,3,3-トリフルオロプロペンの製造方法。 Contacting 1,3-dichloro-2,3,3-trifluoropropene with a metal salt and a zero-valent metal, and then contacting with an acid to produce 1-chloro-2,3,3-trifluoropropene A method for producing 1-chloro-2,3,3-trifluoropropene.
  2.  前記金属塩に含まれる金属原子が、銅原子、鉄原子、コバルト原子またはニッケル原子である、請求項1に記載の製造方法。 The production method according to claim 1, wherein the metal atom contained in the metal salt is a copper atom, an iron atom, a cobalt atom or a nickel atom.
  3.  前記金属塩が、塩化銅である、請求項1または2に記載の製造方法。 The production method according to claim 1 or 2, wherein the metal salt is copper chloride.
  4.  前記0価の金属が、亜鉛、マグネシウム、鉄、コバルトまたはニッケルである、請求項1~3のいずれか1項に記載の製造方法。 The production method according to any one of claims 1 to 3, wherein the zero-valent metal is zinc, magnesium, iron, cobalt or nickel.
  5.  前記0価の金属が、亜鉛である、請求項4に記載の製造方法。 The manufacturing method according to claim 4, wherein the zero-valent metal is zinc.
  6.  前記酸が、塩化水素、硫酸、硝酸、酢酸またはリン酸である、請求項1~5のいずれか1項に記載の製造方法。 The production method according to any one of claims 1 to 5, wherein the acid is hydrogen chloride, sulfuric acid, nitric acid, acetic acid or phosphoric acid.
  7.  前記1,3-ジクロロ-2,3,3-トリフルオロプロペンと前記金属塩と前記0価の金属とを接触させる際の温度が、0~200℃である、請求項1~6のいずれか1項に記載の製造方法。 7. The temperature at which the 1,3-dichloro-2,3,3-trifluoropropene, the metal salt and the zerovalent metal are brought into contact is 0 to 200° C., according to any one of claims 1 to 6. 1. The manufacturing method according to item 1.
  8.  前記1-クロロ-2,3,3-トリフルオロプロペンの製造を液相で行う、請求項1~7のいずれか1項に記載の製造方法。 The production method according to any one of claims 1 to 7, wherein the production of 1-chloro-2,3,3-trifluoropropene is carried out in a liquid phase.
  9.  前記1-クロロ-2,3,3-トリフルオロプロペンの製造を溶媒の存在下で行う、請求項8に記載の製造方法。 The production method according to claim 8, wherein the production of 1-chloro-2,3,3-trifluoropropene is carried out in the presence of a solvent.
  10.  前記1,3-ジクロロ-2,3,3-トリフルオロプロペンとして、1,3,3-トリクロロ-1,1,2,2-テトラフルオロプロパンを非プロトン性溶媒中で脱フッ素反応および脱塩素反応させて得られた1,3-ジクロロ-2,3,3-トリフルオロプロペンを用いる、請求項1~9のいずれか1項に記載の製造方法。 As the 1,3-dichloro-2,3,3-trifluoropropene, 1,3,3-trichloro-1,1,2,2-tetrafluoropropane is subjected to defluorination and dechlorination in an aprotic solvent. The production method according to any one of claims 1 to 9, wherein 1,3-dichloro-2,3,3-trifluoropropene obtained by the reaction is used.
PCT/JP2022/022263 2021-06-04 2022-06-01 Method for producing 1-chloro-2,3,3-trifluoropropene WO2022255397A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280038111.4A CN117396453A (en) 2021-06-04 2022-06-01 Process for producing 1-chloro-2, 3-trifluoropropene
JP2023525883A JPWO2022255397A1 (en) 2021-06-04 2022-06-01

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021094497 2021-06-04
JP2021-094497 2021-06-04

Publications (1)

Publication Number Publication Date
WO2022255397A1 true WO2022255397A1 (en) 2022-12-08

Family

ID=84323462

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/022263 WO2022255397A1 (en) 2021-06-04 2022-06-01 Method for producing 1-chloro-2,3,3-trifluoropropene

Country Status (3)

Country Link
JP (1) JPWO2022255397A1 (en)
CN (1) CN117396453A (en)
WO (1) WO2022255397A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016136744A1 (en) * 2015-02-27 2016-09-01 ダイキン工業株式会社 Method for producing 1-chloro-2,3,3-trifluoropropene
WO2017018412A1 (en) * 2015-07-27 2017-02-02 旭硝子株式会社 Method for producing 1-chloro-2,3,3-trifluoropropene
WO2019189024A1 (en) * 2018-03-30 2019-10-03 Agc株式会社 Method for producing 1-chloro-2,3,3-trifluoropropene
JP2021107328A (en) * 2019-12-27 2021-07-29 Agc株式会社 Production method of chlorine-containing propene
JP2021107346A (en) * 2019-12-27 2021-07-29 Agc株式会社 Production process for 1,3-dichloro-2,3,3-trifluoropropene

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016136744A1 (en) * 2015-02-27 2016-09-01 ダイキン工業株式会社 Method for producing 1-chloro-2,3,3-trifluoropropene
WO2017018412A1 (en) * 2015-07-27 2017-02-02 旭硝子株式会社 Method for producing 1-chloro-2,3,3-trifluoropropene
WO2019189024A1 (en) * 2018-03-30 2019-10-03 Agc株式会社 Method for producing 1-chloro-2,3,3-trifluoropropene
JP2021107328A (en) * 2019-12-27 2021-07-29 Agc株式会社 Production method of chlorine-containing propene
JP2021107346A (en) * 2019-12-27 2021-07-29 Agc株式会社 Production process for 1,3-dichloro-2,3,3-trifluoropropene

Also Published As

Publication number Publication date
JPWO2022255397A1 (en) 2022-12-08
CN117396453A (en) 2024-01-12

Similar Documents

Publication Publication Date Title
CN107848917B (en) Method for producing 1-chloro-2, 3, 3-trifluoropropene
JP6088618B2 (en) Method for producing hexafluoro-2-butene
KR101386906B1 (en) Process For the Production of HFO Trans-1234ze from HFC-245fa
EP2146945B1 (en) Method for producing trans-1, 3, 3, 3-tetrafluoropropene
EP2948420B1 (en) Process for producing chlorinated hydrocarbons
EP2814796B1 (en) Process for making tetrafluoropropene
JP6965397B2 (en) Method for producing chlorotrifluoroethylene
CA2836075A1 (en) Method for mitigating the formation of by-products during the production of haloalkane compounds
JP5805812B2 (en) Integrated HFC Transformer-1234ZE Manufacturing Method
JP5246327B2 (en) Method for producing fluorine-containing propene by gas phase fluorination
CN103038198B (en) The manufacture method of fluoroolefins
JP7287391B2 (en) Method for producing fluorine-containing propene
JP2017001990A (en) Manufacturing method of 1,2-dichloro-3,3,3-trifluoropropene
JP7331700B2 (en) Method for producing 1-chloro-2,3,3,4,4,5,5-heptafluoropentene
WO2022255397A1 (en) Method for producing 1-chloro-2,3,3-trifluoropropene
WO2020218340A1 (en) Method for producing hydrochlorofluorocarbon, method for producing 1-chloro-2,3,3-trifluoropropene, and method for producing 1-chloro-2,3,3,4,4,5,5-heptafluoro-1-pentene
WO2001046099A1 (en) Method of making hydrofluorocarbons
JP2021107346A (en) Production process for 1,3-dichloro-2,3,3-trifluoropropene
JP2019151629A (en) Method of producing compound
CN117160497B (en) Catalyst and method for preparing hexafluoropropylene dimer
JP2001240568A (en) Preparation method of 1-chloroheptafluorocyclopentene
CN112979409A (en) Method for preparing 3,3, 3-trichloro-1, 1, 1-trifluoropropane by gas-phase catalytic chlorination
CN115803308A (en) Method for preparing 1-chloro-2,3,3-trifluoropropene
JP2013100250A (en) Method for producing methylacetylene

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22816143

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023525883

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE