WO2020218340A1 - Method for producing hydrochlorofluorocarbon, method for producing 1-chloro-2,3,3-trifluoropropene, and method for producing 1-chloro-2,3,3,4,4,5,5-heptafluoro-1-pentene - Google Patents

Method for producing hydrochlorofluorocarbon, method for producing 1-chloro-2,3,3-trifluoropropene, and method for producing 1-chloro-2,3,3,4,4,5,5-heptafluoro-1-pentene Download PDF

Info

Publication number
WO2020218340A1
WO2020218340A1 PCT/JP2020/017339 JP2020017339W WO2020218340A1 WO 2020218340 A1 WO2020218340 A1 WO 2020218340A1 JP 2020017339 W JP2020017339 W JP 2020017339W WO 2020218340 A1 WO2020218340 A1 WO 2020218340A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
chloro
production method
reaction
reactor
Prior art date
Application number
PCT/JP2020/017339
Other languages
French (fr)
Japanese (ja)
Inventor
達也 鎌塚
優 竹内
Original Assignee
Agc株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agc株式会社 filed Critical Agc株式会社
Priority to CN202080030172.7A priority Critical patent/CN113710636A/en
Priority to JP2021516160A priority patent/JPWO2020218340A1/ja
Publication of WO2020218340A1 publication Critical patent/WO2020218340A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/25Preparation of halogenated hydrocarbons by splitting-off hydrogen halides from halogenated hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/35Preparation of halogenated hydrocarbons by reactions not affecting the number of carbon or of halogen atoms in the reaction
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C19/00Acyclic saturated compounds containing halogen atoms
    • C07C19/08Acyclic saturated compounds containing halogen atoms containing fluorine
    • C07C19/10Acyclic saturated compounds containing halogen atoms containing fluorine and chlorine
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C21/00Acyclic unsaturated compounds containing halogen atoms
    • C07C21/02Acyclic unsaturated compounds containing halogen atoms containing carbon-to-carbon double bonds
    • C07C21/18Acyclic unsaturated compounds containing halogen atoms containing carbon-to-carbon double bonds containing fluorine
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B61/00Other general methods

Definitions

  • the present invention is a method for producing hydrochlorofluorocarbon, a method for producing 1-chloro-2,3,3-trifluoropropene, 1-chloro-2,3,3,4,5,5-heptafluoro-1. -Regarding the manufacturing method of pentene.
  • hydrochlorofluoroolefins have attracted attention as compounds that have little impact on the global environment and can be used in various applications such as cleaning agents, refrigerants, working fluids, propellants, heat media, foaming agents, and solvents.
  • HCFC hydrochlorofluorocarbon
  • Patent Document 1 describes a method of reacting an HCFC having a difluoromethylene group with hydrogen fluoride to fluorinate the HCFC.
  • An object of the present invention is to provide a method for producing HCFC, which can produce HCFC with a high selectivity.
  • the present invention relates to a method for producing 1-chloro-2,3,3-trifluoropropene, and 1-chloro-2,3,3,4,5,5-heptafluoro-1-pentene. Providing a manufacturing method is also an issue.
  • hydrofluorocarbon represented by the formula (1) described later is reacted with hydrogen chloride to produce hydrochlorofluorocarbon represented by the formula (2) described later.
  • a method for producing hydrochlorofluorocarbons (2) The production method according to (1), wherein the catalyst is a metal-containing catalyst. (3) The catalyst contains one or more selected from metal oxides, partial halides of metal oxides and metal halides, and the metal oxides, partial halides of metal oxides and metal halides are respectively.
  • the production method according to (1) or (2) which comprises at least one selected from Cr and Al.
  • L is, -CF 2 -, - CF 2 CF 2 -, - CF 2 -CF 2 -CF 2 -, - CF 2 -CHF-CF 2 - or -CF 2 -CH 2 -CF 2 - with The production method according to any one of (1) to (4).
  • (6) The production method according to any one of (1) to (5), wherein a is 1, b is 2, and c is 1.
  • 3-Chloro-1,1,2,2-tetrafluoropropane produced by the method according to (12) is subjected to a hydrogen fluoride reaction to 1-chloro-2,3,3-trifluoropropene.
  • a method for producing 1-chloro-2,3,3-trifluoropropene which comprises producing 1-chloro-2,3,3-trifluoropropene.
  • the hydrofluorocarbon represented by the formula (1) is 1,1,2,2,3,3,4,5-nonafluoropentane.
  • a method for producing HCFC which can produce HCFC with a high selectivity. Further, according to the present invention, a method for producing 1-chloro-2,3,3-trifluoropropene and 1-chloro-2,3,3,4,5,5-heptafluoro-1-. A method for manufacturing pentene can be provided.
  • the method for producing a hydrochlorofluorocarbon of the present invention is a hydrofluorocarbon represented by the formula (1) described later (hereinafter, “Compound 1”) in the presence of a catalyst. It is also described as) and hydrogen chloride to react to produce hydrochlorofluorocarbon represented by the formula (2) (hereinafter, also referred to as “Compound 2”). That is, the production method of the present invention is a method of producing compound 2 by contacting compound 1 with hydrogen chloride in the presence of a catalyst.
  • the components used in the production method of the present invention will be described in detail, and then the procedure of the production method will be described in detail. As the description of the components, compound 1 and compound 2 will be described in detail first.
  • Compound 1 is a compound represented by the formula (1). Equation (1) XLY X represents ⁇ CH a F (3-a) . a represents 0 or 1.
  • Y represents -CH b F (3-b) .
  • b represents 1 or 2. However, when a is 0, b represents 1 or 2, and when a is 1, b represents 2. That is, examples of the compound 1 include CF 3- L-CHF 2 , CF 3- L-CH 2 F, and CHF 2- L-CH 2 F.
  • L is, -CF 2 -, - CF 2 CF 2 -, or carbon atoms, which may at least part of the hydrogen atoms are substituted by fluorine atoms is a fluoroalkylene group having 3 to 6 carbon atoms 3 All of the ends of the fluoroalkylene groups of to 6 are -CF 2- .
  • any terminus of the fluoroalkylene group - and, -CF 2 at both ends in the fluoroalkylene group - is meant to position, for example, as the fluoroalkylene group having a carbon number of 3 is, -CF 2 -CF 2 -CF 2 - , - CF 2 -CH 2 -CF 2 -, - CF 2 -CFH-CF 2 - and the like.
  • L, -CF 2 -, - CF 2 CF 2 -, - CF 2 -CF 2 -CF 2 -, - CF 2 -CHF-CF 2 - and -CF 2 -CH 2 -CF 2 - are preferred, -CF 2 is a perfluoroalkylene group -, - CF 2 CF 2 - and -CF 2 -CF 2 -CF 2 - is more preferable.
  • the compound produced from compound 1 as a raw material is a compound represented by the formula (2).
  • Equation (2) XLZ Z represents -CH b Cl c F (3-bc) .
  • b represents 1 or 2.
  • c represents 1 or 2. However, when b is 1, c represents 1 or 2, and when b is 2, c represents 1. That is, as the Z, -CHClF, -CHCl 2, -CH 2 Cl and the like.
  • Table 1 The relationship between a, b, and c is expressed as shown in Table 1 below.
  • Table 1 "X”, “Y”, and “Z” correspond to "X”, “Y”, and “Z” in the above-mentioned equations (1) and (2).
  • the fluorine atom bonded to the carbon atom located at the terminal of compound 1 can be replaced with a chlorine atom.
  • the fluorine atom substituted with the terminal carbon atom having a small number of substitutions of the fluorine atom among both ends can be selectively substituted with the chlorine atom.
  • the number of substitutions of fluorine atoms in Y is smaller, and the substitution of fluorine atoms and chlorine atoms proceeds at the position of Y.
  • the number of substitutions of fluorine atoms to chlorine atoms can be controlled by adjusting the reaction conditions and the like. For example, as shown in Table 1, when Y is CHF 2 , one fluorine atom is replaced with a chlorine atom to form CHClF, or two fluorine atoms are replaced with a chlorine atom to form CHCl 2. Will be done. More specifically, the relationship of a, b, and c described above represents the case of aspects 1 to 4 in Table 1 above.
  • a, b, and c can take the following four aspects.
  • the production method of the present invention can be particularly preferably used for a reaction in which only one fluorine atom of compound 1 is replaced with a chlorine atom.
  • a reaction in which only one fluorine atom of compound 1 is replaced with a chlorine atom For example, when 1,1,2,2,3-pentafluoropropane is used as compound 1, 3-chloro-1,1,2,2-tetrafluoropropane (HCFC-244ca) can be produced as compound 2. Further, for example, when 1,1,2,2,3,3,4,5-nonafluoropentane (HFC-449pccc) is used as compound 1, 5-chloro-1,1,2 as compound 2 , 2,3,3,4,5-octafluoropentane (HCFC-448occc) can be produced.
  • compound 1 contributes to the reaction as described above.
  • a raw material composition containing compound 1 may be used as a raw material.
  • the compound 1 may be two or more kinds.
  • the raw material composition may contain impurities in addition to compound 1.
  • impurities include raw materials for producing compound 1, by-products generated in addition to compound 1 when producing compound 1, water, and the like.
  • by-products generated from the impurities may be removed by known means such as distillation, extraction distillation, azeotropic distillation, membrane separation, two-layer separation, and adsorption. ..
  • the impurities are preferably compounds that are inert under the reaction conditions of the present invention.
  • the raw material composition is preferably dehydrated before being used in the reaction because the conversion rate of compound 1 is more excellent. That is, in the reaction, it is preferable to use a raw material composition that has been dehydrated.
  • the water content (water content) of the raw material composition used in the reaction is preferably 5000 mass ppm or less, more preferably 2000 mass ppm or less, further preferably 400 mass ppm or less, and particularly preferably 200 mass ppm or less.
  • the lower limit is 0 mass ppm.
  • ppm represents parts per million.
  • the water content is measured using a Karl Fischer moisture meter.
  • a trace moisture measuring device (manufactured by Mitsubishi Chemical Analytech Co., Ltd., CA-200 type) is used as a Karl Fischer moisture meter, and a liquefied gas vaporizer (manufactured by the same company, model number: VG-200 type) is connected to the sample introduction part.
  • a liquefied gas vaporizer manufactured by the same company, model number: VG-200 type
  • Compound 1 is contained as a main component in the raw material composition used for the reaction.
  • the main component means that the content of the compound 1 is 50% by mass or more, preferably 60% by mass or more, and more preferably 75% by mass or more, based on the total mass of the raw material composition.
  • the upper limit is 100% by mass.
  • the method for dehydrating the raw material composition is not particularly limited, and examples thereof include distillation and a method using a dehydrating agent.
  • a dehydrating agent When a dehydrating agent is used, the dehydrating agent is brought into contact with the raw material composition to reduce the water content in the raw material composition.
  • the dehydrating agent include zeolite, molecular sieve, alumina, calcium chloride, magnesium sulfate, sodium sulfate, calcium sulfate, and potassium carbonate.
  • Hydrogen chloride is a gas at normal temperature and pressure. Hydrogen chloride may be used by dissolving it in water at the time of handling. In the reaction, it is preferable to use hydrogen chloride that has been dehydrated.
  • a metal-containing catalyst is preferable.
  • the metal-containing catalyst include simple metals, metal oxides, partial halides of metal oxides, and metal halides.
  • the partial halide of the metal oxide is a compound in which a part of the metal oxide is halogenated (F, Cl, Br, I, etc.).
  • the metal halide is a compound composed of a metal and a halogen.
  • the partial halide and the metal halide of the metal oxide may contain only one kind of halogen, or may contain two or more kinds of halogens. As the catalyst, two or more kinds may be used in combination.
  • the partial halide of the metal oxide a partial fluoride of the metal oxide in which the metal oxide is fluorinated is preferable.
  • the partial fluoride of the metal oxide may contain a halogen other than fluorine.
  • metal fluoride is preferable.
  • the metal fluoride may contain halogens other than fluorine.
  • the metal elements contained in the elemental metal, the metal oxide, and the metal halide include Li, Na, K, Cs, Mg, Ca, Sr, Ba, Al, Cr, and Zr in terms of improving the reactivity.
  • Fe, Ni, Co, Zn, Mn, Sb, Nb, and Ta are preferred, and at least one selected from Al, Zn, Cr, Mg, Ca, K, Zr, and Li. Is more preferable, and at least one selected from Al, Zn, Cr, Mg, and Zr is further preferable.
  • the catalyst contains one or more selected from metal oxides, partial halides of metal oxides, and metal halides from the viewpoint that compound 2 can be produced with a higher selectivity.
  • the partially halide of the metal oxide and the metal halide each contain at least one metal element selected from Cr and Al (hereinafter, also referred to as "metal A"). That is, the catalyst preferably contains one or more selected from a metal oxide containing a metal A, a partial halide of the metal oxide containing the metal A, and a metal halide containing the metal A.
  • the metal oxide, a partial halide of the metal oxide, and the metal halide may contain both Cr and Al.
  • the catalyst more preferably contains a partial halide of a metal oxide containing a metal A.
  • a metal oxide containing Cr, a partial halide of the metal oxide containing Cr, or a metal halide containing Cr is used because the conversion rate of compound 1 is higher. preferable.
  • the catalyst uses a metal other than metal A for various purposes such as improving durability. It may be included. Specific examples of other metals include Na, K, Mg, Ca, Zr, Fe, Zn, Ni, Co and Mn. Of these, Na, K, Mg, Zn, or Mn is preferable, and Mg or Zn is even more preferable, from the viewpoint of increasing the physical and chemical durability of the catalyst and producing the compound 2 more efficiently.
  • the catalyst contains a metal other than metal A, the conversion rate of compound 1 is more excellent.
  • the other metal Na, K, Mg, Zn, or Mn is preferable, and Mg or Zn is more preferable, from the viewpoint of further improving the conversion rate.
  • the Cr content is preferably 1% by mass or more based on the total mass (100% by mass) of the metal contained in the catalyst from the viewpoint of improving the conversion rate of Compound 1. More than% by mass is more preferable, and 10% by mass or more is further preferable.
  • the upper limit is 100% by mass.
  • the Al content is preferably 5% by mass or more, preferably 5% by mass or more, based on the total mass (100% by mass) of the metal contained in the catalyst, from the viewpoint of improving the conversion rate of Compound 1. It is more preferably mass% or more, and further preferably 50% by mass or more.
  • the upper limit is 100% by mass.
  • the content of the metal A is preferably 90 to 99.9% by mass, more preferably 95 to 99% by mass, based on the total mass of the metal (100% by mass).
  • the metal other than the metal A is preferably 0.1 to 10% by mass, more preferably 1 to 5% by mass, based on the total mass of the metal (100% by mass).
  • the water content of the catalyst used in the reaction is preferably low.
  • the catalyst is placed in the reactor, N 2 is supplied into the reactor so as to be 3.94 NmL / min per 1 g of the catalyst, and the water content in the gas obtained from the reactor outlet is 100.
  • the volume is preferably ppm or less, and more preferably 50 volume ppm or less.
  • the catalyst include a partially fluorinated chromium-zinc composite oxide (partial fluoride of the chromium-zinc composite oxide) and a partially fluorinated chromium-aluminum-magnesium composite oxide (of the chromium-aluminum-magnesium composite oxide).
  • Partial fluoride partially fluorinated alumina (partial fluoride of alumina), and partially fluorinated chromium oxide (partial fluoride of chromium oxide).
  • the partially fluorinated chromium-zinc composite oxide (partial fluoride of the chromium-zinc composite oxide) and the partially-fluorinated chromium oxide (of the chromium oxide) because the conversion rate of the compound 1 is excellent. Partial fluoride) is preferred.
  • the catalyst may be molded into pellets and used, or may be supported on a carrier and used in order to improve the reactivity.
  • the carrier include carbon materials such as activated carbon, carbon black and carbon fiber, and oxide materials such as alumina, silica, titania, zirconia, alkali metal oxide and alkaline earth metal oxide, and activated carbon, alumina, silica and the like. Zirconia, alkali metal oxides, and alkaline earth metal oxides are preferred. Among these, activated carbon, alumina, and zirconia are more preferable because they have a large specific surface area and can easily support a catalyst.
  • Examples of the method for molding the catalyst into pellets include a method in which the catalyst is crushed into powder and molded by a locking machine or the like.
  • the pellet-shaped catalyst for example, a columnar catalyst having a diameter of about 3.0 mm and a height of about 4.0 mm can be used.
  • a binder may be mixed with the catalyst, if necessary.
  • the amount of the binder used is preferably 100 parts by mass or less, more preferably 50 parts by mass or less, and further preferably 10 parts by mass or less with respect to 100 parts by mass of the catalyst.
  • a pellet-shaped catalyst can be molded from a mixture of the catalyst and the binder by a locking machine or the like.
  • Specific examples of the binder include carbon, cellulose, alumina, and silica.
  • the catalyst is preferably pre-dried in an inert atmosphere (eg, in a nitrogen stream) in order to improve reactivity.
  • an inert atmosphere eg, in a nitrogen stream
  • the catalyst may be dried in the same manner as described above while being contained in the reactor. Alternatively, the catalyst may be dried before being pre-contained in the reactor.
  • the specific surface area of the catalyst depends on the type of each catalyst. Generally, the smaller the specific surface area, the lower the conversion rate, and the larger the specific surface area, the lower the selectivity and the faster the deterioration.
  • the specific surface area of the metal oxide and the partial halide of the metal oxide is preferably 10 to 400 m 2 / g, and the specific surface area of the metal halide is 3 to 300 m 2 / g. preferable.
  • the specific surface area of the metal oxide and the partial halide of the metal oxide is preferably 10 to 400 m 2 / g, and the specific surface area of the metal halide is 3 to 300 m 2 / g. preferable.
  • the specific surface area of the mixture of the catalyst and the carbon binder is 20 to 20 to. About 1200 m 2 / g is preferable.
  • the specific surface area is a value measured by the BET method.
  • the catalyst is preferably subjected to an activation treatment in advance from the viewpoint of improving reactivity (particularly, improving the conversion rate of compound 1).
  • the activation treatment method include a method in which the catalyst is brought into contact with the activation treatment agent under heating or non-heating.
  • the activating treatment agent include halogen-containing compounds, and specific examples thereof include hydrogen chloride, hydrogen fluoride, chlorocarbon, fluorocarbon, chlorofluorocarbon, hydrochlorocarbon, hydrofluorocarbon, hydrochlorofluorocarbon, chloroolefin, and fluoroolefin.
  • the catalyst may be activated before being contained in the reactor, but it is preferable to perform the activation treatment in the state of being contained in the reactor because the operation is simple and the work efficiency is good. Therefore, it is preferable to introduce the activation treatment agent into the reactor containing the catalyst to perform the activation treatment.
  • the activating treatment agent may be introduced into the reactor at room temperature, but it is preferable to adjust the temperature by heating or the like when introducing the activating treatment agent into the reactor from the viewpoint of efficient activation treatment.
  • an inert gas diluted gas
  • the diluent gas include nitrogen, carbon dioxide, helium, and argon.
  • the temperature of the reactor when supplying the activation treatment agent is preferably 50 to 500 ° C, more preferably 100 to 400 ° C, and even more preferably 150 to 350 ° C.
  • the residence time of the activating treatment agent is preferably 1 to 1000 seconds, more preferably 2 to 500 seconds.
  • the catalyst can be reactivated in addition to the above-mentioned activation treatment before the reaction.
  • the catalyst can be reactivated.
  • the activity of the catalyst can be regenerated and the catalyst can be reused.
  • Examples of the reactivation treatment method include a method in which the catalyst is brought into contact with a treatment agent (reactivation treatment agent) for the reactivation treatment under heating or non-heating, as in the activation treatment before use. Be done.
  • a treatment agent reactivation treatment agent
  • Specific examples of the reactivation treatment agent include oxygen, chlorine, hydrogen fluoride, hydrogen chloride, halogen-containing hydrocarbons, and perhalogenated carbon.
  • nitrogen, carbon dioxide, rare gas (helium, etc.), water vapor, etc. are inert from the viewpoint of suppressing side reactions and improving the durability of the catalyst. Gas can be used.
  • the catalyst When the activity of the catalyst is reduced to the extent that it cannot be reactivated, or when the production of compound 2 is stopped, the catalyst may be taken out from the reactor and refilled. When the catalyst is extracted, it is preferable to purge the reactor with an inert gas in advance in order to remove organic substances and acids remaining in the reactor or adhering to the catalyst.
  • the inert gas used include nitrogen and helium. Purging with air may not be preferable because it may form harmful substances such as hexavalent chromium in the catalyst.
  • the molar ratio of hydrogen chloride used to compound 1 used is higher in selectivity for compound 2.
  • 0.01 to 100 is preferable, 0.1 to 10 is more preferable, 0.3 to 5 is further preferable, and 0.5 to 2 is particularly preferable.
  • 0.75 to 1.5 is more particularly preferable, and 0.8 to 1.2 is most preferable, from the viewpoint of suppressing the production of by-products and improving the volumetric efficiency of the reactor.
  • the molar ratio is 0.75 or more, the conversion rate of compound 1 is more excellent.
  • the above reaction is carried out using a reactor.
  • the shape and structure of the reactor are not particularly limited.
  • a cylindrical vertical reactor capable of filling a catalyst inside may be mentioned.
  • a multi-tube reactor is preferable.
  • Specific examples of the material of the reactor include glass, iron, nickel, stainless steel, iron or an alloy containing nickel as a main component.
  • the reactor may be provided with a heating unit such as an electric heater inside.
  • the reactor may have a sheath tube into which a thermometer for measuring the temperature inside is inserted.
  • the pressure loss of each reactor is preferably within ⁇ 20% and within ⁇ 15% of the average value of the pressure loss of all the reactors. It is more preferable, and it is further preferable that it is within ⁇ 10%.
  • the difference in pressure loss between reaction tubes can be reduced by adjusting the catalyst filling amount in each reaction tube to be constant.
  • the reaction between compound 1 and hydrogen chloride in the production method of the present invention may be either a liquid phase reaction or a gas phase reaction.
  • the liquid phase reaction means that compound 1 and hydrogen chloride are each reacted in a liquid state.
  • the gas phase reaction means that compound 1 and hydrogen chloride are reacted in a gaseous state, respectively.
  • the above reaction may be carried out by a batch type, a semi-continuous type or a continuous distribution type.
  • the liquid phase reaction will be described in detail.
  • compound 2 produced by the reaction by continuously or discontinuously supplying hydrogen chloride into a reactor in which a mixture of the liquid compound 1 and the catalyst exists.
  • the procedure for extracting the compound from the reactor continuously or discontinuously can be mentioned.
  • the reaction temperature in the liquid phase reaction is preferably 20 ° C. or higher, more preferably 30 ° C. or higher, further preferably 50 ° C. or higher, preferably 250 ° C. or lower, and more preferably 200 ° C. or lower from the viewpoint of reaction yield and production efficiency. , 150 ° C. or lower is more preferable.
  • the reaction time in the liquid phase reaction is preferably 0.1 to 100 hours, more preferably 0.2 to 50 hours, still more preferably 0.5 to 20 hours from the viewpoint of reaction yield and production efficiency.
  • the reaction time means the residence time of the raw material in the reactor.
  • the liquid phase reaction may be carried out in the presence of a solvent, if necessary.
  • the solvent include a linear perfluoroalkyl compound having 5 to 8 carbon atoms represented by CF 3 (CF 2 ) m CF 3 (where m in the formula represents an integer of 3 to 6). Can be mentioned.
  • compound 1 and hydrogen chloride which are raw materials heated to the gas state, are continuously supplied into the reactor, and the catalyst filled in the reactor and the gas state are used. Examples thereof include a procedure for contacting compound 1 with hydrogen chloride to obtain compound 2.
  • a gas (diluted gas) inert to the above reaction may be supplied to the reactor because it is effective in adjusting the flow rate, suppressing by-products, suppressing catalyst deactivation, and the like.
  • Specific examples of the diluent gas include nitrogen, carbon dioxide, helium, and argon.
  • the reaction temperature (temperature in the reactor) in the gas phase reaction is preferably 100 to 450 ° C., more preferably 120 to 380 ° C., further preferably 140 to 360 ° C., and 160 to 160, from the viewpoint that the compound 2 can be produced more efficiently.
  • ⁇ 340 ° C. is particularly preferable.
  • the reaction temperature is 100 ° C. or higher (preferably 180 ° C. or higher, more preferably 225 ° C. or higher), the conversion rate of compound 1 increases.
  • the reaction temperature is 450 ° C. or lower (preferably 360 ° C. or lower)
  • the selectivity of compound 2 increases.
  • the temperature inside the reactor can be controlled by adjusting the temperature and pressure of the raw materials supplied to the reactor. If necessary, the inside of the reactor can be supplementarily heated by an electric heater, a microwave generator, or the like.
  • the reaction time in the gas phase reaction is preferably 0.1 to 1000 seconds, more preferably 1 to 800 seconds, still more preferably 5 to 600 seconds.
  • the reaction time corresponds to the residence time of the raw material in the reactor, and can be controlled by adjusting the supply amount (flow rate) of the raw material to the reactor.
  • the pressure of the reaction system (pressure in the reactor) in the gas phase reaction is preferably 0 to 2.0 MPa, more preferably 0 to 1.5 MPa. Negative pressure may be used.
  • the pressure in the reactor is more preferably 0 to 1.0 MPa from the viewpoint of handleability. In the present specification, pressure indicates gauge pressure unless otherwise specified.
  • the content of by-products in the product is preferably 10% by mass or less, more preferably 5% by mass or less, based on the total mass of the product.
  • the lower limit of the content of the by-product is usually 0% by mass.
  • the product means a halogenated hydrocarbon produced by the reaction of Compound 1 with hydrogen chloride.
  • a treatment for separating the compound 2 from the obtained product may be carried out. Examples of the separation treatment include known methods such as distillation.
  • the reactor 20 shown in FIG. 1 is an example of a reactor used for a gas phase reaction.
  • the reactor 20 includes a reactor 1.
  • a supply line 2 for compound 1, a supply line 3 for hydrogen chloride, and a supply line 4 for nitrogen, which is a diluting gas, are connected to the reactor 1.
  • the reactor 1 preferably includes a heating unit such as an electric heater.
  • the supply line 2 of the compound 1 and the hydrogen chloride supply line 3 may be separately connected to the reactor 1, or may be connected in front of the reactor 1 and connected to the reactor 1.
  • the supply line 2 of compound 1, the supply line 3 of hydrogen chloride, and the supply line 4 of nitrogen are connected.
  • the mixture of compound 1, hydrogen chloride and nitrogen is supplied to the reactor 1 via the mixture supply line 5.
  • the preheaters (preheaters) 2a and 3a provided with electric heaters and the like are provided in the compound 1 supply line 2, the hydrogen chloride supply line 3, and the nitrogen supply line 4, respectively. And 4a are provided. It is preferable that the compound 1, hydrogen chloride and nitrogen supplied to the reactor 1 are preheated to predetermined temperatures by the preheaters 2a, 3a and 4a, respectively, and then supplied to the reactor 1. As a result, compound 1, hydrogen chloride and nitrogen can be efficiently raised to a predetermined reaction temperature inside the reactor 1. Preheaters 2a, 3a and 4a are not essential, but are preferably installed.
  • An outlet line 7 is connected to the outlet of the reactor 1 via a cooling unit 6 such as a heat exchanger. Further, a water vapor and acidic liquid recovery tank 8, an alkaline cleaning device 9, and a dehydration tower 10 are connected to the outlet line 7 in this order. Acidic substances such as hydrogen chloride and hydrogen fluoride, water vapor, and water are removed from the reaction mixture taken out from the reactor 1 by the treatment from the outlet line 7 onward.
  • the gas thus obtained is hereinafter referred to as "outlet gas".
  • Each component in the outlet gas is analyzed and quantified by an analyzer 11 such as gas chromatography (GC).
  • Compound 2 is contained in the outlet gas.
  • Examples of the compound other than the compound 2 contained in the outlet gas include compound 1 which is an unreacted raw material, hydrogen chloride, and hydrogen fluoride.
  • the components other than compound 2 contained in the outlet gas can be removed to a desired degree by a known means such as distillation.
  • the unreacted raw material can be separated from the reaction mixture and the outlet gas discharged from the reactor 1 by distillation or the like and returned to the reactor as a part of the raw material. Thereby, the productivity of compound 2 can be improved.
  • compound 1 is 1,1,2,2,3-pentafluoropropane (245ca)
  • compound 2 is 3-chloro-1,1,2,2-tetrafluoropropane (244ca). ) Is obtained.
  • 245ca is used as the raw material.
  • 245ca can be produced by a known method, for example, by the method described in International Publication No. 1994/27939.
  • 244ca When 244ca is produced by a vapor phase reaction using 245ca as a raw material, 244ca can be obtained as a component of crude gas.
  • 245ca 2-chloro-1,3,3-trifluoropropene (1233xe), 1-chloro-2,3,3-trifluoropropene (1233yd), 1 , 2-Dichloro-3,3-difluoropropene (1232xd), 1,3-dichloro-2,3-difluoropropene (1232yd), 2,3-dichloro-1,3-difluoropropene (1232xe), 1,2 , 3-Trichloro-3-fluoropropene (1231xd), 2,3,3-trichloro-1-fluoropropene (1231xe), 1,3,3-trichloro-2-fluoropropene (1231yd), 1,2,3 , 3-Tetrachloropropene (1230xd), unreacted hydrogen chlor
  • the obtained 244ca may be subjected to a hydrogen fluoride reaction to produce 1233yd.
  • Examples of the procedure for the defluorinated hydrogen reaction include known methods such as International Publication No. 2016/136744.
  • the above-mentioned 244ca defluorinated hydrogen reaction may be either a liquid phase reaction or a gas phase reaction.
  • the liquid phase reaction means that 244ca in a liquid state or dissolved in a liquid is subjected to a hydrogen fluoride reaction.
  • the gas phase reaction means that 244ca in a gaseous state is subjected to a hydrogen fluoride reaction.
  • pccc can be produced by a known method, for example, RUSSIAN JOURNAL OF APPLIED CHEMISTRY Vol. 5 No. 7 2002 pp. It can be produced by the method described in 1162-1165.
  • 448 occc When 448 occc is produced by a vapor phase reaction using 449 pcs cc as a raw material, 448 occc can be obtained as a component of a crude gas.
  • the crude gas may contain unreacted 449 pccc, C 5 H 2 F (7-x) Cl (1 + x) (x represents 0 to 7), and the like.
  • the components other than 448occc can be removed to a desired extent by known means such as distillation, extraction distillation, azeotropic distillation, membrane separation, bilayer separation and adsorption.
  • the obtained 448 occc may be subjected to a hydrogen fluoride reaction to produce 1-chloro-2,3,3,4,5,5-heptafluoro-1-pentene (HCFO-1437 dycc).
  • HCFO-1437 dycc 1-chloro-2,3,3,4,5,5-heptafluoro-1-pentene
  • Z -1-chloro-2,3,3,4,5,5-heptafluoro-1-pentene
  • Examples of the procedure for the defluorination hydrogen reaction include known methods such as Zhurnal Organicheskoi Kimii, (Russia), 1988, Vol. 24, No. 8, pp. 1626-1633.
  • the 448 occc defluorinated hydrogen reaction may be either a liquid phase reaction or a gas phase reaction.
  • the liquid phase reaction means that 448 occc dissolved in a liquid state or a liquid is defluorinated by a hydrogen fluoride reaction.
  • the gas phase reaction means that 448 occc in a gaseous state is subjected to a hydrogen fluoride reaction.
  • ⁇ Gas chromatograph conditions In the production of the following various compounds, the composition analysis of the obtained product was performed using a gas chromatograph (GC). As the column, DB-1301 (length 60 m ⁇ inner diameter 250 ⁇ m ⁇ thickness 1 ⁇ m, manufactured by Agilent Technologies Co., Ltd.) was used.
  • GC gas chromatograph
  • the catalyst used for the reaction described later was prepared as follows.
  • the reaction device used in each preparation example the same reaction device as the reaction device 20 described with reference to FIG. 1 was used.
  • the reactor 1 a tubular reactor made of SUS304 having an inner diameter of 16.1 mm and a length of 15 cm was used.
  • a chromium-zinc composite oxide was prepared.
  • the obtained catalyst corresponds to a partial fluoride of a metal oxide.
  • the Cr content in the chromium-zinc composite oxide (PRICAT62-3M) is 97.0% by mass with respect to the total mass of the metal contained in the catalyst, and the Zn content is contained in the catalyst. It was 2.9% by mass with respect to the total mass of the metal.
  • Catalyst Preparation Example 2 The procedure is the same as (Catalyst Preparation Example 1) except that the chromium-zinc composite oxide (PRICAT62-3M, manufactured by Johnson Massey) is changed to 33.6 g of the chromium-aluminum-magnesium composite oxide (N401AG, manufactured by Nikki Catalyst Kasei). To obtain a partially fluorinated chromium-aluminum-magnesium composite oxide. The obtained catalyst corresponds to a partial fluoride of a metal oxide.
  • the chromium-zinc composite oxide PRICAT62-3M, manufactured by Johnson Massey
  • N401AG chromium-aluminum-magnesium composite oxide
  • N401AG manufactured by Nikki Catalyst Kasei
  • the Cr content in the chromium aluminum-magnesium composite oxide (N401AG) is 20.3% by mass with respect to the total mass of the metal contained in the catalyst, and the Al content is the metal contained in the catalyst. It was 76.6% by mass with respect to the total mass, and the Mg content was 3.0% by mass with respect to the total mass of the metal contained in the catalyst.
  • Catalyst Preparation Example 3 Fluorination treatment according to the same procedure as (Catalyst Preparation Example 1) except that the chromium-zinc composite oxide (PRICAT62-3M, manufactured by Johnson Massey) was changed to 25.5 g of alumina (N612N, manufactured by Nikki Catalyst Kasei Co., Ltd.). Was carried out to obtain partially fluorinated alumina.
  • the obtained catalyst corresponds to a partial fluoride of a metal oxide.
  • Graphite was mixed with the obtained oxide powder in an amount of 3% by mass, molded into a cylindrical shape having a diameter of 5 mm and a height of 5 mm by a tableting molding machine, and calcined in nitrogen at 420 ° C. for 5 hours to prepare a chromium oxide. .. Partially fluorinated chromium according to the same procedure as (Catalyst Preparation Example 1) except that the chromium-zinc composite oxide (PRICAT62-3M, manufactured by Johnson Massey) was changed to 36.6 g of the chromium oxide obtained above. An oxide was obtained.
  • the chromium-zinc composite oxide PRICAT62-3M, manufactured by Johnson Massey
  • Catalyst Preparation Example 6 The reactor was filled with 38.1 g of a chromium-zinc composite oxide (PRICAT62-3M, Johnson Massey), and the temperature inside the reactor was raised to 300 ° C. while flowing nitrogen (N 2 ) at 150 Nml / min. While maintaining the inside of the reactor at atmospheric pressure, the filled catalyst was dried until the water content in the gas obtained from the reactor outlet became 5 volume ppm or less.
  • a chromium-zinc composite oxide PRICAT62-3M, Johnson Massey
  • Example 1 Catalyst Preparation
  • the reactor temperature was set to 250 ° C. while flowing N 2 through the reactor containing the catalyst prepared in Example 1 at a flow rate of 15.6 NmL / min.
  • 245ca was supplied to the reactor at a flow rate of 0.047 g / min and hydrogen chloride was supplied at a flow rate of 0.013 g / min.
  • the crude gas at the outlet of the reactor was washed with water and then passed through an alkaline washing part and a molecular sieve 4A to remove the acid content and obtain a dried product.
  • each component of the crude gas at the outlet of the reactor was analyzed by gas chromatography.
  • Table 2 shows the analysis results of the crude gas 10 hours after the start of supply of 245ca and hydrogen chloride.
  • 245ca a dehydrated product was used. Specifically, a molecular sieve 4A (genuine) as a dehydrating agent is placed in a closed container filled with the raw material composition 1 containing 245ca (content of 245ca in the raw material composition 1: 99.9% by mass or more) (1 kg). 100 g (manufactured by Chemical Co., Ltd.) was added and allowed to stand for 3 days to perform dehydration treatment, and the raw material composition 2 after dehydration treatment was used as the above 245ca. The water content of the raw material composition 2 was 20 mass ppm. The water content was measured using a Karl Fischer moisture meter.
  • a trace moisture measuring device (manufactured by Mitsubishi Chemical Analytech Co., Ltd., CA-200 type) is used as a Karl Fischer moisture meter, and a liquefied gas vaporizer (manufactured by the same company, model number: VG-200 type) is connected to the sample introduction part. , The preset amount of the raw material composition 2 was vaporized and automatically injected into the moisture meter.
  • Example 2 As shown in Table 2, a product was obtained according to the same procedure as in Example 1 except that the supply amounts of hydrogen chloride and N 2 were changed.
  • Example 3 As shown in Table 2, a product was obtained according to the same procedure as in Example 1 except that the type of catalyst was changed.
  • Example 8 As shown in Table 2, a product was obtained according to the same procedure as in Example 1 except that the supply amounts of hydrogen chloride and N 2 were changed.
  • Example 9 As shown in Table 2, the reaction temperature, and, 245ca, except for changing the supply amount of hydrogen chloride and N 2, in accordance with the same procedure as in Example 1 to give the product.
  • Example 10 As shown in Table 2, the reaction temperature, and, 245ca, except for changing the supply amount of hydrogen chloride and N 2, in accordance with the same procedure as in Example 1 to give the product.
  • Example 11 As shown in Table 2, 245ca, except for changing the supply amount of hydrogen chloride and N 2, in accordance with the same procedure as in Example 1 to give the product.
  • Example 12 Catalyst Preparation
  • the reactor temperature was set to 330 ° C. while flowing N 2 through the reactor containing the catalyst prepared in Example 4 at a flow rate of 81.5 NmL / min.
  • 245ca was supplied to the reactor at a flow rate of 0.244 g / min and hydrogen chloride was supplied at a flow rate of 0.066 g / min.
  • the crude gas at the outlet of the reactor was washed with water and then passed through an alkaline washing part and a molecular sieve 4A to remove the acid content and obtain a dried product.
  • each component of the crude gas at the outlet of the reactor was analyzed by gas chromatography. Table 2 shows the analysis results of the crude gas 10 hours after the start of supply of 245ca and hydrogen chloride.
  • the 245ca the one subjected to the same dehydration treatment as in Example 1 was used.
  • Example 13 As shown in Table 2, a product was obtained according to the same procedure as in Example 12, except that the reaction temperature and the supply amounts of 245ca, hydrogen chloride and N 2 were changed.
  • Example 14 As shown in Table 2, a product was obtained according to the same procedure as in Example 12, except that the reaction temperature and the supply amounts of 245ca, hydrogen chloride and N 2 were changed.
  • Example 15 The product was obtained according to the same procedure as in Example 1 except that the catalyst was changed to the catalyst prepared in (Catalyst Preparation Example 5).
  • Example 16> The reactor temperature was set to 300 ° C. while flowing N 2 at a flow rate of 85.7 NmL / min through the reactor containing the catalyst prepared in Catalyst Preparation Example 6. After the reactor temperature was stabilized, 245ca was supplied to the reactor at a flow rate of 0.256 g / min and hydrogen chloride was supplied at a flow rate of 0.070 g / min.
  • the crude gas at the outlet of the reactor was washed with water and then passed through an alkaline washing part and a molecular sieve 4A to remove the acid content and obtain a dried product.
  • each component of the crude gas at the outlet of the reactor was analyzed by gas chromatography. Table 2 shows the analysis results of the crude gas 5 hours after the start of supply of 245ca and hydrogen chloride.
  • Example 17 As shown in Table 2, the reaction temperature, and, 245ca, except for changing the supply amount of hydrogen chloride and N 2, in accordance with the same procedure as in Example 16 to give the product.
  • the conversion rate represents the ratio (unit:%) of the molar amount of 245ca consumed in the reaction to the molar amount of 245ca used in the reaction.
  • the 244ca selectivity represents the ratio (unit:%) of the molar amount of 244ca in the product to the molar amount of 245ca consumed in the reaction.
  • the 1233 yd (Z) selectivity represents the ratio (unit:%) of the molar amount of 1233 yd (Z) in the product to the molar amount of 245 ca consumed in the reaction.
  • the other selectivity represents the ratio (unit:%) of the molar amount of components other than the above components in the product to the molar amount of 245 ca consumed in the reaction.
  • Example 1 to 3 8 to 10, 14 to 15, the reaction pressure (pressure in the reactor) was 0 MPaG, and the residence time was 30 seconds. In Examples 11 to 13 and 16 to 17, the reaction pressure (pressure in the reactor) was 0 MPaG, and the residence time was 5 seconds. Further, in Example 4 described later, the reaction pressure (pressure in the reactor) was 0 MPaG, and the residence time was 30 seconds.
  • HCFC could be produced with a high selectivity.
  • a predetermined HCFC could be obtained (Example 4), but the conversion rate was high. It was lower than that of Example 3, and the selectivity was about 70%, which was slightly inferior. From the comparison of Examples 1 to 4, it was confirmed that the effect was more excellent when the catalyst contained Cr.
  • Example 1 From the comparison between Example 1 and Example 8, it was confirmed that the conversion rate was more excellent when the molar ratio of hydrogen chloride to compound 1 was 0.75 or more. From the comparison between Examples 1 and 9 to 10, it was confirmed that the conversion rate was more excellent when the reaction temperature was 180 ° C. (preferably 225 ° C.) or higher. From the comparison of Examples 11 to 14, it was confirmed that the selectivity was more excellent when the reaction temperature was 360 ° C. or lower. From the comparison between Examples 12 and 16 to 17, it was confirmed that the conversion rate was more excellent when the activation treatment was carried out (in other words, when a partial halide of the metal oxide was used).
  • Example 5 Catalyst Preparation
  • the reactor temperature was set to 250 ° C. while flowing N 2 through the reactor containing the catalyst prepared in Example 1 at a flow rate of 15.6 NmL / min.
  • 449 pccc was supplied to the reactor at a flow rate of 0.082 g / min and hydrogen chloride at a flow rate of 0.013 g / min.
  • the crude gas at the outlet of the reactor was washed with water and then passed through an alkaline washing part and a molecular sieve 4A to remove the acid content and obtain a dried product.
  • each component of the crude gas at the outlet of the reactor was analyzed by gas chromatography.
  • the conversion rate represents the ratio (unit:%) of the molar amount of 449 pccc consumed in the reaction to the molar amount of 449 pccc used in the reaction.
  • the 448 occc selectivity represents the ratio (unit:%) of the molar amount of 448 occc in the product to the molar amount of 449 pccc consumed in the reaction.
  • the 1437 dycc (Z) selectivity represents the ratio (unit:%) of the molar amount of 1437 dycc (Z) in the product to the molar amount of 449 pccc consumed in the reaction.
  • Example 6 In a 2-liter four-necked flask equipped with a stirrer and a Dimroth condenser, 251.31 g of 244ca obtained in Example 1 and 2.51 g of tetra-n-butylammonium chloride (TBAC) were placed, and the flask was placed at 50 ° C. Heated to. The reaction temperature was maintained at 50 ° C., and 631.55 g of a 34 mass% potassium hydroxide (KOH) aqueous solution was added dropwise over 5 minutes. Then, stirring was continued for 30 hours, and the organic layer was recovered.
  • TBAC tetra-n-butylammonium chloride
  • the organic layer recovered above was washed with water and then distilled to obtain purified 1233 yd containing 1233 yd (E) and 1233 yd (Z).
  • the selectivity of 1233yd (E) was 8.9%, and the selectivity of 1233yd (Z) was 91.0%.
  • Example 7 In a 0.2 liter four-necked flask equipped with a stirrer and a Dimroth condenser, 100.7 g of 448 occc obtained in Example 5 and 1.0 g of tetra-n-butylammonium bromide (TBAB) as a phase transfer catalyst. And the flask was cooled to 10 ° C. The reaction temperature was maintained at 10 ° C., and 153.9 g of a 34 mass% potassium hydroxide (KOH) aqueous solution was added dropwise over 30 minutes. Then, stirring was continued for 38 hours. The obtained reaction solution was separated into an organic phase and an aqueous phase, and the organic phase was recovered.
  • KOH potassium hydroxide
  • the recovered organic phase was purified to obtain 78.6 g of an isomer mixture of 1437 dycc (Z) and 1437 dycc (E) having a purity of 99.5%.
  • the mass ratio (1437 dycc (Z) / 1437 dycc (E)) of 1437 dycc (Z) and 1437 dycc (E) in the isomer mixture was 99/1.
  • Example 17 As shown in Table 3, a product was obtained according to the same procedure as in Example 1 except that the water content of the raw material composition 2 was 198 mass ppm.
  • Example 18 As shown in Table 3, a product was obtained according to the same procedure as in Example 1 except that the water content of the raw material composition 2 was 395 mass ppm.
  • Example 19 As shown in Table 3, a product was obtained according to the same procedure as in Example 1 except that the water content of the raw material composition 2 was 1995 mass ppm.
  • the "water content [mass ppm]" column represents the water content of the raw material composition 2.
  • the effect is excellent when the water content of the raw material composition 2 is 2000 mass ppm or less (preferably 400 mass ppm or less, more preferably 200 mass ppm or less). It was confirmed that.
  • the entire contents of the specification, claims, abstract and drawings of Japanese Patent Application No. 2019-084111 filed on April 25, 2019 are cited here as disclosure of the specification of the present invention. It is something to incorporate.
  • Reactor 2 Compound 1 supply line 2a: Preheater 3: Hydrogen chloride supply line 3a: Preheater 4: Nitrogen supply line 4a: Preheater 5: Mixture supply line 6: Cooling unit 7: Outlet line 8 : Water vapor and acidic liquid recovery tank 9: Alkaline cleaning device 10: Dehydration tower 11: Analyzer 20: Reaction device

Abstract

The present invention provides a method for producing HCFC, the method being capable of producing HCFC at high selectivities. A method for producing hydrochlorofluorocarbon according to the present invention is characterized by producing a hydrochlorofluorocarbon given by formula (2) by the reaction, in the presence of a catalyst, of hydrogen chloride with a hydrofluorocarbon given by formula (1): X-L-Y formula (1), and X-L-Z formula (2), where X represents -CHaF(3-a), Y represents -CHbF(3-b), and Z represents -CHbClcF(3-b-c).

Description

ハイドロクロロフルオロカーボンの製造方法、1-クロロ-2,3,3-トリフルオロプロペンの製造方法、1-クロロ-2,3,3,4,4,5,5-ヘプタフルオロ-1-ペンテンの製造方法Production method of hydrochlorofluorocarbon, production method of 1-chloro-2,3,3-trifluoropropene, production of 1-chloro-2,3,3,4,5,5-heptafluoro-1-pentene Method
 本発明は、ハイドロクロロフルオロカーボンの製造方法、1-クロロ-2,3,3-トリフルオロプロペンの製造方法、1-クロロ-2,3,3,4,4,5,5-ヘプタフルオロ-1-ペンテンの製造方法に関する。 The present invention is a method for producing hydrochlorofluorocarbon, a method for producing 1-chloro-2,3,3-trifluoropropene, 1-chloro-2,3,3,4,5,5-heptafluoro-1. -Regarding the manufacturing method of pentene.
 近年、地球環境への影響が小さく、洗浄剤、冷媒、作動流体、噴射剤、熱媒体、発泡剤、溶媒等の各種用途に使用できる化合物としてハイドロクロロフルオロオレフィン(HCFO)が注目されている。HCFOのなかでも、不燃性が高く、上記用途に優れる化合物として1-クロロ-2,3,3,3-テトラフルオロプロペン(CF-CF=CClH、HCFO-1224yd)や1-クロロ-2,3,3-トリフルオロプロペン(CFH-CF=CClH、HCFO-1233yd)等の、炭素-炭素二重結合の末端炭素に塩素原子が結合したHCFOが知られている。
 なお、本明細書において、ハロゲン化炭化水素については、化合物名の後の括弧内にその化合物の略称を記すが、本明細書では必要に応じて化合物名に代えてその略称を用いる。また、略称として、ハイフン(-)より後ろの数字およびアルファベット小文字部分だけ(例えば、「HCFO-1233yd」においては「1233yd」)を用いる場合がある。
In recent years, hydrochlorofluoroolefins (HCFOs) have attracted attention as compounds that have little impact on the global environment and can be used in various applications such as cleaning agents, refrigerants, working fluids, propellants, heat media, foaming agents, and solvents. Among HCFO, high nonflammable, as compounds having excellent above applications 1-chloro-2,3,3,3-tetrafluoropropene (CF 3 -CF = CClH, HCFO -1224yd) and 1-chloro-2, HCFOs in which a chlorine atom is bonded to the terminal carbon of a carbon-carbon double bond, such as 3,3-trifluoropropene (CF 2 H-CF = CCLH, HCFO-1233yd), are known.
In the present specification, for halogenated hydrocarbons, the abbreviation of the compound is described in parentheses after the compound name, but in the present specification, the abbreviation is used instead of the compound name as necessary. Further, as an abbreviation, only the number after the hyphen (−) and the lowercase alphabetic part (for example, “1233yd” in “HCFO-1233yd”) may be used.
国際公開第1990/008754号International Publication No. 1990/0087754
 本発明者らは、後述の特定構造(-CF-CHCl(3-b-c))を有するハイドロクロロフルオロカーボン(以下、「HCFC」とも記す。)であれば、炭素-炭素二重結合の末端炭素に塩素原子が結合したHCFOを効率的に合成できるという知見を得た。
 上記特定構造を有するHCFCを製造する方法として、例えば、特許文献1には、ジフルオロメチレン基を有するHCFCをフッ化水素と反応させて、上記HCFCをフッ素化させる方法が記載されている。しかし、特許文献1に記載の製造方法では、フッ素化反応を制御することは難しく、上記特定構造を有するHCFCを選択的に得ることは困難であり、より高選択率で得られる方法が望まれていた。
 このように、HCFCの製造に関しては、より効率的な方法が望まれている。特に、工業的な点から、比較的合成しやすいハイドロフルオロカーボンから、HCFCを高い選択率で製造できることが望ましい。
 本発明は、HCFCを高い選択率で製造できる、HCFCの製造方法の提供を課題とする。
 また、本発明は、1-クロロ-2,3,3-トリフルオロプロペンの製造方法、および、1-クロロ-2,3,3,4,4,5,5-ヘプタフルオロ-1-ペンテンの製造方法の提供も課題とする。
The present inventors have carbon-carbon as long as it is a hydrochlorofluorocarbon (hereinafter, also referred to as “HCFC”) having a specific structure (-CF 2- CH b Cl c F (3-bc) ) described later. It was found that HCFO in which a chlorine atom is bonded to the terminal carbon of a double bond can be efficiently synthesized.
As a method for producing an HCFC having the specific structure, for example, Patent Document 1 describes a method of reacting an HCFC having a difluoromethylene group with hydrogen fluoride to fluorinate the HCFC. However, with the production method described in Patent Document 1, it is difficult to control the fluorination reaction, and it is difficult to selectively obtain HCFC having the above specific structure, and a method capable of obtaining HCFC with a higher selectivity is desired. Was there.
As described above, a more efficient method is desired for the production of HCFC. In particular, from an industrial point of view, it is desirable that HCFCs can be produced with a high selectivity from hydrofluorocarbons, which are relatively easy to synthesize.
An object of the present invention is to provide a method for producing HCFC, which can produce HCFC with a high selectivity.
Further, the present invention relates to a method for producing 1-chloro-2,3,3-trifluoropropene, and 1-chloro-2,3,3,4,5,5-heptafluoro-1-pentene. Providing a manufacturing method is also an issue.
 本発明者らは、上記課題を解決すべく鋭意検討した結果、以下の構成により上記課題を解決できることを見出した。 As a result of diligent studies to solve the above problems, the present inventors have found that the above problems can be solved by the following configuration.
(1) 触媒の存在下、後述する式(1)で表されるハイドロフルオロカーボンと、塩化水素とを反応させて、後述する式(2)で表されるハイドロクロロフルオロカーボンを製造することを特徴とする、ハイドロクロロフルオロカーボンの製造方法。
(2) 前記触媒が金属含有触媒である、(1)に記載の製造方法。
(3) 前記触媒が、金属酸化物、金属酸化物の部分ハロゲン化物および金属ハロゲン化物から選ばれる1種以上を含み、金属酸化物、金属酸化物の部分ハロゲン化物および金属ハロゲン化物が、それぞれ、CrおよびAlから選ばれる少なくとも1種を含む、(1)または(2)に記載の製造方法。
(4) 前記触媒が、金属酸化物の部分ハロゲン化物を含む、(3)に記載の製造方法。
(5) Lが、-CF-、-CFCF-、-CF-CF-CF-、-CF-CHF-CF-または-CF-CH-CF-である、(1)~(4)のいずれかに記載の製造方法。
(6) aが1であり、bが2であり、cが1である、(1)~(5)のいずれかに記載の製造方法。
(7) 式(1)で表されるハイドロフルオロカーボンと塩化水素とを気相で反応させる、(1)~(6)のいずれかに記載の製造方法。
(8) 反応温度が100~450℃である、(1)~(7)のいずれかに記載の製造方法。
(9) 式(1)で表されるハイドロフルオロカーボンに対する、塩化水素のモル比が0.5~2.0である、(1)~(8)のいずれかに記載の製造方法。
(10) 式(1)で表されるハイドロフルオロカーボンを含む原料組成物と、塩化水素とを用いて反応を行い、原料組成物の水分含有量が5000質量ppm以下である、(1)~(9)のいずれかに記載の製造方法。
(11) 水分含有量が400質量ppm以下である、(10)に記載の製造方法。
(12) 式(1)で表されるハイドロフルオロカーボンが1,1,2,2,3-ペンタフルオロプロパンであり、
 式(2)で表されるハイドロクロロフルオロカーボンが3-クロロ-1,1,2,2-テトラフルオロプロパンである、(1)~(11)のいずれかに記載の製造方法。
(13) (12)に記載の方法によって製造される3-クロロ-1,1,2,2-テトラフルオロプロパンを脱フッ化水素反応させて1-クロロ-2,3,3-トリフルオロプロペンを製造することを特徴とする、1-クロロ-2,3,3-トリフルオロプロペンの製造方法。
(14) 式(1)で表されるハイドロフルオロカーボンが1,1,2,2,3,3,4,4,5-ノナフルオロペンタンであり、
 式(2)で表されるハイドロクロロフルオロカーボンが5-クロロ-1,1,2,2,3,3,4,4-オクタフルオロペンタンである、(1)~(11)のいずれかに記載の製造方法。
(15) (14)に記載の方法によって製造される5-クロロ-1,1,2,2,3,3,4,4-オクタフルオロペンタンを脱フッ化水素反応させて1-クロロ-2,3,3,4,4,5,5-ヘプタフルオロ-1-ペンテンを製造することを特徴とする、1-クロロ-2,3,3,4,4,5,5-ヘプタフルオロ-1-ペンテンの製造方法。
(1) In the presence of a catalyst, hydrofluorocarbon represented by the formula (1) described later is reacted with hydrogen chloride to produce hydrochlorofluorocarbon represented by the formula (2) described later. A method for producing hydrochlorofluorocarbons.
(2) The production method according to (1), wherein the catalyst is a metal-containing catalyst.
(3) The catalyst contains one or more selected from metal oxides, partial halides of metal oxides and metal halides, and the metal oxides, partial halides of metal oxides and metal halides are respectively. The production method according to (1) or (2), which comprises at least one selected from Cr and Al.
(4) The production method according to (3), wherein the catalyst contains a partially halide of a metal oxide.
(5) L is, -CF 2 -, - CF 2 CF 2 -, - CF 2 -CF 2 -CF 2 -, - CF 2 -CHF-CF 2 - or -CF 2 -CH 2 -CF 2 - with The production method according to any one of (1) to (4).
(6) The production method according to any one of (1) to (5), wherein a is 1, b is 2, and c is 1.
(7) The production method according to any one of (1) to (6), wherein the hydrofluorocarbon represented by the formula (1) and hydrogen chloride are reacted in a gas phase.
(8) The production method according to any one of (1) to (7), wherein the reaction temperature is 100 to 450 ° C.
(9) The production method according to any one of (1) to (8), wherein the molar ratio of hydrogen chloride to the hydrofluorocarbon represented by the formula (1) is 0.5 to 2.0.
(10) A reaction is carried out using a raw material composition containing hydrofluorocarbon represented by the formula (1) and hydrogen chloride, and the water content of the raw material composition is 5000 mass ppm or less, (1) to (1). The manufacturing method according to any one of 9).
(11) The production method according to (10), wherein the water content is 400 mass ppm or less.
(12) The hydrofluorocarbon represented by the formula (1) is 1,1,2,2,3-pentafluoropropane.
The production method according to any one of (1) to (11), wherein the hydrochlorofluorocarbon represented by the formula (2) is 3-chloro-1,1,2,2-tetrafluoropropane.
(13) 3-Chloro-1,1,2,2-tetrafluoropropane produced by the method according to (12) is subjected to a hydrogen fluoride reaction to 1-chloro-2,3,3-trifluoropropene. A method for producing 1-chloro-2,3,3-trifluoropropene, which comprises producing 1-chloro-2,3,3-trifluoropropene.
(14) The hydrofluorocarbon represented by the formula (1) is 1,1,2,2,3,3,4,5-nonafluoropentane.
Described in any of (1) to (11), wherein the hydrochlorofluorocarbon represented by the formula (2) is 5-chloro-1,1,2,2,3,3,4,5-octafluoropentane. Manufacturing method.
(15) 5-Chloro-1,1,2,2,3,3,4,5-octafluoropentane produced by the method according to (14) is subjected to a hydrogen fluoride reaction to 1-chloro-2. , 3,3,4,5,5-Heptafluoro-1-pentene, 1-chloro-2,3,3,4,5,5-Heptafluoro-1 -Pentene manufacturing method.
 本発明によれば、HCFCを高い選択率で製造できる、HCFCの製造方法を提供できる。
 また、本発明によれば、1-クロロ-2,3,3-トリフルオロプロペンの製造方法、および、1-クロロ-2,3,3,4,4,5,5-ヘプタフルオロ-1-ペンテンの製造方法を提供できる。
According to the present invention, it is possible to provide a method for producing HCFC, which can produce HCFC with a high selectivity.
Further, according to the present invention, a method for producing 1-chloro-2,3,3-trifluoropropene and 1-chloro-2,3,3,4,5,5-heptafluoro-1-. A method for manufacturing pentene can be provided.
反応装置を示す模式図である。It is a schematic diagram which shows the reaction apparatus.
 本発明のハイドロクロロフルオロカーボンの製造方法(以下、単に「本発明の製造方法」とも記す。)は、触媒の存在下、後述する式(1)で表されるハイドロフルオロカーボン(以下、「化合物1」とも記す。)と、塩化水素とを反応させて、式(2)で表されるハイドロクロロフルオロカーボン(以下、「化合物2」とも記す。)を製造する方法である。つまり、本発明の製造方法は、触媒の存在下、化合物1と塩化水素とを接触させて、化合物2を製造する方法である。
 以下では、まず、本発明の製造方法で用いられる成分について詳述し、その後、製造方法の手順について詳述する。
 なお、成分に関する記載としては、先に、化合物1および化合物2について詳述する。
The method for producing a hydrochlorofluorocarbon of the present invention (hereinafter, also simply referred to as “the production method of the present invention”) is a hydrofluorocarbon represented by the formula (1) described later (hereinafter, “Compound 1”) in the presence of a catalyst. It is also described as) and hydrogen chloride to react to produce hydrochlorofluorocarbon represented by the formula (2) (hereinafter, also referred to as “Compound 2”). That is, the production method of the present invention is a method of producing compound 2 by contacting compound 1 with hydrogen chloride in the presence of a catalyst.
In the following, first, the components used in the production method of the present invention will be described in detail, and then the procedure of the production method will be described in detail.
As the description of the components, compound 1 and compound 2 will be described in detail first.
 化合物1は、式(1)で表される化合物である。
 式(1)  X-L-Y
 Xは、-CH(3-a)を表す。
 aは、0または1を表す。
Compound 1 is a compound represented by the formula (1).
Equation (1) XLY
X represents −CH a F (3-a) .
a represents 0 or 1.
 Yは、-CH(3-b)を表す。
 bは、1または2を表す。
 ただし、aが0の場合、bは1または2を表し、aが1の場合、bは2を表す。
 つまり、化合物1としては、CF-L-CHF、CF-L-CHF、CHF-L-CHFが挙げられる。
Y represents -CH b F (3-b) .
b represents 1 or 2.
However, when a is 0, b represents 1 or 2, and when a is 1, b represents 2.
That is, examples of the compound 1 include CF 3- L-CHF 2 , CF 3- L-CH 2 F, and CHF 2- L-CH 2 F.
 Lは、-CF-、-CFCF-、または、少なくとも一部の水素原子がフッ素原子に置換されてもよい炭素数が3~6のフルオロアルキレン基であって、炭素数が3~6のフルオロアルキレン基の末端はいずれも-CF-である。
 なお、上記フルオロアルキレン基の末端はいずれも-CF-とは、フルオロアルキレン基中の両末端に-CF-が位置することを意味し、例えば、炭素数が3の上記フルオロアルキレン基としては、-CF-CF-CF-、-CF-CH-CF-、-CF-CFH-CF-が挙げられる。
 Lとしては、-CF-、-CFCF-、-CF-CF-CF-、-CF-CHF-CF-および-CF-CH-CF-が好ましく、ペルフルオロアルキレン基である-CF-、-CFCF-および-CF-CF-CF-がより好ましい。
L is, -CF 2 -, - CF 2 CF 2 -, or carbon atoms, which may at least part of the hydrogen atoms are substituted by fluorine atoms is a fluoroalkylene group having 3 to 6 carbon atoms 3 All of the ends of the fluoroalkylene groups of to 6 are -CF 2- .
Even -CF 2 Any terminus of the fluoroalkylene group - and, -CF 2 at both ends in the fluoroalkylene group - is meant to position, for example, as the fluoroalkylene group having a carbon number of 3 is, -CF 2 -CF 2 -CF 2 - , - CF 2 -CH 2 -CF 2 -, - CF 2 -CFH-CF 2 - and the like.
The L, -CF 2 -, - CF 2 CF 2 -, - CF 2 -CF 2 -CF 2 -, - CF 2 -CHF-CF 2 - and -CF 2 -CH 2 -CF 2 - are preferred, -CF 2 is a perfluoroalkylene group -, - CF 2 CF 2 - and -CF 2 -CF 2 -CF 2 - is more preferable.
 化合物1を原料として製造される化合物は、式(2)で表される化合物である。
 式(2)  X-L-Z
 Zは、-CHCl(3-b-c)を表す。
 bは、1または2を表す。
 cは、1または2を表す。
 ただし、bが1の場合、cは1または2を表し、bが2の場合、cは1を表す。
 つまり、Zとしては、-CHClF、-CHCl、-CHClが挙げられる。
The compound produced from compound 1 as a raw material is a compound represented by the formula (2).
Equation (2) XLZ
Z represents -CH b Cl c F (3-bc) .
b represents 1 or 2.
c represents 1 or 2.
However, when b is 1, c represents 1 or 2, and when b is 2, c represents 1.
That is, as the Z, -CHClF, -CHCl 2, -CH 2 Cl and the like.
 上記a、b、cの関係は、以下の表1のように表される。表1において、「X」「Y」「Z」は、上述した式(1)および式(2)中の「X」「Y」「Z」に対応している。
 また、表1中の「X」「Y」「Z」欄は、a、b、cが取り得る数値と、その場合の構造を表している。例えば、「(a=0) CF」とは、aが0である場合、XはCFを表すことを意味している。
The relationship between a, b, and c is expressed as shown in Table 1 below. In Table 1, "X", "Y", and "Z" correspond to "X", "Y", and "Z" in the above-mentioned equations (1) and (2).
Further, the "X", "Y", and "Z" columns in Table 1 represent the numerical values that can be taken by a, b, and c, and the structure in that case. For example, "(a = 0) CF 3 " means that when a is 0, X represents CF 3 .
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 本発明の製造方法においては、触媒の存在下で化合物1と塩化水素とを反応させることにより、化合物1の末端に位置する炭素原子に結合するフッ素原子を塩素原子に置換できる。その際、両末端のうちのフッ素原子の置換数が少ない末端炭素原子に置換しているフッ素原子を選択的に塩素原子に置換できる。本発明の製造方法においては、式(1)中のXとYとを比較すると、Yのほうがフッ素原子の置換数が少なく、Yの位置において、フッ素原子と塩素原子との置換が進行する。
 また、フッ素原子から塩素原子への置換数は、反応条件等を調整することにより制御できる。例えば、表1に示すように、YがCHFである場合、1つのフッ素原子が塩素原子に置換してCHClFが形成されるか、2つのフッ素原子が塩素原子に置換してCHClが形成される。
 より具体的には、上述したa、b、cの関係は、上記表1の態様1~4の場合を表している。例えば、「態様4」の場合は、「X」欄および「Y」欄より化合物1がCHF-L-CHFであり、「X」欄および「Z」欄より化合物2がCHF-L-CHClとなることを表している。
 つまり、本発明の製造方法においては、a、b、cは以下の4つの態様を取り得る。
(態様1)aが0であり、bが1であり、cが1である。
(態様2)aが0であり、bが1であり、cが2である。
(態様3)aが0であり、bが2であり、cが1である。
(態様4)aが1であり、bが2であり、cが1である。
 本発明の製造方法は、化合物1のフッ素原子の1つのみを塩素原子に置換する反応に、特に好適に利用できる。例えば、化合物1として1,1,2,2,3-ペンタフルオロプロパンを用いた場合、化合物2として3-クロロ-1,1,2,2-テトラフルオロプロパン(HCFC-244ca)を製造できる。また、例えば、化合物1として1,1,2,2,3,3,4,4,5-ノナフルオロペンタン(HFC-449pccc)を用いた場合、化合物2として5-クロロ-1,1,2,2,3,3,4,4-オクタフルオロペンタン(HCFC-448occc)を製造できる。
In the production method of the present invention, by reacting compound 1 with hydrogen chloride in the presence of a catalyst, the fluorine atom bonded to the carbon atom located at the terminal of compound 1 can be replaced with a chlorine atom. At that time, the fluorine atom substituted with the terminal carbon atom having a small number of substitutions of the fluorine atom among both ends can be selectively substituted with the chlorine atom. In the production method of the present invention, when X and Y in the formula (1) are compared, the number of substitutions of fluorine atoms in Y is smaller, and the substitution of fluorine atoms and chlorine atoms proceeds at the position of Y.
Further, the number of substitutions of fluorine atoms to chlorine atoms can be controlled by adjusting the reaction conditions and the like. For example, as shown in Table 1, when Y is CHF 2 , one fluorine atom is replaced with a chlorine atom to form CHClF, or two fluorine atoms are replaced with a chlorine atom to form CHCl 2. Will be done.
More specifically, the relationship of a, b, and c described above represents the case of aspects 1 to 4 in Table 1 above. For example, in the case of "Aspect 4", Compound 1 than the "X" column and "Y" column is CHF 2 -L-CH 2 F, "X" column and "Z" column from compound 2 CHF 2 - It means that it becomes L-CH 2 Cl.
That is, in the production method of the present invention, a, b, and c can take the following four aspects.
(Aspect 1) a is 0, b is 1, and c is 1.
(Aspect 2) a is 0, b is 1, and c is 2.
(Aspect 3) a is 0, b is 2, and c is 1.
(Aspect 4) a is 1, b is 2, and c is 1.
The production method of the present invention can be particularly preferably used for a reaction in which only one fluorine atom of compound 1 is replaced with a chlorine atom. For example, when 1,1,2,2,3-pentafluoropropane is used as compound 1, 3-chloro-1,1,2,2-tetrafluoropropane (HCFC-244ca) can be produced as compound 2. Further, for example, when 1,1,2,2,3,3,4,5-nonafluoropentane (HFC-449pccc) is used as compound 1, 5-chloro-1,1,2 as compound 2 , 2,3,3,4,5-octafluoropentane (HCFC-448occc) can be produced.
 本発明の製造方法においては、上述の通り化合物1が反応に寄与する。原料として化合物1を含む原料組成物を用いてもよい。化合物1は、2種以上であってもよい。
 原料組成物は、化合物1の他に、不純物を含む場合がある。不純物としては、化合物1の製造原料や化合物1を製造する際に化合物1以外に生成する副生物、水等が挙げられる。なお、原料組成物中に上記不純物が含まれる場合、不純物から生成する副生物は、蒸留、抽出蒸留、共沸蒸留、膜分離、二層分離、吸着等の既知の手段により除去してもよい。不純物としては、本発明の反応条件において不活性な化合物であることが好ましい。
In the production method of the present invention, compound 1 contributes to the reaction as described above. A raw material composition containing compound 1 may be used as a raw material. The compound 1 may be two or more kinds.
The raw material composition may contain impurities in addition to compound 1. Examples of impurities include raw materials for producing compound 1, by-products generated in addition to compound 1 when producing compound 1, water, and the like. When the raw material composition contains the above impurities, by-products generated from the impurities may be removed by known means such as distillation, extraction distillation, azeotropic distillation, membrane separation, two-layer separation, and adsorption. .. The impurities are preferably compounds that are inert under the reaction conditions of the present invention.
 原料組成物は、化合物1の転化率がより優れる点から、反応に用いる前に脱水しておくことが好ましい。つまり、反応においては、脱水処理が施された、原料組成物を用いることが好ましい。
 反応に用いられる上記原料組成物の水分含有量(含水量)は、5000質量ppm以下が好ましく、2000質量ppm以下がより好ましく、400質量ppm以下がさらに好ましく、200質量ppm以下が特に好ましい。下限としては、0質量ppmが挙げられる。
 ここでppmは、百万分率を表す。
 上記水分含有量は、カールフィッシャー水分計を用いて測定する。カールフィッシャー水分計として、微量水分測定装置(三菱化学アナリテック社製、CA-200型)を使用し、試料導入部には液化ガス気化装置(同社製、型番:VG-200型)を接続し、予め設定した量の脱水処理後の上記原料組成物を気化させて、水分計に自動注入する。
The raw material composition is preferably dehydrated before being used in the reaction because the conversion rate of compound 1 is more excellent. That is, in the reaction, it is preferable to use a raw material composition that has been dehydrated.
The water content (water content) of the raw material composition used in the reaction is preferably 5000 mass ppm or less, more preferably 2000 mass ppm or less, further preferably 400 mass ppm or less, and particularly preferably 200 mass ppm or less. The lower limit is 0 mass ppm.
Here, ppm represents parts per million.
The water content is measured using a Karl Fischer moisture meter. A trace moisture measuring device (manufactured by Mitsubishi Chemical Analytech Co., Ltd., CA-200 type) is used as a Karl Fischer moisture meter, and a liquefied gas vaporizer (manufactured by the same company, model number: VG-200 type) is connected to the sample introduction part. , The raw material composition after the dehydration treatment in a preset amount is vaporized and automatically injected into the moisture meter.
 反応に用いられる、原料組成物中において、化合物1は主成分として含まれる。主成分とは、原料組成物の全質量に対して、化合物1の含有量が50質量%以上を意味し、60質量%以上が好ましく、75質量%以上がより好ましい。上限としては、100質量%が挙げられる。 Compound 1 is contained as a main component in the raw material composition used for the reaction. The main component means that the content of the compound 1 is 50% by mass or more, preferably 60% by mass or more, and more preferably 75% by mass or more, based on the total mass of the raw material composition. The upper limit is 100% by mass.
 原料組成物を脱水する方法は特に限定されないが、例えば、蒸留や、脱水剤を使用する方法が挙げられる。脱水剤を使用する場合、脱水剤と原料組成物とを接触させて、原料組成物中の水分含有量を低減させる。
 脱水剤としては、ゼオライト、モレキュラーシーブ、アルミナ、塩化カルシウム、硫酸マグネシウム、硫酸ナトリウム、硫酸カルシウム、炭酸カリウムが挙げられる
The method for dehydrating the raw material composition is not particularly limited, and examples thereof include distillation and a method using a dehydrating agent. When a dehydrating agent is used, the dehydrating agent is brought into contact with the raw material composition to reduce the water content in the raw material composition.
Examples of the dehydrating agent include zeolite, molecular sieve, alumina, calcium chloride, magnesium sulfate, sodium sulfate, calcium sulfate, and potassium carbonate.
 塩化水素は、常温常圧では気体である。塩化水素は、取り扱いの際に水に溶解させて用いてもよい。
 なお、反応においては、脱水処理が施された塩化水素を用いることが好ましい。
Hydrogen chloride is a gas at normal temperature and pressure. Hydrogen chloride may be used by dissolving it in water at the time of handling.
In the reaction, it is preferable to use hydrogen chloride that has been dehydrated.
 本発明の製造方法における触媒としては、金属含有触媒が好ましい。金属含有触媒の具体例としては、金属単体、金属酸化物、金属酸化物の部分ハロゲン化物、金属ハロゲン化物が挙げられる。上記金属酸化物の部分ハロゲン化物は、金属酸化物の一部が、ハロゲン(F、Cl、Br、I等)化された化合物である。上記金属ハロゲン化物は、金属と、ハロゲンとからなる化合物である。金属酸化物の部分ハロゲン化物および金属ハロゲン化物は、1種のハロゲンのみを含んでいてもよく、2種以上のハロゲンを含んでいてもよい。
 触媒としては、2種以上を併用してもよい。
As the catalyst in the production method of the present invention, a metal-containing catalyst is preferable. Specific examples of the metal-containing catalyst include simple metals, metal oxides, partial halides of metal oxides, and metal halides. The partial halide of the metal oxide is a compound in which a part of the metal oxide is halogenated (F, Cl, Br, I, etc.). The metal halide is a compound composed of a metal and a halogen. The partial halide and the metal halide of the metal oxide may contain only one kind of halogen, or may contain two or more kinds of halogens.
As the catalyst, two or more kinds may be used in combination.
 金属酸化物の部分ハロゲン化物としては、金属酸化物がフッ素化された、金属酸化物の部分フッ化物が好ましい。この場合、金属酸化物の部分フッ化物は、フッ素以外のハロゲンを含んでいてもよい。
 また、金属ハロゲン化物としては、金属フッ化物が好ましい。金属フッ化物は、フッ素以外のハロゲンを含んでいてもよい。
As the partial halide of the metal oxide, a partial fluoride of the metal oxide in which the metal oxide is fluorinated is preferable. In this case, the partial fluoride of the metal oxide may contain a halogen other than fluorine.
Further, as the metal halide, metal fluoride is preferable. The metal fluoride may contain halogens other than fluorine.
 上記金属単体、金属酸化物、および、金属ハロゲン化物に含まれる金属元素としては、反応性を向上させる点で、Li、Na、K、Cs、Mg、Ca、Sr、Ba、Al、Cr、Zr、Fe、Ni、Co、Zn、Mn、Sb、Nb、および、Taから選ばれる少なくとも1種が好ましく、Al、Zn、Cr、Mg、Ca、K、Zr、および、Liから選ばれる少なくとも1種がより好ましく、Al、Zn、Cr、Mg、および、Zrから選ばれる少なくとも1種がさらに好ましい。 The metal elements contained in the elemental metal, the metal oxide, and the metal halide include Li, Na, K, Cs, Mg, Ca, Sr, Ba, Al, Cr, and Zr in terms of improving the reactivity. , Fe, Ni, Co, Zn, Mn, Sb, Nb, and Ta are preferred, and at least one selected from Al, Zn, Cr, Mg, Ca, K, Zr, and Li. Is more preferable, and at least one selected from Al, Zn, Cr, Mg, and Zr is further preferable.
 なかでも、化合物2をより高い選択率で製造できる点から、触媒は、金属酸化物、金属酸化物の部分ハロゲン化物、または、金属ハロゲン化物から選ばれる1種以上を含み、上記金属酸化物、金属酸化物の部分ハロゲン化物、および、金属ハロゲン化物が、それぞれ、CrおよびAlから選ばれる少なくとも1種の金属元素(以下、「金属A」とも記す。)を含むことが好ましい。つまり、触媒は、金属Aを含む金属酸化物、金属Aを含む金属酸化物の部分ハロゲン化物、および、金属Aを含む金属ハロゲン化物から選ばれる1種以上を含むことが好ましい。上記金属酸化物、上記金属酸化物の部分ハロゲン化物、および、上記金属ハロゲン化物は、CrおよびAlの両方を含んでいてもよい。
 なかでも、触媒は、金属Aを含む金属酸化物の部分ハロゲン化物を含むことがより好ましい。
Among them, the catalyst contains one or more selected from metal oxides, partial halides of metal oxides, and metal halides from the viewpoint that compound 2 can be produced with a higher selectivity. It is preferable that the partially halide of the metal oxide and the metal halide each contain at least one metal element selected from Cr and Al (hereinafter, also referred to as "metal A"). That is, the catalyst preferably contains one or more selected from a metal oxide containing a metal A, a partial halide of the metal oxide containing the metal A, and a metal halide containing the metal A. The metal oxide, a partial halide of the metal oxide, and the metal halide may contain both Cr and Al.
Among them, the catalyst more preferably contains a partial halide of a metal oxide containing a metal A.
 金属Aを含む触媒としては、なかでも、化合物1の転化率がより高くなる点から、Crを含む金属酸化物、Crを含む金属酸化物の部分ハロゲン化物、または、Crを含む金属ハロゲン化物が好ましい。 Among the catalysts containing the metal A, a metal oxide containing Cr, a partial halide of the metal oxide containing Cr, or a metal halide containing Cr is used because the conversion rate of compound 1 is higher. preferable.
 触媒として、金属Aを含む、金属酸化物、金属酸化物の部分ハロゲン化物、または、金属ハロゲン化物を用いる場合、耐久性の向上等の種々の目的のために、触媒は金属A以外の金属を含んでいてもよい。
 他の金属の具体例としては、Na、K、Mg、Ca、Zr、Fe、Zn、Ni、Co、Mnが挙げられる。なかでも、触媒の物理的・化学的耐久性を高め、化合物2をより効率よく製造できる点から、Na、K、Mg、Zn、または、Mnが好ましく、MgまたはZnがさらに好ましい。
 なお、触媒が金属A以外の金属を含む場合、化合物1の転化率がより優れる。転化率がより向上する点から、他の金属としてはNa、K、Mg、Zn、または、Mnが好ましく、MgまたはZnがさらに好ましい。
When a metal oxide containing metal A, a partial halide of the metal oxide, or a metal halide is used as the catalyst, the catalyst uses a metal other than metal A for various purposes such as improving durability. It may be included.
Specific examples of other metals include Na, K, Mg, Ca, Zr, Fe, Zn, Ni, Co and Mn. Of these, Na, K, Mg, Zn, or Mn is preferable, and Mg or Zn is even more preferable, from the viewpoint of increasing the physical and chemical durability of the catalyst and producing the compound 2 more efficiently.
When the catalyst contains a metal other than metal A, the conversion rate of compound 1 is more excellent. As the other metal, Na, K, Mg, Zn, or Mn is preferable, and Mg or Zn is more preferable, from the viewpoint of further improving the conversion rate.
 触媒にCrが含まれる場合、Crの含有量としては、化合物1の転化率を向上できる点から、触媒に含まれる金属全質量(100質量%)に対して、1質量%以上が好ましく、5質量以上%がより好ましく、10質量%以上がさらに好ましい。上限は、100質量%である。
 触媒にAlが含まれる場合、Alの含有量としては、化合物1の転化率を向上できる点から、触媒に含まれる金属全質量(100質量%)に対して、5質量%以上が好ましく、20質量%以上がより好ましく、50質量%以上がさらに好ましい。上限は、100質量%である。
 触媒に金属A以外の金属が含まれる場合には、金属Aの含有量は、金属全質量(100質量%)に対して、90~99.9質量%が好ましく、95~99質量%がより好ましい。一方、金属A以外の金属は、金属全質量(100質量%)に対して、0.1~10質量%が好ましく、1~5質量%がより好ましい。
When Cr is contained in the catalyst, the Cr content is preferably 1% by mass or more based on the total mass (100% by mass) of the metal contained in the catalyst from the viewpoint of improving the conversion rate of Compound 1. More than% by mass is more preferable, and 10% by mass or more is further preferable. The upper limit is 100% by mass.
When Al is contained in the catalyst, the Al content is preferably 5% by mass or more, preferably 5% by mass or more, based on the total mass (100% by mass) of the metal contained in the catalyst, from the viewpoint of improving the conversion rate of Compound 1. It is more preferably mass% or more, and further preferably 50% by mass or more. The upper limit is 100% by mass.
When the catalyst contains a metal other than the metal A, the content of the metal A is preferably 90 to 99.9% by mass, more preferably 95 to 99% by mass, based on the total mass of the metal (100% by mass). preferable. On the other hand, the metal other than the metal A is preferably 0.1 to 10% by mass, more preferably 1 to 5% by mass, based on the total mass of the metal (100% by mass).
 反応に供する触媒の水分含有量は低いことが好ましい。具体的には、触媒を反応器内に配置して、反応器内に触媒1gあたり3.94NmL/minとなるようにNを供給して、反応器出口から得られるガス中の水分が100体積ppm以下であることが好ましく、50体積ppm以下であることがより好ましい。 The water content of the catalyst used in the reaction is preferably low. Specifically, the catalyst is placed in the reactor, N 2 is supplied into the reactor so as to be 3.94 NmL / min per 1 g of the catalyst, and the water content in the gas obtained from the reactor outlet is 100. The volume is preferably ppm or less, and more preferably 50 volume ppm or less.
 触媒としては、具体的には、部分フッ素化されたクロム亜鉛複合酸化物(クロム亜鉛複合酸化物の部分フッ化物)、部分フッ素化されたクロムアルミニウムマグネシウム複合酸化物(クロムアルミニウムマグネシウム複合酸化物の部分フッ化物)、部分フッ素化されたアルミナ(アルミナの部分フッ化物)、部分フッ素化されたクロム酸化物(クロム酸化物の部分フッ化物)が挙げられる。なかでも、化合物1の転化率が優れる点から、部分フッ素化されたクロム亜鉛複合酸化物(クロム亜鉛複合酸化物の部分フッ化物)、および、部分フッ素化されたクロム酸化物(クロム酸化物の部分フッ化物)が好ましい。 Specific examples of the catalyst include a partially fluorinated chromium-zinc composite oxide (partial fluoride of the chromium-zinc composite oxide) and a partially fluorinated chromium-aluminum-magnesium composite oxide (of the chromium-aluminum-magnesium composite oxide). (Partial fluoride), partially fluorinated alumina (partial fluoride of alumina), and partially fluorinated chromium oxide (partial fluoride of chromium oxide). Among them, the partially fluorinated chromium-zinc composite oxide (partial fluoride of the chromium-zinc composite oxide) and the partially-fluorinated chromium oxide (of the chromium oxide) because the conversion rate of the compound 1 is excellent. Partial fluoride) is preferred.
 触媒は、反応性を向上させるために、ペレット状に成形されて使用されてもよく、担体に担持して使用されてもよい。
 担体としては、活性炭、カーボンブラック、カーボンファイバー等のカーボン材料、アルミナ、シリカ、チタニア、ジルコニア、アルカリ金属酸化物、アルカリ土類金属酸化物等の酸化物材料が挙げられ、活性炭、アルミナ、シリカ、ジルコニア、アルカリ金属酸化物、および、アルカリ土類金属酸化物が好ましい。これらの中でも、比表面積が大きく、触媒を担持させやすいことから、活性炭、アルミナ、および、ジルコニアがより好ましい。
The catalyst may be molded into pellets and used, or may be supported on a carrier and used in order to improve the reactivity.
Examples of the carrier include carbon materials such as activated carbon, carbon black and carbon fiber, and oxide materials such as alumina, silica, titania, zirconia, alkali metal oxide and alkaline earth metal oxide, and activated carbon, alumina, silica and the like. Zirconia, alkali metal oxides, and alkaline earth metal oxides are preferred. Among these, activated carbon, alumina, and zirconia are more preferable because they have a large specific surface area and can easily support a catalyst.
 触媒をペレット状に成形する方法としては、触媒を粉末に解砕して、打錠機等により成形する方法が挙げられる。
 ペレット状の触媒としては、例えば、直径3.0mm程度、高さ4.0mm程度の円柱状に成形したものを用いることができる。また、必要に応じて、触媒にバインダーを混合してもよい。バインダーの使用量は、触媒100質量部に対して、100質量部以下が好ましく、50質量部以下がより好ましく、10質量部以下がさらに好ましい。この場合、触媒とバインダーとの混合物から打錠機等によりペレット状の触媒を成形できる。
 なお、バインダーの具体例としては、カーボン、セルロース、アルミナ、シリカが挙げられる。
Examples of the method for molding the catalyst into pellets include a method in which the catalyst is crushed into powder and molded by a locking machine or the like.
As the pellet-shaped catalyst, for example, a columnar catalyst having a diameter of about 3.0 mm and a height of about 4.0 mm can be used. In addition, a binder may be mixed with the catalyst, if necessary. The amount of the binder used is preferably 100 parts by mass or less, more preferably 50 parts by mass or less, and further preferably 10 parts by mass or less with respect to 100 parts by mass of the catalyst. In this case, a pellet-shaped catalyst can be molded from a mixture of the catalyst and the binder by a locking machine or the like.
Specific examples of the binder include carbon, cellulose, alumina, and silica.
 触媒は、反応性を向上させるために、あらかじめ不活性雰囲気中(例えば、窒素気流中)で乾燥されていることが好ましい。操作の簡便化および作業効率の向上の点からは、触媒は、反応器内に収容した状態で、上記同様に乾燥されてもよい。
 また、あらかじめ反応器に収容する前に、触媒を乾燥してもよい。
The catalyst is preferably pre-dried in an inert atmosphere (eg, in a nitrogen stream) in order to improve reactivity. From the viewpoint of simplifying the operation and improving the work efficiency, the catalyst may be dried in the same manner as described above while being contained in the reactor.
Alternatively, the catalyst may be dried before being pre-contained in the reactor.
 触媒の比表面積は、各触媒の種類に依存し、一般的に小さいほど転化率が低く、大きいほど選択率が低くなり劣化が早くなる傾向がある。
 例えば、上記バインダーを用いない場合、上記金属酸化物および上記金属酸化物の部分ハロゲン化物の比表面積は10~400m/gが好ましく、上記金属ハロゲン化物の比表面積は3~300m/gが好ましい。
 上記バインダーを用いる場合は、バインダーの比表面積にも依存するため一概には言えないが、例えば、高比表面積のカーボンバインダーを用いた場合、触媒とカーボンバインダーとの混合物における比表面積は、20~1200m/g程度が好ましい。
 なお、本明細書において、比表面積はBET法で測定される値である。
The specific surface area of the catalyst depends on the type of each catalyst. Generally, the smaller the specific surface area, the lower the conversion rate, and the larger the specific surface area, the lower the selectivity and the faster the deterioration.
For example, when the binder is not used, the specific surface area of the metal oxide and the partial halide of the metal oxide is preferably 10 to 400 m 2 / g, and the specific surface area of the metal halide is 3 to 300 m 2 / g. preferable.
When the above binder is used, it cannot be said unconditionally because it depends on the specific surface area of the binder. For example, when a carbon binder having a high specific surface area is used, the specific surface area of the mixture of the catalyst and the carbon binder is 20 to 20 to. About 1200 m 2 / g is preferable.
In this specification, the specific surface area is a value measured by the BET method.
 また、触媒は、反応性向上の点(特に、化合物1の転化率向上の点)から、あらかじめ活性化処理が施されていることが好ましい。活性化処理の方法としては、加熱下または非加熱下で触媒を活性化処理剤と接触させる方法が挙げられる。活性化処理剤としては、ハロゲン含有化合物が挙げられ、具体的には、塩化水素、フッ化水素、クロロカーボン、フルオロカーボン、クロロフルオロカーボン、ハイドロクロロカーボン、ハイドロフルオロカーボン、ハイドロクロロフルオロカーボン、クロロオレフィン、フルオロオレフィン、クロロフルオロオレフィン、ハイドロフルオロオレフィン、ハイドロクロロオレフィン、ハイドロクロロフルオロオレフィンが挙げられる。また、原料である化合物1をハロゲン含有化合物として用いてもよい。
 なお、金属酸化物に対して、上記活性化処理を施すことにより、金属酸化物の部分ハロゲン化物を生成できる。
Further, the catalyst is preferably subjected to an activation treatment in advance from the viewpoint of improving reactivity (particularly, improving the conversion rate of compound 1). Examples of the activation treatment method include a method in which the catalyst is brought into contact with the activation treatment agent under heating or non-heating. Examples of the activating treatment agent include halogen-containing compounds, and specific examples thereof include hydrogen chloride, hydrogen fluoride, chlorocarbon, fluorocarbon, chlorofluorocarbon, hydrochlorocarbon, hydrofluorocarbon, hydrochlorofluorocarbon, chloroolefin, and fluoroolefin. , Chlorofluoroolefin, hydrofluoroolefin, hydrochloroolefin, hydrochlorofluoroolefin and the like. Moreover, you may use compound 1 which is a raw material as a halogen-containing compound.
By subjecting the metal oxide to the above activation treatment, a partial halide of the metal oxide can be produced.
 触媒は、反応器に収容される前に活性化処理が行われていてもよいが、操作が簡便で作業効率が良いため、反応器に収容した状態で活性化処理を行うことが好ましい。そのため、活性化処理剤を、触媒を収容した反応器に導入して活性化処理を行うことが好ましい。活性化処理剤は、常温のまま反応器に導入してもよいが、効率的に活性化処理を行える点から、反応器に導入する際に加熱等により温度調節を行うことが好ましい。活性化処理剤を導入する際には、不活性なガス(希釈ガス)を合わせて導入してもよい。希釈ガスの具体例としては、窒素、二酸化炭素、ヘリウム、アルゴンが挙げられる。
 また、活性化処理の効率を高めるために、反応器内を加熱した状態で活性化処理をすることが好ましい。その際、活性化処理剤を供給する際の反応器の温度は、50~500℃が好ましく、100~400℃がより好ましく、150~350℃がさらに好ましい。活性化処理剤の滞留時間は、1~1000秒間が好ましく、2~500秒間がより好ましい。
The catalyst may be activated before being contained in the reactor, but it is preferable to perform the activation treatment in the state of being contained in the reactor because the operation is simple and the work efficiency is good. Therefore, it is preferable to introduce the activation treatment agent into the reactor containing the catalyst to perform the activation treatment. The activating treatment agent may be introduced into the reactor at room temperature, but it is preferable to adjust the temperature by heating or the like when introducing the activating treatment agent into the reactor from the viewpoint of efficient activation treatment. When introducing the activation treatment agent, an inert gas (diluted gas) may be introduced together. Specific examples of the diluent gas include nitrogen, carbon dioxide, helium, and argon.
Further, in order to increase the efficiency of the activation treatment, it is preferable to carry out the activation treatment in a state where the inside of the reactor is heated. At that time, the temperature of the reactor when supplying the activation treatment agent is preferably 50 to 500 ° C, more preferably 100 to 400 ° C, and even more preferably 150 to 350 ° C. The residence time of the activating treatment agent is preferably 1 to 1000 seconds, more preferably 2 to 500 seconds.
 また、触媒に対しては、上述した、反応前の活性化処理の他に、再活性化処理を行うことができる。特に、触媒の活性が落ち、化合物1の転化率が低下したときには、触媒に対して、再活性化処理を行うことができる。これにより、触媒の活性を再生させて触媒を再利用できる。 Further, the catalyst can be reactivated in addition to the above-mentioned activation treatment before the reaction. In particular, when the activity of the catalyst decreases and the conversion rate of compound 1 decreases, the catalyst can be reactivated. As a result, the activity of the catalyst can be regenerated and the catalyst can be reused.
 再活性化処理の方法としては、使用前の活性化処理と同様に、触媒を加熱下または非加熱下で再活性化処理のための処理剤(再活性化処理剤)と接触させる方法が挙げられる。再活性化処理剤の具体例としては、酸素、塩素、フッ化水素、塩化水素、含ハロゲン炭化水素、パーハロゲン化カーボンが挙げられる。
 また、再活性化処理において、副反応の抑制および触媒の耐久性向上等の点から、再活性化処理剤を希釈するために窒素、二酸化炭素、希ガス(ヘリウム等)、水蒸気等の不活性ガスを用いることができる。
Examples of the reactivation treatment method include a method in which the catalyst is brought into contact with a treatment agent (reactivation treatment agent) for the reactivation treatment under heating or non-heating, as in the activation treatment before use. Be done. Specific examples of the reactivation treatment agent include oxygen, chlorine, hydrogen fluoride, hydrogen chloride, halogen-containing hydrocarbons, and perhalogenated carbon.
In addition, in the reactivation treatment, in order to dilute the reactivation treatment agent, nitrogen, carbon dioxide, rare gas (helium, etc.), water vapor, etc. are inert from the viewpoint of suppressing side reactions and improving the durability of the catalyst. Gas can be used.
 触媒が再活性化不可能な程度まで活性が低下した場合や、化合物2の製造を停止する場合、反応器から触媒を抜き出し、触媒を詰め替える操作を行うことがある。触媒を抜き出す際は、反応器内に残っている、または、触媒に付着している有機物や酸分を除去するために、事前に不活性ガスで反応器をパージすることが好ましい。使用する不活性ガスの具体例としては、窒素、ヘリウムが挙げられる。空気によるパージは、触媒中に6価クロム等の有害物質を形成される可能性があるため、好ましくない場合がある。 When the activity of the catalyst is reduced to the extent that it cannot be reactivated, or when the production of compound 2 is stopped, the catalyst may be taken out from the reactor and refilled. When the catalyst is extracted, it is preferable to purge the reactor with an inert gas in advance in order to remove organic substances and acids remaining in the reactor or adhering to the catalyst. Specific examples of the inert gas used include nitrogen and helium. Purging with air may not be preferable because it may form harmful substances such as hexavalent chromium in the catalyst.
 上記反応(液相反応、気相反応)において、使用される化合物1に対する使用される塩化水素のモル比(塩化水素のモル量/化合物1のモル量)は、化合物2をより高い選択率で製造できる点から、0.01~100が好ましく、0.1~10がより好ましく、0.3~5がさらに好ましく、0.5~2が特に好ましい。副生物の生成を抑え、反応器の容積効率を向上させる点から、0.75~1.5がより特に好ましく、0.8~1.2が最も好ましい。
 なかでも、上記モル比が0.75以上である場合、化合物1の転化率がより優れる。
In the above reactions (liquid phase reaction, gas phase reaction), the molar ratio of hydrogen chloride used to compound 1 used (molar amount of hydrogen chloride / molar amount of compound 1) is higher in selectivity for compound 2. From the viewpoint of production, 0.01 to 100 is preferable, 0.1 to 10 is more preferable, 0.3 to 5 is further preferable, and 0.5 to 2 is particularly preferable. 0.75 to 1.5 is more particularly preferable, and 0.8 to 1.2 is most preferable, from the viewpoint of suppressing the production of by-products and improving the volumetric efficiency of the reactor.
Above all, when the molar ratio is 0.75 or more, the conversion rate of compound 1 is more excellent.
 上記反応は、反応器を用いて行う。
 反応器としては、形状および構造は特に限定されない。例えば、後述する気相反応の場合、内部に触媒を充填できる円筒状の縦型反応器が挙げられる。円筒状の縦型反応器としては、多管式反応器が好ましい。
 反応器の材質の具体例としては、ガラス、鉄、ニッケル、ステンレス鋼、鉄またはニッケルを主成分とする合金が挙げられる。
 反応器は、電気ヒータ等の加熱部を内部に備えていてもよい。反応器は、内部の温度を測定するための温度計が挿入される、さや管を有していてもよい。
 反応器として多管式反応器を用いる場合は、各反応管の圧力損失を、すべての反応管の圧力損失の平均値に対して±20%以内とすることが好ましく、±15%以内とすることがより好ましく、±10%以内とすることがさらに好ましい。各反応管の触媒充填量が一定となるように調整することで反応管ごとの圧力損失の差を小さくできる。
The above reaction is carried out using a reactor.
The shape and structure of the reactor are not particularly limited. For example, in the case of a gas phase reaction described later, a cylindrical vertical reactor capable of filling a catalyst inside may be mentioned. As the cylindrical vertical reactor, a multi-tube reactor is preferable.
Specific examples of the material of the reactor include glass, iron, nickel, stainless steel, iron or an alloy containing nickel as a main component.
The reactor may be provided with a heating unit such as an electric heater inside. The reactor may have a sheath tube into which a thermometer for measuring the temperature inside is inserted.
When a multi-tube reactor is used as the reactor, the pressure loss of each reactor is preferably within ± 20% and within ± 15% of the average value of the pressure loss of all the reactors. It is more preferable, and it is further preferable that it is within ± 10%. The difference in pressure loss between reaction tubes can be reduced by adjusting the catalyst filling amount in each reaction tube to be constant.
 本発明の製造方法における、化合物1と塩化水素との反応は、液相反応および気相反応のいずれでもよい。
 液相反応とは、化合物1と塩化水素とをそれぞれ液体の状態で反応させることをいう。
 気相反応とは、化合物1と塩化水素とをそれぞれ気体の状態で反応させることをいう。
 上記反応は、バッチ式で行なってもよいし、半連続式、連続流通式で行なってもよい。
The reaction between compound 1 and hydrogen chloride in the production method of the present invention may be either a liquid phase reaction or a gas phase reaction.
The liquid phase reaction means that compound 1 and hydrogen chloride are each reacted in a liquid state.
The gas phase reaction means that compound 1 and hydrogen chloride are reacted in a gaseous state, respectively.
The above reaction may be carried out by a batch type, a semi-continuous type or a continuous distribution type.
 液相反応について詳細に説明する。
 液相反応の具体的な手順としては、例えば、液体状態の化合物1と触媒との混合物が存在する反応器内に、連続的または非連続的に塩化水素を供給し、反応によって生成する化合物2を反応器内から連続または非連続的に抜き出す手順が挙げられる。
 液相反応における反応温度は、反応収率および製造効率の点から、20℃以上が好ましく、30℃以上がより好ましく、50℃以上がさらに好ましく、250℃以下が好ましく、200℃以下がより好ましく、150℃以下がさらに好ましい。
 液相反応における反応時間は、反応収率および製造効率の点から、0.1~100時間が好ましく、0.2~50時間がより好ましく、0.5~20時間がさらに好ましい。反応時間は、反応器内での原料の滞留時間を意味する。
 液相反応は、必要に応じて、溶媒の存在下にて実施してもよい。溶媒の具体例としては、CF(CFCF(ただし、式中mは、3~6の整数を表す。)で表される炭素数5~8の直鎖パーフルオロアルキル化合物が挙げられる。
The liquid phase reaction will be described in detail.
As a specific procedure of the liquid phase reaction, for example, compound 2 produced by the reaction by continuously or discontinuously supplying hydrogen chloride into a reactor in which a mixture of the liquid compound 1 and the catalyst exists. The procedure for extracting the compound from the reactor continuously or discontinuously can be mentioned.
The reaction temperature in the liquid phase reaction is preferably 20 ° C. or higher, more preferably 30 ° C. or higher, further preferably 50 ° C. or higher, preferably 250 ° C. or lower, and more preferably 200 ° C. or lower from the viewpoint of reaction yield and production efficiency. , 150 ° C. or lower is more preferable.
The reaction time in the liquid phase reaction is preferably 0.1 to 100 hours, more preferably 0.2 to 50 hours, still more preferably 0.5 to 20 hours from the viewpoint of reaction yield and production efficiency. The reaction time means the residence time of the raw material in the reactor.
The liquid phase reaction may be carried out in the presence of a solvent, if necessary. Specific examples of the solvent include a linear perfluoroalkyl compound having 5 to 8 carbon atoms represented by CF 3 (CF 2 ) m CF 3 (where m in the formula represents an integer of 3 to 6). Can be mentioned.
 次に、気相反応について詳細に説明する。
 気相反応の具体的な手順としては、ガス状態に加熱された原料である化合物1と塩化水素とを反応器内に連続的に供給して、反応器に充填された触媒と、ガス状態の化合物1および塩化水素とを接触させて、化合物2を得る手順が挙げられる。
 流量の調整、副生物の抑制、触媒失活の抑制等に有効である点から、上記反応に不活性なガス(希釈ガス)を反応器に供給してもよい。希釈ガスの具体例としては、窒素、二酸化炭素、ヘリウム、アルゴンが挙げられる。
Next, the gas phase reaction will be described in detail.
As a specific procedure of the gas phase reaction, compound 1 and hydrogen chloride, which are raw materials heated to the gas state, are continuously supplied into the reactor, and the catalyst filled in the reactor and the gas state are used. Examples thereof include a procedure for contacting compound 1 with hydrogen chloride to obtain compound 2.
A gas (diluted gas) inert to the above reaction may be supplied to the reactor because it is effective in adjusting the flow rate, suppressing by-products, suppressing catalyst deactivation, and the like. Specific examples of the diluent gas include nitrogen, carbon dioxide, helium, and argon.
 気相反応における反応温度(反応器内の温度)は、化合物2をより効率よく製造できる点から、100~450℃が好ましく、120~380℃がより好ましく、140~360℃がさらに好ましく、160~340℃が特に好ましい。
 なお、上記反応温度が100℃以上(好ましくは180℃以上、より好ましくは225℃以上)の場合、化合物1の転化率が高まる。また、上記反応温度が450℃以下(好ましくは、360℃以下)の場合、化合物2の選択率が高まる。
 反応器内の温度は、反応器に供給される原料の温度および圧力を調整することにより制御できる。必要に応じて、電気ヒータやマイクロウェーブ発生機等により反応器内を補助的に加熱できる。
The reaction temperature (temperature in the reactor) in the gas phase reaction is preferably 100 to 450 ° C., more preferably 120 to 380 ° C., further preferably 140 to 360 ° C., and 160 to 160, from the viewpoint that the compound 2 can be produced more efficiently. ~ 340 ° C. is particularly preferable.
When the reaction temperature is 100 ° C. or higher (preferably 180 ° C. or higher, more preferably 225 ° C. or higher), the conversion rate of compound 1 increases. Further, when the reaction temperature is 450 ° C. or lower (preferably 360 ° C. or lower), the selectivity of compound 2 increases.
The temperature inside the reactor can be controlled by adjusting the temperature and pressure of the raw materials supplied to the reactor. If necessary, the inside of the reactor can be supplementarily heated by an electric heater, a microwave generator, or the like.
 気相反応における反応時間は、0.1~1000秒間が好ましく、1~800秒間がより好ましく、5~600秒間がさらに好ましい。
 上記反応時間は、原料の反応器内での滞留時間に相当し、原料の反応器への供給量(流量)を調節することにより制御できる。
The reaction time in the gas phase reaction is preferably 0.1 to 1000 seconds, more preferably 1 to 800 seconds, still more preferably 5 to 600 seconds.
The reaction time corresponds to the residence time of the raw material in the reactor, and can be controlled by adjusting the supply amount (flow rate) of the raw material to the reactor.
 気相反応における反応系の圧力(反応器内の圧力)は、0~2.0MPaが好ましく、0~1.5MPaがより好ましい。陰圧でもよい。反応器内の圧力は、取り扱い性の点から、0~1.0MPaがさらに好ましい。本明細書において、特に断らない限り、圧力はゲージ圧を示す。 The pressure of the reaction system (pressure in the reactor) in the gas phase reaction is preferably 0 to 2.0 MPa, more preferably 0 to 1.5 MPa. Negative pressure may be used. The pressure in the reactor is more preferably 0 to 1.0 MPa from the viewpoint of handleability. In the present specification, pressure indicates gauge pressure unless otherwise specified.
 生成物中における副生物の含有量は、生成物全質量に対して、10質量%以下が好ましく、5質量%以下がより好ましい。上記副生物の含有量の下限は、通常、0質量%である。ここで生成物とは、化合物1と塩化水素との反応により生成したハロゲン化炭化水素を意味する。
 生成物に不純物が含まれる場合、得られた生成物から化合物2を分離する処理を実施してもよい。分離する処理としては、蒸留等の公知の方法が挙げられる。
The content of by-products in the product is preferably 10% by mass or less, more preferably 5% by mass or less, based on the total mass of the product. The lower limit of the content of the by-product is usually 0% by mass. Here, the product means a halogenated hydrocarbon produced by the reaction of Compound 1 with hydrogen chloride.
When the product contains impurities, a treatment for separating the compound 2 from the obtained product may be carried out. Examples of the separation treatment include known methods such as distillation.
 次に、気相反応のより詳細な態様を、図1を参照して説明する。図1に示す反応装置20は、気相反応に使用される反応装置の一例である。
 反応装置20は、反応器1を備える。反応器1には、化合物1の供給ライン2、塩化水素の供給ライン3、および、希釈ガスである窒素の供給ライン4が接続されている。
 反応器1は、電気ヒータ等の加熱部を備えることが好ましい。
 化合物1の供給ライン2、および、塩化水素の供給ライン3は、それぞれ別々に反応器1に接続されてもよいが、反応器1の手前で連結されて反応器1に接続されてもよい。例えば、図1に示すように、化合物1の供給ライン2、塩化水素の供給ライン3、および、窒素の供給ライン4を連結する。これにより、化合物1と塩化水素と窒素との混合物が、混合物供給ライン5を経由して、反応器1に供給される。
Next, a more detailed aspect of the gas phase reaction will be described with reference to FIG. The reactor 20 shown in FIG. 1 is an example of a reactor used for a gas phase reaction.
The reactor 20 includes a reactor 1. A supply line 2 for compound 1, a supply line 3 for hydrogen chloride, and a supply line 4 for nitrogen, which is a diluting gas, are connected to the reactor 1.
The reactor 1 preferably includes a heating unit such as an electric heater.
The supply line 2 of the compound 1 and the hydrogen chloride supply line 3 may be separately connected to the reactor 1, or may be connected in front of the reactor 1 and connected to the reactor 1. For example, as shown in FIG. 1, the supply line 2 of compound 1, the supply line 3 of hydrogen chloride, and the supply line 4 of nitrogen are connected. As a result, the mixture of compound 1, hydrogen chloride and nitrogen is supplied to the reactor 1 via the mixture supply line 5.
 図1に示す反応装置20においては、化合物1の供給ライン2、塩化水素の供給ライン3、および、窒素の供給ライン4には、それぞれ、電気ヒータ等を備えた予熱器(プレヒータ)2a、3aおよび4aが設けられている。反応器1に供給される化合物1、塩化水素および窒素は、それぞれ、予熱器2a、3aおよび4aによって所定の温度に予熱されてから反応器1に供給されることが好ましい。これにより、化合物1、塩化水素および窒素を、反応器1の内部で所定の反応温度まで効率よく昇温できる。予熱器2a、3aおよび4aは、必須ではないが、設置されることが好ましい。 In the reaction apparatus 20 shown in FIG. 1, the preheaters (preheaters) 2a and 3a provided with electric heaters and the like are provided in the compound 1 supply line 2, the hydrogen chloride supply line 3, and the nitrogen supply line 4, respectively. And 4a are provided. It is preferable that the compound 1, hydrogen chloride and nitrogen supplied to the reactor 1 are preheated to predetermined temperatures by the preheaters 2a, 3a and 4a, respectively, and then supplied to the reactor 1. As a result, compound 1, hydrogen chloride and nitrogen can be efficiently raised to a predetermined reaction temperature inside the reactor 1. Preheaters 2a, 3a and 4a are not essential, but are preferably installed.
 反応器1の出口には、熱交換器等の冷却部6を介して、出口ライン7が接続されている。出口ライン7には、さらに、水蒸気および酸性液の回収槽8、アルカリ洗浄装置9、ならびに、脱水塔10が順に接続されている。
 反応器1から取り出された反応混合物は、出口ライン7以降の処理によって、塩化水素、フッ化水素等の酸性物質、水蒸気、水が除去される。こうして得られたガスを、以下、「出口ガス」という。出口ガス中の各成分が、ガスクロマトグラフィ(GC)等の分析装置11により分析および定量される。
An outlet line 7 is connected to the outlet of the reactor 1 via a cooling unit 6 such as a heat exchanger. Further, a water vapor and acidic liquid recovery tank 8, an alkaline cleaning device 9, and a dehydration tower 10 are connected to the outlet line 7 in this order.
Acidic substances such as hydrogen chloride and hydrogen fluoride, water vapor, and water are removed from the reaction mixture taken out from the reactor 1 by the treatment from the outlet line 7 onward. The gas thus obtained is hereinafter referred to as "outlet gas". Each component in the outlet gas is analyzed and quantified by an analyzer 11 such as gas chromatography (GC).
 出口ガスには、化合物2が含まれる。出口ガスに含まれる化合物2以外の化合物としては、未反応原料である化合物1および塩化水素、フッ化水素が挙げられる。 Compound 2 is contained in the outlet gas. Examples of the compound other than the compound 2 contained in the outlet gas include compound 1 which is an unreacted raw material, hydrogen chloride, and hydrogen fluoride.
 出口ガスに含まれる化合物2以外の成分は、蒸留等の既知の手段により、望まれる程度に除去できる。
 反応装置20においては、反応器1から出た反応混合物や出口ガスから、蒸留等によって未反応原料を分離し、原料の一部として反応器に戻すことができる。これにより化合物2の生産性を向上できる。
The components other than compound 2 contained in the outlet gas can be removed to a desired degree by a known means such as distillation.
In the reactor 20, the unreacted raw material can be separated from the reaction mixture and the outlet gas discharged from the reactor 1 by distillation or the like and returned to the reactor as a part of the raw material. Thereby, the productivity of compound 2 can be improved.
 本発明の製造方法において、化合物1が1,1,2,2,3-ペンタフルオロプロパン(245ca)である場合、化合物2として3-クロロ-1,1,2,2-テトラフルオロプロパン(244ca)が得られる。
 以下、原料として、245caを用いた場合について詳述する。
In the production method of the present invention, when compound 1 is 1,1,2,2,3-pentafluoropropane (245ca), compound 2 is 3-chloro-1,1,2,2-tetrafluoropropane (244ca). ) Is obtained.
Hereinafter, the case where 245ca is used as the raw material will be described in detail.
 245caは公知の方法で製造でき、例えば、国際公開第1994/27939号に記載の方法によって製造できる。 245ca can be produced by a known method, for example, by the method described in International Publication No. 1994/27939.
 原料として245caを用いて気相反応により244caを製造する際には、244caを粗ガスの成分として得ることができる。粗ガスには、244ca以外にも、未反応の245ca、2-クロロ-1,3,3-トリフルオロプロペン(1233xe)、1-クロロ-2,3,3-トリフルオロプロペン(1233yd)、1,2-ジクロロ-3,3-ジフルオロプロペン(1232xd)、1,3-ジクロロ-2,3-ジフルオロプロペン(1232yd)、2,3-ジクロロ-1,3-ジフルオロプロペン(1232xe)、1,2,3-トリクロロ-3-フルオロプロペン(1231xd)、2,3,3-トリクロロ-1-フルオロプロペン(1231xe)、1,3,3-トリクロロ-2-フルオロプロペン(1231yd)、1,2,3,3-テトラクロロプロペン(1230xd)、未反応の塩化水素、フッ化水素等が含まれることがある。
 上記244ca以外の成分は、蒸留、抽出蒸留、共沸蒸留、膜分離、二層分離、吸着等の既知の手段により、望まれる程度に除去できる。
When 244ca is produced by a vapor phase reaction using 245ca as a raw material, 244ca can be obtained as a component of crude gas. In addition to 244ca, unreacted 245ca, 2-chloro-1,3,3-trifluoropropene (1233xe), 1-chloro-2,3,3-trifluoropropene (1233yd), 1 , 2-Dichloro-3,3-difluoropropene (1232xd), 1,3-dichloro-2,3-difluoropropene (1232yd), 2,3-dichloro-1,3-difluoropropene (1232xe), 1,2 , 3-Trichloro-3-fluoropropene (1231xd), 2,3,3-trichloro-1-fluoropropene (1231xe), 1,3,3-trichloro-2-fluoropropene (1231yd), 1,2,3 , 3-Tetrachloropropene (1230xd), unreacted hydrogen chloride, hydrogen fluoride, etc. may be included.
The components other than the above 244ca can be removed to a desired extent by known means such as distillation, extraction distillation, azeotropic distillation, membrane separation, bilayer separation and adsorption.
 なお、本明細書中では特に断らずに化合物名や化合物の略称を用いた場合には、Z体およびE体から選ばれる少なくとも1種を示し、より具体的には、Z体もしくはE体、または、Z体とE体の任意の割合の混合物を示す。化合物名や化合物の略称の後ろに(E)または(Z)を付した場合には、それぞれの化合物の(E)体または(Z)体を示す。例えば、1233yd(Z)はZ体を示し、1233yd(E)はE体を示す。 In the present specification, when a compound name or an abbreviation of a compound is used without particular mention, at least one selected from Z-form and E-form is shown, and more specifically, Z-form or E-form. Alternatively, an arbitrary proportion mixture of Z-form and E-form is shown. When (E) or (Z) is added after the compound name or the abbreviation of the compound, the (E) form or the (Z) form of each compound is indicated. For example, 1233yd (Z) indicates a Z form and 1233yd (E) indicates an E form.
 得られた244caを脱フッ化水素反応させて、1233ydを製造してもよい。
 脱フッ化水素反応の手順としては、国際公開第2016/136744号等の公知の方法が挙げられる。
The obtained 244ca may be subjected to a hydrogen fluoride reaction to produce 1233yd.
Examples of the procedure for the defluorinated hydrogen reaction include known methods such as International Publication No. 2016/136744.
 上記244caの脱フッ化水素反応は、液相反応および気相反応のいずれでもよい。なお、液相反応とは、液体状態または液体に溶解している244caを脱フッ化水素反応させることをいう。また、気相反応とは、気体状態の244caを脱フッ化水素反応させることをいう。 The above-mentioned 244ca defluorinated hydrogen reaction may be either a liquid phase reaction or a gas phase reaction. The liquid phase reaction means that 244ca in a liquid state or dissolved in a liquid is subjected to a hydrogen fluoride reaction. Further, the gas phase reaction means that 244ca in a gaseous state is subjected to a hydrogen fluoride reaction.
 また、本発明の製造方法において、化合物1がHFC-449pcccである場合、化合物2としてHCFC-448occcが得られる。
 以下、原料として、449pcccを用いた場合について詳述する。
Further, in the production method of the present invention, when compound 1 is HFC-449pccc, HCFC-448occc can be obtained as compound 2.
Hereinafter, the case where 449 pccc is used as a raw material will be described in detail.
 449pcccは公知の方法で製造でき、例えば、RUSSIAN JOURNAL OF APPLIED CHEMISTRY Vol.5 No.7 2002 pp.1162-1165に記載の方法によって製造できる。 449 pccc can be produced by a known method, for example, RUSSIAN JOURNAL OF APPLIED CHEMISTRY Vol. 5 No. 7 2002 pp. It can be produced by the method described in 1162-1165.
 原料として449pcccを用いて気相反応により448occcを製造する際には、448occcを粗ガスの成分として得ることができる。粗ガスには、448occc以外にも、未反応の449pccc、C(7-x)Cl(1+x)(xは0~7を表す。)等が含まれることがある。
 上記448occc以外の成分は、蒸留、抽出蒸留、共沸蒸留、膜分離、二層分離、吸着等の既知の手段により、望まれる程度に除去できる。
When 448 occc is produced by a vapor phase reaction using 449 pcs cc as a raw material, 448 occc can be obtained as a component of a crude gas. In addition to 448 occc, the crude gas may contain unreacted 449 pccc, C 5 H 2 F (7-x) Cl (1 + x) (x represents 0 to 7), and the like.
The components other than 448occc can be removed to a desired extent by known means such as distillation, extraction distillation, azeotropic distillation, membrane separation, bilayer separation and adsorption.
 得られた448occcを脱フッ化水素反応させて、1-クロロ-2,3,3,4,4,5,5-ヘプタフルオロ-1-ペンテン(HCFO-1437dycc)を製造してもよい。特に、(Z)-1-クロロ-2,3,3,4,4,5,5-ヘプタフルオロ-1-ペンテン(HCFO-1437dycc(Z))を製造することが好ましい。
 脱フッ化水素反応の手順としては、Zhurnal Organicheskoi Khimii,(ロシア),1988年,24巻,8号,1626-1633頁等の公知の方法が挙げられる。
The obtained 448 occc may be subjected to a hydrogen fluoride reaction to produce 1-chloro-2,3,3,4,5,5-heptafluoro-1-pentene (HCFO-1437 dycc). In particular, it is preferable to produce (Z) -1-chloro-2,3,3,4,5,5-heptafluoro-1-pentene (HCFO-1437dycc (Z)).
Examples of the procedure for the defluorination hydrogen reaction include known methods such as Zhurnal Organicheskoi Kimii, (Russia), 1988, Vol. 24, No. 8, pp. 1626-1633.
 上記448occcの脱フッ化水素反応は、液相反応および気相反応のいずれでもよい。なお、液相反応とは、液体状態または液体に溶解している448occcを脱フッ化水素反応させることをいう。また、気相反応とは、気体状態の448occcを脱フッ化水素反応させることをいう。 The 448 occc defluorinated hydrogen reaction may be either a liquid phase reaction or a gas phase reaction. The liquid phase reaction means that 448 occc dissolved in a liquid state or a liquid is defluorinated by a hydrogen fluoride reaction. Further, the gas phase reaction means that 448 occc in a gaseous state is subjected to a hydrogen fluoride reaction.
 以下に、例により本発明をより詳細に説明するが、本発明はこれらに限定されない。後述する例1~19は、実施例に該当する。 The present invention will be described in more detail below by way of example, but the present invention is not limited thereto. Examples 1 to 19 described later correspond to Examples.
<ガスクロマトグラフの条件>
 以下の各種化合物の製造において、得られた生成物の組成分析はガスクロマトグラフ(GC)を用いて行った。カラムはDB-1301(長さ60m×内径250μm×厚み1μm、アジレント・テクノロジー株式会社製)を用いた。
<Gas chromatograph conditions>
In the production of the following various compounds, the composition analysis of the obtained product was performed using a gas chromatograph (GC). As the column, DB-1301 (length 60 m × inner diameter 250 μm × thickness 1 μm, manufactured by Agilent Technologies Co., Ltd.) was used.
<触媒調製>
 後述する反応に用いる触媒を、以下のように調製した。
 なお、各調製例で用いた反応装置としては、図1に基づいて説明した反応装置20と同様の反応装置を用いた。反応器1としては、内径16.1mm、長さ15cmのSUS304製の管状反応器を用いた。
<Catalyst preparation>
The catalyst used for the reaction described later was prepared as follows.
As the reaction device used in each preparation example, the same reaction device as the reaction device 20 described with reference to FIG. 1 was used. As the reactor 1, a tubular reactor made of SUS304 having an inner diameter of 16.1 mm and a length of 15 cm was used.
(触媒調製例1)
 クロム亜鉛複合酸化物(PRICAT62-3M、ジョンソンマッセイ社)38.1gを反応器に充填し、窒素(N)を150Nml/minを流しながら、反応器内を300℃に昇温した。反応器内を大気圧に維持しながら、反応器出口から得られるガス中の水分が5体積ppm以下になるまで充填された触媒を乾燥した。その後、反応器を350℃に昇温し、トリフルオロメタン(HFC-23)を21.9Nml/min、Nを43.7NmL/minの流量で16時間供給し、反応器内で部分フッ素化されたクロム亜鉛複合酸化物を調製した。なお、得られた触媒は、金属酸化物の部分フッ化物に該当する。
 なお、上記クロム亜鉛複合酸化物(PRICAT62-3M)中のCrの含有量は、触媒に含まれる金属全質量に対して、97.0質量%であり、Znの含有量は、触媒に含まれる金属全質量に対して、2.9質量%であった。
(Catalyst Preparation Example 1)
The reactor was filled with 38.1 g of a chromium-zinc composite oxide (PRICAT62-3M, Johnson Massey), and the temperature inside the reactor was raised to 300 ° C. while flowing nitrogen (N 2 ) at 150 Nml / min. While maintaining the inside of the reactor at atmospheric pressure, the filled catalyst was dried until the water content in the gas obtained from the reactor outlet became 5 volume ppm or less. Then, the temperature of the reactor was raised to 350 ° C., trifluoromethane (HFC-23) was supplied at a flow rate of 21.9 Nml / min and N 2 at a flow rate of 43.7 NmL / min for 16 hours, and the mixture was partially fluorinated in the reactor. A chromium-zinc composite oxide was prepared. The obtained catalyst corresponds to a partial fluoride of a metal oxide.
The Cr content in the chromium-zinc composite oxide (PRICAT62-3M) is 97.0% by mass with respect to the total mass of the metal contained in the catalyst, and the Zn content is contained in the catalyst. It was 2.9% by mass with respect to the total mass of the metal.
(触媒調製例2)
 クロム亜鉛複合酸化物(PRICAT62-3M、ジョンソンマッセイ社製)をクロムアルミニウムマグネシウム複合酸化物(N401AG、日揮触媒化成社製)33.6gに変更した以外は、(触媒調製例1)と同様の手順に従って、部分フッ素化されたクロムアルミニウムマグネシウム複合酸化物を得た。なお、得られた触媒は、金属酸化物の部分フッ化物に該当する。
 なお、上記クロムアルミニウムマグネシウム複合酸化物(N401AG)中のCrの含有量は、触媒に含まれる金属全質量に対して、20.3質量%であり、Alの含有量は、触媒に含まれる金属全質量に対して、76.6質量%であり、Mgの含有量は、触媒に含まれる金属全質量に対して、3.0質量%であった。
(Catalyst Preparation Example 2)
The procedure is the same as (Catalyst Preparation Example 1) except that the chromium-zinc composite oxide (PRICAT62-3M, manufactured by Johnson Massey) is changed to 33.6 g of the chromium-aluminum-magnesium composite oxide (N401AG, manufactured by Nikki Catalyst Kasei). To obtain a partially fluorinated chromium-aluminum-magnesium composite oxide. The obtained catalyst corresponds to a partial fluoride of a metal oxide.
The Cr content in the chromium aluminum-magnesium composite oxide (N401AG) is 20.3% by mass with respect to the total mass of the metal contained in the catalyst, and the Al content is the metal contained in the catalyst. It was 76.6% by mass with respect to the total mass, and the Mg content was 3.0% by mass with respect to the total mass of the metal contained in the catalyst.
(触媒調製例3)
 クロム亜鉛複合酸化物(PRICAT62-3M、ジョンソンマッセイ社製)をアルミナ(N612N、日揮触媒化成社製)25.5gに変更した以外は、(触媒調製例1)と同様の手順に従って、フッ素化処理を行い、部分フッ素化されたアルミナを得た。なお、得られた触媒は、金属酸化物の部分フッ化物に該当する。
(Catalyst Preparation Example 3)
Fluorination treatment according to the same procedure as (Catalyst Preparation Example 1) except that the chromium-zinc composite oxide (PRICAT62-3M, manufactured by Johnson Massey) was changed to 25.5 g of alumina (N612N, manufactured by Nikki Catalyst Kasei Co., Ltd.). Was carried out to obtain partially fluorinated alumina. The obtained catalyst corresponds to a partial fluoride of a metal oxide.
(触媒調製例4)
 反応器の温度を350℃から320℃に変更した以外は、(触媒調製例1)と同様の手順に従って、部分フッ素化されたクロム亜鉛複合酸化物を調製した。
(Catalyst Preparation Example 4)
A partially fluorinated chromium-zinc composite oxide was prepared according to the same procedure as in (Catalyst Preparation Example 1) except that the temperature of the reactor was changed from 350 ° C. to 320 ° C.
(触媒調製例5)
 1100gのCr(NO・9HOを2.5リットルの水に溶解させ、28質量%の水酸化アンモニウムの水溶液2000gを加えた。加熱された4Lの水を撹拌しながら、上記で得られた水溶液をこの水に添加して、水酸化物の沈殿を得た。次いで、沈殿物を濾別し、得られた固形分を純水により洗浄し、乾燥して、得られた生成物を解砕し酸化物粉末を得た。得られた酸化物粉末にグラファイトを3質量%混合し、打錠成形機によって直径5mm、高さ5mmの円筒状に成形し、窒素中、420℃で5時間焼成してクロム酸化物を調製した。
 クロム亜鉛複合酸化物(PRICAT62-3M、ジョンソンマッセイ社製)を上記で得たクロム酸化物36.6gに変更した以外は、(触媒調製例1)と同様の手順に従って、部分フッ素化されたクロム酸化物を得た。
(Catalyst Preparation Example 5)
1100g of Cr a (NO 3) 3 · 9H 2 O was dissolved in a 2.5 liter water was added an aqueous solution 2000g of ammonium hydroxide 28% by weight. While stirring 4 L of heated water, the aqueous solution obtained above was added to the water to obtain a hydroxide precipitate. Then, the precipitate was filtered off, and the obtained solid content was washed with pure water and dried, and the obtained product was crushed to obtain an oxide powder. Graphite was mixed with the obtained oxide powder in an amount of 3% by mass, molded into a cylindrical shape having a diameter of 5 mm and a height of 5 mm by a tableting molding machine, and calcined in nitrogen at 420 ° C. for 5 hours to prepare a chromium oxide. ..
Partially fluorinated chromium according to the same procedure as (Catalyst Preparation Example 1) except that the chromium-zinc composite oxide (PRICAT62-3M, manufactured by Johnson Massey) was changed to 36.6 g of the chromium oxide obtained above. An oxide was obtained.
(触媒調製例6)
 クロム亜鉛複合酸化物(PRICAT62-3M、ジョンソンマッセイ社)38.1gを反応器に充填し、窒素(N)を150Nml/minを流しながら、反応器内を300℃に昇温した。反応器内を大気圧に維持しながら、反応器出口から得られるガス中の水分が5体積ppm以下になるまで充填された触媒を乾燥した。
(Catalyst Preparation Example 6)
The reactor was filled with 38.1 g of a chromium-zinc composite oxide (PRICAT62-3M, Johnson Massey), and the temperature inside the reactor was raised to 300 ° C. while flowing nitrogen (N 2 ) at 150 Nml / min. While maintaining the inside of the reactor at atmospheric pressure, the filled catalyst was dried until the water content in the gas obtained from the reactor outlet became 5 volume ppm or less.
<例1>
 触媒調製例1で調製した触媒を含む反応器にNを15.6NmL/minの流量で流通させながら、反応器温度が250℃となるように設定した。反応器温度が安定した後、245caを0.047g/min、塩化水素を0.013g/minの流量で反応器に供給した。反応器出口の粗ガスは水洗後、アルカリ洗浄部、モレキュラーシーブ4Aを通すことで、酸分を除去し乾燥した生成物を得た。また、反応器出口の粗ガスの各成分をガスクロマトグラフィで分析した。245caおよび塩化水素の供給開始から10時間後の粗ガスの分析結果を表2に示す。
 なお、上記245caとしては、脱水処理が施されたものを用いた。具体的には、245caを含む原料組成物1(原料組成物1中の245caの含有量:99.9質量%以上)(1kg)が充填された密閉容器に、脱水剤としてモレキュラーシーブ4A(純正化学社製)100gを入れ、3日静置して、脱水処理を実施し、脱水処理後の原料組成物2を上記245caとして用いた。
 上記原料組成物2の水分含有量は、20質量ppmであった。
 水分含有量は、カールフィッシャー水分計を用いて測定した。カールフィッシャー水分計として、微量水分測定装置(三菱化学アナリテック社製、CA-200型)を使用し、試料導入部には液化ガス気化装置(同社製、型番:VG-200型)を接続し、予め設定した量の上記原料組成物2を気化させて、水分計に自動注入した。
<Example 1>
Catalyst Preparation The reactor temperature was set to 250 ° C. while flowing N 2 through the reactor containing the catalyst prepared in Example 1 at a flow rate of 15.6 NmL / min. After the reactor temperature was stabilized, 245ca was supplied to the reactor at a flow rate of 0.047 g / min and hydrogen chloride was supplied at a flow rate of 0.013 g / min. The crude gas at the outlet of the reactor was washed with water and then passed through an alkaline washing part and a molecular sieve 4A to remove the acid content and obtain a dried product. In addition, each component of the crude gas at the outlet of the reactor was analyzed by gas chromatography. Table 2 shows the analysis results of the crude gas 10 hours after the start of supply of 245ca and hydrogen chloride.
As the 245ca, a dehydrated product was used. Specifically, a molecular sieve 4A (genuine) as a dehydrating agent is placed in a closed container filled with the raw material composition 1 containing 245ca (content of 245ca in the raw material composition 1: 99.9% by mass or more) (1 kg). 100 g (manufactured by Chemical Co., Ltd.) was added and allowed to stand for 3 days to perform dehydration treatment, and the raw material composition 2 after dehydration treatment was used as the above 245ca.
The water content of the raw material composition 2 was 20 mass ppm.
The water content was measured using a Karl Fischer moisture meter. A trace moisture measuring device (manufactured by Mitsubishi Chemical Analytech Co., Ltd., CA-200 type) is used as a Karl Fischer moisture meter, and a liquefied gas vaporizer (manufactured by the same company, model number: VG-200 type) is connected to the sample introduction part. , The preset amount of the raw material composition 2 was vaporized and automatically injected into the moisture meter.
<例2>
 表2に示すように、塩化水素およびNの供給量を変更した以外は、例1と同様の手順に従って、生成物を得た。
<Example 2>
As shown in Table 2, a product was obtained according to the same procedure as in Example 1 except that the supply amounts of hydrogen chloride and N 2 were changed.
<例3>
 表2に示すように、触媒の種類を変更した以外は、例1と同様の手順に従って、生成物を得た。
<Example 3>
As shown in Table 2, a product was obtained according to the same procedure as in Example 1 except that the type of catalyst was changed.
<例8>
 表2に示すように、塩化水素およびNの供給量を変更した以外は、例1と同様の手順に従って、生成物を得た。
<Example 8>
As shown in Table 2, a product was obtained according to the same procedure as in Example 1 except that the supply amounts of hydrogen chloride and N 2 were changed.
<例9>
 表2に示すように、反応温度、並びに、245ca、塩化水素およびNの供給量を変更した以外は、例1と同様の手順に従って、生成物を得た。
<Example 9>
As shown in Table 2, the reaction temperature, and, 245ca, except for changing the supply amount of hydrogen chloride and N 2, in accordance with the same procedure as in Example 1 to give the product.
<例10>
 表2に示すように、反応温度、並びに、245ca、塩化水素およびNの供給量を変更した以外は、例1と同様の手順に従って、生成物を得た。
<Example 10>
As shown in Table 2, the reaction temperature, and, 245ca, except for changing the supply amount of hydrogen chloride and N 2, in accordance with the same procedure as in Example 1 to give the product.
<例11>
 表2に示すように、245ca、塩化水素およびNの供給量を変更した以外は、例1と同様の手順に従って、生成物を得た。
<Example 11>
As shown in Table 2, 245ca, except for changing the supply amount of hydrogen chloride and N 2, in accordance with the same procedure as in Example 1 to give the product.
<例12>
 触媒調製例4で調製した触媒を含む反応器にNを81.5NmL/minの流量で流通させながら、反応器温度が330℃となるように設定した。反応器温度が安定した後、245caを0.244g/min、塩化水素を0.066g/minの流量で反応器に供給した。反応器出口の粗ガスは水洗後、アルカリ洗浄部、モレキュラーシーブ4Aを通すことで、酸分を除去し乾燥した生成物を得た。また、反応器出口の粗ガスの各成分をガスクロマトグラフィで分析した。245caおよび塩化水素の供給開始から10時間後の粗ガスの分析結果を表2に示す。
 なお、上記245caとしては、例1と同様の脱水処理が施されたものを用いた。
<Example 12>
Catalyst Preparation The reactor temperature was set to 330 ° C. while flowing N 2 through the reactor containing the catalyst prepared in Example 4 at a flow rate of 81.5 NmL / min. After the reactor temperature was stabilized, 245ca was supplied to the reactor at a flow rate of 0.244 g / min and hydrogen chloride was supplied at a flow rate of 0.066 g / min. The crude gas at the outlet of the reactor was washed with water and then passed through an alkaline washing part and a molecular sieve 4A to remove the acid content and obtain a dried product. In addition, each component of the crude gas at the outlet of the reactor was analyzed by gas chromatography. Table 2 shows the analysis results of the crude gas 10 hours after the start of supply of 245ca and hydrogen chloride.
As the 245ca, the one subjected to the same dehydration treatment as in Example 1 was used.
<例13>
 表2に示すように、反応温度、並びに、245ca、塩化水素およびNの供給量を変更した以外は、例12と同様の手順に従って、生成物を得た。
<Example 13>
As shown in Table 2, a product was obtained according to the same procedure as in Example 12, except that the reaction temperature and the supply amounts of 245ca, hydrogen chloride and N 2 were changed.
<例14>
 表2に示すように、反応温度、並びに、245ca、塩化水素およびNの供給量を変更した以外は、例12と同様の手順に従って、生成物を得た。
<Example 14>
As shown in Table 2, a product was obtained according to the same procedure as in Example 12, except that the reaction temperature and the supply amounts of 245ca, hydrogen chloride and N 2 were changed.
<例15>
 触媒を(触媒調製例5)で調製した触媒に変更した以外は、例1と同様の手順に従って、生成物を得た。
<Example 15>
The product was obtained according to the same procedure as in Example 1 except that the catalyst was changed to the catalyst prepared in (Catalyst Preparation Example 5).
<例16>
 触媒調製例6で調製した触媒を含む反応器にNを85.7NmL/minの流量で流通させながら、反応器温度が300℃となるように設定した。反応器温度が安定した後、245caを0.256g/min、塩化水素を0.070g/minの流量で反応器に供給した。反応器出口の粗ガスは水洗後、アルカリ洗浄部、モレキュラーシーブ4Aを通すことで、酸分を除去し乾燥した生成物を得た。また、反応器出口の粗ガスの各成分をガスクロマトグラフィで分析した。245caおよび塩化水素の供給開始から5時間後の粗ガスの分析結果を表2に示す。
<Example 16>
The reactor temperature was set to 300 ° C. while flowing N 2 at a flow rate of 85.7 NmL / min through the reactor containing the catalyst prepared in Catalyst Preparation Example 6. After the reactor temperature was stabilized, 245ca was supplied to the reactor at a flow rate of 0.256 g / min and hydrogen chloride was supplied at a flow rate of 0.070 g / min. The crude gas at the outlet of the reactor was washed with water and then passed through an alkaline washing part and a molecular sieve 4A to remove the acid content and obtain a dried product. In addition, each component of the crude gas at the outlet of the reactor was analyzed by gas chromatography. Table 2 shows the analysis results of the crude gas 5 hours after the start of supply of 245ca and hydrogen chloride.
<例17>
 表2に示すように、反応温度、並びに、245ca、塩化水素およびNの供給量を変更した以外は、例16と同様の手順に従って、生成物を得た。
<Example 17>
As shown in Table 2, the reaction temperature, and, 245ca, except for changing the supply amount of hydrogen chloride and N 2, in accordance with the same procedure as in Example 16 to give the product.
 表2中、転化率は、反応に使用した245caのモル量に対する、反応で消費された245caのモル量の割合(単位:%)を表す。
 244ca選択率は、反応で消費された245caのモル量に対する、生成物中の244caのモル量の割合(単位:%)を表す。
 1233yd(Z)選択率は、反応で消費された245caのモル量に対する、生成物中の1233yd(Z)のモル量の割合(単位:%)を表す。
 その他選択率は、反応で消費された245caのモル量に対する、生成物中の上記成分以外の成分のモル量の割合(単位:%)を表す。
 なお、例1~3、8~10、14~15においては、反応圧力(反応器内の圧力)はいずれも0MPaGであり、滞留時間はいずれも30秒間であった。例11~13、16~17においては、反応圧力(反応器内の圧力)はいずれも0MPaGであり、滞留時間はいずれも5秒間であった。また、後述する例4においては、反応圧力(反応器内の圧力)は0MPaGであり、滞留時間は30秒間であった。
In Table 2, the conversion rate represents the ratio (unit:%) of the molar amount of 245ca consumed in the reaction to the molar amount of 245ca used in the reaction.
The 244ca selectivity represents the ratio (unit:%) of the molar amount of 244ca in the product to the molar amount of 245ca consumed in the reaction.
The 1233 yd (Z) selectivity represents the ratio (unit:%) of the molar amount of 1233 yd (Z) in the product to the molar amount of 245 ca consumed in the reaction.
The other selectivity represents the ratio (unit:%) of the molar amount of components other than the above components in the product to the molar amount of 245 ca consumed in the reaction.
In Examples 1 to 3, 8 to 10, 14 to 15, the reaction pressure (pressure in the reactor) was 0 MPaG, and the residence time was 30 seconds. In Examples 11 to 13 and 16 to 17, the reaction pressure (pressure in the reactor) was 0 MPaG, and the residence time was 5 seconds. Further, in Example 4 described later, the reaction pressure (pressure in the reactor) was 0 MPaG, and the residence time was 30 seconds.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、本発明の製造方法によれば、高い選択率でHCFCを製造できた。
 なお、例1の触媒調製例1で得られた触媒の代わりに、触媒調製例3で得られた触媒を用いた場合、所定のHCFCを得ることができた(例4)が、転化率は例3よりも低く、選択率も70%程度であり、やや劣っていた。
 例1~4の比較より、触媒にCrが含まれる場合、より効果が優れることが確認された。
As shown in Table 2, according to the production method of the present invention, HCFC could be produced with a high selectivity.
When the catalyst obtained in Catalyst Preparation Example 3 was used instead of the catalyst obtained in Catalyst Preparation Example 1 of Example 1, a predetermined HCFC could be obtained (Example 4), but the conversion rate was high. It was lower than that of Example 3, and the selectivity was about 70%, which was slightly inferior.
From the comparison of Examples 1 to 4, it was confirmed that the effect was more excellent when the catalyst contained Cr.
 例1と例8との比較より、化合物1に対する、塩化水素のモル比が0.75以上である場合、転化率がより優れることが確認された。
 例1と例9~10の比較より、反応温度が180℃(好ましくは、225℃)以上の場合、転化率がより優れることが確認された。
 例11~14の比較より、反応温度が360℃以下の場合、選択性がより優れることが確認された。
 例12と例16~17の比較より、活性化処理が実施された場合(言い換えれば、金属酸化物の部分ハロゲン化物を用いた場合)、転化率がより優れることが確認された。
From the comparison between Example 1 and Example 8, it was confirmed that the conversion rate was more excellent when the molar ratio of hydrogen chloride to compound 1 was 0.75 or more.
From the comparison between Examples 1 and 9 to 10, it was confirmed that the conversion rate was more excellent when the reaction temperature was 180 ° C. (preferably 225 ° C.) or higher.
From the comparison of Examples 11 to 14, it was confirmed that the selectivity was more excellent when the reaction temperature was 360 ° C. or lower.
From the comparison between Examples 12 and 16 to 17, it was confirmed that the conversion rate was more excellent when the activation treatment was carried out (in other words, when a partial halide of the metal oxide was used).
<例5>
 触媒調製例1で調製した触媒を含む反応器にNを15.6NmL/minの流量で流通させながら、反応器温度が250℃となるように設定した。反応器温度が安定した後、449pcccを0.082g/min、塩化水素を0.013g/minの流量で反応器に供給した。反応器出口の粗ガスは水洗後、アルカリ洗浄部、モレキュラーシーブ4Aを通すことで、酸分を除去し乾燥した生成物を得た。また、反応器出口の粗ガスの各成分をガスクロマトグラフィで分析した。449pcccおよび塩化水素の供給開始から10時間後の粗ガスを分析した結果、449pcccの転化率は63.4%、448occc選択率は94.8%、1437dycc(Z)選択率は0.1%であった。
 なお、上記転化率は、反応に使用した449pcccのモル量に対する、反応で消費された449pcccのモル量の割合(単位:%)を表す。
 448occc選択率は、反応で消費された449pcccのモル量に対する、生成物中の448occcのモル量の割合(単位:%)を表す。
 1437dycc(Z)選択率は、反応で消費された449pcccのモル量に対する、生成物中の1437dycc(Z)のモル量の割合(単位:%)を表す。
<Example 5>
Catalyst Preparation The reactor temperature was set to 250 ° C. while flowing N 2 through the reactor containing the catalyst prepared in Example 1 at a flow rate of 15.6 NmL / min. After the reactor temperature was stabilized, 449 pccc was supplied to the reactor at a flow rate of 0.082 g / min and hydrogen chloride at a flow rate of 0.013 g / min. The crude gas at the outlet of the reactor was washed with water and then passed through an alkaline washing part and a molecular sieve 4A to remove the acid content and obtain a dried product. In addition, each component of the crude gas at the outlet of the reactor was analyzed by gas chromatography. As a result of analyzing the crude gas 10 hours after the start of supply of 449 pccc and hydrogen chloride, the conversion rate of 449 pccc was 63.4%, the selectivity of 448 occc was 94.8%, and the selectivity of 1437 dycc (Z) was 0.1%. there were.
The conversion rate represents the ratio (unit:%) of the molar amount of 449 pccc consumed in the reaction to the molar amount of 449 pccc used in the reaction.
The 448 occc selectivity represents the ratio (unit:%) of the molar amount of 448 occc in the product to the molar amount of 449 pccc consumed in the reaction.
The 1437 dycc (Z) selectivity represents the ratio (unit:%) of the molar amount of 1437 dycc (Z) in the product to the molar amount of 449 pccc consumed in the reaction.
<例6>
 撹拌機、ジムロート冷却器を設置した2リットル四つ口フラスコに、例1で得られた244caの251.31g、テトラ-n-ブチルアンモニウムクロリド(TBAC)の2.51gを入れ、フラスコを50℃に加熱した。反応温度を50℃に維持し、34質量%水酸化カリウム(KOH)水溶液の631.55gを5分かけて滴下した。その後、30時間撹拌を続け、有機層を回収した。上記で回収した有機層を水洗後、蒸留して1233yd(E)および1233yd(Z)を含む精製1233ydを得た。1233yd(E)の選択率は8.9%であり、1233yd(Z)の選択率は91.0%であった。
<Example 6>
In a 2-liter four-necked flask equipped with a stirrer and a Dimroth condenser, 251.31 g of 244ca obtained in Example 1 and 2.51 g of tetra-n-butylammonium chloride (TBAC) were placed, and the flask was placed at 50 ° C. Heated to. The reaction temperature was maintained at 50 ° C., and 631.55 g of a 34 mass% potassium hydroxide (KOH) aqueous solution was added dropwise over 5 minutes. Then, stirring was continued for 30 hours, and the organic layer was recovered. The organic layer recovered above was washed with water and then distilled to obtain purified 1233 yd containing 1233 yd (E) and 1233 yd (Z). The selectivity of 1233yd (E) was 8.9%, and the selectivity of 1233yd (Z) was 91.0%.
<例7>
 撹拌機、ジムロート冷却器を設置した0.2リットル四つ口フラスコに、例5で得られた448occcの100.7g、相間移動触媒としてのテトラ-n-ブチルアンモニウムブロミド(TBAB)の1.0gを入れ、フラスコを10℃に冷却した。反応温度を10℃に維持し、34質量%水酸化カリウム(KOH)水溶液の153.9gを30分かけて滴下した。その後、38時間撹拌を続けた。得られた反応液を有機相と水相に二相分離し、有機相を回収した。回収した有機相を精製して、純度99.5%の1437dycc(Z)と1437dycc(E)の異性体混合物を78.6g得た。なお、異性体混合物中の1437dycc(Z)と1437dycc(E)の質量比(1437dycc(Z)/1437dycc(E))は、99/1であった。
<Example 7>
In a 0.2 liter four-necked flask equipped with a stirrer and a Dimroth condenser, 100.7 g of 448 occc obtained in Example 5 and 1.0 g of tetra-n-butylammonium bromide (TBAB) as a phase transfer catalyst. And the flask was cooled to 10 ° C. The reaction temperature was maintained at 10 ° C., and 153.9 g of a 34 mass% potassium hydroxide (KOH) aqueous solution was added dropwise over 30 minutes. Then, stirring was continued for 38 hours. The obtained reaction solution was separated into an organic phase and an aqueous phase, and the organic phase was recovered. The recovered organic phase was purified to obtain 78.6 g of an isomer mixture of 1437 dycc (Z) and 1437 dycc (E) having a purity of 99.5%. The mass ratio (1437 dycc (Z) / 1437 dycc (E)) of 1437 dycc (Z) and 1437 dycc (E) in the isomer mixture was 99/1.
<例17>
 表3に示すように、原料組成物2の水分含有量が198質量ppmであること以外は、例1と同様の手順に従って、生成物を得た。
<Example 17>
As shown in Table 3, a product was obtained according to the same procedure as in Example 1 except that the water content of the raw material composition 2 was 198 mass ppm.
<例18>
 表3に示すように、原料組成物2の水分含有量が395質量ppmであること以外は、例1と同様の手順に従って、生成物を得た。
<Example 18>
As shown in Table 3, a product was obtained according to the same procedure as in Example 1 except that the water content of the raw material composition 2 was 395 mass ppm.
<例19>
 表3に示すように、原料組成物2の水分含有量が1995質量ppmであること以外は、例1と同様の手順に従って、生成物を得た。
<Example 19>
As shown in Table 3, a product was obtained according to the same procedure as in Example 1 except that the water content of the raw material composition 2 was 1995 mass ppm.
 表3中、「含水量[質量ppm]」欄は、原料組成物2の水分含有量を表す。 In Table 3, the "water content [mass ppm]" column represents the water content of the raw material composition 2.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表3に示すように、本発明の製造方法によれば、原料組成物2の含水量が2000質量ppm以下(好ましくは400質量ppm以下、より好ましくは200質量ppm以下)の場合、効果が優れることが確認された。
 なお、2019年04月25日に出願された日本特許出願2019-084111号の明細書、特許請求の範囲、要約書および図面の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。
As shown in Table 3, according to the production method of the present invention, the effect is excellent when the water content of the raw material composition 2 is 2000 mass ppm or less (preferably 400 mass ppm or less, more preferably 200 mass ppm or less). It was confirmed that.
The entire contents of the specification, claims, abstract and drawings of Japanese Patent Application No. 2019-084111 filed on April 25, 2019 are cited here as disclosure of the specification of the present invention. It is something to incorporate.
 1:反応器
 2:化合物1の供給ライン
 2a:予熱器
 3:塩化水素の供給ライン
 3a:予熱器
 4:窒素の供給ライン
 4a:予熱器
 5:混合物供給ライン
 6:冷却部
 7:出口ライン
 8:水蒸気および酸性液の回収槽
 9:アルカリ洗浄装置
 10:脱水塔
 11:分析装置
 20:反応装置
1: Reactor 2: Compound 1 supply line 2a: Preheater 3: Hydrogen chloride supply line 3a: Preheater 4: Nitrogen supply line 4a: Preheater 5: Mixture supply line 6: Cooling unit 7: Outlet line 8 : Water vapor and acidic liquid recovery tank 9: Alkaline cleaning device 10: Dehydration tower 11: Analyzer 20: Reaction device

Claims (15)

  1.  触媒の存在下、式(1)で表されるハイドロフルオロカーボンと、塩化水素とを反応させて、式(2)で表されるハイドロクロロフルオロカーボンを製造することを特徴とする、ハイドロクロロフルオロカーボンの製造方法。
     式(1)  X-L-Y
     式(2)  X-L-Z
     Xは、-CH(3-a)を表す。
     Yは、-CH(3-b)を表す。
     Zは、-CHCl(3-b-c)を表す。
     Lは、-CF-、-CFCF-、または、少なくとも一部の水素原子がフッ素原子に置換されてもよい炭素数が3~6のフルオロアルキレン基であって、炭素数が3~6のフルオロアルキレン基の末端はいずれも-CF-である。
     aは、0または1を表す。
     bは、1または2を表す。
     cは、1または2を表す。
     ただし、aが0の場合、bは1または2を表し、aが1の場合、bは2を表す。
     また、bが1の場合、cは1または2を表し、bが2の場合、cは1を表す。
    Production of hydrochlorofluorocarbon, which comprises reacting hydrofluorocarbon represented by the formula (1) with hydrogen chloride in the presence of a catalyst to produce hydrochlorofluorocarbon represented by the formula (2). Method.
    Equation (1) XLY
    Equation (2) XLZ
    X represents −CH a F (3-a) .
    Y represents -CH b F (3-b) .
    Z represents -CH b Cl c F (3-bc) .
    L is, -CF 2 -, - CF 2 CF 2 -, or carbon atoms, which may at least part of the hydrogen atoms are substituted by fluorine atoms is a fluoroalkylene group having 3 to 6 carbon atoms 3 All of the ends of the fluoroalkylene groups of to 6 are -CF 2- .
    a represents 0 or 1.
    b represents 1 or 2.
    c represents 1 or 2.
    However, when a is 0, b represents 1 or 2, and when a is 1, b represents 2.
    When b is 1, c represents 1 or 2, and when b is 2, c represents 1.
  2.  前記触媒が金属含有触媒である、請求項1に記載の製造方法。 The production method according to claim 1, wherein the catalyst is a metal-containing catalyst.
  3.  前記触媒が、金属酸化物、金属酸化物の部分ハロゲン化物、および、金属ハロゲン化物から選ばれる1種以上を含み、
     前記金属酸化物、前記金属酸化物の部分ハロゲン化物、および、前記金属ハロゲン化物が、それぞれ、CrおよびAlから選ばれる少なくとも1種を含む、請求項1または2に記載の製造方法。
    The catalyst comprises one or more selected from metal oxides, partial halides of metal oxides, and metal halides.
    The production method according to claim 1 or 2, wherein the metal oxide, a partial halide of the metal oxide, and the metal halide contain at least one selected from Cr and Al, respectively.
  4.  前記触媒が、前記金属酸化物の部分ハロゲン化物を含む、請求項3に記載の製造方法。 The production method according to claim 3, wherein the catalyst contains a partially halide of the metal oxide.
  5.  前記Lが-CF-、-CFCF-、-CF-CF-CF-、-CF-CHF-CF-または-CF-CH-CF-である、請求項1~4のいずれか1項に記載の製造方法。 Wherein L is -CF 2 -, - CF 2 CF 2 -, - CF 2 -CF 2 -CF 2 -, - CF 2 -CHF-CF 2 - or -CF 2 -CH 2 -CF 2 - is, according Item 8. The production method according to any one of Items 1 to 4.
  6.  前記aが1であり、前記bが2であり、前記cが1である、請求項1~5のいずれか1項に記載の製造方法。 The production method according to any one of claims 1 to 5, wherein the a is 1, the b is 2, and the c is 1.
  7.  前記式(1)で表されるハイドロフルオロカーボンと前記塩化水素とを気相で反応させる、請求項1~6のいずれか1項に記載の製造方法。 The production method according to any one of claims 1 to 6, wherein the hydrofluorocarbon represented by the formula (1) and the hydrogen chloride are reacted in a gas phase.
  8.  反応温度が100~450℃である、請求項1~7のいずれか1項に記載の製造方法。 The production method according to any one of claims 1 to 7, wherein the reaction temperature is 100 to 450 ° C.
  9.  前記式(1)で表されるハイドロフルオロカーボンに対する、前記塩化水素のモル比が0.5~2.0である、請求項1~8のいずれか1項に記載の製造方法。 The production method according to any one of claims 1 to 8, wherein the molar ratio of hydrogen chloride to the hydrofluorocarbon represented by the formula (1) is 0.5 to 2.0.
  10.  前記式(1)で表されるハイドロフルオロカーボンを含む原料組成物と、塩化水素とを用いて前記反応を行い、
     前記原料組成物の水分含有量が5000質量ppm以下である、請求項1~9のいずれか1項に記載の製造方法。
    The reaction was carried out using a raw material composition containing a hydrofluorocarbon represented by the formula (1) and hydrogen chloride.
    The production method according to any one of claims 1 to 9, wherein the water content of the raw material composition is 5000 mass ppm or less.
  11.  前記水分含有量が400質量ppm以下である、請求項10に記載の製造方法。 The production method according to claim 10, wherein the water content is 400 mass ppm or less.
  12.  前記式(1)で表されるハイドロフルオロカーボンが1,1,2,2,3-ペンタフルオロプロパンであり、
     前記式(2)で表されるハイドロクロロフルオロカーボンが3-クロロ-1,1,2,2-テトラフルオロプロパンである、請求項1~11のいずれか1項に記載の製造方法。
    The hydrofluorocarbon represented by the formula (1) is 1,1,2,2,3-pentafluoropropane.
    The production method according to any one of claims 1 to 11, wherein the hydrochlorofluorocarbon represented by the formula (2) is 3-chloro-1,1,2,2-tetrafluoropropane.
  13.  請求項12に記載の方法によって製造される3-クロロ-1,1,2,2-テトラフルオロプロパンを脱フッ化水素反応させて1-クロロ-2,3,3-トリフルオロプロペンを製造することを特徴とする、1-クロロ-2,3,3-トリフルオロプロペンの製造方法。 1-Chloro-2,3,3-trifluoropropene is produced by subjecting 3-chloro-1,1,2,2-tetrafluoropropane produced by the method according to claim 12 to a hydrogen fluoride reaction. A method for producing 1-chloro-2,3,3-trifluoropropene, which is characterized by the above.
  14.  前記式(1)で表されるハイドロフルオロカーボンが1,1,2,2,3,3,4,4,5-ノナフルオロペンタンであり、
     前記式(2)で表されるハイドロクロロフルオロカーボンが5-クロロ-1,1,2,2,3,3,4,4-オクタフルオロペンタンである、請求項1~11のいずれか1項に記載の製造方法。
    The hydrofluorocarbon represented by the formula (1) is 1,1,2,2,3,3,4,5-nonafluoropentane.
    According to any one of claims 1 to 11, the hydrochlorofluorocarbon represented by the formula (2) is 5-chloro-1,1,2,2,3,3,4,5-octafluoropentane. The manufacturing method described.
  15.  請求項14に記載の方法によって製造される5-クロロ-1,1,2,2,3,3,4,4-オクタフルオロペンタンを脱フッ化水素反応させて1-クロロ-2,3,3,4,4,5,5-ヘプタフルオロ-1-ペンテンを製造することを特徴とする、1-クロロ-2,3,3,4,4,5,5-ヘプタフルオロ-1-ペンテンの製造方法。 5-Chloro-1,1,2,2,3,3,4,5-octafluoropentene produced by the method according to claim 14 is subjected to a hydrogen fluoride reaction to 1-chloro-2,3. Of 1-chloro-2,3,3,4,5,5,5-heptafluoro-1-pentene, which comprises producing 3,4,4,5,5-heptafluoro-1-pentene. Production method.
PCT/JP2020/017339 2019-04-25 2020-04-22 Method for producing hydrochlorofluorocarbon, method for producing 1-chloro-2,3,3-trifluoropropene, and method for producing 1-chloro-2,3,3,4,4,5,5-heptafluoro-1-pentene WO2020218340A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080030172.7A CN113710636A (en) 2019-04-25 2020-04-22 Process for producing hydrochlorofluorocarbon, process for producing 1-chloro-2, 3, 3-trifluoropropene, and process for producing 1-chloro-2, 3,3,4,4,5, 5-heptafluoro-1-pentene
JP2021516160A JPWO2020218340A1 (en) 2019-04-25 2020-04-22

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019084111 2019-04-25
JP2019-084111 2019-04-25

Publications (1)

Publication Number Publication Date
WO2020218340A1 true WO2020218340A1 (en) 2020-10-29

Family

ID=72942562

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/017339 WO2020218340A1 (en) 2019-04-25 2020-04-22 Method for producing hydrochlorofluorocarbon, method for producing 1-chloro-2,3,3-trifluoropropene, and method for producing 1-chloro-2,3,3,4,4,5,5-heptafluoro-1-pentene

Country Status (3)

Country Link
JP (1) JPWO2020218340A1 (en)
CN (1) CN113710636A (en)
WO (1) WO2020218340A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023210729A1 (en) * 2022-04-28 2023-11-02 関東電化工業株式会社 Method for producing 3-chloro-1,1,1,5,5,5-hexafluoro-2-pentene

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08504207A (en) * 1992-12-08 1996-05-07 イー・アイ・デュポン・ドゥ・ヌムール・アンド・カンパニー Method for reducing the fluorine content of halocarbons
JPH08504208A (en) * 1992-12-08 1996-05-07 イー・アイ・デュポン・ドゥ・ヌムール・アンド・カンパニー Method for reducing the fluorine content of hydrofluorocarbons and hydrohalofluorocarbons
JP2005536424A (en) * 2002-08-22 2005-12-02 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Cobalt substituted chromium oxide compositions, their preparation, and their use as catalysts and catalyst precursors
WO2017018412A1 (en) * 2015-07-27 2017-02-02 旭硝子株式会社 Method for producing 1-chloro-2,3,3-trifluoropropene
WO2019003896A1 (en) * 2017-06-27 2019-01-03 Agc株式会社 Production method for 2-chloro-1,1,1,2-tetrafluoropropane and/or 3-chloro-1,1,1,2-tetrafluoropropane, and production method for 2,3,3,3-tetrafluoropropene
WO2019039521A1 (en) * 2017-08-25 2019-02-28 Agc株式会社 Solvent composition, cleaning method, method for producing coated substrate, and heat transfer medium

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08504207A (en) * 1992-12-08 1996-05-07 イー・アイ・デュポン・ドゥ・ヌムール・アンド・カンパニー Method for reducing the fluorine content of halocarbons
JPH08504208A (en) * 1992-12-08 1996-05-07 イー・アイ・デュポン・ドゥ・ヌムール・アンド・カンパニー Method for reducing the fluorine content of hydrofluorocarbons and hydrohalofluorocarbons
JP2005536424A (en) * 2002-08-22 2005-12-02 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Cobalt substituted chromium oxide compositions, their preparation, and their use as catalysts and catalyst precursors
WO2017018412A1 (en) * 2015-07-27 2017-02-02 旭硝子株式会社 Method for producing 1-chloro-2,3,3-trifluoropropene
WO2019003896A1 (en) * 2017-06-27 2019-01-03 Agc株式会社 Production method for 2-chloro-1,1,1,2-tetrafluoropropane and/or 3-chloro-1,1,1,2-tetrafluoropropane, and production method for 2,3,3,3-tetrafluoropropene
WO2019039521A1 (en) * 2017-08-25 2019-02-28 Agc株式会社 Solvent composition, cleaning method, method for producing coated substrate, and heat transfer medium

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023210729A1 (en) * 2022-04-28 2023-11-02 関東電化工業株式会社 Method for producing 3-chloro-1,1,1,5,5,5-hexafluoro-2-pentene

Also Published As

Publication number Publication date
CN113710636A (en) 2021-11-26
JPWO2020218340A1 (en) 2020-10-29

Similar Documents

Publication Publication Date Title
JP6188767B2 (en) Method for extending catalyst life during hydrofluorination
JP5571903B2 (en) Integrated process to produce 2,3,3,3-tetrafluoropropene
KR101386906B1 (en) Process For the Production of HFO Trans-1234ze from HFC-245fa
US5710352A (en) Vapor phase process for making 1,1,1,3,3-pentafluoropropane and 1-chloro-3,3,3-trifluoropropene
EP2702018B1 (en) INTEGRATED PROCESS TO CO-PRODUCE 1,1,1,3,3-PENTAFLUOROPROPANE, TRANS-1-CHLORO-3,3,3-TRIFLUOROPROPENE and TRANS-1,3,3,3-TETRAFLUOROPROPENE
JP6084168B2 (en) For producing trans-1-chloro-3,3,3-trifluoropropene, trans-1,3,3,3-tetrafluoropropene, and 1,1,1,3,3-pentafluoropropane together Integration method
WO2019216239A1 (en) Method for preparing 1,2-difluoroethylene and/or 1,1,2-trifluoroethane
CN102858725B (en) Manufacture the method for tetrafluoroolefin
EP3173397A1 (en) Method for producing fluorinated organic compounds
CN105188909B (en) Fluorination process and reactor
JP2019070050A (en) Method for reducing alkyne impurities in fluoroolefin
US10414704B2 (en) Process for the manufacture of 2-chloro-3,3,3-trifluoropropene by gas phase fluorination of pentachloropropane
JP2018527369A (en) Novel process for the preparation of 2-chloro-3,3,3-trifluoropropene from 1,2-dichloro-3,3,3-trifluoropropene
WO2017104829A1 (en) Method for producing hydrofluoroolefin
WO2020218340A1 (en) Method for producing hydrochlorofluorocarbon, method for producing 1-chloro-2,3,3-trifluoropropene, and method for producing 1-chloro-2,3,3,4,4,5,5-heptafluoro-1-pentene
WO2018079726A1 (en) Production method for tetrafluoropropenes
JP2021107328A (en) Production method of chlorine-containing propene
WO2020218336A1 (en) Method for producing hydrochlorofluorocarbon, method for producing 1-chloro-2, 3, 3-trifluoropropene, and method for producing 1-chloro-2, 3, 3, 4, 4, 5, 5-heptafluoro-1-pentene
KR100570802B1 (en) Process for the production of fluoroethane and use of the produced fluoroethane
JP7151259B2 (en) Method for producing 1-chloro-2,3,3-trifluoropropene
CN115803308A (en) Method for preparing 1-chloro-2,3,3-trifluoropropene
KR20010029521A (en) Vapor phase process for making 1,1,1,3,3-pentafluoropropane and 1-chloro-3,3,3-trifluoropropene

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20794461

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021516160

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20794461

Country of ref document: EP

Kind code of ref document: A1