WO2022255267A1 - Centrifugal blower - Google Patents

Centrifugal blower Download PDF

Info

Publication number
WO2022255267A1
WO2022255267A1 PCT/JP2022/021803 JP2022021803W WO2022255267A1 WO 2022255267 A1 WO2022255267 A1 WO 2022255267A1 JP 2022021803 W JP2022021803 W JP 2022021803W WO 2022255267 A1 WO2022255267 A1 WO 2022255267A1
Authority
WO
WIPO (PCT)
Prior art keywords
main plate
shroud
curved surface
blade
opening
Prior art date
Application number
PCT/JP2022/021803
Other languages
French (fr)
Japanese (ja)
Inventor
麻里 深田
千秋 駒田
修三 小田
潤 山岡
誠文 川島
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2022255267A1 publication Critical patent/WO2022255267A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/28Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
    • F04D29/30Vanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing

Definitions

  • the present disclosure relates to a centrifugal blower that blows air taken in from one of the axial directions of rotation of an impeller in a direction away from the axial center.
  • a centrifugal fan in which an impeller having a main plate, a shroud, and a plurality of blades is rotatably provided inside a case (see Patent Document 1).
  • the impeller of the centrifugal blower described in Patent Document 1 has a leading edge of the blade on the side closer to the axis of rotation than the inner peripheral wall of the opening provided in the center of the shroud.
  • a surface of the front edge facing away from the main plate extends perpendicularly to the axis.
  • the centrifugal fan in the centrifugal fan, the air flowing from the air suction port provided in the case into the flow path (hereinafter referred to as "inter-blade flow path") formed between a plurality of blades. It has a characteristic that it flows toward the main plate and is less likely to flow along the surface of the shroud on the inter-blade flow path side (hereinafter referred to as the "back surface of the shroud"). Therefore, when the air flowing into the inter-blade passage from the air suction port separates from the rear surface of the shroud and the vortex generated by the separation (hereinafter referred to as "separation vortex") becomes larger, there arises a problem that noise increases. Regarding such a problem, the centrifugal fan described in Patent Document 1 has room for improvement in terms of blade shape. An object of the present disclosure is to reduce noise in a centrifugal fan.
  • a rotatably provided main plate in a centrifugal fan, a rotatably provided main plate; an annular shroud facing the main plate and having an opening in the center through which air flows; a plurality of blades arranged at predetermined intervals around an axis serving as a center of rotation between the shroud and the main plate and connected to the shroud and the main plate;
  • a virtual circle centered on the axis on a virtual plane perpendicular to the axis
  • the side closer to the axis in the radial direction of the virtual circle is called the radial inner side
  • the opposite side is called the radial outer side
  • the leading edge of the wing is provided radially inward from the inner peripheral wall of the opening of the shroud
  • the surface of the leading edge facing away from the main plate is located radially inward of the connection point between the inner peripheral wall of the opening of the shroud and the blade and is located closer to the main plate than the connection point, and is positioned relative to
  • the low portion and the high portion form a concave shape on the surface of the front edge facing away from the main plate.
  • the air flowing into the inter-blade passage from the opening of the shroud is caused by the Coanda effect in which the air flows along the concave shape formed on the leading edge of the blade, and the direction of the air flow is changed to the shape of the back surface of the shroud. get close to Therefore, separation of the air flowing into the inter-blade passage from the opening of the shroud is suppressed from the rear surface of the shroud, and the separation vortex is reduced, thereby reducing noise.
  • the efficiency of the blower is improved by suppressing the separation of air from the back surface of the shroud. Therefore, under the condition of the same air volume, the number of rotations of the blower can be lowered, and the vibration caused by the rotation is reduced, so that the noise can be reduced.
  • FIG. 1 is a plan view of a centrifugal fan according to a first embodiment
  • FIG. 2 is a cross-sectional view taken along line II-II of FIG. 1
  • FIG. It is a figure which shows a part of impeller and a part of upper case in the cross section of the III-III line of FIG. 4 is an enlarged view of the leading edge of the blade shown in FIG. 3 and its vicinity
  • FIG. FIG. 5 is an enlarged view of the V portion of FIG. 4
  • 5 is a cross-sectional view taken along the line VI-VI of FIG. 4
  • FIG. FIG. 5 is an explanatory diagram for explaining the flow of air from the air suction port to the inter-blade passage at the same location as in FIG.
  • FIG. 4 In the centrifugal fan concerning a 1st embodiment, it is an experimental result which shows the relation between the depth of dent shape, and noise.
  • 5 is an enlarged view of a portion corresponding to FIG. 4 in the centrifugal fan according to the second embodiment; FIG. It is an enlarged view of the part corresponding to FIG. 4 in the centrifugal fan which concerns on 3rd Embodiment. 5 is an enlarged view of a portion corresponding to FIG. 4 in a centrifugal fan of a comparative example; FIG.
  • the centrifugal blower 1 of the first embodiment includes an impeller 2 composed of a main plate 10, a shroud 20, a plurality of blades 30, etc., a motor 40 for rotating the impeller 2, A case 50 that houses the impeller 2 and the motor 40 is provided.
  • the blower 1 is used for various purposes such as, for example, a vehicle seat air conditioner, an air conditioner, or a ventilator.
  • a virtual circle centered on the axis CL is defined on a virtual plane perpendicular to the rotation axis CL of the impeller 2.
  • the radially opposite side of the imaginary circle from the axis CL is called the radially outer side.
  • the direction in which the axis CL extends is referred to as the "axis direction”.
  • the configuration of the impeller 2 will be explained.
  • the main plate 10 of the impeller 2 is rotatable by the torque output by the motor 40 .
  • the main plate 10 includes a central portion 11 fixed to the rotating shaft 41 of the motor 40, a fixed portion 12 fixed to the radially outer wall of the central portion 11, and a radially outer side of the fixed portion 12. and an annular portion 13 joined to a plurality of blades 30 .
  • the central portion 11 of the main plate 10 is formed in a mountain shape that gradually moves away from the air suction port 51 of the upper case 53 radially outward from the rotating shaft 41 side.
  • the central portion 11 of the main plate 10 directs the air sucked from the air suction port 51 of the upper case 53 to the flow path (hereinafter referred to as "inter-blade flow path") formed between the plurality of blades 30. It functions as a guiding guide surface.
  • the central portion 11 of the main plate 10 forms part of a motor rotor 42, which will be described later.
  • the fixing portion 12 of the main plate 10 is used to fix the plurality of blades 30 and the shroud 20 integrally formed with the fixing portion 12 to the motor rotor 42 .
  • the shroud 20 is provided so as to face the main plate 10 in the axial direction.
  • the shroud 20 has an opening 21 in the center through which air flows. Therefore, the shroud 20 is formed in an annular shape.
  • the shroud 20 has a tubular shroud portion 22 extending from the inner peripheral edge on the opening 21 side toward the side opposite to the main plate 10 .
  • the shroud 20 also has a plurality of shroud-side projections 23 extending cylindrically toward the side opposite to the main plate 10 at radially outer positions of the shroud tubular portion 22 . In this embodiment, three shroud-side projections 23 are provided.
  • the plurality of blades 30 are provided between the shroud 20 and the main plate 10 and arranged at predetermined intervals around the axis CL, which is the center of rotation of the impeller 2 .
  • a plurality of wings 30 extend rearward in the direction of rotation from leading edge 31 toward trailing edge 32 . That is, the impeller 2 of this embodiment is a turbofan.
  • An end portion 33 of the blade 30 on the shroud 20 side in the axial direction is connected to the shroud 20 .
  • An end portion 34 of the blade 30 on the axial main plate 10 side is connected to the fixed portion 12 and the annular portion 13 of the main plate 10 . Therefore, the impeller 2 of this embodiment is a closed fan.
  • leading edge 31 of the blade 30 is provided radially inward of the inner peripheral wall 211 of the opening 21 of the shroud 20 .
  • leading edge 31 of the blade 30 may be referred to as "wing leading edge 31".
  • the shape of the blade leading edge 31 will be described later in detail.
  • the case 50 has an upper case 53 and a lower case 54.
  • the upper case 53 is a member that covers the shroud 20 side of the impeller 2 .
  • the lower case 54 is a member that covers the main plate 10 side of the impeller 2 and houses the motor 40 and the circuit board 60 .
  • the upper case 53 and the lower case 54 are fixed to each other with a predetermined gap therebetween by means of struts and screws (not shown).
  • the position where a column or the like is provided between the upper case 53 and the lower case 54 is indicated by a circle with reference numeral 55 .
  • the upper case 53 has an upper case main body 56 , an air suction port 51 and a bell mouth 57 .
  • the upper case body portion 56 covers the surface of the shroud 20 opposite to the main plate 10 .
  • the air suction port 51 is provided at a position corresponding to the opening 21 of the shroud 20 in the upper case main body 56 .
  • the bell mouth 57 extends cylindrically from the inner peripheral edge of the air suction port 51 toward the main plate 10 side.
  • the bellmouth 57 is a part that introduces air into the impeller 2 from the outside. Therefore, the corner portion of the bell mouth 57 on the side opposite to the main plate 10 is curved, and the end portion of the bell mouth 57 on the side of the main plate 10 is also curved.
  • the upper case 53 has a plurality of case-side projections 52 extending cylindrically toward the shroud 20 at radially outer positions of the bell mouth 57 .
  • two case-side projections 52 are provided.
  • the two case-side projections 52 are provided between the three shroud-side projections 23 provided on the shroud 20 . Therefore, a labyrinth portion 26 is formed by the case-side projection 52 and the shroud-side projection 23 in the gap channel 25 between the upper case 53 and the shroud 20 .
  • the lower case 54 has a lower case main body portion 58 that covers the main plate 10 side of the impeller 2 and a central tubular portion 59 provided in the center of the lower case main body portion 58 .
  • a rotating shaft 41 of the motor 40 and a motor stator 43 are attached to the central cylindrical portion 59 .
  • an outer rotor type brushless DC motor is employed as the motor 40 .
  • a rotating shaft 41 of the motor 40 is rotatably provided inside the central tubular portion 59 via a bearing 44 .
  • a center portion 11 of a motor rotor 42 is fixed to an axial end portion of a rotating shaft 41 of the motor 40 .
  • the motor rotor 42 includes the central portion 11 of the main plate 10 , the magnet holding portion 14 extending from the outer edge of the central portion 11 of the main plate 10 in the axial direction opposite to the shroud 20 , and the magnet holding portion 14 radially inward of the magnet holding portion 14 . and a magnet 45 provided in the .
  • the fixing portion 12 of the main plate 10 is fixed to the radially outer wall of the magnet holding portion 14 by press fitting or the like. Thereby, the motor rotor 42 and the impeller 2 are joined.
  • the magnets 45 provided radially inside the magnet holding portion 14 have magnetic poles of different types alternately arranged in the circumferential direction of the magnet holding portion 14 .
  • a motor stator 43 is provided radially inside the magnet 45 .
  • the motor stator 43 is fixed to the radially outer surface of the central tubular portion 59 .
  • the motor stator 43 has a three-phase coil 46 and a stator core 461 configured by Y-connection or ⁇ -connection, for example.
  • a three-phase alternating current is supplied from a circuit board 60 to the three-phase coil 46 .
  • the circuit board 60 supplies three-phase alternating current to the three-phase coils 46 of the motor stator 43.
  • the impeller 2 rotates together.
  • the impeller 2 rotates, as indicated by arrow AF1 in FIG. direction outward.
  • the blade leading edge 31 is a portion of the blade 30 provided radially inward of the inner peripheral wall 211 of the opening 21 of the shroud 20 .
  • a concave shape 70 is formed on a surface of the blade leading edge 31 facing away from the main plate 10 .
  • a recessed shape 70 is formed by a lower portion 71 and a higher portion 72 .
  • the lower portion 71 is located radially inward of a connecting point 73 between the inner peripheral wall 211 of the opening 21 of the shroud 20 and the blade 30 and closer to the main plate 10 than the connecting point 73 .
  • the low portion 71 is provided along a plane perpendicular to the axis CL.
  • “the lower portion 71 is provided along a plane perpendicular to the axis CL” includes the following states. That is, when the low-level portion 71 is viewed from the rotation direction of the blade 30, the low-level portion 71 is parallel to a virtual plane perpendicular to the axis CL, and the low-level portion 71 is parallel to the virtual plane. It also includes a slightly curved or tilted state.
  • the high-level portion 72 is located radially inward of the low-level portion 71 and on the side opposite to the main plate 10 with respect to the low-level portion 71 .
  • the high portion 72 has substantially the same height as the connecting portion 73 between the inner peripheral wall 211 of the opening 21 of the shroud 20 and the blade 30 in the axial direction.
  • the high portion 72 may be located closer to the main plate 10 than the connecting portion 73 in the axial direction, or may be located on the side opposite to the main plate 10 than the connecting portion 73 . .
  • the low portion 71 and the high portion 72 are connected by a smooth curved surface.
  • the first curved surface 74 is a curved surface that is convex toward the air suction port 51 side (that is, the side opposite to the main plate 10 ) on the low portion 71 side of the high portion 72 .
  • the second curved surface 75 is a curved surface that is radially outward of the first curved surface 74 (that is, is closer to the lower portion 71 than the first curved surface 74) and protrudes toward the main plate 10 side.
  • the point of contact between the arc of the portion radially inner than the first curved surface 74 and the arc of the first curved surface 74 is indicated by P1.
  • the point of contact between the arc of the first curved surface 74 and the arc of the second curved surface 75 is denoted by P2.
  • the point of contact between the arc of the second curved surface 75 and the arc of the radially outer portion of the second curved surface 75 is indicated by P3.
  • the radius of curvature of the first curved surface 74 is R1
  • the radius of curvature of the second curved surface 75 is R2.
  • the curvature radius R1 of the first curved surface 74 and the curvature radius R2 of the second curved surface 75 have a relationship of R1>R2.
  • a flat surface may be provided between the first curved surface 74 and the second curved surface 75, or the first curved surface 74 and the second curved surface 75 may have a flat surface in part thereof. may be
  • FIG. 6 is a cross-sectional view taken along line VI-VI in FIG. That is, FIG. 6 is a cross-sectional view of the lower portion 71 of the blade leading edge 31 taken along a plane perpendicular to the direction in which the blade 30 extends from the leading edge 31 to the trailing edge 32 .
  • the curvature radius of the corner portion 36 of the low portion 71 on the suction surface 35 side is R3
  • the curvature radius of the corner portion 38 of the low portion 71 on the pressure surface 37 side is R4.
  • the curvature radius R4 of the corner portion 38 has the relationships of R1>R3>R4 and R2>R3>R4.
  • the blade 30 has an upright wall portion 39 between the lower portion 71 and the connection point 73 between the inner peripheral wall 211 of the opening 21 of the shroud 20 and the blade 30 .
  • the standing wall portion 39 is provided parallel to the inner peripheral wall 211 of the opening portion 21 of the shroud 20 .
  • a portion 391 where the standing wall portion 39 and the lower portion 71 are connected is curved. That is, both the radially outer portion 391 of the low portion 71 and the radially inner portion of the low portion 71 (that is, the second curved surface 75) are curved surfaces.
  • the distance Da between the point or surface of the low portion 71 that is closest to the main plate 10 and the point or surface of the high portion 72 that is farthest from the main plate 10 is defined as the depth of the concave shape 70. Sa Da".
  • the distance Db between the main plate 10 and the shroud 20 on the trailing edge 32 side of the blade 30 is referred to as "blade outlet height Db.”
  • the depth Da of the concave shape 70 and the blade outlet height Db have a relationship of 0 ⁇ Da ⁇ Db ⁇ 0.09. That is, the depth Da of the concave shape 70 is set to be greater than 0 and equal to or less than 9% of the blade outlet height Db. This is based on the results of experiments conducted by the inventors of the present disclosure, and the results of the experiments will be described later.
  • the outer diameter of the end of the bell mouth 57 on the main plate side is Dc, and the point or Let Dw be the outer diameter of a circle connecting the planes in the direction of rotation.
  • the outer diameter Dc of the end portion of the bell mouth 57 on the main plate side and the outer diameter Dw of the point or surface of the lower portion 71 closest to the main plate 10 have a relationship of Dc ⁇ Dw.
  • the minimum value of the outer diameter Dc of the bell mouth 57 is not particularly specified, by making the outer diameter Dc of the bell mouth 57 larger than the inner diameter of the high portion 72, the inter-blade flow along the inner peripheral wall 571 of the bell mouth 57 Air entering the channel hits the recessed features 70, making them susceptible to the Coanda effect.
  • a stepped portion 82 in which concave portions 80 and convex portions 81 are alternately arranged in the axial direction is provided on the surface of the front edge 31 of the blade 30 facing radially inward.
  • the stepped portion 82 is also called a serration portion.
  • the stepped portion 82 is provided at a position on the leading edge 31 of the blade at a predetermined distance from the main plate 10 .
  • blower 100 of a comparative example will be described for comparison with the blower 1 of the first embodiment described above.
  • the blade leading edge 31 is provided radially inward of the inner peripheral wall 211 of the opening 21 of the shroud 20 .
  • surface 101 of blade leading edge 31 facing away from main plate 10 is not recessed. That is, in the comparative example, when the blade leading edge 31 is viewed from the rotation direction of the blade 30, the surface 101 of the blade leading edge 31 facing the side opposite to the main plate 10 is the inner peripheral wall 211 of the opening 21 of the shroud 20.
  • a surface perpendicular to the axis CL extends radially inward from a connection point 73 with the blade 30 .
  • the impeller 2 rotates, as indicated by the arrow AF2 in FIG. Among them, it has a characteristic that it is difficult to flow along the surface 201 on the inter-blade passage side.
  • the surface 201 of the shroud 20 on the inter-blade flow path side is referred to as a "shroud back surface 201".
  • the air flowing into the inter-blade passage from the opening 21 of the shroud 20 is separated from the shroud back surface 201, and when the separation vortex SV generated by this separation increases, noise increases. occurs.
  • the blower 1 of the first embodiment has the following effects as shown in FIG. That is, in the blower 1 of the first embodiment, when the impeller 2 rotates, as indicated by the arrow AF3 in FIG. The orientation is close to the shape of the shroud back surface 201 . This is due to the Coanda effect in which air flows along the concave shape 70 formed in the leading edge 31 of the blade.
  • the concave shape 70 is a shape effective for generating the Coanda effect on the air flowing into the inter-blade passage from the air suction port 51 . Therefore, the air that flows into the inter-blade passage after flowing along the concave shape 70 is suppressed from being separated from the shroud back surface 201 . Therefore, in the blower 1 of the first embodiment, the separation vortex SV near the shroud back surface 201 is reduced, so noise can be reduced.
  • FIG. 3 also shows the distance Dh between the end portion 221 of the shroud tubular portion 22 opposite to the main plate 10 and the lower portion 71 of the concave shape 70 .
  • the recessed shape 70 is formed on the surface of the blade leading edge 31 facing away from the main plate 10, so that the end portion 221 of the shroud tubular portion 22 on the side opposite to the main plate 10 and the recessed shape A distance Dh between the fan 70 and the lower part 71 is longer than that of the blower 100 of the comparative example.
  • backflow air air flowing backward from the radially outer air outlet 24 of the impeller 2 to the opening 21 side of the shroud 20 through the clearance flow path 25 between the upper case 53 and the shroud 20.
  • FIG. 8 shows the results of an experiment conducted on the relationship between the depth of the recessed shape 70 and noise in the blower 1 according to the first embodiment.
  • the horizontal axis of the graph in FIG. 8 indicates the depth Da of the recessed shape 70 as a ratio to the blade outlet height Db. It should be noted that the depth Da of the concave shape 70 being 0% is the same as the configuration of the blower 100 of the comparative example described above.
  • the vertical axis of the graph in FIG. 8 indicates the noise level (that is, the A-weighted sound pressure level). In this experiment, a blower having a blade outlet height Db of 4 mm was used, and the noise level was measured when the motor 40 was energized and the impeller 2 was rotated at a constant number of revolutions.
  • this experiment showed that the noise level could be reduced when the depth Da of the concave shape 70 was greater than 0 and less than or equal to 9%.
  • the noise reduction effect can be obtained when the relationship between the depth Da of the concave shape 70 and the blade outlet height Db is 0 ⁇ Da ⁇ Db ⁇ 0.09.
  • a greater noise reduction effect can be obtained by setting the depth Da of the concave shape 70 to 1 to 8%, more preferably 2 to 7%, of the blade outlet height Db.
  • the noise level can be reduced by 0.4 dBA compared to the blower 100 of the comparative example. was gotten.
  • the blower 1 of the first embodiment described above has the following effects.
  • a concave shape 70 is formed by a low portion 71 and a high portion 72 on the surface of the blade leading edge 31 facing away from the main plate 10 . According to this, the air flowing from the air inlet 51 of the upper case 53 through the opening 21 of the shroud 20 into the inter-blade flow path flows along the concave shape 70 formed in the leading edge 31 of the blade. Due to the Coanda effect, the direction of the airflow approaches the shape of the shroud back surface 201 . Therefore, separation of the air flowing into the inter-blade passage through the opening 21 of the shroud 20 from the shroud back surface 201 is suppressed, and the separation vortex SV is reduced, so that noise can be reduced.
  • the concave shape 70 on the surface of the blade 30 facing away from the main plate 10, the end portion 221 of the shroud tubular portion 22 on the side opposite to the main plate 10 and the lower portion 71 of the concave shape 70 are formed. becomes farther. Therefore, the backflow air flowing back from the radially outer air outlet 24 of the impeller 2 to the opening 21 side of the shroud 20 through the clearance flow path 25 slows down the flow velocity when it collides with the low portion 71 of the concave shape 70. can do. Since the magnitude of noise is generally proportional to the sixth power of the flow velocity, the noise can be reduced by slowing down the flow velocity.
  • the efficiency of the blower 1 is improved by suppressing the separation of air from the shroud back surface 201 . Therefore, under the condition of the same air volume, the number of rotations of the blower 1 can be lowered, and the vibration caused by the rotation is reduced, so that the noise can be reduced.
  • the outer diameter Dc of the bell mouth 57 of the upper case 53 and the outer diameter Dw of the point or surface of the lower portion 71 closest to the main plate 10 have a relationship of Dc ⁇ Dw. is doing. According to this, the air flowing into the inter-blade passage along the inner peripheral wall 571 of the bell mouth 57 hits the concave shape 70 formed in the blade leading edge 31, so the Coanda effect in which the air flows along the concave shape 70 become more susceptible to Therefore, separation of air from the shroud back surface 201 is suppressed, and the separation vortex SV is reduced, thereby reducing noise. Noise can also be reduced by slowing down the flow velocity of the backflow air when it collides with the low portion 71 of the concave shape 70 .
  • connection points between the low portion 71 and the high portion 72 are curved surfaces. According to this, turbulence of the airflow at the connecting portion between the low-level portion 71 and the high-level portion 72 can be suppressed, and noise can be reduced.
  • both the radially inner portion (that is, the second curved surface 75) and the radially outer portion 391 of the lower portion 71 are curved surfaces. According to this, turbulence of the airflow at the radially inner portion (that is, the second curved surface 75 ) and the radially outer portion 391 of the low portion 71 can be suppressed, and noise can be reduced.
  • the curvature radius R1 of the first curved surface 74 connecting the low portion 71 and the high portion 72 and the curvature radius R2 of the second curved surface 75 have a relationship of R1>R2. is doing. According to this, by increasing the radius of curvature R1 of the first curved surface 74 that encourages the air flowing in from the air suction port 51 of the upper case 53 to flow radially outward, the radial flow component due to the Coanda effect increases. do. Therefore, separation of air from the shroud back surface 201 in the inter-blade passage can be suppressed.
  • the curvature radius R4 of the corner portion 38 on the side of the pressure surface 37 has the following relationship. That is, R1 to R4 have the relationships of R1>R3>R4 and R2>R3>R4. According to this, the airflow hitting the concave shape 70 formed in the leading edge 31 of the blade tends to flow in the descending order of the radius of curvature.
  • the radius of curvature R ⁇ b>1 of the first curved surface 74 and the radius of curvature R ⁇ b>2 of the second curved surface 75 increase the flow component in the radial direction, thereby suppressing separation from the shroud back surface 201 . Furthermore, by making the curvature radius R3 of the corner portion 36 of the low portion 71 on the suction surface 35 side larger than the curvature radius R4 of the corner portion 38 of the low portion 71 on the pressure surface 37 side, It is also possible to suppress separation of the airflow flowing into from the negative pressure surface 35 . Therefore, noise can be reduced by reducing the speed variation in the rotating direction of the blades 30 .
  • the depth Da of the concave shape 70 and the blade outlet height Db have a relationship of 0 ⁇ Da ⁇ Db ⁇ 0.09. According to the result of the experiments conducted by the inventors, it was found that the noise reduction effect can be obtained by setting the depth Da of the concave shape 70 to 9% or less of the blade outlet height Db.
  • the shroud 20 has the shroud cylindrical portion 22 that extends cylindrically from the inner peripheral edge on the side of the opening 21 toward the side opposite to the main plate 10 .
  • Wing 30 also has standing wall portion 39 extending from connecting point 73 between inner peripheral wall 211 of opening 21 of shroud 20 and blade 30 toward main plate 10 in parallel with inner peripheral wall 211 of opening 21 of shroud 20 . ing. This makes it easier for the airflow flowing along the concave shape 70 formed in the blade leading edge 31 to flow to the shroud back surface 201 . Therefore, separation of air from the shroud back surface 201 can be suppressed.
  • a concave shape 70 is formed on the surface of the blade leading edge 31 facing away from the main plate 10 .
  • a recessed shape 70 is formed by a lower portion 71 and a higher portion 72 .
  • the first curved surface 74 described in the first embodiment is not provided at the location where the low portion 71 and the high portion 72 are connected.
  • a radially outer portion of the high portion 72 is substantially perpendicular.
  • the radially inner portion 751 and the radially outer portion 391 of the lower portion 71 are both curved surfaces.
  • blower 1 of the second embodiment also has the same configuration as the first embodiment, except for the configuration described above, so that the same effects as the first embodiment can be obtained.
  • 3rd Embodiment also changes a part of dent shape 70 with respect to 1st Embodiment etc., and since it is the same as that of 1st Embodiment etc. about others, about a part different from 1st Embodiment etc., only explained.
  • a concave shape 70 is formed on the surface of the blade leading edge 31 facing away from the main plate 10 .
  • a recessed shape 70 is formed by a lower portion 71 and a higher portion 72 .
  • the portion where the low portion 71 and the high portion 72 are connected has a first curved surface 74 and a second curved surface 75 .
  • the curvature radius R1 of the first curved surface 74 and the curvature radius R2 of the second curved surface 75 have a relationship of R1>R2.
  • the portion 391 where the lower portion 71 and the standing wall portion 39 are connected is substantially perpendicular.
  • blower 1 of the third embodiment also has the same configuration as that of the first embodiment, so that the same effects as those of the first embodiment can be obtained.
  • the impeller 2 included in the blower 1 was explained as a turbo fan, but it is not limited to this, and may be a sirocco fan, a radial fan, or a mixed flow fan, for example.
  • the motor 40 is described as an outer rotor type brushless DC motor.
  • the shroud 20 has the shroud cylindrical portion 22, the shroud-side projection 23, and the like. good.
  • the main plate 10 has the central portion 11, the fixed portion 12, the annular portion 13, and the like. 12, annular portion 13, etc. may be integrally constructed.
  • blower 1 has been described as including the case 50 , but the present invention is not limited to this, and the blower 1 may not include the case 50 .
  • the present disclosure is not limited to the above-described embodiments, and can be modified as appropriate. Moreover, the above-described embodiments are not unrelated to each other, and can be appropriately combined unless the combination is clearly impossible. Further, in each of the above-described embodiments, it goes without saying that the elements constituting the embodiment are not necessarily essential, unless it is explicitly stated that they are essential, or they are clearly considered essential in principle. stomach. In addition, in each of the above-described embodiments, when numerical values such as the number, numerical value, amount, range, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

A centrifugal blower (1) comprises a main plate (10), a shroud (20), and a plurality of blades (30). Leading edges (31) of the blades (30) are provided radially inward of an inner peripheral wall (211) of an opening part (21) of the shroud (20). Lower parts (71) and higher parts (72) are provided on the surfaces of the leading edges (31) that face away from the main plate (10). The lower parts (71) are positioned radially inward of connecting locations (73) between the blades (30) and the inner peripheral wall (211) of the opening part (21) of the shroud (20) and nearer to the main plate (10) than the connecting locations (73), and are provided so as to extend along a plane perpendicular to an axis (CL). The higher parts (72) are positioned radially inward of the lower parts (71) and on the sides of the lower parts (71) that are opposite to the main plate (10). Recessed shapes (70) are formed by the lower parts (71) and the higher parts (72) in the surfaces of the leading edges (31) that face away from the main plate (10).

Description

遠心送風機centrifugal blower 関連出願への相互参照Cross-references to related applications
 本出願は、2021年6月2日に出願された日本特許出願番号2021-92832号に基づくもので、ここにその記載内容が参照により組み入れられる。 This application is based on Japanese Patent Application No. 2021-92832 filed on June 2, 2021, the contents of which are incorporated herein by reference.
 本開示は、羽根車の回転の軸心方向の一方から取り込んだ空気を軸心から遠ざかる方向へ吹き出す遠心送風機に関するものである。 The present disclosure relates to a centrifugal blower that blows air taken in from one of the axial directions of rotation of an impeller in a direction away from the axial center.
 従来、ケースの内側に、主板とシュラウドと複数の翼とを有する羽根車が回転可能に設けられた遠心送風機が知られている(特許文献1参照)。この特許文献1に記載の遠心送風機の羽根車は、シュラウドの中央に設けられた開口部の内周壁よりも回転の軸心に近い側に翼の前縁が設けられている。そして、その前縁のうち主板とは反対側を向く面は、軸心に対して垂直に延びている。 Conventionally, a centrifugal fan is known in which an impeller having a main plate, a shroud, and a plurality of blades is rotatably provided inside a case (see Patent Document 1). The impeller of the centrifugal blower described in Patent Document 1 has a leading edge of the blade on the side closer to the axis of rotation than the inner peripheral wall of the opening provided in the center of the shroud. A surface of the front edge facing away from the main plate extends perpendicularly to the axis.
特開2019-203481号公報JP 2019-203481 A
 発明者らの検討によれば、遠心送風機は、ケースに設けられた空気吸込口から複数の翼同士の間に形成される流路(以下、「翼間流路」という)に流入する空気が主板側に流れ、シュラウドのうち翼間流路側の面(以下「シュラウド裏面」という)に沿って流れにくいといった特性を有する。そのため、空気吸込口から翼間流路に流入する空気がシュラウド裏面から剥離し、その剥離により生じる渦(以下「剥離渦」という)が大きくなると、騒音が増大するといった問題が発生する。そのような問題に対し、上述した特許文献1に記載の遠心送風機は、翼形状に関して改善の余地がある。
 本開示は、遠心送風機において、騒音を低減することを目的とする。
According to the studies of the inventors, in the centrifugal fan, the air flowing from the air suction port provided in the case into the flow path (hereinafter referred to as "inter-blade flow path") formed between a plurality of blades. It has a characteristic that it flows toward the main plate and is less likely to flow along the surface of the shroud on the inter-blade flow path side (hereinafter referred to as the "back surface of the shroud"). Therefore, when the air flowing into the inter-blade passage from the air suction port separates from the rear surface of the shroud and the vortex generated by the separation (hereinafter referred to as "separation vortex") becomes larger, there arises a problem that noise increases. Regarding such a problem, the centrifugal fan described in Patent Document 1 has room for improvement in terms of blade shape.
An object of the present disclosure is to reduce noise in a centrifugal fan.
 本開示の1つの観点によれば、遠心送風機において、
 回転可能に設けられる主板と、
 主板に対向して設けられ、中央に空気が流入する開口部を有する環状のシュラウドと、
 シュラウドと主板との間で回転中心となる軸心の周りに所定の間隔で配置され、シュラウドおよび主板に接続される複数の翼と、を備え、
 軸心に垂直な仮想平面上において軸心を中心とした仮想円を定義し、仮想円における径方向の軸心に近い側を径方向内側といい、その反対側を径方向外側というとき、
 翼の前縁は、シュラウドの開口部の内周壁よりも径方向内側に設けられており、
 前縁のうち主板とは反対側を向く面には、シュラウドの開口部の内周壁と翼との接続箇所より径方向内側においてその接続箇所よりも主板側に位置し、且つ、軸心に対して垂直な面に沿うように設けられる低位部と、その低位部よりも径方向内側において低位部に対して主板とは反対側に位置する高位部とが設けられており、
 低位部と高位部により、前縁のうち主板とは反対側を向く面に凹み形状が形成されている。
According to one aspect of the present disclosure, in a centrifugal fan,
a rotatably provided main plate;
an annular shroud facing the main plate and having an opening in the center through which air flows;
a plurality of blades arranged at predetermined intervals around an axis serving as a center of rotation between the shroud and the main plate and connected to the shroud and the main plate;
When defining a virtual circle centered on the axis on a virtual plane perpendicular to the axis, the side closer to the axis in the radial direction of the virtual circle is called the radial inner side, and the opposite side is called the radial outer side,
The leading edge of the wing is provided radially inward from the inner peripheral wall of the opening of the shroud,
The surface of the leading edge facing away from the main plate is located radially inward of the connection point between the inner peripheral wall of the opening of the shroud and the blade and is located closer to the main plate than the connection point, and is positioned relative to the axis. a lower portion provided along a vertical plane, and a higher portion located radially inside the lower portion and on the opposite side of the main plate to the lower portion,
The low portion and the high portion form a concave shape on the surface of the front edge facing away from the main plate.
 これによれば、シュラウドの開口部から翼間流路に流入する空気は、翼の前縁に形成された凹み形状に沿って空気が流れるコアンダ効果により、その気流の向きが、シュラウド裏面の形状に近くなる。そのため、シュラウドの開口部から翼間流路に流入する空気がシュラウド裏面から剥離することが抑制され、剥離渦が低減するので、騒音を低減することができる。 According to this, the air flowing into the inter-blade passage from the opening of the shroud is caused by the Coanda effect in which the air flows along the concave shape formed on the leading edge of the blade, and the direction of the air flow is changed to the shape of the back surface of the shroud. get close to Therefore, separation of the air flowing into the inter-blade passage from the opening of the shroud is suppressed from the rear surface of the shroud, and the separation vortex is reduced, thereby reducing noise.
 さらに、シュラウド裏面からの空気の剥離が抑制されることで、送風機の効率が向上する。したがって、同一風量の条件において、送風機の回転数を下げることが可能となり、回転による振動が低減するので、騒音を低減することができる。 In addition, the efficiency of the blower is improved by suppressing the separation of air from the back surface of the shroud. Therefore, under the condition of the same air volume, the number of rotations of the blower can be lowered, and the vibration caused by the rotation is reduced, so that the noise can be reduced.
 なお、各構成要素等に付された括弧付きの参照符号は、その構成要素等と後述する実施形態に記載の具体的な構成要素等との対応関係の一例を示すものである。 It should be noted that the reference numerals in parentheses attached to each component etc. indicate an example of the correspondence relationship between the component etc. and the specific component etc. described in the embodiment described later.
第1実施形態に係る遠心送風機の平面図である。1 is a plan view of a centrifugal fan according to a first embodiment; FIG. 図1のII―II線の断面図である。2 is a cross-sectional view taken along line II-II of FIG. 1; FIG. 図1のIII―III線の断面において羽根車の一部と上ケースの一部を示す図である。It is a figure which shows a part of impeller and a part of upper case in the cross section of the III-III line of FIG. 図3に示した翼の前縁とその近傍の拡大図である。4 is an enlarged view of the leading edge of the blade shown in FIG. 3 and its vicinity; FIG. 図4のV部分の拡大図である。FIG. 5 is an enlarged view of the V portion of FIG. 4; 図4のVI-VI線の断面図である。5 is a cross-sectional view taken along the line VI-VI of FIG. 4; FIG. 図4と同一の箇所にて空気吸込口から翼間流路への空気の流れを説明するための説明図である。FIG. 5 is an explanatory diagram for explaining the flow of air from the air suction port to the inter-blade passage at the same location as in FIG. 4 ; 第1実施形態に係る遠心送風機において、凹み形状の深さと騒音との関係を示す実験結果である。In the centrifugal fan concerning a 1st embodiment, it is an experimental result which shows the relation between the depth of dent shape, and noise. 第2実施形態に係る遠心送風機において図4に対応する箇所の拡大図である。5 is an enlarged view of a portion corresponding to FIG. 4 in the centrifugal fan according to the second embodiment; FIG. 第3実施形態に係る遠心送風機において図4に対応する箇所の拡大図である。It is an enlarged view of the part corresponding to FIG. 4 in the centrifugal fan which concerns on 3rd Embodiment. 比較例の遠心送風機において図4に対応する箇所の拡大図である。5 is an enlarged view of a portion corresponding to FIG. 4 in a centrifugal fan of a comparative example; FIG.
 以下、本開示の実施形態について図面を参照しつつ説明する。なお、以下の各実施形態相互において、互いに同一もしくは均等である部分には、同一符号を付し、その説明を省略する。 Hereinafter, embodiments of the present disclosure will be described with reference to the drawings. In addition, in each of the following embodiments, the same or equivalent portions are denoted by the same reference numerals, and description thereof will be omitted.
 (第1実施形態)
 第1実施形態の遠心送風機について説明する。以下、遠心送風機を単に「送風機」という。図1~図3に示すように、第1実施形態の送風機1は、主板10、シュラウド20および複数の翼30などにより構成される羽根車2と、その羽根車2を回転させるモータ40と、羽根車2およびモータ40を収容するケース50とを備えている。この送風機1は、例えば、車両用シート空調装置、空調装置または換気装置など、種々の用途に用いられる。
(First embodiment)
A centrifugal fan according to the first embodiment will be described. Hereinafter, the centrifugal blower is simply referred to as "blower". As shown in FIGS. 1 to 3, the blower 1 of the first embodiment includes an impeller 2 composed of a main plate 10, a shroud 20, a plurality of blades 30, etc., a motor 40 for rotating the impeller 2, A case 50 that houses the impeller 2 and the motor 40 is provided. The blower 1 is used for various purposes such as, for example, a vehicle seat air conditioner, an air conditioner, or a ventilator.
 なお、以下の説明では、羽根車2の回転の軸心CLに垂直な仮想平面上において軸心CLを中心とした仮想円を定義し、その仮想円における径方向の軸心CL側を「径方向内側」といい、その仮想円における径方向の軸心CLとは反対側を「径方向外側」という。また、軸心CLが延びる方向を「軸心方向」という。 In the following description, a virtual circle centered on the axis CL is defined on a virtual plane perpendicular to the rotation axis CL of the impeller 2. The radially opposite side of the imaginary circle from the axis CL is called the radially outer side. Also, the direction in which the axis CL extends is referred to as the "axis direction".
 羽根車2の構成について説明する。羽根車2の主板10は、モータ40の出力するトルクにより回転可能に設けられている。主板10は、モータ40の回転軸41に固定される中央部11と、その中央部11の径方向外側の外壁に固定される固定部12と、その固定部12より径方向外側に設けられて複数の翼30に接合される環状部13とを有している。主板10の中央部11は、回転軸41側から径方向外側に向かって上ケース53の空気吸込口51から次第に遠ざかる山型に形成されている。そのため、主板10の中央部11は、上ケース53の空気吸込口51から吸い込まれた空気を、複数の翼30同士の間に形成される流路(以下、「翼間流路」という)に導くガイド面として機能する。なお、主板10の中央部11は、後述するモータロータ42の一部を構成している。また、主板10の固定部12は、その固定部12と一体に成形された複数の翼30およびシュラウド20と、モータロータ42との固定に用いられる。 The configuration of the impeller 2 will be explained. The main plate 10 of the impeller 2 is rotatable by the torque output by the motor 40 . The main plate 10 includes a central portion 11 fixed to the rotating shaft 41 of the motor 40, a fixed portion 12 fixed to the radially outer wall of the central portion 11, and a radially outer side of the fixed portion 12. and an annular portion 13 joined to a plurality of blades 30 . The central portion 11 of the main plate 10 is formed in a mountain shape that gradually moves away from the air suction port 51 of the upper case 53 radially outward from the rotating shaft 41 side. Therefore, the central portion 11 of the main plate 10 directs the air sucked from the air suction port 51 of the upper case 53 to the flow path (hereinafter referred to as "inter-blade flow path") formed between the plurality of blades 30. It functions as a guiding guide surface. Note that the central portion 11 of the main plate 10 forms part of a motor rotor 42, which will be described later. The fixing portion 12 of the main plate 10 is used to fix the plurality of blades 30 and the shroud 20 integrally formed with the fixing portion 12 to the motor rotor 42 .
 シュラウド20は、主板10に対して軸心方向に対向するように設けられている。シュラウド20は、中央に空気が流入する開口部21を有している。そのため、シュラウド20は、環状に形成されている。シュラウド20は、開口部21側の内周縁から主板10とは反対側に向かって筒状に延びるシュラウド筒部22を有している。また、シュラウド20は、シュラウド筒部22よりも径方向外側の位置に、主板10とは反対側に向かって筒状に延びる複数のシュラウド側突起23を有している。本実施形態では、3個のシュラウド側突起23が設けられている。 The shroud 20 is provided so as to face the main plate 10 in the axial direction. The shroud 20 has an opening 21 in the center through which air flows. Therefore, the shroud 20 is formed in an annular shape. The shroud 20 has a tubular shroud portion 22 extending from the inner peripheral edge on the opening 21 side toward the side opposite to the main plate 10 . The shroud 20 also has a plurality of shroud-side projections 23 extending cylindrically toward the side opposite to the main plate 10 at radially outer positions of the shroud tubular portion 22 . In this embodiment, three shroud-side projections 23 are provided.
 複数の翼30は、シュラウド20と主板10との間に設けられ、羽根車2の回転中心となる軸心CLの周りに所定の間隔で配置されている。複数の翼30は、前縁31から後縁32に向かって回転方向後向きに延びている。すなわち、本実施形態の羽根車2は、ターボファンである。翼30のうち軸心方向シュラウド20側の端部33は、シュラウド20に接続されている。翼30のうち軸心方向主板10側の端部34は、主板10の固定部12および環状部13に接続されている。したがって、本実施形態の羽根車2は、クローズドファンである。 The plurality of blades 30 are provided between the shroud 20 and the main plate 10 and arranged at predetermined intervals around the axis CL, which is the center of rotation of the impeller 2 . A plurality of wings 30 extend rearward in the direction of rotation from leading edge 31 toward trailing edge 32 . That is, the impeller 2 of this embodiment is a turbofan. An end portion 33 of the blade 30 on the shroud 20 side in the axial direction is connected to the shroud 20 . An end portion 34 of the blade 30 on the axial main plate 10 side is connected to the fixed portion 12 and the annular portion 13 of the main plate 10 . Therefore, the impeller 2 of this embodiment is a closed fan.
 本実施形態では、翼30の前縁31が、シュラウド20の開口部21の内周壁211よりも径方向内側に設けられている。以下の説明では、翼30の前縁31を「翼前縁31」ということがある。その翼前縁31の形状については、後に詳細に説明する。 In this embodiment, the leading edge 31 of the blade 30 is provided radially inward of the inner peripheral wall 211 of the opening 21 of the shroud 20 . In the following description, the leading edge 31 of the blade 30 may be referred to as "wing leading edge 31". The shape of the blade leading edge 31 will be described later in detail.
 ケース50は、上ケース53と下ケース54とを有している。上ケース53は、羽根車2のシュラウド20側を覆う部材である。下ケース54は、羽根車2の主板10側を覆うと共に、モータ40および回路基板60を収容する部材である。上ケース53と下ケース54とは、図示しない支柱およびねじなどにより、所定の間隔をあけて固定されている。なお、図1では、上ケース53と下ケース54との間に支柱などが設けられる位置を、符号55を付した円形で示している。 The case 50 has an upper case 53 and a lower case 54. The upper case 53 is a member that covers the shroud 20 side of the impeller 2 . The lower case 54 is a member that covers the main plate 10 side of the impeller 2 and houses the motor 40 and the circuit board 60 . The upper case 53 and the lower case 54 are fixed to each other with a predetermined gap therebetween by means of struts and screws (not shown). In addition, in FIG. 1 , the position where a column or the like is provided between the upper case 53 and the lower case 54 is indicated by a circle with reference numeral 55 .
 上ケース53は、上ケース本体部56と空気吸込口51とベルマウス57とを有している。上ケース本体部56は、シュラウド20のうち主板10とは反対側の面を覆う。空気吸込口51は、上ケース本体部56においてシュラウド20の開口部21に対応する位置に設けられる。ベルマウス57は、空気吸込口51の内周縁から主板10側に向かって筒状に延びる。ベルマウス57は、外部から羽根車2に空気を導入する部位である。そのため、ベルマウス57のうち主板10とは反対側のコーナー部は曲面状となっており、ベルマウス57のうち主板10側の端部も曲面状となっている。 The upper case 53 has an upper case main body 56 , an air suction port 51 and a bell mouth 57 . The upper case body portion 56 covers the surface of the shroud 20 opposite to the main plate 10 . The air suction port 51 is provided at a position corresponding to the opening 21 of the shroud 20 in the upper case main body 56 . The bell mouth 57 extends cylindrically from the inner peripheral edge of the air suction port 51 toward the main plate 10 side. The bellmouth 57 is a part that introduces air into the impeller 2 from the outside. Therefore, the corner portion of the bell mouth 57 on the side opposite to the main plate 10 is curved, and the end portion of the bell mouth 57 on the side of the main plate 10 is also curved.
 また、上ケース53は、ベルマウス57よりも径方向外側の位置に、シュラウド20側に向かって筒状に延びる複数のケース側突起52を有している。本実施形態では、2個のケース側突起52が設けられている。2個のケース側突起52は、シュラウド20に設けられた3個のシュラウド側突起23同士の間に設けられている。そのため、上ケース53とシュラウド20との間の隙間流路25には、ケース側突起52とシュラウド側突起23により、ラビリンス部26が形成されている。 In addition, the upper case 53 has a plurality of case-side projections 52 extending cylindrically toward the shroud 20 at radially outer positions of the bell mouth 57 . In this embodiment, two case-side projections 52 are provided. The two case-side projections 52 are provided between the three shroud-side projections 23 provided on the shroud 20 . Therefore, a labyrinth portion 26 is formed by the case-side projection 52 and the shroud-side projection 23 in the gap channel 25 between the upper case 53 and the shroud 20 .
 下ケース54は、羽根車2の主板10側を覆う下ケース本体部58と、その下ケース本体部58の中央に設けられる中央筒部59とを有している。その中央筒部59に対して、モータ40の回転軸41およびモータステータ43が取り付けられている。なお、本実施形態では、モータ40として、例えば、アウターロータ型ブラシレスDCモータが採用されている。 The lower case 54 has a lower case main body portion 58 that covers the main plate 10 side of the impeller 2 and a central tubular portion 59 provided in the center of the lower case main body portion 58 . A rotating shaft 41 of the motor 40 and a motor stator 43 are attached to the central cylindrical portion 59 . Note that, in this embodiment, for example, an outer rotor type brushless DC motor is employed as the motor 40 .
 モータ40の回転軸41は、中央筒部59の内側に軸受44を介して回転可能に設けられている。モータ40の回転軸41のうち軸心方向の端部には、モータロータ42の中央部11が固定されている。モータロータ42は、上述した主板10の中央部11と、その主板10の中央部11の外縁から軸心方向のシュラウド20とは反対側に延びる磁石保持部14と、磁石保持部14の径方向内側に設けられる磁石45とを有している。磁石保持部14の径方向外側の外壁に対して主板10の固定部12が圧入などにより固定されている。これにより、モータロータ42と羽根車2とが接合される。磁石保持部14の径方向内側に設けられる磁石45は、磁石保持部14の周方向に異種の磁極が交互に配置されている。 A rotating shaft 41 of the motor 40 is rotatably provided inside the central tubular portion 59 via a bearing 44 . A center portion 11 of a motor rotor 42 is fixed to an axial end portion of a rotating shaft 41 of the motor 40 . The motor rotor 42 includes the central portion 11 of the main plate 10 , the magnet holding portion 14 extending from the outer edge of the central portion 11 of the main plate 10 in the axial direction opposite to the shroud 20 , and the magnet holding portion 14 radially inward of the magnet holding portion 14 . and a magnet 45 provided in the . The fixing portion 12 of the main plate 10 is fixed to the radially outer wall of the magnet holding portion 14 by press fitting or the like. Thereby, the motor rotor 42 and the impeller 2 are joined. The magnets 45 provided radially inside the magnet holding portion 14 have magnetic poles of different types alternately arranged in the circumferential direction of the magnet holding portion 14 .
 磁石45の径方向内側には、モータステータ43が設けられている。モータステータ43は、中央筒部59の径方向外側の面に固定されている。モータステータ43は、例えばY結線またはΔ結線などにより構成された三相コイル46とステータコア461とを有している。三相コイル46には、回路基板60から三相交流電流が供給されるようになっている。 A motor stator 43 is provided radially inside the magnet 45 . The motor stator 43 is fixed to the radially outer surface of the central tubular portion 59 . The motor stator 43 has a three-phase coil 46 and a stator core 461 configured by Y-connection or Δ-connection, for example. A three-phase alternating current is supplied from a circuit board 60 to the three-phase coil 46 .
 上述した構成において、コネクタ47から回路基板60に電力および駆動信号が供給されると、その回路基板60からモータステータ43の三相コイル46に三相交流電流が供給され、回転軸41とモータロータ42と共に羽根車2が回転する。羽根車2が回転すると、図2に矢印AF1に示すように、上ケース53の空気吸込口51から流入する空気は、翼間流路を通り、上ケース53と下ケース54との間から径方向外側に吹き出される。 In the above-described configuration, when electric power and drive signals are supplied from the connector 47 to the circuit board 60, the circuit board 60 supplies three-phase alternating current to the three-phase coils 46 of the motor stator 43. The impeller 2 rotates together. When the impeller 2 rotates, as indicated by arrow AF1 in FIG. direction outward.
 次に、翼前縁31の形状について詳細に説明する。 Next, the shape of the blade leading edge 31 will be described in detail.
 図4に示すように、翼前縁31は、翼30のうちシュラウド20の開口部21の内周壁211より径方向内側に設けられている部位である。その翼前縁31のうち主板10とは反対側を向く面には、凹み形状70が形成されている。凹み形状70は、低位部71および高位部72により形成されている。 As shown in FIG. 4 , the blade leading edge 31 is a portion of the blade 30 provided radially inward of the inner peripheral wall 211 of the opening 21 of the shroud 20 . A concave shape 70 is formed on a surface of the blade leading edge 31 facing away from the main plate 10 . A recessed shape 70 is formed by a lower portion 71 and a higher portion 72 .
 低位部71は、シュラウド20の開口部21の内周壁211と翼30との接続箇所73より径方向内側において、その接続箇所73よりも主板10側に位置する部位である。そして、低位部71は、軸心CLに対して垂直な面に沿うように設けられている。なお、本明細書において「低位部71は、軸心CLに対して垂直な面に沿うように設けられている」とは、次の状態を含んでいる。即ちそれは、翼30の回転方向から低位部71を見たとき、軸心CLに対して垂直な仮想面と低位部71とが平行である状態に加え、その仮想面に対して低位部71が僅かに湾曲または傾いている状態も含むものである。 The lower portion 71 is located radially inward of a connecting point 73 between the inner peripheral wall 211 of the opening 21 of the shroud 20 and the blade 30 and closer to the main plate 10 than the connecting point 73 . The low portion 71 is provided along a plane perpendicular to the axis CL. In this specification, "the lower portion 71 is provided along a plane perpendicular to the axis CL" includes the following states. That is, when the low-level portion 71 is viewed from the rotation direction of the blade 30, the low-level portion 71 is parallel to a virtual plane perpendicular to the axis CL, and the low-level portion 71 is parallel to the virtual plane. It also includes a slightly curved or tilted state.
 高位部72は、低位部71よりも径方向内側において、低位部71に対して主板10とは反対側に位置する部位である。高位部72は、軸心方向において、シュラウド20の開口部21の内周壁211と翼30との接続箇所73とほぼ同じ高さとなっている。なお、高位部72は、軸心方向において、その接続箇所73よりも主板10側に位置していてもよく、または、その接続箇所73よりも主板10とは反対側に位置していてもよい。 The high-level portion 72 is located radially inward of the low-level portion 71 and on the side opposite to the main plate 10 with respect to the low-level portion 71 . The high portion 72 has substantially the same height as the connecting portion 73 between the inner peripheral wall 211 of the opening 21 of the shroud 20 and the blade 30 in the axial direction. In addition, the high portion 72 may be located closer to the main plate 10 than the connecting portion 73 in the axial direction, or may be located on the side opposite to the main plate 10 than the connecting portion 73 . .
 低位部71と高位部72とは、滑らかな曲面によって接続されている。具体的には、図4のV部分を拡大した図5に示すように、低位部71と高位部72とが接続されている箇所は、第1曲面74と第2曲面75とを有している。第1曲面74とは、高位部72における低位部71側で空気吸込口51側(すなわち、主板10とは反対側)に凸の曲面である。第2曲面75とは、第1曲面74よりも径方向外側(すなわち、第1曲面74よりも低位部71側)で主板10側に凸の曲面である。 The low portion 71 and the high portion 72 are connected by a smooth curved surface. Specifically, as shown in FIG. 5, which is an enlarged view of the V portion of FIG. there is The first curved surface 74 is a curved surface that is convex toward the air suction port 51 side (that is, the side opposite to the main plate 10 ) on the low portion 71 side of the high portion 72 . The second curved surface 75 is a curved surface that is radially outward of the first curved surface 74 (that is, is closer to the lower portion 71 than the first curved surface 74) and protrudes toward the main plate 10 side.
 図5では、第1曲面74より径方向内側の部位の円弧と第1曲面74の円弧との接点を符号P1で示している。また、図5では、第1曲面74の円弧と第2曲面75の円弧との接点を符号P2で示している。さらに、図5では、第2曲面75より径方向外側の部位の円弧と第2曲面75の円弧との接点を符号P3で示している。ここで、翼30の回転方向から翼前縁31を見たとき、第1曲面74の曲率半径をR1、第2曲面75の曲率半径をR2とする。このとき、第1曲面74の曲率半径R1と、第2曲面75の曲率半径R2とは、R1>R2 の関係を有している。なお、図示は省略するが、第1曲面74と第2曲面75との間に平面が設けられていてもよく、または、第1曲面74および第2曲面75はその一部に平面を有していてもよい。 In FIG. 5, the point of contact between the arc of the portion radially inner than the first curved surface 74 and the arc of the first curved surface 74 is indicated by P1. In FIG. 5, the point of contact between the arc of the first curved surface 74 and the arc of the second curved surface 75 is denoted by P2. Furthermore, in FIG. 5, the point of contact between the arc of the second curved surface 75 and the arc of the radially outer portion of the second curved surface 75 is indicated by P3. Here, when the blade leading edge 31 is viewed from the rotational direction of the blade 30, the radius of curvature of the first curved surface 74 is R1, and the radius of curvature of the second curved surface 75 is R2. At this time, the curvature radius R1 of the first curved surface 74 and the curvature radius R2 of the second curved surface 75 have a relationship of R1>R2. Although illustration is omitted, a flat surface may be provided between the first curved surface 74 and the second curved surface 75, or the first curved surface 74 and the second curved surface 75 may have a flat surface in part thereof. may be
 また、図6は、図4のVI-VI線の断面図である。すなわち、図6は、翼前縁31の低位部71を、翼30が前縁31から後縁32に延びる方向に対して垂直な面で切断した断面図である。図6に示した断面において、低位部71の負圧面35側のコーナー部36の曲率半径をR3、低位部71の正圧面37側のコーナー部38の曲率半径をR4とする。このとき、第1曲面74の曲率半径R1と、第2曲面75の曲率半径R2と、低位部71の負圧面35側のコーナー部36の曲率半径R3と、低位部71の正圧面37側のコーナー部38の曲率半径R4とは、R1>R3>R4、および、R2>R3>R4 の関係を有している。 FIG. 6 is a cross-sectional view taken along line VI-VI in FIG. That is, FIG. 6 is a cross-sectional view of the lower portion 71 of the blade leading edge 31 taken along a plane perpendicular to the direction in which the blade 30 extends from the leading edge 31 to the trailing edge 32 . In the cross section shown in FIG. 6, the curvature radius of the corner portion 36 of the low portion 71 on the suction surface 35 side is R3, and the curvature radius of the corner portion 38 of the low portion 71 on the pressure surface 37 side is R4. At this time, the curvature radius R1 of the first curved surface 74, the curvature radius R2 of the second curved surface 75, the curvature radius R3 of the corner portion 36 on the suction surface 35 side of the low portion 71, and the curvature radius R3 of the low portion 71 on the pressure surface 37 side are: The curvature radius R4 of the corner portion 38 has the relationships of R1>R3>R4 and R2>R3>R4.
 また、図4に示すように、翼30は、シュラウド20の開口部21の内周壁211と翼30との接続箇所73と、低位部71との間に、立壁部39を有している。立壁部39は、シュラウド20の開口部21の内周壁211と平行に設けられている。立壁部39と低位部71とが接続されている箇所391は曲面となっている。すなわち、低位部71のうち径方向外側の箇所391と、低位部71のうち径方向内側の箇所(すなわち、第2曲面75)とは、いずれも曲面となっている。 Further, as shown in FIG. 4 , the blade 30 has an upright wall portion 39 between the lower portion 71 and the connection point 73 between the inner peripheral wall 211 of the opening 21 of the shroud 20 and the blade 30 . The standing wall portion 39 is provided parallel to the inner peripheral wall 211 of the opening portion 21 of the shroud 20 . A portion 391 where the standing wall portion 39 and the lower portion 71 are connected is curved. That is, both the radially outer portion 391 of the low portion 71 and the radially inner portion of the low portion 71 (that is, the second curved surface 75) are curved surfaces.
 図4に示すように、本実施形態では、低位部71のうち主板10に最も近い点または面と高位部72のうち主板10から最も遠い点または面との距離Daを「凹み形状70の深さDa」ということとする。また、図3に示すように、翼30の後縁32側における主板10とシュラウド20との間の距離Dbを、「翼出口高さDb」ということとする。凹み形状70の深さDaと、翼出口高さDbとは、0<Da≦Db×0.09 の関係を有している。すなわち、凹み形状70の深さDaは、0より大きく、翼出口高さDbの9%以下に設定されている。これは、本開示の発明者らが行った実験の結果に基づくものであり、その実験の結果については後述する。 As shown in FIG. 4, in this embodiment, the distance Da between the point or surface of the low portion 71 that is closest to the main plate 10 and the point or surface of the high portion 72 that is farthest from the main plate 10 is defined as the depth of the concave shape 70. Sa Da". Further, as shown in FIG. 3, the distance Db between the main plate 10 and the shroud 20 on the trailing edge 32 side of the blade 30 is referred to as "blade outlet height Db." The depth Da of the concave shape 70 and the blade outlet height Db have a relationship of 0<Da≦Db×0.09. That is, the depth Da of the concave shape 70 is set to be greater than 0 and equal to or less than 9% of the blade outlet height Db. This is based on the results of experiments conducted by the inventors of the present disclosure, and the results of the experiments will be described later.
 さらに、図3に示すように、本実施形態では、ベルマウス57のうち主板側の端部の外径をDc、複数の翼30に設けられた低位部71のうち主板10に最も近い点または面を回転方向に結んだ円の外径をDwとする。このとき、ベルマウス57のうち主板側の端部の外径Dcと、低位部71のうち主板10に最も近い点または面の外径Dwとは、Dc<Dw の関係を有している。これにより、羽根車2の回転時に、ベルマウス57の内周壁571に沿って翼間流路に流入する空気が、翼前縁31に形成された凹み形状70に当たるので、その空気は、凹み形状70に沿って空気が流れるコアンダ効果の影響を受けやすくなる。 Furthermore, as shown in FIG. 3, in this embodiment, the outer diameter of the end of the bell mouth 57 on the main plate side is Dc, and the point or Let Dw be the outer diameter of a circle connecting the planes in the direction of rotation. At this time, the outer diameter Dc of the end portion of the bell mouth 57 on the main plate side and the outer diameter Dw of the point or surface of the lower portion 71 closest to the main plate 10 have a relationship of Dc<Dw. As a result, when the impeller 2 rotates, the air flowing into the inter-blade passage along the inner peripheral wall 571 of the bell mouth 57 hits the concave shape 70 formed in the leading edge 31 of the blade. Air flowing along 70 is susceptible to the Coanda effect.
 尚、ベルマウス57の外径Dcの最小値は特に規定しないが、ベルマウス57の外径Dcを高位部72の内径より大きくすることで、ベルマウス57の内周壁571に沿って翼間流路に流入する空気が凹み形状70に当るので、コアンダ効果の影響を受けやすくなる。 Although the minimum value of the outer diameter Dc of the bell mouth 57 is not particularly specified, by making the outer diameter Dc of the bell mouth 57 larger than the inner diameter of the high portion 72, the inter-blade flow along the inner peripheral wall 571 of the bell mouth 57 Air entering the channel hits the recessed features 70, making them susceptible to the Coanda effect.
 翼30の前縁31のうち径方向内側を向く面には、凹部80と凸部81とが軸心方向に交互に配置された段差部82が設けられている。段差部82は、セレーション部とも呼ばれる。段差部82は、翼前縁31のうち主板10から所定距離離れた位置に設けられている。 A stepped portion 82 in which concave portions 80 and convex portions 81 are alternately arranged in the axial direction is provided on the surface of the front edge 31 of the blade 30 facing radially inward. The stepped portion 82 is also called a serration portion. The stepped portion 82 is provided at a position on the leading edge 31 of the blade at a predetermined distance from the main plate 10 .
 ここで、上述した第1実施形態の送風機1と比較するため、比較例の送風機100について説明する。 Here, a blower 100 of a comparative example will be described for comparison with the blower 1 of the first embodiment described above.
 図11に示すように、比較例の送風機100においても、翼前縁31が、シュラウド20の開口部21の内周壁211よりも径方向内側に設けられている。ただし、比較例の送風機100では、翼前縁31のうち主板10とは反対側を向く面101に凹み形状が形成されていない。即ち、比較例では、翼30の回転方向から翼前縁31を見たとき、翼前縁31のうち主板10とは反対側を向く面101は、シュラウド20の開口部21の内周壁211と翼30との接続箇所73から径方向内側に向かって、軸心CLに対して垂直な面となっている。 As shown in FIG. 11 , also in the fan 100 of the comparative example, the blade leading edge 31 is provided radially inward of the inner peripheral wall 211 of the opening 21 of the shroud 20 . However, in blower 100 of the comparative example, surface 101 of blade leading edge 31 facing away from main plate 10 is not recessed. That is, in the comparative example, when the blade leading edge 31 is viewed from the rotation direction of the blade 30, the surface 101 of the blade leading edge 31 facing the side opposite to the main plate 10 is the inner peripheral wall 211 of the opening 21 of the shroud 20. A surface perpendicular to the axis CL extends radially inward from a connection point 73 with the blade 30 .
 比較例では、羽根車2が回転すると、図11の矢印AF2に示すように、上ケース53の空気吸込口51から翼間流路に流入する空気は、主板10側に向かって流れ、シュラウド20のうち翼間流路側の面201に沿って流れにくいといった特性を有する。以下、シュラウド20のうち翼間流路側の面201を、「シュラウド裏面201」という。比較例では、上記の特性のため、シュラウド20の開口部21から翼間流路に流入する空気がシュラウド裏面201から剥離し、その剥離により生じる剥離渦SVが大きくなると、騒音が増大するといった問題が発生する。 In the comparative example, when the impeller 2 rotates, as indicated by the arrow AF2 in FIG. Among them, it has a characteristic that it is difficult to flow along the surface 201 on the inter-blade passage side. Hereinafter, the surface 201 of the shroud 20 on the inter-blade flow path side is referred to as a "shroud back surface 201". In the comparative example, due to the above characteristics, the air flowing into the inter-blade passage from the opening 21 of the shroud 20 is separated from the shroud back surface 201, and when the separation vortex SV generated by this separation increases, noise increases. occurs.
 それに対し、第1実施形態の送風機1は、図7に示すように、次のような効果を奏する。すなわち、第1実施形態の送風機1では、羽根車2が回転すると、図7の矢印AF3に示すように、上ケース53の空気吸込口51から翼間流路に流入する空気は、その気流の向きが、シュラウド裏面201の形状に近くなる。このことは、翼前縁31に形成された凹み形状70に沿って空気が流れるコアンダ効果によるものである。凹み形状70は、空気吸込口51から翼間流路に流入する空気に対してコアンダ効果を発生させるのに有効な形状とされている。そのため、凹み形状70に沿って流れた後に翼間流路に流入する空気は、シュラウド裏面201から剥離することが抑制される。したがって、第1実施形態の送風機1は、シュラウド裏面201付近の剥離渦SVが低減するので、騒音を低減することができる。 On the other hand, the blower 1 of the first embodiment has the following effects as shown in FIG. That is, in the blower 1 of the first embodiment, when the impeller 2 rotates, as indicated by the arrow AF3 in FIG. The orientation is close to the shape of the shroud back surface 201 . This is due to the Coanda effect in which air flows along the concave shape 70 formed in the leading edge 31 of the blade. The concave shape 70 is a shape effective for generating the Coanda effect on the air flowing into the inter-blade passage from the air suction port 51 . Therefore, the air that flows into the inter-blade passage after flowing along the concave shape 70 is suppressed from being separated from the shroud back surface 201 . Therefore, in the blower 1 of the first embodiment, the separation vortex SV near the shroud back surface 201 is reduced, so noise can be reduced.
 また、図3では、シュラウド筒部22のうち主板10とは反対側の端部221と凹み形状70の低位部71との距離Dhを示している。第1実施形態では、翼前縁31のうち主板10とは反対側を向く面に凹み形状70を形成したことで、シュラウド筒部22のうち主板10とは反対側の端部221と凹み形状70の低位部71との距離Dhが、比較例の送風機100に比べて遠くなっている。そのため、羽根車2の径方向外側の空気出口24から上ケース53とシュラウド20との隙間流路25を通ってシュラウド20の開口部21側に逆流する空気(以下、「逆流空気」という)が、凹み形状70の低位部71に衝突するときの流速を遅くできる。一般に、騒音の大きさは流速の6乗に比例するので、その流速を遅くすることで、騒音を低減することができる。 FIG. 3 also shows the distance Dh between the end portion 221 of the shroud tubular portion 22 opposite to the main plate 10 and the lower portion 71 of the concave shape 70 . In the first embodiment, the recessed shape 70 is formed on the surface of the blade leading edge 31 facing away from the main plate 10, so that the end portion 221 of the shroud tubular portion 22 on the side opposite to the main plate 10 and the recessed shape A distance Dh between the fan 70 and the lower part 71 is longer than that of the blower 100 of the comparative example. Therefore, air flowing backward from the radially outer air outlet 24 of the impeller 2 to the opening 21 side of the shroud 20 through the clearance flow path 25 between the upper case 53 and the shroud 20 (hereinafter referred to as "backflow air"). , the flow velocity when colliding with the low portion 71 of the concave shape 70 can be slowed down. Since the magnitude of noise is generally proportional to the sixth power of the flow velocity, the noise can be reduced by slowing down the flow velocity.
 次に、第1実施形態に係る送風機1において、凹み形状70の深さと騒音との関係について行った実験の結果を図8に示す。 Next, FIG. 8 shows the results of an experiment conducted on the relationship between the depth of the recessed shape 70 and noise in the blower 1 according to the first embodiment.
 図8のグラフの横軸は、凹み形状70の深さDaを、翼出口高さDbに対する割合として示している。なお、凹み形状70の深さDaが0%とは、上述した比較例の送風機100の構成と同じである。一方、図8のグラフの縦軸は、騒音レベル(すなわち、A特性音圧レベル)を示している。なお、この実験では、翼出口高さDbが4mmの送風機を使用し、モータ40に通電して羽根車2を一定の回転数で回転させたときの騒音レベルを測定した。 The horizontal axis of the graph in FIG. 8 indicates the depth Da of the recessed shape 70 as a ratio to the blade outlet height Db. It should be noted that the depth Da of the concave shape 70 being 0% is the same as the configuration of the blower 100 of the comparative example described above. On the other hand, the vertical axis of the graph in FIG. 8 indicates the noise level (that is, the A-weighted sound pressure level). In this experiment, a blower having a blade outlet height Db of 4 mm was used, and the noise level was measured when the motor 40 was energized and the impeller 2 was rotated at a constant number of revolutions.
 図8のグラフに示すように、この実験により、凹み形状70の深さDaが0より大きく、9%以下の範囲で、騒音レベルを低下できる結果が得られた。すなわち、実験により、凹み形状70の深さDaと、翼出口高さDbとは、0<Da≦Db×0.09 の関係において、騒音低減効果が得られることがわかった。また、凹み形状70の深さDaを、翼出口高さDbの1~8%、より好ましくは2~7%とすることで、より大きな騒音低減効果が得られることがわかった。具体的には、実験に使用した送風機では、凹み形状70の深さDaを翼出口高さDbの5%としたとき、比較例の送風機100に比べて、騒音レベルを0.4dBA低下できる結果が得られた。 As shown in the graph of FIG. 8, this experiment showed that the noise level could be reduced when the depth Da of the concave shape 70 was greater than 0 and less than or equal to 9%. In other words, it was found through experiments that the noise reduction effect can be obtained when the relationship between the depth Da of the concave shape 70 and the blade outlet height Db is 0<Da≦Db×0.09. Further, it was found that a greater noise reduction effect can be obtained by setting the depth Da of the concave shape 70 to 1 to 8%, more preferably 2 to 7%, of the blade outlet height Db. Specifically, in the blower used in the experiment, when the depth Da of the recessed shape 70 is 5% of the blade outlet height Db, the noise level can be reduced by 0.4 dBA compared to the blower 100 of the comparative example. was gotten.
 以上説明した第1実施形態の送風機1は、次の作用効果を奏するものである。 The blower 1 of the first embodiment described above has the following effects.
 (1)第1実施形態の送風機1は、翼前縁31のうち主板10とは反対側を向く面に、低位部71と高位部72により、凹み形状70が形成されている。これによれば、上ケース53の空気吸込口51からシュラウド20の開口部21を通って翼間流路に流入する空気は、翼前縁31に形成された凹み形状70に沿って空気が流れるコアンダ効果により、その気流の向きが、シュラウド裏面201の形状に近くなる。そのため、シュラウド20の開口部21から翼間流路に流入する空気がシュラウド裏面201から剥離することが抑制され、剥離渦SVが低減するので、騒音を低減することができる。 (1) In the blower 1 of the first embodiment, a concave shape 70 is formed by a low portion 71 and a high portion 72 on the surface of the blade leading edge 31 facing away from the main plate 10 . According to this, the air flowing from the air inlet 51 of the upper case 53 through the opening 21 of the shroud 20 into the inter-blade flow path flows along the concave shape 70 formed in the leading edge 31 of the blade. Due to the Coanda effect, the direction of the airflow approaches the shape of the shroud back surface 201 . Therefore, separation of the air flowing into the inter-blade passage through the opening 21 of the shroud 20 from the shroud back surface 201 is suppressed, and the separation vortex SV is reduced, so that noise can be reduced.
 また、翼30のうち主板10とは反対側を向く面に凹み形状70を形成することで、シュラウド筒部22のうち主板10とは反対側の端部221と凹み形状70の低位部71との距離Dhが遠くなる。そのため、羽根車2の径方向外側の空気出口24から隙間流路25を通ってシュラウド20の開口部21側に逆流する逆流空気が、凹み形状70の低位部71に衝突するときの流速を遅くすることができる。一般に、騒音の大きさは流速の6乗に比例するので、その流速を遅くすることで、騒音を低減することができる。 In addition, by forming the concave shape 70 on the surface of the blade 30 facing away from the main plate 10, the end portion 221 of the shroud tubular portion 22 on the side opposite to the main plate 10 and the lower portion 71 of the concave shape 70 are formed. becomes farther. Therefore, the backflow air flowing back from the radially outer air outlet 24 of the impeller 2 to the opening 21 side of the shroud 20 through the clearance flow path 25 slows down the flow velocity when it collides with the low portion 71 of the concave shape 70. can do. Since the magnitude of noise is generally proportional to the sixth power of the flow velocity, the noise can be reduced by slowing down the flow velocity.
 さらに、シュラウド裏面201からの空気の剥離が抑制されることで、送風機1の効率が向上する。したがって、同一風量の条件下において、送風機1の回転数を下げることが可能となり、回転による振動が低減するので、騒音を低減することができる。 Furthermore, the efficiency of the blower 1 is improved by suppressing the separation of air from the shroud back surface 201 . Therefore, under the condition of the same air volume, the number of rotations of the blower 1 can be lowered, and the vibration caused by the rotation is reduced, so that the noise can be reduced.
 (2)第1実施形態では、上ケース53の有するベルマウス57の外径Dcと、低位部71のうち主板10に最も近い点または面の外径Dwとは、Dc<Dw の関係を有している。
 これによれば、ベルマウス57の内周壁571に沿って翼間流路に流入する空気が、翼前縁31に形成された凹み形状70に当たるので、凹み形状70に沿って空気が流れるコアンダ効果の影響を受けやすくなる。したがって、シュラウド裏面201から空気が剥離することが抑制され、剥離渦SVが低減するので、騒音を低減できる。
 また、逆流空気が凹み形状70の低位部71に衝突するときの流速を遅くすることによっても、騒音を低減することができる。
(2) In the first embodiment, the outer diameter Dc of the bell mouth 57 of the upper case 53 and the outer diameter Dw of the point or surface of the lower portion 71 closest to the main plate 10 have a relationship of Dc<Dw. is doing.
According to this, the air flowing into the inter-blade passage along the inner peripheral wall 571 of the bell mouth 57 hits the concave shape 70 formed in the blade leading edge 31, so the Coanda effect in which the air flows along the concave shape 70 become more susceptible to Therefore, separation of air from the shroud back surface 201 is suppressed, and the separation vortex SV is reduced, thereby reducing noise.
Noise can also be reduced by slowing down the flow velocity of the backflow air when it collides with the low portion 71 of the concave shape 70 .
 (3)第1実施形態では、低位部71と高位部72との接続箇所(すなわち、第2曲面75および第1曲面74)は曲面となっている。
 これによれば、低位部71と高位部72との接続箇所における気流の乱れを抑制し、騒音を低減できる。
(3) In the first embodiment, the connection points between the low portion 71 and the high portion 72 (that is, the second curved surface 75 and the first curved surface 74) are curved surfaces.
According to this, turbulence of the airflow at the connecting portion between the low-level portion 71 and the high-level portion 72 can be suppressed, and noise can be reduced.
 (4)第1実施形態では、低位部71のうち径方向内側の箇所(すなわち、第2曲面75)および径方向外側の箇所391は、いずれも曲面となっている。
 これによれば、低位部71のうち径方向内側の箇所(すなわち、第2曲面75)および径方向外側の箇所391における気流の乱れを抑制し、騒音を低減できる。
(4) In the first embodiment, both the radially inner portion (that is, the second curved surface 75) and the radially outer portion 391 of the lower portion 71 are curved surfaces.
According to this, turbulence of the airflow at the radially inner portion (that is, the second curved surface 75 ) and the radially outer portion 391 of the low portion 71 can be suppressed, and noise can be reduced.
 (5)第1実施形態では、低位部71と高位部72とを接続している第1曲面74の曲率半径R1と、第2曲面75の曲率半径R2とは、R1>R2 の関係を有している。
 これによれば、上ケース53の空気吸込口51から流入する空気が径方向外側に流れることを促す第1曲面74の曲率半径R1を大きくすることで、コアンダ効果による径方向の流れ成分が増大する。したがって、翼間流路におけるシュラウド裏面201からの空気の剥離を抑制できる。
(5) In the first embodiment, the curvature radius R1 of the first curved surface 74 connecting the low portion 71 and the high portion 72 and the curvature radius R2 of the second curved surface 75 have a relationship of R1>R2. is doing.
According to this, by increasing the radius of curvature R1 of the first curved surface 74 that encourages the air flowing in from the air suction port 51 of the upper case 53 to flow radially outward, the radial flow component due to the Coanda effect increases. do. Therefore, separation of air from the shroud back surface 201 in the inter-blade passage can be suppressed.
 (6)第1実施形態では、第1曲面74の曲率半径R1と、第2曲面75の曲率半径R2と、低位部71の負圧面35側のコーナー部36の曲率半径R3と、低位部71の正圧面37側のコーナー部38の曲率半径R4は、次の関係を有している。すなわち、上記R1~R4は、R1>R3>R4、および、R2>R3>R4の関係を有している。
 これによれば、翼前縁31に形成された凹み形状70にあたる気流は、曲率半径の大きい順に流れ込みやすくなる。そのため、第1曲面74の曲率半径R1と第2曲面75の曲率半径R2により径方向の流れ成分を増大してシュラウド裏面201からの剥離を抑制できる。さらに、低位部71の負圧面35側のコーナー部36の曲率半径R3を、低位部71の正圧面37側のコーナー部38の曲率半径R4よりも大きくすることで、翼30の負圧面35側に流れ込む気流がその負圧面35から剥離することも抑制できる。したがって、翼30の回転方向の速度バラツキを低減することで、騒音を低減することができる。
(6) In the first embodiment, the curvature radius R1 of the first curved surface 74, the curvature radius R2 of the second curved surface 75, the curvature radius R3 of the corner portion 36 on the negative pressure surface 35 side of the low portion 71, and the low portion 71 The curvature radius R4 of the corner portion 38 on the side of the pressure surface 37 has the following relationship. That is, R1 to R4 have the relationships of R1>R3>R4 and R2>R3>R4.
According to this, the airflow hitting the concave shape 70 formed in the leading edge 31 of the blade tends to flow in the descending order of the radius of curvature. Therefore, the radius of curvature R<b>1 of the first curved surface 74 and the radius of curvature R<b>2 of the second curved surface 75 increase the flow component in the radial direction, thereby suppressing separation from the shroud back surface 201 . Furthermore, by making the curvature radius R3 of the corner portion 36 of the low portion 71 on the suction surface 35 side larger than the curvature radius R4 of the corner portion 38 of the low portion 71 on the pressure surface 37 side, It is also possible to suppress separation of the airflow flowing into from the negative pressure surface 35 . Therefore, noise can be reduced by reducing the speed variation in the rotating direction of the blades 30 .
 (7)第1実施形態では、凹み形状70の深さDaと、翼出口高さDbとは、0<Da≦Db×0.09 の関係を有している。
 これによれば、発明者らが行った実験の結果により、凹み形状70の深さDaを、翼出口高さDbの9%以下とすることで、騒音低減効果が得られることが判った。
(7) In the first embodiment, the depth Da of the concave shape 70 and the blade outlet height Db have a relationship of 0<Da≦Db×0.09.
According to the result of the experiments conducted by the inventors, it was found that the noise reduction effect can be obtained by setting the depth Da of the concave shape 70 to 9% or less of the blade outlet height Db.
 (8)第1実施形態では、シュラウド20は、開口部21側の内周縁から主板10とは反対側に向かって筒状に延びるシュラウド筒部22を有している。また、翼30は、シュラウド20の開口部21の内周壁211と翼30との接続箇所73から、シュラウド20の開口部21の内周壁211と平行に主板10側に延びる立壁部39を有している。
 これによれば、翼前縁31に形成された凹み形状70に沿って流れる気流がシュラウド裏面201に流れやすくなる。そのため、シュラウド裏面201からの空気の剥離を抑制できる。
(8) In the first embodiment, the shroud 20 has the shroud cylindrical portion 22 that extends cylindrically from the inner peripheral edge on the side of the opening 21 toward the side opposite to the main plate 10 . Wing 30 also has standing wall portion 39 extending from connecting point 73 between inner peripheral wall 211 of opening 21 of shroud 20 and blade 30 toward main plate 10 in parallel with inner peripheral wall 211 of opening 21 of shroud 20 . ing.
This makes it easier for the airflow flowing along the concave shape 70 formed in the blade leading edge 31 to flow to the shroud back surface 201 . Therefore, separation of air from the shroud back surface 201 can be suppressed.
 (第2実施形態)
 第2実施形態について説明する。第2実施形態は、第1実施形態に対して凹み形状70の一部を変更したものであり、その他については第1実施形態と同様であるため、第1実施形態と異なる部分についてのみ説明する。
(Second embodiment)
A second embodiment will be described. 2nd Embodiment changes a part of dent shape 70 with respect to 1st Embodiment, Since it is the same as that of 1st Embodiment about others, only a different part from 1st Embodiment is demonstrated. .
 図9に示すように、第2実施形態の送風機1においても、翼前縁31のうち主板10とは反対側を向く面に凹み形状70が形成されている。凹み形状70は、低位部71および高位部72により形成されている。第2実施形態では、低位部71と高位部72とが接続されている箇所に、第1実施形態で説明した第1曲面74が設けられていない。高位部72のうち径方向外側の部位はほぼ直角になっている。しかし、第2実施形態においても、低位部71のうち径方向内側の箇所751および径方向外側の箇所391は、いずれも曲面となっている。これにより、第2実施形態では、低位部71のうち径方向内側の箇所751および径方向外側の箇所391における気流の乱れを抑制し、騒音を低減できる。 As shown in FIG. 9, also in the fan 1 of the second embodiment, a concave shape 70 is formed on the surface of the blade leading edge 31 facing away from the main plate 10 . A recessed shape 70 is formed by a lower portion 71 and a higher portion 72 . In the second embodiment, the first curved surface 74 described in the first embodiment is not provided at the location where the low portion 71 and the high portion 72 are connected. A radially outer portion of the high portion 72 is substantially perpendicular. However, also in the second embodiment, the radially inner portion 751 and the radially outer portion 391 of the lower portion 71 are both curved surfaces. As a result, in the second embodiment, airflow turbulence at the radially inner portion 751 and the radially outer portion 391 of the lower portion 71 can be suppressed, and noise can be reduced.
 なお、第2実施形態の送風機1も、上記で説明した構成を除き、第1実施形態と同様の構成を備えることで、第1実施形態と同様の作用効果を奏することができる。 It should be noted that the blower 1 of the second embodiment also has the same configuration as the first embodiment, except for the configuration described above, so that the same effects as the first embodiment can be obtained.
 (第3実施形態)
 第3実施形態について説明する。第3実施形態も、第1実施形態等に対して凹み形状70の一部を変更したものであり、その他については第1実施形態等と同様であるため、第1実施形態等と異なる部分についてのみ説明する。
(Third Embodiment)
A third embodiment will be described. 3rd Embodiment also changes a part of dent shape 70 with respect to 1st Embodiment etc., and since it is the same as that of 1st Embodiment etc. about others, about a part different from 1st Embodiment etc., only explained.
 図10に示すように、第3実施形態の送風機1においても、翼前縁31のうち主板10とは反対側を向く面に凹み形状70が形成されている。凹み形状70は、低位部71および高位部72により形成されている。そして、第3実施形態では、第1実施形態と同じく、低位部71と高位部72とが接続されている箇所は、第1曲面74と第2曲面75とを有している。その第1曲面74の曲率半径R1と、第2曲面75の曲率半径R2とは、R1>R2 の関係を有している。なお、第3実施形態では、低位部71と立壁部39とが接続されている箇所391は、ほぼ直角になっている。 As shown in FIG. 10, also in the fan 1 of the third embodiment, a concave shape 70 is formed on the surface of the blade leading edge 31 facing away from the main plate 10 . A recessed shape 70 is formed by a lower portion 71 and a higher portion 72 . In the third embodiment, as in the first embodiment, the portion where the low portion 71 and the high portion 72 are connected has a first curved surface 74 and a second curved surface 75 . The curvature radius R1 of the first curved surface 74 and the curvature radius R2 of the second curved surface 75 have a relationship of R1>R2. In addition, in the third embodiment, the portion 391 where the lower portion 71 and the standing wall portion 39 are connected is substantially perpendicular.
 第3実施形態の送風機1においても、シュラウド20の開口部21から流入する空気が径方向外側に流れることを促す第1曲面74の曲率半径R1を大きくすることで、コアンダ効果による径方向の流れ成分が増大する。したがって、シュラウド裏面201からの空気の剥離を抑制できる。 Also in the blower 1 of the third embodiment, by increasing the curvature radius R1 of the first curved surface 74 that promotes the flow of the air flowing in from the opening 21 of the shroud 20 radially outward, the radial flow due to the Coanda effect component increases. Therefore, separation of air from the shroud back surface 201 can be suppressed.
 なお、第3実施形態の送風機1も、第1実施形態と同様の構成を備えることで、第1実施形態と同様の作用効果を奏することができる。 It should be noted that the blower 1 of the third embodiment also has the same configuration as that of the first embodiment, so that the same effects as those of the first embodiment can be obtained.
 (他の実施形態)
 (1)上記各実施形態では、送風機1の備える羽根車2をターボファンとして説明したが、これに限らず、例えばシロッコファン、ラジアルファン、または、斜流ファンなどとしてもよい。
(Other embodiments)
(1) In each of the above embodiments, the impeller 2 included in the blower 1 was explained as a turbo fan, but it is not limited to this, and may be a sirocco fan, a radial fan, or a mixed flow fan, for example.
 (2)上記各実施形態では、モータ40をアウターロータ型ブラシレスDCモータとして説明したが、これに限らず、例えばインナーロータ型ブラシレスDCモータ、または、ACモータなどとしてもよい。 (2) In each of the above embodiments, the motor 40 is described as an outer rotor type brushless DC motor.
 (3)上記各実施形態では、シュラウド20は、シュラウド筒部22、シュラウド側突起23などを有するものとして説明したが、これに限らず、シュラウド20は、それらの構成を有していなくてもよい。 (3) In each of the above embodiments, the shroud 20 has the shroud cylindrical portion 22, the shroud-side projection 23, and the like. good.
 (4)上記各実施形態では、主板10は、中央部11、固定部12および環状部13などを有するものとして説明したが、これに限らず、主板10は、例えば、中央部11、固定部12および環状部13などが一体に構成されたものであってもよい (4) In each of the above embodiments, the main plate 10 has the central portion 11, the fixed portion 12, the annular portion 13, and the like. 12, annular portion 13, etc. may be integrally constructed.
 (5)上記各実施形態では、送風機1は、ケース50を備えるものとして説明したが、これに限らず、送風機1はケース50を備えていなくてもよい。 (5) In each of the above embodiments, the blower 1 has been described as including the case 50 , but the present invention is not limited to this, and the blower 1 may not include the case 50 .
 本開示は上記した実施形態に限定されるものではなく、適宜変更が可能である。また、上記各実施形態は、互いに無関係なものではなく、組み合わせが明らかに不可な場合を除き、適宜組み合わせが可能である。また、上記各実施形態において、実施形態を構成する要素は、特に必須であると明示した場合および原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須のものではないことは言うまでもない。また、上記各実施形態において、実施形態の構成要素の個数、数値、量、範囲等の数値が言及されている場合、特に必須であると明示した場合および原理的に明らかに特定の数に限定される場合等を除き、その特定の数に限定されるものではない。また、上記各実施形態において、構成要素等の形状、位置関係等に言及するときは、特に明示した場合および原理的に特定の形状、位置関係等に限定される場合等を除き、その形状、位置関係等に限定されるものではない。 The present disclosure is not limited to the above-described embodiments, and can be modified as appropriate. Moreover, the above-described embodiments are not unrelated to each other, and can be appropriately combined unless the combination is clearly impossible. Further, in each of the above-described embodiments, it goes without saying that the elements constituting the embodiment are not necessarily essential, unless it is explicitly stated that they are essential, or they are clearly considered essential in principle. stomach. In addition, in each of the above-described embodiments, when numerical values such as the number, numerical value, amount, range, etc. of the constituent elements of the embodiment are mentioned, when it is explicitly stated that they are particularly essential, and when they are clearly limited to a specific number in principle It is not limited to that specific number, except when In addition, in each of the above-described embodiments, when referring to the shape, positional relationship, etc. of the constituent elements, the shape, It is not limited to the positional relationship or the like.

Claims (8)

  1.  遠心送風機において、
     回転可能に設けられる主板(10)と、
     前記主板に対向して設けられ、中央に空気が流入する開口部(21)を有する環状のシュラウド(20)と、
     前記シュラウドと前記主板との間で、回転中心となる軸心(CL)の周りに所定の間隔で配置され、前記シュラウドおよび前記主板に接続される複数の翼(30)と、を備え、
     前記軸心に垂直な仮想平面上において前記軸心を中心とした仮想円を定義し、前記仮想円における径方向の前記軸心に近い側を径方向内側といい、その反対側を径方向外側というとき、
     前記翼の前縁(31)は、前記シュラウドの前記開口部の内周壁(211)よりも径方向内側に設けられており、
     前記前縁のうち前記主板とは反対側を向く面には、前記開口部の内周壁と前記翼との接続箇所(73)より径方向内側において前記接続箇所よりも前記主板側に位置し、且つ、前記軸心に対して垂直な面に沿うように設けられる低位部(71)と、前記低位部よりも径方向内側において前記低位部に対して前記主板とは反対側に位置する高位部(72)とが設けられており、
     前記低位部と前記高位部により、前記前縁のうち前記主板とは反対側を向く面に凹み形状(70)が形成されている、遠心送風機。
    In a centrifugal blower,
    a rotatably provided main plate (10);
    an annular shroud (20) provided facing the main plate and having an opening (21) in the center through which air flows;
    A plurality of blades (30) arranged between the shroud and the main plate around an axis (CL) that is the center of rotation at predetermined intervals and connected to the shroud and the main plate,
    A virtual circle centered on the axial center is defined on a virtual plane perpendicular to the axial center, the side closer to the axial center in the radial direction in the virtual circle is called the radial inner side, and the opposite side is called the radial outer side. When you say
    A leading edge (31) of the wing is provided radially inward of an inner peripheral wall (211) of the opening of the shroud,
    A surface of the front edge facing away from the main plate is located radially inside a connection point (73) between the inner peripheral wall of the opening and the blade and closer to the main plate than the connection point, A lower portion (71) provided along a plane perpendicular to the axis, and a higher portion located radially inward of the lower portion and on the opposite side of the main plate with respect to the lower portion. (72) is provided,
    A centrifugal fan, wherein the low portion and the high portion form a concave shape (70) on a surface of the front edge facing away from the main plate.
  2.  前記シュラウドのうち前記主板とは反対側の面を覆う上ケース本体部(56)と、前記上ケース本体部において前記開口部に対応する位置に設けられる空気吸込口(51)と、前記空気吸込口の内周縁から前記主板側に向かって筒状に延びるベルマウス(57)とを有する上ケース(53)をさらに備え、
     前記ベルマウスの外径をDc、複数の前記翼に設けられた前記低位部のうち前記主板に最も近い点または面を回転方向に結んだ円の外径をDwとすると、Dc<Dw の関係を有している、請求項1に記載の遠心送風機。
    an upper case main body (56) covering a surface of the shroud opposite to the main plate; an air suction port (51) provided in the upper case main body at a position corresponding to the opening; further comprising an upper case (53) having a bell mouth (57) cylindrically extending from the inner peripheral edge of the mouth toward the main plate,
    Let Dc be the outer diameter of the bellmouth, and Dw be the outer diameter of a circle connecting points or surfaces of the lower portions provided on the plurality of wings that are closest to the main plate in the direction of rotation. Dc<Dw The centrifugal fan of claim 1, comprising:
  3.  前記低位部のうち径方向内側の箇所(75、751)は曲面となっている、請求項1または2に記載の遠心送風機。 The centrifugal fan according to claim 1 or 2, wherein the radially inner portion (75, 751) of the lower portion has a curved surface.
  4.  前記低位部のうち径方向内側の箇所および径方向外側の箇所(391)はいずれも曲面となっている、請求項1ないし3のいずれか1つに記載の遠心送風機。 The centrifugal fan according to any one of claims 1 to 3, wherein both the radially inner portion and the radially outer portion (391) of the lower portion are curved surfaces.
  5.  前記低位部と前記高位部とが接続されている箇所は、前記高位部における前記低位部側で前記主板とは反対側に凸の曲面である第1曲面(74)と、前記第1曲面よりも径方向外側で前記主板側に凸の曲面である第2曲面(75)とを有しており、
     前記翼の回転方向から前記前縁を見たとき、前記第1曲面の曲率半径をR1、前記第2曲面の曲率半径をR2とすると、R1>R2 の関係を有している、請求項1ないし4のいずれか1つに記載の遠心送風機。
    The portion where the low-level portion and the high-level portion are connected is a first curved surface (74) that is a convex curved surface on the low-level portion side of the high-level portion and on the side opposite to the main plate, and the first curved surface (74). has a second curved surface (75) which is a convex curved surface toward the main plate side on the radially outer side,
    2. When the leading edge is viewed from the rotational direction of the blade, the radius of curvature of the first curved surface is R1 and the radius of curvature of the second curved surface is R2, and the relationship is R1>R2. 5. The centrifugal blower according to any one of 1 to 4.
  6.  前記低位部と前記高位部とが接続されている箇所は、前記高位部における前記低位部側で前記主板とは反対側に凸の曲面である第1曲面(74)と、前記第1曲面よりも径方向外側で前記主板側に凸の曲面である第2曲面(75)とを有しており、前記翼の回転方向から前記前縁を見たとき、前記第1曲面の曲率半径をR1、前記第2曲面の曲率半径をR2とし、
     さらに、前記低位部を、前記翼が前記前縁から後縁に延びる方向に対して垂直な断面で見たとき、前記低位部の負圧面(35)側のコーナー部(36)の曲率半径をR3、前記低位部の正圧面(37)側のコーナー部(38)の曲率半径をR4とすると、R1>R3>R4、および、R2>R3>R4 の関係を有している、請求項1ないし5のいずれか1つに記載の遠心送風機。
    The portion where the low-level portion and the high-level portion are connected is a first curved surface (74) that is a convex curved surface on the low-level portion side of the high-level portion and on the side opposite to the main plate, and the first curved surface (74). has a second curved surface (75) which is a convex curved surface toward the main plate side on the radially outer side, and when the leading edge is viewed from the rotation direction of the blade, the radius of curvature of the first curved surface is R1 , the radius of curvature of the second curved surface is R2,
    Furthermore, when the lower portion is viewed in a cross section perpendicular to the direction in which the blade extends from the leading edge to the trailing edge, the curvature radius of the corner portion (36) on the suction surface (35) side of the lower portion is Claim 1, wherein the relationships of R1>R3>R4 and R2>R3>R4 are satisfied, where R3 is the radius of curvature of the corner portion (38) on the side of the pressure surface (37) of the lower portion and R4 is the radius of curvature of the corner portion (38). 6. The centrifugal blower according to any one of 1 to 5.
  7.  前記低位部のうち前記主板に最も近い点または面と前記高位部のうち前記主板から最も遠い点または面との距離をDa、前記翼の後縁側における前記主板と前記シュラウドとの間の距離をDbとすると、0<Da≦Db×0.09 の関係を有している、請求項1ないし6のいずれか1つに記載の遠心送風機。 Da is the distance between the point or surface of the lower part that is closest to the main plate and the point or surface of the higher part that is farthest from the main plate, and the distance between the main plate and the shroud on the trailing edge side of the wing 7. The centrifugal fan according to claim 1, wherein Db has a relationship of 0<Da≦Db×0.09.
  8.  前記シュラウドは、前記開口部側の内周縁から前記主板とは反対側に向かって筒状に延びるシュラウド筒部(22)を有しており、
     前記翼は、前記開口部の内周壁と前記翼との接続箇所から前記シュラウドの前記開口部の内周壁211と平行に前記主板側に延びる立壁部(39)を有している、請求項1ないし7のいずれか1つに記載の遠心送風機。
    The shroud has a shroud tubular portion (22) that extends in a tubular shape from an inner peripheral edge on the side of the opening toward the side opposite to the main plate,
    2. The wing has a standing wall portion (39) extending from a connection point between the inner peripheral wall of the opening and the wing parallel to the inner peripheral wall 211 of the opening of the shroud toward the main plate. 8. The centrifugal fan according to any one of 1 to 7.
PCT/JP2022/021803 2021-06-02 2022-05-27 Centrifugal blower WO2022255267A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021092832A JP2022185275A (en) 2021-06-02 2021-06-02 centrifugal blower
JP2021-092832 2021-06-02

Publications (1)

Publication Number Publication Date
WO2022255267A1 true WO2022255267A1 (en) 2022-12-08

Family

ID=84324184

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/021803 WO2022255267A1 (en) 2021-06-02 2022-05-27 Centrifugal blower

Country Status (2)

Country Link
JP (1) JP2022185275A (en)
WO (1) WO2022255267A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01174598U (en) * 1988-05-27 1989-12-12
JPH08247092A (en) * 1995-03-08 1996-09-24 Matsushita Electric Ind Co Ltd Motor driven blower
JP2003232295A (en) * 2002-02-08 2003-08-22 Sharp Corp Centrifugal fan and cooker equipped with the centrifugal fan
JP2018119420A (en) * 2017-01-23 2018-08-02 株式会社デンソー Centrifugal blower
JP2018135876A (en) * 2017-02-20 2018-08-30 株式会社デンソー Centrifugal blower

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01174598U (en) * 1988-05-27 1989-12-12
JPH08247092A (en) * 1995-03-08 1996-09-24 Matsushita Electric Ind Co Ltd Motor driven blower
JP2003232295A (en) * 2002-02-08 2003-08-22 Sharp Corp Centrifugal fan and cooker equipped with the centrifugal fan
JP2018119420A (en) * 2017-01-23 2018-08-02 株式会社デンソー Centrifugal blower
JP2018135876A (en) * 2017-02-20 2018-08-30 株式会社デンソー Centrifugal blower

Also Published As

Publication number Publication date
JP2022185275A (en) 2022-12-14

Similar Documents

Publication Publication Date Title
JP5940266B2 (en) Centrifugal fan and method of manufacturing centrifugal fan
JP5645596B2 (en) Multiblade centrifugal fan and air conditioner using the same
JP6652077B2 (en) Centrifugal blower
US11286945B2 (en) Turbofan and method of manufacturing turbofan
WO2014097627A1 (en) Centrifugal fan
JP2010124534A (en) Mixed flow fan for electric motors and motor equipped with this mixed flow fan
JP6844526B2 (en) Multi-wing centrifugal fan
WO2018180060A1 (en) Centrifugal blower
WO2022255267A1 (en) Centrifugal blower
US20180149158A1 (en) Centrifugal blower
JP6766800B2 (en) Centrifugal blower
WO2022255268A1 (en) Centrifugal blower
JP6588999B2 (en) Centrifugal fan
JP6451756B2 (en) Centrifugal fan
JP2011174385A (en) Impeller and centrifugal fan
JP3502256B2 (en) Cooling fan for electric motor
JP6760376B2 (en) Centrifugal blower
JP2019090342A (en) Blower device
JP2019090344A (en) Blower device
JP7413973B2 (en) Blower
WO2021192656A1 (en) Electric blower
JP6294910B2 (en) Centrifugal fan
JP6589000B2 (en) Centrifugal fan
JP2023136901A (en) Centrifugal air blower
CN108138796B (en) Turbine and supercharger

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22816015

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22816015

Country of ref document: EP

Kind code of ref document: A1