WO2022255268A1 - Centrifugal blower - Google Patents

Centrifugal blower Download PDF

Info

Publication number
WO2022255268A1
WO2022255268A1 PCT/JP2022/021804 JP2022021804W WO2022255268A1 WO 2022255268 A1 WO2022255268 A1 WO 2022255268A1 JP 2022021804 W JP2022021804 W JP 2022021804W WO 2022255268 A1 WO2022255268 A1 WO 2022255268A1
Authority
WO
WIPO (PCT)
Prior art keywords
shroud
main plate
side projection
outer diameter
case
Prior art date
Application number
PCT/JP2022/021804
Other languages
French (fr)
Japanese (ja)
Inventor
麻里 深田
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2022255268A1 publication Critical patent/WO2022255268A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/28Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
    • F04D29/30Vanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing

Definitions

  • This disclosure relates to a centrifugal fan.
  • Patent Document 1 Conventionally, there is known a centrifugal fan that blows air taken in from one of the axial directions of rotation of an impeller in a direction away from the axial center (see Patent Document 1).
  • the centrifugal fan described in Patent Document 1 has an outer diameter of a circle connecting the trailing edges of a plurality of blades constituting an impeller in the rotational direction (hereinafter referred to as "outer diameter of the trailing edge of the blade”) and an outer diameter of the main plate.
  • the diameter and the outer diameter of the shroud are formed to be the same.
  • the airflow sucked from the leading edge side of the blades into the flow path between the blades (hereinafter referred to as the "flow path between blades") is mostly dynamic pressure, and in the middle of flowing through the flow path between the blades The static pressure component increases.
  • the airflow has a configuration in which the flow path expands rapidly outside the impeller.
  • a main plate that is rotatable by the torque output by the drive unit; an annular shroud facing the main plate and having an opening in the center through which air flows; a plurality of blades arranged between the shroud and the main plate at predetermined intervals around the axis serving as the center of rotation and connected to the shroud and the main plate; Both the outer diameter of the main plate and the outer diameter of the shroud are formed larger than the outer diameter of a circle connecting the trailing edges of the plurality of blades in the rotational direction.
  • the flow path between the shroud and the main plate extends outside the trailing edge of the blade.
  • the extended flow path extends outside the trailing edge of the blade.
  • the outer diameter of the main plate refers to the outer diameter of the outer edge of the main plate that is located outside the axis of the main plate. Further, the outer diameter of the shroud means the outer diameter of the outer edge of the shroud that is located outside the axial center of the shroud.
  • FIG. 1 is a plan view of a centrifugal fan according to a first embodiment
  • FIG. 2 is a cross-sectional view taken along line II-II of FIG. 1
  • FIG. FIG. 2 is a cross-sectional view taken along line III-III in FIG. 1 excluding a motor, a substrate, and the like
  • FIG. 4 is an explanatory diagram for explaining each value of an impeller in the same part as in FIG. 3 ; It is a graph which shows the relationship between the expansion angle of a conical diffuser and a pressure-loss coefficient.
  • FIG. 3 is a schematic diagram of a conical diffuser; It is an image figure which shows the flow-path total area of the entrance of the flow path between blades.
  • FIG. 4 is an enlarged view of the VII portion of FIG. 3;
  • FIG. 4 is a cross-sectional view of a portion corresponding to FIG. 3 in a centrifugal fan of a comparative example;
  • the centrifugal blower of the first embodiment will be explained.
  • the centrifugal blower is simply referred to as "blower 1".
  • the blower 1 of this embodiment includes an impeller 2 composed of a main plate 10, a shroud 20, a plurality of blades 30, etc., and a motor as a drive unit for rotating the impeller 2. 40, and a case 50 that houses the impeller 2, the motor 40, and the like.
  • the blower 1 is used for various purposes such as, for example, a vehicle seat air conditioner, an air conditioner, or a ventilator.
  • a virtual circle centered on the axis CL is defined on a virtual plane perpendicular to the rotation axis CL of the impeller 2.
  • the radially opposite side of the imaginary circle from the axis CL is called the radially outer side.
  • the direction in which the axis CL extends is referred to as the "axis direction”.
  • a main plate 10 of the impeller 2 is rotatable by torque output from a motor 40 as a drive unit.
  • the main plate 10 includes a central portion 11 fixed to the rotating shaft 41 of the motor 40, a fixed portion 12 fixed to the radially outer wall of the central portion 11, and a radially outer side of the fixed portion 12. and an annular portion 13 joined to a plurality of blades 30 .
  • the central portion 11 of the main plate 10 is formed in a mountain shape that gradually moves away from the air suction port 51 of the upper case 53 radially outward from the rotating shaft 41 side.
  • the central portion 11 of the main plate 10 allows the air sucked from the air suction port 51 of the upper case 53 to pass through a flow path formed between the plurality of blades 30 (hereinafter referred to as "inter-blade flow path 3"). It functions as a guide surface leading to Note that the central portion 11 of the main plate 10 forms part of a motor rotor 42, which will be described later.
  • the fixing portion 12 of the main plate 10 is used to fix the plurality of blades 30 and the shroud 20 integrally formed with the fixing portion 12 to the motor rotor 42 .
  • the shroud 20 is provided so as to face the main plate 10 in the axial direction.
  • the shroud 20 has an annular shape and has an opening 21 in the center through which air flows.
  • the shroud 20 has a tubular shroud portion 22 extending from the inner peripheral edge on the opening 21 side toward the side opposite to the main plate 10 .
  • the shroud 20 has a plurality of shroud-side projections 23 projecting cylindrically toward the side opposite to the main plate 10 at radially outer positions of the shroud tubular portion 22 . In this embodiment, three shroud-side projections 23 are provided.
  • the plurality of blades 30 are provided between the shroud 20 and the main plate 10 and arranged at predetermined intervals around the axis CL, which is the center of rotation of the impeller 2 .
  • a plurality of wings 30 extend rearward in the direction of rotation from leading edge 31 toward trailing edge 32 . That is, the impeller 2 of this embodiment is a turbofan.
  • the impeller 2 of this embodiment is a closed fan.
  • the inner diameter of the opening 21 of the shroud 20 is set to Ds1.
  • D2 be the outer diameter of a circle connecting the trailing edges 32 of the plurality of blades 30 in the rotational direction (hereinafter referred to as the "outer diameter of the trailing edges 32 of the blades").
  • the blower 1 of this embodiment has the relationship of the following formula 1. Ds1/D2 ⁇ 0.7 (formula 1)
  • the blower 1 of the present embodiment is a large air volume type turbo fan in which the length from the leading edge 31 to the trailing edge 32 of the blades 30 is increased.
  • the air blower 1 (that is, turbo fan) of the present embodiment is characterized in that the static pressure of the airflow blown out from the impeller 2 is high.
  • the minimum value of Ds1/D2 is not specified, it is set to a value at which the air sucked from the opening 21 of the shroud 20 has a target air volume.
  • the outer diameter of the shroud outer edge portion 27 of the shroud 20 positioned outward with respect to the axis CL (hereinafter referred to as "the outer diameter of the shroud 20") is Ds.
  • the outer diameter of the main plate outer edge portion 16 (hereinafter referred to as the "outer diameter of the main plate 10") located outside the axis CL of the main plate 10 is defined as Dm.
  • the blower 1 of this embodiment has the relationship of the following formulas 2 and 3. Ds>D2 (Formula 2) Dm>D2 (Formula 3)
  • the shroud 20 has a shroud extension 28 that extends outside the trailing edge 32 of the wing 30 .
  • the main plate 10 also has a main plate extension 17 extending outside the trailing edge 32 of the wing 30 .
  • extended channel 4 a channel sandwiched between the shroud extension portion 28 and the main plate extension portion 17 (hereinafter referred to as "extended channel 4") is formed outside the trailing edge 32 of the blade 30.
  • extended channel 4 a channel sandwiched between the shroud extension portion 28 and the main plate extension portion 17
  • the blower 1 of this embodiment has the relationship of the following formula 4.
  • Equation 4 The significance of Equation 4 above will be described.
  • the area change rate from the upstream side to the downstream side in the inter-blade passage 3 becomes a factor of turbulence of the airflow flowing through the inter-blade passage 3, and affects the pressure loss ⁇ P [Pa] that contributes to the efficiency of the fan 1. .
  • the following can be said for centrifugal fans.
  • the difference between the shape of the main plate 10 and the straight line L1 connecting the intersection of the leading edge 31 and the main plate 10 to the intersection of the trailing edge 32 and the main plate 10 is "the distance after the intersection of the leading edge 31 and the shroud 20.” is smaller than the difference between the shape of the shroud 20 and the straight line L2 connecting the edge 32 and the shroud 20 to the intersection point. Therefore, the angle ⁇ of the flow passage change that defines the loss is dominated by the loss of the bending on the shroud 20 side rather than the bending with respect to the mainstream, and in fact, separation loss occurs near the surface of the shroud 20 on the main plate 10 side.
  • the inventor proposed to define the flow path change rate by defining the angle .theta. indicating the flow path change as Equation 4 above.
  • the angle ⁇ which indicates the rate of change in the flow path, exceeds a certain value, the separation loss suddenly increases.
  • the angle is set to 9 degrees or less so that the pressure loss coefficient K due to area change is 30% or less.
  • FIG. 5 is a graph showing the relationship between the spread angle 2 ⁇ and the pressure loss coefficient K in the conical diffuser as shown in FIG. (that is, 30%).
  • the pressure loss ⁇ P [Pa] due to the change in the area between the blades is obtained by the following equation 5, where the pressure loss coefficient K and the boost pressure P [Pa] when there is no pressure loss due to the change in the area between the blades are used.
  • ⁇ P K ⁇ P (Formula 5) That is, by reducing the pressure loss coefficient K, it is possible to reduce the pressure loss ⁇ P due to the change in the area between the blades.
  • the pressure loss when the area of the inter-blade passage 3 is expanded can be reduced, and the air blower 1 can improve efficiency.
  • 6A to 6C are image diagrams of the total channel area developed in the rotational direction of the inter-blade channel 3 in order to show the basis of the mathematical expression shown on the left side of Equation 4 above.
  • 6A shows the total channel area at the inlet of the inter-blade channel
  • FIG. 6B shows the total channel area in the middle of the inter-blade channel
  • FIG. Indicates the total road area.
  • 6A to 6C n indicates the number of inter-blade passages (that is, the same as the number of blades 30).
  • the case 50 has an upper case 53 and a lower case 54 .
  • the upper case 53 is a member that covers the shroud 20 side of the impeller 2 .
  • the lower case 54 is a member that covers the main plate 10 side of the impeller 2 and houses the motor 40 and the circuit board 60 .
  • the upper case 53 and the lower case 54 are fixed to each other with a predetermined gap therebetween by means of struts and screws (not shown).
  • the position where a column or the like is provided between the upper case 53 and the lower case 54 is indicated by a circle with reference numeral 55 .
  • the upper case 53 has an upper case main body 56 , an air suction port 51 and a bell mouth 57 .
  • the upper case body portion 56 covers the surface of the shroud 20 opposite to the main plate 10 .
  • the air suction port 51 is provided at a position corresponding to the opening 21 of the shroud 20 in the upper case main body 56 .
  • the bell mouth 57 extends cylindrically from the inner peripheral edge of the air suction port 51 toward the main plate 10 side.
  • the upper case 53 has a plurality of case-side projections 52 projecting cylindrically toward the main plate 10 at radially outer positions of the bell mouth 57 .
  • two case-side protrusions 52 are provided.
  • the two case-side projections 52 are provided between the three shroud-side projections 23 provided on the shroud 20 . Therefore, a labyrinth portion 26 is formed by the case-side projection 52 and the shroud-side projection 23 in the gap channel 25 between the upper case 53 and the shroud 20 .
  • the case-side projections 52 and the shroud-side projections 23 when the case-side projections 52 and the shroud-side projections 23 are projected onto a virtual plane S parallel to the axis CL, the case-side projections 52 and the shroud-side projections 23 Let ⁇ be the distance in the axial direction of the overlapping allowance. Also, let ⁇ be the distance between the upper case main body 56 and the shroud-side projection 23 . At this time, the blower 1 of this embodiment has the relationship of the following formula 6. ⁇ 0.5 ⁇ (Formula 6)
  • backflow air the air blown out from the impeller 2 flows through the clearance passage 25 between the shroud 20 and the upper case 53 and flows back to the suction port side of the impeller 2 (hereinafter referred to as "backflow air"). There is concern that the flow rate will increase.
  • the labyrinth portion 26 is formed in the clearance passage 25 between the shroud 20 and the upper case 53, and the configuration thereof is defined as in the above equation 6, thereby reducing the flow rate of the backflow air. be able to. Therefore, the blower 1 can improve the efficiency by reducing the flow rate of the backflow air, and also reduce the noise caused by the collision between the air sucked from the air suction port 51 of the upper case 53 and the backflow air blown out from the clearance passage 25. can be prevented.
  • the lower case 54 has a lower case main body portion 58 that covers the main plate 10 side of the impeller 2, and a central cylindrical portion 59 provided in the center of the lower case main body portion 58.
  • a rotating shaft 41 of the motor 40 and a motor stator 43 are attached to the central cylindrical portion 59 .
  • an outer rotor type brushless DC motor is employed as the motor 40 .
  • a rotating shaft 41 of the motor 40 is rotatably provided inside the central tubular portion 59 via a bearing 44 .
  • a motor rotor 42 is fixed to the axial end of the rotating shaft 41 of the motor 40 .
  • the motor rotor 42 includes the central portion 11 of the main plate 10 , the magnet holding portion 14 extending from the outer edge of the central portion 11 of the main plate 10 in the axial direction opposite to the shroud 20 , and the magnet holding portion 14 radially inward of the magnet holding portion 14 . and a magnet 45 provided in the .
  • the fixing portion 12 of the main plate 10 is fixed to the radially outer wall of the magnet holding portion 14 by press fitting or the like. Thereby, the motor rotor 42 and the impeller 2 are joined.
  • the magnets 45 provided radially inside the magnet holding portion 14 have magnetic poles of different types alternately arranged in the circumferential direction of the magnet holding portion 14 .
  • a motor stator 43 is provided radially inside the magnet 45 .
  • the motor stator 43 is fixed to the radially outer surface of the central tubular portion 59 .
  • the motor stator 43 has a three-phase coil 46 and a stator core 461 configured by, for example, Y-connection or delta-connection.
  • a three-phase alternating current is supplied from a circuit board 60 to the three-phase coil 46 .
  • the circuit board 60 supplies three-phase alternating current to the three-phase coils 46 of the motor stator 43.
  • the impeller 2 rotates together.
  • the impeller 2 rotates, as indicated by arrow AF1 in FIG. 54 and radially outward.
  • blower 100 of a comparative example will be described with reference to FIG.
  • the air blower 100 of the comparative example is also a turbo fan, like the first embodiment.
  • the outer diameter Ds of the shroud 20, the outer diameter Dm of the main plate 10, and the outer diameter D2 of the blade trailing edge 32 are formed to be the same. Therefore, in the blower 100 of the comparative example, the airflow that flows through the inter-blade passage 3 and is blown out from the impeller 2 to the outside is greatly turbulent and vortex loss due to the rapid expansion of the passage outside the impeller 2. , there is a problem that the static pressure is greatly reduced. Therefore, there is a concern that blower 100 of the comparative example may cause deterioration in noise and efficiency.
  • the blower 1 of this embodiment can achieve the following effects.
  • both the outer diameter Ds of the shroud 20 and the outer diameter Dm of the main plate 10 are formed larger than the outer diameter D2 of the trailing edge 32 of the blade.
  • the extension passage 4 sandwiched between the shroud extension 28 and the main plate extension 17 is formed outside the trailing edge 32 of the blade 30 . Therefore, the airflow flowing through the inter-blade passage 3 and blown out from the trailing edge 32 to the extension passage 4 is influenced by the impeller 2 and the air outside the impeller 2, and the static pressure rises. Therefore, in the blower 1 of the present embodiment, airflow turbulence and vortex loss due to the rapid expansion of the flow path outside the impeller 2 are suppressed, so that noise can be prevented and efficiency can be improved.
  • the static pressure component of the airflow blown out from the impeller 2 is increased by forming the extended flow path 4 outside the trailing edge 32 of the blade 30. , the pressure difference between the air outside the impeller 2 and the air on the suction port side of the impeller 2 increases. Therefore, there is a concern that the air blown out from the impeller 2 flows through the clearance passage 25 between the shroud 20 and the upper case 53 and flows back to the suction port side of the impeller 2, which increases the flow rate of the backflow air. be done.
  • a labyrinth portion 26 is formed by the case-side projections 52 and the shroud-side projections 23 in the gap channel 25 between the shroud 20 and the upper case 53 . According to this, it is possible to reduce the flow rate of backflow air that flows back through the clearance passage 25 between the shroud 20 and the upper case 53 . Therefore, the blower 1 of the present embodiment can improve the efficiency by reducing the flow rate of the backflow air, and the noise caused by the collision between the air sucked from the air suction port 51 of the upper case 53 and the backflow air blown out from the gap flow path 25 is reduced. can prevent an increase in
  • the distance ⁇ in the axial direction of the overlap between the case-side projection 52 and the shroud-side projection 23 is at least half the distance ⁇ between the upper case main body 56 and the shroud-side projection 23. It is According to this, by increasing the overlapping margin between the case-side projection 52 and the shroud-side projection 23 and increasing the flow resistance of the labyrinth portion 26, the flow rate of backflow air can be further reduced.
  • the inner diameter Ds1 of the opening 21 of the shroud 20 and the outer diameter D2 of the blade trailing edge 32 have a relationship of Ds1/D2 ⁇ 0.7. According to this, in the large air volume type blower 1 in which the length from the leading edge 31 to the trailing edge 32 of the blade 30 is long, the shroud 20 and the main plate 10 are extended outside the trailing edge 32 of the blade, so that a static electricity is generated. It becomes possible to further increase the pressure. Therefore, the effects of noise reduction and efficiency improvement can be effectively obtained.
  • the axial distance between the shroud 20 and the main plate 10 at the opening 21 of the shroud 20 is h1.
  • h2 be the axial distance between the shroud 20 and the main plate 10 at the trailing edge 32 of the blade 30 .
  • Ds1 be the inner diameter of the opening 21 of the shroud 20 .
  • the outer diameter of the blade trailing edge 32 is defined as D2.
  • the blower 1 of this embodiment has the relationship of Formula 4.
  • the blower 1 of this embodiment can reduce the pressure loss when the area of the inter-blade passage 3 is expanded, and the efficiency of the blower 1 can be improved.
  • the impeller 2 included in the blower 1 was explained as a turbo fan, but it is not limited to this, and may be a mixed flow fan, for example.
  • the motor 40 is described as an outer rotor type brushless DC motor, but it is not limited to this, and may be an inner rotor type brushless DC motor, an AC motor, or the like.
  • the shroud 20 is described as having the shroud tubular portion 22, the shroud-side projection 23, and the like. Any annular shape having an opening 21 may be used.
  • the main plate 10 has the central portion 11, the fixed portion 12, the annular portion 13, and the like. and the annular portion 13 etc. may be integrally configured
  • blower 1 has been described as including the case 50 , but the present invention is not limited to this, and the blower 1 may not include the case 50 .
  • the present disclosure is not limited to the above-described embodiments, and can be modified as appropriate. Moreover, the above-described embodiments are not unrelated to each other, and can be appropriately combined unless the combination is clearly impossible. Further, in each of the above-described embodiments, it goes without saying that the elements constituting the embodiment are not necessarily essential, unless it is explicitly stated that they are essential, or they are clearly considered essential in principle. stomach. In addition, in each of the above-described embodiments, when numerical values such as the number, numerical value, amount, range, etc.

Abstract

A centrifugal blower (1) is provided with a main plate (10), a shroud (20), and a plurality of blades (30). The main plate (10) is provided in such a way as to be capable of rotating by means of torque output by a drive unit (40). The shroud (20) is provided facing the main plate (10), and has an opening portion (21) in the center into which air flows. The plurality of blades (30) are arranged with a predetermined spacing around an axis (CL) serving as a center of rotation, between the shroud (20) and the main plate (10) and connected to the shroud (20) and the main plate (10). Furthermore, an outer diameter (Dm) of the main plate (10) and an outer diameter (Ds) of the shroud (20) are both formed to be larger than an outer diameter (D2) of a circle joining trailing edges (32) of the plurality of blades (30) together in a direction of rotation.

Description

遠心送風機centrifugal blower 関連出願への相互参照Cross-references to related applications
 本出願は、2021年6月2日に出願された日本特許出願番号2021-92833号に基づくもので、ここにその記載内容が参照により組み入れられる。 This application is based on Japanese Patent Application No. 2021-92833 filed on June 2, 2021, the contents of which are incorporated herein by reference.
 本開示は、遠心送風機に関するものである。 This disclosure relates to a centrifugal fan.
 従来、羽根車の回転の軸心方向の一方から取り込んだ空気を軸心から遠ざかる方向へ吹き出す遠心送風機が知られている(特許文献1参照)。特許文献1に記載の遠心送風機は、羽根車を構成する複数の翼の後縁同士を回転方向に結んだ円の外径(以下、「翼後縁の外径」という)と、主板の外径と、シュラウドの外径とが同一に形成されている。 Conventionally, there is known a centrifugal fan that blows air taken in from one of the axial directions of rotation of an impeller in a direction away from the axial center (see Patent Document 1). The centrifugal fan described in Patent Document 1 has an outer diameter of a circle connecting the trailing edges of a plurality of blades constituting an impeller in the rotational direction (hereinafter referred to as "outer diameter of the trailing edge of the blade") and an outer diameter of the main plate. The diameter and the outer diameter of the shroud are formed to be the same.
特開2020-180588号公報Japanese Patent Application Laid-Open No. 2020-180588
 一般に、遠心送風機では、翼の前縁側から翼同士の間の流路(以下、「翼間流路」という)に吸い込まれた気流は、ほとんど動圧であり、翼間流路を流れる途中で静圧成分が増える。特許文献1に記載の遠心送風機のように、翼後縁の外径と主板の外径とシュラウドの外径とが同一である場合、翼間流路を流れて羽根車から外側へ吹き出された気流は、その羽根車より外側で流路が急拡大する構成となる。そのため、特許文献1に記載の遠心送風機の構成では、羽根車より外側の流路の急拡大により気流の乱れおよび渦損失が大きく、それにより静圧が大きく減少してしまう。したがって、特許文献1に記載の遠心送風機は、騒音悪化、効率低下を引き起こすことが懸念される。
 本開示は、遠心送風機において、騒音を低減し、効率を向上することを目的とする。
In general, in a centrifugal fan, the airflow sucked from the leading edge side of the blades into the flow path between the blades (hereinafter referred to as the "flow path between blades") is mostly dynamic pressure, and in the middle of flowing through the flow path between the blades The static pressure component increases. As in the centrifugal fan described in Patent Document 1, when the outer diameter of the trailing edge of the blade, the outer diameter of the main plate, and the outer diameter of the shroud are the same, the air flows through the inter-blade passage and is blown outward from the impeller. The airflow has a configuration in which the flow path expands rapidly outside the impeller. Therefore, in the configuration of the centrifugal fan described in Patent Document 1, the rapid expansion of the flow path outside the impeller causes large airflow turbulence and eddy loss, which greatly reduces the static pressure. Therefore, there is a concern that the centrifugal fan described in Patent Document 1 may cause deterioration in noise and efficiency.
The present disclosure aims to reduce noise and improve efficiency in centrifugal fans.
 本開示の1つの観点によれば、遠心送風機において、
 駆動部の出力するトルクにより回転可能に設けられる主板と、
 主板に対向して設けられ、中央に空気が流入する開口部を有する環状のシュラウドと、
 シュラウドと主板との間で、回転中心となる軸心の周りに所定の間隔で配置され、シュラウドおよび主板に接続される複数の翼と、を備え、
 主板の外径およびシュラウドの外径はいずれも、複数の翼の後縁同士を回転方向に結んだ円の外径よりも大きく形成されている。
According to one aspect of the present disclosure, in a centrifugal fan,
a main plate that is rotatable by the torque output by the drive unit;
an annular shroud facing the main plate and having an opening in the center through which air flows;
a plurality of blades arranged between the shroud and the main plate at predetermined intervals around the axis serving as the center of rotation and connected to the shroud and the main plate;
Both the outer diameter of the main plate and the outer diameter of the shroud are formed larger than the outer diameter of a circle connecting the trailing edges of the plurality of blades in the rotational direction.
 これによれば、翼の後縁よりも外側にシュラウドと主板をそれぞれ延長することで、翼の後縁よりも外側に、シュラウドと主板とで挟まれた流路(以下、「延長流路」という)が形成される。そのため、翼間流路を流れて後縁から延長流路に吹き出された気流は、羽根車とその羽根車よりも外側の空気の影響を受けて静圧が上昇する。したがって、この遠心送風機は、羽根車の外側で流路が急拡大することによる気流の乱れおよび渦損失が抑制されるので、騒音を防ぎ、効率を向上できる。 According to this, by extending the shroud and the main plate to the outside of the trailing edge of the blade, the flow path between the shroud and the main plate (hereinafter referred to as the "extended flow path") extends outside the trailing edge of the blade. ) is formed. Therefore, the static pressure of the airflow that flows through the inter-blade passage and is blown out from the trailing edge into the extension passage increases due to the influence of the impeller and the air outside the impeller. Therefore, in this centrifugal fan, turbulence of airflow and vortex loss due to rapid expansion of the flow path outside the impeller are suppressed, so that noise can be prevented and efficiency can be improved.
 なお、主板の外径とは、主板のうち軸心に対して外方に位置する主板外縁部の外径をいう。また、シュラウドの外径とは、シュラウドのうち軸心に対して外方に位置するシュラウド外縁部の外径をいう。 The outer diameter of the main plate refers to the outer diameter of the outer edge of the main plate that is located outside the axis of the main plate. Further, the outer diameter of the shroud means the outer diameter of the outer edge of the shroud that is located outside the axial center of the shroud.
 なお、各構成要素等に付された括弧付きの参照符号は、その構成要素等と後述する実施形態に記載の具体的な構成要素等との対応関係の一例を示すものである。 It should be noted that the reference numerals in parentheses attached to each component etc. indicate an example of the correspondence relationship between the component etc. and the specific component etc. described in the embodiment described later.
第1実施形態に係る遠心送風機の平面図である。1 is a plan view of a centrifugal fan according to a first embodiment; FIG. 図1のII―II線の断面図である。2 is a cross-sectional view taken along line II-II of FIG. 1; FIG. 図1のIII―III線の断面においてモータ、基板などを除いた断面図である。FIG. 2 is a cross-sectional view taken along line III-III in FIG. 1 excluding a motor, a substrate, and the like; 図3と同一の部位において、羽根車の各値について説明するための説明図である。FIG. 4 is an explanatory diagram for explaining each value of an impeller in the same part as in FIG. 3 ; 円錐ディフューザの拡がり角度と圧力損失係数との関係を示すグラフである。It is a graph which shows the relationship between the expansion angle of a conical diffuser and a pressure-loss coefficient. 円錐ディフューザの模式図である。FIG. 3 is a schematic diagram of a conical diffuser; 翼間流路の入口の流路総面積を示すイメージ図である。It is an image figure which shows the flow-path total area of the entrance of the flow path between blades. 翼間流路の途中の流路総面積を示すイメージ図である。It is an image figure which shows the channel total area in the middle of the channel between blades. 翼間流路の出口の流路総面積を示すイメージ図である。It is an image figure which shows the flow-path total area of the exit of the flow path between blades. 図3のVII部分の拡大図である。FIG. 4 is an enlarged view of the VII portion of FIG. 3; 比較例の遠心送風機において図3に対応する部位の断面図である。FIG. 4 is a cross-sectional view of a portion corresponding to FIG. 3 in a centrifugal fan of a comparative example;
 以下、本開示の実施形態について図面を参照しつつ説明する。 Hereinafter, embodiments of the present disclosure will be described with reference to the drawings.
 第1実施形態の遠心送風機について説明する。以下、遠心送風機を単に「送風機1」という。図1~図3に示すように、本実施形態の送風機1は、主板10、シュラウド20、複数の翼30などにより構成される羽根車2と、その羽根車2を回転させる駆動部としてのモータ40と、羽根車2およびモータ40などを収容するケース50とを備えている。この送風機1は、例えば、車両用シート空調装置、空調装置または換気装置など、種々の用途に用いられる。 The centrifugal blower of the first embodiment will be explained. Hereinafter, the centrifugal blower is simply referred to as "blower 1". As shown in FIGS. 1 to 3, the blower 1 of this embodiment includes an impeller 2 composed of a main plate 10, a shroud 20, a plurality of blades 30, etc., and a motor as a drive unit for rotating the impeller 2. 40, and a case 50 that houses the impeller 2, the motor 40, and the like. The blower 1 is used for various purposes such as, for example, a vehicle seat air conditioner, an air conditioner, or a ventilator.
 なお、以下の説明では、羽根車2の回転の軸心CLに垂直な仮想平面上において軸心CLを中心とした仮想円を定義し、その仮想円における径方向の軸心CL側を「径方向内側」といい、その仮想円における径方向の軸心CLとは反対側を「径方向外側」という。また、軸心CLが延びる方向を「軸心方向」という。 In the following description, a virtual circle centered on the axis CL is defined on a virtual plane perpendicular to the rotation axis CL of the impeller 2. The radially opposite side of the imaginary circle from the axis CL is called the radially outer side. Also, the direction in which the axis CL extends is referred to as the "axis direction".
 羽根車2の構成について説明する。羽根車2の主板10は、駆動部としてのモータ40の出力するトルクにより回転可能に設けられている。主板10は、モータ40の回転軸41に固定される中央部11と、その中央部11の径方向外側の外壁に固定される固定部12と、その固定部12より径方向外側に設けられて複数の翼30に接合される環状部13とを有している。主板10の中央部11は、回転軸41側から径方向外側に向かって上ケース53の空気吸込口51から次第に遠ざかる山型に形成されている。そのため、主板10の中央部11は、上ケース53の空気吸込口51から吸い込まれた空気を、複数の翼30同士の間に形成される流路(以下、「翼間流路3」という)に導くガイド面として機能する。なお、主板10の中央部11は、後述するモータロータ42の一部を構成している。また、主板10の固定部12は、その固定部12と一体に成形された複数の翼30およびシュラウド20と、モータロータ42との固定に用いられる。 The configuration of the impeller 2 will be explained. A main plate 10 of the impeller 2 is rotatable by torque output from a motor 40 as a drive unit. The main plate 10 includes a central portion 11 fixed to the rotating shaft 41 of the motor 40, a fixed portion 12 fixed to the radially outer wall of the central portion 11, and a radially outer side of the fixed portion 12. and an annular portion 13 joined to a plurality of blades 30 . The central portion 11 of the main plate 10 is formed in a mountain shape that gradually moves away from the air suction port 51 of the upper case 53 radially outward from the rotating shaft 41 side. Therefore, the central portion 11 of the main plate 10 allows the air sucked from the air suction port 51 of the upper case 53 to pass through a flow path formed between the plurality of blades 30 (hereinafter referred to as "inter-blade flow path 3"). It functions as a guide surface leading to Note that the central portion 11 of the main plate 10 forms part of a motor rotor 42, which will be described later. The fixing portion 12 of the main plate 10 is used to fix the plurality of blades 30 and the shroud 20 integrally formed with the fixing portion 12 to the motor rotor 42 .
 シュラウド20は、主板10に対して軸心方向に対向するように設けられている。シュラウド20は、環状に形成されており、中央に空気が流入する開口部21を有している。シュラウド20は、開口部21側の内周縁から主板10とは反対側に向かって筒状に延びるシュラウド筒部22を有している。また、シュラウド20は、シュラウド筒部22よりも径方向外側の位置に、主板10とは反対側に向かって筒状に突出する複数のシュラウド側突起23を有している。本実施形態では、3個のシュラウド側突起23が設けられている。 The shroud 20 is provided so as to face the main plate 10 in the axial direction. The shroud 20 has an annular shape and has an opening 21 in the center through which air flows. The shroud 20 has a tubular shroud portion 22 extending from the inner peripheral edge on the opening 21 side toward the side opposite to the main plate 10 . Further, the shroud 20 has a plurality of shroud-side projections 23 projecting cylindrically toward the side opposite to the main plate 10 at radially outer positions of the shroud tubular portion 22 . In this embodiment, three shroud-side projections 23 are provided.
 複数の翼30は、シュラウド20と主板10との間に設けられ、羽根車2の回転中心となる軸心CLの周りに所定の間隔で配置されている。複数の翼30は、前縁31から後縁32に向かって回転方向後向きに延びている。すなわち、本実施形態の羽根車2は、ターボファンである。 The plurality of blades 30 are provided between the shroud 20 and the main plate 10 and arranged at predetermined intervals around the axis CL, which is the center of rotation of the impeller 2 . A plurality of wings 30 extend rearward in the direction of rotation from leading edge 31 toward trailing edge 32 . That is, the impeller 2 of this embodiment is a turbofan.
 翼30のうち軸心方向シュラウド20側の端部33は、シュラウド20に接続されている。翼30のうち軸心方向主板10側の端部34は、主板10の固定部12および環状部13に接続されている。したがって、本実施形態の羽根車2は、クローズドファンである。 An end portion 33 of the blade 30 on the shroud 20 side in the axial direction is connected to the shroud 20 . An end portion 34 of the blade 30 on the axial main plate 10 side is connected to the fixed portion 12 and the annular portion 13 of the main plate 10 . Therefore, the impeller 2 of this embodiment is a closed fan.
 ここで、図2に示すように、本実施形態では、シュラウド20の開口部21の内径をDs1とする。また、複数の翼30の後縁32同士を回転方向に結んだ円の外径(以下、「翼後縁32の外径」という)をD2とする。このとき、本実施形態の送風機1は、次の式1の関係を有している。
 Ds1/D2≦0.7 ・・・(式1)
Here, as shown in FIG. 2, in this embodiment, the inner diameter of the opening 21 of the shroud 20 is set to Ds1. Also, let D2 be the outer diameter of a circle connecting the trailing edges 32 of the plurality of blades 30 in the rotational direction (hereinafter referred to as the "outer diameter of the trailing edges 32 of the blades"). At this time, the blower 1 of this embodiment has the relationship of the following formula 1.
Ds1/D2≦0.7 (formula 1)
 すなわち、本実施形態の送風機1は、翼30の前縁31から後縁32までの長さを長くした大風量型のターボファンである。本実施形態の送風機1(すなわち、ターボファン)は、羽根車2から吹き出される気流の静圧が大きいといった特徴を有している。なお、Ds1/D2の最小値については、特に規定しないが、シュラウド20の開口部21から吸い込まれる空気が狙いの風量となる値に設定される。 That is, the blower 1 of the present embodiment is a large air volume type turbo fan in which the length from the leading edge 31 to the trailing edge 32 of the blades 30 is increased. The air blower 1 (that is, turbo fan) of the present embodiment is characterized in that the static pressure of the airflow blown out from the impeller 2 is high. Although the minimum value of Ds1/D2 is not specified, it is set to a value at which the air sucked from the opening 21 of the shroud 20 has a target air volume.
 また、本実施形態では、シュラウド20のうち軸心CLに対して外方に位置するシュラウド外縁部27の外径(以下、「シュラウド20の外径」という)をDsとする。また、主板10のうち軸心CLに対して外方に位置する主板外縁部16の外径(以下、「主板10の外径」という)をDmとする。このとき、本実施形態の送風機1は、次の式2および式3の関係を有している。
 Ds>D2 ・・・(式2)
 Dm>D2 ・・・(式3)
Further, in the present embodiment, the outer diameter of the shroud outer edge portion 27 of the shroud 20 positioned outward with respect to the axis CL (hereinafter referred to as "the outer diameter of the shroud 20") is Ds. Also, the outer diameter of the main plate outer edge portion 16 (hereinafter referred to as the "outer diameter of the main plate 10") located outside the axis CL of the main plate 10 is defined as Dm. At this time, the blower 1 of this embodiment has the relationship of the following formulas 2 and 3.
Ds>D2 (Formula 2)
Dm>D2 (Formula 3)
 すなわち、シュラウド20は、翼30の後縁32よりも外側に延長されたシュラウド延長部28を有している。また、主板10も、翼30の後縁32よりも外側に延長された主板延長部17を有している。これにより、翼30の後縁32よりも外側に、シュラウド延長部28と主板延長部17とで挟まれた流路(以下、「延長流路4」という)が形成される。そのため、本実施形態の送風機1では、翼間流路3を流れて翼30の後縁32から延長流路4に吹き出された気流は、その延長流路4において、羽根車2とその羽根車2よりも外側の空気の影響を受けて静圧が上昇する。したがって、本実施形態の送風機1は、羽根車2の外側で流路が急拡大することによる気流の乱れおよび渦損失が抑制されるので、騒音を防ぎ、効率を向上できる。 That is, the shroud 20 has a shroud extension 28 that extends outside the trailing edge 32 of the wing 30 . The main plate 10 also has a main plate extension 17 extending outside the trailing edge 32 of the wing 30 . As a result, a channel sandwiched between the shroud extension portion 28 and the main plate extension portion 17 (hereinafter referred to as "extended channel 4") is formed outside the trailing edge 32 of the blade 30. As shown in FIG. Therefore, in the blower 1 of the present embodiment, the airflow that flows through the inter-blade flow path 3 and is blown out from the trailing edge 32 of the blade 30 to the extension flow path 4 passes through the impeller 2 and its impeller in the extension flow path 4. The static pressure rises under the influence of the air outside 2. Therefore, in the blower 1 of the present embodiment, airflow turbulence and vortex loss due to the rapid expansion of the flow path outside the impeller 2 are suppressed, so that noise can be prevented and efficiency can be improved.
 さらに、本実施形態では、図4に示すように、シュラウド20の開口部21におけるシュラウド20と主板10との間の軸心方向の距離をh1とする。また、翼30の後縁32におけるシュラウド20と主板10との間の軸心方向の距離をh2とする。
 このとき、本実施形態の送風機1は、次の式4の関係を有している。
Furthermore, in the present embodiment, as shown in FIG. 4, the axial distance between the shroud 20 and the main plate 10 at the opening 21 of the shroud 20 is h1. Also, let h2 be the axial distance between the shroud 20 and the main plate 10 at the trailing edge 32 of the blade 30 .
At this time, the blower 1 of this embodiment has the relationship of the following formula 4.
 (h2*D2-h1*Ds1)/{(D2-Ds1)*(h1-h2)}≦0.15 ・・・(式4) (h2*D2-h1*Ds1)/{(D2-Ds1)*(h1-h2)}≤0.15 (Formula 4)
 上記の式4の意義について説明する。
 翼間流路3における上流側から下流側への面積変化率は、その翼間流路3を流れる気流の乱れの要因になり、送風機1の効率に寄与する圧力損失ΔP[Pa]に影響する。また、一般に、遠心送風機では次のことが言える。即ち「前縁31と主板10との交点から後縁32と主板10との交点迄を結んだ直線L1と、主板10の形状との差」は「前縁31とシュラウド20との交点から後縁32とシュラウド20との交点迄を結んだ直線L2と、シュラウド20の形状との差」より小さい。そのため、損失を定義する流路変化の角度θは、主流に対する曲がりよりもシュラウド20側の曲がりの損失が支配的であり、事実、シュラウド20のうち主板10側の面の近傍で剥離損失が発生しやすい事が一般的に知られている。今回、発明者は流路変化を示す角度θを上記の式4として定義することで、流路変化率を規定することを発案した。また、一般文献値より、図5のグラフに示すように、流路変化率を示す角度θは一定値を超えると剥離損失が急に大きくなることが実験的に知られているため、翼間面積変化による圧力損失係数Kを30%以下とするような角度9deg以下とした。
The significance of Equation 4 above will be described.
The area change rate from the upstream side to the downstream side in the inter-blade passage 3 becomes a factor of turbulence of the airflow flowing through the inter-blade passage 3, and affects the pressure loss ΔP [Pa] that contributes to the efficiency of the fan 1. . In addition, in general, the following can be said for centrifugal fans. That is, "the difference between the shape of the main plate 10 and the straight line L1 connecting the intersection of the leading edge 31 and the main plate 10 to the intersection of the trailing edge 32 and the main plate 10" is "the distance after the intersection of the leading edge 31 and the shroud 20." is smaller than the difference between the shape of the shroud 20 and the straight line L2 connecting the edge 32 and the shroud 20 to the intersection point. Therefore, the angle θ of the flow passage change that defines the loss is dominated by the loss of the bending on the shroud 20 side rather than the bending with respect to the mainstream, and in fact, separation loss occurs near the surface of the shroud 20 on the main plate 10 side. It is commonly known that it is easy This time, the inventor proposed to define the flow path change rate by defining the angle .theta. indicating the flow path change as Equation 4 above. In addition, as shown in the graph of FIG. 5, it is experimentally known from general literature that when the angle θ, which indicates the rate of change in the flow path, exceeds a certain value, the separation loss suddenly increases. The angle is set to 9 degrees or less so that the pressure loss coefficient K due to area change is 30% or less.
 なお、図5のグラフは、図6に示したような円錐ディフューザにおける拡がり角度2θと圧力損失係数Kとの関係を示すグラフなので、拡がり角度2θが18degのときに圧力損失係数Kが0.3(すなわち30%)となっている。これを本実施形態のような送風機1に適応した場合、上述したように損失を定義する流路変化の角度θは主流に対する曲がりよりもシュラウド20側の曲がりの損失が支配的である。このことから、θ=18÷2=9として、式4の不等式の右辺をtan9deg≒0.15としている。 5 is a graph showing the relationship between the spread angle 2θ and the pressure loss coefficient K in the conical diffuser as shown in FIG. (that is, 30%). When this is applied to the blower 1 as in the present embodiment, the angle θ of the flow passage change that defines the loss as described above is dominated by the loss due to the bending on the shroud 20 side rather than the bending with respect to the main stream. Therefore, θ=18÷2=9 and the right side of the inequality of Equation 4 is set to tan9deg≈0.15.
 なお、翼間面積変化による圧力損失ΔP[Pa]は、圧力損失係数K、翼間面積変化による圧力損失無しの場合の昇圧力P[Pa]としたとき、次の式5により求められる。
 ΔP=K×P ・・・(式5)
 すなわち、圧力損失係数Kを小さくすることで、翼間面積変化による圧力損失ΔPを小さくできる。これにより、本実施形態では、上記の式5に基づいてDs1、D2、h1、h2の各値を設定することで、翼間流路3の面積拡大時の圧力損失を小さくでき、送風機1の効率を向上できる。
 なお、図6A~図6Cは、上記の式4の左辺に示された数式の根拠を示すために翼間流路3を回転方向に展開した流路総面積のイメージ図である。図6Aは、翼間流路の入口の流路総面積を示しており、図6Bは、翼間流路の途中の流路総面積を示し、図6Cは、翼間流路の出口の流路総面積を示している。なお、図6A~図6Cにおいて、nは、翼間流路の数(すなわち、翼30の数と同じ)を示している。
The pressure loss ΔP [Pa] due to the change in the area between the blades is obtained by the following equation 5, where the pressure loss coefficient K and the boost pressure P [Pa] when there is no pressure loss due to the change in the area between the blades are used.
ΔP=K×P (Formula 5)
That is, by reducing the pressure loss coefficient K, it is possible to reduce the pressure loss ΔP due to the change in the area between the blades. As a result, in this embodiment, by setting the respective values of Ds1, D2, h1, and h2 based on the above equation 5, the pressure loss when the area of the inter-blade passage 3 is expanded can be reduced, and the air blower 1 can improve efficiency.
6A to 6C are image diagrams of the total channel area developed in the rotational direction of the inter-blade channel 3 in order to show the basis of the mathematical expression shown on the left side of Equation 4 above. 6A shows the total channel area at the inlet of the inter-blade channel, FIG. 6B shows the total channel area in the middle of the inter-blade channel, and FIG. Indicates the total road area. 6A to 6C, n indicates the number of inter-blade passages (that is, the same as the number of blades 30).
 続いて、ケース50およびモータ40の構成について説明する。図1~図3に示すように、ケース50は、上ケース53と下ケース54とを有している。上ケース53は、羽根車2のシュラウド20側を覆う部材である。下ケース54は、羽根車2の主板10側を覆うと共に、モータ40および回路基板60を収容する部材である。上ケース53と下ケース54とは、図示しない支柱およびねじなどにより、所定の間隔をあけて固定されている。なお、図1では、上ケース53と下ケース54との間に支柱などが設けられる位置を、符号55を付した円形で示している。 Next, the configurations of the case 50 and the motor 40 will be described. As shown in FIGS. 1-3, the case 50 has an upper case 53 and a lower case 54 . The upper case 53 is a member that covers the shroud 20 side of the impeller 2 . The lower case 54 is a member that covers the main plate 10 side of the impeller 2 and houses the motor 40 and the circuit board 60 . The upper case 53 and the lower case 54 are fixed to each other with a predetermined gap therebetween by means of struts and screws (not shown). In addition, in FIG. 1 , the position where a column or the like is provided between the upper case 53 and the lower case 54 is indicated by a circle with reference numeral 55 .
 上ケース53は、上ケース本体部56と空気吸込口51とベルマウス57とを有している。上ケース本体部56は、シュラウド20のうち主板10とは反対側の面を覆う。空気吸込口51は、上ケース本体部56においてシュラウド20の開口部21に対応する位置に設けられる。ベルマウス57は、空気吸込口51の内周縁から主板10側に向かって筒状に延びる。 The upper case 53 has an upper case main body 56 , an air suction port 51 and a bell mouth 57 . The upper case body portion 56 covers the surface of the shroud 20 opposite to the main plate 10 . The air suction port 51 is provided at a position corresponding to the opening 21 of the shroud 20 in the upper case main body 56 . The bell mouth 57 extends cylindrically from the inner peripheral edge of the air suction port 51 toward the main plate 10 side.
 また、上ケース53は、ベルマウス57よりも径方向外側の位置に、主板10側に向かって筒状に突出する複数のケース側突起52を有している。本実施形態では、2個のケース側突起52が設けられている。2個のケース側突起52は、シュラウド20に設けられた3個のシュラウド側突起23同士の間に設けられている。そのため、上ケース53とシュラウド20との間の隙間流路25には、ケース側突起52とシュラウド側突起23により、ラビリンス部26が形成されている。 In addition, the upper case 53 has a plurality of case-side projections 52 projecting cylindrically toward the main plate 10 at radially outer positions of the bell mouth 57 . In this embodiment, two case-side protrusions 52 are provided. The two case-side projections 52 are provided between the three shroud-side projections 23 provided on the shroud 20 . Therefore, a labyrinth portion 26 is formed by the case-side projection 52 and the shroud-side projection 23 in the gap channel 25 between the upper case 53 and the shroud 20 .
 ここで、図7に示すように、本実施形態では、ケース側突起52とシュラウド側突起23とを軸心CLに平行な仮想平面Sに投影したとき、ケース側突起52とシュラウド側突起23との重なり代における軸心方向の距離をαとする。また、上ケース本体部56とシュラウド側突起23との間の距離をδとする。このとき、本実施形態の送風機1は、次の式6の関係を有している。
 α≧0.5δ ・・・(式6)
Here, as shown in FIG. 7, in this embodiment, when the case-side projections 52 and the shroud-side projections 23 are projected onto a virtual plane S parallel to the axis CL, the case-side projections 52 and the shroud-side projections 23 Let α be the distance in the axial direction of the overlapping allowance. Also, let δ be the distance between the upper case main body 56 and the shroud-side projection 23 . At this time, the blower 1 of this embodiment has the relationship of the following formula 6.
α≧0.5δ (Formula 6)
 これにより、ケース側突起52とシュラウド側突起23との重なり代における軸心方向の距離αを大きくして、ラビリンス部26の流路抵抗を大きくすることが可能となる。このようにした理由は、本実施形態では、翼30の後縁32よりも外側にシュラウド延長部28と主板延長部17とで挟まれた延長流路4を設けたことで、羽根車2より外側に吹き出される気流の静圧成分が増加する。それにより、羽根車2より外側に吹き出される空気と、羽根車2の吸込口側の空気との圧力差が大きくなる。そのため、羽根車2より外側に吹き出された空気が、シュラウド20と上ケース53と間の隙間流路25を流れて羽根車2の吸込口側に逆流する空気(以下「逆流空気」という)の流量が増加することが懸念される。 As a result, it is possible to increase the flow path resistance of the labyrinth portion 26 by increasing the distance α in the axial direction of the overlapping margin between the case-side projection 52 and the shroud-side projection 23 . The reason for this is that, in the present embodiment, the extension passage 4 sandwiched between the shroud extension portion 28 and the main plate extension portion 17 is provided outside the trailing edge 32 of the blade 30, so that the impeller 2 The static pressure component of the airflow blown out increases. As a result, the pressure difference between the air blown out from the impeller 2 and the air on the suction port side of the impeller 2 increases. Therefore, the air blown out from the impeller 2 flows through the clearance passage 25 between the shroud 20 and the upper case 53 and flows back to the suction port side of the impeller 2 (hereinafter referred to as "backflow air"). There is concern that the flow rate will increase.
 そこで、本実施形態では、シュラウド20と上ケース53と間の隙間流路25にラビリンス部26を形成し、その構成を上記の式6のように規定することで、逆流空気の流量を低減することができる。したがって、この送風機1は、逆流空気の流量低減により効率を向上すると共に、上ケース53の空気吸込口51から吸い込まれる空気と隙間流路25から吹き出される逆流空気との衝突による騒音の増加を防ぐことができる。 Therefore, in the present embodiment, the labyrinth portion 26 is formed in the clearance passage 25 between the shroud 20 and the upper case 53, and the configuration thereof is defined as in the above equation 6, thereby reducing the flow rate of the backflow air. be able to. Therefore, the blower 1 can improve the efficiency by reducing the flow rate of the backflow air, and also reduce the noise caused by the collision between the air sucked from the air suction port 51 of the upper case 53 and the backflow air blown out from the clearance passage 25. can be prevented.
 一方、図2に示すように、下ケース54は、羽根車2の主板10側を覆う下ケース本体部58と、その下ケース本体部58の中央に設けられる中央筒部59とを有している。その中央筒部59に対して、モータ40の回転軸41およびモータステータ43が取り付けられている。なお、本実施形態では、モータ40として、例えば、アウターロータ型ブラシレスDCモータが採用されている。 On the other hand, as shown in FIG. 2, the lower case 54 has a lower case main body portion 58 that covers the main plate 10 side of the impeller 2, and a central cylindrical portion 59 provided in the center of the lower case main body portion 58. there is A rotating shaft 41 of the motor 40 and a motor stator 43 are attached to the central cylindrical portion 59 . Note that, in this embodiment, for example, an outer rotor type brushless DC motor is employed as the motor 40 .
 モータ40の回転軸41は、中央筒部59の内側に軸受44を介して回転可能に設けられている。モータ40の回転軸41のうち軸心方向の端部には、モータロータ42が固定されている。モータロータ42は、上述した主板10の中央部11と、その主板10の中央部11の外縁から軸心方向のシュラウド20とは反対側に延びる磁石保持部14と、磁石保持部14の径方向内側に設けられる磁石45とを有している。磁石保持部14の径方向外側の外壁に対して主板10の固定部12が圧入などにより固定されている。これにより、モータロータ42と羽根車2とが接合される。磁石保持部14の径方向内側に設けられる磁石45は、磁石保持部14の周方向に異種の磁極が交互に配置されている。 A rotating shaft 41 of the motor 40 is rotatably provided inside the central tubular portion 59 via a bearing 44 . A motor rotor 42 is fixed to the axial end of the rotating shaft 41 of the motor 40 . The motor rotor 42 includes the central portion 11 of the main plate 10 , the magnet holding portion 14 extending from the outer edge of the central portion 11 of the main plate 10 in the axial direction opposite to the shroud 20 , and the magnet holding portion 14 radially inward of the magnet holding portion 14 . and a magnet 45 provided in the . The fixing portion 12 of the main plate 10 is fixed to the radially outer wall of the magnet holding portion 14 by press fitting or the like. Thereby, the motor rotor 42 and the impeller 2 are joined. The magnets 45 provided radially inside the magnet holding portion 14 have magnetic poles of different types alternately arranged in the circumferential direction of the magnet holding portion 14 .
 磁石45の径方向内側には、モータステータ43が設けられている。モータステータ43は、中央筒部59の径方向外側の面に固定されている。モータステータ43は、例えばY結線またはデルタ結線などにより構成された三相コイル46とステータコア461とを有している。三相コイル46には、回路基板60から三相交流電流が供給されるようになっている。 A motor stator 43 is provided radially inside the magnet 45 . The motor stator 43 is fixed to the radially outer surface of the central tubular portion 59 . The motor stator 43 has a three-phase coil 46 and a stator core 461 configured by, for example, Y-connection or delta-connection. A three-phase alternating current is supplied from a circuit board 60 to the three-phase coil 46 .
 上述した構成において、コネクタ47から回路基板60に電力および駆動信号が供給されると、その回路基板60からモータステータ43の三相コイル46に三相交流電流が供給され、回転軸41とモータロータ42と共に羽根車2が回転する。羽根車2が回転すると、図2に矢印AF1に示すように、上ケース53の空気吸込口51から流入する主流は、翼間流路3および延長流路4を通り、上ケース53と下ケース54との間から径方向外側に吹き出される。 In the above-described configuration, when electric power and drive signals are supplied from the connector 47 to the circuit board 60, the circuit board 60 supplies three-phase alternating current to the three-phase coils 46 of the motor stator 43. The impeller 2 rotates together. When the impeller 2 rotates, as indicated by arrow AF1 in FIG. 54 and radially outward.
 ここで、上述した第1実施形態の送風機1と比較するため、図8を参照して、比較例の送風機100について説明する。なお、比較例の送風機100も、第1実施形態と同様にターボファンである。 Here, in order to compare with the blower 1 of the first embodiment described above, a blower 100 of a comparative example will be described with reference to FIG. The air blower 100 of the comparative example is also a turbo fan, like the first embodiment.
 図8に示すように、比較例の送風機100は、シュラウド20の外径Dsと、主板10の外径Dmと、翼後縁32の外径D2とが、同一に形成されている。そのため、比較例の送風機100では、翼間流路3を流れて羽根車2から外側へ吹き出された気流は、その羽根車2より外側の流路の急拡大による気流の乱れおよび渦損失が大きく、それにより静圧が大きく減少してしまうといった問題がある。そのため、比較例の送風機100は、騒音悪化、効率低下を引き起こすことが懸念される。 As shown in FIG. 8, in the blower 100 of the comparative example, the outer diameter Ds of the shroud 20, the outer diameter Dm of the main plate 10, and the outer diameter D2 of the blade trailing edge 32 are formed to be the same. Therefore, in the blower 100 of the comparative example, the airflow that flows through the inter-blade passage 3 and is blown out from the impeller 2 to the outside is greatly turbulent and vortex loss due to the rapid expansion of the passage outside the impeller 2. , there is a problem that the static pressure is greatly reduced. Therefore, there is a concern that blower 100 of the comparative example may cause deterioration in noise and efficiency.
 そのような比較例の送風機100に対し、本実施形態の送風機1は、次の作用効果を奏することが可能である。 In contrast to the blower 100 of such a comparative example, the blower 1 of this embodiment can achieve the following effects.
 (1)本実施形態の送風機1は、シュラウド20の外径Dsおよび主板10の外径Dmがいずれも、翼後縁32の外径D2よりも大きく形成されている。これによれば、翼30の後縁32よりも外側に、シュラウド延長部28と主板延長部17とで挟まれた延長流路4が形成される。そのため、翼間流路3を流れて後縁32から延長流路4に吹き出された気流は、羽根車2とその羽根車2よりも外側の空気の影響を受けて静圧が上昇する。したがって、本実施形態の送風機1は、羽根車2の外側で流路が急拡大することによる気流の乱れおよび渦損失が抑制されるので、騒音を防ぎ、効率を向上できる。 (1) In the blower 1 of the present embodiment, both the outer diameter Ds of the shroud 20 and the outer diameter Dm of the main plate 10 are formed larger than the outer diameter D2 of the trailing edge 32 of the blade. According to this, the extension passage 4 sandwiched between the shroud extension 28 and the main plate extension 17 is formed outside the trailing edge 32 of the blade 30 . Therefore, the airflow flowing through the inter-blade passage 3 and blown out from the trailing edge 32 to the extension passage 4 is influenced by the impeller 2 and the air outside the impeller 2, and the static pressure rises. Therefore, in the blower 1 of the present embodiment, airflow turbulence and vortex loss due to the rapid expansion of the flow path outside the impeller 2 are suppressed, so that noise can be prevented and efficiency can be improved.
 (2)ところで、本実施形態の送風機1は、翼30の後縁32よりも外側に延長流路4を形成することで、羽根車2より外側に吹き出される気流の静圧成分が増えるので、その羽根車2より外側の空気と、羽根車2の吸込口側の空気との圧力差が大きくなる。そのため、羽根車2より外側に吹き出された空気が、シュラウド20と上ケース53と間の隙間流路25を流れて羽根車2の吸込口側に逆流する逆流空気の流量が増加することが懸念される。 (2) By the way, in the blower 1 of the present embodiment, the static pressure component of the airflow blown out from the impeller 2 is increased by forming the extended flow path 4 outside the trailing edge 32 of the blade 30. , the pressure difference between the air outside the impeller 2 and the air on the suction port side of the impeller 2 increases. Therefore, there is a concern that the air blown out from the impeller 2 flows through the clearance passage 25 between the shroud 20 and the upper case 53 and flows back to the suction port side of the impeller 2, which increases the flow rate of the backflow air. be done.
 そこで、本実施形態では、シュラウド20と上ケース53と間の隙間流路25に、ケース側突起52とシュラウド側突起23によるラビリンス部26を形成している。これによれば、シュラウド20と上ケース53と間の隙間流路25を逆流する逆流空気の流量を低減することができる。したがって、本実施形態の送風機1は、逆流空気の流量低減により効率を向上すると共に、上ケース53の空気吸込口51から吸い込まれる空気と隙間流路25から吹き出される逆流空気との衝突による騒音の増加を防ぐことができる。 Therefore, in the present embodiment, a labyrinth portion 26 is formed by the case-side projections 52 and the shroud-side projections 23 in the gap channel 25 between the shroud 20 and the upper case 53 . According to this, it is possible to reduce the flow rate of backflow air that flows back through the clearance passage 25 between the shroud 20 and the upper case 53 . Therefore, the blower 1 of the present embodiment can improve the efficiency by reducing the flow rate of the backflow air, and the noise caused by the collision between the air sucked from the air suction port 51 of the upper case 53 and the backflow air blown out from the gap flow path 25 is reduced. can prevent an increase in
 (3)本実施形態では、ケース側突起52とシュラウド側突起23との重なり代における軸心方向の距離αが、上ケース本体部56とシュラウド側突起23との間の距離δの半分以上とされている。これによれば、ケース側突起52とシュラウド側突起23との重なり代を大きくして、ラビリンス部26の流路抵抗を大きくすることで、逆流空気の流量をより低減することができる。 (3) In the present embodiment, the distance α in the axial direction of the overlap between the case-side projection 52 and the shroud-side projection 23 is at least half the distance δ between the upper case main body 56 and the shroud-side projection 23. It is According to this, by increasing the overlapping margin between the case-side projection 52 and the shroud-side projection 23 and increasing the flow resistance of the labyrinth portion 26, the flow rate of backflow air can be further reduced.
 (4)本実施形態では、シュラウド20の開口部21の内径Ds1と、翼後縁32の外径D2は、Ds1/D2≦0.7 の関係を有している。これによれば、翼30の前縁31から後縁32までの長さを長くした大風量型の送風機1において、翼後縁32よりも外側にシュラウド20と主板10をそれぞれ延長することで静圧をより上昇させることが可能となる。したがって、騒音低減および効率向上の効果が有効に得られる。 (4) In this embodiment, the inner diameter Ds1 of the opening 21 of the shroud 20 and the outer diameter D2 of the blade trailing edge 32 have a relationship of Ds1/D2≦0.7. According to this, in the large air volume type blower 1 in which the length from the leading edge 31 to the trailing edge 32 of the blade 30 is long, the shroud 20 and the main plate 10 are extended outside the trailing edge 32 of the blade, so that a static electricity is generated. It becomes possible to further increase the pressure. Therefore, the effects of noise reduction and efficiency improvement can be effectively obtained.
 (5)本実施形態では、シュラウド20の開口部21におけるシュラウド20と主板10との間の軸心方向の距離をh1とする。また、翼30の後縁32におけるシュラウド20と主板10との間の軸心方向の距離をh2とする。また、シュラウド20の開口部21の内径をDs1とする。また、翼後縁32の外径をD2とする。このとき、本実施形態の送風機1は、式4の関係を有している。
 (h2*D2-h1*Ds1)/{(D2-Ds1)*(h1-h2)}≦0.15 ・・・(式4)
 これによれば、本実施形態の送風機1は、翼間流路3の面積拡大時の圧力損失を小さくでき、送風機1の効率を向上できる。
(5) In the present embodiment, the axial distance between the shroud 20 and the main plate 10 at the opening 21 of the shroud 20 is h1. Also, let h2 be the axial distance between the shroud 20 and the main plate 10 at the trailing edge 32 of the blade 30 . Also, let Ds1 be the inner diameter of the opening 21 of the shroud 20 . Also, the outer diameter of the blade trailing edge 32 is defined as D2. At this time, the blower 1 of this embodiment has the relationship of Formula 4.
(h2*D2-h1*Ds1)/{(D2-Ds1)*(h1-h2)}≤0.15 (Formula 4)
According to this, the blower 1 of this embodiment can reduce the pressure loss when the area of the inter-blade passage 3 is expanded, and the efficiency of the blower 1 can be improved.
 (他の実施形態)
 (1)上記実施形態では、送風機1の備える羽根車2をターボファンとして説明したが、これに限らず、例えば斜流ファンとしてもよい。
(Other embodiments)
(1) In the above embodiment, the impeller 2 included in the blower 1 was explained as a turbo fan, but it is not limited to this, and may be a mixed flow fan, for example.
 (2)上記実施形態では、モータ40をアウターロータ型ブラシレスDCモータとして説明したが、これに限らず、例えばインナーロータ型ブラシレスDCモータ、または、ACモータなどとしてもよい。 (2) In the above embodiment, the motor 40 is described as an outer rotor type brushless DC motor, but it is not limited to this, and may be an inner rotor type brushless DC motor, an AC motor, or the like.
 (3)上記実施形態では、シュラウド20は、シュラウド筒部22、シュラウド側突起23などを有するものとして説明したが、これに限らず、シュラウド20は、それらの構成を有していなくても、開口部21を有する環状のものであればよい。 (3) In the above embodiment, the shroud 20 is described as having the shroud tubular portion 22, the shroud-side projection 23, and the like. Any annular shape having an opening 21 may be used.
 (4)上記実施形態では、主板10は、中央部11、固定部12および環状部13などを有するものとして説明したが、これに限らず、主板10は、例えば、中央部11、固定部12および環状部13などが一体に構成されたものであってもよい (4) In the above embodiment, the main plate 10 has the central portion 11, the fixed portion 12, the annular portion 13, and the like. and the annular portion 13 etc. may be integrally configured
 (5)上記実施形態では、送風機1は、ケース50を備えるものとして説明したが、これに限らず、送風機1はケース50を備えていなくてもよい。 (5) In the above embodiment, the blower 1 has been described as including the case 50 , but the present invention is not limited to this, and the blower 1 may not include the case 50 .
 本開示は上記した実施形態に限定されるものではなく、適宜変更が可能である。また、上記各実施形態は、互いに無関係なものではなく、組み合わせが明らかに不可な場合を除き、適宜組み合わせが可能である。また、上記各実施形態において、実施形態を構成する要素は、特に必須であると明示した場合および原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須のものではないことは言うまでもない。また、上記各実施形態において、実施形態の構成要素の個数、数値、量、範囲等の数値が言及されている場合、特に必須であると明示した場合および原理的に明らかに特定の数に限定される場合等を除き、その特定の数に限定されるものではない。また、上記各実施形態において、構成要素等の形状、位置関係等に言及するときは、特に明示した場合および原理的に特定の形状、位置関係等に限定される場合等を除き、その形状、位置関係等に限定されるものではない。 The present disclosure is not limited to the above-described embodiments, and can be modified as appropriate. Moreover, the above-described embodiments are not unrelated to each other, and can be appropriately combined unless the combination is clearly impossible. Further, in each of the above-described embodiments, it goes without saying that the elements constituting the embodiment are not necessarily essential, unless it is explicitly stated that they are essential, or they are clearly considered essential in principle. stomach. In addition, in each of the above-described embodiments, when numerical values such as the number, numerical value, amount, range, etc. of the constituent elements of the embodiment are mentioned, when it is explicitly stated that they are particularly essential, and when they are clearly limited to a specific number in principle It is not limited to that specific number, except when In addition, in each of the above-described embodiments, when referring to the shape, positional relationship, etc. of the constituent elements, the shape, It is not limited to the positional relationship or the like.

Claims (6)

  1.  遠心送風機において、
     駆動部(40)の出力するトルクにより回転可能に設けられる主板(10)と、
     前記主板に対向して設けられ、中央に空気が流入する開口部(21)を有する環状のシュラウド(20)と、
     前記シュラウドと前記主板との間で、回転中心となる軸心(CL)の周りに所定の間隔で配置され、前記シュラウドおよび前記主板に接続される複数の翼(30)と、を備え、
     前記主板の外径(Dm)および前記シュラウドの外径(Ds)はいずれも、複数の前記翼の後縁同士を回転方向に結んだ円の外径(D2)よりも大きく形成されている、遠心送風機。
    In a centrifugal blower,
    a main plate (10) rotatable by the torque output from the driving part (40);
    an annular shroud (20) provided facing the main plate and having an opening (21) in the center through which air flows;
    A plurality of blades (30) arranged between the shroud and the main plate around an axis (CL) that is the center of rotation at predetermined intervals and connected to the shroud and the main plate,
    Both the outer diameter (Dm) of the main plate and the outer diameter (Ds) of the shroud are larger than the outer diameter (D2) of a circle connecting the trailing edges of the plurality of blades in the rotational direction. centrifugal blower.
  2.  前記シュラウドのうち前記主板とは反対側の面を覆う上ケース本体部(56)と、前記上ケース本体部において前記開口部に対応する位置に設けられる空気吸込口(51)と、前記上ケース本体部から前記シュラウド側に筒状に突出するケース側突起(52)とを有する上ケース(53)をさらに備え、
     前記シュラウドは、前記上ケース側に筒状に突出するシュラウド側突起(23)を有しており、
     前記ケース側突起と前記シュラウド側突起により、前記シュラウドと前記上ケースと間の隙間流路(25)にラビリンス部(26)が形成されている、請求項1に記載の遠心送風機。
    an upper case main body (56) covering a surface of the shroud opposite to the main plate; an air suction port (51) provided at a position corresponding to the opening in the upper case main body; further comprising an upper case (53) having a case-side projection (52) cylindrically projecting from the main body toward the shroud;
    The shroud has a shroud-side protrusion (23) cylindrically protruding toward the upper case,
    2. The centrifugal fan according to claim 1, wherein said case-side projection and said shroud-side projection form a labyrinth portion (26) in a gap channel (25) between said shroud and said upper case.
  3.  前記ケース側突起と前記シュラウド側突起とを前記軸心に平行な仮想平面(S)に投影したとき、前記ケース側突起と前記シュラウド側突起との重なり代における軸心方向の距離(α)は、前記上ケース本体部と前記シュラウド側突起との間の距離(δ)の半分以上である、請求項2に記載の遠心送風機。 When the case-side projection and the shroud-side projection are projected onto a virtual plane (S) parallel to the axis, the distance (α) in the axial direction of the overlap between the case-side projection and the shroud-side projection is 3. The centrifugal fan according to claim 2, wherein the distance (.delta.) between the upper case main body and the shroud-side projection is at least half of the distance (.delta.).
  4.  前記シュラウドの前記開口部の内径をDs1、
     複数の前記翼の前記後縁同士を回転方向に結んだ円の外径をD2とすると、
     Ds1/D2≦0.7 の関係を有している、請求項1ないし3のいずれか1つに記載の遠心送風機。
    Ds1 the inner diameter of the opening of the shroud,
    Assuming that the outer diameter of a circle connecting the trailing edges of the plurality of blades in the rotational direction is D2,
    4. The centrifugal blower according to claim 1, having a relationship of Ds1/D2≤0.7.
  5.  前記シュラウドの前記開口部における前記シュラウドと前記主板との間の軸心方向の距離をh1、
     前記翼の前記後縁における前記シュラウドと前記主板との間の軸心方向の距離をh2とすると、
     (h2*D2-h1*Ds1)/{(D2-Ds1)*(h1-h2)}≦0.15の関係を有している、請求項4に記載の遠心送風機。
    h1 is the axial distance between the shroud and the main plate at the opening of the shroud;
    Letting h2 be the axial distance between the shroud and the main plate at the trailing edge of the blade,
    5. The centrifugal fan according to claim 4, having a relationship of (h2*D2-h1*Ds1)/{(D2-Ds1)*(h1-h2)}≦0.15.
  6.  前記ケース側突起と前記シュラウド側突起とを前記軸心に平行な仮想平面(S)に投影したとき、前記ケース側突起と前記シュラウド側突起との重なり代における軸心方向の距離(α)は、前記上ケース本体部と前記シュラウド側突起との間の距離(δ)の半分以上であり、
     前記シュラウドの前記開口部の内径をDs1、
     複数の前記翼の前記後縁同士を回転方向に結んだ円の外径をD2、
     前記シュラウドの前記開口部における前記シュラウドと前記主板との間の軸心方向の距離をh1、
     前記翼の前記後縁における前記シュラウドと前記主板との間の軸心方向の距離をh2とすると、
     Ds1/D2≦0.7の関係、および、
     (h2*D2-h1*Ds1)/{(D2-Ds1)*(h1-h2)}≦0.15の関係を有している、請求項2に記載の遠心送風機。
    When the case-side projection and the shroud-side projection are projected onto a virtual plane (S) parallel to the axis, the distance (α) in the axial direction of the overlap between the case-side projection and the shroud-side projection is , is more than half of the distance (δ) between the upper case main body and the shroud-side projection,
    Ds1 the inner diameter of the opening of the shroud,
    D2 is the outer diameter of a circle connecting the trailing edges of the plurality of blades in the rotational direction;
    h1 is the axial distance between the shroud and the main plate at the opening of the shroud;
    Letting h2 be the axial distance between the shroud and the main plate at the trailing edge of the blade,
    a relationship of Ds1/D2≦0.7, and
    3. The centrifugal fan according to claim 2, having a relationship of (h2*D2-h1*Ds1)/{(D2-Ds1)*(h1-h2)}≤0.15.
PCT/JP2022/021804 2021-06-02 2022-05-27 Centrifugal blower WO2022255268A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021092833A JP2022185276A (en) 2021-06-02 2021-06-02 centrifugal blower
JP2021-092833 2021-06-02

Publications (1)

Publication Number Publication Date
WO2022255268A1 true WO2022255268A1 (en) 2022-12-08

Family

ID=84324169

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/021804 WO2022255268A1 (en) 2021-06-02 2022-05-27 Centrifugal blower

Country Status (2)

Country Link
JP (1) JP2022185276A (en)
WO (1) WO2022255268A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS3517288B1 (en) * 1958-07-23 1960-11-25
JPH04505199A (en) * 1989-02-14 1992-09-10 エアフロー リサーチ アンド マニュファクチュアリング コーポレーション Centrifugal blower with airfoil vanes in a circular spiral envelope
JP2000045997A (en) * 1998-08-03 2000-02-15 Hitachi Ltd Fan blade structure and metal mold together with fan automated processing assembly method
JP2003201996A (en) * 2002-01-09 2003-07-18 Yasui:Kk Centrifugal blower
JP2006161803A (en) * 2004-12-09 2006-06-22 Samsung Kwangju Electronics Co Ltd Impeller for vacuum cleaner and motor assembly body having it
JP2011080409A (en) * 2009-10-07 2011-04-21 Mitsubishi Electric Corp Centrifugal blower and electric vacuum cleaner
WO2017145780A1 (en) * 2016-02-24 2017-08-31 株式会社デンソー Centrifugal blower
JP2018135876A (en) * 2017-02-20 2018-08-30 株式会社デンソー Centrifugal blower
JP2018168852A (en) * 2017-03-29 2018-11-01 株式会社デンソー Centrifugal blower

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS3517288B1 (en) * 1958-07-23 1960-11-25
JPH04505199A (en) * 1989-02-14 1992-09-10 エアフロー リサーチ アンド マニュファクチュアリング コーポレーション Centrifugal blower with airfoil vanes in a circular spiral envelope
JP2000045997A (en) * 1998-08-03 2000-02-15 Hitachi Ltd Fan blade structure and metal mold together with fan automated processing assembly method
JP2003201996A (en) * 2002-01-09 2003-07-18 Yasui:Kk Centrifugal blower
JP2006161803A (en) * 2004-12-09 2006-06-22 Samsung Kwangju Electronics Co Ltd Impeller for vacuum cleaner and motor assembly body having it
JP2011080409A (en) * 2009-10-07 2011-04-21 Mitsubishi Electric Corp Centrifugal blower and electric vacuum cleaner
WO2017145780A1 (en) * 2016-02-24 2017-08-31 株式会社デンソー Centrifugal blower
JP2018135876A (en) * 2017-02-20 2018-08-30 株式会社デンソー Centrifugal blower
JP2018168852A (en) * 2017-03-29 2018-11-01 株式会社デンソー Centrifugal blower

Also Published As

Publication number Publication date
JP2022185276A (en) 2022-12-14

Similar Documents

Publication Publication Date Title
EP3452726B1 (en) Vane axial fan with intermediate flow control rings
WO2014034950A1 (en) Centrifugal air blower
CN110114581B (en) Centrifugal blower
KR102445761B1 (en) brushless motor
WO2013080241A1 (en) Multi-blade fan and air conditioner provided with same
JP2010124534A (en) Mixed flow fan for electric motors and motor equipped with this mixed flow fan
JP6634929B2 (en) Centrifugal blower
WO2022255268A1 (en) Centrifugal blower
JPH11264396A (en) Air blower
JP2016102469A (en) Centrifugal fan
US20180149158A1 (en) Centrifugal blower
WO1998045601A1 (en) Centrifugal fan with flow control vanes
WO2022255267A1 (en) Centrifugal blower
JP2003180051A (en) Moving blade of totally-enclosed fan-cooled rotating electric machine
JPH05296195A (en) Axial fan
JP2004190535A (en) Centrifugal air blower and air blower for air conditioner
WO2018016198A1 (en) Centrifugal blower
JP4395539B1 (en) Multiblade centrifugal fan and vehicle air conditioner
EP2700821A2 (en) Inline axial flow fan
JP7413973B2 (en) Blower
JP6276169B2 (en) Centrifugal fan
JP6038320B2 (en) Multi-blade blower
JP2021080909A (en) Electric blower
JP2000291593A (en) Compressor
CN117597521A (en) Centrifugal fan

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22816016

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE