WO2022255246A1 - 照明装置 - Google Patents

照明装置 Download PDF

Info

Publication number
WO2022255246A1
WO2022255246A1 PCT/JP2022/021725 JP2022021725W WO2022255246A1 WO 2022255246 A1 WO2022255246 A1 WO 2022255246A1 JP 2022021725 W JP2022021725 W JP 2022021725W WO 2022255246 A1 WO2022255246 A1 WO 2022255246A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
crystal cell
substrate
transparent electrode
light
Prior art date
Application number
PCT/JP2022/021725
Other languages
English (en)
French (fr)
Inventor
幸次朗 池田
健夫 小糸
多惠 黒川
圭二 瀧澤
Original Assignee
株式会社ジャパンディスプレイ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ジャパンディスプレイ filed Critical 株式会社ジャパンディスプレイ
Priority to JP2023525786A priority Critical patent/JPWO2022255246A1/ja
Priority to CN202280038292.0A priority patent/CN117413142A/zh
Publication of WO2022255246A1 publication Critical patent/WO2022255246A1/ja
Priority to US18/517,560 priority patent/US20240117955A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V14/00Controlling the distribution of the light emitted by adjustment of elements
    • F21V14/003Controlling the distribution of the light emitted by adjustment of elements by interposition of elements with electrically controlled variable light transmissivity, e.g. liquid crystal elements or electrochromic devices
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/005Means for improving the coupling-out of light from the light guide provided by one optical element, or plurality thereof, placed on the light output side of the light guide
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1347Arrangement of liquid crystal layers or cells in which the final condition of one light beam is achieved by the addition of the effects of two or more layers or cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V23/00Arrangement of electric circuit elements in or on lighting devices
    • F21V23/04Arrangement of electric circuit elements in or on lighting devices the elements being switches
    • F21V23/0435Arrangement of electric circuit elements in or on lighting devices the elements being switches activated by remote control means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2103/00Elongate light sources, e.g. fluorescent tubes
    • F21Y2103/20Elongate light sources, e.g. fluorescent tubes of polygonal shape, e.g. square or rectangular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]

Definitions

  • An embodiment of the present invention relates to a lighting device.
  • an optical element a so-called liquid crystal lens, which utilizes a change in the refractive index of a liquid crystal by adjusting a voltage applied to the liquid crystal has been known (for example, see Patent Document 1, Patent Document 2, or Patent Document 3).
  • the illumination devices described in Patent Documents 1 and 2 use a liquid crystal lens to circularly distribute light from a light source.
  • the beam shaping device described in Patent Document 3 the pattern of the electrodes applied to the liquid crystal is changed to change the shape of light distribution.
  • the shape of the light distribution of light transmitted through the liquid crystal lens also changes depending on the configuration of the light emitting module including the light source. Therefore, there has been a demand for a lighting device including optical elements that is compatible with all light-emitting modules.
  • one object of an embodiment of the present invention is to provide a lighting device capable of correcting the shape of light distribution according to the configuration of the light emitting module.
  • a lighting device includes an optical element in which a first liquid crystal cell and a second liquid crystal cell are laminated and which transmits light emitted from a light emitting module.
  • Each of the and second liquid crystal cells includes a first substrate on which first transparent electrodes and second transparent electrodes are alternately arranged in a first direction, and a second substrate crossing the first direction.
  • a second substrate on which third transparent electrodes and fourth transparent electrodes are alternately arranged in the direction of the light emitting module; a light guide plate including a first surface for emitting the light emitted from the light source; and a prism sheet arranged to face the first surface.
  • Adjacent to the first substrate, the first surface includes a plurality of first grooves extending in a third direction intersecting the first direction and the second direction.
  • a lighting device includes a light-emitting module, and an optical element in which a first liquid crystal cell and a second liquid crystal cell are laminated and which transmits light emitted from the light-emitting module.
  • the first liquid crystal cell and the second liquid crystal cell each comprise a first substrate on which first transparent electrodes and second transparent electrodes are alternately arranged in a first direction; a second substrate on which third transparent electrodes and fourth transparent electrodes are alternately arranged in a second direction intersecting with the light source, the light emitting module being arranged around the light source; a reflector that reflects light emitted from the light source, and the second substrate of the first liquid crystal cell and the first substrate of the second liquid crystal cell are adjacent to each other.
  • FIG. 1 is a schematic exploded perspective view of a lighting device according to an embodiment of the present invention
  • FIG. 4 is a partially enlarged view illustrating a light emitting module of the lighting device according to one embodiment of the present invention
  • FIG. It is a block diagram explaining the lighting installation concerning one embodiment of the present invention.
  • 1 is a schematic perspective view of an optical element of an illumination device according to an embodiment of the invention
  • FIG. 1 is a schematic cross-sectional view of an optical element of an illumination device according to an embodiment of the invention
  • FIG. 1 is a schematic cross-sectional view of an optical element of an illumination device according to an embodiment of the invention
  • FIG. FIG. 4 is a schematic cross-sectional view illustrating control of light distribution by an optical element of the lighting device according to the embodiment of the present invention
  • FIG. 4 is a schematic cross-sectional view illustrating control of light distribution by an optical element of the lighting device according to the embodiment of the present invention
  • FIG. 4 is a schematic diagram illustrating the relationship between an optical element and a light-emitting module of the lighting device according to one embodiment of the present invention
  • FIG. 5 is a schematic diagram illustrating the shape of light distribution before and after correction in the lighting device according to the embodiment of the present invention
  • FIG. 4 is a schematic diagram illustrating the relationship between an optical element and a light-emitting module of the lighting device according to one embodiment of the present invention
  • FIG. 5 is a schematic diagram illustrating the shape of light distribution before and after correction in the lighting device according to the embodiment of the present invention
  • FIG. 5 is a schematic diagram illustrating the shape of light distribution before and after correction in the lighting device according to the embodiment of the present invention
  • FIG. 5 is a schematic diagram illustrating the shape of light distribution before and after correction in the lighting device according to the embodiment of the present invention
  • 1 is a schematic exploded perspective view of a lighting device according to an embodiment of the present invention
  • FIG. It is the measurement result of having measured the shape of light distribution of the light irradiated from the illuminating device 10B which concerns on one Embodiment of this invention. It is the measurement result of having measured the shape of light distribution of the light irradiated from the illuminating device 10B which concerns on one Embodiment of this invention. It is the measurement result of having measured the shape of light distribution of the light irradiated from the illuminating device 10B which concerns on one Embodiment of this invention.
  • each structure When a single film is processed to form multiple structures, each structure may have different functions and roles, and each structure may have a different base on which it is formed. However, these multiple structures originate from films formed as the same layer in the same process and have the same material. Therefore, these multiple films are defined as existing in the same layer.
  • FIG. 1A A lighting device 10 according to an embodiment of the present invention will be described with reference to FIGS. 1A to 5.
  • FIG. 1A A lighting device 10 according to an embodiment of the present invention will be described with reference to FIGS. 1A to 5.
  • FIG. 1A is a schematic exploded perspective view of lighting device 10 according to one embodiment of the present invention.
  • illumination device 10 includes an optical element 100, a light emitting module 200, and a controller 300.
  • the light emitting module 200 includes a metal frame 210 , a reflective sheet 220 , a resin frame 230 , a light source substrate 240 , a light guide plate 250 , a prism sheet 260 , spacers 270 and double-sided light shielding tape 280 .
  • Reflection sheet 220 , resin frame 230 , light source substrate 240 , light guide plate 250 and prism sheet 260 are arranged in a space surrounded by metal frame 210 and spacer 270 .
  • the spacer 270 is provided with an opening through which light is transmitted.
  • a light-shielding double-faced tape 280 is provided on the spacer 270 , and the spacer 270 and the optical element 100 are adhered via the light-shielding double-faced tape 280 .
  • the controller 300 may be provided outside the light emitting module 200 or may be provided inside the light emitting module 200 .
  • FIG. 1B is a partially enlarged view illustrating the light emitting module 200 of the lighting device 10 according to one embodiment of the present invention.
  • a first surface of the light guide plate 250 is provided with a plurality of first grooves 252 extending in the x-axis direction.
  • a plurality of second grooves 254 extending in the y-axis direction are formed on the second surface opposite to the first surface of the light guide plate 250 .
  • the cross-sectional shape of each of the first grooves 252 and the second grooves 254 is an isosceles triangle.
  • each of the first surface and the second surface of light guide plate 250 is provided with a convex portion having an isosceles triangular cross-sectional shape.
  • the apex angle of the protrusions on the first surface is, for example, 98°
  • the apex angle of the protrusions on the second surface is, for example, 177°.
  • the apex angle is not limited to this.
  • the cross-sectional shape of the protrusion is not limited to an isosceles triangle, and may be semicircular.
  • a prism sheet 260 is arranged facing the first surface of the light guide plate 250 .
  • a reflective sheet 220 is arranged to face the second surface of the light guide plate 250 .
  • the light source substrate 240 is arranged at the position of the end surface of the light guide plate 250 .
  • An LED (Light Emitting Diode) element 242 is mounted on the light source substrate 240 as a light source. The light emitted from the LED elements 242 enters from the end surface of the light guide plate 250 and is emitted from the first surface of the light guide plate 250 by reflection by the reflection sheet 220 and refraction by the light guide plate 250 .
  • a plurality of grooves 262 extending in the y-axis direction are provided on the surface of the prism sheet 260 that faces the first surface of the light guide plate 250 .
  • the cross-sectional shape of the groove 262 is an isosceles triangle.
  • the surface of the prism sheet 260 is provided with triangular prisms (prisms) extending in the y-axis direction.
  • the apex angle of the isosceles triangle in the cross-sectional shape of the triangular prism is, for example, 68°.
  • the light emitting module 200 is a so-called edge light. That is, the light emitting module 200 can convert the light emitted from the LED element 242 into collimated light and irradiate the optical element 100 with the collimated light. It should be noted that the light distribution of the collimated light can be appropriately adjusted by the shape of the grooves of the light guide plate and the prism sheet or their combination. Specifically, it is also possible to employ a mode in which light is applied in a planar manner over the entire light exiting region defined by the light shielding double-faced tape 280 . Further, it is also possible to employ a mode in which the light is emitted only from the central portion of the light emitting region. Such a light-emitting module makes it possible to reduce the thickness of the light source.
  • FIG. 1C is a block diagram illustrating the illumination device 10 according to one embodiment of the present invention.
  • controller 300 is electrically connected to optical element 100 and light emitting module 200 and can control optical element 100 and light emitting module 200 .
  • Control unit 300 also includes a signal processing unit 310 and a storage unit 320 .
  • the signal processing unit 310 is a computer that can perform arithmetic processing using data or information.
  • the signal processing unit 310 includes, for example, a central processing unit (CPU), a microprocessor (Micro Processing Unit: MPU), or a random access memory (Random Access Memory: RAM). Specifically, the signal processing unit 310 can execute a predetermined function by loading a program.
  • the storage unit 320 is a storage capable of storing data or information. Examples of the storage unit 320 include a hard disk drive (HDD), a solid state drive (SSD), a read only memory (ROM), a random access memory (RAM), or a flash memory. can be used.
  • the storage unit 320 also includes a lookup table 322 storing potential values to be supplied to the optical element 100 in order to correct the shape of the light distribution of the light emitted from the light emitting module 200 . The correction of the shape of light distribution will be described later.
  • the control unit 300 can communicate with the user's information terminal 900 via the network NW.
  • the network NW may be wired or wireless.
  • the network NW is a LAN (Local Area Network) or the Internet, but is not limited to this.
  • the information terminal 900 is, for example, a mobile phone, a smart phone, a tablet, or a personal computer, but is not limited to these.
  • the lighting device 10 can be controlled by operating the information terminal 900 . That is, when lighting device 10 receives a request signal from information terminal 900, signal processing unit 310 of control unit 300 controls optical element 100 or light emitting module 200 based on the received request signal.
  • the request signal is, for example, a signal regarding adjustment of the luminance of the lighting device 10 (luminance of the light emitting module 200) or a signal regarding the shape of the light distribution of the light emitted from the lighting device 10, or the like.
  • the signal processing unit 310 adjusts the current supplied to the LED element 242 .
  • the signal processing unit 310 controls the potential supplied to the optical element 100 when receiving a signal regarding the shape of the light distribution of the light emitted from the lighting device as the request signal.
  • the light emitted from the light emitting module 200 is emitted to the outside through the optical element 100 . Therefore, the optical element 100 will be described below.
  • FIG. 2A is a schematic perspective view of the optical element 100 of the illumination device 10 according to one embodiment of the invention.
  • the optical element 100 includes a first liquid crystal cell 110-1, a second liquid crystal cell 110-2, a third liquid crystal cell 110-3, and a fourth liquid crystal cell 110-4.
  • a first liquid crystal cell 110-1, a second liquid crystal cell 110-2, a third liquid crystal cell 110-3, and a fourth liquid crystal cell 110-4 are stacked in the z-axis direction.
  • the second liquid crystal cell 110-2 is provided on the first liquid crystal cell 110-1.
  • the third liquid crystal cell 110-3 is provided on the second liquid crystal cell 110-2.
  • a fourth liquid crystal cell 110-4 is provided on the third liquid crystal cell 110-3.
  • Light emitted from light emitting module 200 passes through first liquid crystal cell 110-1, second liquid crystal cell 110-2, third liquid crystal cell 110-3, and fourth liquid crystal cell 110-4 in order. .
  • the first optical elastic resin layer 170-1 adheres and fixes the first liquid crystal cell 110-1 and the second liquid crystal cell 110-2.
  • the second optical elastic resin layer 170-2 adheres and fixes the second liquid crystal cell 110-2 and the third liquid crystal cell 110-3.
  • the third optical elastic resin layer 170-3 adheres and fixes the third liquid crystal cell 110-3 and the fourth liquid crystal cell 110-4.
  • Each of the first optical elastic resin layer 170-1, the second optical elastic resin layer 170-2, and the third optical elastic resin layer 170-3 contains acrylic resin or epoxy resin having translucency. Adhesives can be used.
  • FIG. 2B and 2C are schematic cross-sectional views of the optical element 100 of the illumination device 10 according to one embodiment of the present invention.
  • FIG. 2B is a schematic cross-sectional view of the optical element 100 cut along line A1-A2 shown in FIG. 2A
  • FIG. 2C is a schematic cross-sectional view along line B1-B2 shown in FIG. 2A
  • 4 is a schematic cross-sectional view of the cut optical element 100.
  • FIG. In the following, for convenience, the direction parallel to the A1-A2 line is defined as the first direction, and the direction parallel to the B1-B2 line is defined as the second direction.
  • the first direction and the second direction intersect each other at 90° and respectively intersect the x-axis direction and the y-axis direction at 45° or 135°.
  • the x-axis direction and the y-axis direction are hereinafter referred to as the third direction and the fourth direction. That is, the third direction and the fourth direction intersect each other at 90°.
  • the angle formed by the first direction and the second direction is not limited to 90°, and may be approximately 90°. Approximately 90° is, for example, 90° ⁇ 10°. Further, each of the angle formed by the first direction and the third or fourth direction and the angle formed by the second direction and the third or fourth direction is limited to 45° or 135°. It may be approximately 45° or approximately 135°. Approximately 45° is, for example, 45° ⁇ 10°, and approximately 135° is, for example, 135° ⁇ 10°.
  • the first liquid crystal cell 110-1 includes a first substrate 120-1 on which a first transparent electrode 130-1 and a second transparent electrode 130-2 are formed, a third transparent electrode 130-3 and a third transparent electrode 130-3. and a second substrate 120-2 on which four transparent electrodes 130-4 are formed.
  • a first alignment film 140-1 is formed on the first substrate 120-1 to cover the first transparent electrode 130-1 and the second transparent electrode 130-2.
  • a second alignment film 140-2 is formed on the second substrate 120-2 to cover the third transparent electrode 130-3 and the fourth transparent electrode 130-4.
  • the first substrate 120-1 and the second substrate 120-2 are composed of the first transparent electrode 130-1 and the second transparent electrode 130-2 on the first substrate 120-1 and the second substrate.
  • a third transparent electrode 130-3 and a fourth transparent electrode 130-4 on 120-2 are arranged to face each other.
  • a first sealing member 150-1 is formed on the periphery of each of the first substrate 120-1 and the second substrate 120-2. That is, the first substrate 120-1 and the second substrate 120-2 are adhered via the first sealing material 150-1. Also, the first substrate 120-1 (more specifically, the first alignment film 140-1), the second substrate 120-2 (more specifically, the second alignment film 140-2), And the space surrounded by the first sealing material 150-1 is filled with liquid crystal to form a first liquid crystal layer 160-1.
  • the second liquid crystal cell 110-2 includes a third substrate 120-3 on which a fifth transparent electrode 130-5 and a sixth transparent electrode 130-6 are formed, a seventh transparent electrode 130-7 and a third substrate 130-7. and a fourth substrate 120-4 on which eight transparent electrodes 130-8 are formed.
  • a third alignment film 140-3 is formed on the third substrate 120-3 to cover the fifth transparent electrode 130-5 and the sixth transparent electrode 130-6.
  • a fourth alignment film 140-4 covering the seventh transparent electrode 130-7 and the eighth transparent electrode 130-8 is formed on the fourth substrate 120-4.
  • the third substrate 120-3 and the fourth substrate 120-4 are composed of the fifth transparent electrode 130-5 and the sixth transparent electrode 130-6 on the third substrate 120-3 and the fourth substrate.
  • a seventh transparent electrode 130-7 and an eighth transparent electrode 130-8 on 120-4 are arranged to face each other.
  • a second sealing material 150-2 is formed on the periphery of each of the third substrate 120-3 and the fourth substrate 120-4. That is, the third substrate 120-3 and the fourth substrate 120-4 are adhered via the second sealing material 150-2. Further, a third substrate 120-3 (more specifically, a third alignment film 140-3), a fourth substrate 120-4 (more specifically, a fourth alignment film 140-4), And the space surrounded by the second sealing material 150-2 is filled with liquid crystal to form a second liquid crystal layer 160-2.
  • the third liquid crystal cell 110-3 includes a fifth substrate 120-5 on which a ninth transparent electrode 130-9 and a tenth transparent electrode 130-10 are formed, an eleventh transparent electrode 130-11 and a third substrate 120-5. and a sixth substrate 120-6 on which twelve transparent electrodes 130-12 are formed.
  • a fifth alignment film 140-5 covering the ninth transparent electrode 130-9 and the tenth transparent electrode 130-10 is formed on the fifth substrate 120-5.
  • a sixth alignment film 140-6 covering the eleventh transparent electrode 130-11 and the twelfth transparent electrode 130-12 is formed on the sixth substrate 120-6.
  • the fifth substrate 120-5 and the sixth substrate 120-6 are composed of the ninth transparent electrode 130-9 and the tenth transparent electrode 130-10 on the fifth substrate 120-5 and the sixth substrate.
  • the eleventh transparent electrode 130-11 and the twelfth transparent electrode 130-12 on 120-6 are arranged to face each other.
  • a third sealing material 150-3 is formed around the periphery of each of the fifth substrate 120-5 and the sixth substrate 120-6. That is, the fifth substrate 120-5 and the sixth substrate 120-6 are adhered via the third sealing material 150-3.
  • a fifth substrate 120-5 (more specifically, a fifth alignment film 140-5), a sixth substrate 120-6 (more specifically, a sixth alignment film 140-6), And a space surrounded by the third sealing material 150-3 is filled with liquid crystal to form a third liquid crystal layer 160-3.
  • the fourth liquid crystal cell 110-4 includes a seventh substrate 120-7 on which a 13th transparent electrode 130-13 and a 14th transparent electrode 130-14 are formed, a 15th transparent electrode 130-15 and a 15th transparent electrode 130-15. and an eighth substrate 120-8 on which 16 transparent electrodes 130-16 are formed.
  • a seventh alignment film 140-7 covering the thirteenth transparent electrode 130-13 and the fourteenth transparent electrode 130-14 is formed on the seventh substrate 120-7.
  • An eighth alignment film 140-8 is formed on the eighth substrate 120-8 to cover the fifteenth transparent electrode 130-15 and the sixteenth transparent electrode 130-16.
  • the seventh substrate 120-7 and the eighth substrate 120-8 are composed of the thirteenth transparent electrode 130-13 and the fourteenth transparent electrode 130-14 on the seventh substrate 120-7 and the eighth substrate.
  • a fifteenth transparent electrode 130-15 and a sixteenth transparent electrode 130-16 on 120-8 are arranged to face each other.
  • a fourth sealing material 150-4 is formed around the periphery of each of the seventh substrate 120-7 and the eighth substrate 120-8. That is, the seventh substrate 120-7 and the eighth substrate 120-8 are adhered via the fourth sealing material 150-4.
  • the seventh substrate 120-7 (more specifically, the seventh alignment film 140-7), the eighth substrate 120-8 (more specifically, the eighth alignment film 140-8), And the space surrounded by the fourth sealing material 150-4 is filled with liquid crystal to form a fourth liquid crystal layer 160-4.
  • the basic configurations of the first liquid crystal cell 110-1, the second liquid crystal cell 110-2, the third liquid crystal cell 110-3, and the fourth liquid crystal cell 110-4 are the same. However, the arrangement of the transparent electrode 130 is different.
  • the first transparent electrode 130-1 and the second transparent electrode 130-2 extend in the second direction
  • the third transparent electrode 130-3 and the fourth transparent electrode 130-3 extend in the second direction.
  • Electrode 130-4 extends in a first direction.
  • the first transparent electrode 130-1 and the second transparent electrode 130-2 are alternately arranged in a comb shape in the first direction
  • the third transparent electrode 130-3 and the fourth transparent electrode are arranged alternately.
  • 130-4 are alternately arranged in a comb shape in the second direction.
  • the extending direction (second direction) of the first transparent electrode 130-1 and the second transparent electrode 130-2 is the same as that of the third transparent electrode 130-3 and the fourth transparent electrode 130-4. Although it is orthogonal to the extending direction (first direction) of , it may cross (approximately 90°) with a slight deviation.
  • the fifth transparent electrode 130-5 and the sixth transparent electrode 130-6 extend in the second direction
  • the seventh transparent electrode 130-7 and the eighth transparent electrode 130-7 extend in the second direction.
  • Electrode 130-8 extends in a first direction.
  • the fifth transparent electrode 130-5 and the sixth transparent electrode 130-6 are alternately arranged in a comb shape in the first direction
  • the seventh transparent electrode 130-7 and the eighth transparent electrode 130-7 are arranged alternately.
  • 130-8 are alternately arranged in a comb shape in the second direction.
  • the extending direction (second direction) of the fifth transparent electrode 130-5 and the sixth transparent electrode 130-6 is the same as that of the seventh transparent electrode 130-7 and the eighth transparent electrode 130-8. Although it is orthogonal to the extending direction (first direction) of , it may cross (approximately 90°) with a slight deviation.
  • the ninth transparent electrode 130-9 and the tenth transparent electrode 130-10 extend in the first direction, and the eleventh transparent electrode 130-11 and the twelfth transparent electrode 130-11 extend in the first direction.
  • Electrode 130-12 extends in a second direction. Also, the ninth transparent electrode 130-9 and the tenth transparent electrode 130-10 are alternately arranged in a comb shape in the second direction, and the eleventh transparent electrode 130-11 and the twelfth transparent electrode are arranged alternately. 130-12 are alternately arranged in a comb shape in the first direction.
  • the extending direction (first direction) of the ninth transparent electrode 130-9 and the tenth transparent electrode 130-10 is the same as that of the eleventh transparent electrode 130-11 and the twelfth transparent electrode 130-12. (second direction), but they may intersect (approximately 90°) with a slight deviation.
  • the thirteenth transparent electrode 130-13 and the fourteenth transparent electrode 130-14 extend in the first direction, and the fifteenth transparent electrode 130-15 and the sixteenth transparent electrode 130-15 extend in the first direction.
  • Electrodes 130-16 extend in a second direction.
  • the 13th transparent electrode 130-13 and the 14th transparent electrode 130-14 are alternately arranged in a comb shape in the second direction, and the 15th transparent electrode 130-15 and the 16th transparent electrode 130 ⁇ 16 are alternately arranged in a comb shape in the first direction.
  • the extending direction (first direction) of the 13th transparent electrode 130-13 and the 14th transparent electrode 130-14 is the same as that of the 15th transparent electrode 130-15 and the 16th transparent electrode 130-16. (second direction), but they may intersect (approximately 90°) with a slight deviation.
  • the first transparent electrode 130-1, the fifth transparent electrode 130-5, the eleventh transparent electrode 130-11, and the fifteenth transparent electrode 130-15 extend in the extending direction (second direction) are superimposed so as to substantially match.
  • Other transparent electrodes 130 are the same.
  • the first transparent electrode 130-1, the fifth transparent electrode 130-5, the eleventh transparent electrode 130-11, and the fifteenth transparent electrode 130-15 overlap each other with a slight shift.
  • liquid crystal cell 110-1 to fourth liquid crystal cell 110-4 may be arranged.
  • each of the first substrate 120-1 to the eighth substrate 120-8 for example, a transparent rigid substrate such as a glass substrate, a quartz substrate, or a sapphire substrate is used. Further, as each of the first substrate 120-1 to the eighth substrate 120-8, for example, a flexible substrate having translucency such as a polyimide resin substrate, an acrylic resin substrate, a siloxane resin substrate, or a fluorine resin substrate. can also be used.
  • Each of the first transparent electrode 130 - 1 to the sixteenth transparent electrode 130 - 16 functions as an electrode for forming an electric field in the liquid crystal layer 160 .
  • a transparent conductive material such as indium tin oxide (ITO) or indium zinc oxide (IZO) is used for each of the first transparent electrode 130-1 to the sixteenth transparent electrode 130-16.
  • Each of the first liquid crystal layer 160-1 to the fourth liquid crystal layer 160-4 can refract transmitted light or change the polarization state of transmitted light according to the alignment state of the liquid crystal molecules.
  • Nematic liquid crystal or the like is used as the liquid crystal for each of the first liquid crystal layer 160-1 to the fourth liquid crystal layer 160-4.
  • the liquid crystal described in this embodiment is of a positive type, it is also possible to apply a negative type by changing the initial alignment direction of the liquid crystal molecules. Further, the liquid crystal preferably contains a chiral agent that imparts twist to the liquid crystal molecules.
  • Each of the first alignment film 140-1 to the eighth alignment film 140-8 aligns liquid crystal molecules in the liquid crystal layer 160 in a predetermined direction.
  • a polyimide resin or the like is used for each of the first to eighth alignment films 140-1 to 140-8.
  • Each of the first alignment film 140-1 to the eighth alignment film 140-8 may be imparted with alignment properties by an alignment treatment such as a rubbing method or a photo-alignment method.
  • the rubbing method is a method of rubbing the surface of the alignment film in one direction.
  • the photo-alignment method is a method of irradiating an alignment film with linearly polarized ultraviolet rays.
  • An adhesive containing epoxy resin or acrylic resin is used as each of the first sealing material 150-1 to the fourth sealing material 150-4.
  • the adhesive may be of an ultraviolet curing type or a thermosetting type.
  • the optical element 100 includes at least two liquid crystal cells (eg, a first liquid crystal cell 110-1 and a second liquid crystal cell 110-2) to control the light distribution of unpolarized light. Therefore, on each surface of the first substrate 120-1 of the first liquid crystal cell 110-1 and the eighth substrate 120-8 of the fourth liquid crystal cell 110-4, for example, on the front and back surfaces of the liquid crystal display element. There is no need to provide a pair of polarizers as provided.
  • 3A and 3B are schematic cross-sectional views illustrating control of light distribution by the optical element 100 of the illumination device 10 according to one embodiment of the present invention.
  • 3A and 3B show part of the cross-sectional view of the first liquid crystal cell 110-1 and the second liquid crystal cell 110-2 shown in FIG. 2B.
  • 3A shows the optical element 100 with no potential applied to the transparent electrodes 130
  • FIG. 3B shows the optical element 100 with potential applied to the transparent electrodes 130.
  • the first alignment film 140-1 is oriented in the first direction. Therefore, as shown in FIG. 3A, the long axes of the liquid crystal molecules on the first substrate 120-1 side of the first liquid crystal layer 160-1 are aligned along the first direction. That is, the orientation direction of the liquid crystal molecules on the first substrate 120-1 side intersects the extending direction (second direction) of the first transparent electrode 130-1 and the second transparent electrode 130-2. . Also, the second alignment film 140-2 is oriented in the second direction. Therefore, as shown in FIG. 3A, the long axes of liquid crystal molecules on the second substrate 120-2 side of the first liquid crystal layer 160-1 are aligned along the second direction.
  • the orientation direction of the liquid crystal molecules on the second substrate 120-2 side intersects the extending direction (first direction) of the third transparent electrode 130-3 and the fourth transparent electrode 130-4. . Therefore, the liquid crystal molecules of the first liquid crystal layer 160-1 gradually change the direction of the long axis from the first direction to the second direction as they move from the first substrate 120-1 to the second substrate 120-2. and oriented in a 90-degree twist.
  • the liquid crystal molecules of the second liquid crystal layer 160-2 are also the same as the liquid crystal molecules of the first liquid crystal layer 160-1, so the explanation is omitted here.
  • the orientation of the liquid crystal molecules changes as shown in FIG. 3B.
  • a low potential is supplied to the first transparent electrode 130-1, the third transparent electrode 130-3, the fifth transparent electrode 130-5, and the seventh transparent electrode 130-7, and the second transparent electrode 130-7 is supplied with a low potential.
  • the electrode 130-2, the fourth transparent electrode 130-4, the sixth transparent electrode 130-6, and the eighth transparent electrode 130-8 are supplied with a high potential.
  • the low potential and the high potential are illustrated using the symbols "-" and "+", respectively.
  • the electric field which arises between the transparent electrodes which adjoin may be called a horizontal electric field.
  • the liquid crystal molecules on the side of the first substrate 120-1 as a whole are It is oriented in a convex arc shape in a first direction with respect to the first substrate 120-1.
  • the liquid crystal molecules on the side of the second substrate 120-2 as a whole move toward the second substrate. 120-2 are oriented in a convex arc in a second direction. Liquid crystal molecules positioned substantially in the center between the first transparent electrode 130-1 and the second transparent electrode 130-2 have almost no orientation change due to any lateral electric field.
  • the light incident on the first liquid crystal layer 160-1 is directed in the first direction according to the refractive index distribution of the liquid crystal molecules aligned in a convex circular arc shape in the first direction on the side of the first substrate 120-1. , and is diffused in the second direction according to the refractive index distribution of the liquid crystal molecules aligned in a convex circular arc shape in the second direction on the side of the second substrate 120-2.
  • the first transparent electrode 130-1 of the first substrate 120-1 and the second transparent electrode 130-2 does not affect the alignment of the liquid crystal molecules on the second substrate 120-2 side, or is negligibly small.
  • the lateral electric field between the third transparent electrode 130-3 and the fourth transparent electrode 130-4 on the second substrate 120-2 is applied to the orientation of the liquid crystal molecules on the first substrate 120-1 side. have no effect or are so small as to be negligible.
  • the liquid crystal molecules of the second liquid crystal layer 160-2 when a potential is supplied to the fifth transparent electrode 130-5 to the eighth transparent electrode 130-8 are also the liquid crystal molecules of the first liquid crystal layer 160-1. Since it is the same, the explanation is omitted here.
  • Light emitted from a light source has a polarization component in a first direction (P polarization component) and a polarization component in a second direction (S polarization component).
  • P polarization component a polarization component in a first direction
  • S polarization component a polarization component in a second direction
  • the components will be explained separately. That is, the light emitted from the light source (see (1) in FIGS. 3A and 3B) includes a first polarized light 510 having a P-polarized component and a second polarized light 520 having an S-polarized component.
  • the arrow symbol and the circle symbol with a cross represent the P-polarized component and the S-polarized component, respectively.
  • the first polarized light 510 changes from the P-polarized component to the S-polarized component according to the twist of the orientation of the liquid crystal molecules as it moves toward the second substrate 120-2 (Fig. 3A and (2)-(4) in FIG. 3B). More specifically, the first polarized light 510 has a polarization axis in the x-axis direction on the first substrate 120-1 side, but passes through the thickness direction of the first liquid crystal layer 160-1. The polarization axis is gradually changed in the process, and the second substrate 120-2 side has the polarization axis in the y-axis direction, and then is emitted from the second substrate 120-2 side (FIGS. 3A and 3B). See (5) inside).
  • the liquid crystal molecules on the first substrate 120-1 side move to the first substrate 120-1 side due to the influence of the horizontal electric field. , and the refractive index distribution changes. Therefore, the first polarized light 510 diffuses in the first direction according to the refractive index distribution of the liquid crystal molecules.
  • the liquid crystal molecules on the second substrate 120-2 side are moved to the second state due to the influence of the horizontal electric field. It is oriented in a convex circular arc in the direction, and the refractive index distribution changes. Therefore, the first polarized light 510 diffuses in the second direction according to the change in refractive index distribution of the liquid crystal molecules.
  • the polarization component of the first polarized light 510 transmitted through the first liquid crystal cell 110-1 changes from the P polarized component to the S polarized component.
  • the first polarized light 510 transmitted through the first liquid crystal cell changes its polarization component from the P polarization component to the S polarization component, and also moves in the first direction. and diffuse in the second direction.
  • the second polarized light 520 After being incident on the first substrate 120-1, the second polarized light 520 changes from the S-polarized component to the P-polarized component according to the twist of the orientation of the liquid crystal molecules as it moves toward the second substrate 120-2 (Fig. 3A and (2)-(4) in FIG. 3B). More specifically, the second polarized light 520 has a polarization axis in the second direction on the first substrate 120-1 side, but passes through the thickness direction of the first liquid crystal layer 160-1. The polarization axis is gradually changed in the process, and the second substrate 120-2 side has the polarization axis in the first direction, and is then emitted from the second substrate 120-2 side (FIGS. 3A and 3A). See (5) in FIG. 3B).
  • the liquid crystal molecules on the first substrate 120-1 side move to the first substrate 120-1 side due to the influence of the horizontal electric field.
  • the refractive index distribution changes.
  • the polarization axis of the second polarized light 520 is orthogonal to the orientation of the liquid crystal molecules on the first substrate 120-1 side, it is not affected by the refractive index distribution of the liquid crystal molecules and is not diffused. pass.
  • the liquid crystal molecules on the second substrate 120-2 side are moved to the second state due to the influence of the horizontal electric field.
  • the polarization axis of the second polarized light 520 is orthogonal to the orientation of the liquid crystal molecules on the second substrate 120-2 side, it is not affected by the refractive index distribution of the liquid crystal molecules and is not diffused. pass.
  • the second polarized light 520 transmitted through the first liquid crystal cell 110-1 changes the polarization component from the S polarization component to the P polarization component, but does not diffuse.
  • the liquid crystal molecules of the second liquid crystal layer 160-2 of the second liquid crystal cell 110-2 also have the same refractive index distribution as the liquid crystal molecules of the first liquid crystal layer 160-1 of the first liquid crystal cell 110-1. .
  • the liquid crystal molecules of the second liquid crystal layer 160-2 The polarization affected by the refractive index profile is reversed. That is, not only when no lateral electric field is generated (see FIG. 3A), but also when a lateral electric field is generated (see FIG.
  • the first polarized light 510 transmitted through the second liquid crystal cell 110-2 changes the polarization component from the S polarization component to the P polarization component, but does not diffuse (see (6) to (8) in FIGS. 3A and 3B).
  • the polarization component of the second polarized light 520 transmitted through the second liquid crystal cell 110-2 only changes from the P polarized component to the S polarized component.
  • the second polarized light 520 transmitted through the second liquid crystal cell 110-2 changes its polarization component from the P polarized component to the S polarized component, Diffuse in one direction and a second direction.
  • the optical element 100 by stacking two liquid crystal cells 110 having the same structure, the polarization component of the light incident on the optical element 100 is changed twice.
  • the polarization components after incidence can be left unchanged (see (1) and (9) in FIGS. 3A and 3B).
  • the optical element 100 can apply a potential to the transparent electrode 130 to change the refractive index distribution of the liquid crystal molecules of the liquid crystal layer 160 of the liquid crystal cell 110 and refract light passing through the liquid crystal cell 110 .
  • the first liquid crystal cell 110-1 diffuses the light of the first polarization 510 (P polarization component) in a first direction, a second direction, or both the first direction and the second direction.
  • the second liquid crystal cell 110-2 can diffuse the light of the second polarization 520 (the S polarization component) in the first direction, the second direction, or the first direction and the second direction.
  • FIGS. 3A and 3B show only the first liquid crystal cell 110-1 and the second liquid crystal cell 110-2, and the light transmitted through the first liquid crystal cell 110-1 and the second liquid crystal cell 110-2
  • the light distribution has been described, the light distribution of light passing through the third liquid crystal cell 110-3 and the fourth liquid crystal cell 110-4 is the same.
  • the third liquid crystal cell 110-3 and the fourth liquid crystal cell 110-4 are arranged in a state rotated by 90° with respect to the first liquid crystal cell 110-1 and the second liquid crystal cell 110-2. Therefore, the polarization components acting are interchanged with those of the first liquid crystal cell 110-1 and the second liquid crystal cell 110-2.
  • liquid crystal cell 110-3 diffuses the light of the second polarized light 520 (S-polarized component) in the first direction, the second direction, or the first direction and the second direction
  • liquid crystal cell 110-4 can scatter light of first polarization 510 (the P-polarization component) in a first direction, a second direction, or both the first direction and the second direction.
  • the optical element 100 by supplying a predetermined transparent electrode 130 with a potential, the transmitted light can be diffused in a predetermined direction.
  • the light emitted from the light emitting module 200 is collimated light, and the shape of the light distribution of the light transmitted through the optical element 100 is anisotropic when no potential is supplied to the transparent electrode 130. may be. Even in such a case, the optical element 100 can be used for correction. Correction of the shape of light distribution by the optical element 100 will be described below.
  • FIG. 4 is a schematic diagram illustrating the relationship between the optical element 100 and the light emitting module 200 of the illumination device 10 according to one embodiment of the present invention. 4 schematically shows the transparent electrode 130 of the liquid crystal cell 110 of the optical element 100, and the light guide plate 250 and the prism sheet 260 of the light emitting module 200. As shown in FIG.
  • the first transparent electrode 130-1, the second transparent electrode 130-2, the fifth transparent electrode 130-5, the sixth transparent electrode 130-6, the eleventh transparent electrode 130-11, A twelfth transparent electrode 130-12, a fifteenth transparent electrode 130-15, and a sixteenth transparent electrode 130-16 extend in the second direction.
  • the transparent electrode 130-10, the thirteenth transparent electrode 130-13, and the fourteenth transparent electrode 130-14 extend in the first direction.
  • the first grooves 252 of the light guide plate 250 extend in the third direction.
  • the second grooves 254 of the light guide plate 250 and the grooves 262 of the prism sheet 260 extend in the fourth direction. That is, the extending direction of the transparent electrode 130 and the extending direction of the first groove 252 or the second groove 254 of the light guide plate 250 or the groove 262 of the prism sheet 260 intersect at 45° or 135°. .
  • FIG. 5 is a schematic diagram illustrating the shape of light distribution before and after correction in the lighting device 10 according to one embodiment of the present invention.
  • the dashed line in FIG. 5 indicates the shape of light distribution when no potential is supplied to the transparent electrode 130 .
  • the light emitting module 200 emits light from the central portion of its output area.
  • first groove 252 and second groove 254 of light guide plate 250 of light emitting module 200 and groove 262 of prism sheet 260 extend in the third direction or the fourth direction. Therefore, the shape of the light distribution of the light emitted from the light emitting module 200 and transmitted through the optical element 100 may differ in length between the third direction and the fourth direction. For example, as indicated by the dashed line in FIG.
  • the length in the fourth direction is smaller than the length in the third direction.
  • the cross shape indicated by the dashed lines in FIG. 5 has depressions in the first direction and the second direction.
  • the optical element 100 diffuses the light in the first direction or the second direction. It can be corrected to the shape of the light distribution indicated by the solid line in the middle.
  • a potential can be applied to the transparent electrodes 130 such that the potential difference between adjacent transparent electrodes 130 on the substrate 120 is 2V. Potential values required for such correction can be stored in the lookup table 322 in advance. That is, in the illumination device 10, the control unit 300 can read out the lookup table 322 of the storage unit 320 and easily correct the shape of the light distribution.
  • the extending direction of the transparent electrode 130 and the extending direction of the first grooves 252 or the second grooves 254 of the light guide plate 250 or the grooves 262 of the prism sheet 260 intersect at 45° or 135°.
  • the lighting device 10 having the angle is described as an example, the angle to be formed is not limited to this. The angle to be formed may be within the range of approximately 45° or approximately 135°.
  • the shape of the light distribution of the light emitted from the light emitting module 200 can be corrected by the optical element 100 . That is, in the illumination device 10, the extending direction of the transparent electrode 130 is different from the extending direction of the first groove 252 or the second groove 254 of the light guide plate 250 or the groove 262 of the prism sheet 260. It can be transmitted through the element 100 and correct the shape of the light distribution before control.
  • FIG. 6 is a schematic diagram illustrating the relationship between the optical element 100A and the light emitting module 200A of the illumination device 10A according to one embodiment of the present invention. 6 schematically shows the transparent electrode 130A of the liquid crystal cell 110A of the optical element 100A, and the light guide plate 250A and the prism sheet 260A of the light emitting module 200A.
  • a first transparent electrode 130A-1, a second transparent electrode 130A-2, a fifth transparent electrode 130A-5, a sixth transparent electrode 130A-6, an eleventh transparent electrode 130A-11, The 12th transparent electrode 130A-12, the 15th transparent electrode 130A-15, and the 16th transparent electrode 130A-16 extend in the fourth direction.
  • a third transparent electrode 130A-3, a fourth transparent electrode 130A-4, a seventh transparent electrode 130A-7, an eighth transparent electrode 130A-8, a ninth transparent electrode 130A-9, a tenth The transparent electrode 130A-10, the thirteenth transparent electrode 130A-13, and the fourteenth transparent electrode 130A-14 extend in the third direction.
  • the first grooves 252A of the light guide plate 250A extend in the first direction.
  • the second grooves 254A of the light guide plate 250A and the grooves 262A of the prism sheet 260A extend in the second direction. That is, the extending direction of the transparent electrode 130A and the extending direction of the first grooves 252A or the second grooves 254A of the light guide plate 250A or the grooves 262A of the prism sheet 260A intersect at 45° or 135°. .
  • FIGS. 7A to 7C are schematic diagrams explaining the shape of light distribution before and after correction in the lighting device 10A according to one embodiment of the present invention.
  • the dashed lines in FIGS. 7A to 7C represent the shape of the light distribution when no potential is supplied to the transparent electrode 130A.
  • first groove 252A and second groove 254A of light guide plate 250A of light emitting module 200A and groove 262A of prism sheet 260A extend in the first direction or the second direction. Therefore, the shape of the light distribution of the light emitted from the light emitting module 200A and transmitted through the optical element 100A may differ in length between the first direction and the second direction. For example, as indicated by the dashed lines in FIGS.
  • the cross shape indicated by the dashed lines in FIGS. 7A-7C has depressions in the third and fourth directions.
  • the optical element 100A diffuses the light in the third direction or the fourth direction. It is possible to correct the shape of the light distribution shown by the solid line in FIG. 7C.
  • a potential is supplied to each transparent electrode 130 so that the potential difference between adjacent transparent electrodes 130 is shown in Table 1.
  • the shape of the light distribution indicated by solid lines in FIGS. 7A to 7C is obtained by supplying a potential to each transparent electrode 130 so as to achieve potential difference (1), potential difference (2), and potential difference (3) in Table 1, respectively. is the case.
  • the shape of the light distribution can be corrected to not only a circular shape but also an elliptical shape.
  • the shape of the light distribution can be corrected by increasing the potential difference between the adjacent transparent electrodes 130 .
  • the shape of the light distribution of the light emitted from the light emitting module 200A can be corrected by the optical element 100A. That is, in the illumination device 10A, the extending direction of the transparent electrode 130A is different from the extending direction of the first groove 252A or the second groove 254A of the light guide plate 250A or the groove 262A of the prism sheet 260. It is possible to correct the light distribution shape of the light before being controlled by transmitting through the element 100A.
  • the illumination device 10B will be described with reference to FIGS. 8 to 9C.
  • the description may be abbreviate
  • FIG. 8 is a schematic exploded perspective view of a lighting device 10B according to one embodiment of the present invention. As shown in FIG. 8, lighting device 10B includes optical element 100A and light emitting module 200B. Light emitting module 200B includes LED element 242 and reflector 290B.
  • the shape of the reflector 290B is a substantially truncated cone with a cavity inside.
  • An LED element 242 is provided in the reflector 290B. That is, the LED element 242 is arranged on the bottom surface of the reflector 290B and surrounded by the side surfaces of the reflector 290B. The light emitted from the LED element 242 is reflected by the bottom surface or side surface of the reflector 290B and enters the optical element 100.
  • FIG. Note that the shape of the reflector 290B is not limited to the substantially truncated cone shape.
  • the shape of the reflector 290B may be, for example, a polygonal prism shape, and the bottom surface or side surface of the reflector 290B may be flat or curved.
  • the shape of the light distribution of the light emitted from the light emitting module 200B may become anisotropic.
  • the shape of the light distribution of light emitted from the optical element 100A to which no potential is applied to each transparent electrode 130A also becomes anisotropic.
  • the transparent electrode 130A extends in the x-axis direction and the y-axis direction.
  • An optical element 100A including an extending transparent electrode 130A can be used to diffuse light in the y-axis direction and correct the shape of the light distribution to be isotropic.
  • an optical element 100A including an extending transparent electrode 130A can be used to diffuse light in the y-axis direction and correct the shape of the light distribution to be isotropic.
  • the value of the potential to be supplied to the transparent electrode 130A in the lookup table 322 it is possible to always supply a potential capable of correcting the shape of the light distribution.
  • the extending direction of the transparent electrodes 130A is the length before correction.
  • the arrangement of the optical element 100A with respect to the light emitting module 200B may be adjusted so as to match the axial direction or the minor axis direction. Also, the optical element 100 can be used instead of the optical element 100A.
  • the optical element 100A can be used to not only correct the shape of the light distribution but also control the shape of the light distribution.
  • FIGS. 9A to 9C are measurement results obtained by measuring the shape of light distribution of light emitted from the lighting device 10B according to one embodiment of the present invention. Specifically, FIGS. 9A to 9C show the azimuth of light emitted from the lighting device 10B when the potential differences (4) to (6) shown in Table 2 are supplied to the manufactured lighting device 10B. It is the measurement result of measuring the angle.
  • each transparent electrode 130 When a potential is supplied to each transparent electrode 130 such that the potential difference between the adjacent transparent electrodes 130 is 30 V, like the potential difference (4), light is emitted in the x-axis direction and the y-axis direction as shown in FIG. A diffused light distribution shape was obtained.
  • a potential when a potential is supplied to the transparent electrodes 130 so that each liquid crystal cell 110 diffuses light in the y-axis direction, a light distribution shape in which light spreads in the y-axis direction is obtained. rice field.
  • the shape of the light distribution of the light emitted from the light emitting module 200B can be corrected by the optical element 100 or the optical element 100A.
  • the degree of freedom in designing the light emitting module 200B, particularly the reflector 290B, is increased.
  • various light-emitting modules 200B can be used as lighting device 10B.
  • 10, 10A, 10B lighting device, 100, 100A: optical element, 110, 110A: liquid crystal cell, 120: substrate, 130, 130A: transparent electrode, 140: alignment film, 150: sealing material, 160: liquid crystal layer, 170 : optical elastic resin layer 200, 200A, 200B: light emitting module 210: metal frame 220: reflective sheet 230: resin frame 240: light source substrate 242: LED element 250, 250A: light guide plate 252, 252A : first groove, 254, 254A: second groove, 260, 260A: prism sheet, 262, 262A: groove, 270: spacer, 280: light shielding double-sided tape, 290B: reflector, 300: control unit, 310: signal Processing unit 320: Storage unit 322: Lookup table 510: First polarized light 520: Second polarized light 900: Information terminal

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Liquid Crystal (AREA)

Abstract

照明装置は、発光モジュールと、第1の液晶セルと第2の液晶セルとが積層され、発光モジュールからの光を透過する光学素子と、を含み、第1の液晶セルと第2の液晶セルは、第1の方向に、第1の透明電極と第2の透明電極とが交互に配置された第1の基板と、第1の方向と交差する第2の方向に、第3の透明電極と第4の透明電極とが交互に配置された第2の基板と、を含み、発光モジュールは、光源と、光源からの光が入射される端面および入射した光を出射する第1の面を含む導光板と、第1の面に対向して配置されるプリズムシートと、を含み、第1の液晶セルの第2の基板と第2の液晶セルの第1の基板とが隣接し、第1の面は、第1の方向および第2の方向と交差する第3の方向に延在する複数の第1の溝を含む。

Description

照明装置
 本発明の一実施形態は、照明装置に関する。
 従来より、液晶に印加する電圧を調整し、液晶の屈折率が変化することを利用した光学素子、いわゆる液晶レンズが知られている(例えば、特許文献1、特許文献2、または特許文献3参照)。例えば、特許文献1および特許文献2に記載された照明装置は、液晶レンズを利用し、光源からの光を円形状に配光する。また、特許文献3に記載されたビーム成形デバイスでは、液晶に印加する電極のパターンを変えて光の配光の形状を変化させている。
特開2005-317879号公報 特開2010-230887号公報 特開2014-160277号公報
 液晶レンズを透過する光の配光の形状は、光源を含む発光モジュールの構成によっても変化する。そのため、あらゆる発光モジュールに対応した、光学素子を含む照明装置が要望されていた。
 本発明の一実施形態は、上記問題に鑑み、発光モジュールの構成に応じて配光の形状を補正することができる照明装置を提供することを目的の一つとする。
 本発明の一実施形態に係る照明装置は、第1の液晶セルと第2の液晶セルとが積層され、発光モジュールから照射された光を透過する光学素子と、を含み、第1の液晶セルおよび第2の液晶セルの各々は、第1の方向において、第1の透明電極と第2の透明電極とが交互に配置された第1の基板と、第1の方向と交差する第2の方向において、第3の透明電極と第4の透明電極とが交互に配置された第2の基板と、を含み、発光モジュールは、光源と、光源から照射された光が入射される端面および入射した光を出射する第1の面を含む導光板と、第1の面に対向して配置されるプリズムシートと、を含み、第1の液晶セルの第2の基板と第2の液晶セルの第1の基板とが隣接し、第1の面は、第1の方向および第2の方向と交差する第3の方向に延在する複数の第1の溝を含む。
 また、本発明の一実施形態に係る照明装置は、発光モジュールと、第1の液晶セルと第2の液晶セルとが積層され、発光モジュールから照射された光を透過する光学素子と、を含み、第1の液晶セルおよび第2の液晶セルの各々は、第1の方向において、第1の透明電極と第2の透明電極とが交互に配置された第1の基板と、第1の方向と交差する第2の方向において、第3の透明電極と第4の透明電極とが交互に配置された第2の基板と、を含み、発光モジュールは、光源と、光源の周囲に配置され、光源から照射された光を反射するリフレクタと、を含み、第1の液晶セルの第2の基板と第2の液晶セルの第1の基板とが隣接している。
本発明の一実施形態に係る照明装置の模式的な分解斜視図である。 本発明の一実施形態に係る照明装置の発光モジュールを説明する部分拡大図である。 本発明の一実施形態に係る照明装置を説明するブロック図である。 本発明の一実施形態に係る照明装置の光学素子の模式的な斜視図である。 本発明の一実施形態に係る照明装置の光学素子の模式的な断面図である。 本発明の一実施形態に係る照明装置の光学素子の模式的な断面図である。 本発明の一実施形態に係る照明装置の光学素子による配光の制御を説明する模式的な断面図である。 本発明の一実施形態に係る照明装置の光学素子による配光の制御を説明する模式的な断面図である。 本発明の一実施形態に係る照明装置の光学素子と発光モジュールとの関係を説明する模式図である。 本発明の一実施形態に係る照明装置において、補正前後の配光の形状を説明する模式図である。 本発明の一実施形態に係る照明装置の光学素子と発光モジュールとの関係を説明する模式図である。 本発明の一実施形態に係る照明装置において、補正前後の配光の形状を説明する模式図である。 本発明の一実施形態に係る照明装置において、補正前後の配光の形状を説明する模式図である。 本発明の一実施形態に係る照明装置において、補正前後の配光の形状を説明する模式図である。 本発明の一実施形態に係る照明装置の模式的な分解斜視図である。 本発明の一実施形態に係る照明装置10Bから照射された光の配光の形状を測定した測定結果である。 本発明の一実施形態に係る照明装置10Bから照射された光の配光の形状を測定した測定結果である。 本発明の一実施形態に係る照明装置10Bから照射された光の配光の形状を測定した測定結果である。
 以下、本発明の各実施形態において、図面等を参照しつつ説明する。但し、本発明は、その技術的思想の要旨を逸脱しない範囲において様々な態様で実施することができ、以下に例示する実施形態の記載内容に限定して解釈されるものではない。
 図面は、説明をより明確にするため、実際の態様に比べ、各部の幅、厚さ、形状等について模式的に表される場合があるが、あくまで一例であって、図示の形状そのものが本発明の解釈を限定するものではない。また、図面において、明細書中で既出の図に関して説明したものと同様の機能を備えた要素には、別図であっても同一の符号を付して、重複する説明を省略する場合がある。
 ある一つの膜を加工して複数の構造体を形成した場合、各々の構造体は異なる機能、役割を有する場合があり、また各々の構造体はそれが形成される下地が異なる場合がある。しかしながらこれら複数の構造体は、同一の工程で同一層として形成された膜に由来するものであり、同一の材料を有する。従って、これら複数の膜は同一層に存在しているものと定義する。
 ある構造体の上に他の構造体を配置する態様を表現するにあたり、単に「上」と表記する場合、特に断りの無い限りは、ある構造体に接して、直上に他の構造体を配置する場合と、ある構造体の上方に、さらに別の構造体を介して他の構造体を配置する場合との両方を含むものとする。
 図1A~図5を参照して、本発明の一実施形態に係る照明装置10について説明する。
[1.照明装置10の構成]
 図1Aは、本発明の一実施形態に係る照明装置10の模式的な分解斜視図である。図1Aに示すように、照明装置10は、光学素子100、発光モジュール200、および制御部300を含む。発光モジュール200は、金属フレーム210、反射シート220、樹脂フレーム230、光源基板240、導光板250、プリズムシート260、スペーサ270、および遮光両面テープ280を含む。反射シート220、樹脂フレーム230、光源基板240、導光板250、およびプリズムシート260は、金属フレーム210とスペーサ270とで囲まれた空間内に配置される。スペーサ270には、光を透過する開口部が設けられている。また、スペーサ270上に遮光両面テープ280が設けられ、スペーサ270と光学素子100とが遮光両面テープ280を介して接着されている。制御部300は、発光モジュール200外に設けられていてもよく、発光モジュール200内に設けられていてもよい。
 図1Bは、本発明の一実施形態に係る照明装置10の発光モジュール200を説明する部分拡大図である。導光板250の第1の面には、x軸方向に延在する複数の第1の溝252が設けられている。導光板250の第1の面の反対の第2の面には、y軸方向に延在する複数の第2の溝254が形成されている。第1の溝252および第2の溝の254の各々の断面形状は、二等辺三角形である。換言すると、導光板250の第1の面および第2の面の各々には、断面形状が二等辺三角形である凸部が設けられている。第1の面の凸部の頂角は、例えば、98°であり、第2の面の凸部の頂角は、例えば、177°である。但し、頂角の角度はこれに限られない。また、凸部の断面形状も二等辺三角形に限られず、半円形状であってもよい。
 導光板250の第1の面に対向して、プリズムシート260が配置されている。また、導光板250の第2の面に対向して、反射シート220が配置されている。さらに、導光板250の端面の位置に、光源基板240が配置されている。光源基板240には、光源として、LED(Light Emitting Diode)素子242が実装されている。LED素子242から出射された光は、導光板250の端面から入射し、反射シート220による反射および導光板250による屈折によって、導光板250の第1の面から出射する。
 プリズムシート260の導光板250の第1の面に対向する面には、y軸方向に延在する複数の溝262が設けられている。溝262の断面形状は、二等辺三角形である。換言すると、プリズムシート260の面には、y軸方向に延在する三角柱体(プリズム)が設けられている。三角柱体の断面形状の二等辺三角形の頂角は、例えば、68°である。導光板250の第1の面から出射された光は、プリズムシート260の三角柱体が形成された面から入射し、その反対の面からコリメート光として出射される。
 発光モジュール200は、いわゆるエッジライトである。すなわち、発光モジュール200は、LED素子242から出射された光をコリメート光に変換し、光学素子100にコリメート光を照射することができる。なお、当該コリメート光は、導光板およびプリズムシートの溝形状または組み合わせによって、その配光の態様を適宜調整することができる。具体的には、遮光両面テープ280によって区画される出光領域全体にわたり、面状に光を照射する態様も採用することができる。また、当該出光領域の中心部からのみ照射する態様も採用することができる。かかる発光モジュールにより、光源の薄型化が図られる。
 図1Cは、本発明の一実施形態に係る照明装置10を説明するブロック図である。図1Cに示すように、照明装置10において、制御部300は、光学素子100および発光モジュール200と電気的に接続され、光学素子100および発光モジュール200を制御することができる。また、制御部300は、信号処理部310および記憶部320を含む。
 信号処理部310は、データまたは情報を用いて演算処理を行うことができるコンピュータである。信号処理部310は、例えば、中央演算処理装置(Central Processing Unit:CPU)、マイクロプロセッサ(Micro Processing Unit:MPU)、またはランダムアクセスメモリ(Random Access Memory:RAM)などを含む。具体的には、信号処理部310は、プログラムを読み込みこむことにより、所定の機能を実行することができる。
 記憶部320は、データまたは情報を格納することができるストレージである。記憶部320として、例えば、ハードディスクドライブ(Hard Disk Drive:HDD)、ソリッドステートドライブ(Solid State Drive:SSD)、リードオンリーメモリ(Read Only Memory:ROM)、ランダムアクセスメモリ(RAM)、またはフラッシュメモリなどを用いることができる。また、記憶部320は、発光モジュール200から照射される光の配光の形状を補正するため、光学素子100に供給する電位の値が格納されたルックアップテーブル322を含む。なお、配光の形状の補正については、後述する。
 制御部300は、ネットワークNWを介してユーザの情報端末900と通信接続することができる。ネットワークNWは、有線であっても、無線であってもよい。例えば、ネットワークNWは、LAN(Local Area Network)またはインターネットなどであるが、これに限られない。また、情報端末900は、例えば、携帯電話、スマートフォン、タブレット、またはパーソナルコンピュータであるが、これらに限られない。
 照明装置10は、情報端末900の操作によって制御することができる。すなわち、照明装置10が情報端末900から要求信号を受信すると、制御部300の信号処理部310は、受信した要求信号に基づいて光学素子100または発光モジュール200を制御する。要求信号は、例えば、照明装置10の輝度(発光モジュール200の輝度)の調整に関する信号または照明装置10から照射される光の配光の形状に関する信号などである。要求信号として照明装置10の輝度の調整に関する信号を受信した場合、信号処理部310は、LED素子242へ供給する電流を調整する。要求信号として照明装置から照射される光の配光の形状に関する信号を受信した場合、信号処理部310は、光学素子100へ供給する電位を制御する。
 照明装置10では、発光モジュール200から照射された光は、光学素子100を介して外部に出射される。そこで、以下では、光学素子100について説明する。
[2.光学素子100の構成]
 図2Aは、本発明の一実施形態に係る照明装置10の光学素子100の模式的な斜視図である。図2Aに示すように、光学素子100は、第1の液晶セル110-1、第2の液晶セル110-2、第3の液晶セル110-3、および第4の液晶セル110-4を含む。第1の液晶セル110-1、第2の液晶セル110-2、第3の液晶セル110-3、および第4の液晶セル110-4は、z軸方向に積層されている。第2の液晶セル110-2は、第1の液晶セル110-1上に設けられている。第3の液晶セル110-3は、第2の液晶セル110-2上に設けられている。第4の液晶セル110-4は、第3の液晶セル110-3上に設けられている。発光モジュール200から出射された光は、第1の液晶セル110-1、第2の液晶セル110-2、第3の液晶セル110-3、および第4の液晶セル110-4を順に透過する。
 第1の光学弾性樹脂層170-1は、第1の液晶セル110-1と第2の液晶セル110-2とを接着し、固定する。第2の光学弾性樹脂層170-2は、第2の液晶セル110-2と第3の液晶セル110-3とを接着し、固定する。第3の光学弾性樹脂層170-3は、第3の液晶セル110-3と第4の液晶セル110-4とを接着し、固定する。第1の光学弾性樹脂層170-1、第2の光学弾性樹脂層170-2、および第3の光学弾性樹脂層170-3の各々として、透光性を有するアクリル樹脂またはエポキシ樹脂などを含む接着剤を用いることができる。
 図2Bおよび図2Cは、本発明の一実施形態に係る照明装置10の光学素子100の模式的な断面図である。具体的には、図2Bは、図2Aに示すA1-A2線に沿って切断された光学素子100の模式的な断面図であり、図2Cは、図2Aに示すB1-B2線に沿って切断された光学素子100の模式的な断面図である。なお、以下では、便宜上、A1-A2線と平行な方向を第1の方向とし、B1-B2線と平行な方向を第2の方向とする。第1の方向および第2の方向は、互いに90°で交差し、それぞれがx軸方向およびy軸方向と45°または135°で交差している。なお、以下では、便宜上、x軸方向およびy軸方向を第3の方向および第4の方向とする。すなわち、第3の方向および第4の方向は、互いに90°で交差している。
 第1の方向と第2の方向とのなす角は、90°に限られず、略90°であってもよい。略90°とは、例えば、90°±10°である。また、第1の方向と第3の方向または第4の方向とのなす角および第2の方向と第3の方向または第4の方向とのなす角の各々は、45°または135°に限られず、略45°または略135°であってもよい。略45°とは、例えば、45°±10°であり、略135°とは、例えば、135°±10°である。
 第1の液晶セル110-1は、第1の透明電極130-1および第2の透明電極130-2が形成された第1の基板120-1と、第3の透明電極130-3および第4の透明電極130-4が形成された第2の基板120-2と、を含む。第1の基板120-1上には、第1の透明電極130-1および第2の透明電極130-2を覆う第1の配向膜140-1が形成されている。また、第2の基板120-2上には、第3の透明電極130-3および第4の透明電極130-4を覆う第2の配向膜140-2が形成されている。第1の基板120-1と第2の基板120-2とは、第1の基板120-1上の第1の透明電極130-1および第2の透明電極130-2と、第2の基板120-2上の第3の透明電極130-3および第4の透明電極130-4とが対向するように配置されている。また、第1の基板120-1および第2の基板120-2の各々の周辺部には、第1のシール材150-1が形成されている。すなわち、第1の基板120-1と第2の基板120-2とは、第1のシール材150-1を介して接着されている。また、第1の基板120-1(より具体的には、第1の配向膜140-1)、第2の基板120-2(より具体的には、第2の配向膜140-2)、および第1のシール材150-1で囲まれた空間には液晶が封入され、第1の液晶層160-1が形成されている。
 第2の液晶セル110-2は、第5の透明電極130-5および第6の透明電極130-6が形成された第3の基板120-3と、第7の透明電極130-7および第8の透明電極130-8が形成された第4の基板120-4と、を含む。第3の基板120-3上には、第5の透明電極130-5および第6の透明電極130-6を覆う第3の配向膜140-3が形成されている。また、第4の基板120-4上には、第7の透明電極130-7および第8の透明電極130-8を覆う第4の配向膜140-4が形成されている。第3の基板120-3と第4の基板120-4とは、第3の基板120-3上の第5の透明電極130-5および第6の透明電極130-6と、第4の基板120-4上の第7の透明電極130-7および第8の透明電極130-8とが対向するように配置されている。また、第3の基板120-3および第4の基板120-4の各々の周辺部には、第2のシール材150-2が形成されている。すなわち、第3の基板120-3と第4の基板120-4とは、第2のシール材150-2を介して接着されている。また、第3の基板120-3(より具体的には、第3の配向膜140-3)、第4の基板120-4(より具体的には、第4の配向膜140-4)、および第2のシール材150-2で囲まれた空間には液晶が封入され、第2の液晶層160-2が形成されている。
 第3の液晶セル110-3は、第9の透明電極130-9および第10の透明電極130-10が形成された第5の基板120-5と、第11の透明電極130-11および第12の透明電極130-12が形成された第6の基板120-6と、を含む。第5の基板120-5上には、第9の透明電極130-9および第10の透明電極130-10を覆う第5の配向膜140-5が形成されている。また、第6の基板120-6上には、第11の透明電極130-11および第12の透明電極130-12を覆う第6の配向膜140-6が形成されている。第5の基板120-5と第6の基板120-6とは、第5の基板120-5上の第9の透明電極130-9および第10の透明電極130-10と、第6の基板120-6上の第11の透明電極130-11および第12の透明電極130-12とが対向するように配置されている。また、第5の基板120-5および第6の基板120-6の各々の周辺部には、第3のシール材150-3が形成されている。すなわち、第5の基板120-5と第6の基板120-6とは、第3のシール材150-3を介して接着されている。また、第5の基板120-5(より具体的には、第5の配向膜140-5)、第6の基板120-6(より具体的には、第6の配向膜140-6)、および第3のシール材150-3で囲まれた空間には液晶が封入され、第3の液晶層160-3が形成されている。
 第4の液晶セル110-4は、第13の透明電極130-13および第14の透明電極130-14が形成された第7の基板120-7と、第15の透明電極130-15および第16の透明電極130-16が形成された第8の基板120-8と、を含む。第7の基板120-7上には、第13の透明電極130-13および第14の透明電極130-14を覆う第7の配向膜140-7が形成されている。また、第8の基板120-8上には、第15の透明電極130-15および第16の透明電極130-16を覆う第8の配向膜140-8が形成されている。第7の基板120-7と第8の基板120-8とは、第7の基板120-7上の第13の透明電極130-13および第14の透明電極130-14と、第8の基板120-8上の第15の透明電極130-15および第16の透明電極130-16とが対向するように配置されている。また、第7の基板120-7および第8の基板120-8の各々の周辺部には、第4のシール材150-4が形成されている。すなわち、第7の基板120-7と第8の基板120-8とは、第4のシール材150-4を介して接着されている。また、第7の基板120-7(より具体的には、第7の配向膜140-7)、第8の基板120-8(より具体的には、第8の配向膜140-8)、および第4のシール材150-4で囲まれた空間には液晶が封入され、第4の液晶層160-4が形成されている。
 第1の液晶セル110-1、第2の液晶セル110-2、第3の液晶セル110-3、および第4の液晶セル110-4は、基本的な構成は同じである。但し、透明電極130の配置が異なる。
 第1の液晶セル110-1では、第1の透明電極130-1および第2の透明電極130-2は第2の方向に延在し、第3の透明電極130-3および第4の透明電極130-4は第1の方向に延在している。また、第1の透明電極130-1と第2の透明電極130-2とは、第1の方向において交互に櫛歯状に配置され、第3の透明電極130-3と第4の透明電極130-4とは、第2の方向において交互に櫛歯状に配置されている。平面視において、第1の透明電極130-1および第2の透明電極130-2の延在方向(第2の方向)は、第3の透明電極130-3および第4の透明電極130-4の延在方向(第1の方向)と直交しているが、僅かにずれて交差(略90°)していてもよい。
 第2の液晶セル110-2では、第5の透明電極130-5および第6の透明電極130-6は第2の方向に延在し、第7の透明電極130-7および第8の透明電極130-8は第1の方向に延在している。また、第5の透明電極130-5と第6の透明電極130-6とは、第1の方向において交互に櫛歯状に配置され、第7の透明電極130-7と第8の透明電極130-8とは、第2の方向において交互に櫛歯状に配置されている。平面視において、第5の透明電極130-5および第6の透明電極130-6の延在方向(第2の方向)は、第7の透明電極130-7および第8の透明電極130-8の延在方向(第1の方向)と直交しているが、僅かにずれて交差(略90°)していてもよい。
 第3の液晶セル110-3では、第9の透明電極130-9および第10の透明電極130-10は第1の方向に延在し、第11の透明電極130-11および第12の透明電極130-12は第2の方向に延在している。また、第9の透明電極130-9と第10の透明電極130-10とは、第2の方向において交互に櫛歯状に配置され、第11の透明電極130-11と第12の透明電極130-12とは、第1の方向において交互に櫛歯状に配置されている。平面視において、第9の透明電極130-9および第10の透明電極130-10の延在方向(第1の方向)は、第11の透明電極130-11および第12の透明電極130-12の延在方向(第2の方向)と直交しているが、僅かにずれて交差(略90°)していてもよい。
 第4の液晶セル110-4では、第13の透明電極130-13および第14の透明電極130-14は第1の方向に延在し、第15の透明電極130-15および第16の透明電極130-16は第2の方向に延在している。また、第13の透明電極130-13と第14の透明電極130-14とは、第2方向において交互に櫛歯状に配置され、第15の透明電極130-15と第16の透明電極130-16とは、第1の方向において交互に櫛歯状に配置されている。平面視において、第13の透明電極130-13および第14の透明電極130-14の延在方向(第1の方向)は、第15の透明電極130-15および第16の透明電極130-16の延在方向(第2の方向)と直交しているが、僅かにずれて交差(略90°)していてもよい。
 平面視において、第1の透明電極130-1、第5の透明電極130-5、第11の透明電極130-11、および第15の透明電極130-15は、互いに延在方向(第2の方向)が略一致するように重畳している。他の透明電極130も同様である。但し、第1の透明電極130-1、第5の透明電極130-5、第11の透明電極130-11、および第15の透明電極130-15が僅かにずれて重畳するように、第1の液晶セル110-1~第4の液晶セル110-4が配置されていてもよい。
 第1の基板120-1~第8の基板120-8の各々として、例えば、ガラス基板、石英基板、またはサファイア基板などの透光性を有する剛性基板が用いられる。また、第1の基板120-1~第8の基板120-8の各々として、例えば、ポリイミド樹脂基板、アクリル樹脂基板、シロキサン樹脂基板、またはフッ素樹脂基板などの透光性を有する可撓性基板を用いることもできる。
 第1の透明電極130-1~第16の透明電極130-16の各々は、液晶層160に電界を形成するための電極として機能する。第1の透明電極130-1~第16の透明電極130-16の各々として、例えば、インジウム・スズ酸化物(ITO)またはインジウム・亜鉛酸化物(IZO)などの透明導電材料が用いられる。
 第1の液晶層160-1~第4の液晶層160-4の各々は、液晶分子の配向状態に応じて、透過する光を屈折し、または透過する光の偏光状態を変化させることができる。第1の液晶層160-1~第4の液晶層160-4の各々の液晶として、ネマティック液晶などが用いられる。本実施形態で説明する液晶はポジ型であるが、液晶分子の初期の配向方向などを変更することによりネガ型を適用する構成も可能である。また、液晶には、液晶分子にねじれを付与するカイラル剤が含まれていることが好ましい。
 第1の配向膜140-1~第8の配向膜140-8の各々は、液晶層160内の液晶分子を所定の方向に配列する。第1の配向膜140-1~第8の配向膜140-8の各々として、ポリイミド樹脂などが用いられる。なお、第1の配向膜140-1~第8の配向膜140-8の各々は、ラビング法または光配向法などの配向処理によって配向特性が付与されてもよい。ラビング法は、配向膜の表面を一方向に擦る方法である。また、光配向法は、配向膜に直線偏光の紫外線を照射する方法である。
 第1のシール材150-1~第4のシール材150-4の各々として、エポキシ樹脂またはアクリル樹脂を含む接着材などが用いられる。なお、接着材は、紫外線硬化型であってもよく、熱硬化型であってもよい。
 光学素子100は、少なくとも2つの液晶セル(例えば、第1の液晶セル110-1および第2の液晶セル110-2)を含むことにより、無偏光の光の配光を制御することができる。そのため、第1の液晶セル110-1の第1の基板120-1および第4の液晶セル110-4の第8の基板120-8の各表面には、例えば、液晶表示素子の表裏面に設けられるような一対の偏光板を設ける必要はない。
[3.光学素子100による配光の制御]
 図3Aおよび図3Bは、本発明の一実施形態に係る照明装置10の光学素子100による配光の制御を説明する模式的な断面図である。図3Aおよび図3Bには、図2Bに示す第1の液晶セル110-1および第2の液晶セル110-2の断面図の一部が示されている。図3Aには、透明電極130に電位が供給されていない状態の光学素子100が示され、図3Bには、透明電極130に電位が供給されている状態の光学素子100が示されている。
 第1の配向膜140-1は第1の方向に配向処理が行われている。そのため、図3Aに示すように、第1の液晶層160-1の第1の基板120-1側の液晶分子は、長軸が第1の方向に沿って配向する。すなわち、第1の基板120-1側の液晶分子の配向方向は、第1の透明電極130-1および第2の透明電極130-2の延在方向(第2の方向)と交差している。また、第2の配向膜140-2は第2の方向に配向処理が行われている。そのため、図3Aに示すように、第1の液晶層160-1の第2の基板120-2側の液晶分子は、長軸が第2の方向に沿って配向する。すなわち、第2の基板120-2側の液晶分子の配向方向は、第3の透明電極130-3および第4の透明電極130-4の延在方向(第1の方向)と交差している。したがって、第1の液晶層160-1の液晶分子は、第1の基板120-1から第2の基板120-2に向かうにつれて徐々に長軸の向きを第1の方向から第2方向に変化し、90度ねじれた状態で配向している。
 第2の液晶層160-2の液晶分子も、第1の液晶層160-1の液晶分子と同様であるため、ここでは説明を省略する。
 透明電極130に電位が供給されると、図3Bに示すように、液晶分子の配向が変化する。ここでは、第1の透明電極130-1、第3の透明電極130-3、第5の透明電極130-5、および第7の透明電極130-7にLow電位が供給され、第2の透明電極130-2、第4の透明電極130-4、第6の透明電極130-6、および第8の透明電極130-8にHigh電位が供給されているものとして説明する。なお、図3Bでは、便宜上、Low電位およびHigh電位を、それぞれ、「-」および「+」の記号を用いて図示している。なお、以下では、隣接する透明電極間に生じる電界を横電界と言う場合がある。
 図3Bに示すように、第1の透明電極130-1と第2の透明電極130-2との間の横電界の影響によって、第1の基板120-1側の液晶分子は、全体として、第1の基板120-1に対して第1の方向に凸の円弧状に配向する。同様に、第3の透明電極130-3と第4の透明電極130-4との間の横電界の影響によって、第2の基板120-2側の液晶分子は、全体として、第2の基板120-2に対して第2の方向に凸の円弧状に配向する。第1の透明電極130-1と第2の透明電極130-2との間のほぼ中央に位置する液晶分子は、いずれの横電界によっても配向がほとんど変化しない。したがって、第1の液晶層160-1に入射した光は、第1の基板120-1側の第1の方向に凸の円弧状に配向された液晶分子の屈折率分布にしたがって第1の方向に拡散され、第2の基板120-2側の第2の方向に凸の円弧状に配向された液晶分子の屈折率分布にしたがって第2の方向に拡散される。
 なお、第1の基板120-1と第2の基板120-2とは、十分に離れた基板間距離を有しているため、第1の基板120-1の第1の透明電極130-1と第2の透明電極130-2との間の横電界は、第2の基板120-2側の液晶分子の配向に対して影響を及ぼさないか、または、無視できるほどに小さい。同様に、第2の基板120-2の第3の透明電極130-3と第4の透明電極130-4との間の横電界は、第1の基板120-1側の液晶分子の配向に対して影響を及ぼさないか、または、無視できるほどに小さい。
 第5の透明電極130-5~第8の透明電極130-8に電位が供給された場合における第2の液晶層160-2の液晶分子も、第1の液晶層160-1の液晶分子と同様であるため、ここでは説明を省略する。
 続いて、光学素子100を透過する光の配光について説明する。光源から出射された光は、第1の方向の偏光成分(P偏光成分)および第2の方向の偏光成分(S偏光成分)を有するが、以下では、便宜上、光をP偏光成分とS偏光成分とに分けて説明する。すなわち、光源から出射された光(図3Aおよび図3B中の(1)参照)は、P偏光成分を有する第1の偏光510およびS偏光成分を有する第2の偏光520を含む。なお、図3Aおよび図3B中の矢印の記号および丸印にバツを付した記号は、それぞれ、P偏光成分およびS偏光成分を表している。
 第1の偏光510は、第1の基板120-1に入射した後、第2の基板120-2に向かうにつれて、液晶分子の配向のねじれにしたがってP偏光成分からS偏光成分に変化する(図3Aおよび図3B中の(2)~(4)参照)。より具体的には、第1の偏光510は、第1の基板120-1側ではx軸方向に偏光軸を有しているが、第1の液晶層160-1の厚さ方向に通過する過程でその偏光軸を徐々に変化させ、第2の基板120-2側ではy軸方向に偏光軸を有し、その後、第2の基板120-2側から出射される(図3Aおよび図3B中の(5)参照)。
 ここで、第1の透明電極130-1と第2の透明電極130-2との間に横電界が発生すると、当該横電界の影響で第1の基板120-1側の液晶分子が第1の方向に凸の円弧状に配向し、屈折率分布が変化する。そのため、第1の偏光510は、当該液晶分子の屈折率分布にしたがって、第1の方向に拡散する。また、第3の透明電極130-3と第4の透明電極130-4との間に横電界が発生すると、当該横電界の影響で第2の基板120-2側の液晶分子が第2の方向に凸の円弧状に配向し、屈折率分布が変化する。そのため、第1の偏光510は、当該液晶分子の屈折率分布の変化にしたがって、第2の方向に拡散する。
 したがって、横電界が発生していない場合(図3A参照)、第1の液晶セル110-1を透過する第1の偏光510は、偏光成分がP偏光成分からS偏光成分に変化する。一方、横電界が発生している場合(図3B参照)、第1の液晶セルを透過する第1の偏光510は、偏光成分がP偏光成分からS偏光成分に変化するとともに、第1の方向および第2の方向に拡散する。
 第2の偏光520は、第1の基板120-1に入射した後、第2の基板120-2に向かうにつれて、液晶分子の配向のねじれにしたがってS偏光成分からP偏光成分に変化する(図3Aおよび図3B中の(2)~(4)参照)。より具体的には、第2の偏光520は、第1の基板120-1側では第2の方向に偏光軸を有しているが、第1の液晶層160-1の厚さ方向に通過する過程でその偏光軸を徐々に変化させ、第2の基板120-2側では第1の方向に偏光軸を有し、その後、第2の基板120-2側から出射される(図3Aおよび図3B中の(5)参照)。
 ここで、第1の透明電極130-1と第2の透明電極130-2との間に横電界が発生すると、当該横電界の影響で第1の基板120-1側の液晶分子が第1の方向に凸の円弧状に配向し、屈折率分布が変化する。しかしながら、第2の偏光520の偏光軸は、第1の基板120-1側の液晶分子の配向と直交しているため、当該液晶分子の屈折率分布の影響を受けず、拡散せずにそのまま通過する。また、第3の透明電極130-3と第4の透明電極130-4との間に横電界が発生すると、当該横電界の影響で第2の基板120-2側の液晶分子が第2の方向に凸の円弧状に配向し、屈折率分布が変化する。しかしながら、第2の偏光520の偏光軸は、第2の基板120-2側の液晶分子の配向と直交しているため、当該液晶分子の屈折率分布の影響を受けず、拡散せずにそのまま通過する。
 したがって、横電界が発生していない場合(図3A参照)だけでなく、横電界が発生している場合(図3B参照)も、第1の液晶セル110-1を透過する第2の偏光520は、偏光成分がS偏光成分からP偏光成分に変化するが、拡散しない。
 第2の液晶セル110-2の第2の液晶層160-2の液晶分子も、第1の液晶セル110-1の第1の液晶層160-1の液晶分子と同様の屈折率分布を有する。但し、第1の偏光510および第2の偏光520は、第1の液晶セル110-1を透過することで、偏光軸が変化しているため、第2の液晶層160-2の液晶分子の屈折率分布の影響を受ける偏光は逆となる。すなわち、横電界が発生していない場合(図3A参照)だけでなく、横電界が発生している場合(図3B参照)も、第2の液晶セル110-2を透過する第1の偏光510は、偏光成分がS偏光成分からP偏光成分に変化するが、拡散しない(図3Aおよび図3B中の(6)~(8)参照)。一方、横電界が発生していない場合(図3A参照)、第2の液晶セル110-2を透過する第2の偏光520は、偏光成分がP偏光成分からS偏光成分に変化するのみであるが、横電界が発生している場合(図3B参照)、第2の液晶セル110-2を透過する第2の偏光520は、偏光成分がP偏光成分からS偏光成分に変化するとともに、第1の方向および第2の方向に拡散する。
 以上からわかるように、光学素子100では、同一の構造を有する2つの液晶セル110を積層させることにより、光学素子100に入射する光の偏光成分を2度にわたって変化させ、その結果、入射前と入射後での偏光成分を変わらなくすることができる(図3Aおよび図3B中の(1)および(9)参照)。他方、光学素子100は、透明電極130に電位を供給し、液晶セル110の液晶層160の液晶分子が有する屈折率分布を変化させ、液晶セル110を透過する光を屈折させることができる。より具体的には、第1の液晶セル110-1が第1の偏光510(P偏光成分)の光を第1の方向、第2の方向、または第1の方向および第2の方向に拡散させ、第2の液晶セル110-2が第2の偏光520(S偏光成分)の光を第1の方向、第2の方向、または第1の方向および第2の方向に拡散させることができる。
 図3Aおよび図3Bでは第1の液晶セル110-1および第2の液晶セル110-2のみを図示し、第1の液晶セル110-1および第2の液晶セル110-2を透過する光の配光について説明したが、第3の液晶セル110-3および第4の液晶セル110-4を透過する光の配光も同様である。但し、第3の液晶セル110-3および第4の液晶セル110-4は、第1の液晶セル110-1および第2の液晶セル110-2に対して90°回転させた状態で配置されているため、作用を及ぼす偏光成分は、第1の液晶セル110-1および第2の液晶セル110-2の場合と入れ替わることになる。すなわち、第3の液晶セル110-3が第2の偏光520(S偏光成分)の光を第1の方向、第2の方向、または第1の方向および第2の方向に拡散させ、第4の液晶セル110-4が第1の偏光510(P偏光成分)の光を第1の方向、第2の方向、または第1の方向および第2の方向に拡散させることができる。
 上述したように、光学素子100では、所定の透明電極130に電位を供給することにより、透過する光を所定の方向に拡散することができる。一方、照明装置10では、発光モジュール200から照射される光はコリメート光であり、透明電極130に電位が供給されていないときに、光学素子100を透過する光の配光の形状が異方的となる場合がある。そのような場合であっても、光学素子100を用いて補正することができる。以下、光学素子100による配光の形状の補正について説明する。
[4.光学素子100による配光の形状の補正]
 図4は、本発明の一実施形態に係る照明装置10の光学素子100と発光モジュール200との関係を説明する模式図である。なお、図4には、光学素子100の液晶セル110の透明電極130、ならびに発光モジュール200の導光板250およびプリズムシート260が模式的に示されている。
 光学素子100では、第1の透明電極130-1、第2の透明電極130-2、第5の透明電極130-5、第6の透明電極130-6、第11の透明電極130-11、第12の透明電極130-12、第15の透明電極130-15、および第16の透明電極130-16は、第2の方向に延在している。また、第3の透明電極130-3、第4の透明電極130-4、第7の透明電極130-7、第8の透明電極130-8、第9の透明電極130-9、第10の透明電極130-10、第13の透明電極130-13、および第14の透明電極130-14は、第1の方向に延在している。一方、発光モジュール200では、導光板250の第1の溝252が、第3の方向に延在している。また、導光板250の第2の溝254およびプリズムシート260の溝262は、第4の方向に延在している。すなわち、透明電極130の延在方向と、導光板250の第1の溝252もしくは第2の溝254またはプリズムシート260の溝262の延在方向とは、45°または135°で交差している。
 図5は、本発明の一実施形態に係る照明装置10において、補正前後の配光の形状を説明する模式図である。図5中の破線は、透明電極130に電位が供給されていない場合の配光の形状である。本実施形態においては、発光モジュール200は、その出向領域の中央部から光を出射する。照明装置10では、発光モジュール200の導光板250の第1の溝252および第2の溝254ならびにプリズムシート260の溝262が第3の方向または第4の方向に延在している。そのため、発光モジュール200から照射され、光学素子100を透過する光の配光の形状は、第3の方向と第4の方向とで長さが異なる場合がある。例えば、図5中の破線で示すように、第4の方向の長さが第3の方向の長さよりも小さい十字形状を示す場合がある。換言すると、図5中の破線が示す十字形状は、第1の方向および第2の方向に窪みを有する。この場合、第1の方向または第2の方向に延在する透明電極130に供給する電位を調整することにより、光学素子100によって第1の方向または第2の方向に光を拡散させ、図5中の実線で示す配光の形状に補正することができる。例えば、基板120上の隣接する透明電極130間の電位差が2Vとなるように、透明電極130に電位を供給することができる。このような補正に必要とされる電位の値は、予めルックアップテーブル322に格納しておくことができる。すなわち、照明装置10では、制御部300が、記憶部320のルックアップテーブル322を読み出し、配光の形状を容易に補正することができる。
 なお、上記では、透明電極130の延在方向と、導光板250の第1の溝252もしくは第2の溝254またはプリズムシート260の溝262の延在方向とは、45°または135°で交差している照明装置10を例に説明したが、当該なす角はこれに限られない。なす角は、略45°または略135°の範囲内であればよい。
 以上、本発明の一実施形態に係る照明装置10によれば、発光モジュール200から照射される光の配光の形状を、光学素子100によって補正することができる。すなわち、照明装置10では、透明電極130の延在方向と、導光板250の第1の溝252もしくは第2の溝254またはプリズムシート260の溝262の延在方向とが異なっているため、光学素子100を透過し、制御前の光の配光の形状を補正することができる。
<第2実施形態>
 図6~図7Cを参照して、照明装置10Aについて説明する。なお、以下では、照明装置10Aの構成が照明装置10の構成と同様であるとき、その説明を省略する場合がある。
 図6は、本発明の一実施形態に係る照明装置10Aの光学素子100Aと発光モジュール200Aとの関係を説明する模式図である。なお、図6には、光学素子100Aの液晶セル110Aの透明電極130A、ならびに発光モジュール200Aの導光板250Aおよびプリズムシート260Aが模式的に示されている。
 光学素子100Aでは、第1の透明電極130A-1、第2の透明電極130A-2、第5の透明電極130A-5、第6の透明電極130A-6、第11の透明電極130A-11、第12の透明電極130A-12、第15の透明電極130A-15、および第16の透明電極130A-16は、第4の方向に延在している。また、第3の透明電極130A-3、第4の透明電極130A-4、第7の透明電極130A-7、第8の透明電極130A-8、第9の透明電極130A-9、第10の透明電極130A-10、第13の透明電極130A-13、および第14の透明電極130A-14は、第3の方向に延在している。一方、発光モジュール200Aでは、導光板250Aの第1の溝252Aが、第1の方向に延在している。また、導光板250Aの第2の溝254Aおよびプリズムシート260Aの溝262Aは、第2の方向に延在している。すなわち、透明電極130Aの延在方向と、導光板250Aの第1の溝252Aもしくは第2の溝254Aまたはプリズムシート260Aの溝262Aの延在方向とは、45°または135°で交差している。
 図7A~図7Cは、本発明の一実施形態に係る照明装置10Aにおいて、補正前後の配光の形状を説明する模式図である。図7A~図7C中の破線は、透明電極130Aに電位が供給されていない場合の配光の形状である。照明装置10Aでは、発光モジュール200Aの導光板250Aの第1の溝252Aおよび第2の溝254Aならびにプリズムシート260Aの溝262Aが第1の方向または第2の方向に延在している。そのため、発光モジュール200Aから照射され、光学素子100Aを透過する光の配光の形状は、第1の方向と第2の方向とで長さが異なる場合がある。例えば、図7A~図7C中の破線で示すように、第2の方向の長さが第1の方向の長さよりも小さい十字形状を示す場合がある。換言すると、図7A~図7C中の破線が示す十字形状は、第3の方向および第4の方向に窪みを有する。この場合、第3の方向または第4の方向に延在する透明電極130Aに供給する電位を調整することにより、光学素子100Aによって第3の方向または第4の方向に光を拡散させ、図7A~図7C中の実線で示す配光の形状に補正することができる。例えば、隣接する透明電極130の電位差が表1に示すように、各透明電極130に電位を供給する。
Figure JPOXMLDOC01-appb-T000001
  
      
 図7A~図7C中の実線で示す配光の形状は、それぞれ、表1の電位差(1)、電位差(2)、および電位差(3)となるように、各透明電極130に電位を供給された場合である。表1および図7A~図7Cからわかるように、透明電極130に供給する電位を調整することにより、配光の形状を円形だけでなく、楕円形に補正することもできる。また、第1の方向の長さと第2の方向の長さとの差が大きい場合には、隣接する透明電極130間の電位差を大きくすることにより配光の形状を補正することができる。
 以上、本発明の一実施形態に係る照明装置10Aによれば、発光モジュール200Aから照射される光の配光の形状を、光学素子100Aによって補正することができる。すなわち、照明装置10Aでは、透明電極130Aの延在方向と、導光板250Aの第1の溝252Aもしくは第2の溝254Aまたはプリズムシート260の溝262Aの延在方向とが異なっているため、光学素子100Aを透過し、制御前の光の配光の形状を補正することができる。
<第3実施形態>
 図8~図9Cを参照して、照明装置10Bについて説明する。なお、以下では、照明装置10Bの構成が照明装置10の構成と同様であるとき、その説明を省略する場合がある。
 図8は、本発明の一実施形態に係る照明装置10Bの模式的な分解斜視図である。図8に示すように、照明装置10Bは、光学素子100Aおよび発光モジュール200Bを含む。発光モジュール200Bは、LED素子242およびリフレクタ290Bを含む。
 リフレクタ290Bの形状は、内部に空洞を有する略円錐台形である。リフレクタ290B内には、LED素子242が設けられている。すなわち、LED素子242は、リフレクタ290Bの底面に配置され、リフレクタ290Bの側面によって取り囲まれている。LED素子242から出射された光は、リフレクタ290Bの底面または側面によって反射され、光学素子100に入射される。なお、リフレクタ290Bの形状は、略円錐台形に限られない。リフレクタ290Bの形状は、例えば、多角柱形であってもよく、リフレクタ290Bの底面または側面は、平面であっても曲面であってもよい。
 リフレクタ290Bの形状またはLED素子242の実装のばらつきによっては、発光モジュール200Bから照射される光の配光の形状が異方的となる場合がある。この場合、各透明電極130Aに電位が印加されていない光学素子100Aから出射される光の配光の形状も異方的となる。例えば、光学素子100Aから出射された光の配光の形状が、y軸方向の長さがx軸方向の長さよりも小さい楕円形であるとき、透明電極130Aがx軸方向およびy軸方向に延在する透明電極130Aが含まれる光学素子100Aを用いてy軸方向に光を拡散させ、配光の形状を等方的になるように補正することができる。また、透明電極130Aに供給する電位の値をルックアップテーブル322に格納しておくことにより、常に配光の形状を補正することができる電位を供給することができる。
 なお、補正前の配光の形状の長軸方向または短軸方向と光学素子100Aの透明電極130Aの延在方向とが一致していないときは、透明電極130Aの延在方向が補正前の長軸方向または短軸方向に一致するように、発光モジュール200Bに対する光学素子100Aの配置を調整すればよい。また、光学素子100Aの代わりに、光学素子100を用いることもできる。
 また、照明装置10Bでは、光学素子100Aを用いて、配光の形状の補正を行うだけでなく、配光の形状を制御することができる。
 図9A~図9Cは、本発明の一実施形態に係る照明装置10Bから照射された光の配光の形状を測定した測定結果である。具体的には、図9A~図9Cは、それぞれ、作製された照明装置10Bに表2に示す電位差(4)~電位差(6)を供給したときに、照明装置10Bから照射された光の方位角を測定した測定結果である。
Figure JPOXMLDOC01-appb-T000002
  
      
 電位差(4)のように、隣接する透明電極130間の電位差が30Vとなるように各透明電極130に電位が供給されると、図9に示すようなx軸方向およびy軸方向に光が拡散された配光の形状が得られた。また、電位差(5)のように、各液晶セル110がy軸方向に光を拡散させるように透明電極130に電位が供給されると、y軸方向に光が拡がる配光の形状が得られた。また、電位差(6)のように、各液晶セル110がx軸方向に光を拡散させるように透明電極130に電位が供給されると、x軸方向に光が拡がる配光の形状が得られた。
 以上、本発明の一実施形態に係る照明装置10Bによれば、発光モジュール200Bから照射される光の配光の形状を、光学素子100または光学素子100Aによって補正することができるため、照明装置10Bにおける発光モジュール200B、特に、リフレクタ290Bの設計の自由度が拡がる。換言すると、照明装置10Bとして、さまざまな発光モジュール200Bを用いることができる。
 本発明の思想の範疇において、当業者であれば、各種の変更例および修正例に相当し得るものであり、それら変更例および修正例についても本発明の範囲に属するものと了解される。例えば、上述の各実施形態に対して、当業者が適宜、構成要素の追加、削除もしくは設計変更を行ったもの、または、工程の追加、省略もしくは条件変更を行ったものも、本発明の要旨を備えている限り、本発明の範囲に含まれる。
 また、本実施形態において態様によりもたらされる他の作用効果について本明細書の記載から明らかなもの、または当業者において適宜想到し得るものについては、当然に本発明によりもたらされるものと解される。
10、10A、10B:照明装置、 100、100A:光学素子、 110、110A:液晶セル、 120:基板、 130、130A:透明電極、 140:配向膜、 150:シール材、 160:液晶層、 170:光学弾性樹脂層、 200、200A、200B:発光モジュール、 210:金属フレーム、 220:反射シート、 230:樹脂フレーム、 240:光源基板、 242:LED素子、 250、250A:導光板、 252、252A:第1の溝、 254、254A:第2の溝、 260、260A:プリズムシート、 262、262A:溝、 270:スペーサ、 280:遮光両面テープ、 290B:リフレクタ、 300:制御部、 310:信号処理部、 320:記憶部、 322:ルックアップテーブル、 510:第1の偏光、 520:第2の偏光、 900:情報端末

Claims (13)

  1.  発光モジュールと、
     第1の液晶セルと第2の液晶セルとが積層され、前記発光モジュールから照射された光を透過する光学素子と、を含み、
     前記第1の液晶セルおよび前記第2の液晶セルの各々は、
      第1の方向において、第1の透明電極と第2の透明電極とが交互に配置された第1の基板と、
      前記第1の方向と交差する第2の方向において、第3の透明電極と第4の透明電極とが交互に配置された第2の基板と、を含み、
     前記発光モジュールは、
      光源と、
      前記光源から照射された光が入射される端面および入射した前記光を出射する第1の面を含む導光板と、
      前記第1の面に対向して配置されるプリズムシートと、を含み、
     前記第1の液晶セルの前記第2の基板と前記第2の液晶セルの前記第1の基板とが隣接し、
     前記第1の面は、前記第1の方向および前記第2の方向と交差する第3の方向に延在する複数の第1の溝を含む、照明装置。
  2.  前記発光モジュールは、コリメート光を照射する、請求項1に記載の照明装置。
  3.  前記導光板の前記第1の面と反対の第2の面は、前記第3の方向と交差する第4の方向に延在する複数の第2の溝を含む、請求項1または請求項2に記載の照明装置。
  4.  前記光学素子は、さらに、第3の液晶セルと第4の液晶セルとが積層され、
     前記第3の液晶セルおよび前記第4の液晶セルの各々は、
      前記第2の方向において、第5の透明電極と第6の透明電極とが交互に櫛歯状に配置された第3の基板と、
      前記第1の方向において、第7の透明電極と第8の透明電極とが交互に櫛歯状に配置された第4の基板と、を含み、
     前記第2の液晶セルの前記第2の基板と前記第3の液晶セルの前記第3の基板とが隣接し、
     前記第3の液晶セルの前記第4の基板と前記第4の液晶セルの前記第3の基板とが隣接している、請求項3に記載の照明装置。
  5.  前記第1の方向は、前記第2の方向と90°±10°で交差し、
     前記第3の方向は、前記第4の方向と90°±10°で交差している、請求項4に記載の照明装置。
  6.  前記第1の方向と前記第3の方向とのなす角は、45°±10°である、請求項5に記載の照明装置。
  7.  さらに、前記第1の透明電極と第2の透明電極との間の電位差、前記第3の透明電極と前記第4の透明電極との間の電位差、前記第5の透明電極と前記第6の透明電極との間の電位差、および前記第7の透明電極と前記第8の透明電極との間の電位差がそれぞれ0Vであるときの配光の形状を補正する電位の値が格納されたルックアップテーブルを含む、請求項6に記載の照明装置。
  8.  発光モジュールと、
     第1の液晶セルと第2の液晶セルとが積層され、前記発光モジュールから照射された光を透過する光学素子と、を含み、
     前記第1の液晶セルおよび前記第2の液晶セルの各々は、
      第1の方向において、第1の透明電極と第2の透明電極とが交互に配置された第1の基板と、
      前記第1の方向と交差する第2の方向において、第3の透明電極と第4の透明電極とが交互に配置された第2の基板と、を含み、
     前記発光モジュールは、
      光源と、
      前記光源の周囲に配置され、前記光源から照射された光を反射するリフレクタと、を含み、
     前記第1の液晶セルの前記第2の基板と前記第2の液晶セルの前記第1の基板とが隣接している、照明装置。
  9.  前記光学素子は、さらに、第3の液晶セルと第4の液晶セルとが積層され、
     前記第3の液晶セルおよび前記第4の液晶セルの各々は、
      前記第2の方向において、第5の透明電極と第6の透明電極とが交互に櫛歯状に配置された第3の基板と、
      前記第1の方向において、第7の透明電極と第8の透明電極とが交互に櫛歯状に配置された第4の基板と、を含み、
     前記第2の液晶セルの前記第2の基板と前記第3の液晶セルの前記第3の基板とが隣接し、
     前記第3の液晶セルの前記第4の基板と前記第4の液晶セルの前記第3の基板とが隣接している、請求項8に記載の照明装置。
  10.  前記第1の方向は、前記第2の方向と90°±10°で交差している、請求項9に記載の照明装置。
  11.  さらに、前記第1の透明電極と第2の透明電極との間の電位差、前記第3の透明電極と前記第4の透明電極との間の電位差、前記第5の透明電極と前記第6の透明電極との間の電位差、および前記第7の透明電極と前記第8の透明電極との間の電位差がそれぞれ0Vであるときの配光の形状を補正する電位の値が格納されたルックアップテーブルを含む、請求項10に記載の照明装置。
  12.  さらに、情報端末と通信接続される制御部を含み、
     前記制御部の信号処理部は、前記情報端末からの要求信号に基づいて、前記発光モジュールの輝度を制御する、請求項1乃至請求項11のいずれか一項に記載の照明装置。
  13.  さらに、情報端末と通信接続される制御部を含み、
     前記制御部の信号処理部は、前記情報端末からの要求信号に基づいて、前記光学素子に供給する電位を制御する、請求項1乃至請求項11のいずれか一項に記載の照明装置。
     
PCT/JP2022/021725 2021-05-31 2022-05-27 照明装置 WO2022255246A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2023525786A JPWO2022255246A1 (ja) 2021-05-31 2022-05-27
CN202280038292.0A CN117413142A (zh) 2021-05-31 2022-05-27 照明装置
US18/517,560 US20240117955A1 (en) 2021-05-31 2023-11-22 Lighting device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-091444 2021-05-31
JP2021091444 2021-05-31

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/517,560 Continuation US20240117955A1 (en) 2021-05-31 2023-11-22 Lighting device

Publications (1)

Publication Number Publication Date
WO2022255246A1 true WO2022255246A1 (ja) 2022-12-08

Family

ID=84324116

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/021725 WO2022255246A1 (ja) 2021-05-31 2022-05-27 照明装置

Country Status (4)

Country Link
US (1) US20240117955A1 (ja)
JP (1) JPWO2022255246A1 (ja)
CN (1) CN117413142A (ja)
WO (1) WO2022255246A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11841592B2 (en) * 2021-10-25 2023-12-12 Beihai Hkc Optoelectronics Technology Co., Ltd. Display panel and display device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003029301A (ja) * 2001-07-13 2003-01-29 Minolta Co Ltd 反射型フルカラー液晶表示素子及び該素子を備えた表示装置
JP2010230887A (ja) * 2009-03-26 2010-10-14 Panasonic Electric Works Co Ltd 照明装置
WO2016093136A1 (ja) * 2014-12-10 2016-06-16 シャープ株式会社 照明装置及び表示装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003029301A (ja) * 2001-07-13 2003-01-29 Minolta Co Ltd 反射型フルカラー液晶表示素子及び該素子を備えた表示装置
JP2010230887A (ja) * 2009-03-26 2010-10-14 Panasonic Electric Works Co Ltd 照明装置
WO2016093136A1 (ja) * 2014-12-10 2016-06-16 シャープ株式会社 照明装置及び表示装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11841592B2 (en) * 2021-10-25 2023-12-12 Beihai Hkc Optoelectronics Technology Co., Ltd. Display panel and display device

Also Published As

Publication number Publication date
JPWO2022255246A1 (ja) 2022-12-08
US20240117955A1 (en) 2024-04-11
CN117413142A (zh) 2024-01-16

Similar Documents

Publication Publication Date Title
US7385659B2 (en) Structured transflectors for enhanced ambient and backlight operation of transmissive liquid crystal displays
TWI699596B (zh) 背光模組及顯示裝置
TW200408883A (en) Polarized light source system and liquid crystal display using the same
KR20060041782A (ko) 도광판 본체, 도광판, 백라이트, 및 액정표시장치
JPH06109925A (ja) 光学的フイルム及び上記光学的フイルムを用いた液晶表示装置
WO2005121641A1 (en) Illumination system
WO2017148010A1 (zh) 液晶显示器以及电子设备
WO2022255246A1 (ja) 照明装置
US20230147664A1 (en) Liquid crystal device
JP2020073996A (ja) 表示パネルおよび表示装置ならびに有機電界発光表示装置
US20230418108A1 (en) Liquid crystal device
WO2022176360A1 (ja) 光学素子および照明装置
KR20050118739A (ko) 액정 디스플레이를 위한 구조화 트랜스플렉터
US20220113544A1 (en) Display device
WO2022239680A1 (ja) 光学素子
JP2012528442A (ja) 照明システム
WO2023074106A1 (ja) 光学素子
WO2023032517A1 (ja) 光学素子の駆動方法
US11934072B2 (en) Liquid crystal device
WO2023095459A1 (ja) 光学素子
US20230418119A1 (en) Liquid crystal device
WO2019064844A1 (ja) 採光システム
WO2022176361A1 (ja) 光学素子
WO2024034293A1 (ja) 光学装置
WO2023157508A1 (ja) 照明装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22815996

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023525786

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202280038292.0

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE