WO2022255077A1 - 検知装置および検知方法 - Google Patents

検知装置および検知方法 Download PDF

Info

Publication number
WO2022255077A1
WO2022255077A1 PCT/JP2022/020405 JP2022020405W WO2022255077A1 WO 2022255077 A1 WO2022255077 A1 WO 2022255077A1 JP 2022020405 W JP2022020405 W JP 2022020405W WO 2022255077 A1 WO2022255077 A1 WO 2022255077A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
processing unit
transmission line
difference
measurement
Prior art date
Application number
PCT/JP2022/020405
Other languages
English (en)
French (fr)
Inventor
櫻澤聡
伊澤真人
加藤勇夫
朝夷名巧
清水晶太
西田奏太
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to JP2022552182A priority Critical patent/JP7188656B1/ja
Priority to CN202280032538.3A priority patent/CN117296253A/zh
Priority to DE112022002877.7T priority patent/DE112022002877T5/de
Publication of WO2022255077A1 publication Critical patent/WO2022255077A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/58Testing of lines, cables or conductors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B3/00Line transmission systems
    • H04B3/02Details
    • H04B3/46Monitoring; Testing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/54Testing for continuity

Definitions

  • the present disclosure relates to sensing devices and sensing methods.
  • This application claims priority based on Japanese Patent Application No. 2021-92768 filed on June 2, 2021, and incorporates all of its disclosure herein.
  • Patent Document 1 Japanese Patent Publication No. 2015-536456
  • a broadband signal wave whose phase and amplitude are modulated is applied to the end of an electric cable, and the broadband signal wave transmitted and reflected by the electric cable at the end. and analyzing the impedance characteristics using the acquired broadband signal wave to monitor the condition of an electrical cable.
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2018-179531 discloses the following transmission device. That is, the transmission device is a transmission device in which a first card and a second card are connected via a connector, and a signal generation unit that outputs an AC signal having a frequency higher than the transmission rate of data input to the transmission device. and a determination unit that receives the AC signal through the connector and determines whether or not the first card and the second card are mated with the connector based on the power level of the received AC signal. , has
  • the detection device of the present disclosure includes a signal output unit that outputs a measurement signal including a first frequency component to a transmission line, and measures a response signal from the transmission line to the measurement signal output by the signal output unit.
  • a signal measuring unit generating a difference signal that is a difference between the response signal measured by the signal measuring unit and a reference signal based on the measurement signal, and measuring the magnitude of the correlation between the reference signal and the difference signal;
  • a processing unit that calculates an index value to indicate the transmission line, and detects an abnormality in the transmission line based on the calculated index value.
  • a detection method of the present disclosure is a detection method in a detection device, comprising the steps of: outputting a measurement signal including a first frequency component to a transmission line; and measuring a response signal from the transmission line to the measurement signal. and calculating an index value indicating the degree of correlation between the measured response signal and a reference signal based on the measurement signal, and detecting an abnormality in the transmission line based on the calculated index value.
  • One aspect of the present disclosure can be implemented not only as a detection device including such a characteristic processing unit, but also as a semiconductor integrated circuit that implements part or all of the detection device, or can be implemented as a semiconductor integrated circuit that includes the detection device. It can be implemented as a system.
  • FIG. 1 is a diagram showing the configuration of a communication system according to the first embodiment of the present disclosure.
  • FIG. 2 is a diagram showing the configuration of a relay device according to the first embodiment of the present disclosure.
  • FIG. 3 is a diagram illustrating a simulation result of response signals measured by a signal measurement unit in the relay device according to the first embodiment of the present disclosure;
  • FIG. 4 is a diagram showing a simulation result of the argument of the complex analytic signal calculated by the processing unit in the relay device according to the first embodiment of the present disclosure.
  • FIG. 5 is a diagram illustrating a method of specifying a disconnection occurrence position by a processing unit in the relay device according to the first embodiment of the present disclosure.
  • FIG. 6 is a diagram illustrating simulation results of distances calculated by a processing unit in the relay device according to the first embodiment of the present disclosure.
  • FIG. 7 is a flowchart that defines an example of an operation procedure when the relay device according to the first embodiment of the present disclosure performs detection processing.
  • FIG. 8 is a diagram showing the configuration of a relay device according to the second embodiment of the present disclosure.
  • FIG. 9 is a flowchart that defines an example of an operation procedure when the relay device according to the second embodiment of the present disclosure performs detection processing.
  • FIG. 10 is a diagram showing the configuration of a relay device according to the third embodiment of the present disclosure.
  • FIG. 11 is a flowchart that defines an example of an operation procedure when the relay device according to the third embodiment of the present disclosure performs detection processing.
  • FIG. 12 is a diagram illustrating the configuration of a relay device according to the fourth embodiment of the present disclosure
  • FIG. 13 is a diagram illustrating a simulation result of a multiplication signal generated by a processing unit in a relay device according to the fourth embodiment of the present disclosure
  • FIG. 14 is a diagram illustrating simulation results of extraction signals generated by a processing unit in a relay device according to the fourth embodiment of the present disclosure
  • FIG. 15 is a diagram illustrating simulation results of distances calculated by a processing unit in a relay device according to the fourth embodiment of the present disclosure
  • FIG. 16 is a flowchart that defines an example of an operation procedure when the relay device according to the fourth embodiment of the present disclosure performs detection processing.
  • FIG. 17 is a diagram illustrating a simulation result of a multiplication signal generated by a processing unit in a relay device according to the modification of the fourth embodiment of the present disclosure
  • FIG. 18 is a diagram illustrating a simulation result of an extraction signal generated by a processing unit in a relay device according to the modification of the fourth embodiment of the present disclosure
  • FIG. 19 is a diagram illustrating simulation results of distances calculated by a processing unit in a relay device according to a modification of the fourth embodiment of the present disclosure
  • FIG. 20 is a diagram illustrating the configuration of a relay device according to the fifth embodiment of the present disclosure
  • FIG. 21 is a diagram illustrating a simulation result of amplitude generated by a processing unit in a relay device according to the fifth embodiment of the present disclosure
  • FIG. 22 is a diagram illustrating simulation results of reflection coefficients generated by a processing unit in the relay device according to the fifth embodiment of the present disclosure
  • FIG. 23 is a diagram illustrating the configuration of a relay device according to the sixth embodiment of the present disclosure
  • the present disclosure has been made to solve the above-mentioned problems, and its purpose is to provide a detection device and a detection method capable of detecting an abnormality in a transmission line with simple processing and configuration.
  • an abnormality in a transmission line can be detected with simple processing and configuration.
  • a detection device includes a signal output unit that outputs a measurement signal including a first frequency component to a transmission line, and the transmission of the measurement signal output by the signal output unit.
  • a signal measuring unit that measures a response signal from a line; a difference signal that is a difference between the response signal measured by the signal measuring unit and a reference signal based on the measurement signal;
  • a processing unit that calculates an index value indicating the magnitude of correlation with a signal, and detects an abnormality in the transmission line based on the calculated index value.
  • a difference signal which is the difference between the response signal from the transmission line when the measurement signal is output to the transmission line and the reference signal based on the measurement signal, is generated, and the magnitude of the correlation between the reference signal and the difference signal is calculated.
  • the processing unit uses the position of the first frequency component included in the reference signal and the first frequency component included in the difference signal as the index value. A phase difference may be calculated.
  • an abnormality in the transmission line can be detected by focusing on the phase shift of the signal on the transmission line.
  • the influence of noise can be reduced compared to a configuration in which, for example, a reflection coefficient is calculated as an index value other than the phase difference, an abnormality in the transmission line can be detected more accurately.
  • the processing unit may calculate a reflection coefficient between the reference signal and the difference signal as the index value.
  • an abnormality in the transmission line can be detected by focusing on the amount of signal attenuation in the transmission line.
  • the processing unit inputs a multiplied signal of the reference signal and the difference signal to a first filter for extracting a DC component, A DC component is extracted from an output signal output from the first filter and a signal obtained by shifting the phase of the component of the first frequency contained in the reference signal by ⁇ /2 and the multiplication signal of the difference signal.
  • the index value may be calculated using an output signal output from the second filter by inputting to the second filter.
  • the processing unit converts a signal containing a component of a second frequency different from the first frequency by a multiplication signal of the difference signal to the The index value is calculated using the output signal output from the third filter for extracting the frequency component of the difference between the first frequency and the second frequency.
  • the index value can be calculated by processing the low-frequency output signal output from the third filter using a circuit configuration with a lower operating frequency. cost can be reduced.
  • the processing unit may calculate the phase difference using the argument of the complex analytic signal of the reference signal and the argument of the complex analytic signal of the difference signal.
  • the processing unit is the difference between the response signal and the reference signal, which is a signal obtained by performing delay adjustment on the measurement signal.
  • a difference signal may be generated.
  • the measurement signal superimposed on the response signal is more accurate. Since it is possible to generate a differential signal that has been canceled out, it is possible to more accurately detect an abnormality in the transmission line using the generated differential signal, and to more accurately identify the location of the occurrence of the abnormality.
  • the setting of the delay amount of the reference signal with respect to the measurement signal may be changeable.
  • the processing unit is the difference between the response signal and the reference signal, which is the response signal measured by the signal measurement unit in a steady state.
  • the difference signal may be generated.
  • a noise-reduced differential signal can be generated using the response signal in the steady state, so an abnormality in the transmission line can be detected more accurately using the generated differential signal.
  • the processing unit may detect the location where the abnormality occurs.
  • a detection method is a detection method in a detection device, comprising: outputting a measurement signal including a first frequency component to a transmission line; measuring a response signal from the transmission line; calculating an index value indicating the magnitude of correlation between the measured response signal and a reference signal based on the measurement signal; and based on the calculated index value, the transmission line and detecting an anomaly in.
  • a difference signal which is the difference between the response signal from the transmission line when the measurement signal is output to the transmission line and the reference signal based on the measurement signal, is generated, and the magnitude of the correlation between the reference signal and the difference signal is calculated.
  • FIG. 1 is a diagram showing the configuration of a communication system according to the first embodiment of the present disclosure.
  • communication system 301 includes relay device 101 and a plurality of communication devices 111 .
  • the relay device 101 is connected to each communication device 111 via the transmission line 1 .
  • the transmission line 1 includes a cable portion and connector portions provided at first and second ends of the cable portion, respectively.
  • a connector portion provided at the first end of the cable portion is connected to a connector portion in the relay device 101 .
  • a connector portion provided at the second end of the cable portion is connected to a connector portion in the communication device 111 .
  • the transmission line 1 is, for example, an Ethernet (registered trademark) cable.
  • the communication system 301 is mounted on a vehicle, for example.
  • the communication device 111 is, for example, an in-vehicle ECU (Electronic Control Unit).
  • the communication system 301 may also be used for home networking or factory automation.
  • the relay device 101 can communicate with the communication device 111.
  • the relay device 101 performs relay processing for relaying information exchanged between a plurality of communication devices 111 connected to different transmission lines 1, for example. Further, the relay device 101 functions as a detection device, and periodically performs a detection process for detecting an abnormality in the transmission line 1, for example.
  • FIG. 2 is a diagram showing the configuration of a relay device according to the first embodiment of the present disclosure.
  • relay device 101 includes relay unit 11 , multiple detection processing units 71 , and multiple communication ports 61 .
  • Detection processing unit 71 includes signal output unit 12 , signal measurement unit 13 , processing unit 14 , and storage unit 15 .
  • a part or all of the relay unit 11, the signal output unit 12, the signal measurement unit 13 and the processing unit 14 are realized by processors such as a CPU (Central Processing Unit) and a DSP (Digital Signal Processor).
  • Storage unit 15 is, for example, a non-volatile memory.
  • Communication port 61 is, for example, a connector or a terminal. A connector portion of the transmission line 1 is connected to each communication port 61 .
  • the relay unit 11 performs relay processing. For example, the relay unit 11 performs relay processing for relaying frames between the communication devices 111 . More specifically, the relay unit 11 sends a frame received from a certain communication device 111 via the corresponding transmission line 1 and the corresponding communication port 61 to another communication device 111 according to the destination IP address of the frame. 61 and the corresponding transmission line 1.
  • the relay device 101 includes as many detection processing units 71 as the communication ports 61 . More specifically, the detection processing unit 71 is provided corresponding to the communication port 61 and performs detection processing for detecting an abnormality in the transmission line 1 connected to the corresponding communication port 61 . The detection processing by one detection processing unit 71 in the relay device 101 will be described below as a representative.
  • the signal output section 12 outputs the measurement signal to the transmission line 1 .
  • the signal output unit 12 outputs a measurement signal, which is a sine wave with a frequency f, to the transmission line 1 .
  • Frequency f is an example of a first frequency.
  • the signal output unit 12 outputs the measurement signal ys(t) expressed as a function of the time t to the transmission line 1 to be detected in the output period T1.
  • the signal output unit 12 may be configured to output a measurement signal that does not include an offset component to the transmission line 1 or may be configured to output a measurement signal that includes an offset component to the transmission line 1 .
  • the output period T1 is a period during which the relay unit 11 does not perform relay processing via the detection target transmission line 1 . More specifically, the relay unit 11 outputs to the signal output unit 12 period information indicating a period during which relay processing via the transmission line 1 is not performed. The signal output unit 12 receives the period information from the relay unit 11 and determines the output period T1 based on the received period information.
  • the storage unit 15 stores digital data Dt of the measurement signal ys(t) to be output to the transmission line 1 by the signal output unit 12 and frequency information indicating the frequency of the measurement signal ys(t).
  • the digital data Dt is time-series data consisting of a plurality of values representing a sinusoidal waveform.
  • the signal output unit 12 uses the data group in the storage unit 15 to output a sine wave of one or more cycles to the transmission line 1 to be detected in the output period T1. More specifically, the signal output unit 12 includes a DAC (Digital to Analog Converter). The signal output unit 12 acquires the digital data Dt from the storage unit 15 at the output timing according to the cycle C1 corresponding to the cycle of the operation clock of the DAC, and converts the acquired digital data Dt to analog by the DAC. A signal ys(t) is output to the transmission line 1 to be sensed.
  • DAC Digital to Analog Converter
  • the signal output unit 12 outputs a synchronization signal indicating detection timing to the signal measurement unit 13 . After outputting the synchronization signal to the signal measurement unit 13, the signal output unit 12 starts the output period T1, and outputs the measurement signal ys(t) to the transmission line 1 to be detected during the output period T1.
  • the signal output unit 12 acquires the digital data Dt from the storage unit 15 at the output timing according to the cycle C1, and processes the acquired digital data Dt as a digital measurement signal ysd(t) expressed as a function of the time t. Output to the unit 14 . That is, the signal output unit 12 outputs the time series data of the amplitude value of the digital data Dt to the processing unit 14 .
  • Digital measurement signal ysd(t) is an example of a reference signal.
  • the signal measurement section 13 measures a response signal from the transmission line 1 to the measurement signal ys(t) output from the signal output section 12 .
  • the signal measurement unit 13 measures the response signal ym(t) expressed as a function of time t during the measurement period Tm.
  • the signal measurement unit 13 when the signal measurement unit 13 receives the synchronization signal from the signal output unit 12, it starts the measurement period Tm and measures the response signal ym(t) during the measurement period Tm.
  • the length of the measurement period Tm is, for example, equal to the length of the output period T1 minus the round-trip propagation time of the measurement signal on the transmission line 1 .
  • the signal measurement unit 13 includes an ADC (Analog to Digital Converter).
  • the signal measurement unit 13 generates a digital response signal ymd(t) by sampling the voltage level of the transmission line 1 with the ADC at sampling timings according to the cycle C1 in the measurement period Tm, and generates the digital response signal ymd(t). is output to the processing unit 14 .
  • ADC Analog to Digital Converter
  • the processing unit 14 generates a difference signal ydiff(t), which is the difference between the response signal ym(t) measured by the signal measuring unit 13 and the digital measurement signal ysd(t) based on the measurement signal ys(t). .
  • the processing unit 14 subtracts the digital measurement signal ysd(t) received from the signal output unit 12 from the digital response signal ymd(t) received from the signal measurement unit 13 to obtain the difference signal ydiff(t). to generate
  • FIG. 3 is a diagram showing a simulation result of response signals measured by the signal measurement unit in the relay device according to the first embodiment of the present disclosure.
  • the horizontal axis indicates the time [seconds]
  • the vertical axis indicates the amplitude [V] of the signal.
  • the solid line in FIG. 3 indicates the response signal ym(t)
  • the broken line in FIG. 3 indicates the measured signal ys(t)
  • the dashed-dotted line in FIG. ) shows the reflected signal yr(t), which is the reflected signal.
  • FIG. 3 shows simulation results of each signal when a disconnection occurs at a position 10 m away from the end of the 11 m-long transmission line 1 on the relay device 101 side.
  • the response signal ym(t) measured by the signal measurement unit 13 is a signal obtained by superimposing the measurement signal ys(t) on the reflected signal yr(t).
  • the processing unit 14 subtracts the digital measurement signal ysd(t) from the digital response signal ymd(t) to generate a difference signal ydiff(t) representing the reflected signal yr(t).
  • the processing unit 14 calculates the phase difference ⁇ between the frequency f component included in the digital measurement signal ysd(t) and the frequency f component included in the difference signal ydiff(t), and based on the calculated phase difference ⁇ to detect an abnormality in the transmission line 1 to be detected. More specifically, in the detection process, the processing unit 14 detects disconnection in the transmission line 1 as an abnormality in the transmission line 1 to be detected. For example, the processing unit 14 further detects the occurrence position of the disconnection.
  • the phase difference ⁇ is an example of an index value indicating the degree of correlation between the digital measurement signal ysd(t) and the difference signal ydiff(t).
  • the processing unit 14 determines the argument ⁇ sd(t) of the complex analytic signal Csd(t) of the digital measurement signal ysd(t) and the argument ⁇ diff(t) of the complex analytic signal Cdiff(t) of the difference signal ydiff(t). t) is used to calculate the phase difference ⁇ .
  • the processing unit 14 calculates the complex analytic signal Csd(t) by Hilbert transforming the digital measurement signal ysd(t) received from the signal output unit 12 .
  • the processing unit 14 also calculates a complex analytic signal Cdiff(t) by performing a Hilbert transform on the generated difference signal ydiff(t).
  • the processing unit 14 may perform the calculation of the complex analytic signal Csd(t) and the calculation of the complex analytic signal Cdiff(t) in parallel or sequentially.
  • FIG. 4 is a diagram showing a simulation result of the argument of the complex analytic signal calculated by the processing unit in the relay device according to the first embodiment of the present disclosure.
  • the horizontal axis indicates the time [seconds]
  • the vertical axis indicates the argument [rad].
  • the solid line in FIG. 4 indicates the argument ⁇ diff(t) of the complex analytic signal Cdiff(t)
  • the dashed line in FIG. 4 indicates the argument ⁇ sd(t) of the complex analytic signal Csd(t).
  • FIG. 3 FIG.
  • the processing unit 14 calculates the difference between the argument ⁇ sd(t) and the argument ⁇ diff(t) as the phase difference ⁇ .
  • FIG. 5 is a diagram showing a method of specifying a disconnection occurrence position by the processing unit in the relay device according to the first embodiment of the present disclosure.
  • FIG. 5 shows a state in which a disconnection DC occurs in the transmission line 1 .
  • the transmission line 1 does not have a terminating resistor at the end on the communication device 111 side.
  • the measurement signal ys(t) output to the transmission line 1 by the signal output unit 12 is reflected at the reflection point on the transmission line 1, thereby generating the reflected signal yr(t).
  • the measurement signal ys(t) is reflected at the position of the wire break DC.
  • the measurement signal ys(t) is reflected at the end of the transmission line 1 on the side of the communication device 111 when the disconnection DC does not occur in the transmission line 1 .
  • a phase difference ⁇ between the measurement signal ys(t) and the reflected signal yr(t) is expressed by the following formula (1).
  • L is the distance [m] from the end of the transmission line 1 on the relay device 101 side to the reflection point of the measurement signal ys(t).
  • c is the speed of light [m/sec].
  • ⁇ r is the dielectric constant of the transmission line 1;
  • the processing unit 14 calculates the distance L corresponding to the calculated phase difference ⁇ according to Equation (2).
  • FIG. 6 is a diagram showing simulation results of distances calculated by the processing unit in the relay device according to the first embodiment of the present disclosure.
  • the horizontal axis indicates the time [seconds]
  • the vertical axis indicates the distance [mm] from the end of the transmission line 1 on the side of the repeater 101 to the reflection point.
  • FIG. 6 shows the distance L calculated by the processing unit 14 when a disconnection occurs at a position 10 m away from the end of the 11-m-long transmission line 1 on the relay device 101 side. 4 shows simulation results.
  • the processing unit 14 determines whether or not a disconnection has occurred in the transmission line 1 based on the calculated distance L. When a disconnection occurs in the transmission line 1 , the processing unit 14 further detects the position of the disconnection in the transmission line 1 .
  • the storage unit 15 stores transmission line information indicating the length Lc of the transmission line 1 to be detected.
  • the processing unit 14 acquires the transmission line information in the storage unit 15, and calculates the differential length Ldiff by subtracting the calculated distance L from the length Lc of the transmission line 1 to be detected indicated by the acquired transmission line information. .
  • the processing unit 14 compares the calculated differential length Ldiff with a predetermined threshold value Th1, and determines whether or not a disconnection has occurred in the transmission line 1 based on the comparison result. More specifically, when the difference length Ldiff is less than the threshold value Th1, the processing unit 14 determines that the transmission line 1 is not broken. On the other hand, when the difference length Ldiff is equal to or greater than the threshold value Th1, the processing unit 14 determines that the disconnection has occurred at the position of the distance L from the end of the transmission line 1 on the relay device 101 side.
  • the processing unit 14 determines that a disconnection has occurred in the transmission line 1, the processing unit 14 notifies the user of the determination result via the communication unit and the communication device 111 (not shown).
  • the maximum distance Lmax which is the maximum value of the distance L that can be correctly calculated by the processing unit 14, is 1/2 the wavelength ⁇ of the measurement signal ys(t), and is expressed by the following equation (3). .
  • the frequency f of the measurement signal ys(t) output by the signal output unit 12 and the period C1 described above are set in advance so that the maximum distance Lmax is equal to or greater than the length Lc of the transmission line 1 to be detected.
  • Each device in the communication system includes a computer including a memory, and an arithmetic processing unit such as a CPU in the computer stores a program including part or all of each step of the following flowchart in the memory. read from and execute. Programs for these multiple devices can each be installed from the outside. Programs for these devices are distributed in a state stored in recording media or via communication lines.
  • FIG. 7 is a flowchart defining an example of an operation procedure when the relay device according to the first embodiment of the present disclosure performs detection processing.
  • relay device 101 waits for the timing at which detection processing should be performed (NO at step S102), and at the timing at which detection processing is to be performed (YES at step S102), output period T1 and measurement period Tm are detected. is started (step S104).
  • the relay device 101 outputs the measurement signal ys(t) to the detection target transmission line 1 in the output period T1, and the response signal ym from the transmission line 1 to the measurement signal ys(t) in the measurement period Tm. (t) is measured. More specifically, the repeater 101 outputs one sample of the measurement signal ys(t) to the transmission line 1 and samples the voltage level of the transmission line 1 to obtain one sample of the digital response signal ymd(t). is generated (step S106).
  • Relay device 101 outputs one sample of measurement signal ys(t) and generates one sample of digital response signal ymd(t) until output period T1 and measurement period Tm expire (NO in step S108). Repeatedly alternately, when the output period T1 and the measurement period Tm expire (YES in step S108), the difference signal ydiff(t), which is the difference between the response signal ym(t) and the digital measurement signal ysd(t), is generated. . More specifically, relay device 101 generates difference signal ydiff(t) by subtracting digital measurement signal ysd(t) from digital response signal ymd(t) (step S110).
  • the relay device 101 calculates a phase difference ⁇ between the frequency f component included in the digital measurement signal ysd(t) and the frequency f component included in the difference signal ydiff(t). More specifically, the repeater 101 calculates the deflection angle ⁇ sd(t) of the complex analytic signal Csd(t) of the digital measurement signal ysd(t) and the deflection angle ⁇ sd(t) of the complex analytic signal Cdiff(t) of the difference signal ydiff(t). The phase difference ⁇ is calculated using the angle ⁇ diff(t) (step S112).
  • the relay device 101 calculates the distance L corresponding to the phase difference ⁇ according to Equation (2) described above (step S114).
  • the relay device 101 calculates a difference length Ldiff by subtracting the calculated distance L from the length Lc of the transmission line 1 to be detected (step S116).
  • the relay device 101 compares the calculated difference length Ldiff with the threshold value Th1 (step S118).
  • the relay device 101 determines that no disconnection has occurred in the transmission line 1 (step S122), and performs detection processing. A new timing is awaited (NO in step S102).
  • the relay device 101 has a disconnection at a position a distance L from the end of the transmission line 1 on the relay device 101 side. (step S124).
  • the relay device 101 notifies the user of the determination result via the communication unit (not shown) and the communication device 111 (step S126), and waits for a new timing to perform detection processing (NO in step S102).
  • the configuration is not limited to this.
  • a device other than the relay device 101 in the communication system 301 may be configured to perform the detection process.
  • the communication device 111 may function as a detection device and perform detection processing.
  • the transmission line 1 has a configuration including a cable portion and a connector portion, but is not limited to this.
  • the transmission line 1 may be a wiring pattern formed on a circuit board.
  • the relay device 101 detects an abnormality in the transmission line 1, which is the wiring pattern.
  • the processing unit 14 is configured to detect disconnection in the transmission line 1 as an abnormality in the transmission line 1 to be detected in the detection process.
  • the processing unit 14 may be configured to detect connection of an unauthorized device to the transmission line 1 as an abnormality in the transmission line 1 to be detected.
  • the connection of the unauthorized device to the transmission line 1 changes the impedance at the connection point.
  • a reflection signal is generated by being reflected at the connection point.
  • the signal measurement unit 13 measures a response signal in which the reflected signal is superimposed on the measurement signal ys(t) in the same manner as when a disconnection occurs in the transmission line 1 .
  • the processing unit 14 compares the absolute value of the difference length Ldiff with the threshold value Th1. If the absolute value of the difference length Ldiff is less than the threshold value Th1, the processing unit 14 determines that an abnormality such as connection of an unauthorized device has not occurred in the transmission line 1 . On the other hand, when the absolute value of the difference length Ldiff is equal to or greater than the threshold value Th1, the processing unit 14 determines that an abnormality such as connection of an unauthorized device has occurred.
  • the processing unit 14 calculates the argument ⁇ sd(t) of the complex analytic signal Csd(t) of the digital measurement signal ysd(t) and the difference signal ydiff
  • the phase difference ⁇ is calculated using the argument ⁇ diff(t) of the complex analytic signal Cdiff(t) of (t)
  • the present invention is not limited to this.
  • the processing unit 14 calculates the phase difference ⁇ without using the argument ⁇ sd(t) of the complex analytic signal Csd(t) and the argument ⁇ diff(t) of the complex analytic signal Cdiff(t) of the difference signal ydiff(t). It may be configured to For example, the processing unit 14 may be configured to calculate the phase difference ⁇ by the following procedure.
  • the processing unit 14 normalizes the amplitude of the differential signal ydiff(t) and the amplitude of the digital measurement signal ysd(t) to the range of ⁇ 1.
  • the processing unit 14 calculates the phase P1 of the differential signal ydiff(t) by passing the normalized differential signal ydiff(t) through an arcsine that is an inverse function of the sine function.
  • the processing unit 14 calculates the phase P2 of the digital measurement signal ysd(t) by passing the normalized digital measurement signal ysd(t) through an arcsine that is an inverse function of the sine function. Then, the processing unit 14 unwraps the phases P1 and P2, for example, and calculates the difference between the phases P1 and P2 as the phase difference ⁇ .
  • the processing unit 14 is configured to further detect the position of the disconnection in the transmission line 1 when the disconnection occurs in the transmission line 1.
  • the processing unit 14 may be configured to determine whether or not a disconnection has occurred in the transmission line 1 while not detecting the position where the disconnection occurs.
  • the transmission line 1 is configured without a terminating resistor at the end on the side of the communication device 111, but it is not limited to this. .
  • the transmission line 1 may have a terminating resistor for impedance matching at the end on the communication device 111 side.
  • the processing unit 14 generates the difference signal ydiff(t) by subtracting the digital measurement signal ysd(t) from the digital response signal ymd(t).
  • the processing unit 14 may be configured to generate the difference signal ydiff(t) by analog signal processing using a differential amplifier or the like. In this case, the processing unit 14 converts the generated difference signal ydiff(t) into a digital signal using an ADC, calculates the phase difference ⁇ using the digital signal, and breaks the wire based on the calculated phase difference ⁇ . to detect.
  • the signal output unit 12 is configured to output the measurement signal, which is a sine wave, to the transmission line 1, but it is not limited to this. do not have.
  • the signal output unit 12 may be configured to output a measurement signal having a plurality of frequency components to the transmission line 1 or may be configured to output a measurement signal that is a rectangular wave to the transmission line 1 .
  • the storage unit 15 stores digital data DtRW consisting of a plurality of values representing a rectangular waveform.
  • the signal output unit 12 acquires the digital data DtRW from the storage unit 15 instead of the digital data Dt, and outputs a signal obtained by analog conversion of the acquired digital data DtRW to the transmission line 1 to be detected as the measurement signal ys(t). .
  • the square wave includes frequency components that are odd multiples of the fundamental frequency.
  • the signal measurement unit 13 uses, for example, a BPF (Band Pass Filter) to extract some frequency components from the analog signal indicating the voltage level of the transmission line 1, and samples the extracted analog signal with an ADC to obtain a digital response.
  • a signal ymd(t) is generated and output to the processing unit 14 .
  • a digital signal is generated by sampling the voltage level of the transmission line 1 with an ADC, a part of the frequency component of the digital signal is extracted using a BPF, and the extracted digital signal is converted into the digital response signal ymd(t). , and output to the processing unit 14 .
  • TDR Time Domain Reflectometry
  • the signal output unit 12 outputs the measurement signal including the first frequency component to the transmission line 1 .
  • the signal measuring section 13 measures a response signal from the transmission line 1 to the measurement signal output from the signal output section 12 .
  • the processing unit 14 generates a difference signal, which is the difference between the response signal measured by the signal measurement unit 13 and the reference signal based on the measurement signal, and generates an index value indicating the magnitude of the correlation between the reference signal and the difference signal. A certain phase difference is calculated, and an abnormality in the transmission line 1 is detected based on the calculated phase difference.
  • a differential signal which is the difference between the response signal from the transmission line 1 when the measurement signal is output to the transmission line 1 and the reference signal based on the measurement signal, is generated, and the phase difference between the reference signal and the differential signal is generated.
  • the relay device 101 can detect an abnormality in the transmission line with simple processing and configuration.
  • an abnormality is detected based on the phase difference between the reference signal and the differential signal, it is more resistant to noise than a configuration using a TDR and a network analyzer for analyzing the amplitude of the response signal, for example. Anomalies can be detected more accurately.
  • an abnormality can be detected by simple processing without performing arithmetic processing such as FFT (Fast Fourier Transform).
  • FFT Fast Fourier Transform
  • the present embodiment relates to a relay device 102 that generates a differential signal ydiff(t) using the digital measurement signal ysd(t) in the storage unit 15, unlike the relay device 101 according to the first embodiment.
  • the relay device 101 is the same as the relay device 101 according to the first embodiment except for the contents described below.
  • FIG. 8 is a diagram showing the configuration of a relay device according to the second embodiment of the present disclosure.
  • relay device 102 includes detection processing unit 72 instead of detection processing unit 71, as compared with relay device 101 according to the first embodiment.
  • the detection processing unit 72 includes a signal measurement unit 23 instead of the signal measurement unit 13 and a processing unit 24 instead of the processing unit 14, as compared with the detection processing unit 71 .
  • the transmission line 1 has a terminating resistor at the end on the communication device 111 side.
  • the detection processing unit 72 performs reference measurement processing for measuring the response signal during steady state. More specifically, the detection processing unit 72 performs the reference measurement processing in an initial state in which no disconnection has occurred in the transmission line 1 . After performing the reference measurement process, the detection processing unit 72 periodically performs the detection process, for example. Note that the detection processing unit 72 may periodically or irregularly perform the reference measurement process after performing the reference measurement process in the initial state.
  • the signal output unit 12 outputs the synchronization signal to the signal measurement unit 23, and outputs the measurement signal ys(t) to the transmission line 1 to be detected in the output period T1.
  • the signal measurement unit 23 Upon receiving the synchronization signal from the signal output unit 12, the signal measurement unit 23 starts the measurement period Tm. A digital response signal ymdR(t) that is the normal digital response signal ymd(t) is generated. The signal measurement unit 23 stores the generated digital response signal ymdR(t) in the storage unit 15 . Digital response signal ymdR(t) is an example of a reference signal.
  • the signal output unit 12 outputs the synchronization signal to the signal measurement unit 13, and outputs the measurement signal ys(t) to the detection target transmission line 1 during the output period T1.
  • the signal measurement unit 23 Upon receiving the synchronization signal from the signal output unit 12, the signal measurement unit 23 starts the measurement period Tm. Generate a digital response signal ymdS(t) that is the digital response signal ymd(t) at time. The signal measurement unit 23 outputs the generated digital response signal ymdS(t) to the processing unit 24 .
  • the processing unit 24 generates a difference signal ydiff(t), which is the difference between the response signal ym(t) and the digital response signal ymdR(t), which is the response signal ym(t) measured by the signal measuring unit 23 in the steady state. to generate
  • the processing unit 24 receives the digital response signal ymdS(t) from the signal measuring unit 23, acquires the digital response signal ymdR(t) from the storage unit 15, and converts the digital response signal ymdS(t) into a digital A difference signal ydiff(t) is generated by subtracting the response signal ymdR(t).
  • the processing unit 24 calculates the complex analytic signal CmdR(t) by subjecting the digital response signal ymdR(t) acquired from the storage unit 15 to Hilbert transform.
  • the processing unit 24 also calculates a complex analytic signal Cdiff(t) by performing a Hilbert transform on the generated difference signal ydiff(t). Then, the processing unit 24 calculates the difference between the argument ⁇ mdR(t) of the complex analytic signal CmdR(t) and the argument ⁇ diff(t) of the complex analytic signal Cdiff(t) as the phase difference ⁇ .
  • the processing unit 24 calculates the distance L corresponding to the calculated phase difference ⁇ according to Equation (2) described above.
  • the processing unit 24 determines whether or not a disconnection has occurred in the transmission line 1 based on the calculated distance L. When the transmission line 1 is broken, the processing unit 24 further detects the position of the breakage on the transmission line 1 .
  • the processing unit 24 compares the calculated distance L with a predetermined threshold value Th2, and determines whether or not a disconnection has occurred in the transmission line 1 based on the comparison result. More specifically, when the calculated distance L is less than the threshold value Th2, the processing unit 24 determines that the transmission line 1 is not broken. On the other hand, when the calculated distance L is equal to or greater than the threshold value Th2, the processing unit 24 determines that the disconnection has occurred at the position of the distance L from the end of the transmission line 1 on the relay device 102 side.
  • FIG. 9 is a flowchart defining an example of an operation procedure when the relay device according to the second embodiment of the present disclosure performs detection processing.
  • relay device 102 first performs a reference measurement process. More specifically, the relay device 102 outputs the measurement signal ys(t) to the transmission line 1 to be detected, and generates the digital response signal ymdR(t), which is the digital response signal ymd(t) in the steady state. It saves in the storage unit 15 (step S202).
  • the relay device 102 waits for the timing to perform the detection process (NO in step S204), and at the timing to perform the detection process (YES in step S204), starts the output period T1 and the measurement period Tm (step S206). ).
  • the relay device 102 outputs the measurement signal ys(t) to the detection target transmission line 1 in the output period T1, and the response signal ym from the transmission line 1 to the measurement signal ys(t) in the measurement period Tm. (t) is measured. More specifically, the repeater 101 outputs one sample of the measurement signal ys(t) to the transmission line 1 and samples the voltage level of the transmission line 1 to obtain one sample of the digital response signal ymd(t). is generated (step S208).
  • relay device 102 outputs one sample of measurement signal ys(t) and one sample of digital response signal ymd(t) until output period T1 and measurement period Tm expire (NO in step S210). are alternately repeated, and when the output period T1 and the measurement period Tm expire (YES in step S210), the difference signal ydiff(t), which is the difference between the response signal ym(t) and the digital response signal ymdR(t) to generate More specifically, relay device 102 generates difference signal ydiff(t) by subtracting digital response signal ymdR(t) in storage unit 15 from digital response signal ymdS(t) (step S212).
  • the relay device 102 calculates the phase difference ⁇ between the digital response signal ymdR(t) and the difference signal ydiff(t). More specifically, the repeater 102 calculates the deflection angle ⁇ mdR(t) of the complex analytic signal CmdR(t) of the digital response signal ymdR(t) and the deflection angle ⁇ mdR(t) of the complex analytic signal Cdiff(t) of the difference signal ydiff(t). The phase difference ⁇ is calculated using the angle ⁇ diff(t) (step S214).
  • the relay device 102 calculates the distance L corresponding to the phase difference ⁇ according to Equation (2) described above (step S216).
  • the relay device 101 compares the calculated distance L with the threshold value Th2 (step S218).
  • the relay device 102 determines that a disconnection has not occurred in the transmission line 1 (step S222), and determines that a new line to be subjected to detection processing is detected. (NO in step S204).
  • the relay device 102 determines that the disconnection has occurred at the position of the distance L from the end of the transmission line 1 on the relay device 102 side. (step S224).
  • the relay device 102 notifies the user of the determination result via the communication unit (not shown) and the communication device 111 (step S226), and waits for a new timing to perform detection processing (NO in step S204).
  • the processing unit 24 receives the response signal ym(t), the response signal ym(t) measured by the signal measurement unit 23 in the steady state, ) to generate a differential signal ydiff(t) which is the difference from the digital response signal ymdR(t).
  • the relay device 101 according to the first embodiment of the present disclosure can detect breaks in the transmission line 1 more accurately.
  • the relay device 101 according to the first embodiment of the present disclosure can detect disconnection in the transmission line 1 with a simpler configuration than the relay device 102 .
  • the present embodiment outputs a digital measurement signal ysd(t) obtained by performing delay adjustment on the measurement signal ys(t) to be output to the transmission line 1. It relates to the relay device 103 that performs detection processing using The relay device 101 is the same as the relay device 101 according to the first embodiment except for the contents described below.
  • FIG. 10 is a diagram showing the configuration of a relay device according to the third embodiment of the present disclosure.
  • relay device 103 includes detection processing unit 73 instead of detection processing unit 71, as compared with relay device 101 according to the first embodiment.
  • the detection processing unit 73 includes a processing unit 34 instead of the processing unit 14 and further includes a delay adjustment unit 16 , unlike the detection processing unit 71 .
  • the signal output unit 12 outputs the synchronization signal to the signal measurement unit 13, and outputs the measurement signal ys(t) to the transmission line 1 to be detected in the output period T1. Further, the signal output unit 12 acquires the digital data Dt from the storage unit 15 at the output timing according to the cycle C1, and outputs the acquired digital data Dt to the delay adjustment unit 16 as the digital measurement signal ysd(t).
  • the signal measurement unit 13 Upon receiving the synchronization signal from the signal output unit 12, the signal measurement unit 13 starts the measurement period Tm. During the measurement period Tm, the voltage level of the transmission line 1 is sampled by the ADC at the sampling timing according to the cycle C1, thereby obtaining a digital response. It generates a signal ymd(t) and outputs the generated digital response signal ymd(t) to the processing unit 34 .
  • the delay adjustment unit 16 receives the digital measurement signal ysd(t) from the signal output unit 12, delays the received digital measurement signal ysd(t), and outputs the delayed digital measurement signal ysd(t) to the processing unit 34. More specifically, the delay adjustment unit 16 outputs to the processing unit 34 the digital measurement signal ysdD(t) whose phase is delayed with respect to the measurement signal ys(t) output to the transmission line 1 by the signal output unit 12. .
  • the delay amount of the digital measurement signal ysdD(t) with respect to the measurement signal ys(t) can be changed. More specifically, the delay time dt of the digital measurement signal ysdD(t) output to the processing section 34 by the delay adjusting section 16 can be changed. For example, the user sets the delay time dt in the delay adjuster 16 so that the amplitude of the difference signal ydiff(t) generated by the processor 34 in the initial state is less than a predetermined value.
  • the delay adjustment unit 16 accepts the setting of the delay time dt. In the detection process, the delay adjustment unit 16 delays the digital measurement signal ysd(t) received from the signal output unit 12 by the delay time dt and outputs the signal to the processing unit 34 .
  • the processing unit 34 generates a difference signal ydiff(t), which is the difference between the response signal ym(t) and the digital measurement signal ysdD(t), which is a signal obtained by delay-adjusting the measurement signal ys(t). Generate. More specifically, the processing unit 34 subtracts the digital measurement signal ysdD(t) received from the delay adjustment unit 16 from the digital response signal ymd(t) received from the signal measurement unit 13 to obtain the difference signal ydiff(t). to generate
  • the processing unit 34 calculates the complex analytic signal Csd(t) by Hilbert transforming the digital measurement signal ysdD(t) received from the delay adjustment unit 16 .
  • the processing unit 34 also calculates a complex analytic signal Cdiff(t) by performing a Hilbert transform on the generated difference signal ydiff(t). Then, the processing unit 34 calculates the difference between the argument ⁇ sd(t) of the complex analytic signal Csd(t) and the argument ⁇ diff(t) of the complex analytic signal Cdiff(t) as the phase difference ⁇ .
  • the processing unit 34 calculates the distance L corresponding to the calculated phase difference ⁇ according to Equation (2) described above.
  • the processing unit 34 determines whether or not a disconnection has occurred in the transmission line 1 based on the calculated distance L. When the transmission line 1 is broken, the processing unit 34 further detects the position of the breakage on the transmission line 1 .
  • the processing unit 34 compares the calculated distance L with a predetermined threshold Th2, and determines whether or not a disconnection has occurred in the transmission line 1 based on the comparison result. More specifically, when the calculated distance L is less than the threshold value Th2, the processing unit 34 determines that the transmission line 1 is not broken. On the other hand, when the calculated distance L is equal to or greater than the threshold value Th2, the processing unit 34 determines that the disconnection has occurred at the position of the distance L from the end of the transmission line 1 on the relay device 103 side.
  • FIG. 11 is a flowchart defining an example of an operation procedure when the relay device according to the third embodiment of the present disclosure performs detection processing.
  • relay device 103 first receives the setting of delay time dt (step S302).
  • the relay apparatus 103 performs steps S304 to S316, which are the same as steps S102 to S114 in FIG. 7, and steps S318 to S326, steps S218 to S226 in FIG. Do the same.
  • the relay device 103 has a configuration in which the delay time dt of the digital measurement signal ysd(t) in the delay adjustment unit 16 can be changed, the configuration is limited to this. not a thing
  • the delay time dt of the digital measurement signal ysd(t) in the delay adjustment unit 16 is such that the amplitude of the differential signal ydiff(t) generated by the processing unit 34 is less than a predetermined value, depending on the length of the transmission line 1, for example. It may be a preset value such as
  • This embodiment relates to a relay device 104 that calculates a phase difference ⁇ by correlation detection, unlike the relay device 101 according to the first embodiment.
  • the relay device 101 is the same as the relay device 101 according to the first embodiment except for the contents described below.
  • FIG. 12 is a diagram showing the configuration of a relay device according to the fourth embodiment of the present disclosure.
  • relay device 104 includes detection processing unit 74 instead of detection processing unit 71, as compared with relay device 101 according to the first embodiment.
  • the detection processing unit 74 includes a signal output unit 22 instead of the signal output unit 12 and a processing unit 44 instead of the processing unit 14 compared to the detection processing unit 71 .
  • the processing unit 44 has LPFs 4A, 4B and mixers 5A, 5B.
  • the signal output unit 22 outputs a sine wave measurement signal to the transmission line 1 . More specifically, the signal output unit 22 outputs the synchronization signal to the signal measurement unit 13, and outputs the measurement signal ys(t) to the transmission line 1 to be detected in the output period T1. More specifically, the signal output unit 22 acquires the digital data Dt from the storage unit 15 at the output timing according to the cycle C1, and analog-converts the acquired digital data Dt by the DAC to generate the measurement signal ys(t ) to the transmission line 1 to be detected.
  • the signal output unit 22 also outputs the digital data Dt acquired from the storage unit 15 to the processing unit 44 as the digital measurement signal ysd(t). Further, the signal output unit 22 refers to the frequency information in the storage unit 15, and the digital measurement signal ysdP(t ) is further output to the processing unit 44 .
  • the signal measurement unit 13 Upon receiving the synchronization signal from the signal output unit 22, the signal measurement unit 13 starts the measurement period Tm. During the measurement period Tm, the voltage level of the transmission line 1 is sampled by the ADC at the sampling frequency fs to obtain a digital response signal ymd. (t), and outputs the generated digital response signal ymd(t) to the processing unit 44 .
  • the sampling frequency fs is the reciprocal of the period C1.
  • the processing unit 44 generates a difference signal ydiff(t) by subtracting the digital measurement signal ysd(t) received from the signal output unit 22 from the digital response signal ymd(t) received from the signal measurement unit 13 .
  • the processing unit 44 inputs the multiplication signal Ms1(t) of the digital measurement signal ysd(t) and the difference signal ydiff(t) to the LPF (Low Pass Filter) 4A, thereby outputting an output signal from the LPF 4A, And the multiplication signal Ms2(t) of the digital measurement signal ysdP(t) and the difference signal ydiff(t) is input to the LPF 4B, and the output signal output from the LPF 4B is used to calculate the phase difference ⁇ .
  • LPF4A is an example of a first filter.
  • LPF4B is an example of a second filter.
  • the processing unit 44 uses the mixer 5A to multiply the digital measurement signal ysd(t) and the difference signal ydiff(t) to generate the multiplication signal Ms1(t), and uses the mixer 5B to generate the multiplication signal Ms1(t).
  • a multiplication signal Ms2(t) is generated by multiplying the digital measurement signal ysdP(t) and the difference signal ydiff(t).
  • FIG. 13 is a diagram showing a simulation result of the multiplication signal generated by the processing unit in the relay device according to the fourth embodiment of the present disclosure.
  • the horizontal axis indicates the time [seconds]
  • the vertical axis indicates the signal amplitude [V].
  • the solid line in FIG. 13 indicates the multiplication signal Ms1(t)
  • the dashed line in FIG. 13 indicates the multiplication signal Ms2(t).
  • FIG. 13 shows multiplication signals Ms1(t) and Ms2(t) calculated by the processing unit 44 when a disconnection occurs at a position 10 m away from the end of the transmission line 1 with a length of 11 m on the side of the repeater 104. 4 shows simulation results.
  • Multiplied signals Ms1(t) and Ms2(t) are represented by the following equations (4) and (5) when the digital measurement signal ysd(t) is a cosine wave.
  • the multiplication signals Ms1(t) and Ms2(t) include a frequency component Fc that is twice the frequency f of the measurement signal ys(t) and a constant term DC component Dc.
  • the processing unit 44 uses the LPFs 4A and 4B described above to attenuate the frequency components Fc of the multiplication signals Ms1(t) and Ms2(t), thereby reducing the DC components Dc of the multiplication signals Ms1(t) and Ms2(t). generates extracted signals MsD1(t) and MsD2(t), which are extracted signals.
  • the cutoff frequencies of LPFs 4A and 4B are, for example, less than twice the frequency f. LPFs 4A and 4B attenuate frequency components based on frequency f of measurement signal ys(t).
  • the processing unit 44 uses average filters as the LPFs 4A and 4B.
  • the first mean value filter receives the multiplied signal Ms1(t) and outputs an extracted signal MsD1(t) which is the mean value of the multiplied signal Ms1(t) for each N samples.
  • the second mean value filter receives the multiplied signal Ms2(t) and outputs an extracted signal MsD2(t) which is the mean value of the multiplied signal Ms2(t) for each number N of samples.
  • N is a natural number.
  • the number of samples N, sampling frequency fs and frequency f satisfy the following equation (6).
  • the positive and negative values of the multiplied signal Ms1(t) are canceled out by the first mean value filter, thereby obtaining an extracted signal MsD1(t) in which the frequency component Fc of the multiplied signal Ms1(t) is attenuated.
  • the positive and negative values of the multiplied signal Ms2(t) are canceled by the second mean value filter, thereby obtaining an extracted signal MsD2(t) in which the frequency component Fc of the multiplied signal Ms2(t) is attenuated.
  • the number of samples N, the sampling frequency fs, and the frequency f may be values that satisfy the following equation (7).
  • an ADC that samples at a lower sampling frequency fs can be used as the ADC for generating the digital response signal ymd(t).
  • FIG. 14 is a diagram showing simulation results of extraction signals generated by a processing unit in a relay device according to the fourth embodiment of the present disclosure.
  • the horizontal axis indicates time [seconds]
  • the vertical axis indicates signal amplitude [V].
  • the solid line in FIG. 14 indicates the extracted signal MsD1(t)
  • the broken line in FIG. 14 indicates the extracted signal MsD2(t).
  • FIG. 14 shows the extraction signal MsD1(t) calculated by the processing unit 44 when a disconnection occurs at a position 10 m away from the end of the transmission line 1 with a length of 11 m on the relay device 104 side. , MsD2(t).
  • the extracted signal MsD1(t), which is the output signal of the first average filter, and the extracted signal MsD2(t), which is the output signal of the second average filter, are expressed by the following equations (8) and (9). be.
  • the processing unit 44 uses the extracted signals MsD1(t) and MsD2(t) to calculate the phase difference ⁇ according to the following equation (10). After calculating the phase difference ⁇ , the processing unit 44 calculates the distance L corresponding to the calculated phase difference ⁇ according to the above-described equation (2).
  • FIG. 15 is a diagram showing simulation results of distances calculated by the processing unit in the relay device according to the fourth embodiment of the present disclosure.
  • the horizontal axis indicates the time [seconds]
  • the vertical axis indicates the distance [m] from the end of the transmission line 1 on the repeater 104 side to the reflection point.
  • FIG. 15 shows the distance L calculated by the processing unit 44 when a disconnection occurs at a position 10 m away from the end of the 11 m-long transmission line 1 on the relay device 104 side. 4 shows simulation results.
  • the distance L calculated by the processing unit 44 approximately matches 10 m, which is the distance between the end on the relay device 104 side and the disconnection position.
  • the detection method according to the present embodiment can detect whether or not a disconnection has occurred in the transmission line 1 and the location of the disconnection.
  • the processing unit 44 determines whether or not a disconnection has occurred in the transmission line 1 based on the calculated distance L. When the transmission line 1 is broken, the processing unit 44 further detects the position of the breakage on the transmission line 1 .
  • the method of determining whether or not a disconnection has occurred in the transmission line 1 and the method of detecting the position of the disconnection are as described in the first embodiment.
  • FIG. 16 is a flowchart defining an example of an operation procedure when the relay device according to the fourth embodiment of the present disclosure performs detection processing.
  • the relay apparatus 104 performs the same processes as steps S102 to S110 in FIG. 7 as the processes of steps S402 to S410.
  • relay device 104 generates multiplication signal Ms1(t) by multiplying digital measurement signal ysd(t) and difference signal ydiff(t) using mixer 5A, and digital measurement signal Ms1(t) using mixer 5B.
  • a multiplication signal Ms2(t) is generated by multiplying the signal ysdP(t) and the difference signal ydiff(t) (step S412).
  • repeater 104 generates extracted signals MsD1(t) and MsD2(t) by attenuating frequency component Fc of multiplied signals Ms1(t) and Ms2(t) using a mean filter. (Step S414).
  • the relay device 104 uses the extracted signals MsD1(t) and MsD2(t) to calculate the phase difference ⁇ according to the above equation (10) (step S416).
  • the relay device 104 performs the same processes as steps S114 to S126 in FIG. 7 as the processes from steps S418 to S430.
  • the processing unit 44 inputs the multiplication signal Ms1(t) to the LPF 4A so that the output signal output from the LPF 4A and the multiplication signal Ms2(t ) is input to the LPF 4B, and the output signal output from the LPF 4B is used to calculate the phase difference ⁇ .
  • processing unit 44 may be configured to use BPFs for extracting DC components instead of LPFs 4A and 4B.
  • the signal measuring unit 13 generates a digital response signal ymd(t) by sampling and holding the voltage level of the transmission line 1 at the frequency f of the measurement signal ys(t), and generates the generated digital response signal ymd( t) to the processing unit 44 .
  • the processing unit 44 may be configured to calculate the phase difference ⁇ using the multiplication signal Ms1(t) and the multiplication signal Ms2(t) without using the LPFs 4A and 4B.
  • the signal output unit 22 is configured to output the measurement signal, which is a sine wave, to the transmission line 1, but it is not limited to this. do not have.
  • the signal output unit 22 may be configured to output a measurement signal having a plurality of frequency components to the transmission line 1 or may be configured to output a measurement signal that is a rectangular wave to the transmission line 1 . More specifically, the signal output unit 22 acquires the digital data DtRW consisting of a plurality of values representing the waveform of the rectangular wave from the storage unit 15, converts the acquired digital data DtRW into an analog signal, and converts it into the measurement signal ys(t). is output to the transmission line 1 to be detected.
  • the signal output unit 22 outputs the digital data DtRW acquired from the storage unit 15 to the processing unit 44 as a digital measurement signal ysdRW(t). Further, the signal output unit 22 further outputs to the processing unit 44 a digital measurement signal ysdRWP(t), which is a signal obtained by shifting the phase of the digital measurement signal ysdRW(t) by ⁇ /2.
  • the signal measurement unit 13 generates a digital response signal ymdRW(t) by sampling the voltage level of the transmission line 1 with an ADC at a sampling frequency fs, and outputs the generated digital response signal ymdRW(t) to the processing unit 44. .
  • the processing unit 44 generates a difference signal ydiffR(t) by subtracting the digital measurement signal ysdRW(t) received from the signal output unit 22 from the digital response signal ymdRW(t) received from the signal measurement unit 13 . Then, the processing unit 44 extracts a signal of a part of the frequency components of the digital measurement signal ysdRW(t) using the BPF, and multiplies the extracted signal by the difference signal ydiffR(t) to obtain a multiplication signal Ms1 ( t).
  • the processing unit 44 extracts a signal of a part of the frequency components of the digital measurement signal ysdRWP(t) using the BPF, and multiplies the extracted signal by the difference signal ydiffR(t) to obtain a multiplication signal Ms2 ( t).
  • the processing unit 44 uses the LPFs 4A and 4B to generate extraction signals MsD1(t) and MsD2(t), which are signals obtained by extracting the DC components Dc of the multiplication signals Ms1(t) and Ms2(t).
  • the phase difference ⁇ is calculated according to the above equation (10). Since the processing unit 44 can arbitrarily set the frequency component to be extracted using the BPF, detection processing can be performed by focusing on an arbitrary frequency component included in the measurement signal, which is a rectangular wave.
  • the relay device 104 according to the fourth embodiment of the present disclosure can calculate the phase difference ⁇ by correlation detection, the noise resistance is improved compared to the relay device 101 according to the first embodiment. can be made Therefore, an abnormality in the transmission line 1 can be detected more accurately. Moreover, since the relay apparatus 104 does not need to calculate a complex analytic signal as compared with the relay apparatus 101, the mounting cost can be reduced. On the other hand, in the relay device 101, the time required to calculate the phase difference ⁇ can be shortened compared to the relay device 104, so the presence or absence of an abnormality can be determined earlier.
  • the processing unit 44 may be configured to calculate the phase difference ⁇ by correlation detection using a square-wave digital signal.
  • the signal output unit 22 acquires the digital data DtRW consisting of a plurality of values representing the waveform of the rectangular wave from the storage unit 15 at the output timing according to the period C1, and converts the acquired digital data DtRW into an analog signal to convert the BPF into an analog signal.
  • a measurement signal ys(t) which is a sinusoidal wave extracted by using the sensor, is output to the transmission line 1 to be detected.
  • the signal output unit 22 also outputs the digital data DtRW acquired from the storage unit 15 to the processing unit 44 as the digital measurement signal ysdRW(t). Moreover, the digital measurement signal ysdRWP(t), which is a signal obtained by shifting the phase of the digital measurement signal ysdRW(t) by ⁇ /2, is further output to the processing unit 44 .
  • the processing unit 44 generates a difference signal ydiffR(t) by subtracting the digital measurement signal ysdRW(t) received from the signal output unit 22 from the digital response signal ymd(t) received from the signal measurement unit 13 .
  • the processing unit 44 inputs the multiplication signal Ms1(t) of the digital measurement signal ysdRW(t) and the difference signal ydiffR(t) to the LPF 4A, thereby inputting the output signal output from the LPF 4A and the digital measurement signal ysdRWP( t) and the difference signal ydiffR(t) is input to the LPF 4B, and the output signal output from the LPF 4B is used to calculate the phase difference ⁇ .
  • the processing unit 44 multiplies the digital measurement signal ysdRW(t) and the difference signal ydiffR(t) to generate the multiplication signal Ms1(t), and the digital measurement signal ysdRWP(t) and the difference signal A multiplied signal Ms2(t) is generated by multiplying by ydiffR(t).
  • the multiplication of the digital measurement signals ysdRW(t), ysdRWP(t) and the difference signal ydiffR(t) can be achieved by periodically repeating inversion and non-inversion of the original waveform. There is no need to use complicated multipliers for generating Ms1(t) and Ms2(t), and hardware simplification and cost reduction can be achieved.
  • FIG. 17 is a diagram showing a simulation result of a multiplication signal generated by the processing unit in the relay device according to the modified example of the fourth embodiment of the present disclosure.
  • the horizontal axis indicates the time [seconds]
  • the vertical axis indicates the amplitude [V] of the signal.
  • the solid line in FIG. 17 indicates the multiplication signal Ms1(t)
  • the dashed line in FIG. 17 indicates the multiplication signal Ms2(t).
  • FIG. 17 shows multiplication signals Ms1(t) and Ms2(t) calculated by the processing unit 44 when a disconnection occurs at a position 10 m away from the end of the 11 m-long transmission line 1 on the relay device 104 side. 4 shows simulation results.
  • the processing unit 44 extracts the DC component Dc of the multiplied signals Ms1(t) and Ms2(t) by attenuating the frequency component Fc of the multiplied signals Ms1(t) and Ms2(t) using a mean value filter. Extracted signals MsDR1(t) and MsDR2(t) are generated.
  • FIG. 18 is a diagram showing simulation results of extraction signals generated by a processing unit in a relay device according to a modification of the fourth embodiment of the present disclosure.
  • the horizontal axis indicates the time [seconds]
  • the vertical axis indicates the signal amplitude [V].
  • the solid line in FIG. 18 indicates the extracted signal MsDR1(t)
  • the broken line in FIG. 18 indicates the extracted signal MsDR2(t).
  • FIG. 18 shows the extraction signal MsDR1(t) calculated by the processing unit 44 when a disconnection occurs at a position 10 m away from the end of the transmission line 1 with a length of 11 m on the relay device 104 side. , MsDR2(t).
  • the processing unit 44 calculates the phase difference ⁇ using the extracted signals MsDR1(t) and MsDR2(t) instead of the extracted signals MsD1(t) and MsD2(t) according to the above-described equation (10).
  • the processing unit 44 calculates the distance L corresponding to the calculated phase difference ⁇ according to Equation (2) described above.
  • FIG. 19 is a diagram showing simulation results of distances calculated by the processing unit in the relay device according to the modification of the fourth embodiment of the present disclosure.
  • the horizontal axis indicates the time [seconds]
  • the vertical axis indicates the distance [m] from the end of the transmission line 1 on the relay device 104 side to the reflection point.
  • FIG. 19 shows the distance L calculated by the processing unit 44 when a disconnection occurs at a position 10 m away from the end of the 11 m-long transmission line 1 on the relay device 104 side. 4 shows simulation results.
  • the distance L calculated by the processing unit 44 approximately matches 10 m, which is the distance between the end on the relay device 104 side and the disconnection position. As described above, it is possible to detect whether or not a wire breakage has occurred in the transmission line 1 and the position where the wire breakage has occurred by the detection method according to the present modification.
  • the processing unit 44 determines whether or not a disconnection has occurred in the transmission line 1 based on the calculated distance L. When the transmission line 1 is broken, the processing unit 44 further detects the position of the breakage on the transmission line 1 .
  • the method of determining whether or not a disconnection has occurred in the transmission line 1 and the method of detecting the position of the disconnection are as described in the first embodiment.
  • This embodiment relates to a relay apparatus 105 that calculates a reflection coefficient rc by correlation detection, unlike the relay apparatus 104 according to the fourth embodiment. It is the same as the relay device 104 according to the fourth embodiment except for the contents described below.
  • FIG. 20 is a diagram showing the configuration of a relay device according to the fifth embodiment of the present disclosure.
  • relay device 105 includes detection processing unit 75 instead of detection processing unit 74, as compared with relay device 104 according to the fourth embodiment.
  • the detection processing unit 75 includes a processing unit 54 instead of the processing unit 44 compared to the detection processing unit 74 .
  • the processing unit 54 has LPFs 4A, 4B and mixers 5A, 5B.
  • the processing unit 54 inputs the multiplication signal Ms1(t) of the digital measurement signal ysd(t) and the difference signal ydiff(t) to the LPF 4A, thereby producing an output signal output from the LPF 4A and the digital measurement signal ysdP(t). and the difference signal ydiff(t) is input to the LPF 4B, the output signal output from the LPF 4B is used to obtain the reflection of the digital measurement signal ysd(t) and the difference signal ydiff(t).
  • the reflection coefficient rc is an example of an index value indicating the degree of correlation between the digital measurement signal ysd(t) and the difference signal ydiff(t).
  • the processing unit 54 uses the mixer 5A to multiply the digital measurement signal ysd(t) and the difference signal ydiff(t) to generate the multiplication signal Ms1(t), and uses the mixer 5B to generate the multiplication signal Ms1(t).
  • a multiplication signal Ms2(t) is generated by multiplying the digital measurement signal ysdP(t) and the difference signal ydiff(t).
  • the processing unit 54 uses the LPFs 4A and 4B to attenuate the frequency components Fc of the multiplication signals Ms1(t) and Ms2(t), thereby extracting the DC components Dc of the multiplication signals Ms1(t) and Ms2(t). Extracted signals MsD1(t) and MsD2(t) are generated.
  • the processing unit 54 uses the known amplitude A1 of the measurement signal ys(t) and the generated extraction signals MsD1(t) and MsD2(t) to calculate the reflection signal yr(t) according to the following equation (11). Calculate the amplitude A2.
  • FIG. 21 is a diagram showing a simulation result of amplitude generated by the processing unit in the relay device according to the fifth embodiment of the present disclosure.
  • the horizontal axis indicates the time [seconds]
  • the vertical axis indicates the signal amplitude [V].
  • a solid line in FIG. 21 indicates the amplitude A2
  • a dashed line in FIG. 21 indicates the reflected signal yr(t).
  • FIG. 21 shows simulation results of the amplitude A2 calculated by the processing unit 54 when a disconnection occurs at a position 10 m away from the end of the 11 m-long transmission line 1 on the relay device 105 side.
  • the processing unit 54 calculates the reflection coefficient rc according to the following equation (12).
  • FIG. 22 is a diagram showing simulation results of reflection coefficients generated by the processing unit in the relay device according to the fifth embodiment of the present disclosure.
  • the horizontal axis indicates time [seconds], and the vertical axis indicates the reflection coefficient.
  • a solid line in FIG. 22 indicates the reflection coefficient rc.
  • FIG. 22 shows simulation results of the reflection coefficient rc calculated by the processing unit 54 when a disconnection occurs at a position 10 m away from the end of the transmission line 1 having a length of 11 m on the side of the repeater 105. is shown.
  • the processing unit 54 can detect an abnormality in the transmission line 1 based on changes over time in the amplitude A2 and the reflection coefficient rc. More specifically, after calculating the reflection coefficient rc, the processing unit 54 compares the reflection coefficient rc with a predetermined threshold value Th3, and determines whether or not a disconnection has occurred in the transmission line 1 based on the comparison result. determine whether
  • the reflection coefficient rc changes according to the ratio of the absolute values of the amplitudes A1 and A2 and the phase difference ⁇ .
  • the phase difference ⁇ is a constant value corresponding to the distance L from the end of the transmission line 1 on the relay device 105 side to the reflection point of the measurement signal ys(t).
  • the processing unit 54 can calculate the distance L based on the calculated reflection coefficient rc and the attenuation per unit length of the signal in the transmission line 1 .
  • the processing unit 54 calculates the phase difference ⁇ in addition to the reflection coefficient rc, and calculates the transmission line based on the reflection coefficient rc and the phase difference ⁇ . 1 may be configured to determine whether or not disconnection has occurred. More specifically, the processing unit 54 determines whether or not a disconnection has occurred in the transmission line 1 by comprehensively considering the determination result based on the reflection coefficient rc and the determination result based on the phase difference ⁇ .
  • the present embodiment uses a signal including a frequency (f+fb) component to obtain a phase difference ⁇ and a reflection. It relates to the relay device 106 that calculates the coefficient rc.
  • the relay device 104 according to the fourth embodiment and the relay device 105 according to the fifth embodiment are the same except for the contents described below.
  • FIG. 23 is a diagram showing the configuration of a relay device according to the sixth embodiment of the present disclosure.
  • relay device 106 includes detection processing unit 76 instead of detection processing unit 74, as compared with relay device 104 according to the fourth embodiment.
  • the detection processing unit 76 includes a signal output unit 32 instead of the signal output unit 22 and a processing unit 64 instead of the processing unit 44 compared to the detection processing unit 74 .
  • the processing unit 64 has BPF 6A, LPF 4C, 4D and mixers 5C, 5D, 5E.
  • the signal output unit 32 outputs the digital measurement signal ysdF(t) containing the frequency (f+fb) component to the processing unit 64 instead of outputting the digital measurement signal ysdP(t) to the processing unit 44.
  • fb is a value smaller than f and close to zero.
  • the digital measurement signal ysdF(t) is represented by the following equation (13) when the digital measurement signal ysd(t) is a cosine wave and the angular frequency corresponding to the frequency fb is ⁇ b.
  • the processing unit 64 inputs a multiplied signal of the digital measurement signal ysdF(t) containing the frequency (f+fb) component and the difference signal ydiff(t) to the BPF 6A for extracting the frequency fb component, and outputs the signal from the BPF 6A.
  • the phase difference ⁇ and the reflection coefficient rc are calculated using the resulting output signal.
  • BPF6A is an example of a third filter.
  • the processing unit 64 receives the digital measurement signal ysd(t) from the signal output unit 32, converts the digital response signal ymd(t) received from the signal measurement unit 13 into the digital A difference signal ydiff(t) is generated by subtracting the measured signal ysd(t).
  • the processing unit 64 generates a multiplication signal Ms3(t) by multiplying the digital measurement signal ysdF(t) and the difference signal ydiff(t) using the mixer 5C.
  • Multiplied signal Ms3(t) is represented by the following equation (14).
  • the multiplication signal Ms3(t) is obtained by combining a high frequency component FH with an angular frequency 2 ⁇ t, which is twice the frequency f of the measurement signal ys(t), and a low frequency component FL with an angular frequency ⁇ bt.
  • the processing unit 64 uses the BPF 6A to attenuate the high frequency component FH of the multiplication signal Ms3, thereby generating an extraction signal MsD3(t) that is a signal obtained by extracting the low frequency component FL of the multiplication signal Ms3(t). .
  • BPF 6A receives multiplication signal Ms3(t) and outputs extraction signal MsD3(t).
  • Extraction signal MsD3(t) which is the output signal of BPF 6A, is represented by the following equation (15).
  • the processing unit 64 multiplies the extraction signal MsD3(t) by the digital signal Dfb(t) having an amplitude of A3 and including a component of the frequency fb, thereby generating a multiplication signal Ms4(t). to generate
  • the processing unit 64 uses the mixer 5E to generate a digital signal DfbP(t), which is a signal obtained by shifting the phase of the frequency fb component included in the extracted signal MsD3(t) and the digital signal Dfb(t) by ⁇ /2. ) to generate a multiplied signal Ms5(t).
  • the amplitude A3 may be the same as the amplitude A1.
  • Multiplied signals Ms4(t) and Ms5(t) are represented by the following equations (16) and (17).
  • the multiplied signals Ms4(t) and Ms5(t) include a frequency component Fcb that is twice the frequency fb and a DC component Dcb that is a constant term.
  • the processing unit 64 uses LPFs 4C and 4D to attenuate the frequency components Fcb of the multiplication signals Ms4(t) and Ms5(t), thereby extracting the DC components Dcb of the multiplication signals Ms4(t) and Ms5(t). Extracted signals MsD4(t) and MsD5(t) are generated.
  • the cutoff frequencies of LPFs 4C and 4D are, for example, less than twice the frequency fb. LPFs 4C and 4D attenuate frequency components based on frequency fb.
  • LPF4C receives the multiplication signal Ms4(t) and outputs an extraction signal MsD4(t).
  • LPF4D receives the multiplication signal Ms5(t) and outputs an extraction signal MsD5(t).
  • Extraction signal MsD4(t), which is the output signal of LPF4C, and extraction signal MsD5(t), which is the output signal of LPF4D, are represented by the following equations (18) and (19).
  • the processing unit 64 uses the extracted signals MsD4(t) and MsD5(t) to calculate the phase difference ⁇ according to the following equation (20).
  • the processing unit 64 calculates the distance L corresponding to the calculated phase difference ⁇ according to Equation (2) described above.
  • the processing unit 64 uses the known amplitude A1 of the measurement signal ys(t) and the generated extraction signals MsD4(t) and MsD5(t) to obtain the reflected signal yr(t) according to the following equation (21). ) is calculated.
  • the processing unit 64 calculates the reflection coefficient rc according to the above equation (12). The processing unit 64 compares the calculated reflection coefficient rc with the threshold value Th3, and determines whether or not the transmission line 1 is broken based on the comparison result.
  • a sensing device a signal output unit that outputs a measurement signal including a first frequency component to a transmission line; a signal measuring unit that measures a response signal from the transmission line to the measurement signal output by the signal output unit; generating a difference signal, which is a difference between the response signal measured by the signal measuring unit and a reference signal based on the measurement signal, and calculating an index value indicating the magnitude of correlation between the reference signal and the difference signal; and a processing unit that detects an abnormality in the transmission line based on the calculated index value, The processing unit calculates, based on the index value, a distance from an end of the transmission line on the side of the detection device to a reflection point on the transmission line where the measurement signal is reflected, and the calculated distance a detection device that identifies the position of occurrence of the abnormality based on the
  • the sensing device wherein the transmission line does not have a terminating resistor.
  • a detection device comprising: a processing unit that detects disconnection.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Monitoring And Testing Of Transmission In General (AREA)
  • Dc Digital Transmission (AREA)

Abstract

検知装置は、第1の周波数の成分を含む計測信号を伝送線へ出力する信号出力部と、前記信号出力部により出力された前記計測信号に対する前記伝送線からの応答信号を計測する信号計測部と、前記信号計測部により計測された前記応答信号と、前記計測信号に基づく参照信号との差分である差分信号を生成し、前記参照信号と前記差分信号との相関の大きさを示す指標値を算出し、算出した前記指標値に基づいて、前記伝送線における異常を検知する処理部とを備える。

Description

検知装置および検知方法
 本開示は、検知装置および検知方法に関する。
 この出願は、2021年6月2日に出願された日本出願特願2021-92768号を基礎とする優先権を主張し、その開示のすべてをここに取り込む。
 特許文献1(特表2015-536456号公報)には、位相および振幅が変調された広帯域信号波を電気ケーブルの端部に印加し、当該端部において電気ケーブルによって伝送及び反射された広帯域信号波を取得し、取得した広帯域信号波を用いてインピーダンス特性を解析することにより、電気ケーブルの状態をモニタする方法が開示されている。
 また、たとえば、特許文献2(特開2018-179531号公報)には、以下のような伝送装置が開示されている。すなわち、伝送装置は、第1カードと第2カードがコネクタを介して接続されている伝送装置において、前記伝送装置に入力されるデータの伝送レートよりも高い周波数の交流信号を出力する信号生成部と、前記交流信号を前記コネクタを介して受信し、受信した交流信号のパワーレベルに基づいて前記第1カードと前記第2カードが前記コネクタで嵌合しているか否かを判定する判定部と、を有する。
特表2015-536456号公報 特開2018-179531号公報
 本開示の検知装置は、第1の周波数の成分を含む計測信号を伝送線へ出力する信号出力部と、前記信号出力部により出力された前記計測信号に対する前記伝送線からの応答信号を計測する信号計測部と、前記信号計測部により計測された前記応答信号と、前記計測信号に基づく参照信号との差分である差分信号を生成し、前記参照信号と前記差分信号との相関の大きさを示す指標値を算出し、算出した前記指標値に基づいて、前記伝送線における異常を検知する処理部とを備える。
 本開示の検知方法は、検知装置における検知方法であって、第1の周波数の成分を含む計測信号を伝送線へ出力するステップと、前記計測信号に対する前記伝送線からの応答信号を計測するステップと、計測した前記応答信号と、前記計測信号に基づく参照信号との相関の大きさを示す指標値を算出し、算出した前記指標値に基づいて、前記伝送線における異常を検知するステップとを含む。
 本開示の一態様は、このような特徴的な処理部を備える検知装置として実現され得るだけでなく、検知装置の一部または全部を実現する半導体集積回路として実現され得たり、検知装置を含むシステムとして実現され得る。
図1は、本開示の第1の実施の形態に係る通信システムの構成を示す図である。 図2は、本開示の第1の実施の形態に係る中継装置の構成を示す図である。 図3は、本開示の第1の実施の形態に係る中継装置における信号計測部により計測される応答信号のシミュレーション結果を示す図である。 図4は、本開示の第1の実施の形態に係る中継装置における処理部により算出される複素解析信号の偏角のシミュレーション結果を示す図である。 図5は、本開示の第1の実施の形態に係る中継装置における処理部による断線の発生位置の特定方法を示す図である。 図6は、本開示の第1の実施の形態に係る中継装置における処理部により算出される距離のシミュレーション結果を示す図である。 図7は、本開示の第1の実施の形態に係る中継装置が検知処理を行う際の動作手順の一例を定めたフローチャートである。 図8は、本開示の第2の実施の形態に係る中継装置の構成を示す図である。 図9は、本開示の第2の実施の形態に係る中継装置が検知処理を行う際の動作手順の一例を定めたフローチャートである。 図10は、本開示の第3の実施の形態に係る中継装置の構成を示す図である。 図11は、本開示の第3の実施の形態に係る中継装置が検知処理を行う際の動作手順の一例を定めたフローチャートである。 図12は、本開示の第4の実施の形態に係る中継装置の構成を示す図である。 図13は、本開示の第4の実施の形態に係る中継装置における処理部により生成される乗算信号のシミュレーション結果を示す図である。 図14は、本開示の第4の実施の形態に係る中継装置における処理部により生成される抽出信号のシミュレーション結果を示す図である。 図15は、本開示の第4の実施の形態に係る中継装置における処理部により算出される距離のシミュレーション結果を示す図である。 図16は、本開示の第4の実施の形態に係る中継装置が検知処理を行う際の動作手順の一例を定めたフローチャートである。 図17は、本開示の第4の実施の形態の変形例に係る中継装置における処理部により生成される乗算信号のシミュレーション結果を示す図である。 図18は、本開示の第4の実施の形態の変形例に係る中継装置における処理部により生成される抽出信号のシミュレーション結果を示す図である。 図19は、本開示の第4の実施の形態の変形例に係る中継装置における処理部により算出される距離のシミュレーション結果を示す図である。 図20は、本開示の第5の実施の形態に係る中継装置の構成を示す図である。 図21は、本開示の第5の実施の形態に係る中継装置における処理部により生成される振幅のシミュレーション結果を示す図である。 図22は、本開示の第5の実施の形態に係る中継装置における処理部により生成される反射係数のシミュレーション結果を示す図である。 図23は、本開示の第6の実施の形態に係る中継装置の構成を示す図である。
 従来、伝送線の異常を検知する技術が提案されている。
 [本開示が解決しようとする課題]
 特許文献1および2に記載の技術を超えて、簡易な処理および構成で伝送線における異常を検知することが可能な技術が望まれる。
 本開示は、上述の課題を解決するためになされたもので、その目的は、簡易な処理および構成で伝送線における異常を検知することが可能な検知装置および検知方法を提供することである。
 [本開示の効果]
 本開示によれば、簡易な処理および構成で伝送線における異常を検知することができる。
 [本開示の実施形態の説明]
 最初に、本開示の実施形態の内容を列記して説明する。
 (1)本開示の実施の形態に係る検知装置は、第1の周波数の成分を含む計測信号を伝送線へ出力する信号出力部と、前記信号出力部により出力された前記計測信号に対する前記伝送線からの応答信号を計測する信号計測部と、前記信号計測部により計測された前記応答信号と、前記計測信号に基づく参照信号との差分である差分信号を生成し、前記参照信号と前記差分信号との相関の大きさを示す指標値を算出し、算出した前記指標値に基づいて、前記伝送線における異常を検知する処理部とを備える。
 このように、計測信号を伝送線へ出力したときの伝送線からの応答信号と、計測信号に基づく参照信号との差分である差分信号を生成し、参照信号と差分信号との相関の大きさを示す指標値に基づいて伝送線における異常を検知する構成により、たとえば低周波から高周波まで多様な周波数の正弦波および矩形波を計測信号として用いることができるとともに、伝送線において発生する反射信号を抽出するための方向性結合器等の回路を用いることなく、簡易な計算処理により参照信号と差分信号との位相差に基づいて異常を検知することができる。したがって、簡易な処理および構成で伝送線における異常を検知することができる。
 (2)上記(1)において、前記処理部は、前記指標値として、前記参照信号に含まれる前記第1の周波数の成分と、前記差分信号に含まれる前記第1の周波数の成分との位相差を算出してもよい。
 このような構成により、伝送線における信号の位相シフトに着目して伝送線における異常を検知することができる。また、位相差以外の指標値としてたとえば反射係数を算出する構成と比べて、ノイズの影響を低減することができるので、より正確に伝送線における異常を検知することができる。
 (3)上記(1)または(2)において、前記処理部は、前記指標値として、前記参照信号と前記差分信号との反射係数を算出してもよい。
 このような構成により、伝送線における信号の減衰量に着目して伝送線における異常を検知することができる。
 (4)上記(1)から(3)のいずれかにおいて、前記処理部は、前記参照信号と前記差分信号との乗算信号を、直流成分を抽出するための第1のフィルタへ入力することにより前記第1のフィルタから出力される出力信号、および前記参照信号に含まれる前記第1の周波数の成分の位相をπ/2シフトした信号と前記差分信号との乗算信号を、直流成分を抽出するための第2のフィルタへ入力することにより前記第2のフィルタから出力される出力信号を用いて、前記指標値を算出してもよい。
 このような構成により、耐ノイズ性を向上させることができるので、より正確に伝送線における異常を検知することができる。
 (5)上記(1)から(3)のいずれかにおいて、前記処理部は、前記第1の周波数とは異なる第2の周波数の成分を含む信号と前記差分信号との乗算信号を、前記第1の周波数と前記第2の周波数との差分の周波数の成分を抽出するための第3のフィルタへ入力することにより前記第3のフィルタから出力される出力信号を用いて、前記指標値を算出してもよい。
 このような構成により、動作周波数がより低い回路構成を用いて、第3のフィルタから出力される低周波の出力信号を処理することにより指標値を算出することができるので、検知装置におけるハードウェアのコストを低減することができる。
 (6)上記(2)において、前記処理部は、前記参照信号の複素解析信号の偏角と、前記差分信号の複素解析信号の偏角とを用いて前記位相差を算出してもよい。
 このような構成により、参照信号と差分信号との位相差を算出するための演算処理を簡素化することができる。
 (7)上記(1)から(6)のいずれかにおいて、前記処理部は、前記応答信号と、前記計測信号に対して遅延調整が行われた信号である前記参照信号との差分である前記差分信号を生成してもよい。
 このような構成により、応答信号と、たとえば伝送線の長さに応じた遅延処理が行われた参照信号とを用いて差分信号を生成することにより、応答信号に重畳される計測信号がより正確にキャンセルされた差分信号を生成することができるので、生成した差分信号を用いて伝送線における異常をより正確に検知することができるとともに、異常の発生位置をより正確に特定することができる。
 (8)上記(7)において、前記計測信号に対する前記参照信号の遅延量を設定変更可能であってもよい。
 このような構成により、たとえば伝送線の長さに応じた遅延量を設定することができるので、多様な長さの伝送線において、異常をより正確に検知することができるとともに、異常の発生位置をより正確に特定することができる。
 (9)上記(1)から(6)のいずれかにおいて、前記処理部は、前記応答信号と、定常時において前記信号計測部により計測された前記応答信号である前記参照信号との差分である前記差分信号を生成してもよい。
 このような構成により、定常時における応答信号を用いて、ノイズが低減された差分信号を生成することができるので、生成した差分信号を用いて伝送線における異常をより正確に検知することができる。
 (10)上記(1)から(9)のいずれかにおいて、前記処理部は、前記異常の発生位置を検知してもよい。
 このような構成により、異常が発生した場合において、異常の発生位置の修理または交換を行う等の適切な対処を施すことができる。
 (11)本開示の実施の形態に係る検知方法は、検知装置における検知方法であって、第1の周波数の成分を含む計測信号を伝送線へ出力するステップと、前記計測信号に対する前記伝送線からの応答信号を計測するステップと、計測した前記応答信号と、前記計測信号に基づく参照信号との相関の大きさを示す指標値を算出し、算出した前記指標値に基づいて、前記伝送線における異常を検知するステップとを含む。
 このように、計測信号を伝送線へ出力したときの伝送線からの応答信号と、計測信号に基づく参照信号との差分である差分信号を生成し、参照信号と差分信号との相関の大きさを示す指標値に基づいて伝送線における異常を検知する方法により、たとえば低周波から高周波まで多様な周波数の正弦波および矩形波を計測信号として用いることができるとともに、伝送線において発生する反射信号を抽出するための方向性結合器等の回路を用いることなく、簡易な計算処理により参照信号と差分信号との位相差に基づいて異常を検知することができる。したがって、簡易な処理および構成で伝送線における異常を検知することができる。
 以下、本開示の実施の形態について図面を用いて説明する。なお、図中同一または相当部分には同一符号を付してその説明は繰り返さない。また、以下に記載する実施の形態の少なくとも一部を任意に組み合わせてもよい。
 <第1の実施の形態>
 [構成および基本動作]
 図1は、本開示の第1の実施の形態に係る通信システムの構成を示す図である。図1を参照して、通信システム301は、中継装置101と、複数の通信装置111とを備える。
 中継装置101は、伝送線1を介して各通信装置111と接続されている。より詳細には、伝送線1は、ケーブル部と、ケーブル部の第1端および第2端にそれぞれ設けられたコネクタ部とを含む。ケーブル部の第1端に設けられたコネクタ部は、中継装置101におけるコネクタ部に接続される。ケーブル部の第2端に設けられたコネクタ部は、通信装置111におけるコネクタ部に接続される。伝送線1は、たとえば、イーサネット(登録商標)ケーブルである。
 通信システム301は、たとえば車両に搭載される。この場合、通信装置111は、たとえば車載ECU(Electronic Control Unit)である。なお、通信システム301は、ホームネットワークまたはファクトリーオートメーションに用いられもよい。
 中継装置101は、通信装置111と通信を行うことが可能である。中継装置101は、たとえば、異なる伝送線1に接続された複数の通信装置111間でやり取りされる情報を中継する中継処理を行う。また、中継装置101は、検知装置として機能し、たとえば定期的に、伝送線1における異常を検知する検知処理を行う。
 〔中継装置〕
 図2は、本開示の第1の実施の形態に係る中継装置の構成を示す図である。図2を参照して、中継装置101は、中継部11と、複数の検知処理部71と、複数の通信ポート61とを備える。検知処理部71は、信号出力部12と、信号計測部13と、処理部14と、記憶部15とを含む。中継部11、信号出力部12、信号計測部13および処理部14の一部または全部は、たとえば、CPU(Central Processing Unit)およびDSP(Digital Signal Processor)等のプロセッサにより実現される。記憶部15は、たとえば不揮発性メモリである。通信ポート61は、たとえばコネクタまたは端子である。各通信ポート61には、伝送線1のコネクタ部が接続される。
 [中継部]
 中継部11は、中継処理を行う。たとえば、中継部11は、通信装置111間のフレームを中継する中継処理を行う。より詳細には、中継部11は、ある通信装置111から対応の伝送線1および対応の通信ポート61経由で受信したフレームを、当該フレームの宛先IPアドレスに従って他の通信装置111へ対応の通信ポート61および対応の伝送線1経由で送信する。
 [検知処理部]
 たとえば、中継装置101は、通信ポート61の数と同数の検知処理部71を備える。より詳細には、検知処理部71は、通信ポート61に対応して設けられ、対応の通信ポート61に接続された伝送線1における異常を検知する検知処理を行う。以下、中継装置101における1つの検知処理部71による検知処理について代表して説明する。
 (信号出力部)
 信号出力部12は、計測信号を伝送線1へ出力する。一例として、信号出力部12は、周波数fの正弦波である計測信号を伝送線1へ出力する。周波数fは、第1の周波数の一例である。より詳細には、信号出力部12は、出力期間T1において、時刻tの関数として表される計測信号ys(t)を検知対象の伝送線1へ出力する。信号出力部12は、オフセット成分を含まない計測信号を伝送線1へ出力する構成であってもよいし、オフセット成分を含む計測信号を伝送線1へ出力する構成であってもよい。
 たとえば、出力期間T1は、中継部11により検知対象の伝送線1を介した中継処理が行われない期間である。より詳細には、中継部11は、当該伝送線1を介した中継処理を行わない期間を示す期間情報を信号出力部12へ出力する。信号出力部12は、中継部11から期間情報を受けて、受けた期間情報に基づいて出力期間T1を決定する。
 たとえば、記憶部15は、信号出力部12が伝送線1へ出力すべき計測信号ys(t)のデジタルデータDt、および計測信号ys(t)の周波数を示す周波数情報を記憶している。デジタルデータDtは、正弦波の波形を示す複数の値からなる時系列データである。
 信号出力部12は、記憶部15における当該データ群を用いて、出力期間T1において1または複数周期の正弦波を検知対象の伝送線1へ出力する。より詳細には、信号出力部12は、DAC(Digital to Analog Converter)を含む。信号出力部12は、DACの動作クロックの周期に相当する周期C1に従う出力タイミングにおいて、記憶部15からデジタルデータDtを取得し、取得したデジタルデータDtをDACによりアナログ変換することにより生成される計測信号ys(t)を検知対象の伝送線1へ出力する。
 信号出力部12は、検知タイミングを示す同期信号を信号計測部13へ出力する。信号出力部12は、同期信号を信号計測部13へ出力すると、出力期間T1を開始し、出力期間T1において計測信号ys(t)を検知対象の伝送線1へ出力する。
 また、信号出力部12は、周期C1に従う出力タイミングにおいて、記憶部15からデジタルデータDtを取得し、取得したデジタルデータDtを、時刻tの関数として表されるデジタル計測信号ysd(t)として処理部14へ出力する。すなわち、信号出力部12は、デジタルデータDtの振幅値の時系列データを処理部14へ出力する。デジタル計測信号ysd(t)は、参照信号の一例である。
 (信号計測部)
 信号計測部13は、信号出力部12により出力された計測信号ys(t)に対する伝送線1からの応答信号を計測する。たとえば、信号計測部13は、計測期間Tmにおいて、時刻tの関数として表される応答信号ym(t)を計測する。
 より詳細には、信号計測部13は、信号出力部12から同期信号を受けると、計測期間Tmを開始し、計測期間Tmにおいて応答信号ym(t)を計測する。計測期間Tmの長さは、たとえば、出力期間T1の長さから、伝送線1における計測信号の往復伝播時間を差し引いた長さと等しい。
 信号計測部13は、ADC(Analog to Digital Converter)を含む。信号計測部13は、計測期間Tmにおいて、周期C1に従うサンプリングタイミングにおいて伝送線1の電圧レベルをADCによりサンプリングすることによりデジタル応答信号ymd(t)を生成し、生成したデジタル応答信号ymd(t)を処理部14へ出力する。
 (処理部)
 処理部14は、信号計測部13により計測された応答信号ym(t)と、計測信号ys(t)に基づくデジタル計測信号ysd(t)との差分である差分信号ydiff(t)を生成する。
 より詳細には、処理部14は、信号計測部13から受けたデジタル応答信号ymd(t)から、信号出力部12から受けたデジタル計測信号ysd(t)を差し引くことにより差分信号ydiff(t)を生成する。
 図3は、本開示の第1の実施の形態に係る中継装置における信号計測部により計測される応答信号のシミュレーション結果を示す図である。図3において、横軸は時刻[秒]を示しており、縦軸は信号の振幅[V]を示している。図3における実線は、応答信号ym(t)を示しており、図3における破線は、計測信号ys(t)を示しており、図3における一点鎖線は、伝送線1において計測信号ys(t)が反射された信号である反射信号yr(t)を示している。図3は、長さ11mの伝送線1における中継装置101側の端部から10m離れた位置に断線が発生した場合における各信号のシミュレーション結果を示している。
 図3を参照して、信号計測部13により計測される応答信号ym(t)は、反射信号yr(t)に計測信号ys(t)が重畳された信号である。処理部14は、デジタル応答信号ymd(t)からデジタル計測信号ysd(t)を差し引くことにより、反射信号yr(t)を示す差分信号ydiff(t)を生成する。
 処理部14は、デジタル計測信号ysd(t)に含まれる周波数fの成分と、差分信号ydiff(t)に含まれる周波数fの成分との位相差Φを算出し、算出した位相差Φに基づいて、検知対象の伝送線1における異常を検知する。より詳細には、処理部14は、検知処理において、検知対象の伝送線1における異常として、当該伝送線1における断線を検知する。たとえば、処理部14は、当該断線の発生位置をさらに検知する。位相差Φは、デジタル計測信号ysd(t)と差分信号ydiff(t)との相関の大きさを示す指標値の一例である。
 たとえば、処理部14は、デジタル計測信号ysd(t)の複素解析信号Csd(t)の偏角θsd(t)と、差分信号ydiff(t)の複素解析信号Cdiff(t)の偏角θdiff(t)とを用いて位相差Φを算出する。
 より詳細には、処理部14は、信号出力部12から受けたデジタル計測信号ysd(t)をヒルベルト変換することにより複素解析信号Csd(t)を算出する。また、処理部14は、生成した差分信号ydiff(t)をヒルベルト変換することにより複素解析信号Cdiff(t)を算出する。処理部14は、複素解析信号Csd(t)の算出および複素解析信号Cdiff(t)の算出を並行して行ってもよいし、逐次的に行ってもよい。
 図4は、本開示の第1の実施の形態に係る中継装置における処理部により算出される複素解析信号の偏角のシミュレーション結果を示す図である。図4において、横軸は時刻[秒]を示しており、縦軸は偏角[rad]を示している。図4における実線は、複素解析信号Cdiff(t)の偏角θdiff(t)を示しており、図4における破線は、複素解析信号Csd(t)の偏角θsd(t)を示している。図4は、図3と同様に、長さ11mの伝送線1における中継装置101側の端部から10m離れた位置に断線が発生した場合において処理部14により算出される偏角θdiff(t)および偏角θsd(t)のシミュレーション結果を示している。
 処理部14は、偏角θsd(t)と偏角θdiff(t)との差分を位相差Φとして算出する。
 図5は、本開示の第1の実施の形態に係る中継装置における処理部による断線の発生位置の特定方法を示す図である。図5は、伝送線1において断線DCが発生している状態を示している。たとえば、伝送線1は、通信装置111側の端部において終端抵抗を備えない構成である。
 図5を参照して、信号出力部12により伝送線1へ出力される計測信号ys(t)が伝送線1における反射点において反射されることにより、反射信号yr(t)が発生する。たとえば、計測信号ys(t)は、伝送線1において断線DCが発生している場合、断線DCの位置において反射される。一方、計測信号ys(t)は、伝送線1において断線DCが発生していない場合、伝送線1における通信装置111側の端部において反射される。
 計測信号ys(t)と反射信号yr(t)との位相差Φは、下記式(1)により表される。
Figure JPOXMLDOC01-appb-M000001
 ここで、Lは、伝送線1における中継装置101側の端部から計測信号ys(t)の反射点までの距離[m]である。cは、光速[m/秒]である。εrは、伝送線1の比誘電率である。
 すなわち、伝送線1における中継装置101側の端部から計測信号ys(t)の反射点までの距離Lは、下記式(2)により表される。処理部14は、位相差Φを算出すると、式(2)に従って、算出した位相差Φに対応する距離Lを算出する。
Figure JPOXMLDOC01-appb-M000002
 図6は、本開示の第1の実施の形態に係る中継装置における処理部により算出される距離のシミュレーション結果を示す図である。図6において、横軸は時刻[秒]を示しており、縦軸は伝送線1における中継装置101側の端部から反射点までの距離[mm]を示している。図6は、図3および図4と同様に、長さ11mの伝送線1における中継装置101側の端部から10m離れた位置に断線が発生した場合において処理部14により算出される距離Lのシミュレーション結果を示している。
 図6を参照して、処理部14は、算出した距離Lに基づいて、伝送線1において断線が発生しているか否かを判定する。処理部14は、伝送線1において断線が発生している場合、伝送線1における断線の発生位置をさらに検知する。
 より詳細には、記憶部15は、検知対象の伝送線1の長さLcを示す伝送線情報を記憶している。
 処理部14は、記憶部15における伝送線情報を取得し、取得した伝送線情報が示す検知対象の伝送線1の長さLcから、算出した距離Lを差し引くことにより差分長さLdiffを算出する。
 処理部14は、算出した差分長さLdiffと、所定のしきい値Th1とを比較し、比較結果に基づいて、伝送線1において断線が発生しているか否かを判定する。より詳細には、処理部14は、差分長さLdiffがしきい値Th1未満である場合、伝送線1において断線が発生していないと判定する。一方、処理部14は、差分長さLdiffがしきい値Th1以上である場合、伝送線1における中継装置101側の端部から距離Lの位置において断線が発生していると判定する。
 たとえば、処理部14は、伝送線1において断線が発生していると判定した場合、判定結果を図示しない通信部および通信装置111を介してユーザへ通知する。
 ここで、処理部14において正しく算出することができる距離Lの最大値である最大距離Lmaxは、計測信号ys(t)の波長λの1/2であり、下記式(3)により表される。
Figure JPOXMLDOC01-appb-M000003
 たとえば、信号出力部12により出力される計測信号ys(t)の周波数fおよび上述した周期C1は、最大距離Lmaxが検知対象の伝送線1の長さLc以上となるように予め設定される。
 [動作の流れ]
 本開示の実施の形態に係る通信システムにおける各装置は、メモリを含むコンピュータを備え、当該コンピュータにおけるCPU等の演算処理部は、以下のフローチャートの各ステップの一部または全部を含むプログラムを当該メモリから読み出して実行する。これら複数の装置のプログラムは、それぞれ、外部からインストールすることができる。これら複数の装置のプログラムは、それぞれ、記録媒体に格納された状態でまたは通信回線を介して流通する。
 図7は、本開示の第1の実施の形態に係る中継装置が検知処理を行う際の動作手順の一例を定めたフローチャートである。
 図7を参照して、まず、中継装置101は、検知処理を行うべきタイミングを待ち受け(ステップS102でNO)、検知処理を行うべきタイミングにおいて(ステップS102でYES)、出力期間T1および計測期間Tmを開始する(ステップS104)。
 次に、中継装置101は、出力期間T1において、計測信号ys(t)を検知対象の伝送線1へ出力し、計測期間Tmにおいて、計測信号ys(t)に対する伝送線1からの応答信号ym(t)を計測する。より詳細には、中継装置101は、1サンプル分の計測信号ys(t)を伝送線1へ出力し、伝送線1の電圧レベルをサンプリングすることにより1サンプル分のデジタル応答信号ymd(t)を生成する(ステップS106)。
 中継装置101は、出力期間T1および計測期間Tmが満了するまで(ステップS108でNO)、1サンプル分の計測信号ys(t)の出力および1サンプル分のデジタル応答信号ymd(t)の生成を交互に繰り返し、出力期間T1および計測期間Tmが満了すると(ステップS108でYES)、応答信号ym(t)と、デジタル計測信号ysd(t)との差分である差分信号ydiff(t)を生成する。より詳細には、中継装置101は、デジタル応答信号ymd(t)からデジタル計測信号ysd(t)を差し引くことにより差分信号ydiff(t)を生成する(ステップS110)。
 次に、中継装置101は、デジタル計測信号ysd(t)に含まれる周波数fの成分と、差分信号ydiff(t)に含まれる周波数fの成分との位相差Φを算出する。より詳細には、中継装置101は、デジタル計測信号ysd(t)の複素解析信号Csd(t)の偏角θsd(t)と、差分信号ydiff(t)の複素解析信号Cdiff(t)の偏角θdiff(t)とを用いて位相差Φを算出する(ステップS112)。
 次に、中継装置101は、上述した式(2)に従って、位相差Φに対応する距離Lを算出する(ステップS114)。
 次に、中継装置101は、検知対象の伝送線1の長さLcから、算出した距離Lを差し引くことにより差分長さLdiffを算出する(ステップS116)。
 次に、中継装置101は、算出した差分長さLdiffと、しきい値Th1とを比較する(ステップS118)。
 次に、中継装置101は、差分長さLdiffがしきい値Th1未満である場合(ステップS120でNO)、伝送線1において断線が発生していないと判定し(ステップS122)、検知処理を行うべき新たなタイミングを待ち受ける(ステップS102でNO)。
 一方、中継装置101は、差分長さLdiffがしきい値Th1以上である場合(ステップS120でYES)、伝送線1における中継装置101側の端部から距離Lの位置において断線が発生していると判定する(ステップS124)。
 次に、中継装置101は、判定結果を図示しない通信部および通信装置111を介してユーザへ通知し(ステップS126)、検知処理を行うべき新たなタイミングを待ち受ける(ステップS102でNO)。
 なお、本開示の第1の実施の形態に係る通信システム301では、中継装置101が検知処理を行う構成であるとしたが、これに限定するものではない。通信システム301における中継装置101とは別の装置が検知処理を行う構成であってもよい。具体的には、通信装置111が、検知装置として機能し、検知処理を行う構成であってもよい。
 また、本開示の第1の実施の形態に係る通信システム301では、伝送線1は、ケーブル部およびコネクタ部を含む構成であるとしたが、これに限定するものではない。伝送線1は、回路基板上に形成された配線パターンであってもよい。この場合、中継装置101は、配線パターンである伝送線1における異常を検知する。
 また、本開示の第1の実施の形態に係る中継装置101では、処理部14は、検知処理において、検知対象の伝送線1における異常として、当該伝送線1における断線を検知する構成であるとしたが、これに限定するものではない。処理部14は、検知対象の伝送線1における異常として、当該伝送線1への不正機器の接続を検知する構成であってもよい。不正機器が伝送線1に接続された場合、伝送線1への不正機器の接続により接続箇所のインピーダンスが変化するので、信号出力部12により伝送線1へ出力された計測信号ys(t)が当該接続箇所において反射されて反射信号が発生する。信号計測部13は、伝送線1において断線が発生した場合と同様に、計測信号ys(t)に当該反射信号が重畳された応答信号を計測する。処理部14は、差分長さLdiffの絶対値と、しきい値Th1とを比較する。処理部14は、差分長さLdiffの絶対値がしきい値Th1未満である場合、伝送線1において不正機器の接続等の異常が発生していないと判定する。一方、処理部14は、差分長さLdiffの絶対値がしきい値Th1以上である場合、不正機器の接続等の異常が発生していると判定する。
 また、本開示の第1の実施の形態に係る中継装置101では、処理部14は、デジタル計測信号ysd(t)の複素解析信号Csd(t)の偏角θsd(t)と、差分信号ydiff(t)の複素解析信号Cdiff(t)の偏角θdiff(t)とを用いて位相差Φを算出する構成であるとしたが、これに限定するものではない。処理部14は、複素解析信号Csd(t)の偏角θsd(t)および差分信号ydiff(t)の複素解析信号Cdiff(t)の偏角θdiff(t)を用いることなく位相差Φを算出する構成であってもよい。たとえば、処理部14は、以下の手順により位相差Φを算出する構成であってもよい。
 すなわち、処理部14は、差分信号ydiff(t)の振幅およびデジタル計測信号ysd(t)の振幅を±1の範囲に正規化する。処理部14は、正規化した差分信号ydiff(t)を正弦関数の逆関数であるアークサインに通すことにより差分信号ydiff(t)の位相P1を算出する。また、処理部14は、正規化したデジタル計測信号ysd(t)を正弦関数の逆関数であるアークサインに通すことによりデジタル計測信号ysd(t)の位相P2を算出する。そして、処理部14は、たとえば位相P1,P2をアンラップし、位相P1と位相P2との差分を位相差Φとして算出する。
 また、本開示の第1の実施の形態に係る中継装置101では、処理部14は、伝送線1において断線が発生している場合、伝送線1における断線の発生位置をさらに検知する構成であるとしたが、これに限定するものではない。処理部14は、伝送線1において断線が発生しているか否かを判定する一方で、断線の発生位置の検知を行わない構成であってもよい。
 また、本開示の第1の実施の形態に係る通信システム301では、伝送線1は、通信装置111側の端部において終端抵抗を備えない構成であるとしたが、これに限定するものではない。伝送線1は、通信装置111側の端部においてインピーダンス整合のための終端抵抗を備える構成であってもよい。
 また、本開示の第1の実施の形態に係る中継装置101では、処理部14は、デジタル応答信号ymd(t)からデジタル計測信号ysd(t)を差し引くことにより差分信号ydiff(t)を生成する構成であるとしたが、これに限定するものではない。処理部14は、差動増幅器等を用いたアナログ信号処理により差分信号ydiff(t)を生成する構成であってもよい。この場合、処理部14は、生成した差分信号ydiff(t)を、ADCを用いてデジタル信号に変換し、当該デジタル信号を用いて位相差Φを算出し、算出した位相差Φに基づいて断線を検知する。
 また、本開示の第1の実施の形態に係る中継装置101では、信号出力部12は、正弦波である計測信号を伝送線1へ出力する構成であるとしたが、これに限定するものではない。信号出力部12は、複数の周波数成分を有する計測信号を伝送線1へ出力する構成であってもよいし、矩形波である計測信号を伝送線1へ出力する構成であってもよい。
 たとえば、記憶部15は、矩形波の波形を示す複数の値からなるデジタルデータDtRWを記憶している。信号出力部12は、デジタルデータDtの代わりにデジタルデータDtRWを記憶部15から取得し、取得したデジタルデータDtRWをアナログ変換した信号を計測信号ys(t)として検知対象の伝送線1へ出力する。
 ここで、矩形波は、基本周波数の奇数倍の周波数成分を含む。信号計測部13は、たとえばBPF(Band Pass Filter)を用いて、伝送線1の電圧レベルを示すアナログ信号から一部の周波数成分を抽出し、抽出したアナログ信号をADCによりサンプリングすることによりデジタル応答信号ymd(t)を生成して処理部14へ出力する。あるいは、伝送線1の電圧レベルをADCによりサンプリングすることによりデジタル信号を生成し、BPFを用いて当該デジタル信号の一部の周波数成分を抽出し、抽出したデジタル信号をデジタル応答信号ymd(t)として処理部14へ出力する。
 ところで、簡易な処理および構成で伝送線における断線を検知することが可能な技術が望まれる。
 たとえば、従来、TDR(Time Domain Reflectometry)を用いて、伝送線1の特性を検出する技術が知られている。このような技術を用いて伝送線1の特性の変化を検出し、検出結果に基づいて伝送線1に関する異常を検知する場合、伝送線1の特性の変化を正確に検出するために、高い再現性で立ち上がりパルスを伝送線1へ出力する必要があり、その結果、高性能のパルス信号発生器が必要となる。
 また、ネットワークアナライザを用いて伝送線1のSパラメータ等の特性を計測し、計測結果に基づいて伝送線1に関する異常を検知する場合、十分な検知精度を得るために、高価かつ複雑な計測機器を用いる必要があり、また、計測のたびに計測機器の校正を行う必要がある。
 これに対して、本開示の第1の実施の形態に係る中継装置101では、信号出力部12は、第1の周波数の成分を含む計測信号を伝送線1へ出力する。信号計測部13は、信号出力部12により出力された計測信号に対する伝送線1からの応答信号を計測する。処理部14は、信号計測部13により計測された応答信号と、計測信号に基づく参照信号との差分である差分信号を生成し、参照信号と差分信号との相関の大きさを示す指標値である位相差を算出し、算出した位相差に基づいて、伝送線1における異常を検知する。
 このように、計測信号を伝送線1へ出力したときの伝送線1からの応答信号と、計測信号に基づく参照信号との差分である差分信号を生成し、参照信号と差分信号との位相差に基づいて伝送線1における異常を検知する構成により、たとえば低周波から高周波まで多様な周波数の正弦波および矩形波を計測信号として用いることができるとともに、伝送線1において発生する反射信号を抽出するための方向性結合器等の回路を用いることなく、簡易な計算処理により参照信号と差分信号との位相差に基づいて異常を検知することができる。したがって、本開示の第1の実施の形態に係る中継装置101では、簡易な処理および構成で伝送線における異常を検知することができる。
 また、上記のように、参照信号と差分信号との位相差に基づいて異常を検知するので、たとえば応答信号の振幅を解析するTDRおよびネットワークアナライザを用いる構成と比べて、ノイズに対する耐性が高いので異常をより正確に検知することができる。また、FFT(Fast Fourier Transform)等の演算処理を行うことなく簡易な処理で異常を検知することができる。また、光信号または電波を用いる構成と比べて、伝送線1において定在波が生じている状態であっても異常を検知することができる。
 次に、本開示の他の実施の形態について図面を用いて説明する。なお、図中同一または相当部分には同一符号を付してその説明は繰り返さない。
 <第2の実施の形態>
 本実施の形態は、第1の実施の形態に係る中継装置101と比べて、記憶部15におけるデジタル計測信号ysd(t)を用いて差分信号ydiff(t)を生成する中継装置102に関する。以下で説明する内容以外は第1の実施の形態に係る中継装置101と同様である。
 図8は、本開示の第2の実施の形態に係る中継装置の構成を示す図である。図8を参照して、中継装置102は、第1の実施の形態に係る中継装置101と比べて、検知処理部71の代わりに検知処理部72を備える。検知処理部72は、検知処理部71と比べて、信号計測部13の代わりに信号計測部23を含み、処理部14の代わりに処理部24を含む。たとえば、伝送線1は、通信装置111側の端部において終端抵抗を備える。
 検知処理部72は、定常時における応答信号を計測する基準計測処理を行う。より詳細には、検知処理部72は、伝送線1における断線が発生していない初期状態において基準計測処理を行う。検知処理部72は、基準計測処理を行った後、たとえば定期的に検知処理を行う。なお、検知処理部72は、初期状態において基準計測処理を行った後、定期的または不定期に、基準計測処理を行ってもよい。
 (基準計測処理)
 信号出力部12は、同期信号を信号計測部23へ出力し、出力期間T1において計測信号ys(t)を検知対象の伝送線1へ出力する。
 信号計測部23は、信号出力部12から同期信号を受けると、計測期間Tmを開始し、計測期間Tmにおいて、周期C1に従うサンプリングタイミングにおいて伝送線1の電圧レベルをADCによりサンプリングすることにより、定常時におけるデジタル応答信号ymd(t)であるデジタル応答信号ymdR(t)を生成する。信号計測部23は、生成したデジタル応答信号ymdR(t)を記憶部15に保存する。デジタル応答信号ymdR(t)は、参照信号の一例である。
 (検知処理)
 信号出力部12は、基準計測処理と同様に、同期信号を信号計測部13へ出力し、出力期間T1において計測信号ys(t)を検知対象の伝送線1へ出力する。
 信号計測部23は、信号出力部12から同期信号を受けると、計測期間Tmを開始し、計測期間Tmにおいて、周期C1に従うサンプリングタイミングにおいて伝送線1の電圧レベルをADCによりサンプリングすることにより、運用時におけるデジタル応答信号ymd(t)であるデジタル応答信号ymdS(t)を生成する。信号計測部23は、生成したデジタル応答信号ymdS(t)を処理部24へ出力する。
 処理部24は、応答信号ym(t)と、定常時において信号計測部23により計測された応答信号ym(t)であるデジタル応答信号ymdR(t)との差分である差分信号ydiff(t)を生成する。
 より詳細には、処理部24は、信号計測部23からデジタル応答信号ymdS(t)を受けて、記憶部15からデジタル応答信号ymdR(t)を取得し、デジタル応答信号ymdS(t)からデジタル応答信号ymdR(t)を差し引くことにより差分信号ydiff(t)を生成する。
 処理部24は、記憶部15から取得したデジタル応答信号ymdR(t)をヒルベルト変換することにより複素解析信号CmdR(t)を算出する。また、処理部24は、生成した差分信号ydiff(t)をヒルベルト変換することにより複素解析信号Cdiff(t)を算出する。そして、処理部24は、複素解析信号CmdR(t)の偏角θmdR(t)と、複素解析信号Cdiff(t)の偏角θdiff(t)との差分を位相差Φとして算出する。
 処理部24は、位相差Φを算出すると、上述した式(2)に従って、算出した位相差Φに対応する距離Lを算出する。
 処理部24は、算出した距離Lに基づいて、伝送線1において断線が発生しているか否かを判定する。処理部24は、伝送線1において断線が発生している場合、伝送線1における断線の発生位置をさらに検知する。
 たとえば、処理部24は、算出した距離Lと、所定のしきい値Th2とを比較し、比較結果に基づいて、伝送線1において断線が発生しているか否かを判定する。より詳細には、処理部24は、算出した距離Lがしきい値Th2未満である場合、伝送線1において断線が発生していないと判定する。一方、処理部24は、算出した距離Lがしきい値Th2以上である場合、伝送線1における中継装置102側の端部から距離Lの位置において断線が発生していると判定する。
 図9は、本開示の第2の実施の形態に係る中継装置が検知処理を行う際の動作手順の一例を定めたフローチャートである。
 図9を参照して、まず、中継装置102は、基準計測処理を行う。より詳細には、中継装置102は、計測信号ys(t)を検知対象の伝送線1へ出力し、定常時におけるデジタル応答信号ymd(t)であるデジタル応答信号ymdR(t)を生成して記憶部15に保存する(ステップS202)。
 次に、中継装置102は、検知処理を行うべきタイミングを待ち受け(ステップS204でNO)、検知処理を行うべきタイミングにおいて(ステップS204でYES)、出力期間T1および計測期間Tmを開始する(ステップS206)。
 次に、中継装置102は、出力期間T1において、計測信号ys(t)を検知対象の伝送線1へ出力し、計測期間Tmにおいて、計測信号ys(t)に対する伝送線1からの応答信号ym(t)を計測する。より詳細には、中継装置101は、1サンプル分の計測信号ys(t)を伝送線1へ出力し、伝送線1の電圧レベルをサンプリングすることにより1サンプル分のデジタル応答信号ymd(t)を生成する(ステップS208)。
 次に、中継装置102は、出力期間T1および計測期間Tmが満了するまで(ステップS210でNO)、1サンプル分の計測信号ys(t)の出力および1サンプル分のデジタル応答信号ymd(t)の生成を交互に繰り返し、出力期間T1および計測期間Tmが満了すると(ステップS210でYES)、応答信号ym(t)と、デジタル応答信号ymdR(t)との差分である差分信号ydiff(t)を生成する。より詳細には、中継装置102は、デジタル応答信号ymdS(t)から記憶部15におけるデジタル応答信号ymdR(t)を差し引くことにより差分信号ydiff(t)を生成する(ステップS212)。
 次に、中継装置102は、デジタル応答信号ymdR(t)と差分信号ydiff(t)との位相差Φを算出する。より詳細には、中継装置102は、デジタル応答信号ymdR(t)の複素解析信号CmdR(t)の偏角θmdR(t)と、差分信号ydiff(t)の複素解析信号Cdiff(t)の偏角θdiff(t)とを用いて位相差Φを算出する(ステップS214)。
 次に、中継装置102は、上述した式(2)に従って、位相差Φに対応する距離Lを算出する(ステップS216)。
 次に、中継装置101は、算出した距離Lと、しきい値Th2とを比較する(ステップS218)。
 次に、中継装置102は、距離Lがしきい値Th2未満である場合(ステップS220でNO)、伝送線1において断線が発生していないと判定し(ステップS222)、検知処理を行うべき新たなタイミングを待ち受ける(ステップS204でNO)。
 一方、中継装置102は、距離Lがしきい値Th2以上である場合(ステップS220でYES)、伝送線1における中継装置102側の端部から距離Lの位置において断線が発生していると判定する(ステップS224)。
 次に、中継装置102は、判定結果を図示しない通信部および通信装置111を介してユーザへ通知し(ステップS226)、検知処理を行うべき新たなタイミングを待ち受ける(ステップS204でNO)。
 上述したように、本開示の第2の実施の形態に係る中継装置102では、処理部24は、応答信号ym(t)と、定常時において信号計測部23により計測された応答信号ym(t)であるデジタル応答信号ymdR(t)との差分である差分信号ydiff(t)を生成する。
 このような構成により、本開示の第1の実施の形態に係る中継装置101と比べて、ノイズが軽減された差分信号ydiff(t)を算出することができるので、算出した差分信号ydiff(t)を用いて伝送線1における断線をより正確に検知することができる。一方、本開示の第1の実施の形態に係る中継装置101では、中継装置102と比べて、より簡易な構成により伝送線1における断線を検知することができる。
 次に、本開示の他の実施の形態について図面を用いて説明する。なお、図中同一または相当部分には同一符号を付してその説明は繰り返さない。
 <第3の実施の形態>
 本実施の形態は、第1の実施の形態に係る中継装置101と比べて、伝送線1へ出力する計測信号ys(t)に対して遅延調整が行われたデジタル計測信号ysd(t)を用いて検知処理を行う中継装置103に関する。以下で説明する内容以外は第1の実施の形態に係る中継装置101と同様である。
 図10は、本開示の第3の実施の形態に係る中継装置の構成を示す図である。図10を参照して、中継装置103は、第1の実施の形態に係る中継装置101と比べて、検知処理部71の代わりに検知処理部73を備える。検知処理部73は、検知処理部71と比べて、処理部14の代わりに処理部34を含み、遅延調整部16をさらに含む。
 信号出力部12は、同期信号を信号計測部13へ出力し、出力期間T1において計測信号ys(t)を検知対象の伝送線1へ出力する。また、信号出力部12は、周期C1に従う出力タイミングにおいて、記憶部15からデジタルデータDtを取得し、取得したデジタルデータDtをデジタル計測信号ysd(t)として遅延調整部16へ出力する。
 信号計測部13は、信号出力部12から同期信号を受けると、計測期間Tmを開始し、計測期間Tmにおいて、周期C1に従うサンプリングタイミングにおいて伝送線1の電圧レベルをADCによりサンプリングすることによりデジタル応答信号ymd(t)を生成し、生成したデジタル応答信号ymd(t)を処理部34へ出力する。
 遅延調整部16は、信号出力部12からデジタル計測信号ysd(t)を受けて、受けたデジタル計測信号ysd(t)を遅延させて処理部34へ出力する。より詳細には、遅延調整部16は、信号出力部12により伝送線1へ出力される計測信号ys(t)に対して位相が遅れたデジタル計測信号ysdD(t)を処理部34へ出力する。
 たとえば、中継装置103では、計測信号ys(t)に対するデジタル計測信号ysdD(t)の遅延量を設定変更可能である。より詳細には、遅延調整部16により処理部34へ出力されるデジタル計測信号ysdD(t)の遅延時間dtは、設定変更可能である。たとえば、ユーザは、初期状態において処理部34により生成される差分信号ydiff(t)の振幅が所定値未満となるように遅延調整部16における遅延時間dtを設定する。
 遅延調整部16は、遅延時間dtの設定を受け付ける。遅延調整部16は、検知処理において、信号出力部12から受けたデジタル計測信号ysd(t)を遅延時間dt遅延させて処理部34へ出力する。
 処理部34は、応答信号ym(t)と、計測信号ys(t)に対して遅延調整が行われた信号であるデジタル計測信号ysdD(t)との差分である差分信号ydiff(t)を生成する。より詳細には、処理部34は、信号計測部13から受けたデジタル応答信号ymd(t)から、遅延調整部16から受けたデジタル計測信号ysdD(t)を差し引くことにより差分信号ydiff(t)を生成する。
 処理部34は、遅延調整部16から受けたデジタル計測信号ysdD(t)をヒルベルト変換することにより複素解析信号Csd(t)を算出する。また、処理部34は、生成した差分信号ydiff(t)をヒルベルト変換することにより複素解析信号Cdiff(t)を算出する。そして、処理部34は、複素解析信号Csd(t)の偏角θsd(t)と、複素解析信号Cdiff(t)の偏角θdiff(t)との差分を位相差Φとして算出する。
 処理部34は、位相差Φを算出すると、上述した式(2)に従って、算出した位相差Φに対応する距離Lを算出する。
 処理部34は、算出した距離Lに基づいて、伝送線1において断線が発生しているか否かを判定する。処理部34は、伝送線1において断線が発生している場合、伝送線1における断線の発生位置をさらに検知する。
 たとえば、処理部34は、算出した距離Lと、所定のしきい値Th2とを比較し、比較結果に基づいて、伝送線1において断線が発生しているか否かを判定する。より詳細には、処理部34は、算出した距離Lがしきい値Th2未満である場合、伝送線1において断線が発生していないと判定する。一方、処理部34は、算出した距離Lがしきい値Th2以上である場合、伝送線1における中継装置103側の端部から距離Lの位置において断線が発生していると判定する。
 図11は、本開示の第3の実施の形態に係る中継装置が検知処理を行う際の動作手順の一例を定めたフローチャートである。
 図11を参照して、まず、中継装置103は、遅延時間dtの設定を受け付ける(ステップS302)。
 次に、中継装置103は、ステップS304からステップS316の処理として、図7におけるステップS102からステップS114と同様の処理を行い、ステップS318からステップS326の処理として、図9におけるステップS218からステップS226と同様の処理を行う。
 なお、本開示の第3の実施の形態に係る中継装置103では、遅延調整部16におけるデジタル計測信号ysd(t)の遅延時間dtが設定変更可能な構成であるとしたが、これに限定するものではない。遅延調整部16におけるデジタル計測信号ysd(t)の遅延時間dtは、たとえば伝送線1の長さに応じて、処理部34により生成される差分信号ydiff(t)の振幅が所定値未満となるように予め設定された値であってもよい。
 次に、本開示の他の実施の形態について図面を用いて説明する。なお、図中同一または相当部分には同一符号を付してその説明は繰り返さない。
 <第4の実施の形態>
 本実施の形態は、第1の実施の形態に係る中継装置101と比べて、相関検波により位相差Φを算出する中継装置104に関する。以下で説明する内容以外は第1の実施の形態に係る中継装置101と同様である。
 図12は、本開示の第4の実施の形態に係る中継装置の構成を示す図である。図12を参照して、中継装置104は、第1の実施の形態に係る中継装置101と比べて、検知処理部71の代わりに検知処理部74を備える。検知処理部74は、検知処理部71と比べて、信号出力部12の代わりに信号出力部22を含み、処理部14の代わりに処理部44を含む。処理部44は、LPF4A,4Bおよびミキサ5A,5Bを有する。
 信号出力部22は、正弦波である計測信号を伝送線1へ出力する。より詳細には、信号出力部22は、同期信号を信号計測部13へ出力し、出力期間T1において計測信号ys(t)を検知対象の伝送線1へ出力する。より詳細には、信号出力部22は、周期C1に従う出力タイミングにおいて、記憶部15からデジタルデータDtを取得し、取得したデジタルデータDtをDACによりアナログ変換することにより生成される計測信号ys(t)を検知対象の伝送線1へ出力する。
 また、信号出力部22は、記憶部15から取得したデジタルデータDtをデジタル計測信号ysd(t)として処理部44へ出力する。また、信号出力部22は、記憶部15における周波数情報を参照して、デジタル計測信号ysd(t)に含まれる周波数fの成分の位相をπ/2シフトした信号であるデジタル計測信号ysdP(t)を、処理部44へさらに出力する。
 信号計測部13は、信号出力部22から同期信号を受けると、計測期間Tmを開始し、計測期間Tmにおいて、伝送線1の電圧レベルをADCによりサンプリング周波数fsでサンプリングすることによりデジタル応答信号ymd(t)を生成し、生成したデジタル応答信号ymd(t)を処理部44へ出力する。ここで、サンプリング周波数fsは、周期C1の逆数である。
 処理部44は、信号計測部13から受けたデジタル応答信号ymd(t)から、信号出力部22から受けたデジタル計測信号ysd(t)を差し引くことにより差分信号ydiff(t)を生成する。
 そして、処理部44は、デジタル計測信号ysd(t)と差分信号ydiff(t)との乗算信号Ms1(t)をLPF(Low Pass Filter)4Aへ入力することによりLPF4Aから出力される出力信号、およびデジタル計測信号ysdP(t)と差分信号ydiff(t)との乗算信号Ms2(t)をLPF4Bへ入力することによりLPF4Bから出力される出力信号を用いて、位相差Φを算出する。LPF4Aは、第1のフィルタの一例である。LPF4Bは、第2のフィルタの一例である。
 より詳細には、処理部44は、ミキサ5Aを用いてデジタル計測信号ysd(t)と差分信号ydiff(t)とを乗算することにより乗算信号Ms1(t)を生成し、ミキサ5Bを用いてデジタル計測信号ysdP(t)と差分信号ydiff(t)とを乗算することにより乗算信号Ms2(t)を生成する。
 図13は、本開示の第4の実施の形態に係る中継装置における処理部により生成される乗算信号のシミュレーション結果を示す図である。図13において、横軸は時刻[秒]を示しており、縦軸は信号の振幅[V]を示している。図13における実線は、乗算信号Ms1(t)を示しており、図13における破線は、乗算信号Ms2(t)を示している。図13は、長さ11mの伝送線1における中継装置104側の端部から10m離れた位置に断線が発生した場合において処理部44により算出される乗算信号Ms1(t),Ms2(t)のシミュレーション結果を示している。
 乗算信号Ms1(t),Ms2(t)は、デジタル計測信号ysd(t)を余弦波としたとき、以下の式(4),(5)により表される。
Figure JPOXMLDOC01-appb-M000004

Figure JPOXMLDOC01-appb-M000005
 ここで、A1は、計測信号ys(t)の振幅である。A2は、反射信号yr(t)の振幅である。ωは、周波数fに対応する角周波数である。式(4),(5)に示すように、乗算信号Ms1(t),Ms2(t)は、計測信号ys(t)の周波数fの2倍の周波数成分Fcと、定数項である直流成分Dcとを含む。
 処理部44は、上述したLPF4A,4Bを用いて、乗算信号Ms1(t),Ms2(t)の周波数成分Fcを減衰することにより、乗算信号Ms1(t),Ms2(t)の直流成分Dcが抽出された信号である抽出信号MsD1(t),MsD2(t)を生成する。LPF4A,4Bのカットオフ周波数は、たとえば周波数fの2倍の周波数以下である。LPF4A,4Bは、計測信号ys(t)の周波数fに基づく周波数成分を減衰する。
 たとえば、処理部44は、LPF4A,4Bとして、平均値フィルタを用いる。第1の平均値フィルタは、乗算信号Ms1(t)を受けて、サンプル数Nごとの乗算信号Ms1(t)の平均値である抽出信号MsD1(t)を出力する。第2の平均値フィルタは、乗算信号Ms2(t)を受けて、サンプル数Nごとの乗算信号Ms2(t)の平均値である抽出信号MsD2(t)を出力する。ここで、Nは、自然数である。たとえば、サンプル数N、サンプリング周波数fsおよび周波数fは、以下の式(6)を満たす。
Figure JPOXMLDOC01-appb-M000006
 これにより、第1の平均値フィルタにより、乗算信号Ms1(t)の正負の値が打ち消し合うことにより乗算信号Ms1(t)の周波数成分Fcが減衰された抽出信号MsD1(t)が得られる。また、第2の平均値フィルタにより、乗算信号Ms2(t)の正負の値が打ち消し合うことにより乗算信号Ms2(t)の周波数成分Fcが減衰された抽出信号MsD2(t)が得られる。
 なお、サンプル数N、サンプリング周波数fsおよび周波数fは、以下の式(7)を満たす値であってもよい。これにより、デジタル応答信号ymd(t)を生成するためのADCとして、より低いサンプリング周波数fsでサンプリングするADCを用いることができる。
Figure JPOXMLDOC01-appb-M000007
 図14は、本開示の第4の実施の形態に係る中継装置における処理部により生成される抽出信号のシミュレーション結果を示す図である。図14において、横軸は時刻[秒]を示しており、縦軸は信号の振幅[V]を示している。図14における実線は、抽出信号MsD1(t)を示しており、図14における破線は、抽出信号MsD2(t)を示している。図14は、図13と同様に、長さ11mの伝送線1における中継装置104側の端部から10m離れた位置に断線が発生した場合において処理部44により算出される抽出信号MsD1(t),MsD2(t)のシミュレーション結果を示している。
 第1の平均値フィルタの出力信号である抽出信号MsD1(t)および第2の平均値フィルタの出力信号である抽出信号MsD2(t)は、以下の式(8),(9)により表される。
Figure JPOXMLDOC01-appb-M000008

Figure JPOXMLDOC01-appb-M000009
 処理部44は、抽出信号MsD1(t),MsD2(t)を用いて、以下の式(10)に従って位相差Φを算出する。
Figure JPOXMLDOC01-appb-M000010

 処理部44は、位相差Φを算出すると、上述した式(2)に従って、算出した位相差Φに対応する距離Lを算出する。
 図15は、本開示の第4の実施の形態に係る中継装置における処理部により算出される距離のシミュレーション結果を示す図である。図15において、横軸は時刻[秒]を示しており、縦軸は伝送線1における中継装置104側の端部から反射点までの距離[m]を示している。図15は、図13および図14と同様に、長さ11mの伝送線1における中継装置104側の端部から10m離れた位置に断線が発生した場合において処理部44により算出される距離Lのシミュレーション結果を示している。
 図15を参照して、処理部44により算出される距離Lは、中継装置104側の端部と断線位置との間の距離である10mと概ね一致する。以上より、本実施の形態に係る検知方法により、伝送線1において断線が発生しているか否か、および断線の発生位置を検知することができる。
 処理部44は、距離Lを算出すると、算出した距離Lに基づいて、伝送線1において断線が発生しているか否かを判定する。処理部44は、伝送線1において断線が発生している場合、伝送線1における断線の発生位置をさらに検知する。伝送線1において断線が発生しているか否かの判定方法、および断線の発生位置の検知方法は、第1の実施の形態において説明した通りである。
 図16は、本開示の第4の実施の形態に係る中継装置が検知処理を行う際の動作手順の一例を定めたフローチャートである。
 図16を参照して、まず、中継装置104は、ステップS402からステップS410の処理として、図7におけるステップS102からステップS110と同様の処理を行う。
 次に、中継装置104は、ミキサ5Aを用いてデジタル計測信号ysd(t)と差分信号ydiff(t)とを乗算することにより乗算信号Ms1(t)を生成し、ミキサ5Bを用いてデジタル計測信号ysdP(t)と差分信号ydiff(t)とを乗算することにより乗算信号Ms2(t)を生成する(ステップS412)。
 次に、中継装置104は、平均値フィルタを用いて、乗算信号Ms1(t),Ms2(t)の周波数成分Fcを減衰することにより、抽出信号MsD1(t),MsD2(t)を生成する(ステップS414)。
 次に、中継装置104は、抽出信号MsD1(t),MsD2(t)を用いて、上述した式(10)に従って位相差Φを算出する(ステップS416)。
 次に、中継装置104は、ステップS418からステップS430の処理として、図7におけるステップS114からステップS126と同様の処理を行う。
 なお、本開示の第4の実施の形態に係る中継装置104では、処理部44は、乗算信号Ms1(t)をLPF4Aへ入力することによりLPF4Aから出力される出力信号、および乗算信号Ms2(t)をLPF4Bへ入力することによりLPF4Bから出力される出力信号を用いて位相差Φを算出する構成であるとしたが、これに限定するものではない。たとえば、処理部44は、LPF4A,4Bの代わりに、直流成分を抽出するためのBPFを用いる構成であってもよい。また、たとえば、信号計測部13は、伝送線1の電圧レベルを計測信号ys(t)の周波数fでサンプルホールドすることによりデジタル応答信号ymd(t)を生成し、生成したデジタル応答信号ymd(t)を処理部44へ出力する。この場合、処理部44は、LPF4A,4Bを用いることなく、乗算信号Ms1(t),乗算信号Ms2(t)を用いて位相差Φを算出する構成であってもよい。
 また、本開示の第4の実施の形態に係る中継装置104では、信号出力部22は、正弦波である計測信号を伝送線1へ出力する構成であるとしたが、これに限定するものではない。信号出力部22は、複数の周波数成分を有する計測信号を伝送線1へ出力する構成であってもよいし、矩形波である計測信号を伝送線1へ出力する構成であってもよい。より詳細には、信号出力部22は、矩形波の波形を示す複数の値からなるデジタルデータDtRWを記憶部15から取得し、取得したデジタルデータDtRWをアナログ変換した信号を計測信号ys(t)として検知対象の伝送線1へ出力する。信号出力部22は、記憶部15から取得したデジタルデータDtRWをデジタル計測信号ysdRW(t)として処理部44へ出力する。また、信号出力部22は、デジタル計測信号ysdRW(t)の位相をπ/2シフトした信号であるデジタル計測信号ysdRWP(t)を、処理部44へさらに出力する。
 信号計測部13は、伝送線1の電圧レベルをADCによりサンプリング周波数fsでサンプリングすることによりデジタル応答信号ymdRW(t)を生成し、生成したデジタル応答信号ymdRW(t)を処理部44へ出力する。
 処理部44は、信号計測部13から受けたデジタル応答信号ymdRW(t)から、信号出力部22から受けたデジタル計測信号ysdRW(t)を差し引くことにより差分信号ydiffR(t)を生成する。そして、処理部44は、BPFを用いてデジタル計測信号ysdRW(t)の一部の周波数成分の信号を抽出し、抽出した信号と差分信号ydiffR(t)とを乗算することにより乗算信号Ms1(t)を生成する。また、処理部44は、BPFを用いてデジタル計測信号ysdRWP(t)の一部の周波数成分の信号を抽出し、抽出した信号と差分信号ydiffR(t)とを乗算することにより乗算信号Ms2(t)を生成する。処理部44は、LPF4A,4Bを用いて、乗算信号Ms1(t),Ms2(t)の直流成分Dcが抽出された信号である抽出信号MsD1(t),MsD2(t)を生成し、生成した抽出信号MsD1(t),MsD2(t)を用いて、上述した式(10)に従って位相差Φを算出する。処理部44では、BPFを用いて抽出する周波数成分を任意に設定することができるので、矩形波である計測信号に含まれる任意の周波数成分に着目して検知処理を行うことができる。
 本開示の第4の実施の形態に係る中継装置104では、相関検波により位相差Φを算出することができるので、第1の実施の形態に係る中継装置101と比べて、耐ノイズ性を向上させることができる。したがって、より正確に伝送線1における異常を検知することができる。また、中継装置104では、中継装置101と比べて、複素解析信号を算出する必要がないので、実装コストを低減することができる。一方、中継装置101では、中継装置104と比べて、位相差Φの算出に要する時間を短くすることができるので、より早期に異常の有無を判定することができる。
 (変形例)
 処理部44は、矩形波のデジタル信号を用いた相関検波により位相差Φを算出する構成であってもよい。
 信号出力部22は、周期C1に従う出力タイミングにおいて、矩形波の波形を示す複数の値からなるデジタルデータDtRWを記憶部15から取得し、取得したデジタルデータDtRWをアナログ変換したアナログ信号から、BPFを用いて抽出される正弦波である計測信号ys(t)を検知対象の伝送線1へ出力する。
 また、信号出力部22は、記憶部15から取得したデジタルデータDtRWをデジタル計測信号ysdRW(t)として処理部44へ出力する。また、デジタル計測信号ysdRW(t)の位相をπ/2シフトした信号であるデジタル計測信号ysdRWP(t)を、処理部44へさらに出力する。
 処理部44は、信号計測部13から受けたデジタル応答信号ymd(t)から、信号出力部22から受けたデジタル計測信号ysdRW(t)を差し引くことにより差分信号ydiffR(t)を生成する。
 そして、処理部44は、デジタル計測信号ysdRW(t)と差分信号ydiffR(t)との乗算信号Ms1(t)をLPF4Aへ入力することによりLPF4Aから出力される出力信号、およびデジタル計測信号ysdRWP(t)と差分信号ydiffR(t)との乗算信号Ms2(t)をLPF4Bへ入力することによりLPF4Bから出力される出力信号を用いて、位相差Φを算出する。
 より詳細には、処理部44は、デジタル計測信号ysdRW(t)と差分信号ydiffR(t)とを乗算することにより乗算信号Ms1(t)を生成し、デジタル計測信号ysdRWP(t)と差分信号ydiffR(t)とを乗算することにより乗算信号Ms2(t)を生成する。この場合、デジタル計測信号ysdRW(t),ysdRWP(t)と、差分信号ydiffR(t)の乗算は、元波形を周期的に反転および非反転を繰り返すことで実現することができるので、乗算信号Ms1(t),Ms2(t)を生成するための複雑な乗算器を用いる必要がなく、ハードウェアの単純化および低コスト化を実現することができる。
 図17は、本開示の第4の実施の形態の変形例に係る中継装置における処理部により生成される乗算信号のシミュレーション結果を示す図である。図17において、横軸は時刻[秒]を示しており、縦軸は信号の振幅[V]を示している。図17における実線は、乗算信号Ms1(t)を示しており、図17における破線は、乗算信号Ms2(t)を示している。図17は、長さ11mの伝送線1における中継装置104側の端部から10m離れた位置に断線が発生した場合において処理部44により算出される乗算信号Ms1(t),Ms2(t)のシミュレーション結果を示している。
 処理部44は、平均値フィルタを用いて、乗算信号Ms1(t),Ms2(t)の周波数成分Fcを減衰することにより、乗算信号Ms1(t),Ms2(t)の直流成分Dcが抽出された信号である抽出信号MsDR1(t),MsDR2(t)を生成する。
 図18は、本開示の第4の実施の形態の変形例に係る中継装置における処理部により生成される抽出信号のシミュレーション結果を示す図である。図18において、横軸は時刻[秒]を示しており、縦軸は信号の振幅[V]を示している。図18における実線は、抽出信号MsDR1(t)を示しており、図18における破線は、抽出信号MsDR2(t)を示している。図18は、図17と同様に、長さ11mの伝送線1における中継装置104側の端部から10m離れた位置に断線が発生した場合において処理部44により算出される抽出信号MsDR1(t),MsDR2(t)のシミュレーション結果を示している。
 処理部44は、上述した式(10)に従って、抽出信号MsD1(t),MsD2(t)の代わりに抽出信号MsDR1(t),MsDR2(t)を用いて、位相差Φを算出する。
 処理部44は、位相差Φを算出すると、上述した式(2)に従って、算出した位相差Φに対応する距離Lを算出する。
 図19は、本開示の第4の実施の形態の変形例に係る中継装置における処理部により算出される距離のシミュレーション結果を示す図である。図19において、横軸は時刻[秒]を示しており、縦軸は伝送線1における中継装置104側の端部から反射点までの距離[m]を示している。図19は、図17および図18と同様に、長さ11mの伝送線1における中継装置104側の端部から10m離れた位置に断線が発生した場合において処理部44により算出される距離Lのシミュレーション結果を示している。
 図19を参照して、処理部44により算出される距離Lは、中継装置104側の端部と断線位置との間の距離である10mと概ね一致する。以上より、本変形例に係る検知方法により、伝送線1において断線が発生しているか否か、および断線の発生位置を検知することができる。
 処理部44は、距離Lを算出すると、算出した距離Lに基づいて、伝送線1において断線が発生しているか否かを判定する。処理部44は、伝送線1において断線が発生している場合、伝送線1における断線の発生位置をさらに検知する。伝送線1において断線が発生しているか否かの判定方法、および断線の発生位置の検知方法は、第1の実施の形態において説明した通りである。
 次に、本開示の他の実施の形態について図面を用いて説明する。なお、図中同一または相当部分には同一符号を付してその説明は繰り返さない。
 <第5の実施の形態>
 本実施の形態は、第4の実施の形態に係る中継装置104と比べて、相関検波により反射係数rcを算出する中継装置105に関する。以下で説明する内容以外は第4の実施の形態に係る中継装置104と同様である。
 図20は、本開示の第5の実施の形態に係る中継装置の構成を示す図である。図20を参照して、中継装置105は、第4の実施の形態に係る中継装置104と比べて、検知処理部74の代わりに検知処理部75を備える。検知処理部75は、検知処理部74と比べて、処理部44の代わりに処理部54を含む。処理部54は、LPF4A,4Bおよびミキサ5A,5Bを有する。
 処理部54は、デジタル計測信号ysd(t)と差分信号ydiff(t)との乗算信号Ms1(t)をLPF4Aへ入力することによりLPF4Aから出力される出力信号、およびデジタル計測信号ysdP(t)と差分信号ydiff(t)との乗算信号Ms2(t)をLPF4Bへ入力することによりLPF4Bから出力される出力信号を用いて、デジタル計測信号ysd(t)と差分信号ydiff(t)との反射係数rcを算出する。反射係数rcは、デジタル計測信号ysd(t)と差分信号ydiff(t)との相関の大きさを示す指標値の一例である。
 より詳細には、処理部54は、ミキサ5Aを用いてデジタル計測信号ysd(t)と差分信号ydiff(t)とを乗算することにより乗算信号Ms1(t)を生成し、ミキサ5Bを用いてデジタル計測信号ysdP(t)と差分信号ydiff(t)とを乗算することにより乗算信号Ms2(t)を生成する。
 処理部54は、LPF4A,4Bを用いて、乗算信号Ms1(t),Ms2(t)の周波数成分Fcを減衰することにより、乗算信号Ms1(t),Ms2(t)の直流成分Dcが抽出された信号である抽出信号MsD1(t),MsD2(t)を生成する。
 処理部54は、既知である計測信号ys(t)の振幅A1、および生成した抽出信号MsD1(t),MsD2(t)を用いて、以下の式(11)に従って反射信号yr(t)の振幅A2を算出する。
Figure JPOXMLDOC01-appb-M000011
 図21は、本開示の第5の実施の形態に係る中継装置における処理部により生成される振幅のシミュレーション結果を示す図である。図21において、横軸は時刻[秒]を示しており、縦軸は信号の振幅[V]を示している。図21における実線は、振幅A2を示しており、図21における破線は、反射信号yr(t)を示している。図21は、長さ11mの伝送線1における中継装置105側の端部から10m離れた位置に断線が発生した場合において処理部54により算出される振幅A2のシミュレーション結果を示している。
 処理部54は、振幅A2を算出すると、以下の式(12)に従って反射係数rcを算出する。
Figure JPOXMLDOC01-appb-M000012
 図22は、本開示の第5の実施の形態に係る中継装置における処理部により生成される反射係数のシミュレーション結果を示す図である。図22において、横軸は時刻[秒]を示しており、縦軸は反射係数を示している。図22における実線は、反射係数rcを示している。図22は、図21と同様に、長さ11mの伝送線1における中継装置105側の端部から10m離れた位置に断線が発生した場合において処理部54により算出される反射係数rcのシミュレーション結果を示している。
 処理部54は、振幅A2および反射係数rcの経時変化に基づいて、伝送線1における異常を検知することができる。より詳細には、処理部54は、反射係数rcを算出すると、反射係数rcと、所定のしきい値Th3とを比較し、比較結果に基づいて、伝送線1において断線が発生しているか否かを判定する。
 式(12)に示すように、反射係数rcは、振幅A1,A2の絶対値の比、および位相差Φに応じて変化する。位相差Φは、伝送線1の特定インピーダンスが変化しない場合、伝送線1における中継装置105側の端部から計測信号ys(t)の反射点までの距離Lに応じた一定の値となる。たとえば、処理部54は、算出した反射係数rcと、伝送線1における信号の単位長さあたりの減衰量に基づいて、距離Lを算出することができる。
 なお、本開示の第5の実施の形態に係る中継装置105では、処理部54は、反射係数rcに加えて、位相差Φを算出し、反射係数rcおよび位相差Φに基づいて、伝送線1において断線が発生しているか否かを判定する構成であってもよい。より詳細には、処理部54は、反射係数rcに基づく判定結果および位相差Φに基づく判定結果を総合的に考慮することにより、伝送線1において断線が発生しているか否かを判定する。
 <第6の実施の形態>
 本実施の形態は、第4の実施の形態に係る中継装置104および第5の実施の形態に係る中継装置105と比べて、周波数(f+fb)の成分を含む信号を用いて位相差Φおよび反射係数rcを算出する中継装置106に関する。以下で説明する内容以外は第4の実施の形態に係る中継装置104および第5の実施の形態に係る中継装置105と同様である。
 図23は、本開示の第6の実施の形態に係る中継装置の構成を示す図である。図23を参照して、中継装置106は、第4の実施の形態に係る中継装置104と比べて、検知処理部74の代わりに検知処理部76を備える。検知処理部76は、検知処理部74と比べて、信号出力部22の代わりに信号出力部32を含み、処理部44の代わりに処理部64を含む。処理部64は、BPF6A,LPF4C,4Dおよびミキサ5C,5D,5Eを有する。
 信号出力部32は、信号出力部22と比べて、デジタル計測信号ysdP(t)を処理部44へ出力する代わりに、周波数(f+fb)の成分を含むデジタル計測信号ysdF(t)を処理部64へ出力する。ここで、fbは、fよりも小さく、ゼロに近い値である。デジタル計測信号ysdF(t)は、デジタル計測信号ysd(t)を余弦波とし、周波数fbに対応する角周波数をωbとしたとき、以下の式(13)により表される。
Figure JPOXMLDOC01-appb-M000013

 
 処理部64は、周波数(f+fb)の成分を含むデジタル計測信号ysdF(t)と差分信号ydiff(t)との乗算信号を、周波数fbの成分を抽出するためのBPF6A入力することによりBPF6Aから出力される出力信号を用いて、位相差Φおよび反射係数rcを算出する。BPF6Aは、第3のフィルタの一例である。
 より詳細には、処理部64は、信号出力部32からデジタル計測信号ysd(t)を受けて、信号計測部13から受けたデジタル応答信号ymd(t)から、信号出力部32から受けたデジタル計測信号ysd(t)を差し引くことにより差分信号ydiff(t)を生成する。
 処理部64は、ミキサ5Cを用いてデジタル計測信号ysdF(t)と差分信号ydiff(t)とを乗算することにより乗算信号Ms3(t)を生成する。乗算信号Ms3(t)は、以下の式(14)により表される。
Figure JPOXMLDOC01-appb-M000014
 式(14)に示すように、乗算信号Ms3(t)は、計測信号ys(t)の周波数fの2倍である角周波数2ωtの高周波成分FHと、角周波数ωbtの低周波成分FLとを含む。
 処理部64は、BPF6Aを用いて、乗算信号Ms3の高周波成分FHを減衰することにより、乗算信号Ms3(t)の低周波成分FLが抽出された信号である抽出信号MsD3(t)を生成する。BPF6Aは、乗算信号Ms3(t)を受けて、抽出信号MsD3(t)を出力する。BPF6Aの出力信号である抽出信号MsD3(t)は、以下の式(15)により表される。
Figure JPOXMLDOC01-appb-M000015
 処理部64は、ミキサ5Dを用いて、抽出信号MsD3(t)と、振幅がA3であり、かつ周波数fbの成分を含むデジタル信号Dfb(t)とを乗算することにより乗算信号Ms4(t)を生成する。また、処理部64は、ミキサ5Eを用いて、抽出信号MsD3(t)と、デジタル信号Dfb(t)に含まれる周波数fbの成分の位相をπ/2シフトした信号であるデジタル信号DfbP(t)とを乗算することにより乗算信号Ms5(t)を生成する。ここで、振幅A3は、振幅A1と同じであってもよい。乗算信号Ms4(t),Ms5(t)は、以下の式(16),(17)により表される。
Figure JPOXMLDOC01-appb-M000016

Figure JPOXMLDOC01-appb-M000017
 式(16),(17)に示すように、乗算信号Ms4(t),Ms5(t)は、周波数fbの2倍の周波数成分Fcbと、定数項である直流成分Dcbとを含む。
 処理部64は、LPF4C,4Dを用いて、乗算信号Ms4(t),Ms5(t)の周波数成分Fcbを減衰することにより、乗算信号Ms4(t),Ms5(t)の直流成分Dcbが抽出された信号である抽出信号MsD4(t),MsD5(t)を生成する。LPF4C,4Dのカットオフ周波数は、たとえば周波数fbの2倍の周波数以下である。LPF4C,4Dは、周波数fbに基づく周波数成分を減衰する。
 LPF4Cは、乗算信号Ms4(t)を受けて、抽出信号MsD4(t)を出力する。LPF4Dは、乗算信号Ms5(t)を受けて、抽出信号MsD5(t)を出力する。LPF4Cの出力信号である抽出信号MsD4(t)およびLPF4Dの出力信号である抽出信号MsD5(t)は、以下の式(18),(19)により表される。
Figure JPOXMLDOC01-appb-M000018

Figure JPOXMLDOC01-appb-M000019
 処理部64は、抽出信号MsD4(t),MsD5(t)を用いて、以下の式(20)に従って位相差Φを算出する。
Figure JPOXMLDOC01-appb-M000020
 処理部64は、位相差Φを算出すると、上述した式(2)に従って、算出した位相差Φに対応する距離Lを算出する。
 また、処理部64は、既知である計測信号ys(t)の振幅A1、および生成した抽出信号MsD4(t),MsD5(t)を用いて、以下の式(21)に従って反射信号yr(t)の振幅A2を算出する。
Figure JPOXMLDOC01-appb-M000021
 処理部64は、振幅A2を算出すると、上述した式(12)に従って反射係数rcを算出する。処理部64は、算出した反射係数rcと、しきい値Th3とを比較し、比較結果に基づいて、伝送線1において断線が発生しているか否かを判定する。
 上記実施の形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記説明ではなく請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 以上の説明は、以下に付記する特徴を含む。
 [付記1]
 検知装置であって、
 第1の周波数の成分を含む計測信号を伝送線へ出力する信号出力部と、
 前記信号出力部により出力された前記計測信号に対する前記伝送線からの応答信号を計測する信号計測部と、
 前記信号計測部により計測された前記応答信号と、前記計測信号に基づく参照信号との差分である差分信号を生成し、前記参照信号と前記差分信号との相関の大きさを示す指標値を算出し、算出した前記指標値に基づいて、前記伝送線における異常を検知する処理部とを備え、
 前記処理部は、前記指標値に基づいて、前記伝送線における前記検知装置側の端部から、前記伝送線において前記計測信号が反射される反射点までの距離を算出し、算出した前記距離に基づいて前記異常の発生位置を特定する、検知装置。
 [付記2]
 第1の周波数の成分を含む計測信号を伝送線へ出力する信号出力部と、
 前記信号出力部により出力された前記計測信号に対する前記伝送線からの応答信号を計測する信号計測部と、
 前記信号計測部により計測された前記応答信号と、前記計測信号に基づく参照信号との差分である差分信号を生成し、前記参照信号と前記差分信号との相関の大きさを示す指標値を算出し、算出した前記指標値に基づいて、前記伝送線における異常を検知する処理部とを備え、
 前記伝送線は、終端抵抗を備えない、検知装置。
 [付記3]
 正弦波を計測信号として伝送線へ出力する信号出力部と、
 前記信号出力部により出力された前記計測信号に対する前記伝送線からの応答信号を計測する信号計測部と、
 前記信号計測部により計測された前記応答信号と、前記計測信号に基づく参照信号との差分である差分信号を生成し、前記参照信号と前記差分信号との位相差に基づいて、前記伝送線における断線を検知する処理部とを備える、検知装置。
 1                       伝送線
 11                      中継部
 12,22,32                信号出力部
 13,23                   信号計測部
 14,24,34,44,54,64       処理部
 15                      記憶部
 16                      遅延調整部
 61                      通信ポート
 71,72,73,74,75          検知処理部
 101,102,103,104,105,106 中継装置
 111                     通信装置
 301                     通信システム
 4A,4B,4C,4D             LPF
 5A,5B,5C,5D,5E          ミキサ
 6A                      BPF
 
 

Claims (11)

  1.  第1の周波数の成分を含む計測信号を伝送線へ出力する信号出力部と、
     前記信号出力部により出力された前記計測信号に対する前記伝送線からの応答信号を計測する信号計測部と、
     前記信号計測部により計測された前記応答信号と、前記計測信号に基づく参照信号との差分である差分信号を生成し、前記参照信号と前記差分信号との相関の大きさを示す指標値を算出し、算出した前記指標値に基づいて、前記伝送線における異常を検知する処理部とを備える、検知装置。
  2.  前記処理部は、前記指標値として、前記参照信号に含まれる前記第1の周波数の成分と、前記差分信号に含まれる前記第1の周波数の成分との位相差を算出する、請求項1に記載の検知装置。
  3.  前記処理部は、前記指標値として、前記参照信号と前記差分信号との反射係数を算出する、請求項1または請求項2に記載の検知装置。
  4.  前記処理部は、前記参照信号と前記差分信号との乗算信号を、直流成分を抽出するための第1のフィルタへ入力することにより前記第1のフィルタから出力される出力信号、および前記参照信号に含まれる前記第1の周波数の成分の位相をπ/2シフトした信号と前記差分信号との乗算信号を、直流成分を抽出するための第2のフィルタへ入力することにより前記第2のフィルタから出力される出力信号を用いて、前記指標値を算出する、請求項1から請求項3のいずれか1項に記載の検知装置。
  5.  前記処理部は、前記第1の周波数とは異なる第2の周波数の成分を含む信号と前記差分信号との乗算信号を、前記第1の周波数と前記第2の周波数との差分の周波数の成分を抽出するための第3のフィルタへ入力することにより前記第3のフィルタから出力される出力信号を用いて、前記指標値を算出する、請求項1から請求項3のいずれか1項に記載の検知装置。
  6.  前記処理部は、前記参照信号の複素解析信号の偏角と、前記差分信号の複素解析信号の偏角とを用いて前記位相差を算出する、請求項2に記載の検知装置。
  7.  前記処理部は、前記応答信号と、前記計測信号に対して遅延調整が行われた信号である前記参照信号との差分である前記差分信号を生成する、請求項1から請求項6のいずれか1項に記載の検知装置。
  8.  前記計測信号に対する前記参照信号の遅延量を設定変更可能である、請求項7に記載の検知装置。
  9.  前記処理部は、前記応答信号と、定常時において前記信号計測部により計測された前記応答信号である前記参照信号との差分である前記差分信号を生成する、請求項1から請求項6のいずれか1項に記載の検知装置。
  10.  前記処理部は、前記異常の発生位置を検知する、請求項1から請求項9のいずれか1項に記載の検知装置。
  11.  検知装置における検知方法であって、
     第1の周波数の成分を含む計測信号を伝送線へ出力するステップと、
     前記計測信号に対する前記伝送線からの応答信号を計測するステップと、
     計測した前記応答信号と、前記計測信号に基づく参照信号との相関の大きさを示す指標値を算出し、算出した前記指標値に基づいて、前記伝送線における異常を検知するステップとを含む、検知方法。
     
PCT/JP2022/020405 2021-06-02 2022-05-16 検知装置および検知方法 WO2022255077A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2022552182A JP7188656B1 (ja) 2021-06-02 2022-05-16 検知装置および検知方法
CN202280032538.3A CN117296253A (zh) 2021-06-02 2022-05-16 检测装置及检测方法
DE112022002877.7T DE112022002877T5 (de) 2021-06-02 2022-05-16 Detektionsvorrichtung und Detektionsverfahren

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-092768 2021-06-02
JP2021092768 2021-06-02

Publications (1)

Publication Number Publication Date
WO2022255077A1 true WO2022255077A1 (ja) 2022-12-08

Family

ID=84323203

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/020405 WO2022255077A1 (ja) 2021-06-02 2022-05-16 検知装置および検知方法

Country Status (4)

Country Link
JP (1) JP7188656B1 (ja)
CN (1) CN117296253A (ja)
DE (1) DE112022002877T5 (ja)
WO (1) WO2022255077A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006029801A (ja) * 2004-07-12 2006-02-02 Hitachi Cable Ltd ケーブル損傷検出方法及びその装置
JP2008309492A (ja) * 2007-06-12 2008-12-25 Tokyo Electron Ltd 同軸ケーブルの異常検知システムとその異常検知方法、及びその異常検知システムを備えた処理装置
JP2012122748A (ja) * 2010-12-06 2012-06-28 Nec Corp 情報処理装置及びその作動方法
JP2021081305A (ja) * 2019-11-19 2021-05-27 三菱重工業株式会社 断線判別装置、断線判別方法およびプログラム。

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO341197B1 (no) 2012-10-24 2017-09-11 Wirescan As Fremgangsmåte og system for overvåkning av tilstanden til elektriske kabler
JP2018179531A (ja) 2017-04-03 2018-11-15 富士通株式会社 伝送装置、及び接続監視方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006029801A (ja) * 2004-07-12 2006-02-02 Hitachi Cable Ltd ケーブル損傷検出方法及びその装置
JP2008309492A (ja) * 2007-06-12 2008-12-25 Tokyo Electron Ltd 同軸ケーブルの異常検知システムとその異常検知方法、及びその異常検知システムを備えた処理装置
JP2012122748A (ja) * 2010-12-06 2012-06-28 Nec Corp 情報処理装置及びその作動方法
JP2021081305A (ja) * 2019-11-19 2021-05-27 三菱重工業株式会社 断線判別装置、断線判別方法およびプログラム。

Also Published As

Publication number Publication date
JP7188656B1 (ja) 2022-12-13
DE112022002877T5 (de) 2024-03-14
CN117296253A (zh) 2023-12-26
JPWO2022255077A1 (ja) 2022-12-08

Similar Documents

Publication Publication Date Title
Shi et al. A new algorithm for wire fault location using time-domain reflectometry
NL2002664C2 (en) Time-domain reflectometry.
CN105308872B (zh) 用于确定金属电缆的通信特性的测试装置和方法
JP5165058B2 (ja) 電力器機の部分放電位置検出システム及び放電位置検出方法
CN111788782B (zh) 用于测量距无源互调源的距离的方法和设备
US10048309B2 (en) Method and device for automatically measuring physical characteristics of a cable, in particular the propagation velocity
US9035751B2 (en) Communication power line status detecting method and system using the method
WO2016042675A1 (ja) 部分放電計測装置、部分放電計測方法、及びプログラム
US20100010761A1 (en) Method and device for monitoring a system
SG176533A1 (en) Determining the resonance parameters for mechanical oscillators
JP2006208060A (ja) 伝送遅延評価システムおよび伝送遅延評価方法
TW201531728A (zh) 利用頻域內校正之時域測量方法
JP2016144212A (ja) 波形を求める方法並びに任意波形及び関数生成装置
US10054516B2 (en) System and method for optical frequency domain reflectometer
JP7188656B1 (ja) 検知装置および検知方法
JP6910791B2 (ja) 信号測定方法
JP2005308512A (ja) スペクトラム処理方法および該方法を用いる測定装置
WO2021152918A1 (ja) 検知システム、検知装置および検知方法
CN114002639B (zh) 一种电信号采集电路的相对误差自监测系统及方法
WO2023139856A1 (ja) 検知装置および検知方法
JP2005308509A (ja) 位相雑音を測定する方法および位相雑音測定装置
JP2022166972A (ja) 異常検出装置、及び、異常検出システム
JP7260605B2 (ja) 波形観測装置及び透過特性取得方法
Garrett et al. A dispersion-compensated algorithm for the analysis of electromagnetic waveguides
JP4164041B2 (ja) 地上デジタルsfn波測定装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022552182

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22815829

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280032538.3

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 18566116

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112022002877

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22815829

Country of ref document: EP

Kind code of ref document: A1