WO2022254993A1 - Anchor coating agent for melt-extruded laminate, and layered article - Google Patents

Anchor coating agent for melt-extruded laminate, and layered article Download PDF

Info

Publication number
WO2022254993A1
WO2022254993A1 PCT/JP2022/018450 JP2022018450W WO2022254993A1 WO 2022254993 A1 WO2022254993 A1 WO 2022254993A1 JP 2022018450 W JP2022018450 W JP 2022018450W WO 2022254993 A1 WO2022254993 A1 WO 2022254993A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyol composition
polyisocyanate
coating agent
melt extrusion
anchor coating
Prior art date
Application number
PCT/JP2022/018450
Other languages
French (fr)
Japanese (ja)
Inventor
将郁 大内
Original Assignee
大日精化工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大日精化工業株式会社 filed Critical 大日精化工業株式会社
Publication of WO2022254993A1 publication Critical patent/WO2022254993A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/40Layered products comprising a layer of synthetic resin comprising polyurethanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/54Polycondensates of aldehydes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/65Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/73Polyisocyanates or polyisothiocyanates acyclic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J175/00Adhesives based on polyureas or polyurethanes; Adhesives based on derivatives of such polymers
    • C09J175/04Polyurethanes

Definitions

  • the present invention relates to an anchor coating agent for melt extrusion lamination and a laminate.
  • film materials and sheet materials may be required to have various properties depending on their intended use. Satisfaction is often difficult. Therefore, laminates that satisfy various characteristics by laminating a plurality of types of film materials or the like to take advantage of the advantages and compensate for the disadvantages of each material are widely used in various fields.
  • packaging materials packaging containers, packaging materials, etc.
  • packaging materials for packaging foods, medicines, cosmetics, etc. are film-like or sheet-like laminates in which multiple layers selected from plastic films, papers, cloths, metal foils, etc. are laminated.
  • a body laminate film is often used.
  • a melt extrusion lamination method in which a film material such as a plastic film is laminated by extruding a resin in a molten state.
  • a laminate film laminate film
  • laminated material the material on which the extruded resin is laminated
  • resin layer formed by the extruded resin A high adhesive strength is required between them. Therefore, an adhesive layer called an anchor coat layer is sometimes provided between the material to be laminated and the resin to be extruded so as to exhibit good adhesive strength.
  • an anchor coat agent used for forming an anchor coat layer in the production of a melt-extruded laminated film one containing a polyol and a polyisocyanate is known (Patent Document 1).
  • Cashew nut shell liquids and derivatives thereof are known as one of raw materials derived from biomass.
  • a cashew nut shell liquid converted into a polyol resin is known (Patent Documents 2 and 3).
  • An object of the present invention is to provide an anchor coating agent for melt-extrusion lamination, which uses a biomass-derived raw material and provides a laminate having good adhesive strength, and a laminate using the same.
  • the present invention has the following aspects.
  • the polyol composition (A) comprises a biomass polyol composition containing a polyol (a1) represented by the following formula (1) and a compound (a2) represented by the following formula (2), The ratio of the compound (a2) to the entire biomass polyol composition by gel permeation chromatography is 3 to 30 area%,
  • the polyisocyanate (B) contains an aliphatic polyisocyanate (b1), The ratio of the aliphatic polyisocyanate (b1) to the total mass of the polyisocyanate (B) is 20% by mass or more,
  • An anchor coating agent for melt extrusion lamination wherein the mass ratio represented by the polyol composition (A)/the polyisocyanate (B) is 1/99 to 90/10.
  • R 1 represents a linear hydrocarbon group having 15 carbon atoms
  • R 2 represents a hydrogen atom or a substituent
  • R 3 represents a hydrogen atom or an alkyl group having 1 to 8 carbon atoms
  • n represents a number of 0 or more.
  • Anchor coating agent. [9] A base material, an anchor coat layer provided on the base material, and a resin layer provided on the anchor coat layer by melt extrusion lamination, A laminate, wherein the anchor coat layer is a layer formed from the anchor coat agent for melt extrusion lamination according to any one of [1] to [8].
  • an anchor coating agent for melt extrusion lamination and a laminate using the same which uses biomass-derived raw materials and provides a laminate having good adhesive strength.
  • An anchor coating agent for melt extrusion lamination includes a polyol composition (A) and a polyisocyanate (B).
  • the anchor coating agent of this aspect may further contain components other than the polyol composition (A) and the polyisocyanate (B), if necessary.
  • Polyol composition (A) includes a specific biomass polyol composition.
  • the "polyol composition” is a composition consisting of polyol only, or a composition consisting of polyol and monool.
  • a “biomass polyol composition” is a polyol composition whose constituent components (polyol, monool) are derived from biomass.
  • the polyol composition (A) may contain a non-biomass-derived polyol (hereinafter also referred to as "another polyol”) in addition to the biomass polyol composition.
  • the content of the biomass polyol composition is preferably 10% by mass or more, more preferably 30% by mass or more, more preferably 50% by mass, relative to the total mass of the polyol composition (A).
  • the above is more preferable, and 100% by mass is particularly preferable.
  • biomass polyol composition contains a polyol (a1) represented by the following formula (1) and a compound (a2) represented by the following formula (2).
  • Compound (a2) is cardanol.
  • R 1 represents a linear hydrocarbon group having 15 carbon atoms.
  • a straight chain hydrocarbon group may be a saturated hydrocarbon group or an unsaturated hydrocarbon group.
  • unsaturated hydrocarbon groups include those having 1 to 3 double bonds.
  • R 1 's in formula (1) may be the same or different.
  • R2 represents a hydrogen atom or a substituent.
  • a substituent indicates an atom or atomic group other than a hydrogen atom.
  • the substituent for R 2 is not particularly limited, and includes a halogen atom (fluorine atom, chlorine atom, bromine atom, iodine atom, etc.), optionally substituted hydrocarbon group, hydroxy group, alkoxy group, ether group, ester group, aldehyde group, ketone group, carboxyl group, cyano group, carbamoyl group, imide group, nitro group, amino group, amide group, azo group, urea group, urethane group, sulfo group, thiol group, silyl group, A phosphino group etc.
  • Hydrocarbon groups include alkyl groups, alkenyl groups, alkynyl groups, cycloalkyl groups, cycloalkenyl groups, aryl groups (phenyl groups, naphthyl groups, etc.), aralkyl groups (benzyl groups, etc.), and the like.
  • Substituents that the hydrocarbon group may have include halogen atoms (fluorine atom, chlorine atom, bromine atom, iodine atom, etc.), hydroxy groups, alkoxy groups, ether groups, ester groups, aldehyde groups, ketone groups, carboxyl groups, group, cyano group, carbamoyl group, imido group, nitro group, amino group, amido group, azo group, urea group, urethane group, sulfo group, thiol group, silyl group, phosphino group and the like.
  • the hydrocarbon group may have one or two or more substituents. (n+2) R 2 in formula (1) may be the same or different.
  • R 3 represents a hydrogen atom or an alkyl group having 1 to 8 carbon atoms.
  • n represents a number of 0 or more. 1 or more is preferable and, as for n, 2 or more is more preferable. n is preferably 1000 or less, more preferably 500 or less.
  • n is at least the above lower limit, the number average molecular weight of the biomass polyol composition tends to be at least the preferred lower limit described below.
  • n is equal to or less than the above upper limit, the number average molecular weight of the biomass polyol composition tends to be equal to or less than the preferable upper limit described below.
  • the lower limit value and the upper limit value can be appropriately combined.
  • the polyol (a1) is, for example, a condensate (formula (4) below) obtained by reacting (condensation reaction) a compound (a2) with an aldehyde (formula (3) below), as shown in the reaction formula below. and an epoxy compound (the following formula (5)) are synthesized by a method of reacting (addition reaction). Condensation reaction and addition reaction can be carried out by known methods.
  • the biomass polyol composition may further contain a polyol other than the polyol (a1) and a monool other than the compound (a2).
  • Polyols other than the polyol (a1) may be those derived from biomass, such as cardol and 2-methylcardol.
  • Monools other than the compound (a2) may be those derived from biomass, such as anacardic acid.
  • the ratio of the compound (a2) to the entire biomass polyol composition (100 area%) measured by gel permeation chromatography is 3 to 30 area%, preferably 5 to 20 area%. , 7 to 15 area % is more preferred. If the ratio of the compound (a2) is within the above range, a laminate having good adhesive strength can be obtained.
  • the measurement conditions of GPC are as described in Examples below.
  • the ratio of the polyol (a1) to the entire biomass polyol composition by GPC is preferably 10 to 97 area%, more preferably 50 to 96 area%, and even more preferably 75 to 95 area%, from the viewpoint of the adhesive strength of the laminate. , 80 to 93 area % are particularly preferred.
  • the total ratio of the polyol (a1) and the compound (a2) to the entire biomass polyol composition by GPC is preferably 70 area% or more, more preferably 80 area% or more, and 90 area% from the viewpoint of the adhesive strength of the laminate.
  • the above is more preferable, and it may be 100 area %.
  • the viscosity of the biomass polyol composition at 25° C. is preferably 1500 mPa ⁇ s or more, more preferably 2000 mPa ⁇ s or more, and even more preferably 10000 mPa ⁇ s or more. When the viscosity is at least the above lower limit, there is a tendency for the easy tearing property of the laminate to be more excellent.
  • the viscosity of the biomass polyol composition at 25° C. is preferably 150000 mPa ⁇ s or less, more preferably 130000 mPa ⁇ s or less, still more preferably 90000 mPa ⁇ s or less, and particularly preferably 50000 mPa ⁇ s or less.
  • the viscosity is equal to or less than the above upper limit, there is a tendency for the cutting property of the packaging material to be more excellent.
  • the lower limit value and the upper limit value can be appropriately combined.
  • the viscosity of the biomass polyol composition is measured with a Brookfield viscometer. In the following, unless otherwise specified, the viscosity indicates the value at 25°C.
  • the viscosity of the biomass polyol composition can be adjusted by adjusting the proportion of the compound (a2), the number average molecular weight, and the like.
  • the number average molecular weight (hereinafter also referred to as “Mn”) of the biomass polyol composition is preferably 500 or more, more preferably 750 or more, and even more preferably 1000 or more. If the Mn is at least the above lower limit, there is a tendency for the adhesion to the substrate to be more excellent.
  • the Mn of the biomass polyol composition is preferably 500,000 or less, more preferably 300,000 or less, even more preferably 100,000 or less, particularly preferably 10,000 or less, and most preferably 5,000 or less. When Mn is equal to or less than the above upper limit, the cuttability tends to be more excellent when made into a laminate film.
  • the lower limit value and the upper limit value can be appropriately combined.
  • Mn of the biomass polyol composition is a standard polystyrene conversion value measured by GPC.
  • the biomass polyol composition preferably satisfies both the above-described preferred viscosity and preferred Mn.
  • the viscosity is 1500 mPa ⁇ s or more and the number average molecular weight is 1000 or more.
  • the hydroxyl value of the biomass polyol composition is preferably 130 mgKOH/g or more, more preferably 145 mgKOH/g or more, and even more preferably 160 mgKOH/g or more. When the hydroxyl value is at least the above lower limit, the adhesive strength of the laminate tends to be more excellent.
  • the hydroxyl value of the biomass polyol composition is preferably 250 mgKOH/g or less, more preferably 230 mgKOH/g or less, and even more preferably 210 mgKOH/g or less. If the hydroxyl value is equal to or less than the above upper limit, the hydrolysis resistance tends to be more excellent.
  • the lower limit value and the upper limit value can be appropriately combined. Hydroxyl value is determined according to ASTM D4274.
  • the biomass polyol composition preferably uses cashew nut shell liquid (hereinafter also referred to as "CNSL") as a raw material from the viewpoint of reducing raw material costs and carbon dioxide emissions.
  • CNSL is an oily liquid obtained from cashew nut shells.
  • CNSL herein is generally obtained by distilling crude CNSL shelled from cashew nuts, and contains compound (a2). Cardol, methyl cardol, anacardic acid and the like may be contained in addition to compound (a2).
  • Various grades of CNSL are commercially available, and they are available at a lower price than the compound (a2) alone.
  • a reactant containing the polyol (a1) is obtained.
  • the reactant contains the unreacted compound (a2) in the above ratio
  • the obtained reactant can be used as it is as a biomass polyol composition.
  • a biomass polyol composition may be obtained by adding the compound (a2) or the like to the reactant.
  • Other polyols include low-molecular-weight polyols, high-molecular-weight polyols, and the like.
  • Examples of low-molecular-weight polyols include polyhydric alcohols (dihydric or higher alcohols).
  • Polymer polyols include polyether polyols, polyester polyols, polycarbonate polyols, and the like. These polyols can be used singly or in combination of two or more.
  • Polyhydric alcohols include ethylene glycol, 1,2-propanediol (also known as propylene glycol), 1,3-propanediol, 2-methyl-1,3-propanediol, 2,2-dimethyl-1,3-propane diol, 2-butyl-2-ethyl-1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, 3-methyl-1,5-pentanediol, 1,6-hexanediol, 1 ,8-octanediol, 2-methyl-1,8-octanediol, 1,9-nonanediol, diethylene glycol, triethylene glycol, and tetraethylene glycol; 1,4-cyclohexanedimethanol, 1, diols having an alicyclic structure such as 3-cyclohexanedimethanol and 1,4-cyclohexanedio
  • Polyester polyols include, for example, polyester polyols and polyester amide polyols obtained by a dehydration polycondensation reaction between a polyhydric carboxylic acid and a polyhydric alcohol or secondary or tertiary amines.
  • Polyvalent carboxylic acids that can be used in the production of polyester polyols include, for example, succinic acid, adipic acid, sebacic acid, azelaic acid, terephthalic acid, isophthalic acid, orthophthalic acid, hexahydroterephthalic acid, hexahydroisophthalic acid, hexahydroortho phthalic acid, naphthalenedicarboxylic acid; and polycarboxylic acids such as trimellitic acid; acid esters thereof; and acid anhydrides thereof.
  • Examples of the polyhydric alcohol that can be used for producing the polyester polyol include the specific examples of the polyhydric alcohol described above.
  • polyesteramide polyols include low-molecular-weight amine compounds such as hexamethylenediamine, xylylenediamine, and isophoronediamine.
  • Polyester polyols include, for example, lactone-based polyesters obtained by ring-opening polymerization of cyclic ester (lactone) monomers such as ⁇ -caprolactone and ⁇ -valerolactone using low-molecular-weight alcohol compounds and low-molecular-weight aminoalcohol compounds as initiators. Polyols can also be used.
  • polyether polyols examples include those obtained by addition polymerization (ring-opening polymerization) of alkylene oxides such as ethylene oxide, propylene oxide and butylene oxide, and tetrahydrofuran, etc., as initiators.
  • alkylene oxides such as ethylene oxide, propylene oxide and butylene oxide, and tetrahydrofuran, etc.
  • initiators examples include the polyhydric alcohols described above, as well as low-molecular-weight amine compounds such as triethanolamine, ethylenediamine, and diethylenetriamine.
  • polyether polyols examples include polyoxyethylene diol (also known as polyethylene glycol), polyoxypropylene diol (also known as polypropylene glycol), polyoxypropylene triol, ethylene oxide-propylene oxide copolymer, and polytetramethylene ether glycol (PTMEG). , polytetraethylene glycol, and sorbitol polyols.
  • Polycarbonate polyols include, for example, those obtained by the dehydrochlorination reaction of the above-mentioned polyhydric alcohol and phosgene, and those obtained by the transesterification reaction of a low-molecular-weight alcohol compound with diethylene carbonate, dimethyl carbonate, diethyl carbonate, diphenyl carbonate, and the like. What can be done is mentioned.
  • the weight average molecular weight (hereinafter also referred to as "Mw") of the polymer polyol is preferably 5,000 to 100,000, more preferably 8,000 to 80,000, and even more preferably 10,000 to 60,000. .
  • Mw of polyol is a standard polystyrene conversion value measured by gel permeation chromatography (GPC).
  • Polyisocyanate (B) includes aliphatic polyisocyanate (b1).
  • the polyisocyanate (B) may further contain polyisocyanates other than the aliphatic polyisocyanate (b1).
  • the ratio of the aliphatic polyisocyanate (b1) to the total mass of the polyisocyanate (B) is 20% by mass or more.
  • the ratio of the aliphatic polyisocyanate (b1) to the total mass of the polyisocyanate (B) is preferably 50% by mass or more, more preferably 70% by mass or more, and particularly preferably 100% by mass. That is, it is particularly preferred that the polyisocyanate (B) consists only of the aliphatic polyisocyanate (b1).
  • the ratio of the other polyisocyanate to the total mass of the polyisocyanate (B) is preferably 0-50% by mass, more preferably 0-30% by mass.
  • aliphatic polyisocyanate (b1) examples include bifunctional aliphatic polyisocyanates such as tetramethylene diisocyanate, pentamethylene diisocyanate, and hexamethylene diisocyanate (HDI); bifunctional aliphatic polyisocyanate adducts, isocyanurates, biuret and allophanate forms. These aliphatic polyisocyanates can be used singly or in combination of two or more.
  • Trifunctional aliphatic isocyanates include, for example, trimethylolpropane (TMP) adducts, isocyanurates, biurets and allophanates of HDI.
  • polyisocyanates include, for example, aromatic polyisocyanates and alicyclic polyisocyanates. These polyisocyanates can be used singly or in combination of two or more.
  • aromatic polyisocyanates examples include tolylene diisocyanate (TDI), xylylene diisocyanate (XDI), diphenylmethane diisocyanate (MDI), 1,4-phenylene diisocyanate, 1,5-naphthylene diisocyanate, diphenyl ether diisocyanate, and 3, Aromatic diisocyanates such as 3'-dimethyldiphenylmethane-4,4'-diisocyanate; adducts, isocyanurates, biurets and allophanates of aromatic diisocyanates.
  • alicyclic polyisocyanates examples include isophorone diisocyanate (IPDI), norbornane diisocyanate (NBDI), hydrogenated tolylene diisocyanate (hydrogenated TDI), hydrogenated xylene diisocyanate (H 6 XDI), and hydrogenated diphenylmethane diisocyanate (water alicyclic diisocyanates such as MDI); adducts, isocyanurates, biurets and allophanates of alicyclic isocyanates;
  • trifunctional isocyanates trifunctional aromatic isocyanates, trifunctional alicyclic isocyanates, etc.
  • the adhesive strength and easy tearability of the laminate tend to be more excellent.
  • Trifunctional isocyanate compounds include, for example, TMP adducts of TDI, XDI, IPDI or H 6 XDI.
  • the anchor coating agent may contain a liquid medium.
  • the anchor coating agent is usually applied to the material to be laminated while containing a liquid medium.
  • the liquid medium is not particularly limited, and can be appropriately selected according to the material of the material to be laminated on which the anchor coat layer is to be provided, the application of the laminate produced using the anchor coat agent, and the like.
  • liquid medium examples include ketone solvents such as acetone, methyl ethyl ketone (MEK), methyl isobutyl ketone, and cyclohexanone; hydrocarbon solvents such as toluene, xylene, cyclohexane, and methylcyclohexane; ethyl acetate, propyl acetate, and acetic acid; ester solvents such as butyl; ether solvents such as ethylene glycol monomethyl ether, propylene glycol monomethyl ether (PM), tetrahydrofuran, and dioxane; alcohol solvents such as methanol, ethanol, and isopropanol (IPA); be done.
  • ketone solvents such as acetone, methyl ethyl ketone (MEK), methyl isobutyl ketone, and cyclohexanone
  • hydrocarbon solvents such as toluene, xylene, cyclohex
  • the anchor coating agent may contain various additives.
  • additives include catalysts, tackifiers, tackifiers, surface conditioners, silane coupling agents, pigments, dyes, dispersants, antifoaming agents, leveling agents, thickeners, cross-linking agents, inorganic particles, Examples include ultraviolet absorbers, light stabilizers, surfactants, preservatives, antirust agents, and the like. These additives may be used singly or in combination of two or more.
  • the mass ratio represented by polyol composition (A)/polyisocyanate (B) (hereinafter also referred to as “A/B ratio”) is 1/99 to 90/10, and 5/ 95 to 60/40 is preferred, and 10/90 to 40/60 is more preferred. If the A/B ratio is within the above range, the laminate will be excellent in adhesive strength and tearability.
  • the total content of the polyol composition (A) and the polyisocyanate (B) is preferably 10% by mass or more, more preferably 50% by mass or more, more preferably 70% by mass, based on the total mass of the solid content of the anchor coating agent.
  • the above is more preferable, and it may be 100% by mass.
  • the content of the liquid medium in the anchor coating agent is not particularly limited, and can be adjusted according to the solid content concentration of the anchor coating agent.
  • the content of the additive in the anchor coating agent may be, for example, 0 to 90% by mass, or may be 0 to 70% by mass, based on the mass of the total solid content of the anchor coating agent.
  • the solid content concentration of the anchor coating agent is not particularly limited, and can be adjusted so as to have an appropriate viscosity according to the method such as printing when providing the anchor coating layer on the material to be laminated.
  • a concentrated (thick) anchor coating agent may be prepared and diluted with the liquid medium described above when applied to the material to be laminated.
  • the solid content concentration of the anchor coating agent when applied to the material to be laminated is preferably 3 to 20% by mass, more preferably 5 to 15% by mass, and further 7 to 12% by mass, relative to the total mass of the anchor coating agent. preferable.
  • the anchor coating agent of this embodiment is for melt extrusion lamination, and can be used for producing a laminate by a melt extrusion lamination method.
  • a resin is melted and extruded, and the extruded resin is laminated on a material to be laminated.
  • the anchor coat agent forms an anchor coat layer provided between the extruded resin and the material to be laminated.
  • an anchor coating agent is applied to the material to be laminated to form an anchor coat layer.
  • a laminate obtained using the anchor coating agent of this embodiment exhibits good adhesive strength.
  • the easy tearability is also good, and the laminate can be easily torn by hand. If the easy tearability is good, for example, a packaging bag composed of a laminate can be easily opened by hand.
  • FIG. 1 shows an example of the laminate of this embodiment. Note that the dimensional ratios in FIG. 1 are different from the actual ones for convenience of explanation.
  • the laminate 10 of this example includes a substrate 11, an anchor coat layer 13 provided on the substrate 11, and a resin layer 15 provided on the anchor coat layer 13 by melt extrusion lamination.
  • the laminate of this embodiment may have an ink layer between the substrate 11 and the anchor coat layer 13 and may have a resin film on the resin layer 15 .
  • the base material 11 is a laminated material on which the extruded resin is laminated.
  • various film materials such as plastic film, paper, cloth, and metal foil can be used, and a plastic film is preferable.
  • plastic films include polyester films such as polyethylene terephthalate (PET), amorphous polyethylene terephthalate (A-PET), polybutylene terephthalate (PBT), polyethylene naphthalate (PEN), and polylactic acid; low-density polyethylene ( LDPE), linear low-density polyethylene (LLDPE), high-density polyethylene (HDPE), and polyolefin films such as polypropylene (PP); cellulose films such as cellophane; polystyrene (PS) films; ethylene-vinyl acetate copolymer resin films ethylene-vinyl alcohol copolymer resin film; polyamide (Ny) film; polycarbonate film; polyimide film; Among these, polyester films and Ny films are examples of plastic films and Ny films
  • Both stretched and unstretched plastic films such as biaxially stretched PP films and non-stretched PP films, can be used as the plastic film described above.
  • the surface of the plastic film may be subjected to surface treatment such as corona discharge treatment, plasma treatment, flame treatment and solvent treatment.
  • Substrate 11 may be multi-layered.
  • multilayer base materials include those in which another layer is provided on a film material such as a plastic film, and those in which a plurality of film materials are laminated.
  • Other layers include, for example, vapor deposition layers, ink layers, and various other coating layers.
  • vapor deposition layers include metal vapor deposition layers such as aluminum vapor deposition layers, and transparent vapor deposition layers such as alumina and silica vapor deposition layers.
  • the ink layer is provided by printing or the like for the purpose of decoration or the like.
  • the ink that forms the ink layer include urethane resin ink, acrylic resin ink, silicone resin ink, acrylic urethane resin ink, and acrylic silicone resin ink.
  • the ink forming the ink layer may be a one-component ink or a two-component curable ink.
  • urethane resin-based one-component ink and urethane resin-based two-component curable ink are preferable.
  • the thickness of the base material 11 is preferably 5-500 ⁇ m, more preferably 10-100 ⁇ m, even more preferably 10-60 ⁇ m.
  • the anchor coat layer 13 is a layer formed from the anchor coat agent described above.
  • the anchor coat layer 13 can be formed by applying an anchor coat agent onto the base material 11 and drying it. A method for forming the anchor coat layer 13 will be described later in detail.
  • the amount of the anchor coating agent to be applied is not particularly limited, but is preferably 0.01 to 2 g/m 2 , more preferably 0.05 to 1 g/m 2 in terms of dry (solid content) mass per unit area of the application surface. , 0.1 to 0.5 g/m 2 are more preferred.
  • the above coating amount corresponds to the mass per unit area of the anchor coat layer 13 .
  • the thickness of the anchor coat layer 13 is not particularly limited, and can be, for example, about 0.01 to 1 ⁇ m, preferably about 0.01 to 0.5 ⁇ m.
  • LDPE low-density polyethylene
  • LLDPE linear low-density polyethylene
  • HDPE high-density polyethylene
  • PP polypropylene
  • the thickness of the resin layer 15 is preferably 1 to 300 ⁇ m, more preferably 5 to 200 ⁇ m, even more preferably 10 to 100 ⁇ m.
  • the laminate 10 is formed by, for example, applying an anchor coating agent onto the substrate 11, drying it to form the anchor coating layer 13, and forming the resin layer 15 on the anchor coating layer 13 by melt extrusion lamination. can be manufactured.
  • Examples of methods of applying the anchor coating agent include gravure roll coating, reverse roll coating, air knife coating, wire bar coating, curtain flow coating, spray coating, and dip coating.
  • the anchor coating agent is preferably applied by a coater (for example, a roll coater, etc.) attached to melt extrusion lamination equipment used when manufacturing the laminate 10 .
  • the drying temperature of the applied anchor coating agent is not particularly limited, and can be in the range of 40 to 200° C., for example.
  • the drying time is also not particularly limited, and can be in the range of 1 to 600 seconds, for example.
  • Formation of the resin layer 15 on the anchor coat layer 13 provided on the substrate 11 can be performed by a known melt extrusion lamination method.
  • a resin (thermoplastic resin) forming a resin layer is heated and melted, extruded into a film, the extruded melt is laminated on the anchor coat layer 13, and cooled.
  • a method of laminating the extruded melt on the anchor coat layer 13 and further laminating another resin film thereon can also be used.
  • the resin forming the resin film the same resin as that forming the resin layer 15 can be used.
  • the laminate 10 can be used, for example, as a packaging material.
  • packaging materials include various packaging containers containing food, beverages, pharmaceuticals, quasi-drugs, cosmetics, detergents, and chemicals, and various packaging materials such as films and paper. be done. Applications in which packaging materials are used further include electronic parts, electrical parts, electrical products, automobile parts, various sheets and cards, labels and tags provided on products, and the like. Specific examples of packaging materials include paper boxes, wrapping paper, packaging films, packaging labels, packaging bags, and plastic containers such as plastic cases and plastic bottles. Among these, packaging bags are more preferable. Suitable uses of the packaging bag include, for example, food packaging bags, pharmaceutical packaging bags, and cosmetic packaging bags.
  • laminated body of this aspect is not limited to the illustrated example, and additions, omissions, substitutions, and other modifications of the configuration are possible without departing from the scope of the present invention.
  • A-8 "Cardlite LITE-9001” manufactured by Cardlite.
  • A-9 "Cardlite NX-9005" manufactured by Cardlite.
  • Each of these biomass polyol compositions was used after being diluted with ethyl acetate to a final solids concentration of 50%.
  • ⁇ Polyisocyanate (B)> Adduct of hexamethylene diisocyanate (HDI) (bifunctional, trade name “Duranate D101”, manufactured by Asahi Kasei Corporation) b1-2: TMP adduct of hexamethylene diisocyanate (HDI) (trifunctional, trade name “Takenate D-160N”, manufactured by Mitsui Chemicals, Inc.). b2-1: TMP adduct of tolylene diisocyanate (TDI) (trifunctional, trade name “Takenate D-103”, manufactured by Mitsui Chemicals, Inc.).
  • HDI hexamethylene diisocyanate
  • TDI tolylene diisocyanate
  • TMP adduct of xylylene diisocyanate (XDI) trifunctional, trade name “Takenate D-110N”, manufactured by Mitsui Chemicals, Inc.
  • XDI xylylene diisocyanate
  • a laminate having the following laminate structure was produced by a melt extrusion lamination method (melt extrusion sandwich lamination method). Specifically, using melt extrusion lamination equipment, the AC agent is applied to the entire surface of one side of the laminated material in the laminated structure described below at a coating amount of 0.3 g (dry mass) / m 2 , and then dried. Ethyl acetate was evaporated in a furnace (at a temperature of 80° C.) to dry the AC agent to form an anchor coat layer (hereinafter also referred to as “AC layer”).
  • LLDPE linear low-density polyethylene
  • ⁇ Ny plain The material to be laminated is a Ny film (trade name “Harden Film N1102”, manufactured by Toyobo Co., Ltd., thickness 15 ⁇ m), and the LLDPE layer and the LLDPE film are laminated to this material (Ny film) through the AC layer.
  • ⁇ Ny white The material to be laminated is a white ink layer provided by solid printing on the Ny film, and the LLDPE layer and the LLDPE film are laminated on this material to be laminated (white ink layer I1) via the AC layer. Constitution.
  • ⁇ PET plain The material to be laminated is a PET film (trade name “Toyobo Ester Film E5102”, manufactured by Toyobo Co., Ltd., thickness 12 ⁇ m), and the LLDPE layer and the LLDPE film are laminated to this material (PET film) through the AC layer. is laminated.
  • PET film trade name “Toyobo Ester Film E5102”, manufactured by Toyobo Co., Ltd., thickness 12 ⁇ m
  • White ink layer 1-component urethane ink (8.5 parts of urethane resin, 3.0 parts of vinyl chloride-vinyl acetate copolymer resin, 0.4 parts of cellulose acetate butyrate (CAB) resin, 22.0 parts of ethyl acetate part, 25.0 parts of MEK, 5.5 parts of IPA, 1.5 parts of PM, 0.1 part of dispersant, and 34.0 parts of titanium oxide).
  • 1-component urethane ink 8.5 parts of urethane resin, 3.0 parts of vinyl chloride-vinyl acetate copolymer resin, 0.4 parts of cellulose acetate butyrate (CAB) resin, 22.0 parts of ethyl acetate part, 25.0 parts of MEK, 5.5 parts of IPA, 1.5 parts of PM, 0.1 part of dispersant, and 34.0 parts of titanium oxide).
  • the resulting laminate was evaluated for adhesion and easy tearability according to the following procedure. The results are shown in Tables 2-5.
  • T-peel test sample A rectangular sample having a width of 15 mm and a length of 100 mm was cut from each of the obtained laminates, and a T-peel test sample was prepared as a sample for adhesive strength measurement.
  • a T-type peel test sample was performed using a tensile tester (trade name "Tensilon RTG-1225", manufactured by A&D Co., Ltd.) at a tensile speed of 300 mm / min.
  • the adhesive strength (T-peel strength) between the laminated material and the LLDPE layer in the sample was measured. Moreover, the peeling state after the peeling test was visually evaluated.
  • One sheet of laminate film was cut into a rectangular shape having a width of 100 mm and a length of 150 mm from each laminate film obtained.
  • the laminated film is folded in half lengthwise with the LLDPE film on the inside and overlapped, and the edges along two adjacent sides (10 mm area from the edge) are heat-sealed to produce a sealed bag having an opening. did. After that, the opening was heat-sealed in the same manner as described above to prepare a three-sided seal bag.
  • This 3-side sealed bag was stored in a constant temperature room at 40° C. for 48 hours. After that, tearing lines were made in each of the sealed portions along two adjacent sides of the sealed bag (two places in total), and horizontal and vertical tears were performed.
  • the easy tearability at this time was evaluated on a scale of 5 according to the following evaluation criteria. It should be noted that the horizontal tear is to hold the upper edge of the cut line and tear it so that it is pulled in the left and right direction around the cut line (also called crotch tear), and the vertical tear is to hold the upper edge of the cut line. It is to tear in a straight line downwards so as to tear back and forth from the cut line. 5 points: The seal bag could be torn cleanly. 4 points: The sealed bag could be torn, but slight elongation of the LLDPE layer was observed when the bag was torn slowly during the tearing. 3 points: Elongation of the LLDPE layer was observed, but the seal bag could be torn.
  • the laminates using the AC agents of Examples 1-13 were superior in adhesive strength to the laminates using the AC agents of Comparative Examples 1-15.
  • Examples 1 to 12 were also excellent in easy tearability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Laminated Bodies (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Paints Or Removers (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

The anchor coating agent for a melt-extruded laminate according to one embodiment of the present invention contains a polyol composition (A) and a polyisocyanate (B). The polyol composition (A) contains a polyol (a1) represented by formula (1), and a compound (a2) represented by formula (2). The proportion of the compound (a2) to the entirety of a biomass polyol composition produced through GPC is 3-30 area%. The polyisocyanate (B) includes an aliphatic polyisocyanate (b1). The proportion of the aliphatic polyisocyanate (b1) to the total mass of the polyisocyanate (B) is 20 mass% or greater. The mass ratio represented by [polyol composition (A)]/[polyisocyanate (B)] ranges from 1/99 to 90/10.

Description

溶融押出ラミネート用アンカーコート剤及び積層体Anchor coating agent and laminate for melt extrusion lamination
 本発明は、溶融押出ラミネート用アンカーコート剤及び積層体に関する。
 本願は、2021年6月2日に、日本に出願された特願2021-092892号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to an anchor coating agent for melt extrusion lamination and a laminate.
This application claims priority based on Japanese Patent Application No. 2021-092892 filed in Japan on June 2, 2021, the content of which is incorporated herein.
 フィルム材及びシート材(以下、これらをまとめてフィルム材とも記す。)には、その用途等に応じて、種々の特性が求められることがあり、1種のフィルム材では、要求特性の全てを満足することが困難なことも多い。そのため、複数種のフィルム材等を積層して、それぞれの材料の長所を生かしたり短所を補ったりすることによって種々の特性を満たした積層体が様々な分野で広く用いられている。
 例えば食品、医薬品、化粧品等を包装する包装材(包装容器、包装資材等)には、プラスチックフィルム、紙、布、及び金属箔等から選ばれる複数の層を積層したフィルム状又はシート状の積層体(ラミネートフィルム)が多く用いられている。
Film materials and sheet materials (hereinafter collectively referred to as film materials) may be required to have various properties depending on their intended use. Satisfaction is often difficult. Therefore, laminates that satisfy various characteristics by laminating a plurality of types of film materials or the like to take advantage of the advantages and compensate for the disadvantages of each material are widely used in various fields.
For example, packaging materials (packaging containers, packaging materials, etc.) for packaging foods, medicines, cosmetics, etc. are film-like or sheet-like laminates in which multiple layers selected from plastic films, papers, cloths, metal foils, etc. are laminated. A body (laminate film) is often used.
 ラミネートフィルムを製造する際の一つの手法として、プラスチックフィルム等のフィルム材に、溶融状態の樹脂を押し出して積層する溶融押出ラミネート法が知られている。
 一般的に、溶融押出ラミネート法によりラミネートフィルム(溶融押出ラミネートフィルム)を製造する場合、押し出される樹脂が積層される側の材料(被積層材)と、押し出される樹脂で形成される樹脂層との間には、高い接着強度が要求される。そのため、被積層材と押し出される樹脂との間には、良好な接着強度を示すように、アンカーコート層と称される接着層が設けられることがある。
 溶融押出ラミネートフィルムの製造においてアンカーコート層の形成に用いられるアンカーコート剤としては、ポリオールとポリイソシアネートとを含むものが知られている(特許文献1)。
As one method for manufacturing a laminate film, a melt extrusion lamination method is known in which a film material such as a plastic film is laminated by extruding a resin in a molten state.
In general, when a laminate film (melt extrusion laminate film) is produced by the melt extrusion lamination method, the material on which the extruded resin is laminated (laminated material) and the resin layer formed by the extruded resin A high adhesive strength is required between them. Therefore, an adhesive layer called an anchor coat layer is sometimes provided between the material to be laminated and the resin to be extruded so as to exhibit good adhesive strength.
As an anchor coat agent used for forming an anchor coat layer in the production of a melt-extruded laminated film, one containing a polyol and a polyisocyanate is known (Patent Document 1).
 近年、環境中の二酸化炭素量の増加を抑制するため、化石資源由来の原料を、植物等のバイオマス由来の原料で代替した製品への要望が高まっている。
 バイオマス由来の原料の一つとして、カシューナッツシェルリキッドやその誘導体が知られている。カシューナッツシェルリキッドの誘導体の一つとして、カシューナッツシェルリキッドをポリオール樹脂化したものが知られている(特許文献2~3)。
In recent years, in order to suppress an increase in the amount of carbon dioxide in the environment, there is an increasing demand for products in which raw materials derived from fossil resources are replaced with raw materials derived from biomass such as plants.
Cashew nut shell liquids and derivatives thereof are known as one of raw materials derived from biomass. As one of cashew nut shell liquid derivatives, a cashew nut shell liquid converted into a polyol resin is known (Patent Documents 2 and 3).
日本国特開2019-218438号公報Japanese Patent Application Laid-Open No. 2019-218438 日本国特表2005-511465号公報Japanese Patent Publication No. 2005-511465 日本国特表2016-540071号公報Japanese special table 2016-540071
 本発明者が、アンカーコート剤のポリオールとして、カシューナッツシェルリキッドを原料とするポリオール樹脂を用いることを検討したところ、充分な接着強度が得られないことがあった。
 本発明は、バイオマス由来の原料を用いた、良好な接着強度を有する積層体が得られる溶融押出ラミネート用アンカーコート剤及びこれを用いた積層体を提供することを目的とする。
When the present inventors examined the use of a polyol resin made from cashew nut shell liquid as a polyol for the anchor coating agent, there were cases where sufficient adhesive strength could not be obtained.
An object of the present invention is to provide an anchor coating agent for melt-extrusion lamination, which uses a biomass-derived raw material and provides a laminate having good adhesive strength, and a laminate using the same.
 本発明は以下の態様を有する。
 [1]ポリオール組成物(A)と、ポリイソシアネート(B)とを含み、
 前記ポリオール組成物(A)が、下記式(1)で表されるポリオール(a1)と下記式(2)で表される化合物(a2)とを含むバイオマスポリオール組成物を含み、
 ゲルパーミエーションクロマトグラフィーによる前記バイオマスポリオール組成物全体に対する前記化合物(a2)の割合が、3~30面積%であり、
 前記ポリイソシアネート(B)が、脂肪族ポリイソシアネート(b1)を含み、
 前記ポリイソシアネート(B)の総質量に対する前記脂肪族ポリイソシアネート(b1)の割合が、20質量%以上であり、
 前記ポリオール組成物(A)/前記ポリイソシアネート(B)で表される質量比が、1/99~90/10であることを特徴とする溶融押出ラミネート用アンカーコート剤。
The present invention has the following aspects.
[1] Containing a polyol composition (A) and a polyisocyanate (B),
The polyol composition (A) comprises a biomass polyol composition containing a polyol (a1) represented by the following formula (1) and a compound (a2) represented by the following formula (2),
The ratio of the compound (a2) to the entire biomass polyol composition by gel permeation chromatography is 3 to 30 area%,
The polyisocyanate (B) contains an aliphatic polyisocyanate (b1),
The ratio of the aliphatic polyisocyanate (b1) to the total mass of the polyisocyanate (B) is 20% by mass or more,
An anchor coating agent for melt extrusion lamination, wherein the mass ratio represented by the polyol composition (A)/the polyisocyanate (B) is 1/99 to 90/10.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 ただし、Rは炭素数15の直鎖炭化水素基を示し、
 Rは水素原子又は置換基を示し、
 Rは水素原子又は炭素数が1~8のアルキル基を示し、
 nは0以上の数を示す。
 [2]前記バイオマスポリオール組成物が、カシューナッツシェルリキッドを原料とする前記[1]の溶融押出ラミネート用アンカーコート剤。
 [3]前記バイオマスポリオール組成物の25℃における粘度が1000mPa・s以上、数平均分子量が500以上である前記[1]又は[2]の溶融押出ラミネート用アンカーコート剤。
 [4]前記バイオマスポリオール組成物の水酸基価が130mgKOH/g以上である前記[1]~[3]のいずれかの溶融押出ラミネート用アンカーコート剤。
 [5]前記バイオマスポリオール組成物の25℃における粘度が10000mPa・s以上である前記[1]~[4]のいずれかの溶融押出ラミネート用アンカーコート剤。
 [6]前記脂肪族ポリイソシアネート(b1)が、3官能脂肪族イソシアネートを含む前記[1]~[5]のいずれかの溶融押出ラミネート用アンカーコート剤。
 [7]前記ポリイソシアネート(B)が、前記脂肪族ポリイソシアネート(b1)のみからなる前記[1]~[6]のいずれかの溶融押出ラミネート用アンカーコート剤。
 [8]前記ポリオール組成物(A)/前記ポリイソシアネート(B)で表される質量比が、10/90~40/60である前記[1]~[7]のいずれかの溶融押出ラミネート用アンカーコート剤。
 [9]基材と、前記基材上に設けられたアンカーコート層と、前記アンカーコート層上に溶融押出ラミネートにより設けられた樹脂層とを備え、
 前記アンカーコート層が、前記[1]~[8]のいずれかの溶融押出ラミネート用アンカーコート剤から形成された層であることを特徴とする積層体。
However, R 1 represents a linear hydrocarbon group having 15 carbon atoms,
R 2 represents a hydrogen atom or a substituent,
R 3 represents a hydrogen atom or an alkyl group having 1 to 8 carbon atoms,
n represents a number of 0 or more.
[2] The anchor coating agent for melt extrusion lamination according to [1], wherein the biomass polyol composition is made from cashew nut shell liquid.
[3] The anchor coating agent for melt extrusion lamination according to [1] or [2], wherein the biomass polyol composition has a viscosity at 25° C. of 1000 mPa·s or more and a number average molecular weight of 500 or more.
[4] The anchor coating agent for melt extrusion laminate according to any one of [1] to [3], wherein the biomass polyol composition has a hydroxyl value of 130 mgKOH/g or more.
[5] The anchor coating agent for melt extrusion lamination according to any one of [1] to [4], wherein the biomass polyol composition has a viscosity of 10000 mPa·s or more at 25°C.
[6] The anchor coating agent for melt extrusion lamination according to any one of [1] to [5], wherein the aliphatic polyisocyanate (b1) contains a trifunctional aliphatic isocyanate.
[7] The anchor coating agent for melt extrusion lamination according to any one of [1] to [6], wherein the polyisocyanate (B) comprises only the aliphatic polyisocyanate (b1).
[8] The melt extrusion laminate according to any one of [1] to [7], wherein the mass ratio represented by the polyol composition (A)/the polyisocyanate (B) is 10/90 to 40/60. Anchor coating agent.
[9] A base material, an anchor coat layer provided on the base material, and a resin layer provided on the anchor coat layer by melt extrusion lamination,
A laminate, wherein the anchor coat layer is a layer formed from the anchor coat agent for melt extrusion lamination according to any one of [1] to [8].
 本発明によれば、バイオマス由来の原料を用いた、良好な接着強度を有する積層体が得られる溶融押出ラミネート用アンカーコート剤及びこれを用いた積層体を提供できる。 According to the present invention, it is possible to provide an anchor coating agent for melt extrusion lamination and a laminate using the same, which uses biomass-derived raw materials and provides a laminate having good adhesive strength.
積層体の一例を示す模式断面図である。It is a schematic cross section which shows an example of a laminated body.
 以下、本発明の実施の形態について詳細に説明するが、本発明は以下の実施の形態に限定されるものではない。 Embodiments of the present invention will be described in detail below, but the present invention is not limited to the following embodiments.
〔溶融押出ラミネート用アンカーコート剤〕
 本発明の一態様に係る溶融押出ラミネート用アンカーコート剤(以下、単に「アンカーコート剤」とも記す。)は、ポリオール組成物(A)とポリイソシアネート(B)とを含む。
 本態様のアンカーコート剤は、必要に応じて、ポリオール組成物(A)及びポリイソシアネート(B)以外の他の成分をさらに含んでいてもよい。
[Anchor coating agent for melt extrusion lamination]
An anchor coating agent for melt extrusion lamination according to one aspect of the present invention (hereinafter also simply referred to as "anchor coating agent") includes a polyol composition (A) and a polyisocyanate (B).
The anchor coating agent of this aspect may further contain components other than the polyol composition (A) and the polyisocyanate (B), if necessary.
<ポリオール組成物(A)>
 ポリオール組成物(A)は、特定のバイオマスポリオール組成物を含む。
 本発明において「ポリオール組成物」とは、ポリオールのみからなる組成物、又はポリオール及びモノオールからなる組成物である。「バイオマスポリオール組成物」とは、構成成分(ポリオール、モノオール)がバイオマス由来であるポリオール組成物である。
 ポリオール組成物(A)は、バイオマスポリオール組成物に加えて、バイオマスに由来しないポリオール(以下、「他のポリオール」とも記す。)を含んでいてもよい。
<Polyol composition (A)>
Polyol composition (A) includes a specific biomass polyol composition.
In the present invention, the "polyol composition" is a composition consisting of polyol only, or a composition consisting of polyol and monool. A “biomass polyol composition” is a polyol composition whose constituent components (polyol, monool) are derived from biomass.
The polyol composition (A) may contain a non-biomass-derived polyol (hereinafter also referred to as "another polyol") in addition to the biomass polyol composition.
 バイオマスポリオール組成物の含有量は、アンカーコート剤のバイオマス比率を高める観点から、ポリオール組成物(A)の総質量に対し、10質量%以上が好ましく、30質量%以上がより好ましく、50質量%以上がさらに好ましく、100質量%が特に好ましい。 From the viewpoint of increasing the biomass ratio of the anchor coating agent, the content of the biomass polyol composition is preferably 10% by mass or more, more preferably 30% by mass or more, more preferably 50% by mass, relative to the total mass of the polyol composition (A). The above is more preferable, and 100% by mass is particularly preferable.
(バイオマスポリオール組成物)
 バイオマスポリオール組成物は、下記式(1)で表されるポリオール(a1)と下記式(2)で表される化合物(a2)とを含む。化合物(a2)は、カルダノールである。
(Biomass polyol composition)
The biomass polyol composition contains a polyol (a1) represented by the following formula (1) and a compound (a2) represented by the following formula (2). Compound (a2) is cardanol.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 Rは炭素数15の直鎖炭化水素基を示す。直鎖炭化水素基は、飽和炭化水素基でも不飽和炭化水素基でもよい。不飽和炭化水素基としては、例えば、2重結合を1~3個有するものが挙げられる。Rの具体例としては、-(CH14CH、-(CHCH=CH(CHCH、-(CHCH=CHCHCH=CH(CHCH、-(CHCH=CHCHCH=CH(CHCH=CHが挙げられる。
 式(1)中の(n+2)個のRは互いに同一でも異なっていてもよい。
R 1 represents a linear hydrocarbon group having 15 carbon atoms. A straight chain hydrocarbon group may be a saturated hydrocarbon group or an unsaturated hydrocarbon group. Examples of unsaturated hydrocarbon groups include those having 1 to 3 double bonds. Specific examples of R 1 include -(CH 2 ) 14 CH 3 , -(CH 2 ) 6 CH=CH(CH 2 ) 6 CH 3 , -(CH 2 ) 6 CH=CHCH 2 CH=CH(CH 2 ) 3 CH 3 , -(CH 2 ) 6 CH=CHCH 2 CH=CH(CH 2 ) 2 CH=CH 2 .
(n+2) R 1 's in formula (1) may be the same or different.
 Rは水素原子又は置換基を示す。置換基は、水素原子以外の原子又は原子団を示す。
 Rにおける置換基としては、特に限定されず、ハロゲン原子(フッ素原子、塩素原子、臭素原子、ヨウ素原子等)、置換基を有していてもよい炭化水素基、ヒドロキシ基、アルコキシ基、エーテル基、エステル基、アルデヒド基、ケトン基、カルボキシル基、シアノ基、カルバモイル基、イミド基、ニトロ基、アミノ基、アミド基、アゾ基、ウレア基、ウレタン基、スルホ基、チオール基、シリル基、ホスフィノ基等が挙げられる。
 炭化水素基としては、アルキル基、アルケニル基、アルキニル基、シクロアルキル基、シクロアルケニル基、アリール基(フェニル基、ナフチル基等)、アラルキル基(ベンジル基等)等が挙げられる。炭化水素基が有していてもよい置換基としては、ハロゲン原子(フッ素原子、塩素原子、臭素原子、ヨウ素原子等)ヒドロキシ基、アルコキシ基、エーテル基、エステル基、アルデヒド基、ケトン基、カルボキシル基、シアノ基、カルバモイル基、イミド基、ニトロ基、アミノ基、アミド基、アゾ基、ウレア基、ウレタン基、スルホ基、チオール基、シリル基、ホスフィノ基等が挙げられる。炭化水素基が有する置換基は1つでも2つ以上でもよい。
 式(1)中の(n+2)個のRは互いに同一でも異なっていてもよい。
R2 represents a hydrogen atom or a substituent. A substituent indicates an atom or atomic group other than a hydrogen atom.
The substituent for R 2 is not particularly limited, and includes a halogen atom (fluorine atom, chlorine atom, bromine atom, iodine atom, etc.), optionally substituted hydrocarbon group, hydroxy group, alkoxy group, ether group, ester group, aldehyde group, ketone group, carboxyl group, cyano group, carbamoyl group, imide group, nitro group, amino group, amide group, azo group, urea group, urethane group, sulfo group, thiol group, silyl group, A phosphino group etc. are mentioned.
Hydrocarbon groups include alkyl groups, alkenyl groups, alkynyl groups, cycloalkyl groups, cycloalkenyl groups, aryl groups (phenyl groups, naphthyl groups, etc.), aralkyl groups (benzyl groups, etc.), and the like. Substituents that the hydrocarbon group may have include halogen atoms (fluorine atom, chlorine atom, bromine atom, iodine atom, etc.), hydroxy groups, alkoxy groups, ether groups, ester groups, aldehyde groups, ketone groups, carboxyl groups, group, cyano group, carbamoyl group, imido group, nitro group, amino group, amido group, azo group, urea group, urethane group, sulfo group, thiol group, silyl group, phosphino group and the like. The hydrocarbon group may have one or two or more substituents.
(n+2) R 2 in formula (1) may be the same or different.
 Rは水素原子、又は炭素数が1~8のアルキル基を示す。
 nは0以上の数を示す。nは、1以上が好ましく、2以上がより好ましい。nは、1000以下が好ましく、500以下がより好ましい。nが上記下限値以上であれば、バイオマスポリオール組成物の数平均分子量が後述する好ましい下限値以上となりやすい。nが上記上限値以下であれば、バイオマスポリオール組成物の数平均分子量が後述する好ましい上限値以下となりやすい。上記下限値及び上記上限値は適宜組み合わせることができる。
R 3 represents a hydrogen atom or an alkyl group having 1 to 8 carbon atoms.
n represents a number of 0 or more. 1 or more is preferable and, as for n, 2 or more is more preferable. n is preferably 1000 or less, more preferably 500 or less. When n is at least the above lower limit, the number average molecular weight of the biomass polyol composition tends to be at least the preferred lower limit described below. When n is equal to or less than the above upper limit, the number average molecular weight of the biomass polyol composition tends to be equal to or less than the preferable upper limit described below. The lower limit value and the upper limit value can be appropriately combined.
 ポリオール(a1)は、例えば、下記反応式に示すように、化合物(a2)とアルデヒド(下記式(3))とを反応(縮合反応)させ、得られた縮合物(下記式(4))とエポキシ化合物(下記式(5))とを反応(付加反応)させる方法により合成される。縮合反応及び付加反応は公知の方法により実施できる。 The polyol (a1) is, for example, a condensate (formula (4) below) obtained by reacting (condensation reaction) a compound (a2) with an aldehyde (formula (3) below), as shown in the reaction formula below. and an epoxy compound (the following formula (5)) are synthesized by a method of reacting (addition reaction). Condensation reaction and addition reaction can be carried out by known methods.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 バイオマスポリオール組成物は、ポリオール(a1)以外のポリオールや化合物(a2)以外のモノオールをさらに含んでいてもよい。ポリオール(a1)以外のポリオールとしては、バイオマス由来のものであればよく、例えば、カルドール、2-メチルカルドールが挙げられる。化合物(a2)以外のモノオールとしては、バイオマス由来のものであればよく、例えば、アナカルド酸が挙げられる。 The biomass polyol composition may further contain a polyol other than the polyol (a1) and a monool other than the compound (a2). Polyols other than the polyol (a1) may be those derived from biomass, such as cardol and 2-methylcardol. Monools other than the compound (a2) may be those derived from biomass, such as anacardic acid.
 ゲルパーミエーションクロマトグラフィー(以下、「GPC」とも記す。)によるバイオマスポリオール組成物全体(100面積%)に対する化合物(a2)の割合は、3~30面積%であり、5~20面積%が好ましく、7~15面積%がより好ましい。化合物(a2)の割合が上記範囲内であれば、良好な接着強度を有する積層体が得られる。
 GPCの測定条件は、後述する実施例に記載のとおりである。
The ratio of the compound (a2) to the entire biomass polyol composition (100 area%) measured by gel permeation chromatography (hereinafter also referred to as "GPC") is 3 to 30 area%, preferably 5 to 20 area%. , 7 to 15 area % is more preferred. If the ratio of the compound (a2) is within the above range, a laminate having good adhesive strength can be obtained.
The measurement conditions of GPC are as described in Examples below.
 GPCによるバイオマスポリオール組成物全体に対するポリオール(a1)の割合は、積層体の接着強度の観点から、10~97面積%が好ましく、50~96面積%がより好ましく、75~95面積%がさらに好ましく、80~93面積%が特に好ましい。 The ratio of the polyol (a1) to the entire biomass polyol composition by GPC is preferably 10 to 97 area%, more preferably 50 to 96 area%, and even more preferably 75 to 95 area%, from the viewpoint of the adhesive strength of the laminate. , 80 to 93 area % are particularly preferred.
 GPCによるバイオマスポリオール組成物全体に対するポリオール(a1)及び化合物(a2)の合計の割合は、積層体の接着強度の観点から、70面積%以上が好ましく、80面積%以上がより好ましく、90面積%以上がさらに好ましく、100面積%であってもよい。 The total ratio of the polyol (a1) and the compound (a2) to the entire biomass polyol composition by GPC is preferably 70 area% or more, more preferably 80 area% or more, and 90 area% from the viewpoint of the adhesive strength of the laminate. The above is more preferable, and it may be 100 area %.
 バイオマスポリオール組成物の25℃における粘度は、1500mPa・s以上が好ましく、2000mPa・s以上がより好ましく、10000mPa・s以上がさらに好ましい。粘度が上記下限値以上であれば、積層体の易引き裂き性がより優れる傾向がある。
 バイオマスポリオール組成物の25℃における粘度は、150000mPa・s以下が好ましく、130000mPa・s以下がより好ましく、90000mPa・s以下がさらに好ましく、50000mPa・s以下が特に好ましい。粘度が上記上限値以下であれば、包材の切れ性がより優れる傾向がある。
 上記下限値及び上記上限値は適宜組み合わせることができる。
 バイオマスポリオール組成物の粘度は、B型粘度計により測定される。以下、特に記載がなければ、粘度は25℃における値を示すものとする。
 バイオマスポリオール組成物の粘度は、化合物(a2)の割合、数平均分子量等により調整できる。
The viscosity of the biomass polyol composition at 25° C. is preferably 1500 mPa·s or more, more preferably 2000 mPa·s or more, and even more preferably 10000 mPa·s or more. When the viscosity is at least the above lower limit, there is a tendency for the easy tearing property of the laminate to be more excellent.
The viscosity of the biomass polyol composition at 25° C. is preferably 150000 mPa·s or less, more preferably 130000 mPa·s or less, still more preferably 90000 mPa·s or less, and particularly preferably 50000 mPa·s or less. If the viscosity is equal to or less than the above upper limit, there is a tendency for the cutting property of the packaging material to be more excellent.
The lower limit value and the upper limit value can be appropriately combined.
The viscosity of the biomass polyol composition is measured with a Brookfield viscometer. In the following, unless otherwise specified, the viscosity indicates the value at 25°C.
The viscosity of the biomass polyol composition can be adjusted by adjusting the proportion of the compound (a2), the number average molecular weight, and the like.
 バイオマスポリオール組成物の数平均分子量(以下、「Mn」とも記す。)は、500以上が好ましく、750以上がより好ましく、1000以上がさらに好ましい。Mnが上記下限値以上であれば、基材との密着性がより優れる傾向がある。
 バイオマスポリオール組成物のMnは、500000以下が好ましく、300000以下がより好ましく、100000以下がさらに好ましく、10000以下が特に好ましく、5000以下が最も好ましい。Mnが上記上限値以下であれば、ラミネートフィルムとした際のカット性がより優れる傾向がある。
 上記下限値及び上記上限値は適宜組み合わせることができる。
 バイオマスポリオール組成物のMnは、GPCにより測定される標準ポリスチレン換算値である。
The number average molecular weight (hereinafter also referred to as “Mn”) of the biomass polyol composition is preferably 500 or more, more preferably 750 or more, and even more preferably 1000 or more. If the Mn is at least the above lower limit, there is a tendency for the adhesion to the substrate to be more excellent.
The Mn of the biomass polyol composition is preferably 500,000 or less, more preferably 300,000 or less, even more preferably 100,000 or less, particularly preferably 10,000 or less, and most preferably 5,000 or less. When Mn is equal to or less than the above upper limit, the cuttability tends to be more excellent when made into a laminate film.
The lower limit value and the upper limit value can be appropriately combined.
Mn of the biomass polyol composition is a standard polystyrene conversion value measured by GPC.
 バイオマスポリオール組成物は、上述の好ましい粘度及び好ましいMnの両方を満たすことが好ましい。例えば、粘度が1500mPa・s以上、数平均分子量が1000以上であることが好ましい。 The biomass polyol composition preferably satisfies both the above-described preferred viscosity and preferred Mn. For example, it is preferable that the viscosity is 1500 mPa·s or more and the number average molecular weight is 1000 or more.
 バイオマスポリオール組成物の水酸基価は、130mgKOH/g以上が好ましく、145mgKOH/g以上がより好ましく、160mgKOH/g以上がさらに好ましい。水酸基価が上記下限値以上であれば、積層体の接着強度がより優れる傾向がある。
 バイオマスポリオール組成物の水酸基価は、250mgKOH/g以下が好ましく、230mgKOH/g以下がより好ましく、210mgKOH/g以下がさらに好ましい。水酸基価が上記上限値以下であれば、耐加水分解性がより優れる傾向がある。
 上記下限値及び上記上限値は適宜組み合わせることができる。
 水酸基価は、ASTM D4274により求められる。
The hydroxyl value of the biomass polyol composition is preferably 130 mgKOH/g or more, more preferably 145 mgKOH/g or more, and even more preferably 160 mgKOH/g or more. When the hydroxyl value is at least the above lower limit, the adhesive strength of the laminate tends to be more excellent.
The hydroxyl value of the biomass polyol composition is preferably 250 mgKOH/g or less, more preferably 230 mgKOH/g or less, and even more preferably 210 mgKOH/g or less. If the hydroxyl value is equal to or less than the above upper limit, the hydrolysis resistance tends to be more excellent.
The lower limit value and the upper limit value can be appropriately combined.
Hydroxyl value is determined according to ASTM D4274.
 バイオマスポリオール組成物は、原料コスト、排出二酸化炭素量の削減の観点から、カシューナッツシェルリキッド(Cashew Nut Shell Liquid)(以下、「CNSL」とも記す。)を原料とすることが好ましい。
 CNSLは、カシューナッツの殻から得られるオイル状の液体である。本明細書におけるCNSLは、通常、カシューナッツの殻から取り出された粗CNSLを蒸留したものであり、化合物(a2)を含む。化合物(a2)のほかに、カルドール、メチルカルドール、アナカルド酸等を含むことがある。CNSLは種々のグレードのものが市販されており、化合物(a2)単体に比べて安価に入手可能である。
 前記したポリオール(a1)の合成において、出発原料としてCNSLを用いると、ポリオール(a1)を含む反応物が得られる。反応物が未反応の化合物(a2)を前記した割合で含む場合は、得られた反応物をそのままバイオマスポリオール組成物として用いることができる。反応物に化合物(a2)等を添加してバイオマスポリオール組成物としてもよい。
The biomass polyol composition preferably uses cashew nut shell liquid (hereinafter also referred to as "CNSL") as a raw material from the viewpoint of reducing raw material costs and carbon dioxide emissions.
CNSL is an oily liquid obtained from cashew nut shells. CNSL herein is generally obtained by distilling crude CNSL shelled from cashew nuts, and contains compound (a2). Cardol, methyl cardol, anacardic acid and the like may be contained in addition to compound (a2). Various grades of CNSL are commercially available, and they are available at a lower price than the compound (a2) alone.
When CNSL is used as a starting material in the synthesis of the polyol (a1) described above, a reactant containing the polyol (a1) is obtained. When the reactant contains the unreacted compound (a2) in the above ratio, the obtained reactant can be used as it is as a biomass polyol composition. A biomass polyol composition may be obtained by adding the compound (a2) or the like to the reactant.
(他のポリオール)
 他のポリオールとしては、低分子ポリオール、高分子ポリオール等が挙げられる。低分子ポリオールとしては、多価アルコール(2価以上のアルコール)等が挙げられる。高分子ポリオールとしては、ポリエーテルポリオール、ポリエステルポリオール、ポリカーボネートポリオール等が挙げられる。これらのポリオールは1種を単独で又は2種以上を組み合わせて用いることができる。
(other polyols)
Other polyols include low-molecular-weight polyols, high-molecular-weight polyols, and the like. Examples of low-molecular-weight polyols include polyhydric alcohols (dihydric or higher alcohols). Polymer polyols include polyether polyols, polyester polyols, polycarbonate polyols, and the like. These polyols can be used singly or in combination of two or more.
 多価アルコールとしては、エチレングリコール、1,2-プロパンジオール(別名プロピレングリコール)、1,3-プロパンジオール、2-メチル-1,3-プロパンジオール、2,2-ジメチル-1,3-プロパンジオール、2-ブチル-2-エチル-1,3-プロパンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、3-メチル-1,5-ペンタンジオール、1,6-ヘキサンジオール、1,8-オクタンジオール、2-メチル-1,8-オクタンジオール、1,9-ノナンジオール、ジエチレングリコール、トリエチレングリコール、及びテトラエチレングリコール等の脂肪族ジオール;1,4-シクロヘキサンジメタノール、1,3-シクロヘキサンジメタノール、及び1,4-シクロヘキサンジオール等の脂環構造を有するジオール;1,4-ベンゼンメタノール、1,3-ベンゼンメタノール、及び1,4-ジヒドロキシベンゼン等の芳香族ジオール;グリセロール、トリメチロールプロパン、ペンタエリスリトール、及びソルビトール等の3価以上のアルコール等が挙げられる。これらの多価アルコールは1種を単独で又は2種以上を組み合わせて用いることができる。 Polyhydric alcohols include ethylene glycol, 1,2-propanediol (also known as propylene glycol), 1,3-propanediol, 2-methyl-1,3-propanediol, 2,2-dimethyl-1,3-propane diol, 2-butyl-2-ethyl-1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, 3-methyl-1,5-pentanediol, 1,6-hexanediol, 1 ,8-octanediol, 2-methyl-1,8-octanediol, 1,9-nonanediol, diethylene glycol, triethylene glycol, and tetraethylene glycol; 1,4-cyclohexanedimethanol, 1, diols having an alicyclic structure such as 3-cyclohexanedimethanol and 1,4-cyclohexanediol; aromatic diols such as 1,4-benzenemethanol, 1,3-benzenemethanol and 1,4-dihydroxybenzene; glycerol , trimethylolpropane, pentaerythritol, and trihydric or higher alcohols such as sorbitol. These polyhydric alcohols can be used singly or in combination of two or more.
 ポリエステルポリオールとしては、例えば、多価カルボン酸と、多価アルコール又は第2~3級アミン類との脱水重縮合反応で得られる、ポリエステルポリオール又はポリエステルアミドポリオールが挙げられる。ポリエステルポリオールの製造に用い得る多価カルボン酸としては、例えば、コハク酸、アジピン酸、セバシン酸、アゼライン酸、テレフタル酸、イソフタル酸、オルソフタル酸、ヘキサヒドロテレフタル酸、ヘキサヒドロイソフタル酸、ヘキサヒドロオルソフタル酸、及びナフタレンジカルボン酸;並びにトリメリット酸等のポリカルボン酸;並びにそれらの酸エステル;並びにそれらの酸無水物等が挙げられる。ポリエステルポリオールの製造に用い得る多価アルコールとしては、例えば、上述した多価アルコールの具体例等が挙げられる。ポリエステルアミドポリオールの製造に用い得る第2~3級アミン類の具体例としては、ヘキサメチレンジアミン、キシリレンジアミン、及びイソホロンジアミン等の低分子アミン化合物等が挙げられる。
 ポリエステルポリオールとしては、例えば、低分子アルコール化合物及び低分子アミノアルコール化合物等を開始剤として、ε-カプロラクトン及びγ-バレロラクトン等の環状エステル(ラクトン)モノマーを開環重合して得られるラクトン系ポリエステルポリオールを用いることもできる。
Polyester polyols include, for example, polyester polyols and polyester amide polyols obtained by a dehydration polycondensation reaction between a polyhydric carboxylic acid and a polyhydric alcohol or secondary or tertiary amines. Polyvalent carboxylic acids that can be used in the production of polyester polyols include, for example, succinic acid, adipic acid, sebacic acid, azelaic acid, terephthalic acid, isophthalic acid, orthophthalic acid, hexahydroterephthalic acid, hexahydroisophthalic acid, hexahydroortho phthalic acid, naphthalenedicarboxylic acid; and polycarboxylic acids such as trimellitic acid; acid esters thereof; and acid anhydrides thereof. Examples of the polyhydric alcohol that can be used for producing the polyester polyol include the specific examples of the polyhydric alcohol described above. Specific examples of secondary to tertiary amines that can be used in the production of polyesteramide polyols include low-molecular-weight amine compounds such as hexamethylenediamine, xylylenediamine, and isophoronediamine.
Polyester polyols include, for example, lactone-based polyesters obtained by ring-opening polymerization of cyclic ester (lactone) monomers such as ε-caprolactone and γ-valerolactone using low-molecular-weight alcohol compounds and low-molecular-weight aminoalcohol compounds as initiators. Polyols can also be used.
 ポリエーテルポリオールとしては、例えば、開始剤に、エチレンオキサイド、プロピレンオキサイド、及びブチレンオキサイド等のアルキレンオキサイド、並びにテトラヒドロフラン等を付加重合(開環重合)させて得られるものが挙げられる。開始剤としては、例えば、上述の多価アルコールのほか、トリエタノールアミン、エチレンジアミン、及びジエチレントリアミン等の低分子アミン化合物等が使用され得る。
 ポリエーテルポリオールとしては、例えば、ポリオキシエチレンジオール(別名ポリエチレングリコール)、ポリオキシプロピレンジオール(別名ポリプロピレングリコール)、ポリオキシプロピレントリオール、エチレンオキサイド-プロピレンオキサイド共重合体、ポリテトラメチレンエーテルグリコール(PTMEG)、ポリテトラエチレングリコール、及びソルビトール系ポリオール等が挙げられる。
Examples of polyether polyols include those obtained by addition polymerization (ring-opening polymerization) of alkylene oxides such as ethylene oxide, propylene oxide and butylene oxide, and tetrahydrofuran, etc., as initiators. Examples of initiators that can be used include the polyhydric alcohols described above, as well as low-molecular-weight amine compounds such as triethanolamine, ethylenediamine, and diethylenetriamine.
Examples of polyether polyols include polyoxyethylene diol (also known as polyethylene glycol), polyoxypropylene diol (also known as polypropylene glycol), polyoxypropylene triol, ethylene oxide-propylene oxide copolymer, and polytetramethylene ether glycol (PTMEG). , polytetraethylene glycol, and sorbitol polyols.
 ポリカーボネートポリオールとしては、例えば、前述の多価アルコールとホスゲンとの脱塩酸反応で得られるもの、低分子アルコール化合物と、ジエチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、及びジフェニルカーボネート等とのエステル交換反応で得られるものが挙げられる。 Polycarbonate polyols include, for example, those obtained by the dehydrochlorination reaction of the above-mentioned polyhydric alcohol and phosgene, and those obtained by the transesterification reaction of a low-molecular-weight alcohol compound with diethylene carbonate, dimethyl carbonate, diethyl carbonate, diphenyl carbonate, and the like. What can be done is mentioned.
 高分子ポリオールの重量平均分子量(以下、「Mw」とも記す。)は、5,000~100,000が好ましく、8,000~80,000がより好ましく、10,000~60,000がさらに好ましい。
 ポリオールのMwは、ゲルパーミエーションクロマトグラフィー(GPC)により測定される標準ポリスチレン換算値である。
The weight average molecular weight (hereinafter also referred to as "Mw") of the polymer polyol is preferably 5,000 to 100,000, more preferably 8,000 to 80,000, and even more preferably 10,000 to 60,000. .
Mw of polyol is a standard polystyrene conversion value measured by gel permeation chromatography (GPC).
<ポリイソシアネート(B)>
 ポリイソシアネート(B)は、脂肪族ポリイソシアネート(b1)を含む。
 ポリイソシアネート(B)は、脂肪族ポリイソシアネート(b1)以外の他のポリイソシアネートをさらに含んでいてもよい。
<Polyisocyanate (B)>
Polyisocyanate (B) includes aliphatic polyisocyanate (b1).
The polyisocyanate (B) may further contain polyisocyanates other than the aliphatic polyisocyanate (b1).
 ポリイソシアネート(B)の総質量に対する脂肪族ポリイソシアネート(b1)の割合は、20質量%以上である。脂肪族ポリイソシアネート(b1)の割合が20質量%以上であれば、積層体の接着強度、易引き裂き性に優れる。
 ポリイソシアネート(B)の総質量に対する脂肪族ポリイソシアネート(b1)の割合は、50質量%以上が好ましく、70質量%以上がより好ましく、100質量%が特に好ましい。すなわち、ポリイソシアネート(B)が、脂肪族ポリイソシアネート(b1)のみからなることが特に好ましい。
The ratio of the aliphatic polyisocyanate (b1) to the total mass of the polyisocyanate (B) is 20% by mass or more. When the proportion of the aliphatic polyisocyanate (b1) is 20% by mass or more, the laminate has excellent adhesive strength and easy tearability.
The ratio of the aliphatic polyisocyanate (b1) to the total mass of the polyisocyanate (B) is preferably 50% by mass or more, more preferably 70% by mass or more, and particularly preferably 100% by mass. That is, it is particularly preferred that the polyisocyanate (B) consists only of the aliphatic polyisocyanate (b1).
 ポリイソシアネート(B)の総質量に対する他のポリイソシアネートの割合は、0~50質量%が好ましく、0~30質量%がより好ましい。 The ratio of the other polyisocyanate to the total mass of the polyisocyanate (B) is preferably 0-50% by mass, more preferably 0-30% by mass.
(脂肪族ポリイソシアネート(b1))
 脂肪族ポリイソシアネート(b1)としては、例えば、テトラメチレンジイソシアネート、ペンタメチレンジイソシアネート、ヘキサメチレンジイソシアネート(HDI)等の2官能脂肪族ポリイソシアネート;2官能脂肪族ポリイソシアネートのアダクト体、イソシアヌレート体、ビウレット体及びアロファネート体が挙げられる。これらの脂肪族ポリイソシアネートは1種を単独で又は2種以上を組み合わせて用いることができる。
(Aliphatic polyisocyanate (b1))
Examples of the aliphatic polyisocyanate (b1) include bifunctional aliphatic polyisocyanates such as tetramethylene diisocyanate, pentamethylene diisocyanate, and hexamethylene diisocyanate (HDI); bifunctional aliphatic polyisocyanate adducts, isocyanurates, biuret and allophanate forms. These aliphatic polyisocyanates can be used singly or in combination of two or more.
 脂肪族ポリイソシアネート(b1)としては、3官能脂肪族イソシアネートが好ましい。脂肪族ポリイソシアネート(b1)が3官能脂肪族イソシアネートを含むと、積層体の接着強度、易引き裂き性がより優れる傾向がある。
 3官能脂肪族イソシアネートとしては、例えば、HDIのトリメチロールプロパン(TMP)アダクト体、イソシアヌレート体、ビウレット体及びアロファネート体が挙げられる。
As the aliphatic polyisocyanate (b1), a trifunctional aliphatic isocyanate is preferred. When the aliphatic polyisocyanate (b1) contains a trifunctional aliphatic isocyanate, the adhesive strength and easy tearability of the laminate tend to be more excellent.
Trifunctional aliphatic isocyanates include, for example, trimethylolpropane (TMP) adducts, isocyanurates, biurets and allophanates of HDI.
(他のポリイソシアネート)
 他のポリイソシアネートとしては、例えば、芳香族ポリイソシアネート、脂環族ポリイソシアネートが挙げられる。これらのポリイソシアネートは1種を単独で又は2種以上を組み合わせて用いることができる。
(other polyisocyanates)
Other polyisocyanates include, for example, aromatic polyisocyanates and alicyclic polyisocyanates. These polyisocyanates can be used singly or in combination of two or more.
 芳香族ポリイソシアネートとしては、例えば、トリレンジイソシアネート(TDI)、キシリレンジイソシアネート(XDI)、ジフェニルメタンジイソシアネート(MDI)、1,4-フェニレンジイソシアネート、1,5-ナフチレンジイソシアネート、ジフェニルエーテルジイソシアネート、及び3,3’-ジメチルジフェニルメタン-4,4’-ジイソシアネート等の芳香族ジイソシアネート;芳香族ジイソシアネートのアダクト体、イソシアヌレート体、ビウレット体及びアロファネート体が挙げられる。 Examples of aromatic polyisocyanates include tolylene diisocyanate (TDI), xylylene diisocyanate (XDI), diphenylmethane diisocyanate (MDI), 1,4-phenylene diisocyanate, 1,5-naphthylene diisocyanate, diphenyl ether diisocyanate, and 3, Aromatic diisocyanates such as 3'-dimethyldiphenylmethane-4,4'-diisocyanate; adducts, isocyanurates, biurets and allophanates of aromatic diisocyanates.
 脂環族ポリイソシアネートとしては、例えば、イソホロンジイソシアネート(IPDI)、ノルボルナンジイソシアネート(NBDI)、水素添加トリレンジイソシアネート(水添TDI)、水素添加キシレンジイソシアネート(HXDI)、及び水素添加ジフェニルメタンジイソシアネート(水添MDI)等の脂環族ジイソシアネート;脂環族イソシアネートのアダクト体、イソシアヌレート体、ビウレット体及びアロファネート体が挙げられる。 Examples of alicyclic polyisocyanates include isophorone diisocyanate (IPDI), norbornane diisocyanate (NBDI), hydrogenated tolylene diisocyanate (hydrogenated TDI), hydrogenated xylene diisocyanate (H 6 XDI), and hydrogenated diphenylmethane diisocyanate (water alicyclic diisocyanates such as MDI); adducts, isocyanurates, biurets and allophanates of alicyclic isocyanates;
 他のポリイソシアネートとしては、3官能イソシアネート(3官能芳香族イソシアネート、3官能脂環族イソシアネート等)が好ましい。ポリイソシアネート(B)が3官能イソシアネート化合物を含むと、積層体の接着強度、易引き裂き性がより優れる傾向がある。
 3官能イソシアネート化合物としては、例えば、TDI、XDI、IPDI又はHXDIのTMPアダクト体が挙げられる。
As other polyisocyanates, trifunctional isocyanates (trifunctional aromatic isocyanates, trifunctional alicyclic isocyanates, etc.) are preferred. When the polyisocyanate (B) contains a trifunctional isocyanate compound, the adhesive strength and easy tearability of the laminate tend to be more excellent.
Trifunctional isocyanate compounds include, for example, TMP adducts of TDI, XDI, IPDI or H 6 XDI.
<他の成分>
 アンカーコート剤は、液状媒体を含んでいてもよい。アンカーコート剤は通常、液状媒体を含む状態で被積層材に塗布される。
 液状媒体としては、特に限定されず、アンカーコート層が設けられる対象となる被積層材の材質やアンカーコート剤を用いて製造される積層体の用途等に応じて適宜選択することができる。
 液状媒体としては、例えば、アセトン、メチルエチルケトン(MEK)、メチルイソブチルケトン、及びシクロヘキサノン等のケトン系溶剤;トルエン、キシレン、シクロヘキサン、及びメチルシクロヘキサン等の炭化水素系溶剤;酢酸エチル、酢酸プロピル、及び酢酸ブチル等のエステル系溶剤;エチレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテル(PM)、テトラヒドロフラン、及びジオキサン等のエーテル系溶剤;メタノール、エタノール、及びイソプロパノール(IPA)等のアルコール系溶剤;並びに水等が挙げられる。これらの液状媒体は1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
<Other ingredients>
The anchor coating agent may contain a liquid medium. The anchor coating agent is usually applied to the material to be laminated while containing a liquid medium.
The liquid medium is not particularly limited, and can be appropriately selected according to the material of the material to be laminated on which the anchor coat layer is to be provided, the application of the laminate produced using the anchor coat agent, and the like.
Examples of the liquid medium include ketone solvents such as acetone, methyl ethyl ketone (MEK), methyl isobutyl ketone, and cyclohexanone; hydrocarbon solvents such as toluene, xylene, cyclohexane, and methylcyclohexane; ethyl acetate, propyl acetate, and acetic acid; ester solvents such as butyl; ether solvents such as ethylene glycol monomethyl ether, propylene glycol monomethyl ether (PM), tetrahydrofuran, and dioxane; alcohol solvents such as methanol, ethanol, and isopropanol (IPA); be done. These liquid media may be used singly or in combination of two or more.
 アンカーコート剤は、種々の添加剤を含んでいてもよい。
 添加剤としては、例えば、触媒、接着付与剤、粘着付与剤、表面調整剤、シランカップリング剤、顔料、染料、分散剤、消泡剤、レベリング剤、増粘剤、架橋剤、無機粒子、紫外線吸収剤、光安定剤、界面活性剤、防腐剤、及び防錆剤等が挙げられる。これらの添加剤は1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
The anchor coating agent may contain various additives.
Examples of additives include catalysts, tackifiers, tackifiers, surface conditioners, silane coupling agents, pigments, dyes, dispersants, antifoaming agents, leveling agents, thickeners, cross-linking agents, inorganic particles, Examples include ultraviolet absorbers, light stabilizers, surfactants, preservatives, antirust agents, and the like. These additives may be used singly or in combination of two or more.
 アンカーコート剤において、ポリオール組成物(A)/ポリイソシアネート(B)で表される質量比(以下、「A/B比」とも記す。)は、1/99~90/10であり、5/95~60/40が好ましく、10/90~40/60がより好ましい。A/B比が上記範囲内であれば、積層体の接着強度、易引き裂き性に優れる。 In the anchor coating agent, the mass ratio represented by polyol composition (A)/polyisocyanate (B) (hereinafter also referred to as “A/B ratio”) is 1/99 to 90/10, and 5/ 95 to 60/40 is preferred, and 10/90 to 40/60 is more preferred. If the A/B ratio is within the above range, the laminate will be excellent in adhesive strength and tearability.
 ポリオール組成物(A)とポリイソシアネート(B)との合計の含有量は、アンカーコート剤の固形分全体の質量に対し、10質量%以上が好ましく、50質量%以上がより好ましく、70質量%以上がさらに好ましく、100質量%であってもよい。 The total content of the polyol composition (A) and the polyisocyanate (B) is preferably 10% by mass or more, more preferably 50% by mass or more, more preferably 70% by mass, based on the total mass of the solid content of the anchor coating agent. The above is more preferable, and it may be 100% by mass.
 アンカーコート剤中の液状媒体の含有量は、特に限定されず、アンカーコート剤の固形分濃度に応じて調節できる。
 アンカーコート剤中の添加剤の含有量は、例えば、アンカーコート剤の固形分全体の質量に対し、0~90質量%であってよく、0~70質量%であってよい。
The content of the liquid medium in the anchor coating agent is not particularly limited, and can be adjusted according to the solid content concentration of the anchor coating agent.
The content of the additive in the anchor coating agent may be, for example, 0 to 90% by mass, or may be 0 to 70% by mass, based on the mass of the total solid content of the anchor coating agent.
 アンカーコート剤の固形分濃度は特に限定されず、被積層材にアンカーコート層を設ける際の印刷等の手法に応じて、適当な粘度となるように調節できる。濃縮した(濃厚な)アンカーコート剤を用意しておき、被積層材に塗布する際に上述した液状媒体で希釈して使用してもよい。
 被積層材に塗布するときのアンカーコート剤の固形分濃度は、アンカーコート剤の総質量に対し、3~20質量%が好ましく、5~15質量%がより好ましく、7~12質量%がさらに好ましい。
The solid content concentration of the anchor coating agent is not particularly limited, and can be adjusted so as to have an appropriate viscosity according to the method such as printing when providing the anchor coating layer on the material to be laminated. A concentrated (thick) anchor coating agent may be prepared and diluted with the liquid medium described above when applied to the material to be laminated.
The solid content concentration of the anchor coating agent when applied to the material to be laminated is preferably 3 to 20% by mass, more preferably 5 to 15% by mass, and further 7 to 12% by mass, relative to the total mass of the anchor coating agent. preferable.
 本態様のアンカーコート剤は、溶融押出ラミネート用であり、溶融押出ラミネート法による積層体の製造に用いることができる。
 溶融押出ラミネート法による積層体の製造においては、樹脂を溶融させて押し出し、押し出された樹脂を被積層材に積層する。アンカーコート剤は、押し出された樹脂と被積層材との間に設けられるアンカーコート層を形成する。典型的には、押し出された樹脂と被積層材を積層する前に、被積層材にアンカーコート剤を塗布し、アンカーコート層を形成する。
 積層体及びその製造方法については後で詳しく説明する。
The anchor coating agent of this embodiment is for melt extrusion lamination, and can be used for producing a laminate by a melt extrusion lamination method.
In the production of a laminate by the melt extrusion lamination method, a resin is melted and extruded, and the extruded resin is laminated on a material to be laminated. The anchor coat agent forms an anchor coat layer provided between the extruded resin and the material to be laminated. Typically, before laminating the extruded resin and the material to be laminated, an anchor coating agent is applied to the material to be laminated to form an anchor coat layer.
The laminate and its manufacturing method will be described later in detail.
 本態様のアンカーコート剤を用いて得られる積層体は、良好な接着強度を示す。また、易引き裂き性も良好であり、積層体を手で容易に引き裂くことができる。易引き裂き性が良好であれば、例えば、積層体で構成された包装袋を手で容易に開封できる。 A laminate obtained using the anchor coating agent of this embodiment exhibits good adhesive strength. In addition, the easy tearability is also good, and the laminate can be easily torn by hand. If the easy tearability is good, for example, a packaging bag composed of a laminate can be easily opened by hand.
〔積層体〕
 図1に、本態様の積層体の一例を示す。なお、図1における寸法比は、説明の便宜上、実際のものとは異なったものである。
 この例の積層体10は、基材11と、基材11上に設けられたアンカーコート層13と、アンカーコート層13上に溶融押出ラミネートにより設けられた樹脂層15とを備える。
 本態様の積層体は、基材11とアンカーコート層13の間にインキ層を備えてもよく、樹脂層15上に樹脂フィルムを備えてもよい。
[Laminate]
FIG. 1 shows an example of the laminate of this embodiment. Note that the dimensional ratios in FIG. 1 are different from the actual ones for convenience of explanation.
The laminate 10 of this example includes a substrate 11, an anchor coat layer 13 provided on the substrate 11, and a resin layer 15 provided on the anchor coat layer 13 by melt extrusion lamination.
The laminate of this embodiment may have an ink layer between the substrate 11 and the anchor coat layer 13 and may have a resin film on the resin layer 15 .
<基材>
 基材11は、押し出された樹脂が積層される被積層材である。
 基材11としては、プラスチックフィルム、紙、布、金属箔等の各種のフィルム材が挙げられ、プラスチックフィルムが好ましい。
 プラスチックフィルムとしては、例えば、ポリエチレンテレフタレート(PET)、非晶性ポリエチレンテレフタレート(A-PET)、ポリブチレンテレフタレート(PBT)、ポリエチレンナフタレート(PEN)、及びポリ乳酸等のポリエステルフィルム;低密度ポリエチレン(LDPE)、直鎖状低密度ポリエチレン(LLDPE)、高密度ポリエチレン(HDPE)、及びポリプロピレン(PP)等のポリオレフィンフィルム;セロファン等のセルロースフィルム;ポリスチレン(PS)フィルム;エチレン-酢酸ビニル共重合樹脂フィルム;エチレン-ビニルアルコール共重合樹脂フィルム;ポリアミド(Ny)フィルム;ポリカーボネートフィルム;ポリイミドフィルム;ポリ塩化ビニルフィルム等が挙げられる。これらのなかでも、ポリエステルフィルム及びNyフィルムが好ましく、PETフィルム及びNyフィルムがより好ましい。
 上述のプラスチックフィルムとしては、例えば、二軸延伸PPフィルム及び無延伸PPフィルム等のように、延伸及び無延伸のいずれのプラスチックフィルムも用いることができる。プラスチックフィルムの表面には、コロナ放電処理、プラズマ処理、フレーム処理、溶剤処理等の表面処理が施されていてもよい。
<Base material>
The base material 11 is a laminated material on which the extruded resin is laminated.
As the substrate 11, various film materials such as plastic film, paper, cloth, and metal foil can be used, and a plastic film is preferable.
Examples of plastic films include polyester films such as polyethylene terephthalate (PET), amorphous polyethylene terephthalate (A-PET), polybutylene terephthalate (PBT), polyethylene naphthalate (PEN), and polylactic acid; low-density polyethylene ( LDPE), linear low-density polyethylene (LLDPE), high-density polyethylene (HDPE), and polyolefin films such as polypropylene (PP); cellulose films such as cellophane; polystyrene (PS) films; ethylene-vinyl acetate copolymer resin films ethylene-vinyl alcohol copolymer resin film; polyamide (Ny) film; polycarbonate film; polyimide film; Among these, polyester films and Ny films are preferred, and PET films and Ny films are more preferred.
Both stretched and unstretched plastic films, such as biaxially stretched PP films and non-stretched PP films, can be used as the plastic film described above. The surface of the plastic film may be subjected to surface treatment such as corona discharge treatment, plasma treatment, flame treatment and solvent treatment.
 基材11は多層であってもよい。多層の基材としては、例えば、プラスチックフィルム等のフィルム材の上に他の層が設けられたもの、複数のフィルム材が積層されたもの等が挙げられる。
 他の層としては、例えば、蒸着層、インキ層、その他の各種のコート層が挙げられる。 蒸着層としては、アルミニウム蒸着等の金属蒸着層、アルミナ及びシリカ等の透明蒸着層の蒸着層等が挙げられる。
 インキ層は、加飾等を目的として印刷等により設けられる。インキ層を形成するインキとしては、ウレタン樹脂系インキ、アクリル樹脂系インキ、シリコーン樹脂系インキ、アクリルウレタン樹脂系インキ、及びアクリルシリコーン樹脂系インキ等が挙げられる。インキ層を形成するインキは、1液型インキでもよく、2液硬化型インキでもよい。これらのなかでも、ウレタン樹脂系1液型インキ、及びウレタン樹脂系2液硬化型インキが好ましい。
Substrate 11 may be multi-layered. Examples of multilayer base materials include those in which another layer is provided on a film material such as a plastic film, and those in which a plurality of film materials are laminated.
Other layers include, for example, vapor deposition layers, ink layers, and various other coating layers. Examples of vapor deposition layers include metal vapor deposition layers such as aluminum vapor deposition layers, and transparent vapor deposition layers such as alumina and silica vapor deposition layers.
The ink layer is provided by printing or the like for the purpose of decoration or the like. Examples of the ink that forms the ink layer include urethane resin ink, acrylic resin ink, silicone resin ink, acrylic urethane resin ink, and acrylic silicone resin ink. The ink forming the ink layer may be a one-component ink or a two-component curable ink. Among these, urethane resin-based one-component ink and urethane resin-based two-component curable ink are preferable.
 基材11の厚さは、5~500μmが好ましく、10~100μmがより好ましく、10~60μmであることがさらに好ましい。 The thickness of the base material 11 is preferably 5-500 μm, more preferably 10-100 μm, even more preferably 10-60 μm.
<アンカーコート層>
 アンカーコート層13は、前記したアンカーコート剤から形成された層である。
 アンカーコート層13は、基材11上にアンカーコート剤を塗布し、乾燥させることで形成できる。アンカーコート層13の形成方法については後で詳しく説明する。
<Anchor coat layer>
The anchor coat layer 13 is a layer formed from the anchor coat agent described above.
The anchor coat layer 13 can be formed by applying an anchor coat agent onto the base material 11 and drying it. A method for forming the anchor coat layer 13 will be described later in detail.
 アンカーコート剤の塗布量は、特に限定されないが、塗布面の単位面積当たりの乾燥(固形分)質量で、0.01~2g/mが好ましく、0.05~1g/mがより好ましく、0.1~0.5g/mがさらに好ましい。
 上記塗布量は、アンカーコート層13の単面積当たりの質量に相当する。
 アンカーコート層13の厚さは、特に限定されず、例えば、0.01~1μm程度とすることができ、好ましくは0.01~0.5μm程度とすることができる。
The amount of the anchor coating agent to be applied is not particularly limited, but is preferably 0.01 to 2 g/m 2 , more preferably 0.05 to 1 g/m 2 in terms of dry (solid content) mass per unit area of the application surface. , 0.1 to 0.5 g/m 2 are more preferred.
The above coating amount corresponds to the mass per unit area of the anchor coat layer 13 .
The thickness of the anchor coat layer 13 is not particularly limited, and can be, for example, about 0.01 to 1 μm, preferably about 0.01 to 0.5 μm.
<樹脂層>
 樹脂層15を形成する樹脂としては、低密度ポリエチレン(LDPE)、直鎖状低密度ポリエチレン(LLDPE)、高密度ポリエチレン(HDPE)、及びポリプロピレン(PP)等のポリオレフィンが好ましい。なかでも、LDPE、LLDPE、HDPEが好ましく、LLDPEがより好ましい。
 樹脂層15の厚さは、1~300μmが好ましく、5~200μmがより好ましく、10~100μmがさらに好ましい。
<Resin layer>
Polyolefins such as low-density polyethylene (LDPE), linear low-density polyethylene (LLDPE), high-density polyethylene (HDPE), and polypropylene (PP) are preferable as the resin that forms the resin layer 15 . Among them, LDPE, LLDPE and HDPE are preferred, and LLDPE is more preferred.
The thickness of the resin layer 15 is preferably 1 to 300 μm, more preferably 5 to 200 μm, even more preferably 10 to 100 μm.
<積層体の製造方法>
 積層体10は、例えば、基材11上にアンカーコート剤を塗布し、乾燥させてアンカーコート層13を形成し、アンカーコート層13の上に溶融押出ラミネート法により樹脂層15を形成する方法により製造できる。
<Method for manufacturing laminate>
The laminate 10 is formed by, for example, applying an anchor coating agent onto the substrate 11, drying it to form the anchor coating layer 13, and forming the resin layer 15 on the anchor coating layer 13 by melt extrusion lamination. can be manufactured.
 アンカーコート剤の塗布方式としては、例えばグラビアロールコーティング、リバースロールコーティング、エアナイフコーティング、ワイヤーバーコーティング、カーテンフローコーティング、スプレーコーティング、及び浸漬コーティングが挙げられる。
 アンカーコート剤は、積層体10を製造する際に用いられる溶融押出ラミネート設備に付設されているコーター(例えばロールコーター等)によって、塗布されることが好ましい。
 塗布されたアンカーコート剤の乾燥温度は、特に限定されず、例えば、40~200℃の範囲とすることができる。乾燥時間も特に限定されず、例えば、1~600秒の範囲とすることができる。
Examples of methods of applying the anchor coating agent include gravure roll coating, reverse roll coating, air knife coating, wire bar coating, curtain flow coating, spray coating, and dip coating.
The anchor coating agent is preferably applied by a coater (for example, a roll coater, etc.) attached to melt extrusion lamination equipment used when manufacturing the laminate 10 .
The drying temperature of the applied anchor coating agent is not particularly limited, and can be in the range of 40 to 200° C., for example. The drying time is also not particularly limited, and can be in the range of 1 to 600 seconds, for example.
 基材11上に設けられたアンカーコート層13上への樹脂層15の形成は、公知の溶融押出ラミネート法により行うことができる。
 溶融押出ラミネート法では、例えば、樹脂層を形成する樹脂(熱可塑性樹脂)を加熱して溶融させ、フィルム状に押し出し、押し出された溶融物を、アンカーコート層13上に積層し、冷却する。押し出された溶融物をアンカーコート層13上に積層し、さらにその上に別の樹脂フィルムを貼り合わせる方法(いわゆる溶融押出サンドイッチラミネート法や溶融押出タンデムラミネート法)をとることも可能である。樹脂フィルムを構成する樹脂としては、樹脂層15を形成する樹脂と同様のものが挙げられる。
Formation of the resin layer 15 on the anchor coat layer 13 provided on the substrate 11 can be performed by a known melt extrusion lamination method.
In the melt extrusion lamination method, for example, a resin (thermoplastic resin) forming a resin layer is heated and melted, extruded into a film, the extruded melt is laminated on the anchor coat layer 13, and cooled. A method of laminating the extruded melt on the anchor coat layer 13 and further laminating another resin film thereon (so-called melt extrusion sandwich lamination method or melt extrusion tandem lamination method) can also be used. As the resin forming the resin film, the same resin as that forming the resin layer 15 can be used.
 積層体10は、例えば、包装材として用いることができる。
 包装材の用途としては、例えば、食品、飲料品、医薬品、医薬部外品、化粧品、洗剤、及び化学薬品等を内容物とする各種包装容器、並びにフィルム及び紙等の各種包装資材等が挙げられる。包装材が用いられる用途として、さらには、電子部品、電気部品、電気製品、自動車部品、各種のシート及びカード、並びに製品に設けられるラベル及びタグ等も挙げられる。
 包装材の具体的な態様としては、例えば、紙箱、包装紙、包装フィルム、包装ラベル、包装袋、並びにプラスチックケース及びプラスチックボトル等のプラスチック容器等が挙げられる。これらのなかでも、包装袋がより好ましい。包装袋の好適な用途としては、例えば、食品用包装袋、医薬品用包装袋、及び化粧品用包装袋等が挙げられる。
The laminate 10 can be used, for example, as a packaging material.
Examples of uses of packaging materials include various packaging containers containing food, beverages, pharmaceuticals, quasi-drugs, cosmetics, detergents, and chemicals, and various packaging materials such as films and paper. be done. Applications in which packaging materials are used further include electronic parts, electrical parts, electrical products, automobile parts, various sheets and cards, labels and tags provided on products, and the like.
Specific examples of packaging materials include paper boxes, wrapping paper, packaging films, packaging labels, packaging bags, and plastic containers such as plastic cases and plastic bottles. Among these, packaging bags are more preferable. Suitable uses of the packaging bag include, for example, food packaging bags, pharmaceutical packaging bags, and cosmetic packaging bags.
 なお、本態様の積層体は、図示例のものに限定されず、本発明の趣旨を逸脱しない範囲内で、構成の付加、省略、置換、及びその他の変更が可能である。 It should be noted that the laminated body of this aspect is not limited to the illustrated example, and additions, omissions, substitutions, and other modifications of the configuration are possible without departing from the scope of the present invention.
 以下、実施例によって本発明を詳細に示す。ただし、本発明は以下の実施例により何ら限定されるものではない。なお、以下の文中において「部」及び「%」との記載は、特に断らない限り、質量基準(それぞれ「質量部」及び「質量%」)である。 Hereinafter, the present invention will be described in detail by way of examples. However, the present invention is by no means limited to the following examples. In the following description, "parts" and "%" are based on mass ("parts by mass" and "% by mass", respectively) unless otherwise specified.
〔測定方法〕
<水酸基価(OH価)>
 ASTM D4274に規定の方法により測定した。
〔Measuring method〕
<Hydroxyl value (OH value)>
It was measured by the method specified in ASTM D4274.
<粘度>
 ASTM D2196に規定の方法により測定した。
<Viscosity>
It was measured by the method specified in ASTM D2196.
<数平均分子量(Mn)>
 GPC分析により測定した。GPCの測定条件は後述する。
<Number average molecular weight (Mn)>
Measured by GPC analysis. GPC measurement conditions will be described later.
<バイオコンテント量>
 ASTM D6866に規定の方法により測定した。
<Amount of biocontent>
It was measured by the method specified in ASTM D6866.
<含水量>
 Karl-Fischer法により測定した。
<Water content>
It was measured by the Karl-Fischer method.
<カルダノール量>
 バイオマスポリオール組成物について、以下の条件でGPC測定を行い、全ピーク面積の合計(バイオマスポリオール組成物全体)に対する化合物(a2)(カルダノール)のピーク面積の割合(%)を求め、その値をカルダノール量とした。
 (GPC測定条件)
 装置名:日立ハイテクサイエンス社製Chromaster、
 カラム: 東ソー社製TSKgel Super H1000、TSKgel Super H2000、TSKgel Super H3000を連結したもの、
 試料溶媒:テトラヒドロフラン(HPLCグレード)、
 溶液注入量:10μL、
 流量:1mL/分、
 測定温度:40℃、
 検出装置:UV検出器(日立Chromaster 5410)、
 基準物質:標準ポリスチレン。
<Amount of cardanol>
For the biomass polyol composition, GPC measurement was performed under the following conditions, and the ratio (%) of the peak area of compound (a2) (cardanol) to the total peak area (entire biomass polyol composition) was obtained. Quantity.
(GPC measurement conditions)
Apparatus name: Chromaster manufactured by Hitachi High-Tech Science,
Column: TSKgel Super H1000, TSKgel Super H2000, TSKgel Super H3000 manufactured by Tosoh Corporation,
Sample solvent: tetrahydrofuran (HPLC grade),
Solution injection volume: 10 μL,
flow rate: 1 mL/min,
Measurement temperature: 40°C,
Detection device: UV detector (Hitachi Chromaster 5410),
Reference material: standard polystyrene.
〔使用材料〕
<ポリオール組成物(A)>
 以下のバイオマスポリオール組成物を用意した。各バイオマスポリオール組成物はいずれもCNSL由来である。各バイオマスポリオール組成物の特性を表1に示す。
 A-1:カードライト社製「Cardlite NX-9015」。
 A-2:カードライト社製「Cardlite NX-9006」。
 A-3:カードライト社製「Cardlite LITE-9006」。
 A-4:カードライト社製「Cardlite NX-9007」。
 A-5:カードライト社製「Cardlite NX-5285」。
 A-6:カードライト社製「Cardlite NX-9001」。
 A-7:カードライト社製「Cardlite NX-9001LV」。
 A-8:カードライト社製「Cardlite LITE-9001」。
 A-9:カードライト社製「Cardlite NX-9005」。
 これらのバイオマスポリオール組成物はそれぞれ、酢酸エチルで最終的な固形分濃度が50%となるように希釈して使用した。
[Materials used]
<Polyol composition (A)>
The following biomass polyol composition was prepared. Each biomass polyol composition is derived from CNSL. Table 1 shows the properties of each biomass polyol composition.
A-1: "Cardlite NX-9015" manufactured by Cardlite.
A-2: "Cardlite NX-9006" manufactured by Cardlite.
A-3: "Cardlite LITE-9006" manufactured by Cardlite.
A-4: "Cardlite NX-9007" manufactured by Cardlite.
A-5: "Cardlite NX-5285" manufactured by Cardlite.
A-6: "Cardlite NX-9001" manufactured by Cardlite.
A-7: "Cardlite NX-9001LV" manufactured by Cardlite.
A-8: "Cardlite LITE-9001" manufactured by Cardlite.
A-9: "Cardlite NX-9005" manufactured by Cardlite.
Each of these biomass polyol compositions was used after being diluted with ethyl acetate to a final solids concentration of 50%.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
<ポリイソシアネート(B)>
 b1-1:ヘキサメチレンジイソシアネート(HDI)のアダクト体(2官能、商品名「デュラネート D101」、旭化成社製)
 b1-2:ヘキサメチレンジイソシアネート(HDI)のTMPアダクト体(3官能、商品名「タケネート D-160N」、三井化学社製)。
 b2-1:トリレンジイソシアネート(TDI)のTMPアダクト体(3官能、商品名「タケネート D-103」、三井化学社製)。
 b2-2:キシリレンジイソシアネート(XDI)のTMPアダクト体(3官能、商品名「タケネート D-110N」、三井化学社製)。
 これらのポリイソシアネートはそれぞれ、酢酸エチルで最終的な固形分濃度が50%となるように希釈して使用した。
<Polyisocyanate (B)>
b1-1: Adduct of hexamethylene diisocyanate (HDI) (bifunctional, trade name “Duranate D101”, manufactured by Asahi Kasei Corporation)
b1-2: TMP adduct of hexamethylene diisocyanate (HDI) (trifunctional, trade name “Takenate D-160N”, manufactured by Mitsui Chemicals, Inc.).
b2-1: TMP adduct of tolylene diisocyanate (TDI) (trifunctional, trade name “Takenate D-103”, manufactured by Mitsui Chemicals, Inc.).
b2-2: TMP adduct of xylylene diisocyanate (XDI) (trifunctional, trade name “Takenate D-110N”, manufactured by Mitsui Chemicals, Inc.).
Each of these polyisocyanates was used after being diluted with ethyl acetate to a final solids concentration of 50%.
〔実施例1~13、比較例1~15〕
<アンカーコート剤の調製>
 表2~5に示す成分(単位:部)を混合し、十分に撹拌して、各アンカーコート剤(以下、「AC剤」とも記す。)を調製した。表2~5において、ポリオール組成物(A)及びポリイソシアネート(B)の量(部)は固形分換算の量を表す。
[Examples 1 to 13, Comparative Examples 1 to 15]
<Preparation of anchor coating agent>
Components (unit: parts) shown in Tables 2 to 5 were mixed and thoroughly stirred to prepare each anchor coating agent (hereinafter also referred to as "AC agent"). In Tables 2 to 5, the amounts (parts) of the polyol composition (A) and polyisocyanate (B) represent amounts in terms of solid content.
<積層体の作製>
 各AC剤を用いて、溶融押出ラミネート法(溶融押出サンドイッチラミネート法)により、以下に述べる積層構成を有する積層体を作製した。具体的には、溶融押出ラミネート設備を用いて、以下に述べる積層構成における被積層材の一方の表面全体に、AC剤を塗布量0.3g(乾燥質量)/mで塗布した後、乾燥炉(温度80℃)にて酢酸エチルを蒸発させてAC剤を乾燥させ、アンカーコート層(以下、「AC層」とも記す。)を形成した。次いで、AC層に、溶融状態の直鎖状低密度ポリエチレン(LLDPE)を、別のLLDPEフィルム(厚さ15~30μm)で挟み込むようにフィルム状に押し出して、AC層と上記LLDPEフィルムとの間に厚さ50μmのLLDPE層を形成し、ラミネートフィルム(幅1m、長さ2m)を得た。
<Production of laminate>
Using each AC agent, a laminate having the following laminate structure was produced by a melt extrusion lamination method (melt extrusion sandwich lamination method). Specifically, using melt extrusion lamination equipment, the AC agent is applied to the entire surface of one side of the laminated material in the laminated structure described below at a coating amount of 0.3 g (dry mass) / m 2 , and then dried. Ethyl acetate was evaporated in a furnace (at a temperature of 80° C.) to dry the AC agent to form an anchor coat layer (hereinafter also referred to as “AC layer”). Next, a molten linear low-density polyethylene (LLDPE) is extruded into a film on the AC layer so as to be sandwiched between another LLDPE film (thickness 15 to 30 μm) to form a film between the AC layer and the LLDPE film. A 50 μm-thick LLDPE layer was formed on the substrate to obtain a laminate film (width 1 m, length 2 m).
[積層構成]
・Ny無地:被積層材がNyフィルム(商品名「ハーデンフィルム N1102」、東洋紡社製、厚さ15μm)であり、この被積層材(Nyフィルム)にAC層を介してLLDPE層及びLLDPEフィルムが積層された構成。
・Ny白:被積層材が、上記Nyフィルムにベタ印刷で設けられた白インキ層であり、この被積層材(白インキ層I1)にAC層を介してLLDPE層及びLLDPEフィルムが積層された構成。
・PET無地:被積層材がPETフィルム(商品名「東洋紡エステルフィルム E5102」、東洋紡社製、厚さ12μm)であり、この被積層材(PETフィルム)にAC層を介してLLDPE層及びLLDPEフィルムが積層された構成。
・PET白:被積層材が、上記PETフィルムにベタ印刷で設けられた白インキ層であり、この被積層材(白インキ層)にAC層を介してLLDPE層及びLLDPEフィルムが積層された構成。
[Lamination structure]
・ Ny plain: The material to be laminated is a Ny film (trade name “Harden Film N1102”, manufactured by Toyobo Co., Ltd., thickness 15 μm), and the LLDPE layer and the LLDPE film are laminated to this material (Ny film) through the AC layer. Laminated composition.
· Ny white: The material to be laminated is a white ink layer provided by solid printing on the Ny film, and the LLDPE layer and the LLDPE film are laminated on this material to be laminated (white ink layer I1) via the AC layer. Constitution.
・ PET plain: The material to be laminated is a PET film (trade name “Toyobo Ester Film E5102”, manufactured by Toyobo Co., Ltd., thickness 12 μm), and the LLDPE layer and the LLDPE film are laminated to this material (PET film) through the AC layer. is laminated.
・PET white: The laminated material is a white ink layer provided by solid printing on the PET film, and the laminated material (white ink layer) is laminated with the LLDPE layer and the LLDPE film via the AC layer. .
 上記積層構成における白インキ層には、以下の白インキを使用した。
・白インキ層:1液型ウレタン系インキ(ウレタン樹脂8.5部、塩化ビニル-酢酸ビニル共重合樹脂3.0部、セルロースアセテートブチレート(CAB)樹脂0.4部、酢酸エチル22.0部、MEK25.0部、IPA5.5部、PM1.5部、分散剤0.1部、及び酸化チタン34.0部を配合した1液型ウレタン系インキ)。
The following white inks were used for the white ink layer in the laminated structure.
White ink layer: 1-component urethane ink (8.5 parts of urethane resin, 3.0 parts of vinyl chloride-vinyl acetate copolymer resin, 0.4 parts of cellulose acetate butyrate (CAB) resin, 22.0 parts of ethyl acetate part, 25.0 parts of MEK, 5.5 parts of IPA, 1.5 parts of PM, 0.1 part of dispersant, and 34.0 parts of titanium oxide).
 得られた積層体について、以下の手順で、密着性評価及び易引裂性評価を行った。それらの結果を表2~5に示す。 The resulting laminate was evaluated for adhesion and easy tearability according to the following procedure. The results are shown in Tables 2-5.
(密着性評価)
 得られた各積層体から、幅15mm及び長さ100mmの長方形状に切断した試料を採取し、接着強度測定用試料として、T型剥離試験用試料を作製した。この各T型剥離試験用試料について、引張試験機(商品名「テンシロン RTG-1225」、エー・アンド・デイ社製)を用いて、引張速度300mm/minの条件でT型剥離試験を行い、試料における被積層材とLLDPE層との間の接着強度(T型剥離強度)を測定した。また、剥離試験後の剥離状態を目視で評価した。
(Adhesion evaluation)
A rectangular sample having a width of 15 mm and a length of 100 mm was cut from each of the obtained laminates, and a T-peel test sample was prepared as a sample for adhesive strength measurement. For each T-type peel test sample, a T-type peel test was performed using a tensile tester (trade name "Tensilon RTG-1225", manufactured by A&D Co., Ltd.) at a tensile speed of 300 mm / min. The adhesive strength (T-peel strength) between the laminated material and the LLDPE layer in the sample was measured. Moreover, the peeling state after the peeling test was visually evaluated.
(易引裂性評価)
 得られた各ラミネートフィルムから、幅100mm及び長さ150mmの長方形状に切断したラミネートフィルムを1枚採取した。そのラミネートフィルムを、LLDPEフィルムを内側にして長さ方向に半分に折って重ね合わせ、隣り合う2辺に沿った縁(端から10mmの領域)をヒートシールして、開口を有するシール袋を作製した。その後、開口を上記と同様にヒートシールして、3方シール袋を作製した。
 この3方シール袋を40℃の恒温室内で48時間保管した。その後、このシール袋における隣り合う2辺に沿ったシール部分のそれぞれに1箇所ずつ(計2箇所)に引き裂き用の切れ目線を入れ、横裂き及び縦裂きを行った。このときの易引き裂き性を、以下の評価基準にしたがって、5段階の点数で評価した。なお、横裂きは、切れ目線の上端縁を持って、切れ目線を中心に左右方向に引っ張るように引き裂くこと(股裂きとも称される)であり、縦裂きは、切れ目線の上端縁を持って、切れ目線から前後に引きちぎるように下方に向かって直線的に引き裂くことである。
 5点:シール袋を綺麗に引き裂くことができた。
 4点:シール袋を引き裂くことができたが、引き裂きの途中でゆっくり引き裂いた場合にLLDPE層の僅かな伸びが観られた。
 3点:LLDPE層の伸びが観られたが、シール袋を引き裂くことはできた。
 2点:LLDPE層の伸びが観られ、シール袋の引き裂き困難であったが、強く力を加えるとシール袋を引き裂くことができた。
 1点:LLDPE層の伸びが観られ、強く力を加えてもシール袋を引き裂くことができなかった。
(Evaluation of easy tearability)
One sheet of laminate film was cut into a rectangular shape having a width of 100 mm and a length of 150 mm from each laminate film obtained. The laminated film is folded in half lengthwise with the LLDPE film on the inside and overlapped, and the edges along two adjacent sides (10 mm area from the edge) are heat-sealed to produce a sealed bag having an opening. did. After that, the opening was heat-sealed in the same manner as described above to prepare a three-sided seal bag.
This 3-side sealed bag was stored in a constant temperature room at 40° C. for 48 hours. After that, tearing lines were made in each of the sealed portions along two adjacent sides of the sealed bag (two places in total), and horizontal and vertical tears were performed. The easy tearability at this time was evaluated on a scale of 5 according to the following evaluation criteria. It should be noted that the horizontal tear is to hold the upper edge of the cut line and tear it so that it is pulled in the left and right direction around the cut line (also called crotch tear), and the vertical tear is to hold the upper edge of the cut line. It is to tear in a straight line downwards so as to tear back and forth from the cut line.
5 points: The seal bag could be torn cleanly.
4 points: The sealed bag could be torn, but slight elongation of the LLDPE layer was observed when the bag was torn slowly during the tearing.
3 points: Elongation of the LLDPE layer was observed, but the seal bag could be torn.
2 points: Elongation of the LLDPE layer was observed, and it was difficult to tear the sealed bag, but the sealed bag could be torn when a strong force was applied.
1 point: Elongation of the LLDPE layer was observed, and the sealed bag could not be torn even when a strong force was applied.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 表2~5中、密着性評価における「剥離」は、フィルム(Nyフィルム又はPETフィルム)とLLDPE層との間で剥離したことを示す。「f切」は、フィルム切れが発生していたことを示す。「PE伸び」は、LLDPE層が伸びて切れなかったことを示す。「is剥離」は、白インキ層とLLDPE層との間で剥離したことを示す。
 易引裂性評価において、スラッシュ(/)の左側の数値は横裂きの結果を示し、右側の数値は縦裂きの結果を示す。
In Tables 2 to 5, "Peeled" in adhesion evaluation indicates peeling between the film (Ny film or PET film) and the LLDPE layer. "f cut" indicates that the film cut occurred. "PE elongation" indicates that the LLDPE layer was stretched and did not break. "is delamination" indicates delamination between the white ink layer and the LLDPE layer.
In the evaluation of easy tearability, the numerical value on the left side of the slash (/) indicates the result of horizontal tearing, and the numerical value on the right side indicates the result of longitudinal tearing.
 実施例1~13のAC剤を用いた積層体は、比較例1~15のAC剤を用いた積層体に比べて、接着強度に優れていた。特に実施例1~12は、易引き裂き性も良好であった。 The laminates using the AC agents of Examples 1-13 were superior in adhesive strength to the laminates using the AC agents of Comparative Examples 1-15. In particular, Examples 1 to 12 were also excellent in easy tearability.
 10…積層体、11…基材、13…アンカーコート層、15…樹脂層 10... Laminate, 11... Base material, 13... Anchor coat layer, 15... Resin layer

Claims (9)

  1.  ポリオール組成物(A)と、ポリイソシアネート(B)とを含み、
     前記ポリオール組成物(A)が、下記式(1)で表されるポリオール(a1)と下記式(2)で表される化合物(a2)とを含むバイオマスポリオール組成物を含み、
     ゲルパーミエーションクロマトグラフィーによる前記バイオマスポリオール組成物全体に対する前記化合物(a2)の割合が、3~30面積%であり、
     前記ポリイソシアネート(B)が、脂肪族ポリイソシアネート(b1)を含み、
     前記ポリイソシアネート(B)の総質量に対する前記脂肪族ポリイソシアネート(b1)の割合が、20質量%以上であり、
     前記ポリオール組成物(A)/前記ポリイソシアネート(B)で表される質量比が、1/99~90/10であることを特徴とする溶融押出ラミネート用アンカーコート剤。
    Figure JPOXMLDOC01-appb-C000001
     ただし、Rは炭素数15の直鎖炭化水素基を示し、
     Rは水素原子又は置換基を示し、
     Rは水素原子又は炭素数が1~8のアルキル基を示し、
     nは0以上の数を示す。
    Containing a polyol composition (A) and a polyisocyanate (B),
    The polyol composition (A) comprises a biomass polyol composition containing a polyol (a1) represented by the following formula (1) and a compound (a2) represented by the following formula (2),
    The ratio of the compound (a2) to the entire biomass polyol composition by gel permeation chromatography is 3 to 30 area%,
    The polyisocyanate (B) contains an aliphatic polyisocyanate (b1),
    The ratio of the aliphatic polyisocyanate (b1) to the total mass of the polyisocyanate (B) is 20% by mass or more,
    An anchor coating agent for melt extrusion lamination, wherein the mass ratio represented by the polyol composition (A)/the polyisocyanate (B) is 1/99 to 90/10.
    Figure JPOXMLDOC01-appb-C000001
    However, R 1 represents a linear hydrocarbon group having 15 carbon atoms,
    R 2 represents a hydrogen atom or a substituent,
    R 3 represents a hydrogen atom or an alkyl group having 1 to 8 carbon atoms,
    n represents a number of 0 or more.
  2.  前記バイオマスポリオール組成物が、カシューナッツシェルリキッドを原料とする請求項1に記載の溶融押出ラミネート用アンカーコート剤。 The anchor coating agent for melt extrusion laminate according to claim 1, wherein the biomass polyol composition is made from cashew nut shell liquid.
  3.  前記バイオマスポリオール組成物の25℃における粘度が1000mPa・s以上、数平均分子量が500以上である請求項1又は2に記載の溶融押出ラミネート用アンカーコート剤。 The anchor coating agent for melt extrusion laminate according to claim 1 or 2, wherein the biomass polyol composition has a viscosity at 25°C of 1000 mPa·s or more and a number average molecular weight of 500 or more.
  4.  前記バイオマスポリオール組成物の水酸基価が130mgKOH/g以上である請求項1~3のいずれか一項に記載の溶融押出ラミネート用アンカーコート剤。 The anchor coating agent for melt extrusion laminate according to any one of claims 1 to 3, wherein the biomass polyol composition has a hydroxyl value of 130 mgKOH/g or more.
  5.  前記バイオマスポリオール組成物の25℃における粘度が10000mPa・s以上である請求項1~4のいずれか一項に記載の溶融押出ラミネート用アンカーコート剤。 The anchor coating agent for melt extrusion lamination according to any one of claims 1 to 4, wherein the biomass polyol composition has a viscosity at 25°C of 10000 mPa·s or more.
  6.  前記脂肪族ポリイソシアネート(b1)が、3官能脂肪族イソシアネートを含む請求項1~5のいずれか一項に記載の溶融押出ラミネート用アンカーコート剤。 The anchor coating agent for melt extrusion laminate according to any one of claims 1 to 5, wherein the aliphatic polyisocyanate (b1) contains a trifunctional aliphatic isocyanate.
  7.  前記ポリイソシアネート(B)が、前記脂肪族ポリイソシアネート(b1)のみからなる請求項1~6のいずれか一項に記載の溶融押出ラミネート用アンカーコート剤。 The anchor coating agent for melt extrusion laminate according to any one of claims 1 to 6, wherein the polyisocyanate (B) consists only of the aliphatic polyisocyanate (b1).
  8.  前記ポリオール組成物(A)/前記ポリイソシアネート(B)で表される質量比が、10/90~40/60である請求項1~7のいずれか一項に記載の溶融押出ラミネート用アンカーコート剤。 The anchor coat for melt extrusion laminate according to any one of claims 1 to 7, wherein the mass ratio represented by the polyol composition (A)/the polyisocyanate (B) is 10/90 to 40/60. agent.
  9.  基材と、前記基材上に設けられたアンカーコート層と、前記アンカーコート層上に溶融押出ラミネートにより設けられた樹脂層とを備え、
     前記アンカーコート層が、請求項1~8のいずれか一項に記載の溶融押出ラミネート用アンカーコート剤から形成された層であることを特徴とする積層体。
    A base material, an anchor coat layer provided on the base material, and a resin layer provided on the anchor coat layer by melt extrusion lamination,
    A laminate, wherein the anchor coat layer is a layer formed from the anchor coat agent for melt extrusion lamination according to any one of claims 1 to 8.
PCT/JP2022/018450 2021-06-02 2022-04-21 Anchor coating agent for melt-extruded laminate, and layered article WO2022254993A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-092892 2021-06-02
JP2021092892A JP6948485B1 (en) 2021-06-02 2021-06-02 Anchor coating agent for melt extrusion lamination and laminate

Publications (1)

Publication Number Publication Date
WO2022254993A1 true WO2022254993A1 (en) 2022-12-08

Family

ID=78001333

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/018450 WO2022254993A1 (en) 2021-06-02 2022-04-21 Anchor coating agent for melt-extruded laminate, and layered article

Country Status (2)

Country Link
JP (1) JP6948485B1 (en)
WO (1) WO2022254993A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7395088B2 (en) * 2020-11-18 2023-12-11 シーカ テクノロジー アクチェンゲゼルシャフト Urethane adhesive composition
JP6948485B1 (en) * 2021-06-02 2021-10-13 大日精化工業株式会社 Anchor coating agent for melt extrusion lamination and laminate

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04189139A (en) * 1990-09-11 1992-07-07 Takeda Chem Ind Ltd Manufacture of extrusion laminated product
JP2005511465A (en) * 2001-11-29 2005-04-28 アシュラント−ズートヒェミー−ケルンフェスト ゲーエムベーハー Coated particulate material
JP2016540071A (en) * 2013-11-27 2016-12-22 ダウ グローバル テクノロジーズ エルエルシー Cardanol-modified epoxy polyol
JP2019116557A (en) * 2017-12-27 2019-07-18 東洋インキScホールディングス株式会社 Composition for adhesion, and manufacturing method of laminate
JP2019218438A (en) * 2018-06-18 2019-12-26 大日精化工業株式会社 Anchor coat agent for extrusion laminate, laminate film, and packaging material
JP2019218439A (en) * 2018-06-18 2019-12-26 大日精化工業株式会社 Anchor coat agent for extrusion laminate, laminate film, and packaging material
CN112805314A (en) * 2018-10-26 2021-05-14 可泰克斯公司 Continuous preparation of polyurethanes or polyureas
JP6948485B1 (en) * 2021-06-02 2021-10-13 大日精化工業株式会社 Anchor coating agent for melt extrusion lamination and laminate

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101096405B (en) * 2007-06-20 2010-05-19 山东金宝电子股份有限公司 Cashew phenol modified phenolic resin and method for manufacturing paper-based laminated board
JP6527402B2 (en) * 2014-07-10 2019-06-05 ユニチカ株式会社 Polyolefin resin aqueous dispersion and packaging material
JP2019001879A (en) * 2017-06-14 2019-01-10 群栄化学工業株式会社 Adhesive and laminate

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04189139A (en) * 1990-09-11 1992-07-07 Takeda Chem Ind Ltd Manufacture of extrusion laminated product
JP2005511465A (en) * 2001-11-29 2005-04-28 アシュラント−ズートヒェミー−ケルンフェスト ゲーエムベーハー Coated particulate material
JP2016540071A (en) * 2013-11-27 2016-12-22 ダウ グローバル テクノロジーズ エルエルシー Cardanol-modified epoxy polyol
JP2019116557A (en) * 2017-12-27 2019-07-18 東洋インキScホールディングス株式会社 Composition for adhesion, and manufacturing method of laminate
JP2019218438A (en) * 2018-06-18 2019-12-26 大日精化工業株式会社 Anchor coat agent for extrusion laminate, laminate film, and packaging material
JP2019218439A (en) * 2018-06-18 2019-12-26 大日精化工業株式会社 Anchor coat agent for extrusion laminate, laminate film, and packaging material
CN112805314A (en) * 2018-10-26 2021-05-14 可泰克斯公司 Continuous preparation of polyurethanes or polyureas
JP6948485B1 (en) * 2021-06-02 2021-10-13 大日精化工業株式会社 Anchor coating agent for melt extrusion lamination and laminate

Also Published As

Publication number Publication date
JP6948485B1 (en) 2021-10-13
JP2022185303A (en) 2022-12-14

Similar Documents

Publication Publication Date Title
WO2022254993A1 (en) Anchor coating agent for melt-extruded laminate, and layered article
JP6642688B1 (en) Laminating adhesive having release properties from composite film, laminate, and method for recycling sheet-like substrate
JP5157594B2 (en) Method for producing polyurethane urea resin and printing ink composition using the same
JP7156176B2 (en) LAMINATE ADHESIVE HAVING RELEABILITY FROM COMPOSITE FILM, LAMINATE, AND METHOD FOR RECYCLING SHEET SUBSTRATE
TWI606926B (en) Laminate having a sealant film
JP7188047B2 (en) Reactive adhesives, laminated films, and packages
TW201738288A (en) Two-part curable composition, two-part-type adhesive agent, two-part-type coating agent, and laminate
JP2020066639A (en) Adhesive composition, laminate and packaging material using the same
US20240059825A1 (en) Recyclable laminate
JP6511849B2 (en) Polyurethane urea resin composition for gravure or flexographic printing ink
JP5439987B2 (en) Laminate film
JP7196530B2 (en) Curing agent for two-component adhesive, two-component adhesive, laminated film and package
JP7358735B2 (en) Adhesive composition and laminate for lamination
JP2021095481A (en) Solvent-free adhesive composition and laminate
JP6948288B2 (en) Anchor coating agents for extruded laminates, laminate films, and packaging materials
JP2021102307A (en) Packaging material and packaging container
JP6948289B2 (en) Anchor coating agents for extruded laminates, laminate films, and packaging materials
TW202000571A (en) Slitting machines and methods for forming rolls of coated films therewith
JP7184181B2 (en) Adhesive composition, laminate, and package
JP2021102719A (en) Adhesive composition, and laminate
JP2020176226A (en) Adhesive composition and production method of the same, laminate film and package
KR102708592B1 (en) Laminate, and package
JP7173389B2 (en) Reactive adhesives, laminates and packages
JP7387984B2 (en) Neutralized polyester, resin composition, and method for producing neutralized polyester
JP2024085657A (en) Laminate and package

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22815749

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22815749

Country of ref document: EP

Kind code of ref document: A1