WO2022254945A1 - マスク治具、成膜方法および成膜装置 - Google Patents

マスク治具、成膜方法および成膜装置 Download PDF

Info

Publication number
WO2022254945A1
WO2022254945A1 PCT/JP2022/016145 JP2022016145W WO2022254945A1 WO 2022254945 A1 WO2022254945 A1 WO 2022254945A1 JP 2022016145 W JP2022016145 W JP 2022016145W WO 2022254945 A1 WO2022254945 A1 WO 2022254945A1
Authority
WO
WIPO (PCT)
Prior art keywords
hole
mask
film
diameter
mask jig
Prior art date
Application number
PCT/JP2022/016145
Other languages
English (en)
French (fr)
Inventor
正樹 平野
Original Assignee
タツタ電線株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by タツタ電線株式会社 filed Critical タツタ電線株式会社
Priority to DE112022002864.5T priority Critical patent/DE112022002864T5/de
Priority to CN202280030763.3A priority patent/CN117203368A/zh
Priority to JP2023525636A priority patent/JPWO2022254945A1/ja
Publication of WO2022254945A1 publication Critical patent/WO2022254945A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/02Coating starting from inorganic powder by application of pressure only
    • C23C24/04Impact or kinetic deposition of particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B12/00Arrangements for controlling delivery; Arrangements for controlling the spray area
    • B05B12/16Arrangements for controlling delivery; Arrangements for controlling the spray area for controlling the spray area
    • B05B12/20Masking elements, i.e. elements defining uncoated areas on an object to be coated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/16Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/01Selective coating, e.g. pattern coating, without pre-treatment of the material to be coated

Definitions

  • the present disclosure relates to a mask jig, a film forming method, and a film forming apparatus.
  • the cold spray method which is one of the thermal spraying methods.
  • a film is formed on a substrate by injecting a film-forming material together with a carrier gas onto the substrate (see, for example, JP-A-2017-170369).
  • a mask jig arranged on the surface of the substrate is used to define the film formation range (see, for example, Japanese Patent Application Laid-Open No. 2002-361135).
  • the planar shape of the film-forming region can be defined.
  • JP 2017-170369 A JP-A-2002-361135
  • a film made of a film-forming material is also formed on the surface of the mask jig.
  • the process conditions (film formation conditions) when the film formation material is supplied to the surface of the substrate through the through-holes of the mask jig are set at the beginning of the film formation. conditions may vary. As a result, it becomes difficult to stably form a film on the surface of the substrate. Furthermore, in order to ensure the quality of the film formed on the surface of the base material, it is necessary to perform processing such as removal of the film formed on the surface of the mask jig at regular intervals.
  • Japanese Patent Application Laid-Open No. 2002-361135 discusses suppression of film formation on the surface of the mask jig. However, from the viewpoint of more efficiently forming a film of stable quality on the surface of the base material, it is preferable to make further improvements such as manufacturing the mask jig with a material that is difficult to form a film.
  • An object of the present disclosure is to provide a mask jig, a film forming method, and a film forming apparatus capable of efficiently forming a film of stable quality on the surface of a substrate.
  • a mask jig according to the present disclosure is used in thermal spraying.
  • the mask jig has a main body and a mask cover.
  • the body portion includes a first surface and a second surface opposite the first surface.
  • the mask cover is arranged on the second surface side of the main body so as to overlap with the main body, and includes a third surface and a fourth surface opposite to the third surface.
  • the mask cover is made of imide resin.
  • the film formation method includes the step of arranging the mask jig so as to face the surface of the substrate.
  • the mask jig is arranged such that the first surface of the mask jig faces the surface of the substrate.
  • a film forming method includes a step of spraying a film forming material powder onto the surface of a substrate by a cold spray method through the first through holes and the second through holes of the mask jig.
  • a film forming apparatus includes a spray gun including a nozzle, a powder supply section, a gas supply section, and the mask jig.
  • the powder supply unit supplies powder to the spray gun as a film-forming raw material.
  • a gas supply supplies the operating gas to the spray gun.
  • a mask jig is placed between the substrate and the spray gun.
  • a film of stable quality can be efficiently formed on the surface of the substrate.
  • FIG. 1 is a schematic diagram showing the configuration of a film forming apparatus according to an embodiment
  • FIG. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic cross-sectional view showing a mask jig according to the present embodiment, a substrate on which it is installed, and a base jig
  • FIG. 3 is a schematic cross-sectional view showing an enlarged first example of a mode of a region A surrounded by a dotted line in FIG. 2
  • FIG. 3 is a schematic cross-sectional view enlarging and showing a second example of a mode of a region A surrounded by a dotted line in FIG.
  • FIG. 2 3 is a schematic cross-sectional view enlarging and showing a third example of a mode of a region A surrounded by a dotted line in FIG. 2;
  • FIG. FIG. 3 is a schematic cross-sectional view showing an enlarged fourth example of a mode of a region A surrounded by a dotted line in FIG. 2;
  • 3 is a schematic cross-sectional view showing an enlarged fifth example of the aspect of the region A surrounded by the dotted line in FIG. 2;
  • FIG. 3 is a schematic cross-sectional view generally showing a further modification of the mask jig of FIG. 2;
  • FIG. 4 is a flow chart showing a film forming method according to this embodiment.
  • FIG. 4 is a flow chart showing a film forming method according to this embodiment.
  • FIG. 11 is a schematic cross-sectional view showing a first example of a mask jig used in Example 3;
  • FIG. 11 is a schematic cross-sectional view showing a second example of a mask jig used in Example 3;
  • FIG. 11 is a schematic cross-sectional view showing a third example of a mask jig used in Example 3;
  • 11 is a photograph of the deposition state of the film-forming raw material on the inner wall of the inclined portion formed in the body portion of the sample 11 of Example 3, viewed from above.
  • 10 is a top view of a deposition state of a film-forming raw material on an inner wall of an inclined portion formed in a body portion of a sample 12 of Example 3.
  • FIG. 10 is a photograph of the state of deposition of the film-forming raw material on the inner wall of the inclined portion formed in the body portion of the sample 13 of Example 3, viewed from above.
  • FIG. 1 is a schematic diagram showing the configuration of a film forming apparatus according to this embodiment.
  • a film forming apparatus 100 mainly includes a spray gun 2 including a nozzle 2b, a powder supply section 3, a gas supply section 4, and a mask jig 1. As shown in FIG.
  • the spray gun 2 mainly includes a spray gun body 2a, a nozzle 2b, a heater 2c, and a temperature sensor 9.
  • a nozzle 2b is connected to the first end, which is the tip side of the spray gun main body 2a.
  • a pipe 6 is connected to the second end, which is the rear end side of the spray gun main body 2a.
  • the pipe 6 is connected to the gas supply section 4 via a valve 7 .
  • a gas supply unit 4 supplies working gas to the spray gun 2 through a pipe 6 . By opening and closing the valve 7, it is possible to control the state of supply of the working gas from the gas supply section 4 to the spray gun 2.
  • a pressure sensor 8 is installed in the pipe 6 .
  • a pressure sensor 8 measures the pressure of the working gas supplied from the gas supply unit 4 to the pipe 6 .
  • the working gas supplied from the second end of the spray gun main body 2a to the interior of the spray gun main body 2a is heated by the heater 2c.
  • the heater 2c is arranged on the second end side of the spray gun body 2a.
  • the working gas flows along the arrow 31 inside the spray gun main body 2a.
  • a temperature sensor 9 is connected to the connecting portion between the nozzle 2b and the spray gun body portion 2a.
  • a temperature sensor 9 measures the temperature of the working gas flowing inside the spray gun body 2a.
  • a pipe 5 is connected to the nozzle 2b.
  • a pipe 5 is connected to the powder supply section 3 .
  • the powder supply unit 3 supplies the powder, which is a film-forming raw material, to the nozzle 2 b of the spray gun 2 through the pipe 5 .
  • the mask jig 1 is arranged between the substrate 20 and the spray gun 2.
  • the mask jig 1 is formed with a first through hole 11c and a second through hole 12a (see FIG. 2).
  • the first through-holes 11c and the second through-holes 12a define film formation areas on the surface of the substrate 20 .
  • a specific configuration of the mask jig 1 will be described later.
  • the working gas is supplied from the gas supply section 4 to the spray gun 2 through the pipe 6 as indicated by arrow 30 .
  • Nitrogen, helium, dry air or mixtures thereof can be used as the working gas, for example.
  • the working gas pressure is, for example, about 1 MPa.
  • the flow rate of the working gas is, for example, 300 L/min or more and 500 L/min or less.
  • the working gas supplied to the second end of the spray gun body 2a is heated by the heater 2c.
  • the heating temperature of the working gas is appropriately set according to the composition of the film-forming raw material, and can be, for example, 100° C. or higher and 500° C. or lower.
  • the working gas flows from the spray gun body 2a to the nozzle 2b.
  • the nozzle 2b is supplied with powder 10 as a film-forming raw material from the powder supply section 3 through the pipe 5 as indicated by an arrow 32.
  • powder 10 for example, nickel powder, tin powder, or a mixed material of tin powder and zinc powder can be used.
  • powder such as aluminum powder may be used as the powder.
  • the particle size of powder 10 is, for example, 1 ⁇ m or more and 50 ⁇ m or less.
  • the powder 10 supplied to the nozzle 2b is jetted from the tip of the nozzle 2b toward the substrate 20 together with the working gas.
  • a mask jig 1 is arranged on the surface of the base material 20 .
  • the sprayed powder 10 reaches the surface of the substrate 20 through the first through-hole 11c and the second through-hole 12a (see FIG. 2) of the mask jig 1.
  • a film is formed on the surface of the substrate 20 using the injected powder 10 as a raw material.
  • FIG. 2 is a schematic cross-sectional view showing the mask jig according to the present embodiment, and the substrate and base jig on which it is installed.
  • mask jig 1 is used in a cold spray method, which is an example of thermal spraying.
  • the mask jig 1 has a body portion 11 and a mask cover 12 .
  • the body portion 11 includes a first surface 11s1 and a second surface 11s2.
  • the second surface 11s2 is positioned opposite to the first surface 11s1.
  • the first surface 11s1 and the second surface 11s2 are rectangular, for example.
  • the distance from the first surface 11s1 to the second surface 11s2, which is the thickness of the body portion 11, is substantially constant throughout the body portion 11. As shown in FIG. Therefore, the body portion 11 is a plate-like member having a rectangular planar shape.
  • the mask cover 12 includes a third surface 12s1 and a fourth surface 12s2.
  • the fourth surface 12s2 is located on the side opposite to the third surface 12s1.
  • the third surface 12s1 and the fourth surface 12s2 are rectangular, for example.
  • the distance from the third surface 12s1 to the fourth surface 12s2, which is the thickness T of the mask cover 12, is substantially constant over the entire mask cover 12.
  • the mask cover 12 is a plate-like member having a rectangular planar shape.
  • the mask cover 12 is arranged on the second surface 11 s 2 side of the main body 11 , that is, on the upper side in FIG. 2 so as to overlap the main body 11 .
  • the mask cover 12 is arranged such that the third surface 12s1 faces the second surface 11s2 of the body portion 11 and contacts each other.
  • the mask cover 12 is made of imide resin. Specifically, the mask cover 12 is made of polyamide-imide, for example. The mask cover 12 may be made of, for example, polyimide instead of polyamideimide.
  • a first through hole 11c is formed in the main body portion 11 .
  • the first through hole 11c penetrates the body portion 11 so as to reach from the first surface 11s1 to the second surface 11s2.
  • the planar shape of the first through hole 11c is arbitrary, and may be, for example, circular or rectangular (particularly square) in plan view.
  • the first through-hole 11c is a portion where a member constituting the body portion 11 is missing, and may have a columnar portion 11a and an inclined portion 11b.
  • the entire inner wall of the columnar portion 11a extends in a direction substantially orthogonal to the first surface 11s1 and the second surface 11s2. That is, in the cross-sectional view of FIG. 2, two portions of the inner wall of the columnar portion 11a which are arranged at positions shifted from each other by 180° with respect to the center and which face each other extend in parallel with each other. Therefore, the inner wall at the left end and the inner wall at the right end of the columnar portion 11a in the sectional view of FIG. 2 are parallel to each other.
  • the inclined portion 11b has an inner wall extending in a direction inclined with respect to a direction substantially orthogonal to the first surface 11s1 and the second surface 11s2. That is, in the sectional view of FIG. 2, both the inner wall at the left end and the inner wall at the right end of the inclined portion 11b extend in a direction different from that of the inner wall of the columnar portion 11a. Both the inner wall at the left end and the inner wall at the right end of the inclined portion 11b extend in a direction inclined with respect to the first surface 11s1 and the second surface 11s2.
  • the inclined portion 11b is formed closer to the second surface 11s2 than the columnar portion 11a, and has an inner wall whose diameter gradually increases from the first surface 11s1 toward the second surface 11s2. is preferably slanted.
  • the inclined portion 11b may be formed closer to the first surface 11s1 than the columnar portion 11a.
  • the inner wall of the inclined portion 11b may be inclined such that the diameter thereof gradually decreases from the first surface 11s1 side toward the second surface 11s2 side.
  • the inclined portion 11b may be formed only in the central portion in the direction connecting the first surface 11s1 and the second surface 11s2 without being in contact with either the first surface 11s1 or the second surface 11s2.
  • a columnar portion 11a reaching the first surface 11s1 is formed on the first surface 11s1 side of the inclined portion 11b, and a columnar portion 11a reaching the first surface 11s1 is formed on the first surface 11s1 side of the inclined portion 11b.
  • the inner wall of the columnar portion 11a and the inner wall of the inclined portion 11b are continuous at the boundary between the adjacent columnar portion 11a and the inclined portion 11b.
  • the first through hole 11c has both the columnar portion 11a and the inclined portion 11b.
  • the first through hole 11c may have only the columnar portion 11a, or may have only the inclined portion 11b.
  • the diameter of the first through-hole 11c and the like is the diameter of the circle when the planar shape thereof is circular.
  • the diameter is the length of one side of the square.
  • a second through hole 12 a is formed in the mask cover 12 .
  • the second through hole 12a penetrates the mask cover 12 so as to reach from the third surface 12s1 to the fourth surface 12s2.
  • the second through hole 12a has an inner wall extending in a direction substantially perpendicular to the first surface 11s1 and the second surface 11s2.
  • the inner wall of the second through hole 12a may extend in a direction inclined with respect to the direction substantially orthogonal to the third surface 12s1 and the fourth surface 12s2.
  • the inclination angle of the inner wall of the second through hole 12a with respect to the direction orthogonal to the third surface 12s1 may be, for example, 10° or less with respect to the direction orthogonal to the third surface 12s1.
  • the first through-hole 11c and the second through-hole 12a do not extend over the entire mask jig 1 in the depth direction of the paper surface of FIG. be done. That is, the dimensions of the first through hole 11c and the second through hole 12a in the depth direction of the paper surface of FIG. 2 are relatively short. Specifically, the dimensions in the depth direction of the paper surface of the first through hole 11c and the second through hole 12a in FIG. 2 are equal to the dimensions in the left-right direction in FIG. be.
  • the base jig 21 is a member for setting the substrate 20 to be film-formed.
  • the base jig 21 is a plate-like member having a rectangular planar shape.
  • one main surface of the base jig 21 may be installed so as not to contact the first surface 11s1 (so as to have a gap with the first surface 11s1).
  • a groove 22 is formed on the main surface of the base jig 21 facing the first surface 11s1.
  • the groove portion 22 is formed in a portion of one main surface of the base jig 21 as a concave portion recessed in a direction orthogonal to the main surface.
  • the substrate 20 is installed on the base jig 21 by fitting the substrate 20 into the groove 22 .
  • a screw hole 13 is formed so as to pass through all of the mask cover 12, the main body part 11 and the base jig 21 which are laminated so as to be in contact with each other.
  • the screwing holes 13 are formed so that the mask cover 12, the main body 11 and the base jig 21 all overlap in plan view.
  • the mask cover 12 can be fixed to the main body 11 and the base jig 21 by screwing. Therefore, the mask cover 12 and the body portion 11 can be replaced independently.
  • the replacement cost can be reduced compared to the structure in which the main body part 11 and the mask cover 12 are integrated.
  • the diameter of the screwing hole 13 may be smaller than that of the mask cover 12 and the body portion 11 in the base jig 21, and may be the same size in the mask cover 12 and the body portion 11.
  • the diameter of the screw hole 13 may be the same in the main body 11 and the base jig 21 and may be larger in the mask cover 12 than in the main body 11 .
  • any material can be used for the main body 11 of the mask jig 1.
  • copper which is a metal material with high heat dissipation, may be used. Thereby, the thermal influence on the base material 20 can be mitigated.
  • metals such as stainless steel and steel, and ceramics such as carbon and alumina can be used as the main body 11 .
  • the body portion 11 may have a thin film formed on the surface of, for example, copper.
  • the thin film is preferably made of a material having a low affinity for the material to be deposited using the mask jig 1, for example. That is, for example, when the mask jig 1 is used for forming an aluminum film by a thermal spraying method, the surface of the main body portion 11 made of copper has a low affinity for aluminum (difficult to contact with aluminum; It is preferred that a thin film of tin, for example, a material that is difficult to resist is formed.
  • the minimum angles ⁇ 1 and ⁇ 2 formed by the inner wall of the inclined portion 11b and the first surface 11s1 and the second surface 11s2 are 30° or more and 60° or less. is preferred. That is, angles ⁇ 1 and ⁇ 2 between the dashed line parallel to the first surface 11s1 and the inner wall of the inclined portion 11b shown in FIG. 2 are preferably 30° or more and 60° or less. Although the angle ⁇ 1 and the angle ⁇ 2 may be equal, they may be different.
  • the inner wall may include a partially curved surface. Further, the inner wall may have constant inclination angles ⁇ 1 and ⁇ 2 over its entirety, but may include surfaces with locally different inclination angles ⁇ 1 and ⁇ 2.
  • the mask cover 12 of the mask jig 1 preferably has a thickness T of 0.5 mm or more and 2.0 mm or less, which is the distance between the third surface 12s1 and the fourth surface 12s2.
  • the base jig 21 is preferably made of a metal material with high heat dissipation. Specifically, the base jig 21 is preferably made of either a copper-based metal material or an aluminum-based metal material. It is preferable that the body portion 11 has a thickness of 1.5 mm or more and 3 mm or less, which is the distance between the first surface 11s1 and the second surface 11s2. In the mask jig 1 , it is preferable that the mask cover 12 is thinner than the main body 11 . However, the thickness of the body portion 11 and the thickness of the mask cover 12 may be equal to each other. Alternatively, the mask cover 12 may be thicker than the body portion 11 .
  • the diameter of the second through hole 12a is greater than or equal to the diameter of the first through hole 11c. "Greater than or equal to” includes both equal and greater (many). That is, the diameter of the second through-hole 12a may be the same as the diameter of the first through-hole 11c, or may be larger than the diameter of the first through-hole 11c.
  • the second central axis 12as passing through the center of the second through-hole 12a in plan view is the same as that of the first through-hole 11c in plan view. It may be on the same straight line as the first central axis 11as passing through the center of . That is, as shown in FIG.
  • the second central axis 12as and the first central axis 11as may be coaxially overlapped.
  • the first central axis 11as in FIG. 2 may be arranged at a position shifted to the right or left with respect to the second central axis 12as, and the two may serve as axes at different positions.
  • the size relationship between the diameters of the first through-hole 11c and the second through-hole 12a will be described including possible modifications as follows.
  • FIG. 3 is a schematic cross-sectional view showing an enlarged first example of the aspect of the area A surrounded by the dotted line in FIG.
  • the first through hole of body portion 11 is formed only of columnar portion 11a and has a constant diameter throughout.
  • the diameter of the second through-hole 12a of the mask cover 12 is constant over its entirety, like the columnar portion 11a.
  • the diameter of the columnar portion 11a is equal to the diameter of the second through hole 12a.
  • Such a configuration may be used.
  • FIG. 4 is a schematic cross-sectional view showing an enlarged second example of the aspect of the area A surrounded by the dotted line in FIG.
  • the first through-hole of body portion 11 is formed only of columnar portion 11a
  • the second through-hole 12a of mask cover 12 is formed of columnar portion 11a.
  • the diameter is constant throughout.
  • the diameter of the second through hole 12a is larger than the diameter of the columnar portion 11a.
  • the case where the diameters of the columnar portion 11a and the second through hole 12a are equal as shown in FIG. 3 is excluded. Such a configuration may be used.
  • FIG. 5 is a schematic cross-sectional view showing an enlarged third example of the aspect of the area A surrounded by the dotted line in FIG.
  • the first through hole of body portion 11 is formed only of inclined portion 11b.
  • the inner wall of the inclined portion 11b is inclined with respect to the direction orthogonal to the first surface 11s1 and the second surface 11s2 so that the diameter of the inclined portion 11b gradually increases from the first surface 11s1 side toward the second surface 11s2 side. ing.
  • the maximum diameter D1 which is the maximum value among the diameters of the inclined portion 11b in plan view, is formed on the second surface 11s2, and the minimum diameter D2, which is the minimum value among the diameters of the inclined portion 11b in plan view, is formed on the first surface 11s1.
  • the diameter D3 of the second through hole 12a of the mask cover 12 is constant over its entirety, like the columnar portion 11a.
  • the diameter D3 of the second through hole 12a is larger than the minimum diameter D2 of the inclined portion 11b and smaller than the maximum diameter D1 of the inclined portion 11b. Such a configuration may be used.
  • FIG. 6 is a schematic cross-sectional view showing an enlarged fourth example of the aspect of the area A surrounded by the dotted line in FIG.
  • the first through hole of the main body portion 11 is composed of only the inclined portion 11b, and from the first surface 11s1 side toward the second surface 11s2 side, The inner wall is slanted so that its diameter gradually increases.
  • the diameter D3 of the second through hole 12a of the mask cover 12 is constant throughout.
  • the diameter D3 of the second through hole 12a is larger than the minimum diameter D2 of the inclined portion 11b and equal to the maximum diameter D1 of the inclined portion 11b.
  • Such a configuration may be used.
  • FIG. 7 is a schematic cross-sectional view showing an enlarged fifth example of the aspect of the area A surrounded by the dotted line in FIG.
  • the shapes of the first and second through holes 12a are the same as those in the third and fourth examples, and description thereof will not be repeated.
  • the diameter D3 of the second through hole 12a is equal to the minimum diameter D2 of the inclined portion 11b and smaller than the maximum diameter D1 of the inclined portion 11b. Such a configuration may be used.
  • the second through hole 12a of the mask cover 12 has only an inclined portion of which inner wall is inclined in the same way as the inclined portion 11b of the first through hole 11c (or, as will be described below, a portion thereof has an inclined portion). ), in the above, the diameter of the second through hole 12a is considered to be the minimum value.
  • FIG. 8 is a schematic cross-sectional view collectively showing a further modification of the mask jig of FIG.
  • the second through-hole 12a of the mask cover 12 may be formed to intersect (perpendicularly) at the end portion intersecting the fourth surface 12s2 as shown in FIG.
  • the second through hole 12a may be formed round like a part of a spherical surface (curved surface) at the end portion intersecting the fourth surface 12s2. That is, in the cross-sectional view of FIG. 8, the portion where the second through hole 12a and the fourth surface 12s2 intersect may be a curved surface 12R having a curved shape (for example, an arc shape or a partial elliptical shape). The same applies to the end portion where the second through hole 12a and the third surface 12s1 intersect.
  • the inclination angle of the inclined portion may be formed in two stages or more. That is, it may be formed so as to have two or more inclined portions with different inclination angles.
  • the inner wall of the second through-hole 12a has two inclined portions 12a1 and 12a2 having different angles with respect to the third surface 12s1.
  • the inner wall of the inclined portion 11b of the body portion 11 may also be formed so that the inclination angle thereof has two or more stages.
  • a part of the inclined portion 11b in FIG. 8 has two inclined portions 11b1 and 11b2 having different angles with respect to the first surface 11s1.
  • the end portion of the first through hole 11c that intersects at least one of the first surface 11s1 and the second surface 11s2 may be rounded like a curved surface (curved in the cross-sectional view of FIG. 8).
  • a mask jig 1 according to the present disclosure is used in a thermal spraying method.
  • the mask jig 1 has a body portion 11 and a mask cover 12 .
  • the body portion 11 includes a first surface 11s1 and a second surface 11s2 located opposite to the first surface 11s1.
  • the mask cover 12 is arranged on the second surface 11 s 2 side of the main body 11 so as to overlap the main body 11 .
  • the mask cover 12 includes a third surface 12s1 and a fourth surface 12s2 located opposite to the third surface 12s1.
  • the mask cover 12 is made of imide resin.
  • the mask cover 12 made of imide-based resin, which is a highly heat-resistant resin material, it is difficult for the material of the film formed by thermal spraying to be formed. Therefore, if the powder 10 (see FIG. 1) of the material used for film formation is supplied from the mask cover 12 side, when the base material to be film-formed is arranged downstream of the powder from the mask jig 1, Film formation on the surface of the mask jig 1 on which no film should be formed is suppressed. Further, the mask cover 12 is arranged on the second surface 11s2 side of the main body 11 so as to overlap with the main body 11 (so as to cover the surface of the main body 11), and film formation on the surface of the main body 11 is suppressed. .
  • the film formation conditions are prevented from changing from the conditions set at the beginning of the film formation.
  • a film of stable quality can be efficiently formed on the surface of the base material, for example, compared to the case where the formed mask is subjected to surface treatment as post-treatment.
  • the body portion 11 is formed with a first through hole 11c reaching from the first surface 11s1 to the second surface 11s2.
  • the mask cover 12 is formed with a second through hole 12a reaching from the third surface 12s1 to the fourth surface 12s2.
  • the diameter of the second through hole 12a is greater than or equal to the diameter of the first through hole 11c.
  • the diameter of the second through hole 12a may be larger than the diameter of the first through hole 11c.
  • a region where a film is formed on the surface of the base material is defined by the first through holes 11c formed in the body portion 11 adjacent to the base material. This is because the film is formed in the region overlapping the region where the first through hole 11c is formed.
  • the diameter of the second through-hole 12a is equal to or larger than the diameter of the first through-hole 11c (larger than the diameter)
  • the region where the film is formed inside the first through-hole 11c of the main body 11 becomes the mask cover 12. Covering with areas other than the through-holes and obstructing film formation is suppressed.
  • the through holes formed in the mask jig 1 allow the mask jig 1 to maintain its function as a mask.
  • the diameter of the second through-hole 12a is made larger than the diameter of the first through-hole 11c, the following effects can be obtained.
  • the regions of the mask cover 12 adjacent to the second through-holes 12a may be deformed by heat during use, and the shape of the second through-holes 12a may be distorted.
  • the diameter of the second through-hole 12a is made larger than the diameter of the first through-hole 11c, the region where the film is formed inside the first through-hole 11c of the main body 11 will be the mask cover 12. Do not overlap with areas other than through-holes.
  • the large size of the second through hole 12a creates a margin for the mask cover 12 not to partially block the inside of the first through hole 11c even if the mask cover 12 is deformed. Therefore, the function of the mask jig 1 including the mask cover 12 as a mask can be maintained.
  • the body portion 11 is formed with a first through hole 11c reaching from the first surface 11s1 to the second surface 11s2.
  • the mask cover 12 is formed with a second through hole 12a reaching from the third surface 12s1 to the fourth surface 12s2.
  • the inner wall of the first through hole 11c extends in a direction that is inclined with respect to the direction perpendicular to the first surface 11s1 and the second surface 11s2.
  • the diameter D3 of the second through-hole 12a is equal to or larger than the minimum diameter D2 of the first through-hole 11c and equal to or smaller than the maximum diameter D1 of the first through-hole 11c. Such a configuration may be used.
  • a region of the surface of the base material where the film is formed is defined by the minimum diameter D2 of the first through-hole 11c formed in the body portion 11 adjacent to the base material. This is because the film is formed in a region overlapping with the inside of the minimum diameter D2 of the first through hole 11c.
  • the minimum diameter D3 of the second through hole 12a is the same as the minimum diameter D2 of the first through hole 11c. Therefore, it is suppressed that the area where the film is formed inside the first through hole 11c of the main body part 11 and the area of the mask cover 12 other than the second through hole 12a overlap with each other.
  • the mask cover 12 blocking a part of the first through-hole 11c prevents film formation in the blocked portion. can. That is, the through holes formed in the mask jig 1 allow the mask jig 1 to maintain its function as a mask.
  • the powder 10 (see FIG. 1) passing through the second through-hole 12a of the mask cover 12 may try to adhere to the inner wall of the second through-hole 12a.
  • the inner wall of the first through hole 11c has an inclined portion 11b. Therefore, the powder 10 (see FIG. 1) passing through the second through-hole 12a of the mask cover 12 does not incline to the inner wall of the first through-hole 11c compared to the case where the inner wall is not inclined with respect to the direction perpendicular to the first surface 11s1. can reduce the collision energy when colliding with Therefore, film formation on the edge of the through-hole of the mask jig 1, that is, on the inner wall can be suppressed.
  • the minimum angle between the inner wall of the first through hole 11c and the first surface 11s1 and the second surface 11s2 may be 30° or more and 60° or less.
  • the thickness of the mask cover 12 may be 0.5 mm or more and 2.0 mm or less from the viewpoint of enhancing the above effects.
  • FIG. 9 is a flow chart showing a film forming method according to this embodiment.
  • the film forming method according to the present embodiment is a film forming method performed using mask jig 1 and film forming apparatus 100 shown in FIGS. (S10), a film formation step (S20), and a post-treatment step (S30).
  • the preparation step (S10) includes a step of arranging the mask jig 1 so as to face the surface of the base material 20 as shown in FIG.
  • the mask jig 1 is arranged such that the first surface 11s1 (see FIGS. 2 to 7) of the mask jig 1 faces the surface of the base material 20.
  • the body portion 11 of the mask jig 1 is preferably made of a material having a low affinity for the material of the powder sprayed in the next film forming step (S20).
  • the film-forming raw material is powdered by the cold spray method using the film-forming apparatus 100 through the first through-hole 11c and the second through-hole 12a (see FIG. 2) of the mask jig 1. is sprayed onto the surface of the substrate 20. As a result, a film made of the film-forming raw material is formed on the surface of the substrate 20 .
  • the mask jig 1 is removed from the surface of the base material 20. Thereafter, necessary processing such as processing of the base material 20 is performed. In this manner, a film can be formed on the surface of the substrate 20 .
  • the amount of the film forming raw material adhering to the mask jig 1 can be reduced. can be lengthened.
  • the number of times the mask jig 1 can be used repeatedly can be increased.
  • a mask jig which does not have a mask cover 12 and consists only of the main body portion 11 is arranged so as to face the surface of the substrate 20 as shown in FIGS.
  • the first through-hole 11c of the body portion 11 used is composed only of the inclined portion 11b, and the angles ⁇ 1 and ⁇ 2 (see FIG. 2) formed between the first surface 11s1 and the first surface 11s1 are 45°.
  • Samples of mask jigs composed of only the main body 11 and made of different materials were prepared. Specifically, a sample 1 made of stainless steel SUS304, a sample 2 made of carbon steel, and a sample 3 made of copper were prepared.
  • Each sample had a quadrangular planar shape and a size of 42 mm wide ⁇ 30 mm long ⁇ 3 mm thick.
  • the inclined portion 11b has a maximum diameter of 6 mm and a minimum diameter of 2 mm.
  • the first through holes 11c are formed in a matrix, two spaced apart in the vertical direction (short side direction) in a plan view, and three spaced apart in the horizontal direction (long side direction) perpendicular thereto. was done.
  • a film was formed on the substrate surface by the cold spray method.
  • a powder made of aluminum was used as a film-forming raw material.
  • the aluminum powder had a spherical shape and a diameter of 10 ⁇ m.
  • the material of the base material 20 was alumina (Al2O3).
  • the shape of the base material 20 was a plate shape with a square planar shape.
  • the size of the substrate was 42 mm wide ⁇ 30 mm long ⁇ 3 mm thick.
  • the film formation conditions were as follows: dry air was used as the working gas, the temperature of the working gas was 270°C, the flow rate of the working gas was 400 liters/minute, and the pressure of the working gas was about 0.7 MPa.
  • the width (nozzle width) of the region where the film-forming material is sprayed from the film-forming apparatus to the surface of the mask jig was set to 5 mm.
  • the speed (sweep speed) for moving the region where the film-forming material is sprayed so as to include the region in which the through holes are formed on the surface of the mask jig was set to 5 mm/sec.
  • the size of the film formation range (region where the film formation material is sprayed) on the surface of the mask jig was 5 mm wide ⁇ 30 mm long.
  • the film-forming raw material was injected into the film-forming range five times to form a film on the substrate surface.
  • the adhesion amount of the film-forming raw material could be reduced compared to other materials.
  • using a material with a high thermal conductivity for the main body 11 (mask jig) could reduce the deposition amount of the film-forming raw material compared to using a material with a low thermal conductivity.
  • the material of the main body 11 was copper, and a thin film of a material having a low affinity for the film formation raw material was formed (surface treatment) on its surface, and then the same measurements as above were performed.
  • Sample 4 was prepared by plating a thin film of tin, which has a low affinity for aluminum, which is a film forming material, on the surface of the same sample as Sample 3 .
  • a sample 5 was prepared in which a chromium thin film was formed on the surface of the same sample as the sample 3 by plating. Table 2 below compares the results of Sample 3 in Table 1 with the measurement results of Samples 4 and 5.
  • a mask jig sample having only a main body 11 and having no mask cover as in Example 1 and a mask jig 1 sample having a main body 11 and a mask cover 12 as in the present embodiment were used.
  • the deposition amount of the film forming material on the columnar portion formed in the main body portion of the mask jig was compared.
  • the body portion 11 is formed of stainless steel SUS304 in the same manner as the sample 1 of Example 1, but the first through hole 11c is composed only of the columnar portion 11a, and has a form similar to that of FIGS. 3 and 4.
  • a sample 6 consisting of only was prepared.
  • a sample 10 having a body portion 11 similar to that of the sample 6 and a mask cover 12 provided thereon was also prepared.
  • the mask cover 12 prepared for constructing the mask jig 1 of the sample 10 was made of polyamide-imide.
  • the mask cover 12 has a second through hole 12a extending in a direction perpendicular to the third surface 12s1 (see FIG. 2).
  • the thickness of the mask cover 12 was 1.5 mm, and the diameter of the second through hole 12a was 5 mm.
  • a second through-hole 12a was formed at a position of the mask cover 12 overlapping the first through-hole 11c in plan view.
  • ⁇ Deposition process> Using Samples 6 and 10 described above, a film was formed on the substrate surface by the cold spray method. A powder made of aluminum was used as a film-forming raw material. The aluminum powder had a spherical shape and a diameter of 10 ⁇ m. The material of the base material 20 was stainless steel (SUS304). The shape and size of the substrate 20 were the same as in Example 1.
  • the film formation conditions were as follows: dry air was used as the working gas, the temperature of the working gas was 270°C, the flow rate of the working gas was 400 liters/minute, and the pressure of the working gas was about 0.7 MPa.
  • the nozzle width was 5 mm.
  • the sweep speed was 10 mm/sec.
  • the size of the film formation range was 5 mm wide ⁇ 30 mm long. In each sample, a region was formed in which the film-forming raw material was injected only once in the film-forming range.
  • the lamination amount of the sample 10 having the polyamide-imide mask cover 12 is given as a negative value, which indicates that there was no deposition of the film-forming raw material. From Table 3, if the material of the main body 11 is stainless steel SUS304, the adhesion of the film forming raw material to the mask jig 1 can be suppressed by covering it with the mask cover 12 formed of a heat-resistant imide resin. .
  • FIG. 10 is a schematic cross-sectional view showing a first example of a mask jig used in Example 3.
  • FIG. 11 is a schematic cross-sectional view showing a second example of a mask jig used in Example 3.
  • FIG. FIG. 12 is a schematic cross-sectional view showing a third example of a mask jig used in Example 3.
  • FIG. 10 to 12 a sample 11 of the mask jig 1 having the configuration shown in FIG. 10, a sample 12 of the mask jig 1 having the configuration shown in FIG. 11, and a mask jig 1 having the configuration shown in FIG. and sample 13 were prepared.
  • the sample 11 in FIG. 10, the sample 12 in FIG. 11, and the sample 13 in FIG. 12 all have roughly the same aspect as the mask jig 1 in FIG. That is, the first through hole 11c of the body portion 11 has both a columnar portion 11a and an inclined portion 11b, and the second through hole 12a of the mask cover 12 is formed on the first surface 11s1 (see FIG. 2). It extends in the orthogonal direction.
  • the diameter of the columnar portion 11a was set to 2 mm, and the maximum diameter of the inclined portion 11b was set to 6 mm.
  • the thickness of the mask cover 12 was set to 1.5 mm.
  • the main body 11 is made of copper
  • the mask cover 12 is made of polyamide-imide.
  • a sample 11 of FIG. 10, a sample 12 of FIG. 11, and a sample 13 of FIG. 12 were prepared as samples of the mask jig 1 with different diameters of the second through holes 12a.
  • the diameter of the second through-hole 12a was the largest, and the diameter was sufficiently larger than the maximum diameter of the inclined portion 11b.
  • the diameter of the second through-hole 12a was slightly smaller than the maximum diameter of the inclined portion 11b, but sufficiently larger than the minimum diameter of the inclined portion 11b.
  • the diameter of the second through-hole 12a of the sample 12 of FIG. 11 was set to 5 mm.
  • the diameter of the second through-hole 12a was approximately the same as the minimum diameter of the inclined portion 11b. Specifically, the diameter of the second through-hole 12a of the sample 13 of FIG. 12 was set to 2 mm. 11 is similar to FIG. 5 or 6, and FIG. 12 is similar to FIG. FIG. 10 does not resemble any of FIGS. 3-7.
  • ⁇ Deposition process> Using Samples 11 to 13 described above, a film was formed on the substrate surface by the cold spray method. A powder made of aluminum was used as a film-forming raw material. The aluminum powder had a spherical shape and a diameter of 10 ⁇ m. The material of the base material 20 was stainless steel (SUS304). The shape and size of the substrate 20 were the same as in Example 1.
  • the film formation conditions were as follows: dry air was used as the working gas, the temperature of the working gas was 270°C, the flow rate of the working gas was 400 liters/minute, and the pressure of the working gas was about 0.7 MPa.
  • the nozzle width was 5 mm.
  • the sweep speed was 5 mm/sec.
  • the size of the film formation range was 5 mm wide ⁇ 30 mm long. In each sample, a region was formed in which the film-forming raw material was injected only once in the film-forming range.
  • the weight of the film forming raw material adhering to the surface on the inner wall of the inclined portion 11b of the main body portion 11 of each of the samples 11 to 13 was measured and observed.
  • FIG. 13 is a photograph of the attachment state of the film-forming raw material on the inner wall of the inclined portion formed in the body portion of the sample 11 of Example 3, viewed from above.
  • FIG. 14 is a photograph of the attachment state of the film-forming raw material on the inner wall of the inclined portion formed in the main body portion of the sample 12 of Example 3, viewed from above.
  • FIG. 15 is a photograph of the depositing state of the film-forming raw material on the inner wall of the inclined portion formed in the body portion of the sample 13 of Example 3, viewed from above. 13 to 15, the adhered amount of sample 11 was 80 mg. In contrast, samples 12 and 13 did not adhere. As a result, it was shown that the adhesion amount of the film forming raw material was reduced in the mask jig according to the present disclosure (in particular, the one having through holes with dimensions as shown in FIGS. 5 and 7).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)
  • Details Or Accessories Of Spraying Plant Or Apparatus (AREA)

Abstract

基材の表面に安定した品質の膜を、効率的に形成することが可能なマスク治具(1)は、本体部(11)と、マスクカバー(12)とを備える。本体部(11)は、第1面(11s1)と、その反対側に位置する第2面(11s2)とを含む。マスクカバー(12)は、本体部(11)の第2面(11s2)側に、本体部(11)と重なるように配置され、第3面(12s1)と、その反対側に位置する第4面(12s2)とを含む。マスクカバー(12)はイミド系樹脂により形成される。

Description

マスク治具、成膜方法および成膜装置
 本開示は、マスク治具、成膜方法および成膜装置に関する。
 従来、溶射法の1つであるコールドスプレー法が知られている。コールドスプレー法では、キャリアガスと共に成膜材料を基材に噴射することで、当該基材上に成膜する(たとえば、特開2017-170369号公報参照)。
 また、上述したコールドスプレー法などの溶射法において、成膜範囲を規定するため基材の表面上に配置されるマスク治具が用いられる(たとえば、特開2002-361135号公報参照)。マスク治具に形成された貫通穴を介して基材の表面に成膜材料が供給されることにより、成膜領域の平面形状を規定できる。
特開2017-170369号公報 特開2002-361135号公報
 上述したコールドスプレー法などの溶射法において、マスク治具を用いる場合には、マスク治具の表面にも成膜材料からなる膜が形成される。マスク治具の表面に膜が形成されると、結果的にマスク治具の貫通穴を介して成膜材料が基板の表面に供給される際のプロセス条件(成膜条件)が成膜開始当初の条件から変化する場合がある。この結果、基材の表面に安定して膜を形成することが困難となる。さらに、基材の表面に形成する膜の品質を担保するため、マスク治具の表面に形成された膜の除去といった処理を一定時間ごとに実施する必要がある。この結果、基材の表面に安定した品質の膜を、効率的に形成することは難しかった。特開2002-361135号公報では、マスク治具の表面への成膜を抑制する検討がなされている。しかし基材の表面に安定した品質の膜をより効率的に形成する観点からは、マスク治具を成膜しにくい材料で製造するなど、さらなる改善がなされることが好ましい。
 本開示の目的は、基材の表面に安定した品質の膜を、効率的に形成することが可能なマスク治具、成膜方法および成膜装置を提供することである。
 本開示に係るマスク治具は、溶射法において用いられる。マスク治具は、本体部と、マスクカバーとを備える。本体部は、第1面と、第1面とは反対側に位置する第2面とを含む。マスクカバーは、本体部の第2面側に、本体部と重なるように配置され、第3面と、第3面とは反対側に位置する第4面とを含む。マスクカバーはイミド系樹脂により形成される。
 本開示に係る成膜方法は、基材の表面に対向するように、上記マスク治具を配置する工程を備える。配置する工程では、マスク治具の第1面が基材の表面に面するように、マスク治具が配置される。本開示に係る成膜方法は、マスク治具の第1貫通孔および第2貫通孔を介して、コールドスプレー法により成膜原料となる粉末を基材の表面に吹き付ける工程を備える。
 本開示に係る成膜装置は、ノズルを含むスプレーガンと、粉末供給部と、ガス供給部と、上記マスク治具とを備える。粉末供給部は、スプレーガンに成膜原料となる粉末を供給する。ガス供給部は、スプレーガンに動作ガスを供給する。マスク治具は、基材とスプレーガンとの間に配置される。
 上記によれば、基材の表面に安定した品質の膜を、効率的に形成することができる。
本実施の形態に係る成膜装置の構成を示す模式図である。 本実施の形態に係るマスク治具、およびこれが設置される基材およびベース治具を示す概略断面図である。 図2中の点線で囲まれた領域Aの態様の第1例を拡大して示す概略断面図である。 図2中の点線で囲まれた領域Aの態様の第2例を拡大して示す概略断面図である。 図2中の点線で囲まれた領域Aの態様の第3例を拡大して示す概略断面図である。 図2中の点線で囲まれた領域Aの態様の第4例を拡大して示す概略断面図である。 図2中の点線で囲まれた領域Aの態様の第5例を拡大して示す概略断面図である。 図2のマスク治具のさらなる変形例を総括して示す概略断面図である。 本実施の形態に係る成膜方法を示すフローチャートである。 実施例3において用いられたマスク治具の態様の第1例を示す概略断面図である。 実施例3において用いられたマスク治具の態様の第2例を示す概略断面図である。 実施例3において用いられたマスク治具の態様の第3例を示す概略断面図である。 実施例3の試料11の本体部に形成された傾斜部の内壁における成膜原料の付着態様を上方から見た写真である。 実施例3の試料12の本体部に形成された傾斜部の内壁における成膜原料の付着態様を上方から見た写真である。 実施例3の試料13の本体部に形成された傾斜部の内壁における成膜原料の付着態様を上方から見た写真である。
 以下、本開示の実施の形態を説明する。なお、同一の構成には同一の参照番号を付し、その説明は繰り返さない。
 <成膜装置の構成>
 図1は、本実施の形態に係る成膜装置の構成を示す模式図である。図1を参照して、成膜装置100は、ノズル2bを含むスプレーガン2と、粉末供給部3と、ガス供給部4と、マスク治具1とを主に備える。
 スプレーガン2は、スプレーガン本体部2aと、ノズル2bと、ヒータ2cと、温度センサ9とを主に含む。スプレーガン本体部2aの先端側である第1端にはノズル2bが接続されている。スプレーガン本体部2aの後端側である第2端には配管6が接続されている。当該配管6はバルブ7を介してガス供給部4に接続されている。ガス供給部4は、配管6を介してスプレーガン2に動作ガスを供給する。バルブ7を開閉することで、ガス供給部4からスプレーガン2に対する動作ガスの供給状態を制御できる。配管6には圧力センサ8が設置されている。圧力センサ8はガス供給部4から配管6に供給される動作ガスの圧力を測定する。
 スプレーガン本体部2aの第2端からスプレーガン本体部2aの内部に供給される動作ガスは、ヒータ2cにより加熱される。ヒータ2cはスプレーガン本体部2aの第2端側に配置されている。スプレーガン本体部2aの内部を矢印31に沿って動作ガスが流れる。ノズル2bとスプレーガン本体部2aとの接続部に温度センサ9が接続されている。温度センサ9はスプレーガン本体部2aの内部を流れる動作ガスの温度を測定する。
 ノズル2bには配管5が接続されている。配管5は粉末供給部3に接続されている。粉末供給部3は、配管5を介してスプレーガン2のノズル2bに成膜原料となる粉末を供給する。
 マスク治具1は、基材20とスプレーガン2との間に配置される。マスク治具1には第1貫通孔11cおよび第2貫通孔12a(図2参照)が形成されている。当該第1貫通孔11cおよび第2貫通孔12aは基材20の表面における成膜領域を規定する。マスク治具1の具体的な構成は後述する。
 <成膜装置の動作>
 図1に示した成膜装置100では、矢印30に示すようにガス供給部4から配管6を介して動作ガスがスプレーガン2に供給される。動作ガスとしては、たとえば窒素、ヘリウム、ドライエアまたはそれらの混合物を用いることができる。動作ガスの圧力はたとえば1MPa程度である。動作ガスの流量はたとえば300L/分以上500L/分以下である。スプレーガン本体部2aの第2端に供給された動作ガスは、ヒータ2cによって加熱される。動作ガスの加熱温度は、成膜原料の組成に応じて適宜設定されるが、たとえば100℃以上500℃以下とすることができる。スプレーガン本体部2aからノズル2bに動作ガスは流れる。ノズル2bには、配管5を介して粉末供給部3から矢印32に示すように成膜原料となる粉末10が供給される。粉末10としては、たとえばニッケル粉末、錫粉末、または錫粉末と亜鉛粉末との混合材料を用いることができる。あるいは粉末として、たとえばアルミニウムの粉末が用いられてもよい。粉末10の粒径は、たとえば1μm以上50μm以下である。
 ノズル2bに供給された粉末10は、動作ガスとともにノズル2bの先端から基材20に向けて噴射される。基材20の表面にはマスク治具1が配置されている。噴射された粉末10はマスク治具1の第1貫通孔11cおよび第2貫通孔12a(図2参照)を介して基材20の表面に到達する。基材20の表面では、噴射された粉末10を原料とする膜が形成される。
 <マスク治具の構成>
 図2は、本実施の形態に係るマスク治具、およびこれが設置される基材およびベース治具を示す概略断面図である。図2を参照して、マスク治具1は、溶射法の一例であるコールドスプレー法において用いられる。マスク治具1は、本体部11と、マスクカバー12とを備える。
 本体部11は、第1面11s1と、第2面11s2とを含む。第2面11s2は、第1面11s1とは反対側に位置する。第1面11s1および第2面11s2はたとえば矩形状である。本体部11の厚みである第1面11s1から第2面11s2までの距離は、本体部11の全体にわたってほぼ一定である。したがって本体部11は、矩形の平面形状を有する板状の部材である。
 マスクカバー12は、第3面12s1と、第4面12s2とを含む。第4面12s2は、第3面12s1とは反対側に位置する。第3面12s1および第4面12s2はたとえば矩形状である。マスクカバー12の厚みTである第3面12s1から第4面12s2までの距離は、マスクカバー12の全体にわたってほぼ一定である。したがってマスクカバー12は、矩形の平面形状を有する板状の部材である。マスクカバー12は、本体部11の第2面11s2側すなわち図2の上側に、本体部11と重なるように配置される。マスクカバー12は、第3面12s1が本体部11の第2面11s2と対向し互いに接触するように配置される。
 マスクカバー12は、イミド系樹脂により形成される。具体的には、マスクカバー12はたとえばポリアミドイミドにより形成される。なおマスクカバー12は、ポリアミドイミドの代わりに、たとえばポリイミドにより形成されてもよい。
 本体部11には、第1貫通孔11cが形成されている。第1貫通孔11cは、第1面11s1から第2面11s2にまで到達するように、本体部11を貫通している。第1貫通孔11cの平面形状は任意であり、たとえば平面視において円形であってもよいし、矩形状(特に正方形状)であってもよい。
 第1貫通孔11cは、本体部11を構成する部材が欠落する部分であり、柱状部11aと傾斜部11bとを有していてもよい。柱状部11aは、その内壁が全体において第1面11s1および第2面11s2にほぼ直交する方向に延びている。つまり図2の断面図において、柱状部11aの内壁のうち、中心に対して互いに180°ずれた位置に配置され互いに対向する2つの部分同士が互いに平行に延びている。このため図2の断面図での柱状部11aの左端の内壁と右端の内壁とが互いに平行となっている。なお、ここでのほぼ直交する方向とは、完全な直角方向に対し±1°以内の誤差を有することを許容する。傾斜部11bは、その内壁が、第1面11s1および第2面11s2にほぼ直交する方向に対して傾斜する方向に延びている。つまり図2の断面図において傾斜部11bの左端の内壁と右端の内壁とがいずれも、柱状部11aの内壁とは異なる方向に延びている。傾斜部11bの左端の内壁と右端の内壁はいずれも、第1面11s1および第2面11s2に対して傾斜する方向に延びている。
 傾斜部11bは、図2に示すように、柱状部11aよりも第2面11s2側に形成され、第1面11s1側から第2面11s2側に向けて、その径が漸次大きくなるように内壁が傾斜していることが好ましい。ただしこれに限らず、たとえば傾斜部11bが柱状部11aよりも第1面11s1側に形成されてもよい。傾斜部11bは、第1面11s1側から第2面11s2側に向けてその径が漸次小さくなるように内壁が傾斜していてもよい。あるいはたとえば傾斜部11bが第1面11s1および第2面11s2のいずれとも接することなく第1面11s1と第2面11s2とを結ぶ方向の中央部のみに形成されてもよい。この場合、傾斜部11bの第1面11s1側に第1面11s1に達する柱状部11aが形成され、傾斜部11bの第1面11s1側に第1面11s1に達する柱状部11aが形成される。互いに隣り合う柱状部11aと傾斜部11bとの境界において、柱状部11aの内壁と傾斜部11bの内壁とが連続することが好ましい。
 なお図2においては一例として、第1貫通孔11cは柱状部11aと傾斜部11bとの双方を有している。ただしこれに限らず、第1貫通孔11cは柱状部11aのみを有してもよいし、傾斜部11bのみを有してもよい。また第1貫通孔11cなどの径は、これの平面形状が円形の場合には当該円形の直径である。ただし第1貫通孔11cなどの平面形状が正方形状の場合には、その径は当該正方形状の1辺の長さである。
 マスクカバー12には、第2貫通孔12aが形成されている。第2貫通孔12aは、第3面12s1から第4面12s2にまで到達するように、マスクカバー12を貫通している。第2貫通孔12aは、柱状部11aと同様に、その内壁が全体において第1面11s1および第2面11s2にほぼ直交する方向に延びている。ただし、第2貫通孔12aも傾斜部11bと同様に、その内壁が第3面12s1および第4面12s2にほぼ直交する方向に対して傾斜する方向に延びてもよい。第2貫通孔12aの内壁の第3面12s1に直交する方向に対する傾斜角度は、たとえば第3面12s1に直交する方向に対して10°以下であってもよい。
 図示されないが、第1貫通孔11cおよび第2貫通孔12aは、図2の紙面奥行方向についてマスク治具1の全体にわたり延びているのではなく、当該紙面奥行方向の一部の領域のみに形成される。つまり第1貫通孔11cおよび第2貫通孔12aの図2の紙面奥行方向の寸法は比較的短い。具体的には、図2の第1貫通孔11cおよび第2貫通孔12aの紙面奥行方向の寸法は、図2の左右方向の寸法に等しいか、左右方向の寸法よりわずかに増減された程度である。
 ベース治具21は、成膜対象である基材20を設置するための部材である。ベース治具21は、矩形の平面形状を有する板状の部材である。ベース治具21の一方の主表面側、つまり図2の上側の主表面は、図2のようにマスク治具1を構成する本体部11の第1面11s1に接するように設置されてもよい。しかし図1のように、ベース治具21の一方の主表面は第1面11s1に接しないように(第1面11s1との間に隙間を有するように)設置されてもよい。
 ベース治具21の第1面11s1に対向する主表面には、溝部22が形成されている。溝部22は、ベース治具21の一方の主表面の一部に、主表面と直交する方向に凹んだ凹部として形成されている。溝部22内に基材20が嵌め込まれることにより、基材20がベース治具21に設置される。
 互いに接触するように積層されたマスクカバー12、本体部11およびベース治具21のすべてを貫通するように、ねじ止め穴13が形成されている。ねじ止め穴13は、マスクカバー12、本体部11およびベース治具21に形成されたもののすべてが平面視にて重なるように形成される。このように、マスクカバー12は、ねじ止めによって本体部11およびベース治具21に固定できる。このためマスクカバー12および本体部11を単独で交換できる。この結果、マスクカバー12と本体部11との寿命が異なる場合に、本体部11とマスクカバー12とが一体となっている構成に比べて、交換時のコストを抑えられる。
 図2のように、ねじ止め穴13の径は、ベース治具21においてマスクカバー12および本体部11よりも小さく、マスクカバー12および本体部11においては同じ大きさであってもよい。ただしねじ止め穴13の径は、本体部11およびベース治具21において同じ大きさであり、マスクカバー12において本体部11よりも大きくてもよい。
 次に、以上の各部材を構成する材料、サイズ等について説明する。マスク治具1の本体部11は、任意の材料を採用できるが、たとえば放熱性の高い金属材料である銅が用いられてもよい。これにより、基材20への熱的な影響を緩和できる。ただし本体部11として、銅の代わりに、たとえばステンレス鋼、鋼などの金属、カーボン、アルミナなどのセラミックスなどを適用できる。
 本体部11は、上記のたとえば銅の表面上に薄膜が形成されてもよい。その薄膜は、たとえばマスク治具1を用いて成膜しようとする材料と親和性が低い材料からなることが好ましい。つまりたとえばマスク治具1が溶射法によるアルミニウムの成膜に用いられる場合、銅で形成された本体部11の表面上に、アルミニウムと親和性が低い(アルミニウムと接触しにくい:混ざりにくい:結合しにくい)材料である、たとえばスズの薄膜が形成されることが好ましい。
 本体部11に形成される第1貫通孔11cのうち、特に傾斜部11bの内壁と、第1面11s1および第2面11s2とのなす最小角度θ1およびθ2は、30°以上60°以下であることが好ましい。つまり図2に示す、第1面11s1などに平行な一点鎖線と、傾斜部11bの内壁とのなす角度θ1およびθ2が、30°以上60°以下であることが好ましい。角度θ1と角度θ2とは等しくてもよいが、異なっていてもよい。当該内壁は、部分的に曲面を含んでいてもよい。また、内壁は、その全体について傾斜角度θ1,θ2が一定であってもよいが、局所的に傾斜角度θ1,θ2が異なる面を含んでいてもよい。
 マスク治具1のマスクカバー12は、第3面12s1と第4面12s2との距離である厚みTが0.5mm以上2.0mm以下であることが好ましい。ベース治具21は、放熱性の高い金属材料により形成されることが好ましい。具体的には、ベース治具21は、銅系の金属材料およびアルミニウム系の金属材料のいずれかにより形成されることが好ましい。なお本体部11は、第1面11s1と第2面11s2との距離である厚みが1.5mm以上3mm以下であることが好ましい。マスク治具1においては本体部11よりもマスクカバー12の方が薄い方が好ましい。ただしこれに限らず、本体部11とマスクカバー12との厚みが等しくてもよい。あるいはマスクカバー12の方が本体部11よりも厚くてもよい。
 第2貫通孔12aの径は、第1貫通孔11cの径以上の大きさである。「以上」とは、等しい場合とそれよりも大きい(多い)場合との双方を含む。つまり、第2貫通孔12aの径は、第1貫通孔11cの径と同じであってもよいし、第1貫通孔11cの径よりも大きくてもよい。なお、第2貫通孔12aの径が第1貫通孔11cの径よりも大きい場合に、第2貫通孔12aの平面視における中心を通る第2中心軸12asは、第1貫通孔11cの平面視における中心を通る第1中心軸11asと同一直線上であってもよい。つまり図2のように第2中心軸12asと第1中心軸11asとが同軸となるように重なってもよい。あるいは図示されないが、たとえば図2の第1中心軸11asが第2中心軸12asに対して右側または左側にずれた位置に配置され、両者が異なる位置の軸となってもよい。ここで、第1貫通孔11cと第2貫通孔12aとの径の大小関係について、以下のように想定可能な変形例を含めて説明する。
 図3は、図2中の点線で囲まれた領域Aの態様の第1例を拡大して示す概略断面図である。図3を参照して、第1例において、本体部11の第1貫通孔は柱状部11aのみからなりその全体において径が一定である。マスクカバー12の第2貫通孔12aは柱状部11aと同様にその全体において径が一定である。柱状部11aの径と、第2貫通孔12aの径とが等しい。このような構成であってもよい。
 図4は、図2中の点線で囲まれた領域Aの態様の第2例を拡大して示す概略断面図である。図4を参照して、第2例において、第1例と同様に、本体部11の第1貫通孔は柱状部11aのみからなり、マスクカバー12の第2貫通孔12aは柱状部11aと同様にその全体において径が一定である。第2貫通孔12aの径は、柱状部11aの径よりも大きい。図4の第2例では、図3のような柱状部11aと第2貫通孔12aとの径が等しい場合は除外される。このような構成であってもよい。
 図5は、図2中の点線で囲まれた領域Aの態様の第3例を拡大して示す概略断面図である。図5を参照して、第3例において、本体部11の第1貫通孔は傾斜部11bのみからなる。傾斜部11bは、第1面11s1側から第2面11s2側に向けて、その径が漸次大きくなるように、内壁が、第1面11s1および第2面11s2に直交する方向に対して傾斜している。傾斜部11bの平面視における径のうち最大値である最大径D1は第2面11s2に形成され、傾斜部11bの平面視における径のうち最小値である最小径D2は第1面11s1に形成される。一方、マスクカバー12の第2貫通孔12aは柱状部11aと同様にその全体において径D3が一定である。第2貫通孔12aの径D3は、傾斜部11bの最小径D2より大きく、傾斜部11bの最大径D1より小さい。このような構成であってもよい。
 図6は、図2中の点線で囲まれた領域Aの態様の第4例を拡大して示す概略断面図である。図6を参照して、第4例において、第3例と同様に、本体部11の第1貫通孔は傾斜部11bのみからなり、第1面11s1側から第2面11s2側に向けて、その径が漸次大きくなるように内壁が傾斜している。マスクカバー12の第2貫通孔12aはその全体において径D3が一定である。第2貫通孔12aの径D3は、傾斜部11bの最小径D2より大きく、傾斜部11bの最大径D1に等しい。このような構成であってもよい。
 図7は、図2中の点線で囲まれた領域Aの態様の第5例を拡大して示す概略断面図である。図6を参照して、第5例において、第1貫通孔および第2貫通孔12aの形状は、第3例および第4例と同様であるため説明を繰り返さない。第2貫通孔12aの径D3は、傾斜部11bの最小径D2に等しく、傾斜部11bの最大径D1より小さい。このような構成であってもよい。
 なお図示されないが、仮にマスクカバー12の第2貫通孔12aが第1貫通孔11cの傾斜部11bと同様に内壁が傾斜する傾斜部のみを有する(あるいは次に述べるようにその一部に傾斜部を有する)構成である場合、上記において、第2貫通孔12aの径は、その最小値と考える。
 <さらなる変形例>
 図8は、図2のマスク治具のさらなる変形例を総括して示す概略断面図である。マスクカバー12の第2貫通孔12aは、図2のように第4面12s2と交差する端部にて交差(直交)するように形成されてもよい。しかし図8を参照して、第2貫通孔12aは第4面12s2と交差する端部にてたとえば球面の一部(曲面)のように丸く形成されてもよい。つまり図8の断面図において、第2貫通孔12aと第4面12s2とが交差する部分が曲線状(たとえば円弧状または楕円の一部の形状)を有する曲面12Rとされてもよい。第2貫通孔12aと第3面12s1とが交差する端部についても同様である。
 またマスクカバー12の第2貫通孔12aが第3面12s1などに直交する方向に対して傾斜する方向に延びる場合、当該傾斜部の傾斜角が2段階以上となるように形成されてもよい。つまり当該傾斜部の傾斜角が異なる2つ以上の傾斜部を有するように形成されてもよい。一例として図8では、第2貫通孔12aの内壁が、互いに第3面12s1に対する角度の異なる2つの傾斜部12a1と傾斜部12a2とを有している。
 以上はマスクカバー12に限らず、本体部11についても同様である。本体部11の傾斜部11bの内壁も、その傾斜角が2段階以上となるように形成されてもよい。一例として、たとえば図8の一部の傾斜部11bは、互いに第1面11s1に対する角度の異なる2つの傾斜部11b1と傾斜部11b2とを有している。また第1面11s1および第2面11s2の少なくともいずれかと交差する第1貫通孔11cの端部が曲面のように丸く(図8の断面図において曲線状となるように)形成されてもよい。
 <作用効果>
 本開示に係るマスク治具1は、溶射法において用いられる。マスク治具1は、本体部11と、マスクカバー12とを備える。本体部11は、第1面11s1と、第1面11s1とは反対側に位置する第2面11s2とを含む。マスクカバー12は、本体部11の第2面11s2側に、本体部11と重なるように配置される。マスクカバー12は、第3面12s1と、第3面12s1とは反対側に位置する第4面12s2とを含む。マスクカバー12はイミド系樹脂により形成される。
 耐熱性の高い樹脂材料であるイミド系樹脂により形成されるマスクカバー12の表面には、溶射法により形成される膜の材料が形成されにくい。したがって、マスクカバー12側から成膜に用いる材料の粉末10(図1参照)が供給されれば、マスク治具1よりも粉末の下流側に成膜対象の基材などが配置されたとき、成膜されるべきでないマスク治具1の表面上への成膜が抑制される。またマスクカバー12が本体部11の第2面11s2側に本体部11と重なるように(本体部11の表面を覆うように)配置され、本体部11の表面上への成膜が抑制される。このため成膜条件が、成膜開始当初に設定された条件から変化することが抑制される。これにより、基材の表面に安定した品質の膜を、たとえば形成されたマスクに後処理として表面処理を施す場合に比べて効率的に形成できる。
 上記マスク治具1において、本体部11には、第1面11s1から第2面11s2にまで到達する第1貫通孔11cが形成される。マスクカバー12には、第3面12s1から第4面12s2にまで到達する第2貫通孔12aが形成される。第2貫通孔12aの径は前記第1貫通孔11cの径以上の大きさである。このような構成であってもよい。第2貫通孔12aの径は第1貫通孔11cの径よりも大きくてもよい。
 基材の表面のうち成膜される領域は、基材に隣接する本体部11に形成された第1貫通孔11cにより規定される。第1貫通孔11cが形成された領域と重なる領域に成膜されるためである。第2貫通孔12aの径を第1貫通孔11cの径以上(径よりも大きい)とすることにより、本体部11の第1貫通孔11cの内側の成膜される領域が、マスクカバー12の貫通孔以外の領域に覆われ、成膜が妨げられることが抑制される。マスクカバー12による膜質の安定化、成膜の効率化に加え、第1貫通孔11cの一部をマスクカバー12が塞ぐことにより成膜できなくなる不具合を抑制できる。つまりマスク治具1に形成される貫通孔により、マスク治具1はマスクとしての機能を維持できる。
 さらに、第2貫通孔12aの径を第1貫通孔11cの径よりも大きくすれば、次のような効果が得られる。成膜回数を重ねることによって、マスクカバー12のうち第2貫通孔12aに隣接する領域が使用時の熱により変形し、第2貫通孔12aの形状が歪むことがある。このような場合においても、第2貫通孔12aの径を第1貫通孔11cの径よりも大きくすれば、本体部11の第1貫通孔11cの内側の成膜される領域はマスクカバー12の貫通孔以外の領域と重ならない。第2貫通孔12aが大きいことにより、たとえマスクカバー12が変形してもマスクカバー12が第1貫通孔11c内の一部を塞がないためのマージンが生じるためである。このためマスクカバー12を含むマスク治具1のマスクとしての機能が維持できる。
 上記マスク治具1において、本体部11には、第1面11s1から第2面11s2にまで到達する第1貫通孔11cが形成される。マスクカバー12には、第3面12s1から第4面12s2にまで到達する第2貫通孔12aが形成される。第1貫通孔11cの内壁は、第1面11s1および第2面11s2に直交する方向に対して傾斜する方向に延びる。第2貫通孔12aの径D3は、第1貫通孔11cの最小径D2以上であり、第1貫通孔11cの最大径D1以下である。このような構成であってもよい。
 基材の表面のうち成膜される領域は、基材に隣接する本体部11に形成された第1貫通孔11cの最小径D2により規定される。第1貫通孔11cの最小径D2内と重なる領域に成膜されるためである。第2貫通孔12aの径D3が最小でも第1貫通孔11cの最小径D2と同じ大きさを有する。したがって本体部11の第1貫通孔11cの内側の成膜される領域と、マスクカバー12の第2貫通孔12a以外の領域とが重なることが抑制される。このためマスクカバー12による膜質の安定化、成膜の効率化に加え、第1貫通孔11c内の一部をマスクカバー12が塞ぐことによりその塞がれた部分が成膜できなくなる不具合を抑制できる。つまりマスク治具1に形成される貫通孔により、マスク治具1はマスクとしての機能を維持できる。
 また、マスクカバー12の第2貫通孔12aを通過する粉末10(図1参照)が第2貫通孔12aの内壁に付着しようとする場合がある。ここでマスク治具1においては、第1貫通孔11cの内壁が傾斜部11bを有する。このため内壁が第1面11s1に直交する方向に対して傾斜しない場合に比べて、マスクカバー12の第2貫通孔12a内を通過する粉末10(図1参照)が第1貫通孔11cの内壁に衝突する際の衝突エネルギを低減できる。このためマスク治具1の貫通孔の縁すなわち内壁への成膜が抑制できる。
 上記マスク治具1において、第1貫通孔11cの内壁と、第1面11s1および第2面11s2とのなす最小角度は30°以上60°以下であってもよい。これにより上記のように、マスクカバー12の第2貫通孔12a内を通過する粉末10(図1参照)が第1貫通孔11cの内壁に衝突する際の衝突エネルギを低減できる。このためマスク治具1の貫通孔の縁すなわち内壁への成膜が抑制できる。
 上記マスク治具1において、上記の作用効果を高める観点から、マスクカバー12の厚みは0.5mm以上2.0mm以下であってもよい。
 <成膜方法>
 図9は、本実施の形態に係る成膜方法を示すフローチャートである。図9を参照して、本実施の形態に係る成膜方法は、図1~図7に示したマスク治具1および成膜装置100を用いて実施される成膜方法であって、準備工程(S10)と、成膜工程(S20)と、後処理工程(S30)とを主に備える。
 準備工程(S10)では、図1に示すように基材20の表面に対向するように、上記マスク治具1を配置する工程を含む。当該配置する工程では、マスク治具1の第1面11s1(図2~図7参照)が基材20の表面に面するように、マスク治具1が配置される。上記のように、マスク治具1のうちの本体部11は、次の成膜工程(S20)にて吹き付けられる粉末の材料と親和性が低い材料により形成されることが好ましい。
 成膜工程(S20)では、マスク治具1の第1貫通孔11cおよび第2貫通孔12a(図2参照)を介して、成膜装置100を用いてコールドスプレー法により成膜原料となる粉末を基材20の表面に吹き付ける。この結果、基材20の表面に成膜原料からなる膜が形成される。
 後処理工程(S30)では、基材20の表面上からマスク治具1が除去される。その後、基材20に対する加工など必要な処理を実施する。このようにして、基材20の表面に膜を形成することができる。
 上述した成膜方法では、本実施形態に係るマスク治具1を用いるため、当該マスク治具1に対する成膜原料の付着量を低減できるので、成膜工程(S20)を連続的に実施できる時間を長くできる。あるいは、上記マスク治具1を用いることで当該マスク治具1を繰り返し使用できる回数を増やすことができる。
 以下、本開示に係るマスク治具の効果を確認するための各実施例を説明する。
 <試料>
 マスクカバー12を有さず、本体部11のみからなるマスク治具を、図1および図2のように基材20の表面に対向するように配置し、図1の成膜装置100で成膜したときに、本体部11の表面における成膜原料の付着量が調査された。なお用いられた本体部11の第1貫通孔11cは傾斜部11bのみからなり、第1面11s1との間でなす角度θ1、θ2(図2参照)は45°とした。このような本体部11のみからなり、材質が異なるマスク治具の試料を準備した。具体的には、ステンレス鋼SUS304で形成された試料1、炭素鋼で形成された試料2、および銅で形成された試料3を準備した。各試料の平面形状は四角形状であり、そのサイズは、横42mm×縦30mm×厚さ3mmとした。傾斜部11bの最大径は6mm、最小径は2mmとされた。第1貫通孔11cは、平面視における縦方向(短辺方向)に互いに間隔をあけて2つ、これに直交する横方向(長辺方向)に互いに間隔をあけて3つ、行列状に形成された。
 <成膜プロセスおよび結果>
 上述した試料1~試料3を用いて、コールドスプレー法により基材表面に膜を形成した。成膜原料としてはアルミニウムからなる粉末を用いた。当該アルミニウム粉末の形状は球状であり、直径は10μmとした。基材20の材料はアルミナ(Al2O3)とした。基材20の形状は平面形状が四角形状の板状とした。基材のサイズは、横42mm×縦30mm×厚さ3mmとした。
 成膜条件としては、動作ガスとして乾燥空気を用い、動作ガスの温度を270℃、動作ガスの流量を400リットル/分、動作ガスの圧力を約0.7MPaとした。成膜装置からマスク治具の表面に対して成膜原料が噴射される領域の幅(ノズル幅)は5mmとした。また、マスク治具の表面において、貫通孔が形成された領域を含むように成膜原料が噴射される領域を移動させる速度(掃引速度)を5mm/秒とした。マスク治具の表面における成膜範囲(成膜原料が噴射される領域)のサイズは幅5mm×長さ30mmとした。各試料において、当該成膜範囲に5回成膜原料が噴射され、基材表面に膜が形成された。
 上述の条件により、各試料1~3を用いて基材表面に膜を形成しながら、各試料1~3の成膜原料が噴射された領域において、1回噴射されるごとの成膜原料の付着量(mg/pass)および5回噴射された後の成膜原料の付着量(mg)が測定された。その結果を以下の表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1より、試料3のように本体部11の材質が銅であれば、他の材質に比べて成膜原料の付着量を低減できた。つまり本体部11(マスク治具)には熱伝導率の高い材質が用いられる方が、熱伝導率の低い材質が用いられる場合に比べて、成膜原料の付着量を低減できた。
 次に、本体部11の材質を銅とし、その表面に、成膜原料との親和性が低い材料の薄膜を形成(表面処理)したうえで上記と同じ測定が行なわれた。具体的には、試料3と同様の試料の表面に、成膜原料であるアルミニウムとの親和性が低いスズの薄膜がめっきにより形成された試料4が準備された。また試料3と同様の試料の表面に、クロムの薄膜がめっきにより形成された試料5が準備された。上記表1の試料3の結果と、試料4,5の測定結果を比較したものを、以下の表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表2より、成膜原料であるアルミニウムとの親和性が低いスズの薄膜が表面に形成された試料4において、試料3,5に比べて、成膜原料の付着量を低減できた。
 <試料>
 実施例1と同様に本体部11のみからなりマスクカバーを有さないマスク治具の試料と、本実施の形態と同様に本体部11およびマスクカバー12を備えるマスク治具1の試料とを用いて、図1の成膜装置100で成膜したときに、マスク治具の本体部に形成された柱状部への成膜原料の付着量が比較された。具体的には、実施例1の試料1と同様にステンレス鋼SUS304で形成されるが、第1貫通孔11cが柱状部11aのみからなる、図3および図4と同様の態様を有する本体部11のみからなる試料6が準備された。また当該試料6と同様の本体部11とその上に設けられたマスクカバー12とを備える試料10とが準備された。試料10のマスク治具1を構成すべく準備されたマスクカバー12は、ポリアミドイミドにより形成された。マスクカバー12は、第3面12s1(図2参照)に直交する方向に延びる第2貫通孔12aを有するものとした。マスクカバー12は、その厚みが1.5mm、第2貫通孔12aの径は5mmとされた。平面視にて第1貫通孔11cと重なるマスクカバー12の位置に、第2貫通孔12aが形成された。
 <成膜プロセス>
 上述した試料6および試料10を用いて、コールドスプレー法により基材表面に膜を形成した。成膜原料としてはアルミニウムからなる粉末を用いた。当該アルミニウム粉末の形状は球状であり、直径は10μmとした。基材20の材料はステンレス鋼(SUS304)とした。基材20の形状およびサイズは実施例1と同様とした。
 成膜条件としては、動作ガスとして乾燥空気を用い、動作ガスの温度を270℃、動作ガスの流量を400リットル/分、動作ガスの圧力を約0.7MPaとした。ノズル幅は5mmとした。掃引速度を10mm/秒とした。成膜範囲のサイズは幅5mm×長さ30mmとした。各試料において、成膜範囲に1回だけ成膜原料が噴射される領域を形成した。
 上述の条件により、各試料11~13を用いて基材表面に膜を形成しながら、各試料6,10の本体部11の柱状部11aの内壁において、表面に付着した成膜原料の重さ(付着量)を測定、観察した。その結果を次の表3に示す。
Figure JPOXMLDOC01-appb-T000003
 表3において、ポリアミドイミドのマスクカバー12を有する試料10の積層量が負の値とされているが、これは成膜原料の付着がまったくなかったことを示す。表3より、本体部11の材質がステンレス鋼SUS304であれば、耐熱性のイミド系樹脂で形成されたマスクカバー12を被せることにより、成膜原料のマスク治具1への付着を抑制できた。
 <試料>
 図10は、実施例3において用いられたマスク治具の態様の第1例を示す概略断面図である。図11は、実施例3において用いられたマスク治具の態様の第2例を示す概略断面図である。図12は、実施例3において用いられたマスク治具の態様の第3例を示す概略断面図である。図10~図12を参照して、図10に示す構成のマスク治具1の試料11と、図11に示す構成のマスク治具1の試料12と、図12に示す構成のマスク治具1の試料13とを準備した。
 具体的には、図10の試料11、図11の試料12、図12の試料13はいずれも、大筋で図2のマスク治具1と同様の態様を有している。すなわち本体部11の第1貫通孔11cは、柱状部11aと傾斜部11bとの双方を有しており、マスクカバー12の第2貫通孔12aは、第1面11s1(図2参照)などに直交する方向に延びている。柱状部11aの径は2mmとし、傾斜部11bの最大径は6mmとした。マスクカバー12の厚みは1.5mmとした。なお本体部11は銅により形成され、マスクカバー12はポリアミドイミドにより形成された。
 図10の試料11と、図11の試料12と、図12の試料13とは、第2貫通孔12aの径が試料ごとに異なるマスク治具1の試料を準備した。具体的には、図10の試料11は、第2貫通孔12aの径が最も大きく、傾斜部11bの最大径よりも十分に大きな径とされた。図11の試料12は、第2貫通孔12aの径が、傾斜部11bの最大径よりも若干小さいが、傾斜部11bの最小径よりも十分に大きくされた。具体的には図11の試料12は第2貫通孔12aの径が5mmとされた。図12の試料13は、第2貫通孔12aの径が、傾斜部11bの最小径と同程度とされた。具体的には図12の試料13は第2貫通孔12aの径が2mmとされた。つまり図11は図5または図6に類似の態様とされ、図12は図7に類似の態様とされた。図10は図3~図7のいずれにも近似しない。
 <成膜プロセス>
 上述した試料11~試料13を用いて、コールドスプレー法により基材表面に膜を形成した。成膜原料としてはアルミニウムからなる粉末を用いた。当該アルミニウム粉末の形状は球状であり、直径は10μmとした。基材20の材料はステンレス鋼(SUS304)とした。基材20の形状およびサイズは実施例1と同様とした。
 成膜条件としては、動作ガスとして乾燥空気を用い、動作ガスの温度を270℃、動作ガスの流量を400リットル/分、動作ガスの圧力を約0.7MPaとした。ノズル幅は5mmとした。掃引速度を5mm/秒とした。成膜範囲のサイズは幅5mm×長さ30mmとした。各試料において、成膜範囲に1回だけ成膜原料が噴射される領域を形成した。
 上述の条件により、各試料11~13を用いて基材表面に膜を形成した後、各試料11~13の本体部11の傾斜部11bの内壁において、表面に付着した成膜原料の重さ(付着量)を測定、観察した。
 <結果>
 各試料の傾斜部11bの内壁における付着量:
 図13は、実施例3の試料11の本体部に形成された傾斜部の内壁における成膜原料の付着態様を上方から見た写真である。図14は、実施例3の試料12の本体部に形成された傾斜部の内壁における成膜原料の付着態様を上方から見た写真である。図15は、実施例3の試料13の本体部に形成された傾斜部の内壁における成膜原料の付着態様を上方から見た写真である。図13~図15を参照して、試料11の付着量は80mgであった。これに対して、試料12および試料13には付着しなかった。この結果、本開示に係るマスク治具(特に図5および図7のような寸法の貫通孔を有するもの)において成膜原料の付着量が低減されることが示された。
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。矛盾のない限り、今回開示された実施の形態の少なくとも2つを組み合わせてもよい。本開示の基本的な範囲は、上記した説明ではなく請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることを意図される。
 1 マスク治具、2 スプレーガン、2a スプレーガン本体部、2b ノズル、2c ヒータ、3 粉末供給部、4 ガス供給部、5,6 配管、7 バルブ、8 圧力センサ、9 温度センサ、10 粉末、11 本体部、11a 柱状部、11as 第1中心軸、11b,11b1,11b2,12a1,12a2 傾斜部、11c 第1貫通孔、11s1 第1面、11s2 第2面、12 マスクカバー、12a 第2貫通孔、12as 第2中心軸、12R 曲面、12s1 第3面、12s2 第4面、13 ねじ止め穴、20 基材、21 ベース治具、22 溝部、100 成膜装置。

Claims (8)

  1.  溶射法において用いるマスク治具であって、
     第1面と、前記第1面とは反対側に位置する第2面とを含む本体部と、
     前記本体部の前記第2面側に、前記本体部と重なるように配置され、第3面と、前記第3面とは反対側に位置する第4面とを含むマスクカバーとを備え、
     前記マスクカバーはイミド系樹脂により形成される、マスク治具。
  2.  前記本体部には、前記第1面から前記第2面にまで到達する第1貫通孔が形成され、
     前記マスクカバーには、前記第3面から前記第4面にまで到達する第2貫通孔が形成され、
     前記第2貫通孔の径は前記第1貫通孔の径以上の大きさである、請求項1に記載のマスク治具。
  3.  前記第2貫通孔の径は前記第1貫通孔の径よりも大きい、請求項2に記載のマスク治具。
  4.  前記本体部には、前記第1面から前記第2面にまで到達する第1貫通孔が形成され、
     前記マスクカバーには、前記第3面から前記第4面にまで到達する第2貫通孔が形成され、
     前記第1貫通孔の内壁は、前記第1面および前記第2面に直交する方向に対して傾斜する方向に延び、
     前記第2貫通孔の径は、前記第1貫通孔の最小径以上であり、前記第1貫通孔の最大径以下である、請求項1に記載のマスク治具。
  5.  前記内壁と、前記第1面および前記第2面とのなす最小角度は30°以上60°以下である、請求項4に記載のマスク治具。
  6.  前記マスクカバーの厚みは0.5mm以上2.0mm以下である、請求項1~5のいずれか1項に記載のマスク治具。
  7.  基材の表面に対向するように、請求項1に記載のマスク治具を配置する工程を備え、
     前記配置する工程では、前記マスク治具の前記第1面が前記基材の前記表面に面するように、前記マスク治具が配置され、さらに、
     前記マスク治具の第1貫通孔および第2貫通孔を介して、コールドスプレー法により成膜原料となる粉末を前記基材の前記表面に吹き付ける工程を備える、成膜方法。
  8.  ノズルを含むスプレーガンと、
     前記スプレーガンに成膜原料となる粉末を供給する粉末供給部と、
     前記スプレーガンに動作ガスを供給するガス供給部と、
     基材とスプレーガンとの間に配置される、請求項1に記載のマスク治具とを備える、成膜装置。
PCT/JP2022/016145 2021-05-31 2022-03-30 マスク治具、成膜方法および成膜装置 WO2022254945A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112022002864.5T DE112022002864T5 (de) 2021-05-31 2022-03-30 Maskiervorrichtung, Verfahren zur Filmbildung und Filmbildungsvorrichtung
CN202280030763.3A CN117203368A (zh) 2021-05-31 2022-03-30 掩模治具、成膜方法以及成膜装置
JP2023525636A JPWO2022254945A1 (ja) 2021-05-31 2022-03-30

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021091375 2021-05-31
JP2021-091375 2021-05-31

Publications (1)

Publication Number Publication Date
WO2022254945A1 true WO2022254945A1 (ja) 2022-12-08

Family

ID=84322978

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/016145 WO2022254945A1 (ja) 2021-05-31 2022-03-30 マスク治具、成膜方法および成膜装置

Country Status (4)

Country Link
JP (1) JPWO2022254945A1 (ja)
CN (1) CN117203368A (ja)
DE (1) DE112022002864T5 (ja)
WO (1) WO2022254945A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000231880A (ja) * 1999-02-12 2000-08-22 Canon Inc 非蒸発型ゲッタの形成方法、該非蒸発型ゲッタを用いた画像形成装置およびその製造方法
JP2007234248A (ja) * 2006-02-27 2007-09-13 Kyocera Corp 蒸着マスク、及びそれを用いた有機elディスプレイの製造方法
JP2009001873A (ja) * 2007-06-22 2009-01-08 Toyota Motor Corp 伝熱部材の製造方法、パワーモジュール、車両用インバータ、及び車両
WO2017057621A1 (ja) * 2015-09-30 2017-04-06 大日本印刷株式会社 蒸着マスク、蒸着マスクの製造方法および金属板

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002361135A (ja) 2001-06-13 2002-12-17 Ricoh Co Ltd メタルマスク
JP6426647B2 (ja) 2016-03-24 2018-11-21 タツタ電線株式会社 スプレーノズル、皮膜形成装置、及び皮膜の形成方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000231880A (ja) * 1999-02-12 2000-08-22 Canon Inc 非蒸発型ゲッタの形成方法、該非蒸発型ゲッタを用いた画像形成装置およびその製造方法
JP2007234248A (ja) * 2006-02-27 2007-09-13 Kyocera Corp 蒸着マスク、及びそれを用いた有機elディスプレイの製造方法
JP2009001873A (ja) * 2007-06-22 2009-01-08 Toyota Motor Corp 伝熱部材の製造方法、パワーモジュール、車両用インバータ、及び車両
WO2017057621A1 (ja) * 2015-09-30 2017-04-06 大日本印刷株式会社 蒸着マスク、蒸着マスクの製造方法および金属板

Also Published As

Publication number Publication date
CN117203368A (zh) 2023-12-08
DE112022002864T5 (de) 2024-03-14
JPWO2022254945A1 (ja) 2022-12-08

Similar Documents

Publication Publication Date Title
US6863931B2 (en) Manufacturing method of product having sprayed coating film
US20020012743A1 (en) Method and apparatus for fine feature spray deposition
US8052074B2 (en) Apparatus and process for depositing coatings
JPS5993864A (ja) 高能率沸騰熱伝達構造体及びその製造方法
KR20150047457A (ko) 열적 및/또는 동력학적 코팅 시스템용 이동 가능한 마스크
WO2022254945A1 (ja) マスク治具、成膜方法および成膜装置
JP2000087205A (ja) 熱硬化性エポキシ被膜を持つ溶射マスクの製造及び使用
JP2011143388A (ja) 薄膜塗工装置並びに両面薄膜塗工装置
JP2007144297A (ja) 薄膜形成方法
US20160153082A1 (en) Apparatus and method for coating with solid-state powder
US20150240364A1 (en) Method for coating by thermal spraying with an inclined particle jet
US8173207B2 (en) Arrangement for depositing coating powder on a rotational symmetric body
US10500599B2 (en) Thermal spraying torch
TW201544193A (zh) 成膜裝置
US20170121825A1 (en) Apparatus and method for cold spraying and coating processing
WO2022202932A1 (ja) マスク治具、成膜方法および成膜装置
TW201217068A (en) Film forming method
KR20030069080A (ko) 발수성 부재의 제조방법 및 잉크젯헤드의 제조방법
US20240238821A1 (en) Mask Jig, Film Formation Method, and Film Formation Apparatus
JP2001207252A (ja) アーク溶射成形品及びその製造方法
RU2393267C1 (ru) Способ газотермического нанесения покрытий на внутреннюю поверхность отверстия изделия
JP5386615B1 (ja) パイプ埋設構造体及びその製造方法
JP2007144296A (ja) 薄膜形成方法および装置
WO2024034222A1 (ja) マスク治具、成膜方法および成膜装置
JP2005046696A (ja) 複合構造物作製用ノズル

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22815702

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280030763.3

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2023525636

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 18561391

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112022002864

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22815702

Country of ref document: EP

Kind code of ref document: A1