WO2022254791A1 - 無線通信装置、無線通信端末、および無線通信方法 - Google Patents

無線通信装置、無線通信端末、および無線通信方法 Download PDF

Info

Publication number
WO2022254791A1
WO2022254791A1 PCT/JP2022/004584 JP2022004584W WO2022254791A1 WO 2022254791 A1 WO2022254791 A1 WO 2022254791A1 JP 2022004584 W JP2022004584 W JP 2022004584W WO 2022254791 A1 WO2022254791 A1 WO 2022254791A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
link
transmission
wireless communication
frame
Prior art date
Application number
PCT/JP2022/004584
Other languages
English (en)
French (fr)
Inventor
龍一 平田
悠介 田中
浩介 相尾
Original Assignee
ソニーグループ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーグループ株式会社 filed Critical ソニーグループ株式会社
Priority to CN202280037660.XA priority Critical patent/CN117378275A/zh
Priority to JP2023525377A priority patent/JPWO2022254791A1/ja
Priority to EP22815550.3A priority patent/EP4351076A1/en
Publication of WO2022254791A1 publication Critical patent/WO2022254791A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/15Setup of multiple wireless link connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0247Traffic management, e.g. flow control or congestion control based on conditions of the access network or the infrastructure network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0278Traffic management, e.g. flow control or congestion control using buffer status reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/08Load balancing or load distribution
    • H04W28/086Load balancing or load distribution among access entities
    • H04W28/0861Load balancing or load distribution among access entities between base stations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/11Allocation or use of connection identifiers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present technology relates to a wireless communication device, a wireless communication terminal, and a wireless communication method.
  • the present invention relates to communication terminals and wireless communication methods.
  • Multi-Link Operation is being considered as a method to meet high transmission speed requirements such as 8K transmission and xR (xReality).
  • a “link” is a wireless transmission path that allows data transmission between two wireless communication devices.
  • each link is divided, for example, in the frequency domain and selected from among multiple wireless transmission paths that are independent of each other.
  • MLD Multi-link Device
  • MLD is a logical entity containing two or more STAs and has only one SAP (service access point) to the upper layer.
  • An MLD in which each STA included is an AP is called an AP MLD
  • an MLD in which each STA included is a non-AP is called a non-AP MLD.
  • MLD uses multiple links for transmission.
  • due to factors such as the degree of frequency proximity between links there are cases where the transmission signal on one link leaks, causing strong interference with the reception signal on another link and degrading the communication quality.
  • NSTR Nonsimultaneous transmit and receive
  • STR Simultaneous transmit and receive
  • AP MLD and non-AP MLD communicate using a certain link pair
  • that link pair is STR link pair for AP MLD and NSTR link pair for non-AP MLD
  • AP MLD defines STR AP MLD and non-AP MLD to be non-STR non-AP MLD.
  • AP MLD is multiple links for non-STR non-AP MLD, and downlink PPDU (Physical.layer(PHY) Protocol Data Unit) format MAC (Medium Access Control) frame It describes the conventions for a Trigger frame that is sent to induce a certain UL (Up Link) PPDU.
  • PPDU Physical.layer(PHY) Protocol Data Unit
  • MAC Medium Access Control
  • AP MLD transmits a Trigger frame on multiple links to non-STR non-AP MLD, and transmits UL (Up Link) PPDU, which is an uplink frame.
  • UL Up Link
  • This technology was developed in view of this situation, and enables UL MU communication with the desired number of terminals.
  • a wireless communication device includes a wireless communication terminal, a communication unit that performs communication using a plurality of links, first information related to frame transmission on a first link, and a second link. and a communication control unit that causes a first trigger frame to be transmitted on the first link, the first trigger frame including second information relating to transmission of at least a portion of the frame in the .
  • a wireless communication terminal communicates with a wireless communication device over a plurality of links, and includes first information related to frame transmission over the first link and frame transmission over the second link.
  • a communication unit for receiving a first Trigger frame containing second information relating to transmission of at least part of the and a second Trigger frame containing third information relating to transmission of frames on the second link; and a communication control unit for transmitting a frame on the second link based on the second information and the third information.
  • communication is performed with a wireless communication terminal using a plurality of links. and a first trigger frame including first information about transmission of the frame on the first link and second information about transmission of at least part of the frame on the second link, Sent with a link.
  • communication is performed with a wireless communication device over a plurality of links, and first information about transmission of frames over the first link and at least transmission of frames over the second link are provided.
  • a first Trigger frame containing second information regarding a portion of the transmission and a second Trigger frame containing third information regarding transmission of frames on the second link are received.
  • a frame is then transmitted over the second link based on the second information and the third information.
  • FIG. 10 is a diagram showing an example of a conventional sequence
  • 1 is a block diagram showing a configuration example of a wireless communication device
  • FIG. FIG. 4 is a diagram showing a configuration example of a Trigger Plus frame of the present technology
  • FIG. 10 is a flowchart for explaining processing of AP MLD
  • FIG. 10 is a flowchart for explaining non AP MLD processing
  • FIG. 1 is a block diagram showing a configuration example of a wireless communication device
  • FIG. It is a figure which shows the sequence example in 2nd Embodiment of this technique.
  • FIG. 9 is a block diagram showing a configuration example of part of a communication unit in FIG. 8; It is a block diagram which shows the structural example of a computer.
  • FIG. 1 is a diagram showing a configuration example of a wireless communication system according to an embodiment of the present technology.
  • data is transmitted and received by wireless communication (MLO) using multiple links.
  • MLO wireless communication
  • each link is, for example, divided in the frequency domain and selected from among multiple wireless transmission paths that are independent of each other.
  • Each link uses, for example, a channel selected from a plurality of channels included in one of frequency bands such as 2.4 GHz band, 5 GHz band, 6 GHz band, and 920 MHz band.
  • MLD is a logical entity containing two or more STAs and has only one SAP to upper layers.
  • the wireless communication system in FIG. 1 is composed of one AP MLD1 and three non-AP MLD1 to non-AP MLD3. non-AP MLD1 to non-AP MLD3 are connected to AP MLD1.
  • the solid line connecting AP MLD1 and non-AP MLD1 to non-AP MLD3 represents link1 (first link), and the broken line connecting AP MLD1 and non-AP MLD1 to non-AP MLD3 is Represents link2 (second link).
  • AP MLD1 is a wireless communication device that operates as a base station that supports MLO.
  • AP MLD1 contains AP1-1 and AP1-2.
  • AP1-1 is a logical entity that operates using link1.
  • AP1-2 is a logical entity working with link2.
  • Non-AP MLD1 to non-AP MLD3 are wireless communication devices that operate as MLO-compatible terminals.
  • non-AP MLD1 includes non-AP STA1-1 and non-AP STA1-2.
  • non-AP STA1-1 is a logical entity operating with link1.
  • non-AP STA1-2 is a logical entity operating with link2.
  • non-AP MLD2 includes non-AP STA2-1 and non-AP STA2-2.
  • non-AP STA2-1 is a logical entity operating with link1.
  • non-AP STA2-2 is a logical entity that operates using link2.
  • non-AP MLD3 includes non-AP STA3-1 and non-AP STA3-2.
  • non-AP STA3-1 is a logical entity operating with link1.
  • non-AP STA3-2 is a logical entity operating with link2.
  • AP1 communicates with non-AP STA1-1 to non-AP STA3-1 using link1.
  • AP2 communicates with non-AP STA1-2 to non-AP STA3-2 using link2.
  • Link1 and link2 may be two channels selected from the same frequency band or two channels selected from different frequency bands.
  • the number of links used between AP MLD1 and non-AP MLD1 to non-AP MLD3 is not limited to two, and communication may be performed using three or more links. Also, the number of non-AP MLDs is not limited to three, and four or more non-AP MLDs may be connected to AP MLD1.
  • MLD uses multiple links for transmission.
  • transmission signals on one link may leak, and interference with received signals on other links may be strong, degrading communication quality.
  • NSTR link pair a link pair that causes restrictions on simultaneous transmission and reception between links
  • STR link pair a link pair that does not have restrictions on simultaneous transmission and reception of signals between links, such as the fact that leakage power between links does not affect communication quality
  • AP MLD when AP MLD and non-AP MLD communicate using a certain link pair, that link pair is STR link pair for AP MLD and NSTR link pair for non-AP MLD. , then AP MLD is defined to be STR AP MLD and non-AP MLD to be non-STR non-AP MLD. Therefore, hereinafter, AP MLD shall be STR AP MLD, and non-AP MLD shall be non-STR non-AP MLD, even if there is no description of STR or non-STR.
  • link1 and link2 are NSTR link pair
  • link1 and link3 and link2 and link3 are Combinations of links such as STR link pair
  • the operations described herein apply to operations on link1 and link2.
  • the STR link pair link1 and link3 can be dynamically changed to the NSTR link pair by changing the transmission power, transmission band, or the like.
  • the operations described herein also apply to the operations on link1 and link3.
  • Non-Patent Literature 1 describes the arrangements for Triggers that are transmitted when AP MLD transmits DL PPDUs over multiple links to non-STR non-AP MLD.
  • the DL PPDU is sent from non-STR non-AP MLD after SIFS (Short Inter Frame Space) from the end of transmission. If the PPDU requests an immediate response, the AP MLD sets the difference in the transmission end times of the DL PPDUs between links to within 8us and transmits the DL PPDU.
  • SIFS Short Inter Frame Space
  • the AP MLD transmits the DL PPDU with the difference in the transmission end time of the DL PPDU between the links within 4us.
  • FIG. 2 is a diagram showing a sequence when AP MLD1 induces UL MU communication on link1 and link2 for non-AP MLD1 to non-AP MLD3, which are non-STRs, using Trigger frames.
  • FIG. 2 shows an example in which non-AP MLD1 to non-AP MLD3, which are non-STR non-AP MLDs, are connected to AP MLD1, and communication is performed using link1 and link2, respectively. ing.
  • the AP MLD should send Trigger (Trigger1, Trigger2) frames on both link1 and link2, as shown at time t1 and time t2.
  • AP MLD1 acquires the transmission right for link1 at time t1, transmits Trigger1 frames to non-AP MLD1 to non-AP MLD3, and transmits link2 at time t2. acquire the rights and transmit Trigger2 frames to non-AP MLD1 and non-AP MLD2.
  • AP MLD1 ends transmission of the Trigger1 frame and the Trigger2 frame at the same time.
  • AP MLD1 attempts to acquire transmission rights independently on link1 and link2, so there may be a time lag between the transmission start times of the Trigger1 and Trigger2 frames. For example, if NAV (Network Allocation Vector: transmission prohibited period) is set due to transmission of another terminal on link2, or if there is a difference between the backoff counters set on link1 and link2, the Trigger2 frame The transmission start time may be much later than the transmission of Trigger1 frame.
  • NAV Network Allocation Vector: transmission prohibited period
  • the transmission end times of the Trigger1 frame and Trigger2 frame must be aligned. Therefore, when the transmission of the Trigger2 frame on link2 is delayed from the transmission of the Trigger1 frame on link1, as at time t3, there is a restriction on the time that the Trigger2 frame can be transmitted. Therefore, the number of User Info included in the Trigger2 frame is restricted, and the Trigger2 frame may not be transmitted to non-AP MLD3 as at time t2. In such a case, the desired number of users (terminals) cannot be multiplexed in UL MU communication on link2.
  • non-AP MLD1 to non-AP MLD3 transmit TB (Trigger-based) PPDU to AP MLD1 on link1 at time t4 based on the Trigger1 frame.
  • TB Trigger-based
  • PPDU is a MAC frame in PPDU (PHY Protocol Data Unit) format to which a PHY preamble, PHY header, PE (Packet Extension), etc. are added, as described above.
  • a PPDU is a frame containing at least one of data, management information, and control information.
  • non-AP MLD1 to non-AP MLD3 end TB PPDU transmission on link1 and link2 at time t5.
  • AP MLD1 transmits Multi-STA BlockAck frames to non-AP MLD1 to non-AP MLD3 on link1, and Multi-STA BlockAck frames to non-AP MLD1 and non-AP MLD2 on link2.
  • -Send a STA BlockAck frame Note that the frame transmitted as a TB PPDU acknowledgment may be a BlockAck frame addressed to an individual address instead of a Multi-STA BlockAck frame.
  • the transmission start time of the Trigger frame differs between links, the possible transmission time of the Trigger frame that is transmitted with a delay will be restricted, and multiplexing for the desired number of terminals may become difficult.
  • a Trigger frame of link1 in communication over a plurality of links, includes information about transmission of at least part of a frame transmitted over link2 and is transmitted.
  • FIG. 3 is a block diagram showing a configuration example of a wireless communication device to which the present technology is applied.
  • the wireless communication device 11 shown in FIG. 3 is a wireless communication device that operates as an AP MLD or non-AP MLD.
  • the wireless communication device 11 is composed of a communication section 31, a control section 32, a storage section 33, and antennas 41-1 and 41-2.
  • Antennas 41-1 and 41-2 are collectively referred to as antenna 41 when there is no need to distinguish them.
  • the communication unit 31 transmits and receives data.
  • the communication unit 31 is configured to include amplifier units 51-1 and 51-2, radio interface units 52-1 and 52-2, and signal processing units 53-1 and 53-2. Also, the communication unit 31 is configured to include a data processing unit 54 , a communication control unit 55 , and a communication storage unit 56 .
  • the amplifiers 51-1 and 51-2, the radio interface units 52-1 and 52-2, and the signal processors 53-1 and 53-2 are respectively the amplifier unit 51 and the radio interface units 53-1 and 53-2. These are collectively referred to as interface section 52 and signal processing section 53 .
  • the amplifier unit 51 amplifies the analog signal supplied from the wireless interface unit 52 to a predetermined power during transmission, and outputs the analog signal with the amplified power to the antenna 41 .
  • the amplifying unit 51 amplifies the analog signal supplied from the antenna 41 to a predetermined power during reception, and outputs the amplified analog signal to the radio interface unit 52 .
  • a part of the function of the amplifier section 51 may be included in the wireless interface section 52 . Also, part of the functions of the amplification unit 51 may be a component outside the communication unit 31 .
  • the radio interface unit 52 converts the transmission symbol stream from the signal processing unit 53 into an analog signal, performs filtering, up-conversion to a carrier frequency, and phase control, and transmits the phase-controlled analog signal to an amplifier unit. 51.
  • the radio interface unit 52 performs phase control, down-conversion, and inverse filtering on the analog signal supplied from the amplifier unit 51, and converts the received symbol stream into a digital signal to the signal processing unit 53. Output.
  • the signal processing unit 53 performs encoding, interleaving, modulation, etc. on the data unit supplied from the data processing unit 54, adds a physical header, and outputs the transmission symbol stream to each radio interface unit 52. do.
  • the signal processing unit 53 analyzes the physical header of the received symbol stream supplied from each radio interface unit 52 at the time of reception, performs demodulation, deinterleaving, decoding, etc. on the received symbol stream, and generates data units.
  • the generated data unit is output to the data processing section 54 .
  • the data processing unit 54 is composed of individual data processing units 61-1 and 61-2 and a common data processing unit 62.
  • the individual data processing units 61-1 and 61-2 are collectively referred to as the individual data processing unit 61 when there is no need to distinguish between them.
  • the individual data processing unit 61 performs channel access operations based on carrier sense, addition of MAC headers and error detection codes to data to be transmitted, and concatenation processing of multiple data units.
  • the individual data processing unit 61 performs processing for decoupling the MAC header of the received data unit, analysis and error detection, and retransmission request operation.
  • the common data processing unit 62 performs sequence management of the data held in the communication storage unit 56 and the control information and management information received from the communication control unit 55 at the time of transmission.
  • the common data processing unit 62 also performs encryption processing of control information and management information, etc., generates data units, and allocates the generated data units to the individual data processing units 61-1 and 61-2.
  • the common data processing unit 62 performs analysis processing and reorder processing of the data unit when receiving.
  • the antenna 41, the amplifier 51, the radio interface 52, the signal processor 53, and the individual data processor 61 are grouped together with the same branch number (hereinafter, also referred to as individual communication set) as surrounded by dashed lines. ).
  • the individual communication set also includes an individual control unit 71, which will be described later, although it is not surrounded by a dashed line.
  • the individual communication set indicates the AP. If the wireless communication device 11 is non-AP MLD, the dedicated communication set indicates non-AP STA.
  • Each set becomes a component of the wireless communication device 11 and performs wireless communication on each link.
  • the storage unit 33 may be included in each set.
  • the operations of the individual data processing unit 61 and the common data processing unit 62 are not limited to the operations described above, and one of them may perform the operation of the other, for example.
  • the individual data processing unit 61 may be defined such that all functions of the common data processing unit 62 are implemented for each individual communication set.
  • each link used by each group may have a different frequency band.
  • the signal processing unit 53 and the individual data processing unit 61 each have the same branch number, and each of them has one set, and these two sets or three or more sets are connected to one radio interface unit 52. may be
  • the communication control section 55 controls the operation of each section of the communication section 31 and information transmission between the sections. Further, the communication control unit 55 performs control to transfer control information and management information to be notified to other wireless communication devices to the individual data processing unit 61 and the common data processing unit 62 .
  • the communication control unit 55 has individual control units 71-1 and 71-2 that control each individual communication set, and a common data processing unit 62 and a common control unit 72 that implements control common to each individual communication set.
  • the individual control units 71-1 and 71-2 are collectively referred to as the individual control unit 71 when there is no need to distinguish between them.
  • the individual control unit 71 transmits information about UL communication induced in each link to other individual control units 71, and controls each unit so that it is included in the Trigger frame and transmitted. At this time, the control information may be transmitted via the common control section 72 .
  • the communication storage unit 56 holds information used by the communication control unit 55.
  • the communication storage unit 56 also holds data to be transmitted and data received.
  • the control unit 32 is composed of a CPU (Central Processing Unit), ROM (Read Only Memory), RAM (Random Access Memory), and the like.
  • the control unit 32 executes programs stored in a ROM or the like, and controls the communication unit 31 and the communication control unit 55 . Also, the control unit 32 may perform part of the operation of the communication control unit 55 instead. Also, the communication control unit 55 and the control unit 32 may be configured as one block.
  • the storage unit 33 holds information used by the communication unit 31 and the control unit 32. Moreover, the memory
  • the storage unit 33 and the communication storage unit 56 may be configured as one block.
  • the antenna 41, the amplifier unit 51, and the radio interface unit 52 each have the same branch number, and each group has the same branch number. good too. Also, the communication unit 31 is realized by one or more LSIs.
  • the individual data processing unit 61 is also called Lower MAC.
  • the common data processing unit 62 is also called Upper MAC or Higher MAC.
  • a set of the individual data processing unit 61 and the common data processing unit 62 is also called an AP entity or a non-AP entity.
  • the communication control unit 55 is also called an MLD (Multi-link Device) management entity.
  • FIG. 4 is a diagram showing a configuration example in the MAC layer of the Trigger Plus frame of this technology.
  • the Trigger Plus frame consists of Frame Control, Duration, RA (Receiving STA address), TA (Transmitting STA address), Common Info, User Info List, Padding, and FCS (Frame Check Sequence) fields.
  • the Trigger Plus frame in FIG. 4 is a Trigger frame that includes other link transmission information, which is information regarding the transmission of frames on links other than the own link, in a conventional Trigger frame. Other link transmission information is included for each User corresponding to the User Info List field.
  • the other link transmission information includes at least a link ID that identifies the other link, a channel and RU (Resource Unit) in the band used by the other link, the number of transmission streams (SS), and UL Length ( length of frames transmitted on other links).
  • a link ID that identifies the other link
  • a channel and RU Resource Unit
  • SS number of transmission streams
  • UL Length length of frames transmitted on other links
  • the other link transmission information may include information such as transmission power, MCS (Modulation and Coding Scheme), and AID (Association ID).
  • link transmission information includes FEC Coding Type (BCC or LDPC), information indicating whether to use DCM (Dual Carrier Modulation), MPDU (MAC Protocol Data Unit) MU (Multi User) Apacing factor (MDPU position information) may be included.
  • FEC Coding Type BCC or LDPC
  • DCM Double Carrier Modulation
  • MPDU MAC Protocol Data Unit
  • MU Multi User Apacing factor
  • Other link transmission information includes TID Aggregation Limit (information on upper limit of aggregation of A-MDPU), Preferred AC (information on access category to be transmitted), and Trigger Type (Trigger frame and TB PPDU which is a frame induced by Trigger frame). (information on the type of
  • Other link transmission information includes information such as More TF (whether Trigger frames can be transmitted on other links) and CS required (whether carrier sense is required before transmission of TB PPDU). good too.
  • link transmission information includes GI (Guard Interval) and LTF type (information on GI and LTF types of TB PPDU), Number of LTF Symbols And Midamble Periodicity (information on the number of LTF symbols of TB PPDU and the period of midamble), etc. It may contain information.
  • GI Guard Interval
  • LTF type information on GI and LTF types of TB PPDU
  • Number of LTF Symbols And Midamble Periodicity information on the number of LTF symbols of TB PPDU and the period of midamble
  • the other link transmission information may include information such as UL STBC (information on TB PPDU encoding method), LDPC Extra Symbols segment (LDPC code information), AP Tx Power (AP transmission power information).
  • UL STBC information on TB PPDU encoding method
  • LDPC Extra Symbols segment LDPC code information
  • AP Tx Power AP transmission power information
  • link transmission information may include information such as Rre-FEC Padding Factor/PE Disambiguity (information on the length of Pre-FEC padding and PacketExtension fields) and UL Spatial Reuse (information on spatial reuse).
  • Rre-FEC Padding Factor/PE Disambiguity information on the length of Pre-FEC padding and PacketExtension fields
  • UL Spatial Reuse information on spatial reuse
  • Other link transmission information includes information such as Doppler (information on whether to include Midamble), UL SIG-A Reserved (information on information to be included in the reserved part of the preamble), and information on PPDU format of TB PPDU. may be included.
  • the Frame Control field contains information indicating that this frame is the Trigger frame.
  • the Duration field contains information indicating the communication period covered by this frame.
  • the RA field contains information indicating the destination device.
  • the RA may indicate, for example, a device-specific MAC address.
  • the TA field contains information indicating the source device.
  • the TA may indicate, for example, a device-specific MAC address.
  • the Common Info field contains information common to all users.
  • Common Info includes at least the Trigger Type, Link Info Present, and Trigger Dependent Common Info subfields.
  • the Trigger Type subfield contains the Trigger Type information described above. Note that the Trgger Type subfield may include information indicating that information related to transmission of TB PPDUs on other links is Trigger (Trigger Plus) of Type included in User Info, which will be described later.
  • the Link Info Present subfield contains information indicating that information on the transmission of TB PPDUs on other links is included.
  • the Trigger Dependent Common Info field contains common information about the Trigger.
  • the User Info List field consists of User Info subfields that contain each user's information.
  • a user represents a terminal such as a non-AP STA.
  • the users include not only users of the link that transmits this frame, but also users of other links. That is, other link transmission information is stored for each User in this User Info subfield.
  • the User Info subfield consists of at least the RU Allocation, Link ID, and Trigger Dependent User Info subfields.
  • the RU Allocation subfield contains information on the in-band channels and RUs used by the corresponding user's link.
  • the Link ID subfield contains the link identification information of the corresponding user.
  • the Trigger Dependent User Info subfield contains the relevant user's information related to the Trigger.
  • the FCS subfield contains an error detection code.
  • FIG. 5 is a diagram illustrating a sequence example in the first embodiment of the present technology
  • non-AP MLD1 to non-AP MLD3, which are non-STR non-AP MLDs are connected to AP MLD1.
  • a case of communication using link2 is shown.
  • AP MLD1 acquires the transmission right on link1.
  • AP MLD1 generates a scheduled time to acquire the transmission right on link2 predicted from access delays collected in advance, and a trigger frame for inducing UL transmission of non-AP MLD1 to non-AP MLD3 on link1. Calculate the difference between the estimated transmission end times when the
  • AP MLD1 determines that it cannot transmit a Trigger frame containing information for inducing all of non-AP MLD1 to non-AP MLD3 within the scheduled transmission end time. Then, AP MLD1, in addition to information on UL transmission of non-AP MLD1 to non-AP MLD3 on link1, provides information on UL transmission on link2 of at least one of non-AP MLD1 to non-AP MLD3, For example, a Trigger Plus (Trigger1 + link2 User Info) frame described in the User Info field is generated and transmitted at time t11. In the case of FIG. 5, for example, an example in which a Trigger Plus frame containing information about UL transmission on link2 of non-AP MLD3 is generated will be described.
  • AP MLD1 acquires the transmission right on link2, and at time t12, information such as the length of the TB PPDU common to UL transmissions of non-AP MLD1 to non-AP MLD3 is sent to Trigger described in the Common Info field, for example. (Trigger2) Send frame. Note that the User Info field of the Trigger2 frame contains information on UL transmission of non-AP MLD1 and non-AP MLD2.
  • AP MLD1 ends transmission of the Trigger Plus frame and Trigger2 frame at the same time.
  • Non-AP MLD1 to non-AP MLD1 receive the Trigger Plus frame on link1 and the Trigger2 frame on link2.
  • non-AP MLD1 to non-AP MLD3 transmit TB PPDU on link1 based on the information described in the Trigger Plus frame. Also, non-AP MLD1 and non-AP MLD2 transmit TB PPDU on link2 based on the information described in the Trigger2 frame. Non-AP MLD3 transmits TB PPDU on link2 based on the information described in the Trigger Plus frame and Trigger2 frame.
  • AP MLD1 transmits a Multi-STA BlockAck frame to non-AP MLD1 to non-AP MLD3 on link1 at time t16. Also, AP MLD1 starts transmitting Multi-STA BlockAck frames to non-AP MLD1 to non-AP MLD3 on link2. At time t17, transmission of Multi-STA BlockAck frames on link1 and link2 ends.
  • non-AP MLD1 to non-AP MLD3 In response to transmission of the Multi-STA BlockAck frame by AP MLD1, non-AP MLD1 to non-AP MLD3 start receiving Multi-STA BlockAck frames on link1 and link2 at time t16, and link1 starts receiving Multi-STA BlockAck frames on link1 and link2 at time t17. And reception of the Multi-STA BlockAck frame on link2 ends.
  • FIG. 6 is a flowchart for explaining the processing of AP MLD1.
  • step S11 the communication control unit 55 of AP MLD1 collects information on the communication environment of each link.
  • Information about the communication environment of each link includes the average access delay (Average Access Delay), which is the average value of the time from when an attempt is made to acquire the transmission right to when the signal is actually transmitted, and the traffic held by the terminals under its control. , information on the Capability of subordinate terminals, and information on the random waiting time of APs for each link.
  • Average Access Delay Average Access Delay
  • the information about the traffic held by the terminals under its control is, for example, the Buffer Status Report.
  • Information related to the Capability of terminals under its control includes information indicating whether the link pair in operation is a STR link or NSTR link, and the amount of interference between links.
  • Information about the random latency of APs on each link includes the access category, contention window, and remaining backoff counter.
  • the communication control unit 55 of AP MLD1 acquires the transmission right on link1.
  • step S13 the communication control unit 55 of AP MLD1 determines whether or not the Trigger frame of link1 includes information regarding the transmission of TB PPDU of each user of link2.
  • step S13 is carried out using at least one of the capability information and the information collected in advance in step S11.
  • the determination in step S13 is made based on whether or not the acquisition time of the transmission right on link2 is equal to or longer than the first threshold after the Trigger frame is transmitted on link1. That is, if the acquisition time of the transmission right on link2 is equal to or longer than the first threshold, it is determined in step S13 that the Trigger frame of link1 includes information on transmission of the TB PPDU of each user of link2.
  • the first threshold is, for example, aSlotTime(9us) ⁇ 3.
  • step S13 the determination in step S13 is made based on whether the Average Access Delay of link2 is equal to or less than the second threshold. That is, if the Average Access Delay of link2 is equal to or less than the second threshold, it is determined in step S13 that the Trigger frame of link1 includes information regarding the transmission of the TB PPDU of each user of link2.
  • the second threshold is, for example, 144us.
  • step S13 the determination in step S13 is made based on whether or not the remaining backoff counter of link2 is equal to or less than the AverageAccessDelay of link2. That is, if the remaining backoff counter of link2 is equal to or less than the Average Access Delay of link2, it is determined in step S13 that the Trigger frame of link1 includes information regarding the transmission of TB PPDUs of each user of link2.
  • step S13 If it is determined in step S13 that the Trigger frame of link1 includes the information on the transmission of the TB PPDU of each user of link2, the process proceeds to step S14.
  • the Trigger frame of link1 may include, for example, information only for non-AP MLD3, or may include information for all users.
  • step S14 the communication control unit 55 of AP MLD1 transmits a Trigger frame containing information regarding the transmission of TB PPDU of each user of link2 on link1.
  • step S13 If it is determined in step S13 that the Trigger frame of link1 does not include information regarding the transmission of TB PPDUs of each user of link2, the process proceeds to step S15.
  • step S15 the communication control unit 55 of AP MLD1 transmits on link1 a Trigger frame that does not contain information regarding the transmission of TB PPDUs of each user on link2.
  • step S14 or S15 the process proceeds to step S16.
  • step S16 the communication control unit 55 of AP MLD1 determines whether or not the transmission right has been acquired on link2 during transmission of the Trigger frame on link1. If it is determined in step S16 that the link2 has acquired the transmission right during transmission of the link1 trigger frame, the process proceeds to step S17.
  • step S17 the communication control unit 55 of AP MLD1 transmits a Trigger frame on link2.
  • the information about the device including the information in the Trigger Plus frame is also described in the Trigger frame of link2, and if the Trigger frame of link2 is acquired, the information due to the reception of the Trigger Plus frame can be set to be discarded. good.
  • MCS Modulation and Coding Scheme: combinations of modulation schemes, coding rates, etc. Indexed
  • step S17 the process ends.
  • step S16 if it is determined in step S16 that link2 has not acquired the transmission right while link1 is transmitting the Trigger Plus frame, the process ends.
  • FIG. 7 is a flowchart for explaining non-AP MLD processing.
  • step S31 the communication control unit 55 of the non-AP MLD receives the Trigger frame of link1 on link1.
  • step S32 the communication control unit 55 of the non-AP MLD receives the Trigger frame of link2 on link2.
  • the received link1 Trigger frame contains information about the transmission of the link2 TB PPDU related to itself, and the received link2 Trigger frame also contains the link2 related Trigger frame. If information related to TB PPDU transmission is described, the link1 Trigger frame information may be discarded and only the link2 Trigger frame information may be retained.
  • step S33 the non-AP MLD communication control unit 55 transmits the TB PPDU based on the information acquired from the link1 Trigger frame and the link2 Trigger frame.
  • the information obtained from the Trigger frame of link1 and the Trigger frame of link2 is the same information as the other link transmission information described above with reference to FIG.
  • the transmission of the TB PPDU in step S33 is stopped.
  • step S33 the process ends.
  • the Trigger frame of link1 includes information about the transmission of at least part of the frame of link2 and is transmitted. This enables UL MU communication with a desired number of terminals.
  • Second Embodiment> In the first embodiment, if the transmission start times of the Trigger frames differ between links, the transmittable time of the Trigger frames that are transmitted with delay is restricted, making it difficult to multiplex frames for the desired number of terminals. Techniques for fear were shown.
  • EMLMR mode allows multiple links to share RF chains (amplifiers, etc.) to dynamically switch the number of RF chains used in each link, and changes the maximum number of transmission/reception streams in each link (EMLMR mode). ).
  • the switching operation of this RF chain has a certain amount of time due to device implementation restrictions such as the performance of the switch for switching the RF chain.
  • an MLD that supports ELMMR mode may not be able to transmit TB PPDUs with the desired number of transmission streams after the SIFS time has passed since receiving the Trigger frame.
  • This technology can also be applied to such MLDs that support ELMMR mode.
  • FIG. 8 is a block diagram showing another configuration example of a wireless communication device to which the present technology is applied.
  • the wireless communication device 11 shown in FIG. 8 is a wireless communication device that operates as an AP MLD or non-AP MLD and supports EMLMR mode.
  • the wireless communication device 11 of FIG. 8 can dynamically switch which link uses the wireless interface unit 52, the amplifier unit 51, and the antenna 41, which are connected to the individual data processing unit 61 and the signal processing unit 53.
  • the only difference is the possible points, and the other parts are common to the wireless communication device 11 of FIG.
  • FIG. 9 is a diagram illustrating a sequence example in the second embodiment of the present technology.
  • non-AP MLD1 to non-AP MLD3, which are non-STR non-AP MLDs are connected to AP MLD1.
  • a case of communication using link2 is shown.
  • non-AP MLD3 corresponds to EMLMR mode as shown in FIG.
  • FIG. 10 is a diagram showing an example of RF-Chain switching operation of non-AP MLD3 in FIG.
  • FIG. 10 shows part of the communication unit 31 of the non-AP MLD3, which is the wireless communication device 11 compatible with EMLMR mode.
  • non-AP MLD3 has 1 Upper MAC, 2 Lower MACs, 2 PHY blocks, 2 RF chains (a combination of Tx chain and Rx-chain), and a Switch. 2, an MLD with two antennas. Of the two, the right side functions for link1 and the left side functions for link2.
  • the upper MAC is the common data processing unit 62 in FIG. 8, the lower MAC is the individual data processing unit 61, and the PHY block is the signal processing unit 53.
  • the antenna is antenna 41 .
  • the RF chain corresponds to the amplifier section 51, and the interface portion between the PHY block and the RF chain is the radio interface section 52.
  • FIG. 10A shows an example of a state in which the RF chains for link1 and link2 are functioning as Rx chains for each link.
  • the signal of link1 received by the antenna for link1 is input to the PHY block for link1 via the switch for link1 and the Rx chain for link1.
  • the link2 signal received by the link2 antenna is input to the link2 PHY block via the link2 switch and the link2 Rx chain.
  • FIG. 10B shows a state in which the RF chain for link1 functions as the Tx chain for link2, and the RF chain for link2 functions as the Rx-chain for link2.
  • the signal of link2 received by the antenna for link2 is input to the PHY block for link2 via the Switch for link2 and the Rx chain for link2, and the PHY block for link2
  • the signal of link2 from is output from the antenna for link1 via the Tx chain for link1 and the switch for link1.
  • FIG. 10C shows a state in which the RF chain for link1 functions as the Tx chain for link2, and the RF chain for link2 functions as the Tx chain for link2.
  • the signal of link2 from the PHY block for link2 is output from the antenna for link1 via the Tx chain for link1 and the Switch for link1, and the Tx chain for link2 and output from the antenna for link2 via the Switch for link2.
  • AP MLD1 acquires the transmission right on link1.
  • AP MLD1 collects information on the communication environment of each link before obtaining the transmission right. That is, non-AP MLD1 to non-AP MLD3 transmit information about the communication environment of each link to AP MLD1.
  • EMLSR Enhanced Multi-Link Single- Radio
  • EMLMR mode and the chain switching delay time during EMLSR or EMLMR mode operation are additionally obtained in the case of FIG.
  • information on the maximum number of transmission streams and the maximum number of reception streams on each link of EMLMR information on the EMLSR mode or the operating time in the EMLMR mode is additionally acquired as information on the Capability of the terminal under control.
  • the information on the Capability of the terminal under control may include information on transmission/reception parameters such as bandwidth and MCS that are supported during operation in EMLMR mode or EMLSR mode.
  • AP MLD1 determines the number of non-AP MLD3 transmission streams that support EMLMR mode based on the information about these EMLMRs that are obtained.
  • MLDs that support EMLSR mode usually operate with only one link.
  • CCA Carrier Channel assessment
  • Some control frames are, for example, MU-RTS Trigger frames or BSRP (Buffer Status Report Poll) Trigger frames.
  • an MLD that supports EMLSR mode When an MLD that supports EMLSR mode receives some of the above-mentioned control frames from the AP while operating in EMLSR mode, it can switch the RF chain, etc. so that transmission and reception can be performed on the received link.
  • the second embodiment will be described using the EMLMR mode as an example, but the second embodiment of the present technology may also be applied to the EMLSR mode.
  • AP MLD1 generates a scheduled time to acquire the transmission right on link2 predicted from access delays collected in advance, and a trigger frame for inducing UL transmission of non-AP MLD1 to non-AP MLD3 on link1. Calculate the difference between the estimated transmission end times when the
  • AP MLD1 determines whether or not it is possible to transmit a Trigger frame containing information for inducing all of non-AP MLD1 to non-AP MLD3 within the scheduled transmission end time, to non-AP MLD3 2SS ( SS: number of transmission streams), and determine whether or not it is possible to secure time for non-AP MLD3 to switch RF chains.
  • AP MLD1 in addition to information on UL transmission of non-AP MLD1 to non-AP MLD 3 on link1, non-AP MLD1
  • a Trigger Plus (Trigger1 + link2 User Info) frame in which information about UL transmission on link2 of at least one of non-AP MLD3 is described in the User Info field is generated and transmitted at time t21.
  • AP MLD1 transmits a Trigger Plus frame with 1SS so that non-AP MLD3 can receive it on link1.
  • Non-AP MLD3 receives the Trigger Plus frame on link1 and acquires the information allocated for transmission on link2 and 2SS. At time t22, Non-AP MLD3 starts switching the Tx chain connected to the PHY block for link1 to the PHY block for link2 for transmission of link1.
  • AP MLD1 acquires the transmission right on link2, and at time t23, sends a Trigger2 frame in which information such as the length of the TB PPDU common to UL transmissions of non-AP MLD1 to non-AP MLD3 is described in the Common Info field. Send.
  • AP MLD1 finishes transmitting the Trigger Plus frame and Trigger2 frame at the same time.
  • Non-AP MLD1 to non-AP MLD3 receive the Trigger Plus frame on link1 and the Trigger2 frame on link2.
  • the Non-AP MLD3 After receiving the Trigger Plus frame and Trigger2 frame, the Non-AP MLD3 switches the RF chain connected with the antenna for link2 based on the Trigger Plus frame to the Tx chain connected to the PHY block for link2 from the Rx chain. Switch to chain. As a result, the state of the Tx chain of the Non-AP MLD3 is switched from A in FIG. 10 to B in FIG.
  • Non-AP MLD3 switches the RF chain connected to the antenna for link1 from the Rx chain to the Tx chain connected to the PHY block for link1.
  • non-AP MLD1 and non-AP MLD2 transmit TB PPDU on link1 based on the information described in the Trigger Plus frame. Also, non-AP MLD1 and non-AP MLD2 transmit TB PPDU on link2 based on the information described in the Trigger2 frame. At this time, non-AP MLD3 transmits TB PPDU in link2 and 2SS based on the information described in the Trigger Plus frame and Trigger2 frame.
  • AP MLD1 transmits a Multi-STA BlockAck frame to non-AP MLD1 and non-AP MLD2 on link1 at time t28.
  • link2 to non-AP MLD1 to non-AP MLD3.
  • transmission of Multi-STA BlockAck frames on link1 and link2 ends.
  • non-AP MLD1 and non-AP MLD2 In response to the transmission of the Multi-STA BlockAck frame by AP MLD1, non-AP MLD1 and non-AP MLD2 start receiving Multi-STA BlockAck frames on link1 at time t28, and start receiving Multi-STA BlockAck frames on link1 at time t29. Reception of the Multi-STA BlockAck frame ends.
  • non-AP MLD1 to non-AP MLD3 In response to the transmission of the Multi-STA BlockAck frame by AP MLD1, non-AP MLD1 to non-AP MLD3 start receiving Multi-STA BlockAck frames on link2 at time t28, and start receiving Multi-STA BlockAck frames on link2 at time t29. Reception of the Multi-STA BlockAck frame ends.
  • step S11 the following information is collected when information is collected in step S11, and determination is made in step S12 based on the following information. 6, the detailed description thereof will be omitted.
  • step S11 of FIG. 6 in addition to the case of the first embodiment, information on EMLSR or EMLMR mode is collected as information on Capability of subordinate terminals.
  • step S12 in FIG. This is done including based on whether there is a terminal that is
  • the non-AP MLD processing in the second embodiment is the MLD processing corresponding to ELMMR mode. is the same as the processing of APMLD described above with reference to , so a detailed description thereof will be omitted.
  • the Trigger Plus frame contains information about transmission of frames on link2 and 2SS. If so, the Tx chains of both links are switched to work on link2. Also, if the Trigger Plus frame contains information about frame transmission on link1 and 2SS, the Tx chains of both links are switched so that they can operate on link1.
  • MLD corresponding to ELMMR mode is also transmitted with information related to the transmission of at least part of the frame on link2 included in the Trigger frame of link1 in communication over multiple links.
  • RF chains can be switched, so UL MU communication can be performed with a desired number of terminals.
  • the Trigger frame of link1 in communication over a plurality of links, includes information about transmission of at least part of the frame of link2 and is transmitted.
  • a Trigger frame containing information on UL transmission of MLD frames of other links is also transmitted to MLDs that support EMLMR mode.
  • Trigger frame which is a frame that requests a response in the SIFS period, can be induced on another link for terminals that support EMLMR mode, which takes longer than SIFS to switch the RF chain.
  • RF chains can be switched, so UL MU communication can be performed with a desired number of terminals.
  • FIG. 11 is a block diagram showing an example of the hardware configuration of a computer that executes the series of processes described above by a program.
  • a CPU (Central Processing Unit) 301 , a ROM (Read Only Memory) 302 and a RAM (Random Access Memory) 303 are interconnected by a bus 304 .
  • An input/output interface 305 is further connected to the bus 304 .
  • the input/output interface 305 is connected to an input unit 306 such as a keyboard and a mouse, and an output unit 307 such as a display and a speaker.
  • the input/output interface 305 is also connected to a storage unit 308 such as a hard disk or nonvolatile memory, a communication unit 309 such as a network interface, and a drive 310 that drives a removable medium 311 .
  • the CPU 301 loads a program stored in the storage unit 308 into the RAM 303 via the input/output interface 305 and the bus 304 and executes the above-described series of processes. is done.
  • the program executed by the CPU 301 is recorded on the removable media 311, or provided via a wired or wireless transmission medium such as a local area network, the Internet, or digital broadcasting, and installed in the storage unit 308.
  • the program executed by the computer may be a program that is processed in chronological order according to the order described in this specification, or may be executed in parallel or at a necessary timing such as when a call is made. It may be a program in which processing is performed.
  • a system means a set of multiple components (devices, modules (parts), etc.), and it does not matter whether all the components are in the same housing. Therefore, a plurality of devices housed in separate housings and connected via a network, and a single device housing a plurality of modules in one housing, are both systems. .
  • Embodiments of the present technology are not limited to the above-described embodiments, and various modifications are possible without departing from the gist of the present technology.
  • this technology can take the configuration of cloud computing in which one function is shared by multiple devices via a network and processed jointly.
  • each step described in the flowchart above can be executed by a single device, or can be shared by a plurality of devices.
  • one step includes multiple processes
  • the multiple processes included in the one step can be executed by one device or shared by multiple devices.
  • This technique can also take the following configurations.
  • a wireless communication terminal a communication unit that performs communication over a plurality of links, a first trigger frame including first information relating to transmission of a frame on a first link and second information relating to transmission of at least a portion of a frame on a second link;
  • a wireless communication device comprising: a communication control unit for transmitting;
  • the second information includes at least one of identification information for identifying the second link, transmission resource information, information on the length of transmitting frames, and information on the transmission stream. (1) or (2) ).
  • the communication unit receives information about ELMMR (Enhanced Multi-Link Multi-Radio) transmitted from the wireless communication terminal, The wireless communication device according to (3), wherein, when the information on the transmission stream is included in the second information, the communication control unit determines the number of the transmission streams based on the information on the ELMMR. (5) The communication control unit determines whether or not to include the second information in the first Trigger frame before transmitting the first Trigger frame. Any one of (1) to (4) above. A wireless communication device as described. (6) The wireless communication device according to (5), wherein the communication control unit determines whether or not to include the second information in the first trigger frame, based on information about communication environment of each link.
  • ELMMR Enhanced Multi-Link Multi-Radio
  • the wireless communication device wherein the information about the communication environment of each link is a difference in random waiting time between the first link and the second link.
  • the wireless communication device wherein the information regarding the communication environment of each link is an average access delay of the second link.
  • the communication control unit transmits a second Trigger frame including third information regarding frame transmission on the second link on the second link so that the end time of the first Trigger frame is the same as that of the first Trigger frame.
  • the wireless communication device according to any one of (1) to (8), which causes transmission.
  • a wireless communication device Communicate with a wireless communication terminal using multiple links, causing a first trigger frame including first information about transmission of a frame on a first link and second information about transmission of a frame on a second link to be transmitted on the first link, wherein a first trigger frame is transmitted on the first link.
  • (11) Communicating with a wireless communication device over a plurality of links and providing first information regarding transmission of frames over a first link and second information regarding transmission of at least a portion of frames over a second link a communication unit that receives a first Trigger frame containing the A wireless communication terminal comprising: a communication control unit that transmits a frame on the second link based on the second information and the third information.
  • the second information includes at least one of identification information for identifying the second link, transmission resource information, information on length of transmitting frames, and information on a transmission stream. (11) or (12) ).
  • the communication unit transmits information about ELMMR (Enhanced Multi-Link Multi-Radio) to the wireless communication device.
  • the communication control unit selects the first link and the second link based on the information on the transmission stream determined by the wireless communication device that has received the information on the ELMMR (Enhanced Multi-Link Multi-Radio).
  • the wireless communication terminal according to (13), wherein the number of transmission streams used in is changed, and frames are transmitted with the changed number of transmission streams on at least one of the first link and the second link.
  • the wireless communication terminal Communicating with a wireless communication device over a plurality of links and providing first information regarding transmission of frames over a first link and second information regarding transmission of at least a portion of frames over a second link and a second Trigger frame containing third information regarding transmission of frames on the second link;
  • a wireless communication method comprising: transmitting a frame on the second link based on the second information and the third information.
  • 11 wireless communication device 31 communication unit, 41, 41-1, 41-2 antenna, 54 data processing unit, 51, 51-1, 51-2 amplification unit, 52, 52-1, 52-2 wireless interface unit, 53, 53-1, 53-2 signal processing unit, 55 communication control unit, 56 communication storage unit, 61, 61-1, 61-2 individual data processing unit, 62 common data processing unit, 71, 71-1, 71 -2 Separate control unit, 72 Common control unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本技術は、所望の端末数でのUL MU通信を行うことができるようにする無線通信装置、無線通信端末、および無線通信方法に関する。 無線通信装置は、無線通信端末と、複数のリンクでの通信を行い、第1のリンクでのフレームの送信に関すると、第2のリンクでのフレームの少なくとも一部の送信に関する第2の情報とを含む第1のTriggerフレームを、第1のリンクで送信させる。本技術は、無線通信システムに適用することができる。

Description

無線通信装置、無線通信端末、および無線通信方法
 本技術は、無線通信装置、無線通信端末、および無線通信方法に関し、特に、所望の端末数でのUL(Up Link) MU(Multi User)通信を行うことができるようにした無線通信装置、無線通信端末、および無線通信方法に関する。
 8K伝送やxR(xReality)などの高い伝送速度要求に対応する方法として、複数のリンクを用いた無線通信(Multi-Link Operation: MLO)が検討されている。「リンク」とは、2つの無線通信装置間でデータの伝送を行うことができる無線伝送路である。
 MLOを行う際、個々のリンクは、例えば周波数領域で分割され、互いに独立した複数の無線伝送路の中から選択される。
 MLOに対応したデバイスは、MLD(Multi-link Device)と呼ばれる。MLDは2以上のSTAを内包した論理エンティティであり、上位層へのSAP(service access point)を1つのみ有する。内包する各STAがAPであるMLDは、AP MLDと呼ばれ、内包する各STAがnon-APであるMLDは、non-AP MLDと呼ばれる。
 MLDは複数のリンクを用いて伝送を行う。ただし、MLDにおいては、リンク間の周波数の近接度合などの要因から、あるリンクでの送信信号が漏洩し、他のリンクでの受信信号に対する干渉が強く通信品質が劣化する場合がある。
 このように、リンク間で同時に送受信する際に制約が生じるリンクのペアは、NSTR(Nonsimultaneous transmit and receive) link pairと呼ばれる。これに対して、リンク間での漏洩電力が通信品質に影響しないなど、リンク間で同時に信号を送受信する際に制約のないリンクのペアは、STR(Simultaneous transmit and receive) link pairと呼ばれる。
 以下、あるlink pairを用いてAP MLDとnon-AP MLDが通信している場合、そのlink pairがAP MLDにとってはSTR link pairであり、non-AP MLDにとってはNSTR link pairであったとき、AP MLDはSTR AP MLDであり、non-AP MLDはnon-STR non-AP MLDであると定義する。
 非特許文献1には、Non-STR non-AP MLDに対してAP MLDが複数のリンクで、ダウンリンクのPPDU (Physical.layer(PHY) Protocol Data Unit)形式のMAC(Medium Access Control)フレームであるUL(Up Link) PPDUを誘起するために送信されるTriggerフレームについての取り決めが記載されている。
Yongho Seok,James Yee,Jianhan Liu,Thomas Pare、"Multi-link Triggered Uplink Access Follow Up"、IEEE 802.11-20/0671r3、2020年07月29日、インターネット検索<https://mentor.ieee.org/802.11/dcn/20/11-20-0671-03-00be-multi-link-triggered-uplink-access-follow-up.pptx 令和3年5月1日検索>
 非特許文献1に記載される取り決めでは、AP MLDが、non-STR non-AP MLDに対して複数のリンクで、Triggerフレームを送信し、アップリンクのフレームであるUL(Up Link) PPDUの送信を誘起する際、Triggerフレームの送信終了時間を揃える必要がある。
 しかしながら、リンク間で、Triggerフレームの送信開始時間がずれる場合、遅れて送信されるTriggerフレームの送信可能時間が制約されてしまい、所望の端末数分の多重が困難になってしまう恐れがある。
 本技術はこのような状況に鑑みてなされたものであり、所望の端末数でのUL MU通信を行うことができるようにするものである。
 本技術の第1の側面の無線通信装置は、無線通信端末と、複数のリンクでの通信を行う通信部と、第1のリンクでのフレームの送信に関する第1の情報と、第2のリンクでのフレームの少なくとも一部の送信に関する第2の情報とを含む第1のTriggerフレームを、前記第1のリンクで送信させる通信制御部とを備える。
 本技術の第2の側面の無線通信端末は、無線通信装置と、複数のリンクでの通信を行い、第1のリンクでのフレームの送信に関する第1の情報と、第2のリンクでのフレームの少なくとも一部の送信に関する第2の情報とを含む第1のTriggerフレームと、前記第2のリンクでのフレームの送信に関する第3の情報を含む第2のTriggerフレームとを受信する通信部と、前記第2の情報および前記第3の情報に基づいて、前記第2のリンクで、フレームを送信させる通信制御部とを備える。
 本技術の第1の側面においては、無線通信端末と、複数のリンクでの通信が行われる。そして、第1のリンクでのフレームの送信に関する第1の情報と、第2のリンクでのフレームの少なくとも一部の送信に関する第2の情報とを含む第1のTriggerフレームが、前記第1のリンクで送信される。
 本技術の第2の側面においては、無線通信装置と、複数のリンクでの通信が行われ、第1のリンクでのフレームの送信に関する第1の情報と、第2のリンクでのフレームの少なくとも一部の送信に関する第2の情報とを含む第1のTriggerフレームと、前記第2のリンクでのフレームの送信に関する第3の情報を含む第2のTriggerフレームとが受信される。そして、前記第2の情報および前記第3の情報に基づいて、前記第2のリンクで、フレームが送信される。
本技術の実施の形態に係る無線通信システムの構成例を示す図である。 従来のシーケンスの例を示す図である。 無線通信装置の構成例を示すブロック図である。 本技術のTrigger Plusフレームの構成例を示す図である。 本技術の第1の実施の形態におけるシーケンス例を示す図である。 AP MLDの処理を説明するフローチャートである。 non AP MLDの処理を説明するフローチャートである。 無線通信装置の構成例を示すブロック図である。 本技術の第2の実施の形態におけるシーケンス例を示す図である。 図8の通信部の一部の構成例を示すブロック図である。 コンピュータの構成例を示すブロック図である。
 以下、本技術を実施するための形態について説明する。説明は以下の順序で行う。
 1.システム構成
 2.従来技術
 3.第1の実施の形態
 4.第2の実施の形態
 5.その他
<1.システム構成>
 <無線通信システムの構成例>
 図1は、本技術の実施の形態に係る無線通信システムの構成例を示す図である。
 図1の無線通信システムにおいては、複数のリンクを用いた無線通信(MLO)によりデータの送受信が行われる。
 MLOを行う際、個々のリンクは、例えば、周波数領域で分割され、互いに独立した複数の無線伝送路の中から選択される。個々のリンクには、例えば、2.4GHz帯、5GHz帯、6GHz帯、920MHz帯などの周波数帯のうち、いずれかの帯域に含まれる複数のチャネルの中からそれぞれ選択されたチャネルが使用される。
 MLOに対応したデバイスは、上述したようにMLDと呼ばれる。MLDは、2以上のSTAを内包した論理エンティティであり、上位層へのSAPを1つのみ有する。
 図1の無線通信システムは、1台のAP MLD1、並びに、3台のnon-AP MLD1乃至non-AP MLD3により構成される。non-AP MLD1乃至non-AP MLD3は、AP MLD1に接続している。
 図1において、AP MLD1とnon-AP MLD1乃至non-AP MLD3とを結ぶ実線は、link1(第1のリンク)を表し、AP MLD1とnon-AP MLD1乃至non-AP MLD3とを結ぶ破線は、link2(第2のリンク)を表す。
 AP MLD1は、MLOに対応した基地局として動作する無線通信装置である。AP MLD1は、AP1-1およびAP1-2を内包する。AP1-1は、link1を用いて動作する論理エンティティである。AP1-2は、link2を用いて動作する論理エンティティである。
 non-AP MLD1乃至non-AP MLD3は、MLOに対応した端末として動作する無線通信装置である。non-AP MLD1は、non-AP STA1-1およびnon-AP STA1-2を内包する。non-AP STA1-1は、link1を用いて動作する論理エンティティである。non-AP STA1-2は、link2を用いて動作する論理エンティティである。
 non-AP MLD2は、non-AP STA2-1およびnon-AP STA2-2を内包する。non-AP STA2-1は、link1を用いて動作する論理エンティティである。non-AP STA2-2は、link2を用いて動作する論理エンティティである。non-AP MLD3は、non-AP STA3-1およびnon-AP STA3-2を内包する。non-AP STA3-1は、link1を用いて動作する論理エンティティである。non-AP STA3-2は、link2を用いて動作する論理エンティティである。
 図1において、AP1は、non-AP STA1-1乃至non-AP STA3-1と、link1を用いて相互に通信を行う。AP2は、non-AP STA1-2乃至non-AP STA3-2と、link2を用いて相互に通信を行う。
 link1およびlink2は、同じ周波数帯から選択された2つのチャネルであってもよいし、異なる周波数帯から選択された2つのチャネルであってもよい。
 また、AP MLD1とnon-AP MLD1乃至non-AP MLD3間で用いられるリンクは、2つに限定されず、3つ以上のリンクを用いて通信してもよい。また、non-AP MLDの台数は、3台に限定されず、4台以上のnon-AP MLDがAP MLD1に接続されていてもよい。
<2.従来技術>
 上述したように、MLDは、複数のリンクを用いて伝送を行う。しかしながら、MLDにおいては、リンク間の周波数の近接度合などの要因から、あるリンクでの送信信号が漏洩し、他のリンクでの受信信号に対する干渉が強く通信品質が劣化する場合がある。
 このように、リンク間で同時に送受信する際に制約が生じるリンクのペアは、上述したようにNSTR link pairと呼ばれる。これに対して、リンク間での漏洩電力が通信品質に影響しないなど、リンク間で同時に信号を送受信する際に制約のないリンクのペアは、上述したようにSTR link pairと呼ばれる。
 なお、上述したように、あるlink pairを用いてAP MLDとnon-AP MLDが通信している場合、そのlink pairがAP MLDにとってはSTR link pairであり、non-AP MLDにとってはNSTR link pairであるとき、AP MLDはSTR AP MLDであり、non-AP MLDはnon-STR non-AP MLDであると定義される。したがって、以下、本明細書において、特に、STRまたはnon-STRの記載がなくても、AP MLDはSTR AP MLDであり、non-AP MLDはnon-STR non-AP MLDであるものとする。
 また、例えば、AP MLDとnon-AP MLDが3つのリンク(link1,2,3)を用いて通信しているとき、link1とlink2はNSTR link pairであるが、link1とlink3およびlink2とlink3はSTR link pairであるようなlinkの組み合わせも想定される。この場合、本明細書で記載される動作は、link1とlink2での動作に適用される。さらに、送信電力や送信帯域などを変更することによりSTR link pairであったlink1とlink3がNSTR link pairへと動的に変更されうる場合も想定される。この場合、本明細書で記載される動作は、link1とlink3での動作にも適用される。
 ここで、非特許文献1には、上述したように、non-STR non-AP MLDに対してAP MLDが複数のリンクでDL PPDUを送信する際に送信されるTriggerについての取り決めが記載されている。
 すなわち、non-STR non-AP MLDに対してAP MLDが複数のリンクでDL PPDUを送信する際に、そのDL PPDUが送信終了からSIFS(Short Inter Frame Space)後にnon-STR non-AP MLDからのimmediate responseを要求するPPDUであった場合、AP MLDは、リンク間のDL PPDUの送信終了時間の差を8us以内の差にして、DL PPDUを送信する。
 また、上述したDL PPDUを送信する際に、そのDL PPDUがTriggerフレームであった場合、Triggerフレーム内のCS Required subfieldを1として、Triggerフレームによって誘起するPPDUの送信前にキャリアセンスを要求するとき、AP MLDは、リンク間のDL PPDUの送信終了時間の差を4us以内の差にして、DL PPDUを送信する。
 このように取り決めることで、non-STR non-AP MLDにおいて、DL PPDUの受信と、DL PPDUを受信完了したSIFS後のimmediate responseの送信との同時発生を抑制することができる。
 しかしながら、AP MLDがnon-STR non-AP MLDに対して複数のリンクでTriggerフレームを送信し、PPDUの送信を誘起する際、Triggerフレームの送信終了時間を揃える必要がある。
 <従来のシーケンス例>
 図2は、AP MLD1が、non-STRであるnon-AP MLD1乃至non-AP MLD3に対して、link1とlink2でUL MU通信をTriggerフレームにて誘起する際のシーケンスを示す図である。
 図2においては、AP MLD1に、non-STR non-AP MLDであるnon-AP MLD1乃至non-AP MLD3が接続されており、それぞれlink1とlink2を用いて通信している場合の例が示されている。
 このような場合、時刻t1および時刻t2に示されるように、AP MLDはlink1とlink2の両方でTrigger(Trigger1、Trigger2)フレームを送信する必要がある。
 図2に示されるように、AP MLD1は、時刻t1において、link1の送信権を獲得し、non-AP MLD1乃至non-AP MLD3に対して、Trigger1フレームを送信し、時刻t2において、link2の送信権を獲得し、non-AP MLD1およびnon-AP MLD2に対して、Trigger2フレームを送信する。
 そして、AP MLD1は、時刻t3において、Trigger1フレームおよびTrigger2フレームの送信を同時に終了する。
 すなわち、AP MLD1は、link1とlink2で独立に送信権の獲得を試行しているため、Trigger1フレームとTrigger2フレームの送信開始時間にはずれが生じてしまう場合がある。例えば、link2において他の端末の送信中によりNAV(Network Allocation Vector:送信禁止期間)が設定されていた場合や、link1とlink2で設定されたバックオフカウンタの差がある場合などにおいて、Trigger2フレームの送信開始時間が、Trigger1フレームの送信よりも大きく遅れることがある。
 一方、上述したように、Trigger1フレームとTrigger2フレームの送信終了時間は、揃えられる必要がある。したがって、時刻t3のように、link2でのTrigger2フレームの送信がlink1でのTrigger1フレームの送信よりも遅れて送信されている場合、Trigger2フレームの送信可能時間には制約が生じる。そのため、Trigger2フレームに含められるUser Info数が制約され、時刻t2のように、non-AP MLD3に対して、Trigger2フレームを送信できない場合がある。このような場合、link2でのUL MU通信では、所望のユーザ(端末)数を多重化することができない。
 したがって、non-AP MLD1乃至non-AP MLD3は、時刻t4において、Trigger1フレームに基づいて、link1で、AP MLD1に対してTB(Trigger-based) PPDUを送信する。一方、時刻t4において、non-AP MLD1およびnon-AP MLD2のみが、Trigger2フレームに基づいて、link2で、AP MLD1に対してTB PPDUを送信する。PPDUは、上述したように、PHYプリアンブル、PHYヘッダ、PE(Packet Extension)等が付加されたPPDU(PHY Protocol Data Unit)形式のMACフレームである。なお、PPDUは、データ、管理情報、および制御情報の少なくともひとつを含むフレームである。
 その後、non-AP MLD1乃至non-AP MLD3は、時刻t5において、link1とlink2でのTB PPDUの送信を終了する。AP MLD1は、時刻t6において、link1で、non-AP MLD1乃至non-AP MLD3に対して、Multi-STA BlockAckフレームを送信し、link2で、non-AP MLD1およびnon-AP MLD2に対して、Multi-STA BlockAckフレームを送信する。なお、TB PPDUの確認応答として送信されるフレームは、Multi-STA BlockAckフレームではなく、個別アドレス宛てのBlockAckフレームであってもよい。
 すなわち、図2の場合、Trigger2フレームに含められるUser Info数が制約され、non-AP MLD3のUser InfoがTrigger2フレームに含まれないため、non-AP MLD3は、時刻t4において、link2で、AP MLD1に対して、TB PPDUを送信することができない。
 以上のように、リンク間で、Triggerフレームの送信開始時間がずれる場合、遅れて送信されるTriggerフレームの送信可能時間が制約されてしまい、所望の端末数分の多重が困難になってしまう恐れがある。
<3.第1の実施の形態>
 本技術においては、複数のlinkでの通信において、link1のTriggerフレームに、link2で送信されるフレームの少なくとも一部の送信に関する情報が含められて、送信される。
 <装置の構成>
 図3は、本技術を適用する無線通信装置の構成例を示すブロック図である。
 図3に示す無線通信装置11は、AP MLD、またはnon-AP MLDとして動作する無線通信装置である。
 無線通信装置11は、通信部31、制御部32、記憶部33、並びにアンテナ41-1および41-2から構成される。アンテナ41-1および41-2は、区別する必要がない場合、アンテナ41と総称する。
 通信部31は、データの送信および受信を行う。通信部31は、増幅部51-1および51-2、無線インタフェース部52-1および無線インタフェース部52-2、並びに、信号処理部53-1および53-2を含むように構成される。また、通信部31は、データ処理部54、通信制御部55、および通信記憶部56を含むように構成される。
 なお、増幅部51-1および51-2、無線インタフェース部52-1および52-2、並びに信号処理部53-1および53-2は、区別する必要がない場合、それぞれ、増幅部51、無線インタフェース部52、および信号処理部53と総称する。
 増幅部51は、送信時、無線インタフェース部52から供給されるアナログ信号を所定の電力まで増幅し、電力を増幅したアナログ信号をアンテナ41に出力する。増幅部51は、受信時、アンテナ41から供給されるアナログ信号を所定の電力まで増幅し、電力を増幅したアナログ信号を無線インタフェース部52に出力する。
 増幅部51は、機能の一部が無線インタフェース部52に内包されていてもよい。また、増幅部51の機能の一部が通信部31外の構成要素となってもよい。
 無線インタフェース部52は、送信時、信号処理部53からの送信シンボルストリームをアナログ信号に変換し、フィルタリング、搬送波周波数へのアップコンバート、および位相制御を行い、位相制御の後のアナログ信号を増幅部51に出力する。
 無線インタフェース部52は、受信時、増幅部51から供給されるアナログ信号に対して、位相制御、ダウンコンバード、逆フィルタリングを行い、デジタル信号に変換した結果である受信シンボルストリームを信号処理部53に出力する。
 信号処理部53は、送信時、データ処理部54から供給されるデータユニットに対する符号化、インターリーブ、および変調などを行い、物理ヘッダを付加し、送信シンボルストリームを、それぞれの無線インタフェース部52に出力する。
 信号処理部53は、受信時、それぞれの無線インタフェース部52から供給される受信シンボルストリームの物理ヘッダを解析して、受信シンボルストリームに対する復調、デインターリーブおよび復号などを行い、データユニットを生成する。生成したデータユニットは、データ処理部54に出力される。
 なお、信号処理部53においては、必要に応じて複素チャネル特性の推定および空間分離処理が行われる。
 データ処理部54は、個別データ処理部61-1および61-2、並びに共通データ処理部62により構成される。個別データ処理部61-1および61-2を区別する必要がない場合、個別データ処理部61と総称する。
 個別データ処理部61は、送信時、キャリアセンスに基づくチャネルアクセス動作と送信するデータへのMACヘッダの付加および誤り検出符号の付加、およびデータユニットの複数連結処理を行う。
 個別データ処理部61は、受信時、受信したデータユニットのMACヘッダの連結解除処理、解析および誤り検出、並びに、再送要求動作を行う。
 共通データ処理部62は、送信時には、通信記憶部56に保持されたデータおよび通信制御部55から受け取った制御情報および管理情報のシーケンス管理を行う。また、共通データ処理部62は、制御情報や管理情報の暗号化処理などを行って、データユニットを生成し、生成したデータユニットを、個別データ処理部61-1および61-2に割り振る。
 共通データ処理部62は、受信時には、データユニットの解析処理とリオーダ処理を行う。
 アンテナ41、増幅部51、無線インタフェース部52、信号処理部53、個別データ処理部61は、破線で囲まれるように、同じ枝番を有するそれぞれ毎に1つの組(以下、個別通信セットとも称する)を構成する。なお、破線で囲まれていないが、個別通信セットには、後述する個別制御部71も含まれる。
 無線通信装置11がAP MLDである場合、個別通信セットは、APを示す。無線通信装置11がnon-AP MLDである場合、個別通信セットは、non-AP STAを示す。
 各組が、無線通信装置11の構成要素となり、それぞれのリンクで無線通信を行う。また、各組に、記憶部33が含まれてもよい。
 なお、個別データ処理部61と共通データ処理部62の動作は、上述した動作に限らず、例えば、一方が他方の動作を行うこともありうる。例えば、共通データ処理部62の全ての機能を個別通信セットごとに実施されるよう、個別データ処理部61が定義されてよい。
 また、各組が用いるそれぞれのリンクは、周波数帯が異なってもよい。また、信号処理部53および個別データ処理部61は、同じ枝番を有するそれぞれ毎に1つの組とし、これら2つの組または3つ以上の組が、1つの無線インタフェース部52と接続される構成となってもよい。
 通信制御部55は、通信部31の各部の動作および各部間の情報伝達の制御を行う。また、通信制御部55は、他の無線通信装置へ通知する制御情報および管理情報を、個別データ処理部61および共通データ処理部62に受け渡す制御を行う。
 通信制御部55は、各個別通信セットを制御する個別制御部71-1および71-2、並びに、共通データ処理部62および各個別通信セットに共通した制御を実施する共通制御部72を有する。個別制御部71-1および71-2を区別する必要がない場合、個別制御部71と総称する。
 本技術においては、個別制御部71は、各リンクにおいて誘起するUL通信に関する情報を他の個別制御部71に伝達し、Triggerフレームに含めて送信するように各部を制御する。このとき、制御情報は、共通制御部72を介して伝えられてもよい。
 通信記憶部56は、通信制御部55が使用する情報を保持する。また、通信記憶部56は、送信するデータおよび受信したデータを保持する。
 制御部32は、CPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)などにより構成される。制御部32は、ROMなどに記憶されているプログラムを実行し、通信部31および通信制御部55の制御を行う。また、制御部32は、通信制御部55の一部の動作を代わりに行ってもよい。また、通信制御部55と制御部32は、1つのブロックとして構成されてもよい。
 記憶部33は、通信部31および制御部32が使用する情報を保持する。また、記憶部33は、通信記憶部56の一部の動作を代わりに行ってもよい。記憶部33と通信記憶部56は、1つのブロックとして構成されてもよい。
 なお、アンテナ41、増幅部51、無線インタフェース部52は、同じ枝番を有するそれぞれ毎に1つの組とし、2つに限らず、3つ以上の組が無線通信装置11の構成要素となってもよい。また、通信部31は、1つ以上のLSIによって実現される。
 個別データ処理部61は、Lower MACとも称される。共通データ処理部62は、Upper MACまたはHigher MACとも称される。また、個別データ処理部61と共通データ処理部62の組は、AP entityまたはnon-AP entityとも称される。また、通信制御部55は、MLD(Multi-link Device) management entityとも称される。
 <本技術のTrigger Plusフレームの構成例>
 図4は、本技術のTrigger PlusフレームのMAC層における構成例を示す図である。
 図4において、Trigger Plusフレームは、Frame Control、Duration、RA(Receiving STA address)、TA(Transmitting STA address)、Commom Info、User Info List、Padding、およびFCS(Frame Check Sequence)の各フィールドからなる。
 図4のTrigger Plusフレームは、従来のTriggerフレームに、自身のリンク以外の他のリンクのフレームの送信に関する情報である他リンク送信情報が含まれるTriggerフレームである。他リンク送信情報は、User Info Listフィールドに対応するUser毎に含まれる。
 他リンク送信情報は、少なくとも、他のリンクを識別する情報であるlink IDおよび他のリンクで使用している帯域内のチャネルやRU(Resource Unit)、送信ストリーム数(SS)、およびUL Length(他のリンクで送信されるフレームの長さ)などの情報からなる。
 さらに、他リンク送信情報は、送信電力、MCS(Modulation and Coding Scheme)、およびAID(Association ID)などの情報を含むようにしてもよい。
 他リンク送信情報は、FEC Coding Type(BCC or LDPC)、DCM(Dual Carrier Modulation)を使用するか否かを示す情報、およびMPDU(MAC Protocol Data Unit) MU(Multi User) Apacing factor(MDPUの位置に関する情報)などの情報を含むようにしてもよい。
 他リンク送信情報は、TID aggregation Limit(A-MDPUのaggregationの上限に関する情報)、Preferred AC(送信するアクセスカテゴリに関する情報)、およびTrigger Type(Triggerフレーム並びにTriggerフレームにより誘起されるフレームであるTB PPDUの種類に関する情報)などの情報を含むようにしてもよい。
 他リンク送信情報は、More TF(他のリンクで、Triggerフレームが送信可能であるか)、およびCS required(TB PPDUの送信前にキャリアセンスが必要であるか否か)などの情報を含むようにしてもよい。
 他リンク送信情報は、GI(Guard Interval) and LTF type(TB PPDUのGIやLTFの種類に関する情報)、Number of LTF Symbles And Midamble Periodicity(TB PPDUのLTFシンボル数とmidambleの周期に関する情報)などの情報を含むようにしてもよい。
 他リンク送信情報は、UL STBC(TB PPDUのencoding方法に関する情報)、LDPC Extra Symbols segment(LDPC符号に関する情報)、AP Tx Power(APの送信電力に関する情報)などの情報を含むようにしてもよい。
 他リンク送信情報は、Rre-FEC Padding Factor/PE Disambiguity(Pre-FEC padding およびPacketExtension fieldの長さに関する情報)、並びに、UL Spatial Reuse(空間再利用に関する情報)などの情報を含むようにしてもよい。
 他リンク送信情報は、Doppler(Midambleを含めるか否かに関する情報)、UL SIG-A Reserved(プリアンブルの予約部(Reserved)に含める情報に関する情報)、およびTB PPDUのPPDU formatに関する情報などの情報を含むようにしてもよい。
 これらの他リンク送信情報は、図4のTrigger Plusフレームの対応するフィールドに格納される。
 図4においては、Trigger Plusフレームを構成するフィールドのうち、主なフィールドのみ示されている。
 Trigger Plusフレームを構成するフィールドのうち、Frame Controlのフィールドには、本フレームが、Triggerフレームであることを示す情報が含まれる。
 Durationのフィールドには、本フレームが対象とする通信期間を示す情報が含まれる。
 RAのフィールドには、宛先の装置を示す情報が含まれる。RAには、例えば、装置固有のMACアドレスが示されていてもよい。
 TAのフィールドには、送信元の装置を示す情報が含まれる。TAには、例えば、装置固有のMACアドレスが示されていてもよい。
 Common Infoのフィールドには、全ユーザに共通の情報が含まれる。
 Common Infoには、少なくとも、Trigger Type、Link Info Present、およびTrigger Dependent Common Infoのサブフィールドが含まれる。
 Trgger Typeのサブフィールドには、上述したTrigger Typeの情報が含まれる。なお、Trgger Typeのサブフィールドに、他のリンクのTB PPDUの送信に関する情報が、後述するUser Infoに含まれるTypeのTrigger(Trigger Plus)であることを示す情報が含まれるようにしてもよい。
 Link Info Presentのサブフィールドには、他のリンクのTB PPDUの送信に関する情報が含まれていることを示す情報が含まれる。
 Trigger Dependent Common Infoのフィールドには、Triggerに関する共通の情報が含まれる。
 User Info Listのフィールドは、各ユーザの情報が含まれるUser Infoのサブフィールドからなる。
 ユーザとは、non-AP STAなどの端末を表す。ユーザには、このフレームを送信するリンクのユーザだけでなく、他リンクのユーザも含まれる。すなわち、他リンク送信情報は、このUser Infoのサブフィールドに、User毎に格納される。
 User Infoのサブフィールドは、少なくとも、RU Allocation、Link ID、およびTrigger Dependent User Infoの各サブフィールドからなる。
 RU Allocationのサブフィールドには、該当するユーザのリンクで使用している帯域内のチャネルおよびRUの情報が含まれる。
 Link IDのサブフィールドには、該当するユーザのリンク識別情報が含まれる。
 Trigger Dependent User Infoのサブフィールドには、Triggerに関する、該当するユーザの情報が含まれる。
 FCSのサブフィールドには、誤り検出符号が含まれる。
 <第1の実施の形態のシーケンス例>
 図5は、本技術の第1の実施の形態におけるシーケンス例を示す図である。
 図5においては、図1の無線通信システムにおいて、図2と同様に、AP MLD1に、non-STR non-AP MLDであるnon-AP MLD1乃至non-AP MLD3が接続されており、それぞれlink1とlink2を用いて通信している場合が示されている。
 まず、AP MLD1がlink1で送信権を獲得する。
 AP MLD1は、事前に収集したアクセス遅延から予測されるlink2での送信権の獲得予定時間と、link1で、non-AP MLD1乃至non-AP MLD3のUL送信を誘起するためのTriggerフレームを生成して送信した際の送信終了予定時間の差を算出する。
 AP MLD1は、送信終了予定時間内に、non-AP MLD1乃至non-AP MLD3のすべてを誘起するための情報を含むTriggerフレームを送信できないと判定する。そして、AP MLD1は、link1でのnon-AP MLD1乃至non-AP MLD3のUL送信に関する情報に加えて、non-AP MLD1乃至non-AP MLD3のうち少なくとも1のlink2でのUL送信に関する情報を、例えば、User Infoフィールドに記載したTrigger Plus(Trigger1 + link2 User Info)フレームを生成し、時刻t11において送信する。図5の場合、例えば、non-AP MLD3のlink2でのUL送信に関する情報が記載されたTrigger Plusフレームが生成される例を説明する。
 AP MLD1は、link2で送信権を獲得し、時刻t12において、non-AP MLD1乃至non-AP MLD3のUL送信に共通するTB PPDUの長さなどの情報を、例えば、Common Infoフィールドに記載したTrigger(Trigger2)フレームを送信する。なお、Trigger2フレームのUser Infoフィールドには、non-AP MLD1およびnon-AP MLD2のUL送信に関する情報が含まれている。
 AP MLD1は、時刻t13において、Trigger PlusフレームおよびTrigger2フレームの送信を同時に終了する。non-AP MLD1乃至non-AP MLD1は、link1で、Trigger Plusフレームを受信し、link2で、Trigger2フレームを受信する。
 時刻t14において、non-AP MLD1乃至non-AP MLD3は、Trigger Plusフレーム内に記載された情報に基づいて、link1でTB PPDUを送信する。また、non-AP MLD1およびnon-AP MLD2は、Trigger2フレーム内に記載された情報に基づいて、link2でTB PPDUを送信する。non-AP MLD3は、Trigger PlusフレームおよびTrigger2フレーム内に記載された情報に基づいて、link2でTB PPDUを送信する。
 時刻t15において、link1とlink2でのTB PPDUの送信が終了するので、AP MLD1は、時刻t16において、link1で、non-AP MLD1乃至non-AP MLD3に対して、Multi-STA BlockAckフレームを送信する。また、AP MLD1は、link2で、non-AP MLD1乃至non-AP MLD3に対して、Multi-STA BlockAckフレームの送信を開始する。時刻t17において、link1およびlink2でのMulti-STA BlockAckフレームの送信は終了となる。
 AP MLD1によるMulti-STA BlockAckフレームの送信に対応して、non-AP MLD1乃至non-AP MLD3は、時刻t16において、link1とlink2でMulti-STA BlockAckフレームの受信を開始し、時刻t17において、link1およびlink2でのMulti-STA BlockAckフレームの受信は終了となる。
 <AP MLDの処理>
 図6は、AP MLD1の処理を説明するフローチャートである。
 ステップS11において、AP MLD1の通信制御部55は、各リンクの通信環境に関する情報を収集する。
 各リンクの通信環境に関する情報は、送信権の獲得を試み始めてから実際に信号を送信開始するまでの時間の平均値である平均アクセス遅延(Average Access Delay)、配下の端末が保持しているトラフィックに関する情報、配下の端末のCapabiltyに関する情報、各リンクのAPのランダム待ち時間に関する情報などである。
 配下の端末が保持しているトラフィックに関する情報は、例えば、Buffer Status Reportである。
 配下の端末のCapabiltyに関する情報は、動作中のlink pairが、STR linkであるか、NSTR linkであるかを示す情報、およびlink間の干渉量などである。
 各リンクのAPのランダム待ち時間に関する情報は、アクセスカテゴリ、コンテンションウインドウ、および残りのバックオフカウンタなどである。
 ステップS12において、AP MLD1の通信制御部55は、link1で送信権を獲得する。
 ステップS13において、AP MLD1の通信制御部55は、link1のTriggerフレームに、link2の各ユーザのTB PPDUの送信に関する情報を含めるか否かを判定する。
 ステップS13における判定は、自身のCapability情報や、ステップS11において事前に収集した情報のうち少なくとも1つを用いて実施される。
 例えば、ステップS13における判定は、link1でのTriggerフレームの送信後、link2での送信権の獲得時間が第1の閾値以上であるか否かにより実施される。すなわち、link2での送信権の獲得時間が第1の閾値以上である場合、ステップS13において、link1のTriggerフレームに、link2の各ユーザのTB PPDUの送信に関する情報を含めると判定される。第1の閾値は、例えば、aSlotTime(9us)×3である。
 例えば、ステップS13における判定は、link2のAverage Access Delayが第2の閾値以下であるか否かにより実施される。すなわち、link2のAverage Access Delayが第2の閾値以下である場合、ステップS13において、link1のTriggerフレームに、link2の各ユーザのTB PPDUの送信に関する情報を含めると判定される。第2の閾値は、例えば、144usである。
 例えば、ステップS13における判定は、link2の残りバックオフカウンタが、link2のAverage Access Delay以下であるか否かにより実施される。すなわち、link2の残りバックオフカウンタが、link2のAverage Access Delay以下である場合、ステップS13において、link1のTriggerフレームに、link2の各ユーザのTB PPDUの送信に関する情報を含めると判定される。
 ステップS13において、link1のTriggerフレームに、link2の各ユーザのTB PPDUの送信に関する情報を含めると判定された場合、処理は、ステップS14に進む。
 なお、ステップS13における判定の際に、link1のTriggerフレームに、link2で誘起するユーザ(端末)のうち、何ユーザ分の情報を含めて、link1で送信するかの判定も行ってもよい。図5のように、link1のTriggerフレームには、例えば、non-AP MLD3分だけの情報を含めてもよいし、全ユーザ分の情報を含めてもよい。
 ステップS14において、AP MLD1の通信制御部55は、link2の各ユーザのTB PPDUの送信に関する情報を含むTriggerフレームをlink1で送信する。
 ステップS13において、link1のTriggerフレームに、link2の各ユーザのTB PPDUの送信に関する情報を含めないと判定された場合、処理は、ステップS15に進む。
 ステップS15において、AP MLD1の通信制御部55は、link2の各ユーザのTB PPDUの送信に関する情報が含まれていないTriggerフレームをlink1で送信する。
 ステップS14またはS15の後、処理は、ステップS16に進む。
 ステップS16において、AP MLD1の通信制御部55は、link1のTriggerフレームの送信中にlink2で送信権を獲得したか否かを判定する。link1のTriggerフレームの送信中にlink2で送信権を獲得したと、ステップS16において判定された場合、処理は、ステップS17に進む。
 ステップS17において、AP MLD1の通信制御部55は、link2でTriggerフレームを送信する。
 その際、Trigger Plusフレームに情報を含めた装置に関する情報をlink2のTriggerフレームにも記載し、link2のTriggerフレームが取得できた場合、Trigger Plusフレームの受信による情報を破棄するように設定してもよい。
 また、link2のTriggerフレームで誘起するユーザのTB PPDUの送信に関する情報の格納数を、link2のTriggerフレーム内で確保するために、MCS(Modulation and Coding Scheme:変調方式や符号化率などの組み合わせをIndex化したもの)を調整してもよい。
 ステップS17の後、処理は終了となる。
 また、ステップS16において、link1のTrigger Plusフレーム送信中にlink2で送信権を獲得していないと判定された場合も、処理は終了となる。
 <non-AP MLDの処理>
 図7は、non-AP MLDの処理を説明するフローチャートである。
 ステップS31において、non-AP MLDの通信制御部55は、link1で、link1のTriggerフレームを受信する。
 ステップS32において、non-AP MLDの通信制御部55は、link2で、link2のTriggerフレームを受信する。
 なお、このとき、non-AP MLDにおいては、受信したlink1のTriggerフレーム内に、自身に関するlink2のTB PPDUの送信に関する情報が記載されており、受信したlink2のTriggerフレームにも、自身に関するlink2のTB PPDUの送信に関する情報が記載されている場合、link1のTriggerフレームの情報を破棄し、link2のTriggerフレームの情報のみを保持するようにしてもよい。
 ステップS33において、non-AP MLDの通信制御部55は、link1のTriggerフレームとlink2のTriggerフレームから取得した情報に基づいて、TB PPDUを送信する。
 link1のTriggerフレームおよびlink2のTriggerフレームから取得した情報は、図4を参照して上述した他リンク送信情報と同様の情報である。
 なお、link1のTriggerフレームで割り当てられた送信リソース(リンク、RU、帯域)情報とlink2のTriggerフレームで割り当てられた送信リソース情報とが異なる場合、ステップS33におけるTB PPDUの送信が中止されるようにしてもよい。
 ステップS33の後、処理は終了となる。
 以上のように、複数のlinkでの通信において、link1のTriggerフレームに、link2でのフレームの少なくとも一部の送信に関する情報が含められて送信される。これにより、所望の端末数でのUL MU通信を行うことができる。
<4.第2の実施の形態>
 第1の実施の形態においては、リンク間でTriggerフレームの送信開始時間がずれる場合、遅れて送信されるTriggerフレームの送信可能時間が制約され、所望の端末数分のフレームの多重が困難になる恐れに対する技術が示されていた。
 このような場合に所望の端末数分の多重が困難になってしまう恐れは、EMLMR(Enhanced Multi-Link Multi-Radio) modeに対応したMLDを誘起するときにも生じる。
 EMLMR modeは、複数のリンクでRF chain(増幅部など)を共有することで、各リンクで使用するRF chainの数を動的に切り替え、各リンクでの最大送受信ストリーム数を変更する動作(EMLMR)を実施する機能である。
 本RF chainの切り替え動作には、RF chainを切り替えるためのswitchの性能等デバイスの実装の制約から一定の時間を有する。
 したがって、EMLMR modeに対応したMLDをTriggerフレームで誘起する際にも、図2を参照して上述されたTriggerフレームの送信時間の制約により、EMLMR modeに対応したMLDがRF chainを切り替えるための十分な時間を確保することが困難になる場合がある。したがって、EMLMR modeに対応したMLDが、Triggerフレームを受信してからSIFS時間後に、TB PPDUを所望の送信ストリーム数で送信できない恐れがあった。
 このようなEMLMR modeに対応したMLDに対しても、本技術を適用することができる。
 <装置の構成>
 図8は、本技術を適用する無線通信装置の他の構成例を示すブロック図である。
 図8に示す無線通信装置11は、AP MLD、またはnon-AP MLDとして動作し、EMLMR modeに対応する無線通信装置である。
 図8の無線通信装置11は、個別データ処理部61および信号処理部53に接続される、無線インタフェース部52、増幅部51、およびアンテナ41を、どのlinkで用いるかを動的に切り替えることが可能な点が異なるだけであり、その他の部分は、図3の無線通信装置11と共通している。
 <第2の実施の形態のシーケンス例>
 図9は、本技術の第2の実施の形態におけるシーケンス例を示す図である。
 図9においては、図1の無線通信システムにおいて、図5と同様に、AP MLD1に、non-STR non-AP MLDであるnon-AP MLD1乃至non-AP MLD3が接続されており、それぞれlink1とlink2を用いて通信している場合が示されている。
 さらに、図9の場合、non-AP MLD3が、図10に示されるように、EMLMR modeに対応している。
 図10は、図9においてnon-AP MLD3のRF-Chainの切り替え動作の例を示す図である。
 図10においては、EMLMR modeに対応した無線通信装置11であるnon-AP MLD3の通信部31の一部が示されている。
 non-AP MLD3は、図10に示されるように、Upper MACを1つ、Lower MACを2つ、PHYブロックを2つ、RF chain(Tx chainとRx-chainの組み合わせ)を2つ、Switchを2つ、アンテナを2つ有するMLDである。なお、2つのうち、右側がlink1用に機能し、左側がlink2用に機能するものとする。
 Upper MACは、図8の共通データ処理部62であり、Lower MACは、個別データ処理部61であり、PHYブロックは、信号処理部53である。アンテナは、アンテナ41である。RF chainは、増幅部51に対応し、PHYブロックとRF chainのインタフェース部分が、無線インタフェース部52となる。
 図10のAには、link1用およびlink2用のRF chainが、各link用のRx chainとして機能している状態の例が示されている。
 すなわち、図10のAの場合、link1用のアンテナで受信されたlink1の信号が、link1用のSwitchとlink1用のRx chainを介して、link1用のPHYブロックに入力される。Link2用のアンテナで受信されたlink2の信号が、link2用のSwitchとlink2用のRx chainを介して、link2用のPHYブロックに入力される。
 図10のBには、link1用のRF chainが、link2用のTx chainとして機能し、link2用のRF chainが、link2用のRx-chainとして機能している状態が示されている。
 すなわち、図10のBの場合、link2用のアンテナで受信されたlink2の信号が、link2用のSwitchとlink2用のRx chainを介して、link2用のPHYブロックに入力され、link2用のPHYブロックからのlink2の信号が、link1用のTx chainとlink1用のSwitchを介して、link1用のアンテナから出力される。
 図10のCには、link1用のRF chainが、link2用のTx chainとして機能し、link2用のRF chainが、link2用のTx chainとして機能している状態が示されている。
 すなわち、図10のCの場合、link2用のPHYブロックからのlink2の信号が、link1用のTx chainとlink1用のSwitchを介して、link1用のアンテナから出力されるとともに、link2用のTx chainとlink2用のSwitchを介して、link2用のアンテナから出力される。
 以下、図9のシーケンスは、図10を適宜参照しながら説明される。
 まず、AP MLD1がlink1で送信権を獲得する。
 AP MLD1は、図6を参照して上述したように、送信権を得る前に、各リンクの通信環境に関する情報を収集している。すなわち、non-AP MLD1乃至non-AP MLD3が、各リンクの通信環境に関する情報をAP MLD1に対して送信する。
 その際、第2の実施の形態においては、各リンクの通信環境に関する情報のうち、配下の端末(non-AP MLD1乃至non-AP MLD3)のCapabiltyに関する情報として、EMLSR(Enhanced Multi-Link Single-Radio)またはEMLMR modeに対応しているか否かを示す情報、およびEMLSRまたはEMLMR mode動作時のchain切り替え遅延時間が、図6の場合の追加で取得される。さらに、配下の端末のCapabiltyに関する情報として、EMLMRの各リンクにおける最大送信ストリーム数および最大受信ストリーム数に関する情報、EMLSR modeまたはEMLMR modeで動作する時間に関する情報も追加で取得される。なお、配下の端末のCapabiltyに関する情報として、EMLMR modeまたはEMLSR modeで動作中に対応する帯域幅やMCSなどの送受信パラメータに関する情報が含まれていてもよい。
 AP MLD1は、取得されるこれらのEMLMRに関する情報に基づいて、EMLMR modeに対応しているnon-AP MLD3の送信ストリーム数を決定する。
 なお、EMLSR modeに対応したMLDは、通常は1つのリンクのみで動作する。ただし、EMLSR modeに対応したMLDにおいて、EMLSR modeで動作する期間中、APからの一部の制御フレームの受信機能とCCA(Clear Channel assessment)機能のみが複数のリンクにおいて有効に設定される。一部の制御フレームは、例えば、MU-RTS TriggerフレームまたはBSRP(Buffer Status Report Poll)Triggerフレームである。
 EMLSR modeに対応したMLDは、EMLSR modeで動作する期間中、APから、上述した一部の制御フレームを受信した場合、受信したリンクにおいて送受信を実施できるようにRF chainなどを切り替えることができる。第2の実施の形態においては、EMLMR modeを例に第2の実施の形態を説明するが、本技術の第2の実施の形態は、EMLSR modeにも適用されてもよい。
 AP MLD1は、事前に収集したアクセス遅延から予測されるlink2での送信権の獲得予定時間と、link1で、non-AP MLD1乃至non-AP MLD3のUL送信を誘起するためのTriggerフレームを生成して送信した際の送信終了予定時間の差を算出する。
 また、AP MLD1は、送信終了予定時間内に、non-AP MLD1乃至non-AP MLD3のすべてを誘起するための情報を含むTriggerフレームを送信できるか否か、non-AP MLD3に対して2SS(SS:送信ストリーム数)でのTB PPDU送信の要求が必要ではないか否か、さらに、non-AP MLD3がRF chainを切り替えるための時間を確保できるか否かを判定する。
 これらの判定のうち、いずれか1つでも否であると判定された場合、AP MLD1は、link1でのnon-AP MLD1乃至non-AP MLD 3のUL送信に関する情報に加えて、non-AP MLD1乃至non-AP MLD3のうちの少なくとも1台のlink2でのUL送信に関する情報を、User Info フィールドに記載したTrigger Plus(Trigger1 + link2 User Info)フレームを生成し、時刻t21において送信する。
 なお、このとき、AP MLD1は、link1において、non-AP MLD3が受信できるように1SSでTrigger Plusフレームを送信する。
 Non-AP MLD3は、link1で、Trigger Plusフレームを受信し、link2かつ2SSでの送信が割り当てられている情報を取得する。Non-AP MLD3は、時刻t22において、link1の送信のため、link1用のPHYブロックに接続されていたTx chainを、link2用のPHYブロックへの接続に切り替える動作を開始する。
 AP MLD1は、link2で送信権を獲得し、時刻t23において、non-AP MLD1乃至non-AP MLD3のUL送信に共通するTB PPDUの長さなどの情報を、Common Info フィールドに記載したTrigger2フレームを送信する。
 AP MLD1は、時刻t24において、Trigger PlusフレームおよびTrigger2フレームの送信を同時に終了する。non-AP MLD1乃至non-AP MLD3は、link1で、Trigger Plusフレームを受信し、link2で、Trigger2フレームを受信する。
 Trigger PlusフレームおよびTrigger2フレームの受信終了後、Non-AP MLD3は、Trigger Plusフレームに基づいて、link2用のアンテナと接続されるRF chainを、Rx chainから、link2用のPHYブロックに接続されたTx chainに切り替える。Non-AP MLD3は、これにより、Tx chainの状態は、図10のAから、図10のBの状態に切り替わる。
 また、Non-AP MLD3は、link1用のアンテナと接続されるRF chainを、Rx chainから、link1用のPHYブロックに接続されたTx chainに切り替える。
 これにより、時刻t25において、切り替え動作が終了され、Tx chainの状態は、図10のBから、両方のTx chainがlink2用のPHYブロックに接続された、図10のCの状態に切り替わり、link2において、2SSでのTB PPDUを送信することができる。
 時刻t26において、non-AP MLD1およびnon-AP MLD2は、Trigger Plusフレーム内に記載された情報に基づいて、link1でTB PPDUを送信する。また、non-AP MLD1およびnon-AP MLD2は、Trigger2フレーム内に記載された情報に基づいて、link2でTB PPDUを送信する。このとき、non-AP MLD3は、Trigger PlusフレームおよびTrigger2フレーム内に記載された情報に基づいて、link2かつ2SSでのTB PPDUを送信する。
 時刻t27において、link1とlink2でのTB PPDUの送信が終了するので、AP MLD1は、時刻t28において、link1で、non-AP MLD1およびnon-AP MLD2に対して、Multi-STA BlockAckフレームを送信し、link2で、non-AP MLD1乃至non-AP MLD3に対して、Multi-STA BlockAckフレームを送信する。時刻t29において、link1およびlink2でのMulti-STA BlockAckフレームの送信は終了となる。
 AP MLD1によるMulti-STA BlockAckフレームの送信に対応して、non-AP MLD1およびnon-AP MLD2は、時刻t28において、link1でMulti-STA BlockAckフレームの受信を開始し、時刻t29において、link1でのMulti-STA BlockAckフレームの受信は終了となる。
 AP MLD1によるMulti-STA BlockAckフレームの送信に対応して、non-AP MLD1乃至non-AP MLD3は、時刻t28において、link2でMulti-STA BlockAckフレームの受信を開始し、時刻t29において、link2でのMulti-STA BlockAckフレームの受信は終了となる。
 なお、第2の実施の形態におけるAP MLDの処理は、ステップS11における情報の収集の際に、以下の情報が収集され、ステップS12において、以下の情報に基づいて判定が行われる以外は、図6を参照して上述したAP MLDの処理と同様であるので、その詳細な説明は省略される。
 すなわち、第2の実施の形態においては、図6のステップS11において、第1の実施の形態の場合に加えて、配下の端末のCapabiltyに関する情報として、EMLSRまたはEMLMR modeに関する情報が収集される。
 また、第2の実施の形態において、図6のステップS12における判定は、第1の実施の形態の場合に加えて、UL MUでの送信を誘起したいnon AP MLDの中に、EMLLRで動作している端末が存在するか否かに基づいても含めて行われる。
 一方、第2の実施の形態におけるnon-AP MLDの処理は、EMLMR modeに対応したMLDの処理であり、ステップS31におけるTrigger Plusフレームの受信の際に、次の動作を行う以外は、図7を参照して上述したAP MLDの処理と同様であるので、その詳細な説明は省略される。
 すなわち、第2の実施の形態においては、図7のステップS31において、第1の実施の形態の場合に加えて、Trigger Plusフレーム内に、link2かつ2SSでのフレームの送信に関する情報が記載されている場合、両方のlinkのTx chainがlink2で動作できるように切り替えられる。また、Trigger Plusフレーム内に、link1かつ2SSでのフレームの送信に関する情報が記載されている場合、両方のlinkのTx chainがlink1で動作できるように切り替えられる。
 以上のように、EMLMR modeに対応するMLDも、複数のlinkでの通信において、link1のTriggerフレームに、link2でのフレームの少なくとも一部の送信に関する情報が含められて送信される。これにより、RF chainの切り替えを行うことができるので、所望の端末数でのUL MU通信を行うことができる。
<5.その他>
 <本技術の効果>
 以上のように、本技術においては、複数のlinkでの通信において、link1のTriggerフレームに、link2でのフレームの少なくとも一部の送信に関する情報が含められて、送信される。
 これにより、non-STR non-AP MLDへのフレーム送信時の送信終了時間調整(end time alignment)の制約の中でも、十分な端末数のフレームを複数のリンクで多重させてUL ML送信を行うことができる。すなわち、所望の端末数でのUL MU通信を行うことができる。
 また、本技術おいては、EMLMR modeに対応するMLDに対しても、他のリンクのMLDのフレームのUL送信に関する情報を含むTriggerフレームが送信される。
 したがって、RF chainの切り替えにSIFS以上の時間がかかるEMLMR modeに対応する端末に対して、SIFS期間での応答を要求するフレームであるTriggerフレームを、他のリンクにおいて誘起することができる。これにより、RF chainの切り替えを行うことができるので、所望の端末数でのUL MU通信を行うことができる。
 <コンピュータの構成例>
 上述した一連の処理は、ハードウェアにより実行することもできるし、ソフトウェアにより実行することもできる。一連の処理をソフトウェアにより実行する場合には、そのソフトウェアを構成するプログラムが、専用のハードウェアに組み込まれているコンピュータ、または汎用のパーソナルコンピュータなどに、プログラム記録媒体からインストールされる。
 図11は、上述した一連の処理をプログラムにより実行するコンピュータのハードウェアの構成例を示すブロック図である。
 CPU(Central Processing Unit)301、ROM(Read Only Memory)302、RAM(Random Access Memory)303は、バス304により相互に接続されている。
 バス304には、さらに、入出力インタフェース305が接続されている。入出力インタフェース305には、キーボード、マウスなどよりなる入力部306、ディスプレイ、スピーカなどよりなる出力部307が接続される。また、入出力インタフェース305には、ハードディスクや不揮発性のメモリなどよりなる記憶部308、ネットワークインタフェースなどよりなる通信部309、リムーバブルメディア311を駆動するドライブ310が接続される。
 以上のように構成されるコンピュータでは、CPU301が、例えば、記憶部308に記憶されているプログラムを入出力インタフェース305及びバス304を介してRAM303にロードして実行することにより、上述した一連の処理が行われる。
 CPU301が実行するプログラムは、例えばリムーバブルメディア311に記録して、あるいは、ローカルエリアネットワーク、インターネット、デジタル放送といった、有線または無線の伝送媒体を介して提供され、記憶部308にインストールされる。
 なお、コンピュータが実行するプログラムは、本明細書で説明する順序に沿って時系列に処理が行われるプログラムであっても良いし、並列に、あるいは呼び出しが行われたとき等の必要なタイミングで処理が行われるプログラムであっても良い。
 なお、本明細書において、システムとは、複数の構成要素(装置、モジュール(部品)等)の集合を意味し、すべての構成要素が同一筐体中にあるか否かは問わない。したがって、別個の筐体に収納され、ネットワークを介して接続されている複数の装置、及び、1つの筐体の中に複数のモジュールが収納されている1つの装置は、いずれも、システムである。
 また、本明細書に記載された効果はあくまで例示であって限定されるものでは無く、また他の効果があってもよい。
 本技術の実施の形態は、上述した実施の形態に限定されるものではなく、本技術の要旨を逸脱しない範囲において種々の変更が可能である。
 例えば、本技術は、1つの機能を、ネットワークを介して複数の装置で分担、共同して処理するクラウドコンピューティングの構成をとることができる。
 また、上述のフローチャートで説明した各ステップは、1つの装置で実行する他、複数の装置で分担して実行することができる。
 さらに、1つのステップに複数の処理が含まれる場合には、その1つのステップに含まれる複数の処理は、1つの装置で実行する他、複数の装置で分担して実行することができる。
<構成の組み合わせ例>
 本技術は、以下のような構成をとることもできる。
(1)
 無線通信端末と、複数のリンクでの通信を行う通信部と、
 第1のリンクでのフレームの送信に関する第1の情報と、第2のリンクでのフレームの少なくとも一部の送信に関する第2の情報とを含む第1のTriggerフレームを、前記第1のリンクで送信させる通信制御部と
 を備える無線通信装置。
(2)
 前記第2の情報は、前記第2のリンクでのフレームの少なくとも1の前記無線通信端末の送信に関する情報である
 前記(1)に記載の無線通信装置。
(3)
 前記第2の情報には、前記第2のリンクを識別する識別情報、送信リソース情報、フレームを送信する長さに関する情報、および送信ストリームに関する情報の少なくとも1つが含まれる
 前記(1)または(2)に記載の無線通信装置。
(4)
 前記通信部は、前記無線通信端末から送信されてくるEMLMR(Enhanced Multi-Link Multi-Radio)に関する情報を受信し、
 前記通信制御部は、前記第2の情報に前記送信ストリームに関する情報を含める場合、前記EMLMRに関する情報に基づいて、前記送信ストリームの数を決定する
 前記(3)に記載の無線通信装置。
(5)
 前記通信制御部は、前記第1のTriggerフレームの送信前に、前記第1のTriggerフレーム内に前記第2の情報を含めるか否かを判定する
 前記(1)乃至(4)のいずれかに記載の無線通信装置。
(6)
 前記通信制御部は、各リンクの通信環境に関する情報に基づいて、前記第1のTriggerフレーム内に前記第2の情報を含めるか否かを判定する
 前記(5)に記載の無線通信装置。
(7)
 前記各リンクの通信環境に関する情報は、前記第1のリンクと前記第2のリンクのランダム待ち時間の差である
 前記(6)に記載の無線通信装置。
(8)
 前記各リンクの通信環境に関する情報は、前記第2のリンクの平均アクセス遅延である
 前記(6)に記載の無線通信装置。
(9)
 前記通信制御部は、前記第1のTriggerフレームと終了時間が揃うように、前記第2のリンクで、前記第2のリンクでのフレームの送信に関する第3の情報を含む第2のTriggerフレームを送信させる
 前記(1)乃至(8)のいずれかに記載の無線通信装置。
(10)
 無線通信装置が、
 無線通信端末と、複数のリンクでの通信を行い、
 第1のリンクでのフレームの送信に関する第1の情報と、第2のリンクでのフレームの送信に関する第2の情報を含む第1のTriggerフレームを、前記第1のリンクで送信させる
 無線通信方法。
(11)
 無線通信装置と、複数のリンクでの通信を行い、第1のリンクでのフレームの送信に関する第1の情報と、第2のリンクでのフレームの少なくとも一部の送信に関する第2の情報とを含む第1のTriggerフレームと、前記第2のリンクでのフレームの送信に関する第3の情報を含む第2のTriggerフレームとを受信する通信部と、
 前記第2の情報および前記第3の情報に基づいて、前記第2のリンクでフレームを送信させる通信制御部と
 を備える無線通信端末。
(12)
 前記第2の情報は、前記第2のリンクでのフレームの少なくとも1の無線通信端末の送信に関する情報である
 前記(11)に記載の無線通信端末。
(13)
 前記第2の情報には、前記第2のリンクを識別する識別情報、送信リソース情報、フレームを送信する長さに関する情報、および送信ストリームに関する情報の少なくとも1つが含まれる
 前記(11)または(12)に記載の無線通信端末。
(14)
 前記通信部は、EMLMR(Enhanced Multi-Link Multi-Radio)に関する情報を前記無線通信装置に送信する
 前記(13)に記載の無線通信端末。
(15)
 前記通信制御部は、前記EMLMR(Enhanced Multi-Link Multi-Radio)に関する情報を受信した前記無線通信装置により決定された前記送信ストリームに関する情報に基づいて、前記第1のリンクおよび前記第2のリンクで使用する送信ストリーム数を変更し、前記第1のリンクおよび前記第2のリンクの少なくともどちらか一方で、変更した送信ストリーム数でフレームを送信させる
 前記(13)に記載の無線通信端末。
(16)
 無線通信端末が、
 無線通信装置と、複数のリンクでの通信を行い、第1のリンクでのフレームの送信に関する第1の情報と、第2のリンクでのフレームの少なくとも一部の送信に関する第2の情報とを含む第1のTriggerフレームと、前記第2のリンクでのフレームの送信に関する第3の情報を含む第2のTriggerフレームとを受信し、
 前記第2の情報および前記第3の情報に基づいて、前記第2のリンクで、フレームを送信させる
 無線通信方法。
 11 無線通信装置, 31 通信部, 41,41-1,41-2 アンテナ, 54 データ処理部, 51,51-1,51-2 増幅部, 52,52-1,52-2 無線インタフェース部, 53,53-1,53-2 信号処理部, 55 通信制御部, 56 通信記憶部, 61,61-1,61-2 個別データ処理部, 62 共通データ処理部, 71,71-1,71-2 個別制御部, 72 共通制御部

Claims (16)

  1.  無線通信端末と、複数のリンクでの通信を行う通信部と、
     第1のリンクでのフレームの送信に関する第1の情報と、第2のリンクでのフレームの少なくとも一部の送信に関する第2の情報とを含む第1のTriggerフレームを、前記第1のリンクで送信させる通信制御部と
     を備える無線通信装置。
  2.  前記第2の情報は、前記第2のリンクでのフレームの少なくとも1の前記無線通信端末の送信に関する情報である
     請求項1に記載の無線通信装置。
  3.  前記第2の情報には、前記第2のリンクを識別する識別情報、送信リソース情報、フレームを送信する長さに関する情報、および送信ストリームに関する情報の少なくとも1つが含まれる
     請求項2に記載の無線通信装置。
  4.  前記通信部は、前記無線通信端末から送信されてくるEMLMR(Enhanced Multi-Link Multi-Radio)に関する情報を受信し、
     前記通信制御部は、前記第2の情報に前記送信ストリームに関する情報を含める場合、前記EMLMRに関する情報に基づいて、前記送信ストリームの数を決定する
     請求項3に記載の無線通信装置。
  5.  前記通信制御部は、前記第1のTriggerフレームの送信前に、前記第1のTriggerフレーム内に前記第2の情報を含めるか否かを判定する
     請求項1に記載の無線通信装置。
  6.  前記通信制御部は、各リンクの通信環境に関する情報に基づいて、前記第1のTriggerフレーム内に前記第2の情報を含めるか否かを判定する
     請求項5に記載の無線通信装置。
  7.  前記各リンクの通信環境に関する情報は、前記第1のリンクと前記第2のリンクのランダム待ち時間の差である
     請求項6に記載の無線通信装置。
  8.  前記各リンクの通信環境に関する情報は、前記第2のリンクの平均アクセス遅延である
     請求項6に記載の無線通信装置。
  9.  前記通信制御部は、前記第1のTriggerフレームと終了時間が揃うように、前記第2のリンクで、前記第2のリンクでのフレームの送信に関する第3の情報を含む第2のTriggerフレームを送信させる
     請求項1に記載の無線通信装置。
  10.  無線通信装置が、
     無線通信端末と、複数のリンクでの通信を行い、
     第1のリンクでのフレームの送信に関する第1の情報と、第2のリンクでのフレームの送信に関する第2の情報を含む第1のTriggerフレームを、前記第1のリンクで送信させる
     無線通信方法。
  11.  無線通信装置と、複数のリンクでの通信を行い、第1のリンクでのフレームの送信に関する第1の情報と、第2のリンクでのフレームの少なくとも一部の送信に関する第2の情報とを含む第1のTriggerフレームと、前記第2のリンクでのフレームの送信に関する第3の情報を含む第2のTriggerフレームとを受信する通信部と、
     前記第2の情報および前記第3の情報に基づいて、前記第2のリンクでフレームを送信させる通信制御部と
     を備える無線通信端末。
  12.  前記第2の情報は、前記第2のリンクでのフレームの少なくとも1の無線通信端末の送信に関する情報である
     請求項11に記載の無線通信端末。
  13.  前記第2の情報には、前記第2のリンクを識別する識別情報、送信リソース情報、フレームを送信する長さに関する情報、および送信ストリームに関する情報の少なくとも1つが含まれる
     請求項12に記載の無線通信端末。
  14.  前記通信部は、EMLMR(Enhanced Multi-Link Multi-Radio)に関する情報を前記無線通信装置に送信する
     請求項13に記載の無線通信端末。
  15.  前記通信制御部は、前記EMLMR(Enhanced Multi-Link Multi-Radio)に関する情報を受信した前記無線通信装置により決定された前記送信ストリームに関する情報に基づいて、前記第1のリンクおよび前記第2のリンクで使用する送信ストリーム数を変更し、前記第1のリンクおよび前記第2のリンクの少なくともどちらか一方で、変更した送信ストリーム数でフレームを送信させる
     請求項13に記載の無線通信端末。
  16.  無線通信端末が、
     無線通信装置と、複数のリンクでの通信を行い、第1のリンクでのフレームの送信に関する第1の情報と、第2のリンクでのフレームの少なくとも一部の送信に関する第2の情報とを含む第1のTriggerフレームと、前記第2のリンクでのフレームの送信に関する第3の情報を含む第2のTriggerフレームとを受信し、
     前記第2の情報および前記第3の情報に基づいて、前記第2のリンクで、フレームを送信させる
     無線通信方法。
PCT/JP2022/004584 2021-06-01 2022-02-07 無線通信装置、無線通信端末、および無線通信方法 WO2022254791A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202280037660.XA CN117378275A (zh) 2021-06-01 2022-02-07 无线通信设备、无线通信终端和无线通信方法
JP2023525377A JPWO2022254791A1 (ja) 2021-06-01 2022-02-07
EP22815550.3A EP4351076A1 (en) 2021-06-01 2022-02-07 Wireless communication device, wireless communication terminal, and wireless communication method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021092264 2021-06-01
JP2021-092264 2021-06-01

Publications (1)

Publication Number Publication Date
WO2022254791A1 true WO2022254791A1 (ja) 2022-12-08

Family

ID=84324106

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/004584 WO2022254791A1 (ja) 2021-06-01 2022-02-07 無線通信装置、無線通信端末、および無線通信方法

Country Status (4)

Country Link
EP (1) EP4351076A1 (ja)
JP (1) JPWO2022254791A1 (ja)
CN (1) CN117378275A (ja)
WO (1) WO2022254791A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021090718A1 (ja) * 2019-11-08 2021-05-14 ソニー株式会社 通信装置、情報処理方法
WO2022018984A1 (ja) * 2020-07-21 2022-01-27 キヤノン株式会社 通信装置、通信装置の制御方法およびプログラム

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021090718A1 (ja) * 2019-11-08 2021-05-14 ソニー株式会社 通信装置、情報処理方法
WO2022018984A1 (ja) * 2020-07-21 2022-01-27 キヤノン株式会社 通信装置、通信装置の制御方法およびプログラム

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MINYOUNG PARK (INTEL CORP.): "multi-link power save - link bitmap", IEEE DRAFT; 11-20-0085-01-00BE-MULTI-LINK-POWER-SAVE-LINK-BITMAP, IEEE-SA MENTOR, PISCATAWAY, NJ USA, vol. 802.11 EHT; 802.11be, no. 1, 21 April 2020 (2020-04-21), Piscataway, NJ USA , pages 1 - 10, XP068167559 *
YONGHO SEOKJAMES YEEJIANHAN LIUTHOMAS PARE: "Multi-link Triggered Uplink Access Follow Up", IEEE 802.11-20/0671R3, 29 July 2020 (2020-07-29), Retrieved from the Internet <URL:https://mentor.ieee.org/802.11/dcn/20/11-20-0671-03-00be-multi-link-triggered-uplink-access-follow-up.pptx>

Also Published As

Publication number Publication date
JPWO2022254791A1 (ja) 2022-12-08
EP4351076A1 (en) 2024-04-10
CN117378275A (zh) 2024-01-09

Similar Documents

Publication Publication Date Title
US10405301B2 (en) Method and apparatus for allocating transmission channel in wireless local area network system
US11457408B2 (en) Full-duplex communication method in high efficient wireless LAN network and station apparatus
US10499431B2 (en) Channel access method for very high throughput (VHT) wireless local access network system and station supporting the channel access method
CN111669204B (zh) 用于无线通信系统的信息传输方法、信息接收方法和装置
US9929784B2 (en) Methods for transmitting a frame in a multi-user based wireless communication system
KR20110058710A (ko) 다중 사용자 다중 안테나 기반 무선통신 시스템에서 데이터 보호 방법
CN108123781B (zh) 一种信息指示方法、接收方法及装置
TWI834823B (zh) 無線通訊裝置及方法
JP2022554138A (ja) 通信デバイスおよび方法
WO2022254791A1 (ja) 無線通信装置、無線通信端末、および無線通信方法
WO2022219856A1 (ja) 通信装置及び通信方法
JP2016213568A (ja) 無線通信用集積回路
US20220225344A1 (en) Communication devices and methods
WO2022239328A1 (ja) 無線通信装置、無線通信端末、および無線通信方法
WO2023181873A1 (ja) 無線通信装置、無線通信端末、および無線通信方法
US20220353864A1 (en) Wireless communication device and method
US20240237064A1 (en) Wireless communication device, wireless communication terminal, and wireless communication method
WO2022209213A1 (ja) 無線通信装置および方法
WO2022224519A1 (ja) 無線通信装置、無線通信端末、および、無線通信方法
WO2023095626A1 (ja) 無線通信装置および方法、並びに、無線通信端末および方法
TW202420879A (zh) 靈活的多鏈路操作架構
KR20190016067A (ko) 다중 사용자 다중 안테나 기반 무선통신 시스템에서 데이터 보호 방법
WO2017197606A1 (zh) 传输方法、接入点和站点

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22815550

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023525377

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 18563385

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202280037660.X

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2022815550

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022815550

Country of ref document: EP

Effective date: 20240102