WO2022253263A1 - 压力感应通道的校准方法、装置及电子设备 - Google Patents

压力感应通道的校准方法、装置及电子设备 Download PDF

Info

Publication number
WO2022253263A1
WO2022253263A1 PCT/CN2022/096561 CN2022096561W WO2022253263A1 WO 2022253263 A1 WO2022253263 A1 WO 2022253263A1 CN 2022096561 W CN2022096561 W CN 2022096561W WO 2022253263 A1 WO2022253263 A1 WO 2022253263A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
pressure sensing
sensing channel
pressing
value
Prior art date
Application number
PCT/CN2022/096561
Other languages
English (en)
French (fr)
Inventor
贺逸凡
张开卫
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2022253263A1 publication Critical patent/WO2022253263A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0447Position sensing using the local deformation of sensor cells
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/0418Control or interface arrangements specially adapted for digitisers for error correction or compensation, e.g. based on parallax, calibration or alignment

Definitions

  • the present application belongs to the field of computer technology, and more specifically, relates to a calibration method, device and electronic equipment of a pressure sensing channel.
  • the purpose of the embodiments of the present application is to provide a method for calibrating a pressure-sensing channel, which can solve the problem that the optimization process of pressure-sensing calibration in the prior art is extremely cumbersome.
  • an embodiment of the present application provides a method for calibrating a pressure-sensing channel, which is applied to an electronic device.
  • the sensing channels are set according to the preset arrangement scheme, which includes:
  • the pressure sensing value of the pressing position is calibrated according to the pressing position, the standard pressure value and the calibration model corresponding to the pressure sensing channel.
  • an embodiment of the present application provides a calibration device for a pressure sensing channel, which is applied to electronic equipment.
  • the induction channel is set according to the preset arrangement scheme, which includes:
  • a receiving module configured to receive a pressing input implemented with a standard pressure value
  • a determining module configured to, in response to the pressing input, determine the pressing position of the pressing input based on the pressure sensing channel
  • the calibration module is configured to calibrate the pressure sensing value of the pressing position according to the pressing position, the standard pressure value and the calibration model corresponding to the pressure sensing channel.
  • an embodiment of the present application provides an electronic device, the electronic device includes a processor, a memory, and a program or instruction stored in the memory and operable on the processor, and the program or instruction is The processor implements the steps of the method described in the first aspect when executed.
  • an embodiment of the present application provides a readable storage medium, on which a program or an instruction is stored, and when the program or instruction is executed by a processor, the steps of the method described in the first aspect are implemented .
  • the embodiment of the present application provides a chip, the chip includes a processor and a communication interface, the communication interface is coupled to the processor, and the processor is used to run programs or instructions, so as to implement the first aspect the method described.
  • a pressure-sensing channel is set under the display screen of the electronic device, and the pressure-sensing channel is set according to a preset arrangement scheme according to the center position of the display screen.
  • calibrating the pressure-sensing channel it is First receive the press input implemented with a standard pressure value, and in response to the press input, determine the press position of the press input based on the pressure sensing channel, and then according to the press position, standard pressure value and the calibration model of the corresponding pressure sensing channel, the pressure at the press position Sensing value is calibrated. That is, according to the embodiment of the present application, a pre-built calibration model is used to calibrate the pressure sensing value of the pressing position, which can improve calibration accuracy and calibration efficiency.
  • FIG. 1 is a schematic structural diagram of a pressure sensing channel of an electronic device provided in an embodiment of the present application
  • FIG. 2 is a flowchart of a calibration method for a pressure sensing channel provided in an embodiment of the present application
  • FIG. 3 is a schematic structural diagram of a pressure sensing channel of another electronic device provided in an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of a display screen of an electronic device provided in an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of a pressure sensing channel of another electronic device provided by an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of a pressure sensing channel of another electronic device provided by an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of a pressure sensing channel of another electronic device provided by an embodiment of the present application.
  • Fig. 8a is a front view of the pressing transmission provided by the embodiment of the present application.
  • Fig. 8b is a logical block diagram of the under-screen pressure detection provided by the embodiment of the present application.
  • Fig. 8c is a cloud diagram of the dotted signal output of the central pressure sensing channel provided by the embodiment of the present application.
  • Fig. 8d is a schematic diagram of the principle of press-sensing calibration provided by the embodiment of the present application.
  • Fig. 9a is a flow chart of opening the calibration logic of the central pressure sensing channel provided by the embodiment of the present application.
  • Fig. 9b is a flowchart of the calibration logic opening of M pressure sensing channels provided by the embodiment of the present application.
  • FIG. 10 is another logical block diagram of off-screen pressure sensing provided by the embodiment of the present application.
  • FIG. 11 is a functional block diagram of a calibration device for a pressure sensing channel provided in an embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of an electronic device provided by an embodiment of the present application.
  • FIG. 13 is a schematic structural diagram of an electronic device provided by another embodiment of the present application.
  • FIG. 2 is a flowchart of a method for calibrating a pressure sensing channel provided in an embodiment of the present application.
  • the method can be applied to an electronic device, and the electronic device can be a mobile phone, a tablet computer, a notebook computer, and the like.
  • the electronic device includes a pressure-sensing channel arranged under the display screen, and the pressure-sensing channel is arranged according to a preset arrangement scheme according to the center position of the display screen.
  • the pressure sensing channel may be a pressure sensor.
  • the method for calibrating the pressure sensing channel may include steps S2100 to S2300 , which will be described in detail below.
  • Step S2100 receiving a pressing input implemented with a standard pressure value.
  • the standard pressure value may be a preset pressure value when the electronic device is calibrated before leaving the factory.
  • the standard pressure value may be set, and the standard pressure value may be 5N.
  • three grades of standard pressure values may be set, wherein the first grade standard pressure value may be 5N, the second grade standard pressure value may be 10N, and the third grade standard pressure value may be 15N.
  • the first grade standard pressure value may be 5N
  • the second grade standard pressure value may be 10N
  • the third grade standard pressure value may be 15N.
  • it is possible to set more standard pressure values such as the fourth level and the fifth level, which are not listed in this embodiment.
  • the staff can press and input the pressure value of 5N on the display screen of the electronic device.
  • Step S2200 in response to the pressing input, determine the pressing position of the pressing input based on the pressure sensing channel.
  • the electronic device includes one or M pressure sensing channels; wherein, M is a positive even number.
  • the pressure-sensing channel is arranged at a central position below the display screen. That is, according to this example, only a separate pressure sensing channel is provided at the center position below the display screen of the electronic device, which reduces the power consumption of the electronic device.
  • determining the press position of the press input based on the pressure sensing channel may further include: in response to the press input, determining the press position of the press input based on the one pressure sensing channel.
  • the press input can be responded to, as shown in Figure 4, with the pixel position of the display screen directly above the pressure sensing channel as the center position (0,0 ) to establish a coordinate system.
  • the X-axis and the Y-axis represent the x-direction and y-direction coordinates of the display screen respectively.
  • the pressing position (x, y) of the pressing input is determined.
  • the display screen in this embodiment is a capacitive display screen, that is, the display screen can be equivalent to a capacitive plane, and the contact manpower is equivalent to an equivalent capacitance.
  • the pressed position of the pressed input can be captured according to the touch capacitance.
  • the electronic device can respond to the press input and display the center pixel of the screen directly above the pressure sensing channel
  • the position is the center position (0,0) to establish a coordinate system.
  • the X-axis and Y-axis respectively represent the x-direction and y-direction coordinates of the display screen. Based on this coordinate system, determine the pressing position (x, y) of the pressing input .
  • the M pressure-sensing channels are symmetrically distributed below the display screen based on the central position of the display screen. According to this example, based on the central position of the display screen, there are positive and even number of pressure sensing channels symmetrically distributed under the display screen, so as to optimize the spatial structure while taking into account the pressing range of the whole machine and the accuracy of the sensing area.
  • the electronic device includes two pressure-sensing channels, and the two pressure-sensing channels are symmetrically distributed based on the central position of the display screen, wherein each box represents a pressure-sensing channel.
  • the distribution density of the pressure sensing channel array shown in FIG. 7 is higher than that of the pressure sensing channel array shown in FIG. 3 .
  • the sensitivity and sensing area of the pressure sensing channel array shown in Figure 7 are higher than those of the pressure sensing channel array shown in Figure 3, so that the power consumption of the pressure sensing channel array shown in Figure 7 is greater than that of Figure 3 Power dissipation of the pressure-sensing channel array shown.
  • determining the pressing position of the pressing input based on the pressure sensing channel may further include: selecting a target pressure sensing channel from M pressure sensing channels in response to the pressing operation; The channel determines the press location for the press input.
  • the pressure sensing channel with the highest pressure sensing level among the M pressure sensing channels can be determined as the target pressure sensing channel.
  • the center pixel position of the display screen directly above the target pressure sensing channel is the center position (0,0) to establish a coordinate system.
  • the X-axis and Y-axis in Figure 4 represent the x-direction and y-direction coordinates of the display screen respectively. Based on this coordinate system, determine The press position (x, y) of this press input.
  • the electronic device can respond to the press input and determine that the pressure sensing level of the M pressure sensing channels is the highest
  • the pressure-sensing channel of the target pressure-sensing channel is used as the target pressure-sensing channel, and the coordinate system is established with the center pixel position of the display screen directly above the target pressure-sensing channel as the center position (0,0).
  • the X-axis and Y-axis in Figure 4 represent the x of the display screen and y-direction coordinates, and based on the coordinate system, the pressing position (x, y) of the pressing input is determined.
  • Step S2300 calibrate the pressure sensing value of the pressing position according to the pressing position, the standard pressure value and the calibration model of the corresponding pressure sensing channel.
  • the pressure sensing value is a differential electric signal value caused by a deformation amount generated by pressing input. It can be understood that, after the staff implements the pressing input, the deformation caused by the pressing input is transmitted to the pressure sensing channel, resulting in a change of the electrical signal. At the same time, when using the same level of standard pressure value to perform press input in different directions on the display screen, due to the different positions from the pressure sensing channel, the deformation in different directions is different. Usually, the deformation directly above the pressure sensing channel is the largest.
  • the purpose of the calibration is to make the pressure sensing values fed back by the pressure sensing channel equal when the display screen is pressed in different directions with the same standard pressure value. That is, when the display screen is pressed in different orientations with the same level of standard pressure value, the pressure sensitivity values of the different orientations are all corrected to the target pressure sensitivity value corresponding to the standard pressure value.
  • Different levels of standard pressure values correspond to different target pressure sensing values.
  • the pressure-sensitive values in different directions can be corrected to the target pressure-sensitive value P1 corresponding to the standard pressure value of 5N through pressure-sensitive calibration.
  • the pressure-sensing values of the different directions can be corrected to the target pressure-sensing value P2 corresponding to the standard pressure value of 10N through pressure-sensitivity calibration.
  • the pressure-sensitive values in different directions can be corrected to the target pressure-sensitive value P3 corresponding to the standard pressure value of 15N through pressure-sensitive calibration.
  • the sensing value F Pressure , P 0 is the corresponding pressure sensing value directly above the pressure sensing channel, that is, the maximum pressure sensing value, and different grades of standard pressure values correspond to different maximum pressure sensing values.
  • the pressure sensing value of the pressing position is calculated according to the pressing position, the standard pressure value and the calibration model of the corresponding pressure sensing channel.
  • Calibrating may further include: calibrate the pressure sensing value at the pressing position according to the pressing position, the standard pressure value and the calibration model corresponding to the pressure sensing channel.
  • the deformation value generated at the pressing position (x, y) and the standard pressure value 5N can be brought into the Go to the calibration model corresponding to the pressure sensing channel to calibrate the pressure sensing value at the pressing position (x, y), that is, calibrate the pressure sensing value at the pressing position (x, y) to the target pressure Induction value P1.
  • the pressure sensing of the pressing position Calibrating the value may further include: calibrating the pressure sensing value of the pressing position according to the pressing position, the standard pressure value and the calibration model corresponding to the target pressure sensing channel.
  • the pressing position after determining the target pressure sensing channel, it will determine the pressing position of the pressing input based on the target pressure sensing channel, and then according to the pressing position, standard pressure value and the calibration model of the corresponding target pressure sensing channel, the pressing position can be calculated.
  • the pressure sensing value is calibrated.
  • one pressure sensing channel corresponds to one calibration model
  • M pressure sensing channels correspond to M pressure sensing channels
  • the pressing position (x, y) of the pressing input is determined, the pressing position (x, y) and the standard pressure value of 5N can be brought into the target pressure sensing channel corresponding
  • the pressure sensing value at the pressing position (x, y) is calibrated, that is, the pressure sensing value at the pressing position (x, y) is calibrated to the target pressure sensing value P1.
  • the above steps S2100-S2300 may be repeatedly performed to calibrate different orientations of the display screen.
  • a pressure sensing channel is provided under the display screen of the electronic device, and the pressure sensing channel is set according to a preset arrangement scheme according to the center position of the display screen.
  • calibrating the pressure sensing channel it is First receive the pressing input with standard pressure value, and in response to the pressing input, determine the pressing position of the pressing input based on the pressure sensing channel, and then according to the pressing position, standard pressure value and the calibration model of the corresponding pressure sensing channel, the pressure of the pressing position Sensing value is calibrated. That is, according to the embodiment of the present application, a pre-built calibration model is used to calibrate the pressing position, which can improve calibration accuracy and calibration efficiency.
  • the method for calibrating the pressure sensing channel further includes obtaining the calibration model
  • the step of obtaining the calibration model may include the following steps S2110 ⁇ S2120:
  • Step S2110 obtaining a training sample set.
  • under-screen pressure sensing means that the position A on the display screen of the electronic device receives the pressing pressure F, and transmits the deformation caused by the pressing pressure to the pressure sensing channel for perception.
  • the internal processing of the channel outputs the pressure sensing value to the application program processor, thereby enabling the electronic device to realize the corresponding function. Therefore, based on the compression deformation displacement transfer model, a linear regression model based on central symmetry can be considered.
  • the touch screen model currently used is that the metal surface at the screen end is equivalent to a capacitive plane, and human contact forms an equivalent capacitance, and then accurately defines the coordinate position of the plane according to the different orientations of the whole screen. From the flow chart shown in Figure 8b, it can be seen that there are two breakthroughs in the detection process to establish a simple and complete linear regression model: 1) The capacitive touch screen can capture pixels to divide the orientation of pixel intervals. 2) The receiving deformation of the pressure-sensing channel is equal around the symmetrical orientation of the center. Based on 1) and 2), the coordinate system shown in Figure 4 can be established.
  • the X-axis and Y-axis in Figure 4 represent the x-coordinates and y-coordinates of the display screen, and the center of the grid represents the pixel position of the display screen. Therefore The deformation value of the pressed screen can be reported to the application program processor for summary processing.
  • the two-dimensional normal distribution signal cloud diagram shown in Figure 8c will be obtained. From the signal cloud diagram shown in Figure 8c, it can be seen that when the pressure-sensing channel When the perceived deformations around the press are transmitted to each other, the deformations transmitted by the symmetrical orientation of the center of each press must be equal, as shown in Figure 8d.
  • the purpose of calibration is to press the original signal of the press on the same baseline. Make the entire display screen receive the same pressure sensing value in different orientations.
  • Each training sample in the training sample set includes a pressing position sample, a pressure value sample and a pressing deformation value sample of the pressing position sample.
  • the required amount of training data can be determined taking into account the accuracy of the training results and the cost of data processing.
  • the staff can press the input in different directions on the display screen with standard pressure values (one press is called a dot), and the electronic device responds to the press input by displaying the center of the screen directly above the pressure sensing channel.
  • the pixel position is the center position (0,0) to establish a coordinate system, and then based on the coordinate system, the pressing position (x, y) of the pressing input is determined, and based on the pressing position and the standard pressure value stored in the storage module of the electronic device
  • the mapping function between Pressure F(x, y) to obtain the pressing deformation value at the pressing position, where (x, y) indicates the pressing position, Pressure indicates the standard pressure value, and F(x, y) indicates the pressing position The pressing deformation value at .
  • a pressure-sensing channel is provided at the center of the bottom of the display screen as an example, as shown in FIG. 9 a , the staff may perform press input on the display screen with a standard pressure value.
  • the pressure sensing channel senses the pressing input, and the coordinate system is established with the center pixel position of the display screen directly above the pressure sensing channel as the center position (0,0).
  • the staff performs pressing input on the display screen with a standard pressure value to determine M pressure-sensing channels
  • the pressure sensing channel with the highest medium pressure sensing level is the target pressure sensing channel.
  • a coordinate system is established with the pixel position of the display screen directly above the target pressure sensing channel as the center position (0,0).
  • the pressure level at the pressing position can also be determined based on the mapping data of the mapping relationship between the preset standard pressure value and the pressing position.
  • the pressing deformation values of the pressure-sensing channels around the center-symmetrical orientation are equal, that is, when the pressure-sensing channel senses the pressing deformations and transmits each other around the pressing, the pressing deformation values transmitted by each pressing center-symmetrical orientation must be equal .
  • the display screen may be divided into N intervals according to the pressure-sensing channel and preset division rules, wherein N is a positive even number; and any one of the N intervals is obtained as a training interval; and, Obtain a training sample set based on the training interval.
  • the display screen can be divided into 8 areas based on the pressure sensing channel (the central sensing channel in Figure 5), since the pressing deformation values of the pressure sensing channel around the symmetrical orientation of the center are equal, here , the signal records of Area 2, Area 3, Area 4, Area 5, Area 6, Area 7 and Area 8 can be obtained only through the dot signal recording of Area 1.
  • the staff may perform press input at different positions in the display screen area 1 with a standard pressure value, and the electronic device responds to the press input by displaying the center of the screen directly above the pressure sensing channel.
  • the pixel position is the center position (0,0) to establish a coordinate system, and then based on the coordinate system, the pressing position (x, y) of the pressing input is determined, and based on the pressing position and the standard pressure value stored in the storage module of the electronic device
  • step S2120 a calibration model is obtained according to the training sample set.
  • a function fitting may be performed on the training sample set to obtain a calibration model between the pressing position and the target pressure sensing value.
  • the purpose of calibration is to press the original pressing signal on the same baseline, so that the entire display screen receives the same pressure sensing value in different directions, so for different levels of standard pressure Value, corresponding to setting a "normalized” baseline, and performing function fitting on the data of the training sample set to obtain the calibration model
  • F Pressure P 0 *f(x,y):
  • the input of the calibration model includes the pressing position (x, y), specifically, the deformation value generated by the pressing input at the pressing position (x, y), and the input of the calibration model also includes the standard for implementing the pressing input.
  • Pressure value the output is the calibrated pressure sensing value F Pressure at the pressing position (x, y)
  • P 0 is the corresponding pressure sensing value directly above the pressure sensing channel, that is, the maximum pressure sensing value, different levels of standard pressure Values correspond to different maximum pressure sensing values.
  • the area A is an area where the pressure sensing value generated by pressing reported by the electronic device is greater than a preset pressure sensing threshold.
  • the area B is an area where the pressure sensing value generated by pressing reported by the electronic device is less than or equal to a preset pressure sensing threshold.
  • this embodiment can divide the screen pixels into intervals according to the pressure sensing channel in advance, and map the center-symmetrical intervals, thereby reducing the number of dots.
  • it can obtain a calibration model based on the dot signal record fitting, and then The calibration model can be used to calibrate different orientations of the display screen, thereby improving calibration accuracy and calibration efficiency.
  • the embodiment of the present application also provides a pressure sensing channel calibration device 1100, which is applied to electronic equipment.
  • the electronic equipment includes a pressure sensing channel arranged under the display screen, and according to the The central position pressure sensing channel is set according to the preset arrangement scheme, and the device 1100 includes:
  • the receiving module 11100 is configured to receive a pressing input implemented with a standard pressure value.
  • the determining module 11200 is configured to, in response to the pressing input, determine the pressing position of the pressing input based on the pressure sensing channel.
  • the calibration module 11300 is configured to calibrate the pressure sensing value of the pressing position according to the pressing position, the standard pressure value and the calibration model corresponding to the pressure sensing channel.
  • the device 1100 further includes a training module (not shown in the figure), which is used to: obtain a training sample set; wherein, each training sample in the training sample set includes a press position sample and the press The pressure value sample and the pressing deformation value sample of the position sample; the calibration model is trained according to the training sample set.
  • a training module (not shown in the figure), which is used to: obtain a training sample set; wherein, each training sample in the training sample set includes a press position sample and the press The pressure value sample and the pressing deformation value sample of the position sample; the calibration model is trained according to the training sample set.
  • the training module is further configured to: divide the display screen into N intervals according to the pressure sensing channel and preset division rules; wherein, N is a positive even number; obtain the N intervals Any interval in is used as a training interval; based on the training interval, the training sample set is obtained.
  • the electronic device includes one or M pressure sensing channels; wherein, M is a positive even number; and,
  • the one pressure-sensing channel is arranged at a central position below the display screen;
  • the M pressure sensing channels are symmetrically distributed below the display screen based on the center position of the display screen.
  • the determining module 11200 is further configured to: select a target from the M pressure-sensing channels in response to the pressing operation pressure sensing channel.
  • the calibration module 11300 is further configured to calibrate the pressure sensing value of the pressing position according to the pressing position, the pressure value corresponding to the pressing input and the calibration model corresponding to the target pressure sensing channel.
  • the device for calibrating the pressure sensing channel in the embodiment of the present application may be a device, or may be a component, an integrated circuit, or a chip in a terminal.
  • the device may be a mobile electronic device or a non-mobile electronic device.
  • the mobile electronic device may be a mobile phone, a tablet computer, a notebook computer, a handheld computer, a vehicle electronic device, a wearable device, an ultra-mobile personal computer (ultra-mobile personal computer, UMPC), a netbook or a personal digital assistant (personal digital assistant).
  • non-mobile electronic devices can be servers, network attached storage (Network Attached Storage, NAS), personal computer (personal computer, PC), television (television, TV), teller machine or self-service machine, etc., this application Examples are not specifically limited.
  • Network Attached Storage NAS
  • personal computer personal computer, PC
  • television television
  • teller machine or self-service machine etc.
  • the device for calibrating the pressure sensing channel in the embodiment of the present application may be a device with an operating system.
  • the operating system may be an Android (Android) operating system, an ios operating system, or other possible operating systems, which are not specifically limited in this embodiment of the present application.
  • the device for calibrating the pressure sensing channel in the embodiment of the present application may be a device with an operating system.
  • the operating system may be an Android (Android) operating system, an ios operating system, or other possible operating systems, which are not specifically limited in this embodiment of the present application.
  • the calibration device for the pressure sensing channel provided in the embodiment of the present application can implement the various processes implemented in the above method embodiments, and details are not repeated here to avoid repetition.
  • this embodiment of the present application further provides an electronic device 1200, including a processor 1201 and a memory 1202, which are stored in the memory 1202 and can be stored on the processor 1201.
  • the program or instruction running on the computer when the program or instruction is executed by the processor 1201, realizes the various processes of the above embodiment of the calibration method for the pressure sensing channel, and can achieve the same technical effect. To avoid repetition, details are not repeated here.
  • the electronic devices in the embodiments of the present application include the above-mentioned mobile electronic devices and non-mobile electronic devices.
  • FIG. 13 is a schematic diagram of a hardware structure of an electronic device implementing an embodiment of the present application.
  • the electronic device 1300 includes, but is not limited to: a radio frequency unit 1301, a network module 1302, an audio output unit 1303, an input unit 1304, a sensor 1305, a display unit 1306, a user input unit 1307, an interface unit 1308, a memory 1309, and a processor 1310, etc. part.
  • the electronic device 1300 can also include a power supply (such as a battery) for supplying power to various components, and the power supply can be logically connected to the processor 1310 through the power management system, so that the management of charging, discharging, and function can be realized through the power management system. Consumption management and other functions.
  • a power supply such as a battery
  • the structure of the electronic device shown in FIG. 13 does not constitute a limitation to the electronic device.
  • the electronic device may include more or fewer components than shown in the figure, or combine some components, or arrange different components, and details will not be repeated here. .
  • the processor 1310 is configured to receive a pressing input implemented with a standard pressure value; in response to the pressing input, determine the pressing position of the pressing input based on the pressure sensing channel; according to the pressing position, the standard pressure value and the calibration model corresponding to the pressure sensing channel to calibrate the pressure sensing value at the pressing position.
  • the processor 1310 is further configured to acquire a training sample set; wherein, each training sample in the training sample set includes a press position sample and a pressure value sample and a press deformation value sample of the press position sample; according to The training sample set obtains the calibration model.
  • the processor 1310 is further configured to divide the display screen into N intervals according to the pressure sensing channel and preset division rules; wherein, N is a positive even number; obtain the N intervals Any interval in is used as a training interval; based on the training interval, the training sample set is obtained.
  • the processor 1310 is further configured to select a target pressure sensing channel from the M pressure sensing channels in response to the pressing operation; determine the pressing of the pressing input based on the target pressure sensing channel Location.
  • the processor 1310 is further configured to calibrate the pressure sensing value of the pressing position according to the pressing position, the pressure value corresponding to the pressing input and the calibration model corresponding to the target pressure sensing channel .
  • the input unit 1304 may include a graphics processor (Graphics Processing Unit, GPU) 13041 and a microphone 13042, and the graphics processor 13041 is used for the image capture device (such as the image data of the still picture or video obtained by the camera) for processing.
  • the display unit 1306 may include a display panel 13061, and the display panel 13061 may be configured in the form of a liquid crystal display, an organic light emitting diode, or the like.
  • the user input unit 1307 includes a touch panel 13071 and other input devices 13072 . Touch panel 13071, also called touch screen.
  • the touch panel 13071 may include two parts, a touch detection device and a touch controller.
  • Other input devices 13072 may include, but are not limited to, physical keyboards, function keys (such as volume control buttons, switch buttons, etc.), trackballs, mice, and joysticks, which will not be repeated here.
  • Memory 1309 can be used to store software programs as well as various data, including but not limited to application programs and operating systems.
  • the processor 1310 may integrate an application processor and a modem processor, wherein the application processor mainly processes operating systems, user interfaces, and application programs, and the modem processor mainly processes wireless communications. It can be understood that the foregoing modem processor may not be integrated into the processor 1310 .
  • the embodiment of the present application also provides a readable storage medium, on which a program or instruction is stored, and when the program or instruction is executed by a processor, the various processes of the above-mentioned comment display method embodiment are realized, and the same To avoid repetition, the technical effects will not be repeated here.
  • the processor is the processor in the electronic device described in the above embodiments.
  • the readable storage medium includes computer readable storage medium, such as computer read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk, etc.
  • the embodiment of the present application further provides a chip, the chip includes a processor and a communication interface, the communication interface is coupled to the processor, and the processor is used to run programs or instructions to implement the above-mentioned comment display method embodiment
  • the chip includes a processor and a communication interface
  • the communication interface is coupled to the processor
  • the processor is used to run programs or instructions to implement the above-mentioned comment display method embodiment
  • chips mentioned in the embodiments of the present application may also be called system-on-chip, system-on-chip, system-on-a-chip, or system-on-a-chip.
  • the term “comprising”, “comprising” or any other variation thereof is intended to cover a non-exclusive inclusion such that a process, method, article or apparatus comprising a set of elements includes not only those elements, It also includes other elements not expressly listed, or elements inherent in the process, method, article, or device. Without further limitations, an element defined by the phrase “comprising a " does not preclude the presence of additional identical elements in the process, method, article, or apparatus comprising that element.
  • the scope of the methods and devices in the embodiments of the present application is not limited to performing functions in the order shown or discussed, and may also include performing functions in a substantially simultaneous manner or in reverse order according to the functions involved. Functions are performed, for example, the described methods may be performed in an order different from that described, and various steps may also be added, omitted, or combined. Additionally, features described with reference to certain examples may be combined in other examples.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Fluid Pressure (AREA)
  • User Interface Of Digital Computer (AREA)

Abstract

本申请公开了一种压力感应通道的校准方法、装置及电子设备,所述电子设备包括设置于显示屏幕下方的压力感应通道,且根据所述显示屏幕的中心位置所述压力感应通道按照预设排布方案进行设置,该方法包括:接收以标准压力值实施的按压输入;响应于所述按压输入,基于所述压力感应通道确定所述按压输入的按压位置;根据所述按压位置、所述标准压力值和对应所述压力感应通道的校准模型,对所述按压位置的压力感应值进行校准。

Description

压力感应通道的校准方法、装置及电子设备
相关申请的交叉引用
本申请要求于2021年06月03日提交的申请号为2021106206455,发明名称为“压力感应通道的校准方法、装置及电子设备”的中国专利申请的优先权,其通过引用方式全部并入本申请。
技术领域
本申请属于计算机技术领域,更具体地,涉及一种压力感应通道的校准方法、装置及电子设备。
背景技术
随着移动终端的快速发展,用户对整机交互功能需求日益增多,压感按键与显示屏幕相结合的思想应运而生,目前已有移动终端厂商设计并研究基于压阻效应的屏下压力感应功能。
相关技术中,其是在移动终端的显示屏幕下贴合压力感应通道模组,如图1所示的压力感应通道模组排布,然而,如此排布压力感应通道会导致压力感应信号无法呈现线性表征,造成原始数据无法进行线性回归处理,校准优化过程异常繁琐。
发明内容
本申请实施例的目的是提供一种压力感应通道的校准方法,能够解决现有技术中的压感校准优化过程异常繁琐的问题。
第一方面,本申请实施例提供一种压力感应通道的校准方法,应用于电子设备,所述电子设备包括设置于显示屏幕下方的压力感应通道,且根据所述显示屏幕的中心位置所述压力感应通道按照预设排布方案进行设置, 其包括:
接收以标准压力值实施的按压输入;
响应于所述按压输入,基于所述压力感应通道确定所述按压输入的按压位置;
根据所述按压位置、所述标准压力值和对应所述压力感应通道的校准模型,对所述按压位置的压力感应值进行校准。
第二方面,本申请实施例提供一种压力感应通道的校准装置,应用于电子设备,所述电子设备包括设置于显示屏幕下方的压力感应通道,且根据所述显示屏幕的中心位置所述压力感应通道按照预设排布方案进行设置,其包括:
接收模块,用于接收以标准压力值实施的按压输入;
确定模块,用于响应于所述按压输入,基于所述压力感应通道确定所述按压输入的按压位置;
校准模块,用于根据所述按压位置、所述标准压力值和对应所述压力感应通道的校准模型,对所述按压位置的压力感应值进行校准。
第三方面,本申请实施例提供了一种电子设备,该电子设备包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第一方面所述的方法的步骤。
第四方面,本申请实施例提供了一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如第一方面所述的方法的步骤。
第五方面,本申请实施例提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如第一方面所述的方法。
在本申请实施例中,其在电子设备显示屏幕下方设置有压力感应通道,且根据显示屏幕的中心位置压力感应通道按照预设排布方案进行设置,在对压力感应通道进行校准时,其是先接收以标准压力值实施的按压输入, 并响应于按压输入,基于压力感应通道确定按压输入的按压位置,进而根据按压位置、标准压力值和对应压力感应通道的校准模型,对按压位置的压力感应值进行校准。即,根据本申请实施例,其是利用预先构建好的校准模型对按压位置的压力感应值进行校准,可以提高校准准确度和校准效率。
附图说明
被结合在说明书中并构成说明书的一部分的附图示出了本发明的实施例,并且连同其说明一起用于解释本发明的原理。
图1为本申请实施例提供的电子设备的压力感应通道的结构示意图;
图2为本申请实施例提供的一种压力感应通道的校准方法的流程图;
图3为本申请实施例提供的另一种电子设备的压力感应通道的结构示意图;
图4为本申请实施例提供的电子设备的显示屏幕的结构示意图;
图5为本申请实施例提供的另一种电子设备的压力感应通道的结构示意图;
图6为本申请实施例提供的另一种电子设备的压力感应通道的结构示意图;
图7为本申请实施例提供的另一种电子设备的压力感应通道的结构示意图;
图8a为本申请实施例提供的按压传递主视图;
图8b为本申请实施例提供的屏下压感检测逻辑框图;
图8c为本申请实施例提供的中心压力感应通道打点信号输出云图;
图8d为本申请实施例提供的按压感应校准原理示意图;
图9a为本申请实施例提供的中心压力感应通道的校准逻辑开启流程图;
图9b为本申请实施例提供的M个压力感应通道的校准逻辑开启流程 图;
图10为本申请实施例提供的另一屏下压感检测逻辑框图;
图11为本申请实施例提供的压力感应通道的校准装置的原理框图;
图12为本申请实施例提供的电子设备的结构示意图;
图13为本申请另一实施例提供的电子设备的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施,且“第一”、“第二”等所区分的对象通常为一类,并不限定对象的个数,例如第一对象可以是一个,也可以是多个。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”,一般表示前后关联对象是一种“或”的关系。
下面结合附图,通过具体的实施例及其应用场景对本申请实施例提供的评论展示方法进行详细地说明。
请参看图2,其是本申请实施例提供的一种压力感应通道的校准方法的流程图。该方法可以应用于电子设备中,该电子设备可以为手机、平板电脑、笔记本电脑等。如图3和图7所示,该电子设备包括设置于显示屏幕下方的压力感应通道,且根据显示屏幕的中心位置压力感应通道按照预设排布方案进行设置。压力感应通道可以是压力传感器。如图2所示,该压力感应通道的校准方法可以包括步骤S2100~步骤S2300,以下予以详细说明。
步骤S2100,接收以标准压力值实施的按压输入。
该标准压力值可以是对电子设备进行出厂前校准时预先设置的压力值。
例如,电子设备在出厂前校准时,可以仅设置一个等级的该标准压力值,该标准压力值可以是5N。
又例如,电子设备在出厂前校准时,也可以设置不同等级的该标准压力值。
示例性地,可以是设置三个等级的标准压力值,其中,第一等级的标准压力值可以为5N,第二等级的标准压力值可以是10N,第三等级的标准压力值可以是15N。当然,可以是设置更多等级例如第四等级、第五等级的标准压力值,本实施例在此不进行列举。
以标准压力值为5N为例,在出厂前进行压力感应通道的校准时,工作人员可以是在电子设备的显示屏幕以该5N压力值实施按压输入。
在接收以标准压力值实施的按压输入之后,进入:
步骤S2200,响应于按压输入,基于压力感应通道确定按压输入的按压位置。
本实施例中,电子设备包括一个或M个压力感应通道;其中,M为正偶数。
在一个例子中,如图3所示,在电子设备包括一个压力感应通道的情况下,一个压力感应通道设置于显示屏幕下方的中心位置。即,根据本例子,其仅是在电子设备的显示屏幕下方中心位置设置有单独的压力感应通道,降低了电子设备的使用功耗。
该例子中,本步骤S2200中响应于按压输入,基于压力感应通道确定按压输入的按压位置可以进一步包括:响应于按压输入,基于该一个压力感应通道确定按压输入的按压位置。
具体的,在接收到工作人员以标准压力值实施的按压输入后,便可响应于该按压输入,如图4所示,以压力感应通道正上方显示屏幕的像素位置为中心位置(0,0)建立坐标系,图4中X轴和Y轴分别表示显示屏幕 的x向和y向坐标,基于该坐标系,确定该按压输入的按压位置(x,y)。
可以理解的是,本实施例中的显示屏幕为电容显示屏幕,即,可以将显示屏幕等效为电容平面,接触人力等效成等效电容,在接收到工作人员以标准压力值实施的按压输入后,可以根据触控电容抓取该按压输入的按压位置。
继续以标准压力值为5N为例,当工作人员在电子设备的显示屏幕以该5N压力值实施按压输入之后,电子设备便可响应于该按压输入,以压力感应通道正上方显示屏幕的中心像素位置为中心位置(0,0)建立坐标系,图4中X轴和Y轴分别表示显示屏幕的x向和y向坐标,基于该坐标系,确定该按压输入的按压位置(x,y)。
在一个例子中,如图7所示,在电子设备包括M个压力感应通道的情况下,M个压力感应通道基于显示屏幕的中心位置,在显示屏幕下方对称分布。根据本例子,其基于显示屏幕的中心位置,在显示屏幕下方对称分布有正偶数个压力感应通道,使得在优化空间结构的同时兼顾整机按压量程以及感应面积精度。
如图7所示,电子设备包括两个压力感应通道,该两个压力感应通道基于显示屏幕中心位置对称分布,其中,每一个方框表示一个压力感应通道。
可以理解的是,图7所示的压力感应通道阵列的分布密度高于图3所示的压力感应通道阵列的分布密度。对应的,图7所示的压力感应通道阵列的灵敏度以及感应面积高于图3所示的压力感应通道阵列的灵敏度和感应面积,使得图7所示的压力感应通道阵列的功耗大于图3所示的压力感应通道阵列的功耗。
该例子中,本步骤S2200中响应于按压输入,基于压力感应通道确定按压输入的按压位置可以进一步包括:响应于按压操作,从M个压力感应通道中,选取目标压力感应通道;基于目标压力感应通道确定按压输入的按压位置。
具体的,在接收到工作人员以标准压力值实施的按压输入后,便可响应于该按压输入,确定M个压力感应通道中压力感应水平最高的压力感应通道,作为目标压力感应通道,以该目标压力感应通道正上方显示屏幕的中心像素位置为中心位置(0,0)建立坐标系,图4中X轴和Y轴分别表示显示屏幕的x向和y向坐标,基于该坐标系,确定该按压输入的按压位置(x,y)。
继续以标准压力值为5N为例,当工作人员在电子设备的显示屏幕以该5N压力值实施按压输入之后,电子设备便可响应于该按压输入,确定M个压力感应通道中压力感应水平最高的压力感应通道,作为目标压力感应通道,以目标压力感应通道正上方显示屏幕的中心像素位置为中心位置(0,0)建立坐标系,图4中X轴和Y轴分别表示显示屏幕的x向和y向坐标,基于该坐标系,确定该按压输入的按压位置(x,y)。
在响应于按压输入,基于压力感应通道确定按压输入的按压位置之后,进入:
步骤S2300,根据按压位置、标准压力值和对应压力感应通道的校准模型,对按压位置的压力感应值进行校准。
压力感应值为实施按压输入产生的形变量引起的差分电信号值。可以理解的是,在工作人员实施按压输入之后,该按压输入所带来的形变量传递至压力感应通道会造成电信号的改变。同时,以相同等级的标准压力值在显示屏幕不同方位实施按压输入时,由于距离压力感应通道的位置不同,导致不同方位所产生的形变量不同,通常压力感应通道正上方的形变量最大,越远离压力感应通道,对应的形变量越小,进而造成以相同等级的标准压力值在显示屏幕不同方位实施按压输入时,该压力感应通道所反馈的压力感应值不同。
校准的目的在于使得以相同等级的标准压力值按压显示屏幕不同方位时,该压力感应通道所反馈的压力感应值均相等。即,在以相同等级的标准压力值按压显示屏幕不同方位时,将该不同方位的压力感应值均校正为 与该标准压力值对应的目标压力感应值。
不同等级的标准压力值对应不同的目标压力感应值。例如,以标准压力值5N按压显示屏幕不同方位时,通过压感校准,可以将该不同方位的压力感应值均校正为与该标准压力值5N对应的目标压力感应值P1。又例如,以标准压力值10N按压显示屏幕不同方位时,通过压感校准,可以将该不同方位的压力感应值均校正为与该标准压力值10N对应的目标压力感应值P2。再例如,以标准压力值15N按压显示屏幕不同方位时,通过压感校准,可以将该不同方位的压力感应值均校正为与该标准压力值15N对应的目标压力感应值P3。
校准模型为预先构建好的线性回归模型,该校准模型可以表示为F Pressure=P 0*f(x,y),其中,该校准模型的输入包括按压位置(x,y),具体可以为该按压输入在该按压位置(x,y)处产生的形变量值,该校准模型的输入还包括实施按压输入的标准压力值,输出即为该按压位置(x,y)处的校准后的压力感应值F Pressure,P 0为压力感应通道正上方所对应的压力感应值即最大压力感应值,不同等级的标准压力值对应不同的该最大压力感应值。
在一个例子中,如图3所示,在电子设备包括一个压力感应通道的情况下,本步骤S2300中根据按压位置、标准压力值和对应压力感应通道的校准模型,对按压位置的压力感应值进行校准可以进一步包括:根据按压位置、标准压力值和对应该一个压力感应通道的校准模型,对按压位置的压力感应值进行校准。
该例子中,其在接收以标准压力值实施的按压输入,并响应于按压输入,基于压力感应通道确定按压输入的按压位置后,便可根据按压位置、标准压力值和对应压力感应通道的校准模型,对按压位置的压力感应值进行校准。
继续以标准压力值为5N为例,当确定该按压输入的按压位置(x,y)后,便可将该按压位置(x,y)处产生的形变量值和该标准压力值5N带 入到该一个压力感应通道对应的校准模型中,以对该按压位置(x,y)处的压力感应值进行校准,即,将该按压位置(x,y)处的压力感应值校准至目标压力感应值P1。
在一个例子中,如图7所示,在电子设备包括M个压力感应通道的情况下,本步骤S2300中根据按压位置、标准压力值和对应压力感应通道的校准模型,对按压位置的压力感应值进行校准可以进一步包括:根据按压位置、标准压力值和对应目标压力感应通道的校准模型,对按压位置的压力感应值进行校准。
该例子中,其在确定目标压力感应通道后,会基于目标压力感应通道确定按压输入的按压位置后,便可根据按压位置、标准压力值和对应目标压力感应通道的校准模型,对按压位置的压力感应值进行校准。
该例子中,一个压力感应通道对应一个校准模型,M个压力感应通道会对应M个压力感应通道。
继续以标准压力值为5N为例,当确定该按压输入的按压位置(x,y)后,便可将该按压位置(x,y)和标准压力值5N带入到该目标压力感应通道对应的校准模型中,以对该按压位置(x,y)处的压力感应值进行校准,即,将该按压位置(x,y)处的压力感应值校准至目标压力感应值P1。
本实施例中,可以是重复执行以上步骤S2100~S2300,以对显示屏幕不同方位进行校准。
根据本实施例的方法,其在电子设备显示屏幕下方设置有压力感应通道,且根据显示屏幕的中心位置压力感应通道按照预设排布方案进行设置,在对压力感应通道进行校准时,其是先接收以标准压力值实施的按压输入,并响应于按压输入,基于压力感应通道确定按压输入的按压位置,进而根据按压位置、标准压力值和对应压力感应通道的校准模型,对按压位置的压力感应值进行校准。即,根据本申请实施例,其是利用预先构建好的校准模型对按压位置进行校准,可以提高校准准确度和校准效率。
在一个实施例中,在根据以上步骤S2300根据按压位置、标准压力值和对应压力感应通道的校准模型,对按压位置的压力感应值进行校准之前,该压力感应通道的校准方法还包括获取校准模型的步骤,该获取校准模型可以包括如下步骤S2110~S2120:
步骤S2110,获取训练样本集。
可以理解的是,现有技术中,如图1所示,其压力感应通道的排布方式使得压力感应信号无法呈现线性表征,造成原始数据无法进行线性回归处理。为了提升校准准确度,需要思考更为合理的线性回归模型。
如图8a和图8b所示,屏下压感感应,是电子设备的显示屏幕中的位置A承接按压压力F,并将按压压力带来的形变量传递至压力感应通道进行感知,经过压力感应通道内部处理输出压力感应值至应用程序处理器,进而使得电子设备实现对应功能。因此可以基于按压形变位移传递模型,思考一种基于中心对称的线性回归模型。
目前使用的触屏模型,便为屏幕端金属面等效为电容平面,接触人力形成等效电容,然后根据整机屏幕不同方位精确定义平面的坐标位置。由图8b所示的流程图可知检测过程有两处突破口可建立简易完整的线性回归模型:1)电容触摸屏可抓取像素点进行像素区间方位划分。2)压力感应通道在中心对称方位四周的接收形变量相等。基于1)和2),可以建立图4所示的坐标系,图4中的X轴与Y轴均代表显示屏幕的x向坐标与y向坐标,方格中心即代表显示屏幕像素位置,因此可以将按压屏幕形变量值,上报给应用程序处理器进行汇总处理。
如图3所示,电子设备的显示屏幕下方中心位置设置有一个压力感应通道,按压输出会随距离压力感应通道的距离而递减,如果用d来表征距离该压力感应通道的距离,同时,标准按压值分为三个等级例如标准压力值1、标准压力值2和标准压力值3,那么可以得到如下表1:
表1
  标准压力值1 标准压力值2 标准压力值3
d1 Level1 Level2 Level3
d2 Level2 Level3 Level4
d3 Level3 Level4 Level5
d4 Level4 Level5 Level6
上述表1中,Level1>Level2>Level3>Level4>Level5>Level6。
如果对该压力感应通道上方整面显示屏幕进行打点信号摸底,便会得到如图8c所示的二维正太分布的信号云图,从图8c所示的信号云图可以看出,当该压力感应通道在按压四周感知形变量相互传递时,每次按压中心对称方位所传到的形变量必然相等,如图8d所示,校准的目的通俗来讲就是将按压原始信号压合于同一条基线上,使整个显示屏幕在不同方位接收同等大小的压力感应值。
训练样本集中每一训练样本包括按压位置样本及按压位置样本的压力值样本和按压形变值样本。
训练样本的数量越多,训练结果也通常越精准,但训练样本达到一定数量后,训练结果的精度的增加将变的越来越缓慢,直至取向稳定。在此,可以兼顾训练结果的精度和数据处理成本确定所需的训练数据的数量。
在一个例子中,可以是由工作人员以标准压力值在显示屏幕不同方位实施按压输入(一次按压称之为一次打点),电子设备响应于该按压输入,以压力感应通道正上方显示屏幕的中心像素位置为中心位置(0,0)建立坐标系,进而基于该坐标系,确定该按压输入的按压位置(x,y),并基于电子设备的存储模块中所存储的按压位置与标准压力值间的映射函数Pressure=F(x,y),获得该按压位置处的按压形变值,其中,(x,y)表示按压位置,Pressure表示标准压力值,F(x,y)表示该按压位置处的按压形变值。
该例子中,以显示屏幕下方中心位置设置有一个压力感应通道为例,如图9a所示,可以是工作人员以标准压力值在显示屏幕实施按压输入。压力感应通道感知按压输入发生,以压力感应通道正上方显示屏幕的中心像 素位置为中心位置(0,0)建立坐标系。基于该坐标系,确定按压输入的按压位置(x,y),并调用处理器内部函数模板Pressure=F(x,y)。根据函数模板Pressure=F(x,y),确定该按压位置处的形变量值。
该例子中,以基于显示屏幕下方的中心位置对称设置有M个压力感应通道为例,如图9b所示,可以是工作人员以标准压力值在显示屏幕实施按压输入,确定M个压力感应通道中压感水平最高的压力感应通道为目标压力感应通道。以目标压力感应通道正上方显示屏幕的像素位置为中心位置(0,0)建立坐标系。基于该坐标系,确定按压输入的按压位置(x,y),并调用处理器内部函数模板Pressure=F(x,y)。根据函数模板Pressure=F(x,y),确定该按压位置处的形变量值。同时,还可以是基于预先设置的标准压力值和按压位置间的映射关系的映射数据,确定按压位置处的压力等级。
在一个例子中,由于压力感应通道在中心对称方位四周的按压形变值相等,即,当压力感应通道在按压四周感知按压形变相互传递时,每次按压中心对称方位所传导的按压形变值必然相等。在此,可以是先根据压力感应通道和预设的划分规则,将显示屏幕划分为N个区间,其中,N为正偶数;并获取N个区间中的任意一个区间,作为训练区间;以及,基于训练区间,获取训练样本集。
如图5所示,可以是以压力感应通道(图5中的中心感应通道)为基准,将显示屏幕划分为8个区域,由于压力感应通道在中心对称方位四周的按压形变值相等,在此,可以仅通过区域1的打点信号记录,便可获得区域2、区域3、区域4、区域5、区域6、区域7和区域8的信号记录。
本例子中,如图6所示,可以是由工作人员以标准压力值在显示屏幕区域1内的不同位置实施按压输入,电子设备响应于该按压输入,以压力感应通道正上方显示屏幕的中心像素位置为中心位置(0,0)建立坐标系,进而基于该坐标系,确定该按压输入的按压位置(x,y),并基于电子设备的存储模块中所存储的按压位置与标准压力值间的映射函数Pressure= F(x,y),获得该压力位置处的按压形变值,其中,(x,y)表示按压位置,Pressure表示标准按压值,F(x,y)表示该按压位置处的按压形变值。同时,如图10所示,基于区域1内不同位置的按压形变值和对称区间位置信息,便可得到对应的区域2、区域3、区域4、区域5、区域6、区域7和区域8的对应位置处的按压形变值。
步骤S2120,根据训练样本集得到校准模型。
本步骤S2120中,可以对训练样本集进行函数拟合得到按压位置与目标压力感应值间的校准模型。
具体的,如图8d所示,校准的目的通俗来讲就是将按压原始信号压合于同一条基线上,使整个显示屏幕在不同方位接收同等大小的压力感应值,因此对于不同等级的标准压力值,对应设定一条“归一化”基线,并且对训练样本集的数据进行函数拟合得到校准模型F Pressure=P 0*f(x,y):
其中,该校准模型的输入包括按压位置(x,y),具体可以为该按压输入在该按压位置(x,y)处产生的形变量值,该校准模型的输入还包括实施按压输入的标准压力值,输出即为该按压位置(x,y)处的校准后的压力感应值F Pressure,P 0为压力感应通道正上方所对应的压力感应值即最大压力感应值,不同等级的标准压力值对应不同的该最大压力感应值。
在根据训练样本集进行函数拟合时,可以基于以下判决规则:
1)处于A区域时,需要给整体按压阈值乘以负系数,且越靠近中心压力感应通道,负系数绝对值越大。其中,该A区域为电子设备所上报的按压产生的压力感应值大于预设压力感应阈值的区域。
2)处于B区域时,需要给整体按压阈值乘以正系数,且越靠近中心压力感应通道,正系数绝对值越大。其中,该B区域为电子设备所上报的按压产生的压力感应值小于或等于预设压力感应阈值的区域。
根据本实施例,其能够提前根据压力感应通道对屏幕像素进行区间划分,并将中心对称的区间作映射处理,进而可以降低打点数量,同时,其可以基于打点信号记录拟合得到校准模型,进而可以利用该校准模型对显 示屏幕的不同方位进行校准,提高校准准确度和校准效率。
与上述实施例相对应,参见图11,本申请实施例还提供一种压力感应通道的校准装置1100,应用于电子设备,电子设备包括设置于显示屏幕下方的压力感应通道,且根据显示屏幕的中心位置压力感应通道按照预设排布方案进行设置,装置1100包括:
接收模块11100,用于接收以标准压力值实施的按压输入。
确定模块11200,用于响应于所述按压输入,基于所述压力感应通道确定所述按压输入的按压位置。
校准模块11300,用于根据所述按压位置、所述标准压力值和对应所述压力感应通道的校准模型,对所述按压位置的压力感应值进行校准。
在一个实施例中,装置1100还包括训练模块(图中未示出),该训练模块用于:获取训练样本集;其中,所述训练样本集中每一训练样本包括按压位置样本及所述按压位置样本的压力值样本和按压形变值样本;根据所述训练样本集训练出所述校准模型。
在一个实施例中,训练模块,还用于:根据所述压力感应通道和预设的划分规则,将所述显示屏幕划分为N个区间;其中,N为正偶数;获取所述N个区间中的任意一个区间,作为训练区间;基于所述训练区间,获取所述训练样本集。
在一个实施例中,所述电子设备包括一个或M个压力感应通道;其中,M为正偶数;并且,
在所述电子设备包括所述一个压力感应通道的情况下,所述一个压力感应通道设置于所述显示屏幕下方的中心位置;
在所述电子设备包括所述M个压力感应通道的情况下,所述M个压力感应通道基于所述显示屏幕的中心位置,在所述显示屏幕下方对称分布。
在一个实施例中,在所述电子设备包括所述M个压力感应通道的情况下,确定模块11200,还用于:响应于所述按压操作,从所述M个压力感 应通道中,选取目标压力感应通道。
校准模块11300,还用于根据所述所述按压位置、所述按压输入对应的压力值和对应所述目标压力感应通道的校准模型,对所述按压位置的压力感应值进行校准。
本申请实施例中的压力感应通道的校准装置可以是装置,也可以是终端中的部件、集成电路、或芯片。该装置可以是移动电子设备,也可以为非移动电子设备。示例性的,移动电子设备可以为手机、平板电脑、笔记本电脑、掌上电脑、车载电子设备、可穿戴设备、超级移动个人计算机(ultra-mobile personal computer,UMPC)、上网本或者个人数字助理(personal digital assistant,PDA)等,非移动电子设备可以为服务器、网络附属存储器(Network Attached Storage,NAS)、个人计算机(personal computer,PC)、电视机(television,TV)、柜员机或者自助机等,本申请实施例不作具体限定。
本申请实施例中的压力感应通道的校准装置可以为具有操作系统的装置。该操作系统可以为安卓(Android)操作系统,可以为ios操作系统,还可以为其他可能的操作系统,本申请实施例不作具体限定。
本申请实施例中的压力感应通道的校准装置可以为具有操作系统的装置。该操作系统可以为安卓(Android)操作系统,可以为ios操作系统,还可以为其他可能的操作系统,本申请实施例不作具体限定。
本申请实施例提供的压力感应通道的校准装置能够实现上述方法实施例实现的各个过程,为避免重复,这里不再赘述。
与上述实施例相对应,可选的,如图12所示,本申请实施例还提供一种电子设备1200,包括处理器1201,存储器1202,存储在存储器1202上并可在所述处理器1201上运行的程序或指令,该程序或指令被处理器1201执行时实现上述压力感应通道的校准方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
需要说明的是,本申请实施例中的电子设备包括上述所述的移动电子设备和非移动电子设备。
图13为实现本申请实施例的一种电子设备的硬件结构示意图。
该电子设备1300包括但不限于:射频单元1301、网络模块1302、音频输出单元1303、输入单元1304、传感器1305、显示单元1306、用户输入单元1307、接口单元1308、存储器1309、以及处理器1310等部件。
本领域技术人员可以理解,电子设备1300还可以包括给各个部件供电的电源(比如电池),电源可以通过电源管理系统与处理器1310逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。图13中示出的电子设备结构并不构成对电子设备的限定,电子设备可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置,在此不再赘述。
其中,处理器1310,用于接收以标准压力值实施的按压输入;响应于所述按压输入,基于所述压力感应通道确定所述按压输入的按压位置;根据所述按压位置、所述标准压力值和对应所述压力感应通道的校准模型,对所述按压位置的压力感应值进行校准。
在一个实施例中,处理器1310,还用于获取训练样本集;其中,所述训练样本集中每一训练样本包括按压位置样本及所述按压位置样本的压力值样本和按压形变值样本;根据所述训练样本集得到所述校准模型。
在一个实施例中,处理器1310,还用于根据所述压力感应通道和预设的划分规则,将所述显示屏幕划分为N个区间;其中,N为正偶数;获取所述N个区间中的任意一个区间,作为训练区间;基于所述训练区间,获取所述训练样本集。
在一个实施例中,处理器1310,还用于响应于所述按压操作,从所述M个压力感应通道中,选取目标压力感应通道;基于所述目标压力感应通道确定所述按压输入的按压位置。
在一个实施例中,处理器1310,还用于根据所述按压位置、所述按压输入对应的压力值和对应所述目标压力感应通道的校准模型,对所述按压位置的压力感应值进行校准。
应理解的是,本申请实施例中,输入单元1304可以包括图形处理器(Graphics Processing Unit,GPU)13041和麦克风13042,图形处理器13041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。显示单元1306可包括显示面板13061,可以采用液晶显示器、有机发光二极管等形式来配置显示面板13061。用户输入单元1307包括触控面板13071以及其他输入设备13072。触控面板13071,也称为触摸屏。触控面板13071可包括触摸检测装置和触摸控制器两个部分。其他输入设备13072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。存储器1309可用于存储软件程序以及各种数据,包括但不限于应用程序和操作系统。处理器1310可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序等,调制解调处理器主要处理无线通信。可以理解的是,上述调制解调处理器也可以不集成到处理器1310中。
本申请实施例还提供一种可读存储介质,所述可读存储介质上存储有程序或指令,该程序或指令被处理器执行时实现上述评论展示方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
其中,所述处理器为上述实施例中所述的电子设备中的处理器。所述可读存储介质,包括计算机可读存储介质,如计算机只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等。
本申请实施例另提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现上述评论展示方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片、系统芯片、芯片系统或片上系统芯片等。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。此外,需要指出的是,本申请实施方式中的方法和装置的范围不限按示出或讨论的顺序来执行功能,还可包括根据所涉及的功能按基本同时的方式或按相反的顺序来执行功能,例如,可以按不同于所描述的次序来执行所描述的方法,并且还可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以计算机软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,或者网络设备等)执行本申请各个实施例所述的方法。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制 性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (13)

  1. 一种压力感应通道的校准方法,应用于电子设备,所述电子设备包括设置于显示屏幕下方的压力感应通道,且根据所述显示屏幕的中心位置所述压力感应通道按照预设排布方案进行设置,所述校准方法包括:
    接收以标准压力值实施的按压输入;
    响应于所述按压输入,基于所述压力感应通道确定所述按压输入的按压位置;
    根据所述按压位置、所述标准压力值和对应所述压力感应通道的校准模型,对所述按压位置的压力感应值进行校准。
  2. 根据权利要求1所述的方法,其中,在所述对所述按压位置的压力感应值进行校准之前,还包括:
    获取训练样本集;其中,所述训练样本集中每一训练样本包括按压位置样本及所述按压位置样本的压力值样本和按压形变值样本;
    根据所述训练样本集得到所述校准模型。
  3. 根据权利要求2所述的方法,其中,所述获取训练样本集,包括:
    根据所述压力感应通道和预设的划分规则,将所述显示屏幕划分为N个区间;其中,N为正偶数;
    获取所述N个区间中的任意一个区间,作为训练区间;
    基于所述训练区间,获取所述训练样本集。
  4. 根据权利要求1所述的方法,其中,所述压力感应通道按照预设排布方案进行设置,具体包括:
    所述电子设备包括一个或M个压力感应通道;其中,M为正偶数;并且,
    在所述电子设备包括所述一个压力感应通道的情况下,所述一个压力感应通道设置于所述显示屏幕下方的中心位置;
    在所述电子设备包括所述M个压力感应通道的情况下,所述M个压力感应通道基于所述显示屏幕的中心位置,在所述显示屏幕下方对称分布。
  5. 根据权利要求4所述的方法,其中,在所述电子设备包括所述M个压力感应通道的情况下,
    所述响应于所述按压输入,基于所述压力感应通道确定所述按压输入的按压位置,包括:
    响应于所述按压操作,从所述M个压力感应通道中,选取目标压力感应通道;
    基于所述目标压力感应通道确定所述按压输入的按压位置;以及,
    所述根据所述按压位置、所述按压输入对应的压力值和对应所述压力感应通道的校准模型,对所述按压位置的压力感应值进行校准,包括:
    根据所述按压位置、所述标准压力值和对应所述目标压力感应通道的校准模型,对所述按压位置的压力感应值进行校准。
  6. 一种压力感应通道的校准装置,应用于电子设备,所述电子设备包括设置于显示屏幕下方的压力感应通道,且根据所述显示屏幕的中心位置所述压力感应通道按照预设排布方案进行设置,所述装置包括:
    接收模块,用于接收以标准压力值实施的按压输入;
    确定模块,用于响应于所述按压输入,基于所述压力感应通道确定所述按压输入的按压位置;
    校准模块,用于根据所述按压位置、所述标准压力值和对应所述压力感应通道的校准模型,对所述按压位置的压力感应值进行校准。
  7. 根据权利要求6所述的装置,其中,所述装置还包括训练模块,用 于:
    获取训练样本集;其中,所述训练样本集中每一训练样本包括按压位置样本及所述按压位置样本的压力值样本和按压形变值样本;
    根据所述训练样本集训练出所述校准模型。
  8. 根据权利要求7所述的装置,其中,所述训练模块,还用于:
    根据所述压力感应通道和预设的划分规则,将所述显示屏幕划分为N个区间;其中,N为正偶数;
    获取所述N个区间中的任意一个区间,作为训练区间;
    基于所述训练区间,获取所述训练样本集。
  9. 根据权利要求6所述的装置,其中,所述压力感应通道按照预设排布方案进行设置,具体包括:
    所述电子设备包括一个或M个压力感应通道;其中,M为正偶数;并且,
    在所述电子设备包括所述一个压力感应通道的情况下,所述一个压力感应通道设置于所述显示屏幕下方的中心位置;
    在所述电子设备包括所述M个压力感应通道的情况下,所述M个压力感应通道基于所述显示屏幕的中心位置,在所述显示屏幕下方对称分布。
  10. 根据权利要求9所述的装置,其中,在所述电子设备包括所述M个压力感应通道的情况下,所述确定模块,还用于:
    响应于所述按压操作,从所述M个压力感应通道中,选取目标压力感应通道;
    基于所述目标压力感应通道确定所述按压输入的按压位置;
    所述校正模块,还用于:
    根据所述按压位置、所述标准压力值和对应所述目标压力感应通道的 校准模型,对所述按压位置的压力感应值进行校准。
  11. 一种电子设备,其特征在于,包括处理器,存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求1-5中任一项所述的压力感应通道的校准方法的步骤。
  12. 一种可读存储介质,其特征在于,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如权利要求1-5中任一项所述的压力感应通道的校准方法的步骤。
  13. 一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如权利要求1-5中任一项所述的压力感应通道的校准方法的步骤。
PCT/CN2022/096561 2021-06-03 2022-06-01 压力感应通道的校准方法、装置及电子设备 WO2022253263A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110620645.5 2021-06-03
CN202110620645.5A CN113419646B (zh) 2021-06-03 2021-06-03 压力感应通道的校准方法、装置及电子设备

Publications (1)

Publication Number Publication Date
WO2022253263A1 true WO2022253263A1 (zh) 2022-12-08

Family

ID=77713758

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/096561 WO2022253263A1 (zh) 2021-06-03 2022-06-01 压力感应通道的校准方法、装置及电子设备

Country Status (2)

Country Link
CN (1) CN113419646B (zh)
WO (1) WO2022253263A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113419646B (zh) * 2021-06-03 2023-05-16 维沃移动通信有限公司 压力感应通道的校准方法、装置及电子设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106557201A (zh) * 2016-10-19 2017-04-05 北京小米移动软件有限公司 压力检测方法及装置
CN107422891A (zh) * 2016-05-23 2017-12-01 中兴通讯股份有限公司 一种压力屏校准方法和装置
US20180259405A1 (en) * 2017-03-10 2018-09-13 Pixart Imaging Inc. Calibration method and circuit for pressure sensing device
CN208313486U (zh) * 2018-07-02 2019-01-01 珠海市魅族科技有限公司 压力检测组件及电子设备
CN113419646A (zh) * 2021-06-03 2021-09-21 维沃移动通信有限公司 压力感应通道的校准方法、装置及电子设备

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106055157B (zh) * 2016-06-03 2019-01-25 芯海科技(深圳)股份有限公司 一种压力触控设备的灵敏度一致性校准方法
KR102050183B1 (ko) * 2016-11-23 2019-11-28 선전 구딕스 테크놀로지 컴퍼니, 리미티드 힘 측정 방법, 장치 및 기기
CN106843577B (zh) * 2017-01-13 2020-03-27 努比亚技术有限公司 压感触控方法及终端
US10551945B2 (en) * 2017-03-02 2020-02-04 Texas Instruments Incorporated Touch slider-position sensing
CN109117014B (zh) * 2017-06-26 2022-05-10 敦泰电子有限公司 一种电容式压力感应面板的压力校正方法和系统
CN112558791B (zh) * 2020-12-17 2022-11-01 深圳市汇顶科技股份有限公司 压力校准方法、测试机、触控芯片和触摸板
CN112817478A (zh) * 2021-01-22 2021-05-18 维沃移动通信有限公司 压感信号处理方法、装置、电子设备及可读存储介质

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107422891A (zh) * 2016-05-23 2017-12-01 中兴通讯股份有限公司 一种压力屏校准方法和装置
CN106557201A (zh) * 2016-10-19 2017-04-05 北京小米移动软件有限公司 压力检测方法及装置
US20180259405A1 (en) * 2017-03-10 2018-09-13 Pixart Imaging Inc. Calibration method and circuit for pressure sensing device
CN208313486U (zh) * 2018-07-02 2019-01-01 珠海市魅族科技有限公司 压力检测组件及电子设备
CN113419646A (zh) * 2021-06-03 2021-09-21 维沃移动通信有限公司 压力感应通道的校准方法、装置及电子设备

Also Published As

Publication number Publication date
CN113419646A (zh) 2021-09-21
CN113419646B (zh) 2023-05-16

Similar Documents

Publication Publication Date Title
CN107966209B (zh) 环境光检测方法、装置、存储介质和电子设备
US20190156108A1 (en) Image processing method and apparatus, and electronic device
WO2021115373A1 (zh) 应用图标的位置调整方法及电子设备
CN105867751B (zh) 操作信息处理方法和装置
US9697622B2 (en) Interface adjustment method, apparatus, and terminal
CN109741281B (zh) 图像处理方法、装置、存储介质及终端
WO2020259548A1 (zh) 移动终端及其驱动方法、显示模组、驱动芯片
US12025887B2 (en) Shooting method and electronic device
WO2023045884A1 (zh) 屏幕光检测模型训练方法、环境光检测方法及装置
KR102641922B1 (ko) 객체 위치 조정 방법 및 전자기기
WO2021233176A1 (zh) 环境光检测方法及电子设备
WO2020093791A1 (zh) 指纹识别方法及相关产品
CN108271012A (zh) 一种深度信息的获取方法、装置以及移动终端
WO2021083091A1 (zh) 截图方法及终端设备
WO2020125405A1 (zh) 终端设备的控制方法及终端设备
WO2021208890A1 (zh) 截屏方法及电子设备
WO2022253263A1 (zh) 压力感应通道的校准方法、装置及电子设备
CN108600544B (zh) 一种单手控制方法及终端
CN108494936B (zh) 一种光强度的检测方法、移动终端
JP2023518548A (ja) 検出結果出力方法、電子機器及び媒体
CN110309003B (zh) 信息提示方法及移动终端
WO2018098959A2 (zh) 一种画面显示方法及电子设备
WO2019184017A1 (zh) 一种显示控制的方法及电子设备
CN112241491A (zh) 一种推荐词显示方法及终端设备
CN112199065A (zh) 局部显示区补偿值确定方法、装置、存储介质及终端设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22815305

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22815305

Country of ref document: EP

Kind code of ref document: A1