WO2022253072A1 - 二自由度正交腱传动关节模块 - Google Patents

二自由度正交腱传动关节模块 Download PDF

Info

Publication number
WO2022253072A1
WO2022253072A1 PCT/CN2022/094974 CN2022094974W WO2022253072A1 WO 2022253072 A1 WO2022253072 A1 WO 2022253072A1 CN 2022094974 W CN2022094974 W CN 2022094974W WO 2022253072 A1 WO2022253072 A1 WO 2022253072A1
Authority
WO
WIPO (PCT)
Prior art keywords
tendon
pitch
control wheel
cross shaft
support arm
Prior art date
Application number
PCT/CN2022/094974
Other languages
English (en)
French (fr)
Inventor
刘寅
任化龙
Original Assignee
深圳忆海原识科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳忆海原识科技有限公司 filed Critical 深圳忆海原识科技有限公司
Publication of WO2022253072A1 publication Critical patent/WO2022253072A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J17/00Joints

Definitions

  • the application belongs to the mechanism field of robots, and in particular relates to a two-degree-of-freedom orthogonal tendon transmission joint module.
  • Robot systems especially dexterous hands
  • each joint is modularized, it is convenient for standardized processing, debugging, and maintenance, and it can also be better assembled and integrated according to requirements.
  • the axis of the pitch degree of freedom and the roll degree of freedom of the dexterous wrist joints are often not orthogonal, resulting in the mutual coupling of these two degrees of freedom, and the spatial position calculation and control are relatively complicated.
  • this application proposes a two-degree-of-freedom orthogonal tendon-driven joint module.
  • the two-degree-of-freedom orthogonal tendon-driven joint module adopts a modular design and is compact in size. By decoupling these two degrees of freedom from each other, the spatial position calculation and control are relatively simplified.
  • Two degrees of freedom orthogonal tendon drive joint module including: including: cross shaft, pitch control wheel, pitch swing block, side swing control wheel, pitch drive tendon, side swing drive tendon, first support arm, second support arm;
  • the two transverse shaft ends of the cross shaft are hinged to the corresponding ends of the pitch pendulum block, and the first support arm and the second support arm are respectively hinged at both ends of the longitudinal axis of the cross shaft;
  • the pitch transmission tendon is partially wound around the pitch control wheel, and at least one point of the pitch transmission tendon is fixedly connected to the pitch control wheel and/or the pitch pendulum;
  • the side sway transmission tendon is partially wound around the side sway control wheel, and at least one point of the side sway transmission tendon is fixedly connected to the side sway control wheel and/or the cross shaft;
  • the pitch control wheel is fixedly connected to the pitch pendulum block
  • the side swing control wheel is fixedly connected to the cross shaft;
  • the pitch pendulum When power is applied to the pitch transmission tendon, the pitch pendulum is driven by the pitch control wheel to perform a pitch motion (that is, to rotate along the pitch degree of freedom);
  • the cross shaft, the pitch pendulum block and the pitch control wheel are driven by the side sway control wheel to perform a side yaw motion (ie, rotate along the side yaw degree of freedom).
  • the pitch pendulum block includes a left arm, a right arm, and a reference plate whose two ends are respectively connected to the left arm and the right arm, and the middle part of the reference plate is located at the cross
  • One side of the shaft is provided with an installation interface for the pitch control wheel to be inserted into, and the left arm and the right arm are hinged to two transverse shaft ends of the cross shaft.
  • the pitch control wheel has a hollow structure
  • the cross shaft passes through the hollow portion of the pitch control wheel
  • the cross shaft is connected to the first support arm and the second support arm
  • the hinged part of the pitch control wheel is in the hollow part of the pitch control wheel.
  • the pitch control wheel has several wire slots, and the pitch transmission tendons are provided in one-to-one correspondence with the wire slots, and each pitch transmission tendon is partially wound around the corresponding wire slots, and is connected with the wire slots respectively.
  • Each of the pitch control wheel or the pitch pendulum block has at least one tendon fixing point.
  • the side swing control wheel is divided into a left swing control wheel and a right swing control wheel, both of the left swing control wheel and the right swing control wheel are fan-shaped, can be processed independently, and are convenient for installation and debugging , and save space relative to the entire circumference, the side swing drive tendon is divided into two, which are respectively wound and fixedly connected to the left swing control wheel and the right swing control wheel.
  • the advantage is that it further saves space and is easy to process, assemble and debug.
  • the left swing control wheel and the right swing control wheel are center-symmetrically distributed around the intersection point of the cross shaft.
  • the cross shaft is fixedly connected with a tendon sheath support
  • the tendon sheath support is used to guide the tendon sheath of the pitch transmission tendon
  • the tendon sheath support can perform lateral swinging motion with the cross shaft.
  • bearings are installed at the joints between the left arm and the right arm of the pitch pendulum and the two transverse shaft ends of the cross shaft.
  • Two bearings can be mounted per joint, eg deep groove ball bearings for radial relief and thrust bearings for axial relief.
  • bearings are installed at the joints between the two longitudinal ends of the cross shaft and the first support arm and the second support arm.
  • Two bearings can be mounted per joint, eg deep groove ball bearings for radial relief and thrust bearings for axial relief.
  • the left arm, the right arm, and the reference plate of the pitch pendulum block are independent parts, which are assembled to form the pitch pendulum block, which is convenient for processing, assembly and debugging.
  • the left arm and/or the right arm has at least one centering device, which is used to adjust the assembly clearance and compress the bearing.
  • centering device used to adjust the assembly clearance and compress the bearing.
  • set screws can be installed on the left side and/or right side (with threaded holes) of the reference plate, and the set screws can be tightened, so that the left arm and/or the right side The arms are pressed against the cross shaft so that the bearings between them are pressed and aligned.
  • the first support arm and/or the second support arm has at least one centering device for adjusting assembly clearance.
  • a pitch angle sensor is installed at the joint between the left arm and/or the right arm and the cross shaft.
  • a roll angle sensor is installed at the joint between the first support arm and/or the second support arm and the cross shaft.
  • the pitch angle sensor and/or the roll angle sensor can be fastened by a sensor cover, and the sensor cover can also provide waterproof and/or dustproof and/or radiation-proof and/or corrosion-proof Protect.
  • first support arm and/or the second support arm are coupled to a base, and the base is equipped with a drive pulley assembly for guiding the pitch drive tendon and/or the Side swing drive tendons.
  • the pitch drive tendon and/or the roll drive tendon is equipped with a tendon force sensor for measuring the tension on the tendon.
  • the reference plate is coupled to the palm portion of the dexterous hand and the base is coupled to the forearm module or robotic arm.
  • the two-degree-of-freedom orthogonal tendon-driven joint module can be covered by a flexible sleeve;
  • the flexible sleeve can be made of rubber, silicon rubber and other materials;
  • the flexible sleeve can be waterproof, Dust-proof, anti-corrosion and other protective effects;
  • the flexible sleeve can be coated (such as fluorine-containing materials).
  • the two-degree-of-freedom orthogonal tendon transmission joint module adopts a modular design, which can be flexibly applied to robot joints (especially the wrist of a dexterous hand);
  • the axes of the pendulum degrees of freedom are orthogonal, so that the pitch motion and the side swing motion are relatively decoupled, and its spatial position is convenient to determine, so that the spatial position calculation of the robot (especially the dexterous hand) is easier and easier to control.
  • Figure 1 is a schematic diagram of the joint core structure of the two-degree-of-freedom orthogonal tendon drive joint module provided by the present application;
  • Fig. 2 is a schematic diagram of the bearing position of the two-degree-of-freedom orthogonal tendon drive joint module in the embodiment of the present application;
  • FIG. 3 is an overall schematic diagram of the two-degree-of-freedom orthogonal tendon drive joint module in the embodiment of the present application;
  • Fig. 4 is a schematic diagram of the left pendulum control wheel of the two-degree-of-freedom orthogonal tendon drive joint module in the embodiment of the present application;
  • FIG. 5 is a schematic diagram of the tendon sheath support of the two-degree-of-freedom orthogonal tendon drive joint module in the embodiment of the present application;
  • Fig. 6 is a left rear oblique view of the two-degree-of-freedom orthogonal tendon drive joint module in the embodiment of the present application;
  • Fig. 7 is a right rear oblique view of the two-degree-of-freedom orthogonal tendon drive joint module in the embodiment of the present application;
  • Fig. 8 is an exploded view of the two-degree-of-freedom orthogonal tendon-driven joint module in the embodiment of the present application.
  • the embodiment of the present application discloses a two-degree-of-freedom orthogonal tendon transmission joint module, including: a cross shaft 1, a pitch control wheel 2, a pitch pendulum block, a side swing control wheel, a pitch transmission tendon 11, The side swing driving tendon 10 , the first support arm 12 , the second support arm 13 , and the base 14 .
  • the two transverse shaft ends of the cross shaft 1 are hinged to the corresponding ends of the pitch pendulum, and the first support arm 12 and the second support arm 12 are respectively hinged at both ends of the longitudinal axis of the cross shaft ;
  • At least one point of the pitch transmission tendon 11 is fixedly connected to the pitch control wheel 2, and at least one point of the roll transmission tendon 10 is fixedly connected to the roll control wheel, and the roll control wheel is fixedly connected to the roll control wheel.
  • the pitch control wheel 2 is fixedly connected to the pitch pendulum block;
  • the roll control wheel is fixedly connected to the cross shaft 1;
  • the pitch pendulum block When power is applied to the pitch transmission tendon 11, the pitch pendulum block is driven by the pitch control wheel 2 to perform pitch motion (that is, to rotate along the pitch degree of freedom);
  • the cross shaft 1, the pitch pendulum block and the pitch control wheel 2 are driven by the side sway control wheel to perform a side sway motion as a whole (that is, along the side sway degree of freedom) turn).
  • the two-degree-of-freedom orthogonal tendon transmission joint module adopts a modular design and can be flexibly applied to robot joints (especially the wrist of a dexterous hand);
  • the axes of the degrees of freedom are orthogonal, so that the pitching motion and the side swing motion are relatively decoupled, and its spatial position is convenient to determine, so that the spatial position calculation of the robot (especially the dexterous hand) is easier and easier to control.
  • the pitch pendulum block includes a left arm 18 , a right arm 3 , and a reference plate 4 for connecting the left arm 18 and the right arm 3 .
  • the reference plate 4 is coupled with the palm portion of the dexterous hand.
  • the pitch control wheel 2 is fixedly connected to the pitch pendulum block (in this embodiment, the circumferential front part of the pitch control wheel 2 is fixedly connected to the base 14 of the pitch pendulum block), and the pitch pendulum block passes through the left arm 18 and the right side arm 3 are hinged to the two transverse shaft ends of the cross shaft 1, and the two longitudinal shaft ends of the cross shaft 1 are respectively hinged to the first support arm 12 and the second support arm 13.
  • the first support arm 12 and the second support arm 13 can be directly or connected with a forearm module or a mechanical arm through a connecting piece.
  • the ends of the first support arm 12 and the second support arm 13 away from the pitch pendulum are fixedly connected to the base 14 respectively, and the base 14 is connected with the forearm module or Mechanical arm connection.
  • the reference plate 4 provides an installation interface and an adjustment reference for the palm of the dexterous hand, the left arm 18, the right arm 3, and the pitch control wheel 2, ensuring the alignment of each component.
  • the relative position is easy to adjust according to the processing conditions (tolerance), so as to achieve close fit; similarly, the base 14 also plays a role for the first support arm 12, the second support arm 13, the small arm module or the mechanical arm. to a similar effect.
  • the pitch control wheel 2 can also be located on the left arm 18 or the right arm 3, so as to avoid the inner central part of the pitch pendulum block and make space.
  • the pitch control wheel 2 is a hollow structure
  • the cross shaft 1 passes through the hollow
  • the cross shaft 1 is connected to the first support arm 12 and the second support arm
  • the hinge part of 13 is in the hollow part of the pitch control wheel 2, so that the layout between the pitch control wheel 2, the cross shaft 1, the first support arm 12, and the second support arm 13 is compact, and this structure saves the overall space size.
  • described pitch control wheel 2 is provided with two wire grooves along its outer peripheral side, and described pitch transmission tendon 11 is divided into two, is wound on two described wire grooves respectively, and respectively with Each of the pitch control wheels 2 has at least one tendon fixing point, so that the linear transmission range of the pitch motion can exceed plus or minus 90°.
  • left swing control wheel 7 and right swing control wheel 8 are divided into left swing control wheel 7 and right swing control wheel 8 and described left swing control wheel 7 and all Said right pendulum control wheel 8 is fan-shaped.
  • the left and right swing control wheels are arranged in a fan-shaped structure with a fan-shaped notch avoiding the circular groove of the cross shaft, which saves space relative to the entire circumference.
  • the left and right swing control wheels can also be provided with fixed ends for fastening the side swing drive tendons 10, which can be processed independently and are convenient for installation and debugging.
  • the side swing driving tendon 10 is divided into two parts, which are respectively wound and fixedly connected to the left swing control wheel 7 and the right swing control wheel 8 .
  • the left swing control wheel 7 and the right swing control wheel 8 are center-symmetrically distributed around the intersection point of the cross shaft 1 .
  • described left pendulum control wheel 7 and described right pendulum control wheel 8 are respectively positioned at the upper side and the lower side of the plane where the two transverse axis ends of described cross shaft 1 are located (who is on, Whoever is below is not limited), so that the upper and lower eccentric moments can be offset, thereby reducing the eccentric moment caused by the transmission.
  • left swing control wheel 7 and/or the right swing control wheel 8 may be integrated with the cross shaft 1 .
  • the cross shaft 1 is fixedly connected with a tendon sheath support 17 , and the tendon sheath support 17 is used to guide the tendon sheath of the pitch transmission tendon 11 , and the tendon sheath support 17 can perform sideways movement with the cross shaft 1 .
  • a tendon sheath support 17 is fixedly connected to the upper and lower sides of the cross shaft 1 .
  • the tendon sheath support 17 is an L-shaped structure, its bottom is a stable plane, and is connected with the cross shaft 1 by bolts, and its upper part is provided with a tendon sheath fixing slot and a compression cover; A tendon sheath fixing element) is snapped into the tendon sheath fixing groove, and then the compression cover is fastened above the tendon sheath fixing groove through bolts.
  • the advantage of this structure is that the tendon sheath exit position can always be aligned with the wire groove of the pitch control wheel 2, and its shape and position relationship is not affected by side swing motion, and the transmission is stable and reliable.
  • bearings are installed at the joints of the left arm 18 and the right arm 3 of the pitch pendulum block and the two transverse shaft ends of the cross shaft 1 .
  • Two bearings can be installed at each joint, for example deep groove ball bearings 5 for radial relief and thrust bearings 6 for axial relief.
  • bearings are installed at the joints between the two longitudinal ends of the cross shaft 1 and the first support arm 12 and the second support arm 13 .
  • Two bearings can be installed at each joint, for example deep groove ball bearings 5 for radial relief and thrust bearings 6 for axial relief.
  • the left arm 18, the right arm 3, and the reference plate 4 of the pitch pendulum block are independent parts, which are assembled to form the pitch pendulum block, which is convenient for processing, assembly and debugging .
  • the left arm 18 and/or the right arm 3 has at least one centering device, which is used to adjust the assembly clearance and compress the bearing.
  • centering device For example, set screws can be installed on the left side and/or right side (with threaded holes) of the reference plate, and the set screws can be tightened, so that the left arm and/or the right side The arms are pressed against the cross shaft, so that the bearings between them are pressed and aligned (see the two threaded holes on the side of the reference plate 4 in the accompanying drawing 1).
  • the first support arm 12 and/or the second support arm 13 has at least one centering device, which is used to adjust the assembly gap and compress the bearing (it can be realized by using set screws, the principle is similar to the above and will not be repeated) .
  • a pitch angle sensor 15 is installed at the joint between the left arm 18 and/or the right arm 3 and the cross shaft 1 .
  • a roll angle sensor 19 is installed at the joint between the first support arm 12 and/or the second support arm 13 and the cross shaft 1 .
  • described pitch angle sensor 15 and/or roll angle sensor 19 can be realized fastening by sensor cover 16, and described sensor cover 16 can also provide waterproof and/or dustproof and /or protection against radiation and/or corrosion.
  • the lead-out lines of the pitch angle sensor 15 and/or roll angle sensor 19 can be routed along the first support arm 12 and/or the second support arm 13, or the lead-out The wire passes through the inner cavity of the first support arm 12 and/or the second support arm 13 .
  • the base 14 is installed with a drive pulley assembly 9 for guiding the pitch drive tendon 11 and/or the roll drive tendon 10 .
  • the pitch drive tendon 11 and/or the roll drive tendon 10 is equipped with a tendon force sensor for measuring the tension on the tendon.
  • the two-degree-of-freedom orthogonal tendon drive joint module can be covered by a flexible sleeve;
  • the flexible sleeve can be made of rubber, silicon rubber and other materials; Dust, anti-corrosion and other protective effects; the flexible sleeve can be added with coatings (such as fluorine-containing materials).
  • each embodiment in this specification is described in a progressive manner, each embodiment focuses on the difference from other embodiments, and the same and similar parts of each embodiment can be referred to each other.
  • the description is relatively simple, and for the related information, please refer to the description of the method part.

Abstract

一种二自由度正交腱传动关节模块,包括:十字轴(1)、俯仰控制轮(2)、俯仰摆块、侧摆控制轮、俯仰传动腱(11)、侧摆传动腱(10)、第一支撑臂(12)、第二支撑臂(13);采用模块化设计,空间紧凑,可灵活应用于机器人关节,尤其是灵巧手的腕部;并且俯仰自由度和侧摆自由度的轴线正交,使空间位置解算更容易,便于控制。

Description

二自由度正交腱传动关节模块
本申请要求于2021年06月03日在中国专利局提交的、申请号为202110617997.5的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请属于机器人的机构领域,具体涉及二自由度正交腱传动关节模块。
背景技术
机器人系统(尤其是灵巧手)往往存在很多关节,若将各关节模块化,便于标准化加工、调试、维护,还可以较好地根据需求组装集成。此外,以往的灵巧手腕部关节俯仰自由度和侧摆自由度轴线往往不正交,导致这两个自由度相互耦合,空间位置解算和控制相对复杂。
技术问题
为解决上述问题,本申请提出二自由度正交腱传动关节模块,所述二自由度正交腱传动关节模块采用模块化设计,尺寸紧凑,其俯仰自由度和侧摆自由度轴线正交,使这两个自由度相互解耦,空间位置解算和控制相对简化。
技术解决方案
为了实现上述目的,本申请采用如下技术方案:
二自由度正交腱传动关节模块,包括:包括:十字轴、俯仰控制轮、俯仰摆块、侧摆控制轮、俯仰传动腱、侧摆传动腱、第一支撑臂、第二支撑臂;
所述十字轴的两个横向轴端与所述俯仰摆块的相应端铰接,所述第一支撑臂和所述第二支撑臂分别铰接在所述十字轴的纵向轴两端处;
所述俯仰传动腱部分缠绕于所述俯仰控制轮,所述俯仰传动腱上至少一点固联于所述俯仰控制轮和/或所述俯仰摆块;
所述侧摆传动腱部分缠绕于所述侧摆控制轮,所述侧摆传动腱上至少一点固联于所述侧摆控制轮和/或所述十字轴;
所述俯仰控制轮固联于所述俯仰摆块;
所述侧摆控制轮固联于所述十字轴;
当动力施加于所述俯仰传动腱,通过所述俯仰控制轮带动所述俯仰摆块进行俯仰运动(即沿俯仰自由度转动);
当动力施加于所述侧摆传动腱,通过所述侧摆控制轮带动所述十字轴、所述俯仰摆块和所述俯仰控制轮整体进行侧摆运动(即沿侧摆自由度转动)。
在一种实施例中,所述俯仰摆块包括左侧臂、右侧臂及两端部分别与所述左侧臂、右侧臂相连的基准板,所述基准板的中部位于所述十字轴的一侧设有供所述俯仰控制轮置入的安装接口,所述左侧臂和所述右侧臂铰接于所述十字轴的两个横向轴端。
在一种实施例中,所述俯仰控制轮为中空构造,所述十字轴穿设于所述俯仰控制轮的中空部,所述十字轴与所述第一支撑臂和所述第二支撑臂的铰接部位在俯仰控制轮中空部,该构造节省了整体空间尺寸,同时可以保证所述俯仰控制轮的直径较大,从而使动力臂较大。
在一种实施例中,所述俯仰控制轮具有若干导线槽,所述俯仰传动腱与所述导线槽一一对应设置,各所述俯仰传动腱部分缠绕在相应所述导线槽,并分别与所述俯仰控制轮或所述俯仰摆块各有至少1个腱固定点。好处在于,俯仰运动的线性传动区间可以超过正负90°。
在一种实施例中,所述侧摆控制轮分为左摆控制轮和右摆控制轮,所述左摆控制轮和所述右摆控制轮均为扇状,可以独立加工、安装调试也方便,并且相对于整个周圆节省了空间,所述侧摆传动腱分为两条,分别缠绕并固联于所述左摆控制轮和所述右摆控制轮。好处是进一步节省空间,加工组装调试容易。
在一种实施例中,所述左摆控制轮和所述右摆控制轮围绕着所述十字轴的十字交叉点呈中心对称分布。
在一种实施例中,所述十字轴固联有腱鞘支架,所述腱鞘支架用于引导俯仰传动腱的腱鞘,所述腱鞘支架能够随所述十字轴进行侧摆运动。
在一种实施例中,所述俯仰摆块的所述左侧臂和所述右侧臂与所述十字轴的两个横向轴端铰接处安装有轴承。每个铰接处可安装两个轴承,例如,采用深沟球轴承进行径向卸荷,以及采用推力轴承进行轴向卸荷。
在一种实施例中,所述十字轴的两个纵向轴端与所述第一支撑臂和所述第二支撑臂的铰接处安装有轴承。每个铰接处可安装两个轴承,例如,采用深沟球轴承进行径向卸荷,以及采用推力轴承进行轴向卸荷。
在一种实施例中,所述俯仰摆块的所述左侧臂、所述右侧臂、所述基准板为独立零件,组装构成所述俯仰摆块,便于加工组装调试。
在一种实施例中,所述左侧臂和/或所述右侧臂具有至少一个调心装置,用于调整组装间隙,压紧轴承。例如,可在所述基准板的左侧边和/或右侧边(配有螺纹孔)安装紧定螺钉,旋紧紧定螺钉,即可将所述左侧臂和/或所述右侧臂向所述十字轴压紧,从而使它们之间的轴承压紧、调心。
在一种实施例中,所述第一支撑臂和/或所述第二支撑臂具有至少一个调心装置,用于调整组装间隙。
在一种实施例中,所述左侧臂和/或所述右侧臂与所述十字轴铰接处安装有俯仰角度传感器。
在一种实施例中,所述第一支撑臂和/或所述第二支撑臂与所述十字轴铰接处安装有侧摆角度传感器。
在一种实施例中,所述俯仰角度传感器和/或侧摆角度传感器可由传感器盖实现紧固,所述传感器盖还可提供防水和/或防尘和/或防辐射和/或防腐蚀的保护。
在一种实施例中,所述第一支撑臂和/或所述第二支撑臂与基座联接,所述基座安装有传动滑轮组件,用于引导所述俯仰传动腱和/或所述侧摆传动腱。
在一种实施例中,所述俯仰传动腱和/或所述侧摆传动腱安装有腱力传感器,用于测量腱上的拉力。
在一种实施例中,所述基准板与灵巧手的手掌部分联接,所述基座与小臂模组或机械臂联接。
在一种实施例中,所述二自由度正交腱传动关节模块可由柔性套包覆;例如,所述柔性套可采用橡胶、硅橡胶等材料制成;所述柔性套可起到防水、防尘、防腐蚀等保护效果;所述柔性套可添加涂层(例如含氟材料)。
有益效果
本申请的有益效果为:所述二自由度正交腱传动关节模块采用模块化设计,可灵活应用于机器人关节(尤其是灵巧手的腕部);其十字轴的使用令俯仰自由度和侧摆自由度的轴线正交,使俯仰运动与侧摆运动相对解耦,其空间位置方便确定,从而使机器人(尤其是灵巧手)的空间位置解算更容易,便于控制。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图获得其他的附图。
图1为本申请提供的二自由度正交腱传动关节模块的关节核心结构示意图;
图2为本申请实施例中二自由度正交腱传动关节模块的轴承位置示意图;
图3为本申请实施例中二自由度正交腱传动关节模块的整体示意图;
图4为本申请实施例中二自由度正交腱传动关节模块的左摆控制轮示意图;
图5为本申请实施例中二自由度正交腱传动关节模块的腱鞘支架示意图;
图6为本申请实施例中二自由度正交腱传动关节模块的左后斜视图;
图7为本申请实施例中二自由度正交腱传动关节模块的右后斜视图;
图8为本申请实施例中二自由度正交腱传动关节模块的爆炸图。
附图标记:
1-十字轴;2-俯仰控制轮;3-右侧臂;4-基准板;5-深沟球轴承;6-推力轴承;7-左摆控制轮;8-右摆控制轮;9-传动滑轮组件;10-侧摆传动腱;11-俯仰传动腱;12-第一支撑臂;13-第二支撑臂;14-基座;15-俯仰角度传感器;16-传感器盖;17-腱鞘支架;18-左侧臂;19-侧摆角度传感器。
本发明的实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
参见附图1至附图8,本申请实施例公开了二自由度正交腱传动关节模块,包括:十字轴1、俯仰控制轮2、俯仰摆块、侧摆控制轮、俯仰传动腱11、侧摆传动腱10、第一支撑臂12、第二支撑臂13、基座14。
所述十字轴1的两个横向轴端与所述俯仰摆块的相应端铰接,所述第一支撑臂12和所述第二支撑臂12分别铰接在所述十字轴的纵向轴两端处;
所述俯仰传动腱11上至少一点固联于所述俯仰控制轮2,所述侧摆传动腱10上至少一点固联于所述侧摆控制轮,所述侧摆控制轮固联于所述十字轴1;
所述俯仰控制轮2固联于所述俯仰摆块;
所述侧摆控制轮固联于所述十字轴1;
当动力施加于所述俯仰传动腱11,通过所述俯仰控制轮2带动所述俯仰摆块进行俯仰运动(即沿俯仰自由度转动);
当动力施加于所述侧摆传动腱10,通过所述侧摆控制轮带动所述十字轴1、所述俯仰摆块和所述俯仰控制轮2整体进行侧摆运动(即沿侧摆自由度转动)。
由上述方案可见,该所述二自由度正交腱传动关节模块采用模块化设计,可灵活应用于机器人关节(尤其是灵巧手的腕部);其十字轴的使用令俯仰自由度和侧摆自由度的轴线正交,使俯仰运动与侧摆运动相对解耦,其空间位置方便确定,从而使机器人(尤其是灵巧手)的空间位置解算更容易,便于控制。
在一个实施例中,所述俯仰摆块包括设在十字轴横向两端的左侧臂18、右侧臂3和用于连接左侧臂18和右侧臂3的基准板4。所述基准板4与灵巧手的手掌部分联接。所述俯仰控制轮2固联于所述俯仰摆块(本实施例中俯仰控制轮2的圆周前端部分固联于俯仰摆块的基座14),所述俯仰摆块通过所述左侧臂18和所述右侧臂3铰接于所述十字轴1的两个横向轴端,所述十字轴1的两个纵向轴端分别铰接于所述第一支撑臂12和所述第二支撑臂13。所述第一支撑臂12与所述第二支撑臂13可以直接或者通过设置连接件与小臂模组或机械臂联接。在本实施例中,所述第一支撑臂12和所述第二支撑臂13背离所述俯仰摆块的一端分别固联于所述基座14,该基座14与与小臂模组或机械臂联接。由该方案可见,所述基准板4为灵巧手的掌部、所述左侧臂18、所述右侧臂3、所述俯仰控制轮2提供了安装接口和调整基准,保证了各部件的相对位置易于根据加工情况(公差)调整,做到紧密配合;同理,所述基座14对于所述第一支撑臂12、所述第二支撑臂13、小臂模组或机械臂也起到相似作用。
在另一种实施例中,所述俯仰控制轮2还可位于所述左侧臂18或所述右侧臂3,以避开所述俯仰摆块内侧中央部位,腾出空间。
参见附图1和附图3,所述俯仰控制轮2为中空构造,所述十字轴1穿于其中空部,所述十字轴1与所述第一支撑臂12和所述第二支撑臂13的铰接部位在俯仰控制轮2中空部,使得俯仰控制轮2、十字轴1和第一支撑臂12、第二支撑臂13之间的布局紧凑,该构造节省了整体空间尺寸。
参见附图1和附图3,所述俯仰控制轮2延其外周侧设有两个导线槽,所述俯仰传动腱11分为两条,分别缠绕在两个所述导线槽,并分别与所述俯仰控制轮2各有至少1个腱固定点,使得俯仰运动的线性传动区间可以超过正负90°。
参见附图3、附图4、附图6、附图7、附图8,所述侧摆控制轮分为左摆控制轮7和右摆控制轮8,所述左摆控制轮7和所述右摆控制轮8均为扇状。在本实施例中,左、右摆控制轮设置为扇形结构,具有避开十字轴圆形槽的扇状缺口,相对于整个周圆节省了空间。并且,该左、右摆控制轮还可以设有用于固联侧摆传动腱10的固定端,可以独立加工、安装调试也方便。所述侧摆传动腱10分为两条,分别缠绕并固联于所述左摆控制轮7和所述右摆控制轮8。当然在其他实施例中,侧摆传动腱也可以只有1条,甚至还可以与十字轴形成腱固定点。
在一个实施例中,所述左摆控制轮7和所述右摆控制轮8围绕着所述十字轴1的十字交叉点呈中心对称分布。具体参见附图3和附图4,所述左摆控制轮7和所述右摆控制轮8分别位于所述十字轴1两个横向轴端所在平面的上侧和下侧(谁在上、谁在下不限),这样上、下方的偏心力矩可以相抵消,从而减少传动带来的偏心力矩。
在另一种实施例中,所述左摆控制轮7和/或所述右摆控制轮8可以与所述十字轴1合为一体。
参见附图1,所述十字轴1固联有腱鞘支架17,所述腱鞘支架17用于引导俯仰传动腱11的腱鞘,所述腱鞘支架17可随所述十字轴1进行侧摆运动。本实施例中十字轴1的上下两侧各固联有一处腱鞘支架17。腱鞘支架17为L型构造,其底部为稳定平面,与十字轴1通过螺栓联接,其上部设有腱鞘固定卡槽和压紧盖;安装时,先将腱鞘的一端(一般在腱鞘末端同轴设有腱鞘固定元件)卡入所述腱鞘固定卡槽,再将压紧盖通过螺栓紧固于腱鞘固定卡槽上方。该构造的好处在于可将腱鞘的出腱位置始终对准俯仰控制轮2的导线槽,其形位关系不受侧摆运动影响,传动稳定可靠。
参见附图2,所述俯仰摆块的所述左侧臂18和所述右侧臂3与所述十字轴1的两个横向轴端铰接处安装有轴承。每个铰接处可安装两个轴承,例如,采用深沟球轴承5进行径向卸荷,以及采用推力轴承6进行轴向卸荷。
参见附图2,所述十字轴1的两个纵向轴端与所述第一支撑臂12和所述第二支撑臂13的铰接处安装有轴承。每个铰接处可安装两个轴承,例如,采用深沟球轴承5进行径向卸荷,以及采用推力轴承6进行轴向卸荷。
参见附图1和附图2,所述俯仰摆块的所述左侧臂18、所述右侧臂3、所述基准板4为独立零件,组装构成所述俯仰摆块,便于加工组装调试。
所述左侧臂18和/或所述右侧臂3具有至少一个调心装置,用于调整组装间隙,压紧轴承。例如,可在所述基准板的左侧边和/或右侧边(配有螺纹孔)安装紧定螺钉,旋紧紧定螺钉,即可将所述左侧臂和/或所述右侧臂向所述十字轴压紧,从而使它们之间的轴承压紧、调心(参见附图1中基准板4侧面的两个螺纹孔)。
所述第一支撑臂12和/或所述第二支撑臂13具有至少一个调心装置,用于调整组装间隙,压紧轴承(可采用紧定螺钉实现,原理与前述类似不做累述)。
参见附图3、附图8,所述左侧臂18和/或所述右侧臂3与所述十字轴1铰接处安装有俯仰角度传感器15。
参见附图3、附图8,所述第一支撑臂12和/或所述第二支撑臂13与所述十字轴1铰接处安装有侧摆角度传感器19。
参见附图1、附图3、附图8,所述俯仰角度传感器15和/或侧摆角度传感器19可由传感器盖16实现紧固,所述传感器盖16还可提供防水和/或防尘和/或防辐射和/或防腐蚀的保护。
在一种实施例中,所述俯仰角度传感器15和/或侧摆角度传感器19的引出线可沿所述第一支撑臂12和/或所述第二支撑臂13布线,或者令所述引出线在所述第一支撑臂12和/或所述第二支撑臂13内部空腔穿过。
参见附图3,所述基座14安装有传动滑轮组件9,用于引导所述俯仰传动腱11和/或所述侧摆传动腱10。
所述俯仰传动腱11和/或所述侧摆传动腱10安装有腱力传感器,用于测量腱上的拉力。
在一个实施例中,所述二自由度正交腱传动关节模块可由柔性套包覆;例如,所述柔性套可采用橡胶、硅橡胶等材料制成;所述柔性套可起到防水、防尘、防腐蚀等保护效果;所述柔性套可添加涂层(例如含氟材料)。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。对于实施例公开的装置而言,由于其与实施例公开的方法相对应,所以描述的比较简单,相关之处参见方法部分说明即可。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本申请。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本申请的精神或范围的情况下,在其它实施例中实现。因此,本申请将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (12)

  1. 二自由度正交腱传动关节模块,其特征在于,包括:十字轴、俯仰控制轮、俯仰摆块、侧摆控制轮、俯仰传动腱、侧摆传动腱、第一支撑臂、第二支撑臂;
    所述十字轴的两个横向轴端与所述俯仰摆块的相应端铰接,所述第一支撑臂和所述第二支撑臂分别铰接在所述十字轴的纵向轴两端处;
    所述俯仰传动腱部分缠绕于所述俯仰控制轮,所述俯仰传动腱上至少一点固联于所述俯仰控制轮和/或所述俯仰摆块;
    所述侧摆传动腱部分缠绕于所述侧摆控制轮,所述侧摆传动腱上至少一点固联于所述侧摆控制轮和/或所述十字轴;
    所述俯仰控制轮固联于所述俯仰摆块;
    所述侧摆控制轮固联于所述十字轴;
    当动力施加于所述俯仰传动腱,通过所述俯仰控制轮带动所述俯仰摆块进行俯仰运动;
    当动力施加于所述侧摆传动腱,通过所述侧摆控制轮带动所述十字轴、所述俯仰摆块和所述俯仰控制轮整体进行侧摆运动。
  2. 根据权利要求1所述的二自由度正交腱传动关节模块,其特征在于,所述俯仰摆块包括左侧臂、右侧臂及两端部分别与所述左侧臂、右侧臂相连的基准板,所述基准板的中部位于所述十字轴的一侧设有供所述俯仰控制轮置入的安装接口,所述左侧臂和所述右侧臂铰接于所述十字轴的两个横向轴端。
  3. 根据权利要求2所述的二自由度正交腱传动关节模块,其特征在于,所述俯仰控制轮为中空构造,所述十字轴穿设于所述俯仰控制轮的中空部,所述十字轴与所述第一支撑臂和所述第二支撑臂的铰接部位在俯仰控制轮中空部。
  4. 根据权利要求1所述的二自由度正交腱传动关节模块,其特征在于,所述俯仰控制轮的外表面延其周侧设有若干导线槽;所述俯仰传动腱与所述导线槽一一对应设置,各所述俯仰传动腱部分缠绕在相应所述导线槽,并分别与所述俯仰控制轮或所述俯仰摆块各有至少1个腱固定点。
  5. 根据权利要求1所述的二自由度正交腱传动关节模块,其特征在于,所述侧摆控制轮分为左摆控制轮和右摆控制轮,所述左摆控制轮和所述右摆控制轮均为扇状,所述侧摆传动腱分为两条,分别缠绕并固联于所述左摆控制轮和所述右摆控制轮。
  6. 根据权利要求5所述的二自由度正交腱传动关节模块,其特征在于,所述左摆控制轮和所述右摆控制轮围绕着所述十字轴的十字交叉点呈中心对称分布。
  7. 根据权利要求1所述的二自由度正交腱传动关节模块,其特征在于,所述十字轴固联有腱鞘支架,所述腱鞘支架用于引导俯仰传动腱的腱鞘,所述腱鞘支架能够随所述十字轴进行侧摆运动。
  8. 根据权利要求1-7任一项所述的二自由度正交腱传动关节模块,其特征在于,所述俯仰摆块与所述十字轴的两个横向轴端铰接处和/或所述十字轴的两个纵向轴端与所述第一支撑臂和所述第二支撑臂铰接处设有轴承。
  9. 根据权利要求2所述的二自由度正交腱传动关节模块,其特征在于,所述左侧臂和/或所述右侧臂和/或所述第一支撑臂和/或所述第二支撑臂具有至少一个调心装置。
  10. 根据权利要求9所述的二自由度正交腱传动关节模块,其特征在于,所述左侧臂和/或所述右侧臂与所述十字轴铰接处安装有俯仰角度传感器;和/或所述第一支撑臂和/或所述第二支撑臂与所述十字轴铰接处安装有侧摆角度传感器。
  11. 根据权利要求1-7任一项所述的二自由度正交腱传动关节模块,其特征在于,所述第一支撑臂和/或所述第二支撑臂与基座联接,所述基座安装有传动滑轮组件,用于引导所述俯仰传动腱和/或所述侧摆传动腱。
  12. 根据权利要求1-7任一项所述的二自由度正交腱传动关节模块,其特征在于,所述俯仰传动腱和/或所述侧摆传动腱安装有腱力传感器。
PCT/CN2022/094974 2021-06-03 2022-05-25 二自由度正交腱传动关节模块 WO2022253072A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110617997.5A CN113352349B (zh) 2021-06-03 2021-06-03 二自由度正交腱传动关节模块
CN202110617997.5 2021-06-03

Publications (1)

Publication Number Publication Date
WO2022253072A1 true WO2022253072A1 (zh) 2022-12-08

Family

ID=77531541

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/094974 WO2022253072A1 (zh) 2021-06-03 2022-05-25 二自由度正交腱传动关节模块

Country Status (2)

Country Link
CN (1) CN113352349B (zh)
WO (1) WO2022253072A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113352349B (zh) * 2021-06-03 2023-03-31 深圳忆海原识科技有限公司 二自由度正交腱传动关节模块

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4594918A (en) * 1983-12-22 1986-06-17 Kabushiki Kaisha Yaskawa Denki Seisakusho Wrist mechanism for industrial robot
WO2006072124A1 (en) * 2004-11-10 2006-07-13 Newsouth Innovations Pty Ltd A mechanical joint structure
JP2008232197A (ja) * 2007-03-16 2008-10-02 Gifu Univ 3自由度回転システムのガイドレールストッパ機構とその応用
JP2013244562A (ja) * 2012-05-25 2013-12-09 Chuo Univ 関節装置及びリンク機構
CN111604935A (zh) * 2020-06-01 2020-09-01 大连理工大学 一种电磁驱动两自由度球型机器人手腕及其控制方法
CN212399653U (zh) * 2020-03-31 2021-01-26 哈工大机器人(合肥)国际创新研究院 一种具有肌张力仿生功能的关节结构
CN113352349A (zh) * 2021-06-03 2021-09-07 深圳忆海原识科技有限公司 二自由度正交腱传动关节模块

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8467903B2 (en) * 2009-09-22 2013-06-18 GM Global Technology Operations LLC Tendon driven finger actuation system
CN104760054B (zh) * 2015-04-10 2016-08-24 华北水利水电大学 气动人工肌肉驱动的正交三自由度关节
CN105380749B (zh) * 2015-12-17 2017-08-22 天津工业大学 一种用于外科手术钻的钢丝绳传动万向机构
CN109176470B (zh) * 2018-09-18 2019-09-10 北京邮电大学 一种机器人手臂
CN111633669B (zh) * 2019-03-01 2022-05-13 哈尔滨工业大学 模块化三自由度腱绳传动仿人灵巧机械手指及控制方法
CN215037618U (zh) * 2021-06-03 2021-12-07 深圳忆海原识科技有限公司 二自由度紧凑型腱传动关节模块

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4594918A (en) * 1983-12-22 1986-06-17 Kabushiki Kaisha Yaskawa Denki Seisakusho Wrist mechanism for industrial robot
WO2006072124A1 (en) * 2004-11-10 2006-07-13 Newsouth Innovations Pty Ltd A mechanical joint structure
JP2008232197A (ja) * 2007-03-16 2008-10-02 Gifu Univ 3自由度回転システムのガイドレールストッパ機構とその応用
JP2013244562A (ja) * 2012-05-25 2013-12-09 Chuo Univ 関節装置及びリンク機構
CN212399653U (zh) * 2020-03-31 2021-01-26 哈工大机器人(合肥)国际创新研究院 一种具有肌张力仿生功能的关节结构
CN111604935A (zh) * 2020-06-01 2020-09-01 大连理工大学 一种电磁驱动两自由度球型机器人手腕及其控制方法
CN113352349A (zh) * 2021-06-03 2021-09-07 深圳忆海原识科技有限公司 二自由度正交腱传动关节模块

Also Published As

Publication number Publication date
CN113352349B (zh) 2023-03-31
CN113352349A (zh) 2021-09-07

Similar Documents

Publication Publication Date Title
US8635929B2 (en) Robot joint driving apparatus, robot having the same and cable linkage method of robot joint driving apparatus
CN110315511A (zh) 一种采用被动弹簧张紧的索驱动并联分拣机器人
WO2022253072A1 (zh) 二自由度正交腱传动关节模块
FR2690372B1 (fr) Robot parallèle à bras articulés.
WO2019114206A1 (zh) 一种高性能水平关节四轴机器人
CN112476478B (zh) 一种面向人机协作仿生绳驱动四自由度手臂
US9533420B2 (en) Link actuation device
FR2782467B1 (fr) Element de liaison a verin a vis et ecrou et son application un bras de robot
CN101590650B (zh) 解耦的三转动自由度并联机构
CN211278393U (zh) 基于斯图尔特并联机构的六自由度运动装置及其伸缩机构
CN111086006A (zh) 一种可调长度关节臂式示教器
CN110861120B (zh) 基于双定子无框力矩电机的驱动关节及其应用
CN110587657A (zh) 一种高精度三自由度中空手腕机构
CN215037618U (zh) 二自由度紧凑型腱传动关节模块
CN218742716U (zh) 一种刚柔耦合驱动狭小空间内表面喷涂机器人
CN214643785U (zh) 一种机器人用线缆固定组件
CN211415236U (zh) 基于双定子无框力矩电机的驱动关节及工业机器人
CN115157299A (zh) 一种四连杆机械手
CN113967905B (zh) 一种外骨骼机器人的腿部机构
JP5239519B2 (ja) ロボットハンド
CN220741227U (zh) 一种线驱动柔性机械臂
CN206510033U (zh) 一种倒装机器人
CN110762148A (zh) 一种基于一体式柔性铰链弹簧的串联弹性传动装置
CN112809736B (zh) 一种丝传动型万向球关节
Rosheim Design of an omnidirectional arm

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22815118

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE