WO2022253037A1 - 一种下行控制信息dci发送方法及通信装置 - Google Patents

一种下行控制信息dci发送方法及通信装置 Download PDF

Info

Publication number
WO2022253037A1
WO2022253037A1 PCT/CN2022/094575 CN2022094575W WO2022253037A1 WO 2022253037 A1 WO2022253037 A1 WO 2022253037A1 CN 2022094575 W CN2022094575 W CN 2022094575W WO 2022253037 A1 WO2022253037 A1 WO 2022253037A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
terminal device
dci
pdcch
network device
Prior art date
Application number
PCT/CN2022/094575
Other languages
English (en)
French (fr)
Inventor
罗青全
常俊仁
冯淑兰
谢曦
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP22815084.3A priority Critical patent/EP4319265A4/en
Publication of WO2022253037A1 publication Critical patent/WO2022253037A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/22Processing or transfer of terminal data, e.g. status or physical capabilities
    • H04W8/24Transfer of terminal data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • H04W72/232Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal the control data signalling from the physical layer, e.g. DCI signalling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present application relates to the field of communication technologies, and in particular to a method for sending downlink control information DCI and a communication device.
  • one time slot is supported for uplink transmission, denoted as U time slot; one time slot is supported for downlink transmission, denoted as D time slot; one time slot is also supported for both uplink and
  • the downlink configuration is denoted as S time slot.
  • the U time slot only includes uplink symbols (uplink symbols, U), U is only used for uplink transmission and cannot be used for downlink transmission;
  • the D time slot only includes downlink symbols (downlink symbols, D), and D is only used for downlink transmission and cannot be used for uplink transmission;
  • the S slot includes U, D and flexible symbols (flexible symbols, F), and F can be used for both downlink transmission and uplink transmission.
  • the time slots configured by network devices are all configured as DSU time slots.
  • DCI downlink control information
  • a D time slot or an S time slot Multiple symbols can be configured for transmission of DCI.
  • the task of the terminal device in the D or S time slot will gradually increase, so that the load of the terminal device in the D or S time slot will increase.
  • the gradual increase may lead to an increase in the power consumption of the terminal equipment, or due to differences among various terminal equipments, such a DCI transmission method is not flexible enough.
  • the present application provides a DCI sending method and a communication device for downlink control information, which are beneficial to improving the flexibility of DCI sending.
  • the present application provides a DCI sending method, the method includes: a terminal device sends first information to a network device, the first information is used to indicate the number N, and the number N includes the physical downlink control channel PDCCH of the terminal device The number of DCIs supported to be received in the first span; the terminal device receives DCIs on the PDCCH, and the number of DCIs in the first span is less than or equal to the number N.
  • the terminal device reports the first information to the network device, so that the network device sends DCI to the terminal device according to the first information reported by the terminal device, which improves the flexibility of DCI transmission and enables the network device to send DCI to the terminal device
  • the amount of sent DCI meets the requirement of the terminal device.
  • the terminal device determines the number N based on performance requirement information of the terminal device, where the performance requirement information includes one or more of power consumption information, terminal type information, or transmission performance information.
  • the amount of DCI sent by the network device to the terminal device meets the requirements of the terminal device
  • the terminal device when the terminal device is in the first scenario mode, the terminal device sends second information to the network device, where the second information is used to indicate a quantity M, and the quantity M includes the PDCCH information of the terminal device in the first scenario mode
  • the number of DCIs requested to be received in the first span where the number M is a positive integer greater than 0 and smaller than the number N.
  • the number of DCIs in the first span of the PDCCH is further reduced according to the actual application scenario of the terminal device, so that the number of DCIs received by the terminal device in the first span satisfies While meeting your own needs, reduce power consumption.
  • the terminal device receives third information from the network device, and the third information is used to notify the network device to send the PDCCH to the terminal device based on the second information.
  • the terminal device receives fourth information from the network device, where the fourth information is used to notify the network device to send the PDCCH to the terminal device based on the first information.
  • the second information is radio resource control RRC signaling, medium access control MAC signaling, or auxiliary information.
  • the power consumption of the terminal device is less than the first value, or the ratio of the downlink time slot to the uplink time slot in the PDCCH is greater than the second value, or the data transmission of the terminal device The delayed demand is greater than the third value.
  • the present application provides a DCI sending method, the method includes: the network device receives first information from the terminal device, the first information is used to indicate the number N, and the number N includes the physical downlink control channel of the terminal device The number of DCIs supported to be received in the first span of the PDCCH; the network device sends the DCI to the terminal device through the PDCCH, and the effective number of DCIs in the first span is less than or equal to the number N.
  • the terminal device reports the first information to the network device, so that the network device sends DCI to the terminal device according to the first information reported by the terminal device, which improves the flexibility of DCI transmission and enables the network device to send the terminal device
  • the amount of sent DCI meets the requirement of the terminal device.
  • the network device when the terminal device is in the first scene mode, receives second information from the terminal device, where the second information is used to indicate a quantity M, and the quantity M includes the terminal device in the first scene mode
  • the number of DCIs requested to be received within the first span of the PDCCH where the number M is a positive integer greater than 0 and smaller than the number N.
  • the network device can further reduce the number of DCIs in the first span of the PDCCH according to the actual application scenario of the terminal device, so that the terminal device receives in the first span While the number of DCIs meets its own needs, power consumption is reduced.
  • the network device determines to send DCI to the terminal device based on the second information or the first information based on the scheduling situation of the network device; when the network device determines to send DCI to the terminal device based on the second information, the network The device sends third information to the terminal device, and the third information is used to notify the network device to send DCI to the terminal device based on the second information; the network device sends DCI to the terminal device through the PDCCH based on the second information, and the number of DCIs in the first span Less than or equal to the quantity M.
  • the network device when the network device determines to send DCI to the terminal device based on the first information, the network device sends fourth information to the terminal device, and the fourth information is used to notify the network device to send DCI to the terminal device based on the first information.
  • DCI the network device sends the DCI to the terminal device through the PDCCH, and the number of DCIs in the first span is less than or equal to the number N.
  • the second information is radio resource control RRC signaling, medium access control MAC signaling, or auxiliary information.
  • the power consumption of the terminal device is less than the first value, or, the ratio of the downlink time slot to the uplink time slot in the PDCCH is greater than the second value, or, the data transmission of the terminal device
  • the delay requirement is greater than the third value.
  • the present application provides a communication device, the communication device includes a communication unit and a processing unit, wherein the communication unit is used to send first information to the network device, the first information is used to indicate the number N, the number N includes the number of DCIs that the terminal device supports to receive in the first span of the physical downlink control channel PDCCH; when receiving DCIs in the PDCCH, the number of DCIs in the first span is less than or equal to the number N.
  • the processing unit is configured to determine the number N based on performance requirement information of the terminal device, where the performance requirement information includes one or more of power consumption information, terminal type information, or transmission performance information.
  • the communication unit when the terminal device is in the first scenario mode, is configured to send second information to the network device, where the second information is used to indicate a quantity M, and the quantity M includes the terminal device in the first scenario mode
  • the communication unit is configured to receive third information from the network device, where the third information is used to notify the network device to send the PDCCH to the terminal device based on the second information.
  • the communication unit is configured to receive fourth information from the network device, where the fourth information is used to notify the network device to send the PDCCH to the terminal device based on the first information.
  • the second information is radio resource control RRC signaling, medium access control MAC signaling, or auxiliary information.
  • the power consumption of the terminal device is less than the first value, or the ratio of the downlink time slot to the uplink time slot in the PDCCH is greater than the second value, or the data transmission of the terminal device The delayed demand is greater than the third value.
  • the present application provides a communication device, the communication device includes a communication unit and a processing unit, wherein the communication unit is configured to receive first information from a terminal device, the first information is used to indicate the number N, the The number N includes the number of DCIs supported by the terminal device to receive within the first span of the physical downlink control channel PDCCH; to send DCI to the terminal device, the effective number of DCIs in the first span is less than or equal to the number N.
  • the communication unit when the terminal device is in the first scene mode, is configured to receive second information from the terminal device, where the second information is used to indicate a quantity M, and the quantity M includes the first scene mode
  • the number M is a positive integer greater than 0 and smaller than the number N.
  • the processing unit is configured to determine, based on the scheduling situation of the network device, to send DCI to the terminal device based on the second information or the first information; when it is determined to send DCI to the terminal device based on the second information, The communication unit is configured to send third information to the terminal device, the third information is used to notify the network device to send DCI to the terminal device based on the second information; the communication unit is configured to send DCI to the terminal device through the PDCCH based on the second information, and the DCI The number within the first span is less than or equal to the number M.
  • the communication unit when it is determined to send DCI to the terminal device based on the first information, the communication unit is configured to send fourth information to the terminal device, and the fourth information is used to notify the network device to send the DCI to the terminal device based on the first information.
  • Sending the DCI the communication unit is further configured to send the DCI to the terminal device through the PDCCH, and the number of DCIs in the first span is less than or equal to the number N.
  • the second information is radio resource control RRC signaling, medium access control MAC signaling, or auxiliary information.
  • the power consumption of the terminal device is less than the first value, or, the ratio of the downlink time slot to the uplink time slot in the PDCCH is greater than the second value, or, the data transmission of the terminal device
  • the delay requirement is greater than the third value.
  • the present application provides a communication device, the communication device includes a processor, and when the processor invokes a computer program in a memory, the method described in the first aspect or the second aspect is executed.
  • the present application provides a communication device, the communication device includes a processor and a memory, the memory is used to store computer-executable instructions; the processor is used to execute the computer-executable instructions stored in the memory, to The communication device is made to execute the method described in the first aspect or the second aspect.
  • the present application provides a communication device, the communication device includes a processor, a memory, and a transceiver, the transceiver is used to receive signals or send signals; the memory is used to store program codes; the The processor is configured to call the program code from the memory to execute the method as described in the first aspect or the second aspect.
  • the present application provides a communication device, the communication device includes a processor and an interface circuit, the interface circuit is used to receive code instructions and transmit them to the processor; the processor runs the code instructions to execute the method as described in the first aspect or the second aspect.
  • an embodiment of the present application provides a system, and the system includes the communication device provided in the third aspect or the fourth aspect.
  • the embodiment of the present application provides a computer-readable storage medium, the computer-readable storage medium is used to store instructions, when the instructions are executed, so that as described in the first aspect or the second aspect method is implemented.
  • the embodiment of the present application provides a computer program or a computer program product, including codes or instructions.
  • the codes or instructions are run on a computer, the computer executes the method described in the first aspect or the second aspect. accomplish.
  • the embodiment of the present application provides a circuit system, the circuit system includes a processor and an interface, the processor is used to call and execute instructions from the interface, when the processor executes the instructions, so that the first aspect or The method described in the second aspect is implemented.
  • FIG. 1 is a schematic structural diagram of a mobile communication system provided by the present application.
  • FIG. 2a is a schematic diagram of a time-division multiplexing system time slot configuration provided by the present application
  • FIG. 2b is a schematic structural diagram of a time slot provided by the present application.
  • FIG. 3 is a schematic diagram of tasks of a terminal device on a time slot provided by the present application.
  • FIG. 4a is a schematic diagram of a task of a terminal device processing DCI in one time slot provided by the present application
  • FIG. 4b is a schematic diagram of another terminal device processing DCI tasks in one time slot provided by the present application.
  • Fig. 4c is a schematic diagram of the frequency of the terminal device increasing frequency and voltage in the case of different time slot ratios provided by the present application;
  • FIG. 5 is a schematic flowchart of a DCI sending method provided by the present application.
  • FIG. 6 is a schematic flowchart of another DCI sending method provided by the present application.
  • FIG. 7 is a schematic flowchart of another DCI sending method provided by the present application.
  • FIG. 8 is a schematic diagram of a PDCCH carrying DCI provided by the present application.
  • FIG. 9 is a schematic flowchart of another DCI sending method provided by the present application.
  • FIG. 10a is a schematic diagram of another PDCCH carrying DCI provided by the present application.
  • FIG. 10b is a schematic diagram of another PDCCH carrying DCI provided by the present application.
  • Fig. 11 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • Fig. 12 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 13 is a schematic block diagram of a terminal device provided by an embodiment of the present application.
  • FIG. 14 is a schematic block diagram of a network device provided by an embodiment of the present application.
  • At least one (item) means one or more
  • multiple means two or more
  • at least two (items) means two or three and three
  • “and/or” is used to describe the corresponding relationship between corresponding objects, indicating that there may be three kinds of relationships, for example, “A and/or B” can mean: only A exists, only B exists, and A and B exist at the same time A case where A and B can be singular or plural.
  • the character “/” generally indicates that the corresponding objects before and after are an “or” relationship.
  • At least one of the following” or similar expressions refer to any combination of these items, including any combination of single or plural items.
  • At least one item (piece) of a, b or c can mean: a, b, c, "a and b", “a and c", “b and c", or "a and b and c ", where a, b, c can be single or multiple.
  • FIG. 1 is a schematic structural diagram of a mobile communication system provided by the present application.
  • the system rack includes network equipment (ie, network equipment 110 in FIG. 1 ), terminal equipment (ie, terminal equipment 120 and terminal equipment 130 in FIG. 1 ).
  • the terminal device is connected to the network device in a wireless manner.
  • FIG. 1 is only a schematic diagram.
  • the communication system may also include other network devices, such as wireless relay devices and wireless backhaul devices, which are not shown in FIG. 1 .
  • the embodiments of the present application do not limit the number of network devices and terminal devices included in the mobile communication system.
  • Terminal equipment can be fixed or mobile.
  • the terminal equipment, access network equipment and core network equipment involved in FIG. 1 will be described in detail below.
  • Terminal equipment may also be called user equipment (user equipment, UE), including equipment that provides voice and/or data connectivity to users, for example, may include a handheld device with a wireless connection function, or a processing device connected to a wireless modem.
  • the terminal device can communicate with the core network via a radio access network (radio access network, RAN), and exchange voice and/or data with the RAN.
  • radio access network radio access network
  • the terminal equipment may include wireless terminal equipment, mobile terminal equipment, device-to-device communication (device-to-device, D2D) terminal equipment, vehicle-to-everything (vehicle to everything, V2X) terminal equipment, machine-to-machine/machine-type communication ( machine-to-machine/machine-type communications, M2M/MTC) terminal equipment, internet of things (IoT) terminal equipment, subscriber unit, subscriber station, mobile station, remote station, access point (access point, AP) ), remote terminal, access terminal, user terminal, user agent, or user equipment, etc.
  • it may include mobile phones (or "cellular" phones), computers with mobile terminal equipment, portable, pocket, hand-held, computer built-in mobile devices, and the like.
  • PCS personal communication service
  • cordless telephone cordless telephone
  • session initiation protocol session initiation protocol
  • WLL wireless local loop
  • PDA personal digital assistant
  • constrained devices such as devices with low power consumption, or devices with limited storage capabilities, or devices with limited computing capabilities, etc.
  • it includes barcodes, radio frequency identification (radio frequency identification, RFID), sensors, global positioning system (global positioning system, GPS), laser scanners and other information sensing devices.
  • the network equipment mentioned in this application can be understood as a general term of core network equipment and access network equipment.
  • the core network device and the access network device may be independent and different physical devices, or the functions of the core network device and the logical functions of the access network device may be integrated on the same physical device, or they may be one physical device It integrates the functions of some core network equipment and some functions of access network equipment.
  • the access network device refers to the node or device that connects the terminal device to the wireless network.
  • the access network device includes but is not limited to: a new generation base station (generation node B, gNB) and an evolved node B ( evolved node B, eNB), next generation evolved node B (next generation eNB, ng-eNB), wireless backhaul equipment, home base station ((home evolved nodeB, HeNB) or (home node B, HNB)), baseband unit (baseBand unit, BBU), transmission and receiving point (transmitting and receiving point, TRP), transmitting point (transmitting point, TP), mobile switching center, etc.
  • generation node B, gNB new generation base station
  • eNB evolved node B
  • next generation eNB next generation evolved node B
  • wireless backhaul equipment home base station ((home evolved nodeB, HeNB) or (home node B, HNB))
  • baseband unit baseBand unit, BBU
  • transmission and receiving point transmitting and receiving
  • the frame length duration of transmission is 10ms
  • each frame is divided into 10 subframes
  • each subframe is 1ms long.
  • Each subframe is divided into several time slots, and each time slot is composed of 14 orthogonal frequency-division multiplexing (OFDM) symbols (hereinafter referred to as symbols).
  • OFDM orthogonal frequency-division multiplexing
  • the specific time length of each time slot is determined by the parameter set. For example, when the subcarrier spacing (SCS) is 15kHz, the length of one slot is 1ms; when the spacing of subcarriers is 30kHz, the length of one slot is 0.5ms.
  • NR supports one time slot for uplink transmission, denoted as U slot (slot); supports one time slot for downlink transmission, denoted as D slot; also supports a time slot with both uplink and downlink configuration, denoted as S slot .
  • the time slots configured by network devices are all configured with DSU time slots.
  • Figure 2a is a schematic diagram of some typical time division duplex (TDD) system time slot configurations.
  • Figure 2a includes 8:2 configurations. Ratio (ie DDDDDDDSUU), 7:3 ratio (ie DDDSUDDSUU), 4:1 ratio (ie DDDSU), etc.
  • FIG. 2b is a schematic diagram of symbols in each time slot in the D time slot, the S time slot and the U time slot.
  • a D time slot only includes downlink symbols (downlink symbols, D), and D is only used for downlink transmission and cannot be used for uplink transmission;
  • an S time slot includes U, D and flexible symbols (flexible symbols , F), F can be used for both downlink transmission and uplink transmission;
  • a U slot only includes uplink symbols (uplink symbols, U), and U is only used for uplink transmission and not for downlink transmission.
  • DCI Downlink control information
  • a physical downlink control channel (physical downlink control channel, PDCCH) carries DCI transmission services.
  • DCI can be divided into: DCI for uplink scheduling (denoted as UL-DCI), UL-DCI is used to schedule physical uplink channels, such as scheduling physical uplink shared channel (PUSCH); DCI for downlink scheduling (denoted as DL-DCI), DL-DCI is used for scheduling physical downlink channels, for example, scheduling physical downlink shared channel (physical downlink shared channel, PDSCH).
  • ACK acknowledgment character
  • NACK negative acknowledgment character
  • FIG. 3 is a schematic diagram of tasks of a terminal device on a time slot.
  • the terminal device parses the UL-DCI at time slot N+4, and the UL-DCI is used to schedule the transmission of PUSCH at time slot N+8 (that is, it can be understood that the terminal device transmits uplink data through the PUSCH at time slot N+8).
  • the terminal device parses the DL-DCI in time slot N+5, which is used to schedule the transmission of PDSCH in time slot N+5 (that is, it can be understood that the terminal device receives downlink data through PDSCH in time slot N+5), and the PDSCH reception is completed Afterwards, ACK is fed back to the network device at time slot N+9.
  • Table 1 shows the decoding time N 1 of PDSCH in PDSCH processing capability 1.
  • Table 2 shows the decoding time N 1 of PDSCH in PDSCH processing capability 2.
  • Table 3 shows the preparation time N 2 of PUSCH in PUSCH timing capability 1.
  • N 1 is the time length between the time when the terminal device receives PDSCH and the time when the terminal device sends ACK feedback
  • N 2 is the time length between the time when the terminal device receives DCI and the time when the terminal device sends PUSCH to the network device. It can be seen that when the terminal equipment is in PDSCH processing capability 1, the decoding time N 1 of PDSCH is greater than the decoding time N 1 of PDSCH when the terminal equipment is in PDSCH processing capability 2; when the terminal equipment is in PUSCH timing capability 1, the preparation time N 2 of PUSCH is greater than The preparation time N 2 when the terminal equipment is in PUSCH timing capability 2.
  • a PDCCH monitor span can be understood as a plurality of consecutive symbols on a slot (slot), and two parameters (parameter X and parameter Y) can be specified to define a PDCCH monitor span, where parameter X is used to indicate the PDCCH monitor span Occupied consecutive symbols, the parameter Y is used to indicate the number of the first Y symbols that can be used to send DCI in the consecutive symbols occupied by the PDCCH monitor span.
  • the parameter X of a PDCCH monitor span is 7, and the parameter Y is 3, indicating that the number of consecutive symbols occupied by the PDCCH monitor span is 7 symbols: symbol 0 to symbol 6, which are sent in the PDCCH monitor span
  • the DCI can occupy at most the first 3 consecutive symbols of the 7 symbols of the PDCCH monitor span, that is, the DCI sent in the PDCCH monitor span can occupy the first 3 symbols: symbol 0 to symbol 2.
  • a PDCCH monitor span includes a minimum of 2 symbols, and a slot includes 14 symbols. It can be seen that a slot can include up to 7 PDCCH monitor spans.
  • the description of the terminal device capability item stipulates that: the terminal device must be able to process 3 valid (valid) DCIs in each PDCCH monitor span. It can be inferred that a time slot can include up to 7 PDCCH monitor spans, and one A time slot can include at most 21 valid (valid) DCIs, that is, 21 valid DCIs are supported.
  • DCI may refer to effective DCI.
  • the number of DCI refers to the number of signaling data packets transmitted through the PDCCH.
  • effective DCI refers to DCI that can be parsed out by the UE.
  • FIG. 4a is a schematic diagram of a task of a terminal device processing 2 DCIs in one time slot.
  • the terminal device receives the DCI on the first two symbols on the S time slot, and further, the terminal device needs the duration shown in block 1 in Fig.
  • the DCI on the symbol is a DL-DCI and a UL-DCI
  • the duration shown in block 2 in Figure 4a is required to parse the DL-DCI and configure the PDSCH according to the DL-DCI (including configuring the terminal device to receive the start symbol of the PDSCH and the number of continuous symbols)
  • the duration shown in block 3 in Figure 4a is required to resolve the UL-DCI and configure the PUSCH according to the UL-DCI (including configuring the terminal device to send the start symbol and the number of continuous symbols of the PUSCH); when receiving the PDCCH
  • it is completed it feeds back the feedback information of whether the PDCCH is successfully received to the network device, that is, it can be understood that the duration shown in block 4 in Figure 4a is required.
  • the communication protocol stipulates that the terminal device needs to have the capability of "transmitting the PUSCH immediately after the last symbol carrying DCI is spaced 12 symbols apart". It can be seen that when the terminal device receives a large number of DCIs in one time slot, the terminal device needs to spend more time to parse the DCI and respond to the DCI configuration. If the time for parsing the DCI and responding to the DCI configuration exceeds 12 symbols, it will As a result, the terminal device cannot have the ability to "send PUSCH immediately after the last symbol carrying DCI is 12 symbols apart", which does not comply with the protocol.
  • the network device is configured with a default bandwidth for the terminal device (that is, BWP1 is configured by default in FIG. 4b).
  • BWP1 the bandwidth required by the terminal device for data transmission in actual services
  • the network device configures the terminal device with the bandwidth that can be scheduled when the terminal device actually transmits through DCI (that is, as shown in Figure 4b transmit configuration bandwidth BWP2).
  • the task of the terminal device in this S-slot is heavy, and when the terminal device sends the PUSCH, it does not calculate the network device as a terminal according to the DCI.
  • the transmission configuration bandwidth BWP2 of the actual transmission configuration of the device at this time, the terminal device can only send PUSCH according to the default configuration BWP1 configured for the terminal device by the network device, thereby increasing the power consumption of the terminal device.
  • the terminal device since a terminal device resolves multiple DCIs in a time slot, the load on the time slot will increase, and the terminal device performs blind detection on the DCI, which means that the terminal device does not know the network How many DCIs the device will configure in which time slot.
  • the terminal device needs to increase the voltage and frequency of the service core of the terminal device on each time slot that may be configured with multiple DCIs, so that when the terminal device detects multiple DCIs on the time slot , may have the capability of parsing multiple DCIs.
  • FIG. 4c shows the frequency of frequency up and voltage boosting of the terminal equipment in the case of different time slot ratios.
  • the 4:1 time slot ratio (which can be understood as 1 U time slot in 5 time slots) increases the frequency of frequency boosting, which is higher than the 8:2 time slot Ratio (can be understood as 2 consecutive U time slots in 10 time slots) frequency of boosting frequency. That is, when there are fewer consecutive U time slots in the time slot allocation, the power consumption of the terminal device will also increase.
  • the present application provides a DCI sending method, which can improve the flexibility of the terminal device to receive the number of DCI, and improve the adaptability of the terminal device to the number of DCI received, thereby reducing the power of the terminal device while ensuring the data transmission performance of the terminal device. consumption.
  • FIG. 5 is a schematic flowchart of a DCI sending method provided in the present application.
  • the DCI sending method includes S501-S502.
  • the execution subject of the method shown in FIG. 5 may be a terminal device, a chip of the terminal device, or a chip system.
  • FIG. 5 uses a terminal device as an example for an execution body of the method for illustration. in:
  • the terminal device sends first information to the network device, where the first information is used to indicate the quantity N.
  • the number N includes the number of DCIs that the terminal device supports to receive within the first span of the PDCCH.
  • the number N is a positive integer greater than 0.
  • the terminal device notifies the network device that the terminal device supports receiving the maximum number of DCIs within the first span of the PDCCH by actively sending the first information to the network device, so that the network device can send DCI to the terminal device according to the first information .
  • the first information may be a physical layer parameter.
  • a form of the first information used to indicate the number N may include the following two forms.
  • the first information may directly indicate the number of DCIs that the terminal device supports to receive within the first span of the PDCCH. For example, if the value of the message field used to indicate the number N in the first information is 3, then the first The information directly indicates that the number of DCIs supported by the terminal device to receive within the first span of the PDCCH is 3.
  • the first information does not directly carry the value of the quantity N, but indicates the value of the quantity N through a mapping (or corresponding) relationship.
  • a mapping or corresponding
  • Table 5 which is used to indicate the value of the quantity N
  • the number of supported receiving DCIs is 1.
  • the first span may be a D time slot or an S time slot, or a PDCCH monitor span, and the first span will be specifically discussed in two cases below.
  • the first span is a D time slot or an S time slot.
  • the terminal device can send the first information to the network device to indicate that the terminal device supports receiving the maximum number of DCIs in the D time slot or S time slot, so as to ensure that the terminal device can receive the maximum number of DCIs in the D time slot or S time slot.
  • the task volume is adapted to the requirements of the terminal equipment. Exemplarily, if the number of DCIs that the terminal device expects to receive in one S time slot is less than or equal to 7, the terminal device sends the first information to the network device, and the first information indicates that the terminal device is in one S time slot.
  • the number of supported receiving DCIs is 7.
  • the maximum number of DCIs supported by the terminal device to receive in the D slot and the maximum number of DCIs supported by the terminal device in the S slot may be different.
  • two different numbers may be carried in the first information: The number N11 and the number N12, wherein the number N11 is the number of DCIs that the terminal device supports to receive in the D time slot, and the number N12 is the number of DCIs that the terminal device supports to receive in the S time slot.
  • the first span is PDCCH monitor span.
  • the terminal device determines the number of DCIs it can support to receive with a granularity (PDCCH monitor span) smaller than the time slot, so that the terminal device can ensure that the D time slot or S time The amount of tasks in the time slot can meet the requirements of the terminal equipment, and the number of DCIs can be evenly distributed in the time slot. For example, the terminal device expects that the number of DCI received by itself in a PDCCH monitor span is less than or equal to 1, then the terminal device sends the first information to the network device, and the first information indicates that the terminal device supports receiving DCI in a PDCCH monitor span The maximum number is 1.
  • the maximum number of DCIs that can be received in this S slot is 7. It can be seen that at this time, it can not only ensure that the task amount of the terminal device in the S time slot meets the requirements of the terminal device (the number of DCIs received in one S time slot is less than or equal to 7), but also make the DCI in the S time slot Evenly distributed in the PDCCH monitor span of the S slot.
  • the terminal devices mentioned in this application may be all the terminal devices in the service cell (Cell) corresponding to the network device, or may be some terminal devices in the service cell corresponding to the network device.
  • the terminal device sending the first information to the network device is all the terminal devices in the serving cell corresponding to the network device. In this case, when the terminal device resides in the cell corresponding to the network device, the terminal device needs to report the first information to the network device to notify the network device that the terminal device supports receiving the maximum number of DCIs within the first span.
  • the terminal device that sends the first information to the network device is part of the terminal devices in the service cell corresponding to the network device, such as a reduced capability (reduced capability, RedCap) terminal device, an NR device that needs to reduce power consumption Wait.
  • the terminal device can determine whether to report the first information to the network device according to its own needs. For example, when the terminal device detects that its ability to resolve DCI in the first span is insufficient, and it is expected that the number of DCIs configured by the network device in the first span is less than or equal to the expected value N, the terminal device sends the first information to the network device , otherwise the terminal device will not send the first information to the network device, so as to save communication transmission resources.
  • the terminal device determines the number N based on its own performance requirement, where the performance requirement includes one or more of power consumption information, terminal device type information, or transmission performance information.
  • the power consumption information refers to the current power consumption demand information of the terminal equipment, etc.
  • the terminal equipment type information indicates that the terminal equipment is an Internet of Things terminal, RedCap terminal, mobile device, etc.
  • the transmission performance information refers to the current data transmission time of the terminal equipment. Delay requirements or transmission speed requirements, etc.
  • UE1 is a terminal device that needs to be on standby for a long time, and the power consumption information of UE1 is set to be no greater than P. If UE1 receives more than 6 DCIs in one S slot of the PDCCH, UE1 will The power consumption of this S time slot is greater than P. In this case, UE1 sends first information to the network device, where the first information is used to indicate that UE1 can receive a maximum of 6 DCIs in the S time slot of the PDCCH.
  • the terminal device type of UE2 is a RedCap terminal, which only has the capability of receiving or parsing 5 DCIs in one time slot.
  • UE2 sends first information to the network device, where the first information is used to indicate that UE2 can receive a maximum of 5 DCIs in the D slot or S slot of the PDCCH.
  • UE3 is a music playback device, which has a low requirement for data transmission delay (that is, a low requirement for real-time performance of data transmission).
  • UE3 sends the first information to the network device.
  • the first information is used to indicate that UE3 can receive a maximum of 5 DCIs in the D slot of the PDCCH, and a maximum of 5 DCIs in the S slot of the PDCCH. Can receive 4 DCIs.
  • the terminal device receives DCI on the PDCCH, where the number of DCIs in the first span is less than or equal to the number N.
  • the network device After receiving the first information sent by the terminal device in S501, the network device sends DCI to the terminal device through the PDCCH based on the number N indicated in the first information, and the number of DCIs in the first span is less than or equal to the number N. Wherein, being less than or equal to includes: the number of the DCIs in the first span is less than the number N; and, the number of the DCIs in the first span is less than the number N. It should be declared that "less than or equal” in this application can be understood as including: “less than or equal to” and “less than”, unless otherwise specified, the whole text is the same.
  • the first information indicates that the number of DCIs that the terminal device supports to receive in the S slot of the PDCCH is 2.
  • the network device sends DCI to the terminal device through the PDCCH, and the number of received DCI in the S time slot of the DCI can be 0, 1 or 2.
  • the terminal device reports to the network device the number N of DCIs supported in the first span according to its own situation, so that the network device sends DCI to the terminal device according to the number N, which improves the flexibility of DCI transmission. Meet the needs of various terminal equipment.
  • FIG. 6 is a schematic flowchart of another method for sending DCI provided by the present application.
  • the DCI sending method includes S601-S605.
  • the execution subject of the method shown in FIG. 6 may be a terminal device and a network device, a chip (or system on chip) of the terminal device and a chip (or system on chip) of the network device.
  • FIG. 6 uses a terminal device and a network device as execution subjects of the method as an example for illustration.
  • the terminal device sends first information to the network device, where the first information is used to indicate the quantity N.
  • the number N includes the number of DCIs that the terminal device supports to receive within the first span of the PDCCH.
  • the terminal device When the terminal device is in the first scenario mode, the terminal device sends second information to the network device, where the second information is used to indicate the quantity M.
  • the number M includes the number of DCIs that the terminal device requests to receive within the first span of the PDCCH in the first scenario mode, and the number M is a positive integer greater than 0 and smaller than the number N.
  • the terminal device after the terminal device sends to the network device the maximum number (number N) of DCI that it supports to receive within the first span, if the terminal device detects that it is in the first scene mode, the terminal device sends the second information to the network device,
  • the second information is used to indicate that in the first scenario mode, the terminal device expects the number of DCIs sent by the network device within the first span to be less than the number M, where the number M is smaller than the number N in the aforementioned first information.
  • the second information is radio resource control (radio resource control, RRC) signaling, media access control (media access control, MAC) signaling or assistance (Assistance) information.
  • the terminal device in the first scenario mode includes but is not limited to one or more of the following features: 1.
  • the power consumption of the terminal device is less than the first value; 2.
  • the downlink power consumption of the PDCCH received by the terminal device The ratio of the time slot to the uplink time slot is greater than the second value; 3.
  • the data transmission delay requirement of the terminal device is greater than the third value; 4.
  • the temperature of the terminal device is greater than the fourth value.
  • the first value, the second value, the third value and the fourth value are all preset values according to the actual application scenario of the terminal device, which can be adjusted later, and are not specifically limited here.
  • the terminal device has two states after it is turned on: a first state and a second state. It can be understood that when the terminal device is in the first state, the power consumption is high (the power consumption of the terminal device is greater than or equal to the first value in the first state), and when the terminal device is in the second state, the power consumption is low (in the second state The power consumption of the terminal device is less than the first value).
  • the first scenario mode is that the terminal device is in the second state.
  • the terminal device If the terminal device detects that it is switched from the first state to the second state, or if the terminal device detects that it is in the second state, or if the terminal device detects that its power consumption is less than the first value, then the terminal device sends The network device sends the second information to request the network device to reduce the amount of DCI sent in the first span of the PDCCH, so as to reduce power consumption of the terminal device and save communication transmission resources.
  • the terminal device since the D time slot can only be used for downlink transmission, and the S time slot can be used for both uplink transmission and downlink transmission, if the number of DCI in the S time slot is large, the terminal device will The task of the S time slot is heavy, which leads to an increase in the power consumption of the terminal equipment in the S time slot. Since the network device configures the time slots in the PDCCH as follows: at least one D time slot, one S time slot, and at least one U time slot, it can be roughly understood that when the number of D time slots in the PDCCH time slot configuration is much greater than U When the time slot is D, the network device may have enough D time slots for sending DCI.
  • the S time slot also needs to be configured with multiple DCIs to satisfy the uplink and downlink business scheduling of the network equipment to the terminal equipment. Therefore, in this application scenario, the ratio of the U time slot to the D time slot in the PDCCH received by the terminal device in the first scenario mode is greater than the second value. If the terminal device detects that the ratio of the U time slot to the D time slot in the PDCCH is greater than the second value, the terminal device sends the second information to the network device to request the network device to send the DCI in the S time slot of the PDCCH less than or equal to the number M, so as to reduce the power consumption of the terminal device in the S time slot.
  • the modes of the vehicle-mounted terminal device after being started include: a docking standby mode and a real-time driving mode.
  • the vehicle-mounted terminal device When the vehicle-mounted terminal device is in the real-time driving mode, the vehicle-mounted terminal needs to perform real-time interactive transmission of road condition data with the network device, automatically plan route navigation, etc., which can be understood as when the vehicle-mounted terminal device is in the real-time driving mode, the vehicle-mounted terminal device setting The data transmission delay requirement is less than or equal to the third value, so as to improve the real-time performance of data transmission.
  • the vehicle-mounted terminal device is in the docking standby mode, the interactive data between the vehicle-mounted terminal device and the network device is reduced.
  • the vehicle-mounted terminal device relaxes the data transmission delay requirements.
  • the delay requirement of the vehicle-mounted terminal device may be greater than the third value.
  • the first scenario mode is that the vehicle-mounted terminal device is in a docking standby mode.
  • the vehicle-mounted terminal device detects that it has switched from the real-time driving mode to the docked standby mode, or, the vehicle-mounted terminal device detects that it is in the docked standby mode, or, the vehicle-mounted terminal device detects that the data transmission delay requirement is greater than the third value, Then the vehicle-mounted terminal device sends second information to the network device to request the network device to reduce the amount of DCI sent in the first span of the PDCCH, so as to reduce the power consumption of the vehicle-mounted terminal device.
  • the temperature of the terminal device in the first scenario mode is greater than the fourth value.
  • the terminal device detects that its own temperature is greater than the fourth value through the temperature sensor, the terminal device sends the second information to the network device to request the network device to send the DCI within the first span of the PDCCH. Or equal to the number M, so as to reduce the power consumption of the terminal equipment, thereby reducing the temperature of the terminal equipment.
  • the network device sends DCI to the terminal device based on the second information (or the number M), compared to the network device sending DCI to the terminal device based on the first information (or the number N)
  • the method will be more suitable for the needs of the terminal equipment, and further reduce the power consumption of the terminal equipment.
  • the number N in the first information can be approximated as the maximum number of DCIs that the terminal device can only support in the first span; the number M in the second information is the personalization of the terminal device in the first scene mode in the first span
  • the customized DCI number is more suitable for the current actual scene mode of the terminal device.
  • the network device determines to send the DCI to the terminal device based on the second information or the first information.
  • the network device will In the case of scheduling, it is determined to send the DCI to the terminal device based on the second information or the first information.
  • the network device receives the RRC signaling reported by UE1 in the first scenario mode, where the RRC signaling is used to indicate that UE1 expects the network device to send less than 2 DCIs in the S slot.
  • the network device receives the second information reported by UE1, according to its own scheduling situation (for example, if UE1 needs to upload more data through PUSCH, the network device needs to send more DCI to UE1), it determines that it cannot be in the S slot. If the number of sent DCIs is less than 2, the network device determines that DCI cannot be sent to the terminal device based on the second information, and the network device sends DCI to the terminal device based on the first information.
  • the network device determines to send DCI to the terminal device based on the second information
  • the network device sends third information to the terminal device, where the third information is used to notify the network device to send DCI to the terminal device based on the second information .
  • the third information is used to notify the terminal equipment that the number of DCIs in the first span of the PDCCH will be less than or equal to the number M.
  • the network device receives the second information sent by the terminal device, it determines to send DCI to the terminal device based on the second information, and then the network device sends ACK information (that is, third information) to the terminal device to notify the terminal device that DCI will be based on the second information.
  • the information sends DCI, and the number of DCIs received by the terminal device within the first span of the PDCCH is less than or equal to the number M.
  • the network device sends DCI to the terminal device through the PDCCH based on the second information, and the number of DCIs in the first span is less than or equal to the number M.
  • the network device sends DCI to the terminal device through the PDCCH, and the DCI is received in the S time slot
  • the number of DCIs can be 0, 1 or 2.
  • the DCI sending process is shown in FIG. 7
  • FIG. 7 is a schematic flowchart of another DCI sending method provided in the present application.
  • the DCI sending method includes S701-S705.
  • the execution subject of the method shown in FIG. 7 may be a terminal device and a network device, a chip (or system on chip) of the terminal device and a chip (or system on chip) of the network device.
  • FIG. 7 takes the terminal device and the network device as execution subjects of the method as examples for illustration.
  • the terminal device sends first information to the network device, where the first information is used to indicate the quantity N.
  • the number N includes the number of DCIs that the terminal device supports to receive within the first span of the PDCCH.
  • the terminal device When the terminal device is in the first scenario mode, the terminal device sends second information to the network device, where the second information is used to indicate the quantity M.
  • the number M includes the number of DCIs requested by the terminal device to receive DCI within the first span of the PDCCH in the first scenario mode, and the number M is a positive integer greater than 0 and smaller than the number N.
  • the network device determines to send the DCI to the terminal device based on the second information or the first information.
  • the network device determines to send DCI to the terminal device based on the first information
  • the network device sends fourth information to the terminal device, where the fourth information is used to notify the network device to send DCI to the terminal device based on the first information .
  • the third information is used to notify the terminal device that the number of DCIs within the first span of the PDCCH is less than or equal to the number N.
  • the network device receives the second information sent by the terminal device, it determines that DCI cannot be sent to the terminal device based on the second information, then the network device sends NACK information (that is, fourth information) to the terminal device to notify the terminal device of the PDCCH
  • NACK information that is, fourth information
  • the second information may be signaling (RRC signaling or MAC signaling) or auxiliary information.
  • the network device should send fourth information (such as NACK information) to the terminal device.
  • the network device may send fourth information (such as NACK information) to the terminal device; or may not send the fourth information to the terminal device.
  • Information at this time, can be understood as if the terminal device does not receive the third information (such as NAC information) sent by the network device within a certain period of time, the terminal device defaults that the network device will send DCI based on the first information.
  • the network device sends DCI to the terminal device through the PDCCH based on the first information, and the number of DCIs in the first span is less than or equal to the number N.
  • the first information indicates that the number of DCIs that the terminal device supports to receive in the S slot of the PDCCH is 3.
  • the network device sends DCI to the terminal device through the PDCCH, and the number of DCI received in the S time slot can be 1, 2 or 3.
  • the terminal device requests the network device for the number M of DCI received in the first span according to the actual application scenario mode, so that the network device can send DCI to the terminal device more flexibly, and more conveniently.
  • the application scenarios of combined terminal equipment are described in Figures 6 and 7.
  • the time slot of the PDCCH in the communication protocol specifies the symbol interval between the last symbol carrying UL-DCI and the first symbol sent by the UL-DCI configured (or called scheduled) PUSCH It is greater than N 2 symbols, and the N 2 symbols are the preparation time N 2 of the PUSCH in Table 3 or Table 4 above.
  • the D time slot of the PDCCH carries two DCIs, the D1 time slot carries the UL-DCI for scheduling the PUSCH in the U1 time slot, and the D2 time slot carries the UL-DCI for scheduling the U2 time slot PUSCH The UL-DCI.
  • the symbol interval between the last symbol of UL-DCI in D1 time slot and the first symbol in U1 time slot in Figure 8 is greater than N 2 symbols, and the last symbol of UL-DCI in D2 time slot
  • the symbol spacing between the first symbols in a slot is greater than N2 symbols.
  • FIG. 9 is a schematic flowchart of another method for sending DCI provided by the present application.
  • the DCI sending method includes S901-S902.
  • the execution subject of the method shown in FIG. 9 may be a terminal device and a network device, a chip (or system on chip) of the terminal device and a chip (or system on chip) of the network device.
  • FIG. 9 is illustrated by taking the terminal device and the network device as execution bodies of the method as examples.
  • the terminal device sends fifth information to the network device, where the fifth information is used to indicate that the symbol interval between the first symbol sent by continuous PUSCH and the last DCI symbol in multiple PDCCH DCI symbols is greater than or equal to the number of N3 symbols , the multiple DCIs of the PDCCH are used to configure the continuous PUSCH transmission.
  • the continuous PUSCH transmission can be understood as that the PDCCH bears multiple DCIs, and each DCI configuration configures that the U timeslots where the transmitted PUSCHs are located are consecutive or the same U timeslot.
  • the D time slot of the PDCCH carries two DCIs
  • the D1 time slot carries the UL-DCI used to schedule the PUSCH in the U1 time slot
  • the D2 time slot carries the UL-DCI used to schedule the U2 time slot PUSCH UL-DCI
  • the U1 time slot is continuous with the U2 time slot (the last symbol of the U1 time slot is adjacent to the first symbol of the U2 time slot)
  • this PUSCH transmission can be understood as continuous PUSCH transmission.
  • the terminal device determines the number of N3 symbols based on the load of its own processor. Wherein, N 3 is a positive integer greater than 0.
  • the preset power threshold of the terminal device is P1
  • the terminal device determines that the symbol interval between the first symbol sent by continuous PUSCH and the last DCI symbol in multiple PDCCH DCI symbols is less than 10 based on the load of its own processor. symbol, the actual load power of the terminal equipment will be greater than the power threshold P1.
  • the terminal device sends fifth information to the network device, and the fifth information is used to indicate the first symbol sent by continuous PUSCH and the last DCI symbol among multiple DCIs of PDCCH The interval between symbols is greater than or equal to 10 symbols.
  • the network device After receiving the fifth information, the network device sends multiple DCIs to the terminal device based on the fifth information.
  • the network device After receiving the fifth information, the network device sends multiple DCIs to the terminal device, the multiple DCIs are used to configure continuous PUSCH transmission, and the interval between the last DCI symbol in the multiple DCIs and the first symbol of continuous PUSCH transmission The symbol interval of is greater than or equal to N 3 .
  • two DCIs are carried in the two D time slots of the PDCCH initially configured by the network device, and the D1 time slot is used to carry the UL-DCI for scheduling the PUSCH in the U1 time slot.
  • the slot carries UL-DCI for scheduling the PUSCH in the U2 slot, and the fifth information indicates that N 3 is 10.
  • the network device sends DCI to the terminal device according to the initial configuration shown in 10a, that is, the D1 time slot is used to carry the PUSCH in the U1 time slot.
  • the D2 time slot carries the UL-DCI for scheduling the PUSCH in the U2 time slot.
  • the network device needs to rearrange the two DCIs used to configure continuous PUSCH transmission in Figure 10a in the PDCCH, and the rearranged two DCIs are as follows As shown in Figure 10b, the UL-DCI for scheduling the PUSCH in the U1 time slot is carried in the D1 time slot, the UL-DCI for scheduling the PUSCH in the U2 time slot is carried in the D1 time slot, and the PUSCH in the U2 time slot is scheduled The interval between the last symbol of the UL-DCI and the first symbol sent by the PUSCH in the U1 time slot is 16 symbols (greater than N 3 ).
  • FIG. 11 shows a schematic structural diagram of a communication device according to an embodiment of the present application.
  • the communication apparatus shown in FIG. 11 may be used to perform some or all functions of the terminal device in the method embodiments described in FIG. 5 , FIG. 6 , FIG. 7 or FIG. 9 .
  • the device may be a terminal device, or a device in the terminal device, or a device that can be matched with the terminal device.
  • the communication device may also be a system on a chip.
  • the communication device shown in FIG. 11 may include a communication unit 1101 and a processing unit 1102 .
  • the communication unit 1101 is configured to send first information to the network device, where the first information is used to indicate the number N, and the number N includes the number of DCIs supported by the terminal device to receive DCI within the first span of the physical downlink control channel PDCCH;
  • the PDCCH receives DCI, and the number of DCIs in the first span is less than or equal to the number N.
  • the processing unit 1102 is configured to determine the number N based on performance requirement information of the terminal device, where the performance requirement information includes one or more of power consumption information, terminal type information, or transmission performance information.
  • the communication unit 1101 when the terminal device is in the first scenario mode, is configured to send second information to the network device, where the second information is used to indicate a quantity M, and the quantity M includes The device requests to receive the number of DCIs within the first span of the PDCCH, where the number M is a positive integer greater than 0 and smaller than the number N.
  • the communication unit 1101 is configured to receive third information from the network device, where the third information is used to notify the network device to send the PDCCH to the terminal device based on the second information.
  • the communication unit 1101 is configured to receive fourth information from the network device, where the fourth information is used to notify the network device to send the PDCCH to the terminal device based on the first information.
  • the second information is radio resource control RRC signaling, medium access control MAC signaling, or auxiliary information.
  • the power consumption of the terminal device is less than the first value, or the ratio of the downlink time slot to the uplink time slot in the PDCCH is greater than the second value, or the data transmission of the terminal device The delayed demand is greater than the third value.
  • FIG. 11 shows a schematic structural diagram of a communication device according to an embodiment of the present application.
  • the communication apparatus shown in FIG. 11 may be used to execute some or all functions of the network device in the method embodiments described in FIG. 5 , FIG. 6 , FIG. 7 or FIG. 9 .
  • the device may be a network device, or a device in the network device, or a device that can be matched with the network device.
  • the communication device may also be a system on a chip.
  • the communication device shown in FIG. 11 may include a communication unit 1101 and a processing unit 1102 .
  • the communication unit 1101 is configured to receive first information from the terminal device, where the first information is used to indicate the number N, and the number N includes the number of DCIs that the terminal device supports to receive within the first span of the physical downlink control channel PDCCH;
  • the DCI is sent to the terminal device, and the effective number of DCIs in the first span is less than or equal to the number N.
  • the communication unit 1101 when the terminal device is in the first scene mode, the communication unit 1101 is configured to receive second information from the terminal device, where the second information is used to indicate a quantity M, and the quantity M includes the first scene In this mode, the terminal device requests to receive the number of DCIs in the first span of the PDCCH, and the number M is a positive integer greater than 0 and smaller than the number N.
  • the processing unit 1102 is configured to determine to send DCI to the terminal device based on the second information or the first information based on the scheduling situation of the network device; in the case of determining to send the DCI to the terminal device based on the second information , the communication unit 1101 is configured to send third information to the terminal device, the third information is used to notify the network device to send DCI to the terminal device based on the second information; the communication unit 1101 is configured to send the DCI to the terminal device through the PDCCH based on the second information DCI, the number of DCIs in the first span is less than or equal to the number M.
  • the communication unit 1101 when it is determined to send DCI to the terminal device based on the first information, the communication unit 1101 is configured to send fourth information to the terminal device, and the fourth information is used to notify the network device to send DCI to the terminal device based on the first information.
  • the device sends the DCI; the communication unit 1101 is further configured to send the DCI to the terminal device through the PDCCH, where the number of DCIs in the first span is less than or equal to the number N.
  • the second information is radio resource control RRC signaling, medium access control MAC signaling, or auxiliary information.
  • the power consumption of the terminal device is less than the first value, or, the ratio of the downlink time slot to the uplink time slot in the PDCCH is greater than the second value, or, the data transmission of the terminal device
  • the delay requirement is greater than the third value.
  • a communication device provided by an embodiment of the present application is used to realize the functions of the terminal device in FIG. 5 , FIG. 6 , FIG. 7 or FIG. 9 .
  • the device may be a terminal device or a device for a terminal device.
  • the apparatus for a terminal device may be a chip system or a chip in the terminal device. Wherein, the system-on-a-chip may consist of chips, or may include chips and other discrete devices.
  • the communication device in FIG. 12 is configured to implement the functions of the network device in FIG. 5 , FIG. 6 , FIG. 7 or FIG. 9 .
  • the device may be a network device or a device for a network device.
  • the apparatus for network equipment may be a system-on-a-chip or a chip within the network equipment.
  • the communication device includes at least one processor 1220, configured to implement a data processing function of a terminal device or a network device in the method provided in the embodiment of the present application.
  • the communication device may also include a communication interface 1210, configured to implement the sending and receiving operations of the terminal device or the network device in the method provided by the embodiment of the present application.
  • the communication interface may be a transceiver, a circuit, a bus, a module or other types of communication interfaces for communicating with other devices through a transmission medium.
  • the communication interface 1210 is used in the communication device to communicate with other devices.
  • the processor 1220 uses the communication interface 1210 to send and receive data, and is used to implement the method described in FIG. 5 , FIG. 6 , FIG. 7 or FIG. 9 in the above method embodiment.
  • the communication device may also include at least one memory 1230 for storing program instructions and/or data.
  • the memory 1230 is coupled to the processor 1220 .
  • the coupling in the embodiments of the present application is an indirect coupling or a communication connection between devices, units or modules, which may be in electrical, mechanical or other forms, and is used for information exchange between devices, units or modules.
  • Processor 1220 may cooperate with memory 1230 .
  • Processor 1220 may execute program instructions stored in memory 1230 . At least one of the at least one memory may be included in the processor.
  • the processor 1220 can read the software program in the memory 1230, interpret and execute the instructions of the software program, and process the data of the software program.
  • the processor 1220 performs baseband processing on the data to be sent, and then outputs the baseband signal to a radio frequency circuit (not shown in the figure), and the radio frequency circuit performs radio frequency processing on the baseband signal, and passes the radio frequency signal through the antenna to generate electromagnetic waves. The form is sent out.
  • the radio frequency circuit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor 1220, and the processor 1220 converts the baseband signal into data and performs The data is processed.
  • the radio frequency circuit and the antenna can be set independently from the processor 1220 for baseband processing. layout.
  • a specific connection medium among the communication interface 1210, the processor 1220, and the memory 1230 is not limited.
  • the memory 1230, the processor 1220, and the communication interface 1210 are connected through the bus 1240.
  • the bus is represented by a thick line in FIG. 12, and the connection between other components is only for schematic illustration. , is not limited.
  • the bus can be divided into address bus, data bus, control bus and so on. For ease of representation, only one thick line is used in FIG. 12 , but it does not mean that there is only one bus or one type of bus.
  • the communication device in FIG. 12 is specifically a device for a terminal device or a network device, for example, when the communication device is specifically a chip or a chip system, what the communication interface 1210 outputs or receives may be a baseband signal.
  • the communication device is specifically a terminal device or a network device, what the communication interface 1210 outputs or receives may be a radio frequency signal.
  • the processor may be a general-purpose processor, a digital signal processor, an application-specific integrated circuit, a field programmable gate array or other programmable logic device, a discrete gate or transistor logic device, or a discrete hardware component, and may implement or Execute the methods, operations and logic block diagrams disclosed in the embodiments of the present application.
  • a general purpose processor may be a microprocessor or any conventional processor or the like. The operations of the method disclosed in the embodiments of the present application may be directly implemented by a hardware processor, or implemented by a combination of hardware and software modules in the processor.
  • FIG. 13 shows a schematic structural diagram of a terminal device provided in an embodiment of the present application.
  • the terminal device 1300 may be applicable to the architecture shown in any one of FIG. 5 , FIG. 6 , FIG. 7 or FIG. 9 .
  • FIG. 13 only shows main components of the terminal device 1300 .
  • a terminal device 1300 includes a processor, a memory, a control circuit, an antenna, and an input and output device.
  • the processor is mainly used to process communication protocols and communication data, control the entire terminal device 1300, execute software programs, and process data of the software programs.
  • Memory is primarily used to store software programs and data.
  • the control circuit is mainly used for conversion of baseband signal and radio frequency signal and processing of radio frequency signal.
  • Antennas are mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
  • Input and output devices such as touch screens, display screens, microphones, keyboards, etc., are mainly used to receive data input by users and output data to users.
  • FIG. 13 only shows a memory and a processor.
  • terminal device 1300 may include multiple processors and memories.
  • a storage may also be called a storage medium or a storage device, etc., which is not limited in this embodiment of the present application.
  • a terminal device 1300 includes a transceiver unit 1310 and a processing unit 1320 .
  • the transceiver unit may also be referred to as a transceiver, a transceiver, a transceiver device, and the like.
  • the device in the transceiver unit 1310 for realizing the receiving function may be regarded as a receiving unit
  • the device in the transceiver unit 1310 for realizing the sending function may be regarded as a sending unit, that is, the transceiver unit 1310 includes a receiving unit and a sending unit.
  • the receiving unit may also be called a receiver, receiver, receiving circuit, etc.
  • the sending unit may be called a transmitter, transmitter, or transmitting circuit, etc.
  • FIG. 14 shows a schematic structural diagram of a network device provided by an embodiment of the present application.
  • the network device may be applicable to the architecture shown in any one of FIG. 5 , FIG. 6 , FIG. 7 or FIG. 9 .
  • the network device includes: a baseband device 1401 , a radio frequency device 1402 , and an antenna 1403 .
  • the radio frequency device 1402 receives the information sent by the terminal device through the antenna 1403, and sends the information sent by the terminal device to the baseband device 1401 for processing.
  • the baseband device 1401 processes the information of the terminal device and sends it to the radio frequency device 1402
  • the radio frequency device 1402 processes the information of the terminal device and sends it to the terminal device through the antenna 1403 .
  • the baseband device 1401 includes one or more processing units 14011 , a storage unit 14012 and an interface 14013 .
  • the processing unit 14011 is configured to support the network device to execute the functions of the network device in the above method embodiments.
  • the storage unit 14012 is used to store software programs and/or data.
  • the interface 14013 is used to exchange information with the radio frequency device 1402, and the interface includes an interface circuit for input and output of information.
  • the processing unit is an integrated circuit, such as one or more ASICs, or, one or more digital signal processors (digital signal processor, DSP), or, one or more field programmable logic gates Array (field programmable gate array, FPGA), or a combination of these types of integrated circuits.
  • the storage unit 14012 and the processing unit 14011 may be located in the same circuit, that is, an on-chip storage element. Alternatively, the storage unit 14012 and the processing unit 14011 may also be located on different circuits, that is, an off-chip storage element.
  • the storage unit 14012 may be one memory, or a general term for multiple memories or storage elements.
  • a network device may implement part or all of the steps in the foregoing method embodiments in the form of one or more processing unit schedulers. For example, the corresponding functions of the network device described in any one of the embodiments shown in FIG. 5 , FIG. 6 , FIG. 7 or FIG. 9 are implemented.
  • the one or more processing units may support wireless access technologies of the same standard, or may support wireless access technologies of different standards.
  • the embodiment of the present application also provides a computer-readable storage medium, where instructions are stored in the computer-readable storage medium, and when the instruction is run on a processor, the method flow of the above-mentioned method embodiment is implemented.
  • the embodiment of the present application further provides a computer program product.
  • the computer program product is run on a processor, the method flow of the above method embodiment is implemented.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Databases & Information Systems (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种下行控制信息DCI发送方法及通信装置,该方法包括:终端设备向网络设备发送第一信息,该第一信息用于指示数量N,该数量N包括终端设备在物理下行控制信道的第一跨度内支持接收DCI的数量;进一步地,终端设备在PDCCH接收DCI,该DCI的有效的数量在第一跨度的数量小于或等于数量N。通过这样的DCI发送方法,可以使得终端设备接收到的DCI的数量更加的灵活,并且使终端设备接收到的DCI的数量满足该终端设备的需求。

Description

一种下行控制信息DCI发送方法及通信装置
本申请要求于2021年05月31日提交于中国专利局、申请号为202110602053.0、申请名称为“一种下行控制信息DCI发送方法及通信装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,特别涉及一种下行控制信息DCI发送方法及通信装置。
背景技术
新无线(new radio,NR)标准中,支持一个时隙用于上行传输,记为U时隙;支持一个时隙用于下行传输,记为D时隙;也支持一个时隙既有上行也有下行的配置,记为S时隙。其中,U时隙中仅包括上行符号(uplink symbols,U),U只用于上行传输而不能用于下行传输;D时隙中仅包括下行符号(downlink symbols,D),D只用于下行传输而不能用于上行传输;S时隙中包括U、D和灵活符号(flexible symbols,F),F既可用于下行传输也可用于上行传输。网络设备配置的时隙均以DSU时隙配置。
为了提升终端设备的数据传输性能,在通信协议中设定在网络设备为终端设备配置下行控制信息(downlink control information,DCI)进行上行调度或下行调度的时候,一个D时隙或S时隙中可配置多个符号用于传输DCI。但随着D时隙或S时隙中配置的DCI数量的增多,终端设备在该D时隙或S时隙的任务会逐渐加重,使得终端设备在该D时隙或S时隙的负载会逐渐上升,或许导致终端设备的功耗增加,或许由于各个终端设备之间存在差异性,通过这样的DCI发送方法不够灵活。
发明内容
本申请提供了一种下行控制信息DCI发送方法及通信装置,有利于提升DCI发送的灵活性。
第一方面,本申请提供了一种DCI发送方法,该方法包括:终端设备向网络设备发送第一信息,该第一信息用于指示数量N,该数量N包括终端设备在物理下行控制信道PDCCH的第一跨度内支持接收DCI的数量;终端设备在PDCCH接收DCI,DCI在第一跨度内的数量小于或等于数量N。
基于第一方面所描述的方法,终端设备向网络设备上报第一信息,使得网络设备根据终端设备上报的第一信息向终端设备发送DCI,提升了DCI发送的灵活性,使网络设备向终端设备发送DCI的数量满足该终端设备的需求。
在一种可能的实现中,终端设备基于终端设备的性能需求信息确定数量N,性能需求信息包括功耗信息、终端类型信息或传输性能信息中的一种或多种。通过实施该可能的实现,使网络设备向终端设备发送DCI的数量满足该终端设备的需求
在一种可能的实现中,在终端设备处于第一场景模式下,终端设备向网络设备发送第二信息,第二信息用于指示数量M,数量M包括第一场景模式下终端设备在PDCCH的第一跨度内请求接收DCI的数量,数量M为大于0且小于数量N的正整数。通过实施该可能的实现,在终端设备支持的数量N的基础上,根据终端设备的实际应用场景进一步减小PDCCH第一跨度内DCI的数量,使得终端设备在第一跨度内接收的DCI数量满足自身需求的同时,降低功耗。
在一种可能的实现中,终端设备接收来自网络设备的第三信息,第三信息用于通知网络设备基于第二信息向终端设备发送PDCCH。
在一种可能的实现中,终端设备接收来自网络设备的第四信息,第四信息用于通知网络设备基于第一信息向终端设备发送PDCCH。
在一种可能的实现中,第二信息为无线资源控制RRC信令、媒体接入控制MAC信令或辅助信息。
在一种可能的实现中,在第一场景模式下,终端设备的功耗小于第一值,或,PDCCH中下行时隙和上行时隙的比值大于第二值,或终端设备的数据传输时延需求大于第三值。
第二方面,本申请提供了一种DCI发送方法,该方法包括:网络设备接收来自终端设备的第一信息,该第一信息用于指示数量N,该数量N包括终端设备在物理下行控制信道PDCCH的第一跨度内支持接收DCI的数量;网络设备通过PDCCH向终端设备发送DCI,DCI的有效的数量在第一跨度的数量小于或等于数量N。
基于第二方面所描述的方法,终端设备向网络设备上报第一信息,使得网络设备根据终端设备上报的第一信息向终端设备发送DCI,提升了DCI发送的灵活性,使网络设备向终端设备发送DCI的数量满足该终端设备的需求。
在一种可能的实现中,在终端设备处于第一场景模式下,网络设备接收来自终端设备的第二信息,该第二信息用于指示数量M,该数量M包括第一场景模式下终端设备在PDCCH的第一跨度内请求接收DCI的数量,数量M为大于0且小于数量N的正整数。通过实施该可能的实现,在终端设备支持的数量N的基础上,网络设备可以根据终端设备的实际应用场景进一步减小PDCCH第一跨度内DCI的数量,使得终端设备在第一跨度内接收的DCI数量满足自身需求的同时,降低功耗。
在一种可能的实现中,网络设备基于网络设备的调度情况,确定基于第二信息或第一信息向终端设备发送DCI;在网络设备确定基于第二信息向终端设备发送DCI的情况下,网络设备向终端设备发送第三信息,该第三信息用于通知网络设备基于第二信息向终端设备发送DCI;网络设备基于第二信息通过PDCCH向终端设备发送DCI,DCI在第一跨度内的数量小于或等于数量M。
在一种可能的实现中,在网络设备确定基于第一信息向终端设备发送DCI情况下,网络设备向终端设备发送第四信息,第四信息用于通知网络设备基于第一信息向终端设备发送DCI;网络设备通过PDCCH向终端设备发送DCI,DCI在第一跨度内的数量小于或等于数量N。
在一种可能的实现中,第二信息为无线资源控制RRC信令、媒体接入控制MAC信令或辅助信息。
在一种可能的实现中,在第一场景模式下,终端设备的功耗小于第一值,或,PDCCH中下行时隙和上行时隙的比值大于第二值,或,终端设备的数据传输时延需求大于第三值。
第三方面,本申请提供了一种通信装置,该通信装置包括通信单元和处理单元,其中,通信单元,用于向网络设备发送第一信息,该第一信息用于指示数量N,该数量N包括终端设备在物理下行控制信道PDCCH的第一跨度内支持接收DCI的数量;在PDCCH接收DCI,DCI在第一跨度内的数量小于或等于数量N。
在一种可能的实现中,处理单元,用于基于该终端设备的性能需求信息确定数量N,性能需求信息包括功耗信息、终端类型信息或传输性能信息中的一种或多种。
在一种可能的实现中,在终端设备处于第一场景模式下,通信单元,用于向网络设备发 送第二信息,第二信息用于指示数量M,数量M包括第一场景模式下终端设备在PDCCH的第一跨度内请求接收DCI的数量,数量M为大于0且小于数量N的正整数。
在一种可能的实现中,通信单元,用于接收来自网络设备的第三信息,该第三信息用于通知网络设备基于第二信息向终端设备发送PDCCH。
在一种可能的实现中,通信单元,用于接收来自网络设备的第四信息,该第四信息用于通知网络设备基于第一信息向终端设备发送PDCCH。
在一种可能的实现中,第二信息为无线资源控制RRC信令、媒体接入控制MAC信令或辅助信息。
在一种可能的实现中,在第一场景模式下,终端设备的功耗小于第一值,或,PDCCH中下行时隙和上行时隙的比值大于第二值,或终端设备的数据传输时延需求大于第三值。
第四方面,本申请提供了一种通信装置,该通信装置包括通信单元和处理单元,其中,通信单元,用于接收来自终端设备的第一信息,该第一信息用于指示数量N,该数量N包括终端设备在物理下行控制信道PDCCH的第一跨度内支持接收DCI的数量;向终端设备发送DCI,DCI的有效的数量在第一跨度的数量小于或等于数量N。
在一种可能的实现中,在终端设备处于第一场景模式下,通信单元,用于接收来自终端设备的第二信息,该第二信息用于指示数量M,该数量M包括第一场景模式下终端设备在PDCCH的第一跨度内请求接收DCI的数量,数量M为大于0且小于数量N的正整数。
在一种可能的实现中,处理单元,用于基于网络设备的调度情况,确定基于第二信息或第一信息向终端设备发送DCI;在确定基于第二信息向终端设备发送DCI的情况下,通信单元,用于向终端设备发送第三信息,该第三信息用于通知网络设备基于第二信息向终端设备发送DCI;通信单元,用于基于第二信息通过PDCCH向终端设备发送DCI,DCI在第一跨度内的数量小于或等于数量M。
在一种可能的实现中,在确定基于第一信息向终端设备发送DCI情况下,通信单元,用于向终端设备发送第四信息,第四信息用于通知网络设备基于第一信息向终端设备发送DCI;通信单元,还用于通过PDCCH向终端设备发送DCI,DCI在第一跨度内的数量小于或等于数量N。
在一种可能的实现中,第二信息为无线资源控制RRC信令、媒体接入控制MAC信令或辅助信息。
在一种可能的实现中,在第一场景模式下,终端设备的功耗小于第一值,或,PDCCH中下行时隙和上行时隙的比值大于第二值,或,终端设备的数据传输时延需求大于第三值。
第五方面,本申请提供了一种通信装置,所述通信装置包括处理器,当所述处理器调用存储器中的计算机程序时,如第一方面或第二方面所述的方法被执行。
第六方面,本申请提供了一种通信装置,所述通信装置包括处理器和存储器,所述存储器用于存储计算机执行指令;所述处理器用于执行所述存储器所存储的计算机执行指令,以使所述通信装置执行如第一方面或第二方面所述的方法。
第七方面,本申请提供了一种通信装置,所述通信装置包括处理器、存储器和收发器,所述收发器,用于接收信号或者发送信号;所述存储器,用于存储程序代码;所述处理器,用于从所述存储器调用所述程序代码执行如第一方面或第二方面所述的方法。
第八方面,本申请提供了一种通信装置,所述通信装置包括处理器和接口电路,所述接口电路,用于接收代码指令并传输至所述处理器;所述处理器运行所述代码指令以执行如第一方面或第二方面所述的方法。
第九方面,本申请实施例提供一种系统,该系统包括上述第三方面或第四方面提供的通信装置。
第十方面,本申请实施例提供了一种计算机可读存储介质,所述计算机可读存储介质用于存储指令,当所述指令被执行时,使得如第一方面或第二方面所述的方法被实现。
第十一方面,本申请实施例提供一种计算机程序或计算机程序产品,包括代码或指令,当代码或指令在计算机上运行时,使得计算机执行如第一方面或第二方面所述的方法被实现。
第十二方面,本申请实施例提供了一种电路系统,该电路系统包括处理器和接口,该处理器用于从接口调用并运行指令,当该处理器执行指令时,使得如第一方面或第二方面所述的方法被实现。
附图说明
图1为本申请提供的一种移动通信系统的架构示意图;
图2a为本申请提供的一种时分复用系统时隙配置的示意图;
图2b为本申请提供的一种时隙的结构示意图;
图3为本申请提供的一种终端设备在时隙上任务的示意图;
图4a为本申请提供的一种终端设备在一个时隙上处理DCI的任务示意图;
图4b为本申请提供的另一种终端设备在一个时隙上处理DCI的任务示意图;
图4c为本申请提供的一种在不同时隙配比的情况下终端设备升频升压的频次的示意图;
图5为本申请提供的一种DCI发送方法的流程示意图;
图6为本申请提供的另一种DCI发送方法的流程示意图;
图7为本申请提供的又一种DCI发送方法的流程示意图;
图8为本申请提供的一种PDCCH承载DCI的示意图;
图9为本申请提供的又一种DCI发送方法的流程示意图;
图10a为本申请提供的另一种PDCCH承载DCI的示意图;
图10b为本申请提供的又一种PDCCH承载DCI的示意图;
图11是本申请实施例提供的一种通信装置的结构示意图;
图12是本申请实施例提供的一种通信装置的结构示意图;
图13是本申请实施例提供的终端设备的一种示意性框图;
图14为本申请实施例提供的网络设备的一种示意性框图。
具体实施方式
为了使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请作进一步地详细描述。
本申请的说明书、权利要求书及附图中的术语“第一”和“第二”等是用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列操作或单元的过程、方法、系统、产品或设备没有限定于已列出的操作或单元,而是可选地还包括没有列出的操作或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其它操作或单元。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
在本申请中,“至少一个(项)”是指一个或者多个,“多个”是指两个或两个以上,“至少两个(项)”是指两个或三个及三个以上,“和/或”,用于描述对应对象的对应关系,表示可以存在三种关系,例如,“A和/或B”可以表示:只存在A,只存在B以及同时存在A和B三种情况,其中A,B可以是单数或者复数。字符“/”一般表示前后对应对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b或c中的至少一项(个),可以表示:a,b,c,“a和b”,“a和c”,“b和c”,或“a和b和c”,其中a,b,c可以是单个,也可以是多个。
为了更好地理解本申请提供的方案,下面先对本申请的系统架构进行介绍:
请参见图1,图1是本申请提供的一种移动通信系统的架构示意图。如图1所示,该系统架包括网络设备(即图1中网络设备110)、终端设备(即图1中终端设备120和终端设备130)。需要知晓的是,终端设备通过无线的方式与网络设备相连。图1只是示意图,该通信系统中还可以包括其它网络设备,如还可以包括无线中继设备和无线回传设备,在图1中未画出。本申请的实施例对该移动通信系统中包括的网络设备和终端设备的数量不做限定。终端设备可以是固定位置的,也可以是可移动的。
下面分别对图1中所涉及的终端设备、接入网设备和核心网设备进行详细说明。
1、终端设备
终端设备又可以称为用户设备(user equipment,UE),包括向用户提供语音和/或数据连通性的设备,例如可以包括具有无线连接功能的手持式设备、或连接到无线调制解调器的处理设备。该终端设备可以经无线接入网(radio access network,RAN)与核心网进行通信,与RAN交换语音和/或数据。该终端设备可以包括无线终端设备、移动终端设备、设备到设备通信(device-to-device,D2D)终端设备、车到一切(vehicle to everything,V2X)终端设备、机器到机器/机器类通信(machine-to-machine/machine-type communications,M2M/MTC)终端设备、物联网(internet of things,IoT)终端设备、订户单元、订户站,移动站、远程站、接入点(access point,AP)、远程终端、接入终端、用户终端、用户代理、或用户装备等。例如,可以包括移动电话(或称为“蜂窝”电话),具有移动终端设备的计算机,便携式、袖珍式、手持式、计算机内置的移动装置等。例如,个人通信业务(personal communication service,PCS)电话、无绳电话、会话发起协议(session initiation protocol,SIP)话机、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、等设备。还包括受限设备,例如功耗较低的设备,或存储能力有限的设备,或计算能力有限的设备等。例如包括条码、射频识别(radio frequency identification,RFID)、传感器、全球定位系统(global positioning system,GPS)、激光扫描器等信息传感设备。
2、网络设备
本申请中所提及的网络设备可以理解为核心网设备与接入网设备的统称。其中,核心网设备与接入网设备可以是独立的不同的物理设备,也可以是将核心网设备的功能与接入网设备的逻辑功能集成在同一个物理设备上,还可以是一个物理设备上集成了部分核心网设备的功能和部分的接入网设备的功能。
接入网设备即为将终端设备接入到无线网络的节点或设备,例如接入网设备包括但不限于:5G通信系统中的新一代基站(generation node B,gNB)、演进型节点B(evolved node B,eNB)、下一代演进型节点B(next generation eNB,ng-eNB)、无线回传设备、家庭基站((home evolved nodeB,HeNB)或(home node B,HNB))、基带单元(baseBand unit,BBU)、传输接收点(transmitting and receiving point,TRP)、发射点(transmitting point,TP)、移动交换中心 等。
为了便于理解本申请,下面对本申请实施例涉及的相关技术特征进行解释说明。需要说明的是,这些解释是为了让本申请实施例更容易被理解,而不应该视为对本申请所要求的保护范围的限定。
1、时域结构
新无线(new radio,NR)标准中,传输的帧长持续时间为10ms,每个帧被分割为10个子帧,每个子帧长1ms。每个子帧又被划分为若干个时隙,每个时隙由14个正交频分复用(orthogonal frequency-division multiplexing,OFDM)符号(后文简称符号)构成。每个时隙具体的时间长度由参数集确定,比如子载波间隔(subcarrier spacing,SCS)为15kHz时,一个slot长1ms;子载波间隔为30kHz时,一个slot长0.5ms。
NR支持一个时隙用于上行传输,记为U时隙(slot);支持一个时隙用于下行传输,记为D slot;也支持一个时隙既有上行也有下行的配置,记为S slot。网络设备配置的时隙均以DSU时隙配置,请参见图2a,图2a为某些典型的时分复用(time division duplex,TDD)系统时隙配置的示意图,图2a中包括8:2配比(即DDDDDDDSUU)、7:3配比(即DDDSUDDSUU)、4:1配比(即DDDSU)等。
其中,请参见图2b所示,图2b为D时隙、S时隙和U时隙中各个时隙内符号的示意图。如图2b所示,一个D时隙中仅包括下行符号(downlink symbols,D),D只用于下行传输而不能用于上行传输;一个S时隙中包括U、D和灵活符号(flexible symbols,F),F既可用于下行传输也可用于上行传输;一个U时隙中仅包括上行符号(uplink symbols,U),U只用于上行传输而不能用于下行传输。
2、下行控制信息(downlink control information,DCI)
在NR的设计中,物理下行控制信道(physical downlink control channel,PDCCH)中承载DCI传输业务。DCI按照调度对象的不同,可以分为:进行上行调度的DCI(记为UL-DCI),UL-DCI用于调度物理上行信道,例如调度物理上行共享信道(physical uplink shared channel,PUSCH);进行下行调度的DCI(记为DL-DCI),DL-DCI用于调度物理下行信道,例如调度物理下行共享信道(physical downlink shared channel,PDSCH)。在PDSCH接收完成后,需要上行反馈接收确认字符(acknowledge character,ACK)信息或反馈接收失败字符(negative acknowledge character,NACK)信息。示例性地,如图3所示,图3为一种终端设备在时隙上任务的示意图。终端设备在时隙N+4解析UL-DCI,该UL-DCI用于调度时隙N+8传输PUSCH(即可以理解为终端设备在时隙N+8通过PUSCH传输上行数据)。终端设备在时隙N+5解析DL-DCI,该DL-DCI用于调度时隙N+5传输PDSCH(即可以理解为终端设备在时隙N+5通过PDSCH接收下行数据),PDSCH接收完成之后,在时隙N+9向网络设备反馈ACK。
3、PDSCH的解码时间N 1和PUSCH准备时间N 2
3.1、请参见表1,表1为PDSCH处理能力1中PDSCH的解码时间N 1
表1
Figure PCTCN2022094575-appb-000001
Figure PCTCN2022094575-appb-000002
3.2、请参见表2,表2为PDSCH处理能力2中PDSCH的解码时间N 1
表2
Figure PCTCN2022094575-appb-000003
3.3、请参见表3,表3为PUSCH定时能力1中PUSCH的准备时间N 2
表3
μ PUSCH准备时间N 2[符号]
0 10
1 12
2 23
3 36
3.4、请参见表4,表4为PUSCH定时能力2中PUSCH的准备时间N 2
表4
μ PUSCH准备时间N 2[符号]
0 5
1 5.5
2 11 for frequency range 1
可以理解为,N 1为终端设备接收PDSCH的时刻与终端设备发送ACK反馈的时刻之间的时长;N 2为终端设备接收DCI的时刻与终端设备向网络设备发送PUSCH的时刻之间的时长。可见,在终端设备处于PDSCH处理能力1时PDSCH的解码时间N 1,大于终端设备处于PDSCH处理能力2时PDSCH的解码时间N 1;终端设备处于PUSCH定时能力1时PUSCH的准备时间N 2,大于终端设备处于PUSCH定时能力2时的准备时间N 2
4、PDCCH监听跨度(monitor span)
PDCCH monitor span可以理解为一个时隙(slot)上连续的多个符号,可以规定用两个参数(参数X和参数Y)来定义一个PDCCH monitor span,其中参数X用于指示该PDCCH monitor span所占用的连续符号,参数Y用于指示在该PDCCH monitor span所占用的连续符号中可以被用于发送DCI的前Y个符号数量。示例性地,一个PDCCH monitor span的参数X为7,参数Y为3,则指示了该PDCCH monitor span占用的连续符号数量为7个符号:符号0~符号6,在该PDCCH monitor span中发送的DCI最多可以占用该PDCCH monitor span的7个符号中的前3个连续的符号,即该PDCCH monitor span中发送的DCI可以占用前3个符号:符号0~符号2。需要知晓的是,一个PDCCH monitor span最小包括2个符号,一个时隙包括14 个符号,可见一个时隙最多可以包括7个PDCCH monitor span。
在一些实施例中,终端设备能力项描述中规定:终端设备在每个PDCCH monitor span要有能够处理3个有效(valid)DCI,由一个时隙最多可以包括7个PDCCH monitor span可推知,一个时隙最多可以包括21个有效(valid)DCI,即支持21个有效DCI。在一些实施例中,DCI可以指有效的DCI。在一些实施例中,DCI的数量,指通过PDCCH传输的信令的数据包的数量。在一些实施例中,有效的DCI,指UE能够解析出来的DCI。
经过实践发现,如果终端设备在PDCCH的一个时隙上处理多个有效DCI,终端设备在该时隙上的任务较重。示例性地,请参见图4a,图4a为终端设备在一个时隙上处理2个DCI的任务示意图。其中,终端设备在S时隙上的前两个符号上接收DCI,进一步地,终端设备需要图4a中方块1所示的时长对该S时隙上DCI进行解调译码,获得该两个符号上的DCI为一个DL-DCI和一个UL-DCI;需要图4a中方块2所示的时长,来解析DL-DCI并根据该DL-DCI配置PDSCH(包括配置终端设备接收PDSCH的起始符号和持续符号数目);需要图4a中方块3所示的时长,来解析UL-DCI并根据该UL-DCI配置PUSCH(包括配置终端设备发送PUSCH的起始符号和持续符号数目);在接收PDCCH完成(可以理解为终端设备解析UL-DCI并根据该UL-DCI配置PUSCH完成)时向网络设备反馈是否成功接收PDCCH的反馈信息,即可以理解为需要图4a中方块4所示的时长,在终端设备接收PDCCH成功的情况下向网络设备反馈ACK信息,在终端设备接收PDCCH的失败情况下向网络设备反馈NACK信息。
需要知晓的是,通信协议中规定终端设备需要具有“在最后一个携带DCI的符号间隔12个符号后,随即发送PUSCH”的能力。可见,终端设备在一个时隙中接收的DCI数目较多时,终端设备需要消耗更多的时长来解析DCI并响应DCI的配置,若解析DCI并响应DCI的配置的时长超出12个符号,则会导致终端设备无法具有“在最后一个携带DCI的符号间隔12个符号后,随即发送PUSCH”的能力,不符合协议规定。
并且还可能导致终端设备解析DCI失败,当DCI解析失败后则可能会加大终端设备的功耗。请参见图4b,在一个应用场景中,网络设备为终端设备配置有默认带宽(即图4b中默认配置BWP1)。在这种场景下,若终端设备在实际业务中数据传输所需带宽较小(即可以理解为小于BWP1),网络设备通过DCI向终端设备配置该终端设备实际发射时可以调度的带宽(即图4b中发射配置带宽BWP2)。但由于终端设备在PDCCH的S时隙上接收到的3个DCI,导致终端设备在该S时隙中的任务较重,进而终端设备在发送PUSCH的时候,未根据DCI计算出网络设备为终端设备实际发射配置的发射配置带宽BWP2,此时终端设备只能根据网络设备为终端设备配置有默认配置BWP1发送PUSCH,从而增大了终端设备的功耗。
在另一个应用场景中,由于终端设备在一个时隙上解析多个DCI会导致该时隙上的负载增加,并且终端设备对DCI是进行盲检的,即可以理解为终端设备并不确定网络设备会在哪个时隙配置多少个DCI。在这种情况下,终端设备则需要在每一个有可能配置多个DCI的时隙上对终端设备的业务核进行升压升频,以使终端设备在该时隙上检测到多个DCI时,可以具备能解析多个DCI的能力。请参见图4c所示,图4c为不同时隙配比的情况下终端设备升频升压的频次。由图4c可见,两种时隙配比中,4:1时隙配比(可以理解为5个时隙中有1个U时隙)升频升压的频次,高于8:2时隙配比(可以理解为10个时隙中有2个连续的U时隙)升频升压的频次。即当时隙配比中连续的U时隙配比较少时,终端设备的功耗也会增加。
可见DCI发送方法若不能匹配终端设备的实际需求,则可能会导致终端设备的功耗增加。因此,本申请提供一种DCI发送方法,可以提升终端设备接收DCI数量的灵活性,并且提升终端设备与接收DCI数量的适配性,从而在保证终端设备数据传输性能的同时降低终端设备的功耗。
下面对本申请提供的DCI发送方法进行详细描述:
请参见图5,图5是本申请提供的一种DCI发送方法的流程示意图。如图5所示,该DCI发送方法包括S501~S502。图5所示的方法执行主体可以为终端设备、终端设备的芯片或芯片系统。图5以终端设备为方法的执行主体为例进行说明。其中:
S501、终端设备向网络设备发送第一信息,该第一信息用于指示数量N。其中,数量N包括终端设备在PDCCH的第一跨度内支持接收DCI的数量。该数量N为大于0的正整数。
换言之,终端设备通过主动向网络设备发送第一信息的方式,通知网络设备该终端设备在PDCCH的第一跨度内支持接收DCI的最大数量,以使得网络设备可以根据第一信息向终端设备发送DCI。该第一信息可以是物理层参数,具体地该第一信息用于指示数量N的形式可以包括以下两种形式。
形式一、直接指示。也即是说第一信息可以直接指示终端设备在PDCCH的第一跨度内支持接收DCI的数量,例如第一信息中用于指示数量N的消息字段的值为3,则可以视为该第一信息直接指示了终端设备在PDCCH的第一跨度内支持接收DCI的数量为3。
形式二、间接指示。也即是说第一信息中不会直接携带数量N的值,而是通过映射(或对应)关系来指示数量N的值,例如请参见表5所示,表5为用于指示数量N的消息字段的内容信息与数量N的对应关系。若第一信息中用于指示数量N的消息字段的信息为模式a,则根据表5可知该数量N为1,即可以视为该第一信息直接指示了终端设备在PDCCH的第一跨度内支持接收DCI的数量为1。
表5
消息字段的内容信息 数量N
模式a 1
模式b 2
模式c 3
需要说明的是,第一跨度可以为D时隙或S时隙,也可以为PDCCH monitor span,下面分为两种情况对第一跨度进行具体讨论。
情况1,第一跨度为D时隙或S时隙。此种情况下,终端设备可以向网络设备发送第一信息,以指示终端设备在D时隙或S时隙中支持接收DCI的最大数量,以保证终端设备在该D时隙或S时隙中的任务量适配于该终端设备的需求。示例性地,若终端设备期望自身在一个S时隙内接收的DCI的个数小于等于7个,则终端设备向网络设备发送第一信息,该第一信息指示终端设备在一个S时隙中支持接收DCI的数量为7。
需要知晓的是,终端设备在D时隙中支持接收DCI的最大数量和终端设备在S时隙中支持接收DCI的最大数量可以不相同,例如,第一信息中可携带两个不同的数量:数量N11和数量N12,其中,数量N11为终端设备在D时隙中支持接收DCI的数量,数量N12为终端设备在S时隙中支持接收DCI的数量。
情况2,第一跨度为PDCCH monitor span。此种情况下,可以理解为终端设备以一个比 时隙更小的粒度(PDCCH monitor span)来确定自身所能支持接收DCI的个数,这样即可以保证终端设备在该D时隙或S时隙中的任务量适应该终端设备需求,又可以使DCI的个数在该时隙中均匀分布。例如,终端设备期望自身在一个PDCCH monitor span内接收的DCI的个数小于等于1个,则终端设备向网络设备发送第一信息,该第一信息指示终端设备在一个PDCCH monitor span中支持接收DCI的最大数量为1。此时,若一个S时隙中包括7个PDCCH monitor span,该S时隙中能接收DCI的最大数量为7。可见,此时不仅能保证终端设备在该S时隙中的任务量适应该终端设备需求(在一个S时隙内接收的DCI的个数小于等于7),还能使该S时隙中DCI均匀地分布于该S时隙的PDCCH monitor span中。
基于此还需要说明的是,本申请所提及的终端设备可以是网络设备对应服务小区(Cell)内所有的终端设备,也可以是该网络设备对应服务小区内的部分终端设备。
在一种情况下,向网络设备发送第一信息的终端设备,是该网络设备对应服务小区内所有的终端设备。在这种情况下,终端设备在驻留于网络设备对应的小区时,终端设备需要向网络设备上报第一信息以通知网络设备该终端设备在第一跨度内支持接收DCI最大数目。在另一种情况下,向网络设备发送第一信息的终端设备,是该网络设备对应服务小区内的部分终端设备,例如能力缩减(reduced capability,RedCap)终端设备、需要降低功耗的NR设备等。也即是说在这种情况下,并不是所有驻留于网络设备对应的小区的终端设备都需要向网络设备上报第一信息,终端设备可以根据自身需求确定是否向网络设备上报第一信息。例如,当终端设备检测到自身在第一跨度内解析DCI的能力不足,期望网络设备在第一跨度内配置的DCI的个数小于或等于期望值N时,该终端设备向网络设备发送第一信息,否则终端设备不会向网络设备发送第一信息,以节省通信传输资源。
在一种可能的实现中,终端设备基于自身的性能需求确定该数量N,该性能需求包括功耗信息、终端设备类型信息或传输性能信息中的一种或多种。其中,功耗信息是指终端设备当前的功耗需求信息等;终端设备类型信息是指终端设备为物联网终端、RedCap终端、移动设备等;传输性能信息是指终端设备当前的数据传输的时延要求或传输速度要求等。
在一个示例中,UE1是一个需要保持长期待机的终端设备,且UE1的功耗信息中设定功耗不能大于P,若UE1在PDCCH的一个S时隙内接收超过6个DCI,则UE1在该S时隙的功耗大于P。在这种情况下,UE1向网络设备发送第一信息,该第一信息用于指示UE1在PDCCH的S时隙内最大能接收6个DCI。
在另一个示例中,UE2的终端设备类型是RedCap终端,其在一个时隙上仅具有接收或解析5个DCI的能力。在这种情况下,UE2向网络设备发送第一信息,该第一信息用于指示UE2在PDCCH的D时隙或S时隙内最大能接收5个DCI。
在又一个示例中,UE3是一个音乐播放设备,其对数据传输的时延要求较低(即是对数据传输的实时性要求较低)。在这种情况下,UE3为了节省功耗,向网络设备发送第一信息,该第一信息用于指示UE3在PDCCH的D时隙内最大能接收5个DCI,在PDCCH的S时隙内最大能接收4个DCI。
S502、终端设备在PDCCH接收DCI,该DCI在第一跨度的数量小于或等于数量N。
网络设备接收到终端设备通过S501发送的第一信息后,基于该第一信息中指示的数量N,通过PDCCH向终端设备发送DCI,该DCI在第一跨度内的数量小于或等于数量N。其中,小于或等于包括:该DCI在第一跨度内的数量小于数量N;和,该DCI在第一跨度内的数量小于数量N。需要声明的是,本申请中“小于或等于”可以理解为包括:“小于等于”的情况和“小于”的情况,若无特别说明,全文如是。
示例性地,第一信息中指示终端设备在PDCCH的S时隙内支持接收DCI的数量为2。在这种情况下,网络设备通过PDCCH向终端设备发送DCI,该DCI在S时隙内接收DCI的数量可以为0、1或2。
通过这样的DCI发送方式,终端设备根据自身的情况向网络设备上报的第一跨度内支持接收DCI的数量N,使得网络设备根据该数量N向终端设备发送DCI,提升了DCI发送的灵活性,满足了各个终端设备的需求。
请参见图6,图6是本申请提供的另一种DCI发送方法的流程示意图。如图6所示,该DCI发送方法包括S601~S605。图6所示的方法执行主体可以为终端设备和网络设备、终端设备的芯片(或芯片系统)和网络设备的芯片(或芯片系统)。图6以终端设备和网络设备为方法的执行主体为例进行说明。
S601、终端设备向网络设备发送第一信息,该第一信息用于指示数量N。其中,数量N包括终端设备在PDCCH的第一跨度内支持接收DCI的数量。
其中,S601的具体实现方式可参见前述S501的具体实现方式的描述,在此不再进行详细描述。
S602、在终端设备处于第一场景模式下,该终端设备向网络设备发送第二信息,该第二信息用于指示数量M。其中,数量M包括该第一场景模式下终端设备在PDCCH的第一跨度内请求接收DCI的数量,该数量M为大于0且小于数量N的正整数。
换言之,终端设备向网络设备发送自己在第一跨度内支持接收DCI的最大数量(数量N)之后,若终端设备检测到自身处于第一场景模式下,则终端设备向网络设备发送第二信息,该第二信息用于指示在该第一场景模式下,终端设备期望网络设备在第一跨度内发送DCI的数量能小于数量M,该数量M小于前述第一信息中的数量N。其中,该第二信息为无线资源控制(radio resource control,RRC)信令、媒体接入控制(media access control,MAC)信令或辅助(Assistance)信息。
需要说明的是,在第一场景模式下的终端设备包括但不仅限于以下特征中的一种或多种:1、终端设备的功耗小于第一值;2、终端设备接收到的PDCCH中下行时隙和上行时隙的比值大于第二值;3、终端设备的数据传输时延需求大于第三值;4、终端设备的温度大于第四值。其中,第一值、第二值、第三值和第四值均为根据终端设备的实际应用场景预设值,后续可进行调整,在此不进行具体限定。
在一个应用场景中,终端设备开启后具有两种状态:第一状态和第二状态。可以理解的是当终端设备处于第一状态时功耗较高(第一状态时终端设备的功耗大于等于第一值),当终端设备处于第二状态时功耗较低(第二状态时终端设备的功耗小于第一值)。在这种应用场景下,第一场景模式为终端设备处于第二状态。若终端设备检测到自身由第一状态切换至第二状态,或,该终端设备检测到自身处于第二状态,或,该终端设备检测到自身的功耗小于第一值,则该终端设备向网络设备发送第二信息,以请求网络设备降低在PDCCH的第一跨度内发送DCI的数量,以减少该终端设备的功耗,并且节省通信传输资源。
在另一个应用场景中,由于D时隙仅能用于下行传输,S时隙即可以用于上行传输又可以用于下行传输,因此若S时隙中DCI的数目较多,则终端设备在该S时隙的任务较重,导致终端设备在S时隙的功耗增加。由于网络设备对PDCCH中时隙配置依次为:至少一个D时隙、一个S时隙、至少一个U时隙,可以近似地理解为当PDCCH中时隙配置中D时隙的数目远大于U时隙时,网络设备可以有足够的D时隙用于发送DCI。当PDCCH中时隙配置 中D时隙的数目较少时,则S时隙也需要配置多个DCI才能满足网络设备对终端设备的上下行业务调度。因此,在这种应用场景下,第一场景模式中终端设备接收到的PDCCH中U时隙和D时隙的比值大于第二值。若终端设备检测到PDCCH中U时隙和D时隙的比值大于第二值,则终端设备向网络设备发送第二信息,以请求网络设备在PDCCH的S时隙发送DCI的数量小于或等于数量M,以减少该终端设备在S时隙的功耗。
在又一个应用场景中,车载终端设备启动后的模式包括:停靠待机模式和实时驾驶模式。当车载终端设备处于实时驾驶模式时,该车载终端需要和网络设备进行路况数据实时交互传输,自动规划路线导航等,可以理解为车载终端设备处于实时驾驶模式的情况下,该车载终端设备设定数据传输时延需求为小于等于第三值,以提升数据传输的实时性。但当车载终端设备处于停靠待机模式时,该车载终端设备和网络设备之间的交互数据减少,可以理解为车载终端设备处于停靠待机模式的情况下,该车载终端设备放松对数据传输时延要求,车载终端设备的时延需求可以大于第三值。在这种场景下,第一场景模式为车载终端设备处于停靠待机模式。若该车载终端设备检测到自身由实时驾驶模式切换至停靠待机模式,或,该车载终端设备检测到自身处于停靠待机模式,或,该车载终端设备检测到数据传输时延需求大于第三值,则该车载终端设备向网络设备发送第二信息,以请求网络设备降低在PDCCH的第一跨度内发送DCI的数量,以减少该车载终端设备的功耗。
在又一个应用场景中,第一场景模式下的终端设备温度大于第四值。在这种场景中,若终端设备通过温度传感器检测到自身的温度大于第四值时,则终端设备向网络设备发送第二信息,以请求网络设备在PDCCH的第一跨度内发送DCI的数量小于或等于数量M,以减少该终端设备的功耗,从而降低终端设备温度。
可见,当终端设备处于第一场景模式下,网络设备基于第二信息(或数量M)向终端设备发送DCI的方式,相较于网络设备基于第一信息(或数量N)向终端设备发送DCI的方式会更贴合终端设备的需求,并进一步地降低终端设备的功耗。可以近似的将第一信息中的数量N为终端设备在第一跨度内仅能支持的最大DCI数目;第二信息中的数量M为终端设备在第一场景模式下第一跨度内的个性化定制的DCI数目,更贴合终端设备当前的实际场景模式。
S603、网络设备基于该网络设备的调度情况,确定基于该第二信息或第一信息向终端设备发送DCI。
换言之,网络设备对应的服务小区内有多个终端设备,网络设备在接收到该多个终端设备中某一个终端设备发送的第二信息之后,网络设备基于自身在服务小区内对所有终端设备的调度情况,确定基于第二信息或第一信息向终端设备发送DCI。
示例性地,网络设备接收到处于第一场景模式下UE1上报的RRC信令,该RRC信令用于指示UE1期望网络设备在S时隙中发送DCI的数量小于2。网络设备接收到UE1上报的第二信息之后,根据自身的调度情况(例如需要UE1通过PUSCH上传较多的数据,则网络设备需要对该UE1发送较多的DCI),确定不能在S时隙中发送DCI的数量小于2,则网络设备确定不能基于第二信息向终端设备发送DCI,网络设备基于第一信息向终端设备发送DCI。
S604、在网络设备确定基于该第二信息向终端设备发送DCI的情况下,该网络设备向终端设备发送第三信息,该第三信息用于通知网络设备基于第二信息向该终端设备发送DCI。
换言之,第三信息用于通知终端设备在PDCCH的第一跨度内DCI的数量会小于或等于数量M。例如,网络设备接收终端设备发送的第二信息之后,确定基于该第二信息向终端设 备发送DCI,则网络设备向终端设备发送ACK信息(即第三信息),以通知终端设备将基于第二信息发送DCI,终端设备在PDCCH的第一跨度内接收DCI的数量小于或等于数量M。
S605、网络设备基于第二信息通过PDCCH向终端设备发送DCI,该DCI在第一跨度内的数量小于或等于数量M。
示例性地,若第二信息中指示PDCCH的第一跨度内终端设备请求接收DCI的数量为2,在这种情况下,网络设备通过PDCCH向终端设备发送DCI,该DCI在S时隙内接收DCI的数量可以为0、1或2。
若网络设备接收到终端设备发送的第二信息之后,确定不能基于第二信息向终端设备发送DCI,只能基于第一信息向终端设备发送DCI。在这种情况下,DCI发送的流程如图7所示,图7是本申请提供的又一种DCI发送方法的流程示意图。如图7所示,该DCI发送方法包括S701~S705。图7所示的方法执行主体可以为终端设备和网络设备、终端设备的芯片(或芯片系统)和网络设备的芯片(或芯片系统)。图7以终端设备和网络设备为方法的执行主体为例进行说明。
S701、终端设备向网络设备发送第一信息,该第一信息用于指示数量N。其中,数量N包括终端设备在PDCCH的第一跨度内支持接收DCI的数量。
S702、在终端设备处于第一场景模式下,该终端设备向网络设备发送第二信息,该第二信息用于指示数量M。其中,数量M包括在该第一场景模式下终端设备在PDCCH的第一跨度内请求接收DCI的数量,该数量M为大于0且小于数量N的正整数。
S703、网络设备基于该网络设备的调度情况,确定基于该第二信息或第一信息向终端设备发送DCI。
其中,S701~S703的具体实现方式可参见前述S601~S603的具体实现方式的描述,在此不再进行过多赘述。
S704、在网络设备确定基于该第一信息向终端设备发送DCI的情况下,该网络设备向终端设备发送第四信息,该第四信息用于通知网络设备基于第一信息向该终端设备发送DCI。
换言之,第三信息用于通知终端设备在PDCCH的第一跨度内DCI的数量小于或等于数量N。例如,网络设备接收终端设备发送的第二信息之后,确定不能基于该第二信息向终端设备发送DCI,则网络设备向终端设备发送NACK信息(即第四信息),以通知终端设备在PDCCH的第一跨度内DCI的数量小于或等于数量N。
需要说明的是,前述S602中指出第二信息可以为信令(RRC信令或MAC信令)或辅助信息。当第二信息为信令(RRC信令或MAC信令)时,网络设备确定不基于该第二信息向终端设备发送DCI,则网络设备应向终端设备发送第四信息(例如NACK信息)。当第二信息为辅助信息时,网络设备确定不基于该第二信息向终端设备发送DCI,则网络设备可以向终端设备发送第四信息(例如NACK信息);也可以不向终端设备发送第四信息,此时可以理解为若终端设备在一定时长内未收到网络设备发送的第三信息(例如NAC信息),则终端设备默认网络设备会基于第一信息发送DCI。
S705、网络设备基于第一信息通过PDCCH向终端设备发送DCI,该DCI的数量在第一跨度的数量小于或等于数量N。
示例性地,第一信息中指示终端设备在PDCCH的S时隙内支持接收DCI的数量为3。在这种情况下,网络设备通过PDCCH向终端设备发送DCI,该DCI在S时隙内接收DCI的数量可以为1、2或3。
基于图6和图7所描述的DCI发送方式,终端设备根据实际应用的场景模式向网络设备请求第一跨度内接收DCI的数量M,使得网络设备可以更加灵活地向终端设备发送DCI,更加贴合终端设备的应用场景。
在又一个应用场景中,在通信协议中PDCCH的时隙中规定承载UL-DCI的最后一个符号与该UL-DCI配置(或称为调度的)PUSCH发送的第一个符号之间的符号间隔为大于N 2个符号,该N 2个符号为前述表3或表4中的PUSCH的准备时间N 2。如图8所示,PDCCH的D时隙中承载两个DCI,在D1时隙中承载用于调度U1时隙中PUSCH的UL-DCI,在D2时隙中承载用于调度U2时隙中PUSCH的UL-DCI。此时,图8中D1时隙中UL-DCI的最后一个符号与U1时隙中第一个符号之间的符号间隔大于N 2个符号,D2时隙中UL-DCI的最后一个符号与U2时隙中第一个符号之间的符号间隔大于N 2个符号。
但由前文可知,PDCCH中承载DCI的时隙中接收DCI之后,需要足够的时间去解析该DCI,并根据该DCI对PDSCH或PUSCH进行配置。在连续的PUSCH调用中,若终端设备没有足够的时间对DCI进行解析或根据该DCI对PDSCH或PUSCH进行配置,则会导致终端设备在该时隙中的任务处理过重,提升了终端设备功耗。
基于此,请参见图9,图9是本申请提供的又一种DCI发送方法的流程示意图。如图9所示,该DCI发送方法包括S901~S902。图9所示的方法执行主体可以为终端设备和网络设备、终端设备的芯片(或芯片系统)和网络设备的芯片(或芯片系统)。图9以终端设备和网络设备为方法的执行主体为例进行说明。
S901、终端设备向网络设备发送第五信息,该第五信息用于指示在连续PUSCH发送的第一个符号与PDCCH多个DCI中最后一个DCI符号之间的符号间隔大于或等于N 3符号数量,该PDCCH多个DCI用于配置该连续PUSCH发送。
其中,连续PUSCH发送可以理解为PDCCH中承载了多个DCI,每个DCI配置分别配置发送的PUSCH所在的U时隙连续或为同一个U时隙。例如图8所示,PDCCH的D时隙中承载两个DCI,在D1时隙中承载用于调度U1时隙中PUSCH的UL-DCI,在D2时隙中承载用于调度U2时隙中PUSCH的UL-DCI,U1时隙与U2时隙连续(U1时隙的最后一个符号与U2时隙的第一个符号相邻),则可以将此次PUSCH的发送理解为连续PUSCH发送。
在一种可能的实现中,终端设备基于自身处理器的负载情况,确定N 3符号数量。其中,N 3是大于0的正整数。
例如,终端设备预设的功率阈值为P1,终端设备基于自身处理器的负载情况,确定当连续PUSCH发送的第一个符号与PDCCH多个DCI中最后一个DCI符号之间的符号间隔小于10个符号时,终端设备的实际负载功率会大于功率阈值P1。在这种情况下,为了降低终端设备的功耗,则终端设备向网络设备发送第五信息,该第五信息用于指示连续PUSCH发送的第一个符号与PDCCH多个DCI中最后一个DCI符号之间的符号间隔大于或等于10个符号数量。
S902、网络设备接收第五信息之后,基于该第五信息向终端设备发送多个DCI。
网络设备接收到该第五信息之后,向终端设备发送多个DCI,该多个DCI用于配置连续PUSCH发送,并且该多个DCI中最后一个DCI符号与连续PUSCH发送的第一个符号之间的符号间隔大于或等于N 3
示例性地,如图10a所示,网络设备初始配置的PDCCH的两个D时隙中承载两个DCI,在D1时隙中承载用于调度U1时隙中PUSCH的UL-DCI,在D2时隙中承载用于调度U2时 隙中PUSCH的UL-DCI,第五信息中指示N 3为10。在一种情况下,若D2时隙中最后一个DCI符号(即前述多个DCI中最后一个DCI符号)与U1时隙发射PUSCH的第一个符号(即前述连续PUSCH发送的第一个符号)之间的符号间隔为12个符号数量(大于N 3),则网络设备按照该10a所示的初始配置,向终端设备发送DCI,即在D1时隙中承载用于调度U1时隙中PUSCH的UL-DCI,在D2时隙中承载用于调度U2时隙中PUSCH的UL-DCI。
在另一种情况下,若D2时隙中最后一个DCI符号(即前述多个DCI中最后一个DCI符号)与U1时隙发射PUSCH的第一个符号(即前述连续PUSCH发送的第一个符号)之间的符号间隔为8个符号数量(小于N 3),则网络设备需要对图10a中用于配置连续PUSCH发送的两个DCI在PDCCH中进行重排,重排后的两个DCI如图10b所示,在D1时隙中承载用于调度U1时隙中PUSCH的UL-DCI,在D1时隙中承载用于调度U2时隙中PUSCH的UL-DCI,并且调度U2时隙中PUSCH的UL-DCI的最后一个符号与U1时隙中PUSCH发送的第一个符号之间的间隔为16个符号(大于N 3)。
请参见图11,图11示出了本申请实施例的一种通信装置的结构示意图。图11所示的通信装置可以用于执行上述图5、图6、图7或图9所描述的方法实施例中终端设备的部分或全部功能。该装置可以是终端设备,也可以是终端设备中的装置,或者是能够和终端设备匹配使用的装置。其中,该通信装置还可以为芯片系统。图11所示的通信装置可以包括通信单元1101和处理单元1102。其中,通信单元1101,用于向网络设备发送第一信息,该第一信息用于指示数量N,该数量N包括终端设备在物理下行控制信道PDCCH的第一跨度内支持接收DCI的数量;在PDCCH接收DCI,DCI在第一跨度内的数量小于或等于数量N。
在一种可能的实现中,处理单元1102,用于基于该终端设备的性能需求信息确定数量N,性能需求信息包括功耗信息、终端类型信息或传输性能信息中的一种或多种。
在一种可能的实现中,在终端设备处于第一场景模式下,通信单元1101,用于向网络设备发送第二信息,第二信息用于指示数量M,数量M包括第一场景模式下终端设备在PDCCH的第一跨度内请求接收DCI的数量,数量M为大于0且小于数量N的正整数。
在一种可能的实现中,通信单元1101,用于接收来自网络设备的第三信息,该第三信息用于通知网络设备基于第二信息向终端设备发送PDCCH。
在一种可能的实现中,通信单元1101,用于接收来自网络设备的第四信息,该第四信息用于通知网络设备基于第一信息向终端设备发送PDCCH。
在一种可能的实现中,第二信息为无线资源控制RRC信令、媒体接入控制MAC信令或辅助信息。
在一种可能的实现中,在第一场景模式下,终端设备的功耗小于第一值,或,PDCCH中下行时隙和上行时隙的比值大于第二值,或终端设备的数据传输时延需求大于第三值。
请参见图11,图11示出了本申请实施例的一种通信装置的结构示意图。图11所示的通信装置可以用于执行上述图5、图6、图7或图9所描述的方法实施例中网络设备的部分或全部功能。该装置可以是网络设备,也可以是网络设备中的装置,或者是能够和网络设备匹配使用的装置。其中,该通信装置还可以为芯片系统。图11所示的通信装置可以包括通信单元1101和处理单元1102。其中,通信单元1101,用于接收来自终端设备的第一信息,该第一信息用于指示数量N,该数量N包括终端设备在物理下行控制信道PDCCH的第一跨度内支持接收DCI的数量;向终端设备发送DCI,DCI的有效的数量在第一跨度的数量小于或等于数 量N。
在一种可能的实现中,在终端设备处于第一场景模式下,通信单元1101,用于接收来自终端设备的第二信息,该第二信息用于指示数量M,该数量M包括第一场景模式下终端设备在PDCCH的第一跨度内请求接收DCI的数量,数量M为大于0且小于数量N的正整数。
在一种可能的实现中,处理单元1102,用于基于网络设备的调度情况,确定基于第二信息或第一信息向终端设备发送DCI;在确定基于第二信息向终端设备发送DCI的情况下,通信单元1101,用于向终端设备发送第三信息,该第三信息用于通知网络设备基于第二信息向终端设备发送DCI;通信单元1101,用于基于第二信息通过PDCCH向终端设备发送DCI,DCI在第一跨度内的数量小于或等于数量M。
在一种可能的实现中,在确定基于第一信息向终端设备发送DCI情况下,通信单元1101,用于向终端设备发送第四信息,第四信息用于通知网络设备基于第一信息向终端设备发送DCI;通信单元1101,还用于通过PDCCH向终端设备发送DCI,DCI在第一跨度内的数量小于或等于数量N。
在一种可能的实现中,第二信息为无线资源控制RRC信令、媒体接入控制MAC信令或辅助信息。
在一种可能的实现中,在第一场景模式下,终端设备的功耗小于第一值,或,PDCCH中下行时隙和上行时隙的比值大于第二值,或,终端设备的数据传输时延需求大于第三值。
如图12所示为本申请实施例提供的一种通信装置,用于实现上述图5、图6、图7或图9中终端设备的功能。该装置可以是终端设备或用于终端设备的装置。用于终端设备的装置可以为终端设备内的芯片系统或芯片。其中,芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
或者,图12中的通信装置,用于实现上述图5、图6、图7或图9中网络设备的功能。该装置可以是网络设备或用于网络设备的装置。用于网络设备的装置可以为网络设备内的芯片系统或芯片。
该通信装置包括至少一个处理器1220,用于实现本申请实施例提供的方法中终端设备或网络设备的数据处理功能。该通信装置还可以包括通信接口1210,用于实现本申请实施例提供的方法中终端设备或网络设备的收发操作。在本申请实施例中,通信接口可以是收发器、电路、总线、模块或其它类型的通信接口,用于通过传输介质和其它设备进行通信。例如,通信接口1210用于通信装置中的装置可以和其它设备进行通信。处理器1220利用通信接口1210收发数据,并用于实现上述方法实施例图5、图6、图7或图9所述的方法。
该通信装置还可以包括至少一个存储器1230,用于存储程序指令和/或数据。存储器1230和处理器1220耦合。本申请实施例中的耦合是装置、单元或模块之间的间接耦合或通信连接,可以是电性,机械或其它的形式,用于装置、单元或模块之间的信息交互。处理器1220可能和存储器1230协同操作。处理器1220可能执行存储器1230中存储的程序指令。所述至少一个存储器中的至少一个可以包括于处理器中。
当图12中通信装置开机后,处理器1220可以读取存储器1230中的软件程序,解释并执行软件程序的指令,处理软件程序的数据。当需要通过无线发送数据时,处理器1220对待发送的数据进行基带处理后,输出基带信号至射频电路(图中未示意),射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到图12中通信装置时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出 至处理器1220,处理器1220将基带信号转换为数据并对该数据进行处理。
在另一种实现中,所述的射频电路和天线可以独立于进行基带处理的处理器1220而设置,例如在分布式场景中,射频电路和天线可以与独立于通信装置,呈拉远式的布置。
本申请实施例中不限定上述通信接口1210、处理器1220以及存储器1230之间的具体连接介质。本申请实施例在图12中以存储器1230、处理器1220以及通信接口1210之间通过总线1240连接,总线在图12中以粗线表示,其它部件之间的连接方式,仅是进行示意性说明,并不引以为限。所述总线可以分为地址总线、数据总线、控制总线等。为便于表示,图12中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
图12中的通信装置具体是用于终端设备或网络设备的装置时,例如该通信装置具体是芯片或者芯片系统时,通信接口1210所输出或接收的可以是基带信号。该通信装置具体是终端设备或网络设备时,通信接口1210所输出或接收的可以是射频信号。在本申请实施例中,处理器可以是通用处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件,可以实现或者执行本申请实施例中的公开的各方法、操作及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本申请实施例所公开的方法的操作可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。
请参见图13,图13给出了本申请实施例提供的一种终端设备的结构示意图。
该终端设备1300可适用于上述图5、图6、图7或图9的任一个附图所示的架构中。为了便于说明,图13仅示出了终端设备1300的主要部件。如图13所示,终端设备1300包括处理器、存储器、控制电路、天线以及输入输出装置。处理器主要用于对通信协议以及通信数据进行处理,以及对整个终端设备1300进行控制,执行软件程序,处理软件程序的数据。存储器主要用于存储软件程序和数据。控制电路主要用于基带信号与射频信号的转换以及对射频信号的处理。天线主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏,显示屏,麦克风,键盘等主要用于接收用户输入的数据以及对用户输出数据。
本领域技术人员可以理解,为了便于说明,图13仅示出了一个存储器和处理器。在一些实施例中,终端设备1300可以包括多个处理器和存储器。存储器也可以称为存储介质或者存储设备等,本申请实施例对此不做限制。
在一个例子中,可以将具有收发功能的天线和控制电路视为终端设备1300的收发单元1310,将具有处理功能的处理器视为终端设备1300的处理单元1320。如图13所示,终端设备1300包括收发单元1310和处理单元1320。收发单元也可以称为收发器、收发机、收发装置等。可选的,可以将收发单元1310中用于实现接收功能的器件视为接收单元,将收发单元1310中用于实现发送功能的器件视为发送单元,即收发单元1310包括接收单元和发送单元。示例性的,接收单元也可以称为接收机、接收器、接收电路等,发送单元可以称为发射机、发射器或者发射电路等。
请参见图14,图14给出了本申请实施例提供的一种网络设备的结构示意图。该网络设备可适用于上述图5、图6、图7或图9的任一个附图所示的架构中。该网络设备包括:基带装置1401,射频装置1402、天线1403。在上行方向上,射频装置1402通过天线1403接收终端设备发送的信息,将终端设备发送的信息发送给基带装置1401进行处理。在下行方向上,基带装置1401对终端设备的信息进行处理,并发送给射频装置1402,射频装置1402对终端设备的信息进行处理后经过天线1403发送给终端设备。
基带装置1401包括一个或多个处理单元14011,存储单元14012和接口14013。其中处 理单元14011用于支持网络设备执行上述方法实施例中网络设备的功能。存储单元14012用于存储软件程序和/或数据。接口14013用于与射频装置1402交互信息,该接口包括接口电路,用于信息的输入和输出。在一种实现中,所述处理单元为集成电路,例如一个或多个ASIC,或,一个或多个数字信号处理器(digital signal processor,DSP),或,一个或者多个现场可编程逻辑门阵列(field programmable gate array,FPGA),或者这些类集成电路的组合。存储单元14012与处理单元14011可以位于同一个电路中,即片内存储元件。或者存储单元14012也可以与处理单元14011处于不同电路上,即片外存储元件。所述存储单元14012可以是一个存储器,也可以是多个存储器或存储元件的统称。
网络设备可以通过一个或多个处理单元调度程序的形式实现上述方法实施例中的部分或全部步骤。例如实现图5、图6、图7或图9所示的实施例中的任一个实施例所述的网络设备的相应的功能。所述一个或多个处理单元可以支持同一种制式的无线接入技术,也可以支持不同种制式的无线接入制式。
本申请实施例还提供一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当其在处理器上运行时,上述方法实施例的方法流程得以实现。
本申请实施例还提供一种计算机程序产品,当所述计算机程序产品在处理器上运行时,上述方法实施例的方法流程得以实现。
需要说明的是,对于前述的各方法实施例,为了简单描述,故将其都表述为一系列的动作组合,但是本领域技术人员应该知悉,本申请并不受所描述的动作顺序的限制,因为依据本申请,某些操作可以采用其他顺序或者同时进行。其次,本领域技术人员也应该知悉,说明书中所描述的实施例均属于优选实施例,所涉及的动作和模块并不一定是本申请所必须的。
本申请提供的各实施例的描述可以相互参照,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。为描述的方便和简洁,例如关于本申请实施例提供的各装置、设备的功能以及执行的操作可以参照本申请方法实施例的相关描述,各方法实施例之间、各装置实施例之间也可以互相参考、结合或引用。
最后应说明的是:以上各实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述各实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (32)

  1. 一种下行控制信息DCI发送方法,其特征在于,所述方法包括:
    终端设备向网络设备发送第一信息,所述第一信息用于指示数量N,所述数量N包括所述终端设备在物理下行控制信道PDCCH的第一跨度内支持接收DCI的数量;
    所述终端设备在所述PDCCH接收DCI,所述DCI在第一跨度内的数量小于或等于所述数量N。
  2. 根据权利要求1所述方法,其特征在于,所述方法还包括:
    终端设备基于所述终端设备的性能需求信息确定所述数量N,所述性能需求信息包括功耗信息、终端类型信息或传输性能信息中的一种或多种。
  3. 根据权利要求1或2所述方法,其特征在于,所述方法还包括:
    在所述终端设备处于第一场景模式下,所述终端设备向所述网络设备发送第二信息,所述第二信息用于指示数量M,所述数量M包括所述第一场景模式下所述终端设备在所述PDCCH的第一跨度内请求接收DCI的数量,所述数量M为大于0且小于数量N的正整数。
  4. 根据权利要求3所述方法,其特征在于,所述方法还包括:
    所述终端设备接收来自所述网络设备的第三信息,所述第三信息用于通知所述网络设备基于所述第二信息向所述终端设备发送所述PDCCH。
  5. 根据权利要求3所述方法,其特征在于,所述方法还包括:
    所述终端设备接收来自所述网络设备的第四信息,所述第四信息用于通知所述网络设备基于所述第一信息向所述终端设备发送所述PDCCH。
  6. 根据权利要求3~5中任一项所述方法,其特征在于,所述第二信息为无线资源控制RRC信令、媒体接入控制MAC信令或辅助信息。
  7. 根据权利要求3~6中任一项所述方法,其特征在于,在所述第一场景模式下,所述终端设备的功耗小于第一值,或,所述PDCCH中下行时隙和上行时隙的比值大于第二值,或所述终端设备的数据传输时延需求大于第三值。
  8. 一种下行控制信息DCI发送方法,其特征在于,所述方法包括:
    网络设备接收来自终端设备的第一信息,所述第一信息用于指示数量N,所述数量N包括所述终端设备在物理下行控制信道PDCCH的第一跨度内支持接收DCI的数量;
    所述网络设备通过所述PDCCH向所述终端设备发送DCI,所述DCI的有效的数量在第一跨度的数量小于或等于所述数量N。
  9. 根据权利要求8所述方法,其特征在于,所述方法还包括:
    在所述终端设备处于第一场景模式下,所述网络设备接收来自所述终端设备的第二信息,所述第二信息用于指示数量M,所述数量M包括所述第一场景模式下所述终端设备在所述PDCCH的第一跨度内请求接收DCI的数量,所述数量M为大于0且小于数量N的正整数。
  10. 根据权利要求9所述方法,其特征在于,所述网络设备通过所述PDCCH向所述终端设备发送DCI,包括:
    所述网络设备基于所述网络设备的调度情况,确定基于所述第二信息或所述第一信息向所述终端设备发送DCI;
    在所述网络设备确定基于所述第二信息向所述终端设备发送DCI的情况下,所述网络设备向所述终端设备发送第三信息,所述第三信息用于通知所述网络设备基于所述第二信息向所述终端设备发送DCI;
    所述网络设备基于所述第二信息通过所述PDCCH向所述终端设备发送DCI,所述DCI在第一跨度内的数量小于或等于所述数量M。
  11. 根据权利要求10所述方法,其特征在于,所述方法还包括:
    在所述网络设备确定基于所述第一信息向所述终端设备发送DCI情况下,所述网络设备向所述终端设备发送第四信息,所述第四信息用于通知所述网络设备基于所述第一信息向所述终端设备发送DCI;
    所述网络设备通过所述PDCCH向所述终端设备发送DCI,所述DCI在第一跨度内的数量小于或等于所述数量N。
  12. 根据权利要求9~11中任一项所述方法,其特征在于,所述第二信息为无线资源控制RRC信令、媒体接入控制MAC信令或辅助信息。
  13. 根据权利要求9~12中任一项所述方法,其特征在于,在所述第一场景模式下,所述终端设备的功耗小于第一值,或,所述PDCCH中下行时隙和上行时隙的比值大于第二值,或,所述终端设备的数据传输时延需求大于第三值。
  14. 一种通信装置,其特征在于,所述通信装置包括通信单元和处理单元,其中,
    所述通信单元,用于向网络设备发送第一信息,所述第一信息用于指示数量N,所述数量N包括终端设备在物理下行控制信道PDCCH的第一跨度内支持接收DCI的数量;在所述PDCCH接收DCI,所述DCI在第一跨度内的数量小于或等于所述数量N。
  15. 根据权利要求14所述装置,其特征在于,所述处理单元,还用于基于所述终端设备的性能需求信息确定所述数量N,所述性能需求信息包括功耗信息、终端类型信息或传输性能信息中的一种或多种。
  16. 根据权利要求14或15所述装置,其特征在于,在所述终端设备处于第一场景模式下,所述通信单元,用于向所述网络设备发送第二信息,所述第二信息用于指示数量M,所述数量M包括所述第一场景模式下所述终端设备在所述PDCCH的第一跨度内请求接收DCI的数量,所述数量M为大于0且小于数量N的正整数。
  17. 根据权利要求16所述装置,其特征在于,所述通信单元,还用于接收来自所述网络设备的第三信息,所述第三信息用于通知所述网络设备基于所述第二信息向所述终端设备发送所述PDCCH。
  18. 根据权利要求16所述装置,其特征在于,所述通信单元,还用于接收来自所述网络设备的第四信息,所述第四信息用于通知所述网络设备基于所述第一信息向所述终端设备发送所述PDCCH。
  19. 根据权利要求16~18中任一项所述装置,其特征在于,所述第二信息为无线资源控制RRC信令、媒体接入控制MAC信令或辅助信息。
  20. 根据权利要求16~19中任一项所述装置,其特征在于,在所述第一场景模式下,所述终端设备的功耗小于第一值,或,所述PDCCH中下行时隙和上行时隙的比值大于第二值,或所述终端设备的数据传输时延需求大于第三值。
  21. 一种通信装置,其特征在于,所述通信装置包括通信单元和处理单元,其中,
    所述通信单元,用于接收来自终端设备的第一信息,所述第一信息用于指示数量N,所述数量N包括所述终端设备在物理下行控制信道PDCCH的第一跨度内支持接收DCI的数量;通过所述PDCCH向所述终端设备发送DCI,所述DCI的有效的数量在第一跨度的数量小于或等于所述数量N。
  22. 根据权利要求21所述装置,其特征在于,在所述终端设备处于第一场景模式下,所 述通信单元,用于接收来自所述终端设备的第二信息,所述第二信息用于指示数量M,所述数量M包括所述第一场景模式下所述终端设备在所述PDCCH的第一跨度内请求接收DCI的数量,所述数量M为大于0且小于数量N的正整数。
  23. 根据权利要求22所述装置,其特征在于,
    所述处理单元,用于基于网络设备的调度情况,确定基于所述第二信息或所述第一信息向所述终端设备发送DCI;
    在所述网络设备确定基于所述第二信息向所述终端设备发送DCI的情况下,所述通信单元,用于向所述终端设备发送第三信息,所述第三信息用于通知所述网络设备基于所述第二信息向所述终端设备发送DCI;基于所述第二信息通过所述PDCCH向所述终端设备发送DCI,所述DCI在第一跨度内的数量小于或等于所述数量M。
  24. 根据权利要求23所述装置,其特征在于,在所述网络设备确定基于所述第一信息向所述终端设备发送DCI情况下,所述通信单元,用于向所述终端设备发送第四信息,所述第四信息用于通知所述网络设备基于所述第一信息向所述终端设备发送DCI;通过所述PDCCH向所述终端设备发送DCI,所述DCI在第一跨度内的数量小于或等于所述数量N。
  25. 根据权利要求22~24中任一项所述装置,其特征在于,所述第二信息为无线资源控制RRC信令、媒体接入控制MAC信令或辅助信息。
  26. 根据权利要求22~25中任一项所述装置,其特征在于,在所述第一场景模式下,所述终端设备的功耗小于第一值,或,所述PDCCH中下行时隙和上行时隙的比值大于第二值,或,所述终端设备的数据传输时延需求大于第三值。
  27. 一种通信装置,其特征在于,包括处理器和存储器;所述存储器用于存储一个或多个计算机程序,所述一个或多个计算机程序包括计算机执行指令,当所述通信装置运行时,所述处理器执行所述存储器存储的所述一个或多个计算机程序,以使得所述通信装置执行如权利要求1~7中任一项所述的方法。
  28. 一种通信装置,其特征在于,包括处理器和存储器;所述存储器用于存储一个或多个计算机程序,所述一个或多个计算机程序包括计算机执行指令,当所述通信装置运行时,所述处理器执行所述存储器存储的所述一个或多个计算机程序,以使得所述通信装置执行如权利要求8~13中任一项所述的方法。
  29. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质用于存储计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行如权利要求1~7中任一项所述的方法。
  30. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质用于存储计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行如权利要求8~13中任一项所述的方法。
  31. 一种计算机程序产品,其特征在于,当所述计算机程序产品在计算机上运行时,使得所述计算机执行如权利要求1-13中任一项所述的方法。
  32. 一种电路系统,其特征在于,所述电路系统包括:
    处理器和接口,所述处理器用于从所述接口调用并运行指令,当所述处理器执行所述指令时,实现如权利要求1~7中任一项所述的方法,或实现如权利要求8~13中任一项所述的方法。
PCT/CN2022/094575 2021-05-31 2022-05-23 一种下行控制信息dci发送方法及通信装置 WO2022253037A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP22815084.3A EP4319265A4 (en) 2021-05-31 2022-05-23 METHOD FOR SENDING DOWNLINK CONTROL INFORMATION (DCI) AND COMMUNICATION APPARATUS

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110602053.0A CN115484589A (zh) 2021-05-31 2021-05-31 一种下行控制信息dci发送方法及通信装置
CN202110602053.0 2021-05-31

Publications (1)

Publication Number Publication Date
WO2022253037A1 true WO2022253037A1 (zh) 2022-12-08

Family

ID=84323891

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/094575 WO2022253037A1 (zh) 2021-05-31 2022-05-23 一种下行控制信息dci发送方法及通信装置

Country Status (3)

Country Link
EP (1) EP4319265A4 (zh)
CN (1) CN115484589A (zh)
WO (1) WO2022253037A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020252612A1 (en) * 2019-06-17 2020-12-24 Qualcomm Incorporated Low-complexity physical downlink control channels and related signaling
CN112449437A (zh) * 2019-09-04 2021-03-05 深圳市中兴微电子技术有限公司 下行控制信息调度方法、装置及存储介质
US20210105105A1 (en) * 2019-10-03 2021-04-08 Qualcomm Incorporated Control channel monitoring based on sub-carrier spacing
CN112753189A (zh) * 2018-10-05 2021-05-04 英特尔公司 Pdcch监测跨度和dci格式集合确定

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11445537B2 (en) * 2019-07-08 2022-09-13 Qualcomm Incorporated Data transmission reliability with multiple downlink control information signals

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112753189A (zh) * 2018-10-05 2021-05-04 英特尔公司 Pdcch监测跨度和dci格式集合确定
WO2020252612A1 (en) * 2019-06-17 2020-12-24 Qualcomm Incorporated Low-complexity physical downlink control channels and related signaling
CN112449437A (zh) * 2019-09-04 2021-03-05 深圳市中兴微电子技术有限公司 下行控制信息调度方法、装置及存储介质
US20210105105A1 (en) * 2019-10-03 2021-04-08 Qualcomm Incorporated Control channel monitoring based on sub-carrier spacing

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4319265A4

Also Published As

Publication number Publication date
EP4319265A1 (en) 2024-02-07
CN115484589A (zh) 2022-12-16
EP4319265A4 (en) 2024-08-21

Similar Documents

Publication Publication Date Title
WO2021027940A1 (zh) 一种用于指示信号传输的方法及装置
US11601885B2 (en) Channel access for multi-user (MU) wake-up signal transmission by using FDMA scheme
US20220006602A1 (en) Discontinuous Reception for Carrier Aggregation
WO2019214424A1 (zh) 通信方法和通信装置
WO2021208821A1 (zh) 一种通信方法和通信装置
CN114071429A (zh) 一种物理下行控制信道增强方法、通信装置及系统
CN110784928A (zh) 传输定时信息发送方法、接收方法及装置
CN114270917B (zh) 一种drx配置方法及装置、终端设备、网络设备
US12063660B2 (en) Method and device for adjusting PDCCH monitoring period
WO2021072662A1 (zh) 一种混合自动重传请求反馈方法及装置
US20230121762A1 (en) Uplink signal sending method, apparatus, and system
WO2022253037A1 (zh) 一种下行控制信息dci发送方法及通信装置
WO2023066061A1 (zh) 一种通信方法、通信装置及通信系统
US20210345371A1 (en) Method and Apparatus for Self-Scheduled Uplink Transmission
US10448397B2 (en) Channel bonding techniques for wireless networks
WO2021208819A1 (zh) 一种通信方法及装置
WO2022141580A1 (zh) 一种通信方法及装置
CN115225219A (zh) 一种反馈方法、装置及设备
WO2020088455A1 (zh) 通信方法和通信装置
CN114503721A (zh) 一种混合自动重传请求反馈方法及装置
US20230076257A1 (en) Communication Method and Apparatus, and Storage Medium
WO2023279969A1 (zh) 一种数据传输的方法及通信装置
WO2024093834A1 (zh) 一种通信方法及装置
WO2022237629A1 (zh) 一种信息传输的方法与装置
WO2022016477A1 (zh) 一种通信方法及通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22815084

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022815084

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022815084

Country of ref document: EP

Effective date: 20231027

NENP Non-entry into the national phase

Ref country code: DE