WO2022141580A1 - 一种通信方法及装置 - Google Patents

一种通信方法及装置 Download PDF

Info

Publication number
WO2022141580A1
WO2022141580A1 PCT/CN2020/142523 CN2020142523W WO2022141580A1 WO 2022141580 A1 WO2022141580 A1 WO 2022141580A1 CN 2020142523 W CN2020142523 W CN 2020142523W WO 2022141580 A1 WO2022141580 A1 WO 2022141580A1
Authority
WO
WIPO (PCT)
Prior art keywords
time
terminal
time window
frequency resource
information
Prior art date
Application number
PCT/CN2020/142523
Other languages
English (en)
French (fr)
Inventor
苏宏家
董蕾
郭文婷
卢磊
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN202080103795.2A priority Critical patent/CN116097889A/zh
Priority to MX2023007798A priority patent/MX2023007798A/es
Priority to EP20967918.2A priority patent/EP4250860A4/en
Priority to PCT/CN2020/142523 priority patent/WO2022141580A1/zh
Publication of WO2022141580A1 publication Critical patent/WO2022141580A1/zh
Priority to US18/344,016 priority patent/US20230345511A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/25Control channels or signalling for resource management between terminals via a wireless link, e.g. sidelink
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/40Resource management for direct mode communication, e.g. D2D or sidelink
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/18Interfaces between hierarchically similar devices between terminal devices

Definitions

  • the present application relates to the field of sideline communication, and in particular, to a communication method and device.
  • V2X communication refers to the communication between the vehicle and anything. Please refer to Figure 1.
  • V2X communication includes vehicle-to-vehicle (V2V), vehicle-to-pedestrian (V2P), vehicle-to-infrastructure (V2I), vehicle-to-infrastructure (V2I). Communication of network devices (vehicle to network, V2N), etc.
  • V2X technology vehicle users can send information such as their own position, speed, intention (turning, merging, reversing) to surrounding vehicle users, and can also receive information from surrounding vehicle users in real time.
  • Vehicle-to-vehicle direct communication is called sideway communication.
  • the allocation mode of sideline communication resources includes scheduling mode and self-selected resource mode.
  • the user equipment user equipment, UE
  • the UE determines the time-frequency resource for sending the sidelink communication information by listening to the time-frequency resource set.
  • a UE reserves a time-frequency resource after the moment for data transmission or retransmission.
  • Other UEs learn the user's time-frequency resource reservation status by listening to the time-frequency resource set, and avoid selecting reserved time-frequency resources to reduce resource collision.
  • the UE may not be able to hear or may not be able to hear all of the time-frequency resource set.
  • the UE does not perform interception at the moment when the UE sends the sideline communication information.
  • the number of times the UE performs listening is reduced, and the listening is not performed within a set time period.
  • the UE does not listen at all, and selects time-frequency resources by random selection for sending sidelink communication information. In this way, the UE cannot obtain a complete listening result, which will increase the probability of collision or collision of the selected time-frequency resources, and reduce the reliability of sideline communication transmission.
  • the present application provides a communication method and device, which can reduce the probability of time-frequency resource conflict for transmitting sideline communication information.
  • an embodiment of the present application provides a communication method, which may be executed by a terminal device, or may be executed by a component of the terminal device, such as a processor, a chip, or a chip system of the terminal device.
  • the method includes: the first terminal acquires at least one first time window in a time-frequency resource set; the time-frequency resource set is used for the terminal to send sideline communication information; the first terminal acquires first control information from the second terminal, and the first control information includes activation indication information; the first terminal activates one first time window of at least one first time window according to the first control information; the first terminal stops determining the transmission side in the activated first time window by listening to the time-frequency resource set time-frequency resources of the line communication information; the first terminal receives first indication information from the second terminal within the activated first time window; the first indication information indicates at least one time-frequency resource; the first terminal is on at least one time-frequency resource The first sideline communication information is sent.
  • the second terminal determines to activate one first time window in at least one first time window.
  • the first terminal selects the time-frequency resource for sending the SL information within the activated first time window according to the instruction of the second terminal, instead of determining the time-frequency resource to be used in the The time-frequency resource for sending SL information within the activated first time window. In this way, energy consumption for listening can be saved, and the probability of resource conflict for sending SL information is also reduced.
  • the first control information includes deactivation indication information
  • the method further includes: the first terminal deactivates a first time of at least one first time window according to the first control information window; the first terminal determines, by listening to the time-frequency resource set, the time-frequency resource for sending the sidelink communication information within the deactivated first time window. That is to say, when the second terminal determines not to activate the first time window, the first terminal determines the time-frequency resource for sending the sidelink communication information by listening to the time-frequency resource set.
  • the method further includes: the first terminal receives second control information from the second terminal, where the second control information is used to instruct to extend the duration of the first time window.
  • the second terminal does not need to reconfigure the first time window to the first terminal, and the first terminal may extend a period of time according to the current configuration of the first time window.
  • the process of configuring the first time window is faster and more convenient, improving the efficiency of resource allocation.
  • the first control information is carried on a physical channel.
  • the second control information is carried on a physical channel.
  • the physical channel is a physical sideline feedback channel.
  • the activated first time window includes a first sub-time window and a second sub-time window, and within the first sub-time window, the first terminal stops listening to time-frequency resources set; within the second sub-time window, the first terminal listens to the time-frequency resource set.
  • the time-frequency resource after the end of the first time window can be selected according to the result of listening to the time-frequency resource set in the second sub-time window to send the SL information;
  • the resource reservation information after the end of the first time window cannot be obtained because the time-frequency resource set is not monitored, and the instruction of the second terminal is not obtained, and the time-frequency resource for sending the SL information is selected by random selection or based on part of the listening result. , resulting in increased resource collision probability and reduced transmission reliability.
  • the first terminal before the first terminal receives the first indication information from the second terminal within the activated first time window, the first terminal sends the first indication information within the activated first time window auxiliary information, where the auxiliary information is used to trigger the second terminal to determine a time-frequency resource for the first terminal to send the first SL information.
  • the auxiliary information includes at least one of the following items: priority information of the first sideline communication information to be sent, size information of the first sideline communication information to be sent, identification information of the first terminal, and the first terminal to send the first sideline communication information. Identification information corresponding to the receiving end of the SL information.
  • an embodiment of the present application provides a communication method, which may be executed by a terminal device or a component of the terminal device, such as a processor, a chip, or a chip system of the terminal device.
  • the method includes: the second terminal acquires at least one first time window in a time-frequency resource set; the time-frequency resource set is used for the terminal to send sideline communication information; the second terminal sends first control information to the first terminal, where the first control information includes Activation indication information, where the activation indication information is used to instruct to activate a first time window of at least one first time window; within the activated first time window, the first terminal stops determining by listening to the time-frequency resource set for sending the sideline time-frequency resources of the communication information; the second terminal sends first indication information to the first terminal within the activated first time window; the first indication information indicates at least one time-frequency resource, which is used by the first terminal on the at least one time-frequency resource The first sideline communication information is sent.
  • the second terminal determines to activate one first time window in at least one first time window.
  • the first terminal selects the time-frequency resource for sending the SL information within the activated first time window according to the instruction of the second terminal, instead of determining the time-frequency resource to be used in the The time-frequency resource for sending SL information within the activated first time window. In this way, energy consumption for listening can be saved, and the probability of resource conflict for sending SL information is also reduced.
  • the first control information includes deactivation indication information, and the deactivation indication information is used to instruct to deactivate a first time window of the at least one first time window; Within the first time window, the first terminal determines the time-frequency resource for sending the sidelink communication information by listening to the time-frequency resource set.
  • the second terminal sends second control information to the first terminal, where the second control information is used to instruct to extend the duration of the first time window.
  • the second terminal does not need to reconfigure the first time window to the first terminal, and the first terminal may extend a period of time according to the current configuration of the first time window.
  • the process of configuring the first time window is faster and more convenient, improving the efficiency of resource allocation.
  • the first control information is carried on a physical channel.
  • the second control information is carried on a physical channel.
  • the physical channel is a physical sideline feedback channel.
  • the activated first time window includes a first sub-time window and a second sub-time window, and within the first sub-time window, the first terminal stops listening to time-frequency resources set; within the second sub-time window, the first terminal listens to the time-frequency resource set.
  • the time-frequency resource after the end of the first time window can be selected according to the result of listening to the time-frequency resource set in the second sub-time window to send the SL information;
  • the resource reservation information after the end of the first time window cannot be obtained because the time-frequency resource set is not monitored, and the instruction of the second terminal is not obtained, and the time-frequency resource for sending the SL information is selected by random selection or based on part of the listening result. , resulting in increased resource collision probability and reduced transmission reliability.
  • the second terminal determines the time-frequency resource for the first terminal to send the first sideline communication information within the activated first time window by listening to the time-frequency resource set. In a possible implementation manner, the second terminal determines, through scheduling or resource configuration of the network device, a time-frequency resource for the first terminal to send the first sideline communication information within the activated first time window.
  • an embodiment of the present application provides a communication method, which may be executed by a terminal device, or may be executed by a component of the terminal device, such as a processor, a chip, or a chip system of the terminal device.
  • the method includes: the first terminal acquires at least one first time window in a time-frequency resource set; the time-frequency resource set is used for the terminal to send sideline communication information; the first terminal sends first control information to the second terminal, where the first control information includes Activation indication information, where the activation indication information is used to instruct to activate a first time window of at least one first time window; the first terminal stops determining by listening to the time-frequency resource set for sending sideline communication within the activated first time window time-frequency resources of the information; the first terminal receives the first indication information from the second terminal within the activated first time window; the first indication information indicates at least one time-frequency resource; the first terminal sends the first indication information on the at least one time-frequency resource One side row of communication information.
  • the first terminal determines to activate one first time window in at least one first time window.
  • the first terminal selects the time-frequency resource for sending the SL information within the activated first time window according to the instruction of the second terminal, instead of determining the time-frequency resource to be used in the The time-frequency resource for sending SL information within the activated first time window. In this way, not only the energy consumption of interception can be saved, but also the probability of resource conflict for sending SL information is reduced.
  • the first control information includes deactivation indication information
  • the deactivation indication information is used to instruct to deactivate a first time window of the at least one first time window
  • the first terminal is in the The time-frequency resource for sending the sidelink communication information is determined by listening to the time-frequency resource set within the first time window of the deactivation. That is to say, when the second terminal determines not to activate the first time window, the first terminal determines the time-frequency resource for sending the sidelink communication information by listening to the time-frequency resource set.
  • the first terminal sends second control information to the second terminal, where the second control information is used to instruct to extend the duration of the first time window.
  • the first terminal does not need to reconfigure the first time window to the second terminal, and the first terminal may extend a period of time according to the configuration of the current first time window.
  • the process of configuring the first time window is faster and more convenient, improving the efficiency of resource allocation.
  • the first control information is carried on a physical channel.
  • the second control information is carried on a physical channel.
  • the physical channel is a physical sideline feedback channel.
  • the activated first time window includes a first sub-time window and a second sub-time window, and within the first sub-time window, the first terminal stops listening to time-frequency resources set; within the second sub-time window, the first terminal listens to the time-frequency resource set.
  • the time-frequency resource after the end of the first time window can be selected according to the result of listening to the time-frequency resource set in the second sub-time window to send the SL information;
  • the resource reservation information after the end of the first time window cannot be obtained because the time-frequency resource set is not monitored, and the instruction of the second terminal is not obtained, and the time-frequency resource for sending the SL information is selected by random selection or based on part of the listening result. , resulting in increased resource collision probability and reduced transmission reliability.
  • an embodiment of the present application provides a communication method, which may be executed by a terminal device, or may be executed by a component of the terminal device, such as a processor, a chip, or a chip system of the terminal device.
  • the method includes: the second terminal acquires at least one first time window in a time-frequency resource set; the time-frequency resource set is used for the terminal to send sideline communication information; the second terminal receives first control information from the first terminal, and the first control information includes Activation indication information, where the activation indication information is used to instruct to activate a first time window of at least one first time window; within the activated first time window, the first terminal stops determining by listening to the time-frequency resource set for sending the sideline time-frequency resources of the communication information; the second terminal sends first indication information to the first terminal within the activated first time window; the first indication information indicates at least one time-frequency resource, which is used by the first terminal on the at least one time-frequency resource The first sideline communication information is sent.
  • the first terminal determines to activate one first time window in at least one first time window, and notifies the second terminal.
  • the first terminal selects the time-frequency resource for sending the SL information within the activated first time window according to the instruction of the second terminal, instead of determining the time-frequency resource to be used in the The time-frequency resource for sending SL information within the activated first time window. In this way, energy consumption for listening can be saved, and the probability of resource conflict for sending SL information is also reduced.
  • the first control information includes deactivation indication information, and the deactivation indication information is used to instruct to deactivate a first time window of the at least one first time window; Within the first time window, the first terminal determines the time-frequency resource for sending the sidelink communication information by listening to the time-frequency resource set.
  • the second terminal receives second control information from the first terminal, where the second control information is used to instruct to extend the duration of the first time window.
  • the first terminal does not need to reconfigure the first time window to the second terminal, and the first terminal may extend a period of time according to the configuration of the current first time window.
  • the process of configuring the first time window is faster and more convenient, improving the efficiency of resource allocation.
  • the first control information is carried on a physical channel.
  • the second control information is carried on a physical channel.
  • the physical channel is a physical sideline feedback channel.
  • the activated first time window includes a first sub-time window and a second sub-time window, and within the first sub-time window, the first terminal stops listening to time-frequency resources set; within the second sub-time window, the first terminal listens to the time-frequency resource set.
  • the time-frequency resource after the end of the first time window can be selected according to the result of listening to the time-frequency resource set in the second sub-time window to send the SL information;
  • the resource reservation information after the end of the first time window cannot be obtained because the time-frequency resource set is not monitored, and the instruction of the second terminal is not obtained, and the time-frequency resource for sending the SL information is selected by random selection or based on part of the listening result. , resulting in increased resource collision probability and reduced transmission reliability.
  • an embodiment of the present application provides a communication method, which may be executed by a terminal device, or may be executed by a component of the terminal device, such as a processor, a chip, or a chip system of the terminal device.
  • the method includes: the first terminal receives time window indication information from the second terminal, where the time window indication information is used to indicate the first time window; the first terminal determines the first time window according to the first time window information; Listening to the time-frequency resource set determines the time-frequency resources used for sending sideline communication information within the first time window, and the time-frequency resource set is used for the terminal to send sideline communication information; the first terminal sends information from the second terminal within the first time window.
  • the first indication information is received; the first indication information indicates at least one time-frequency resource; and the first terminal sends the first sideline communication information on the at least one time-frequency resource.
  • the second terminal indicates to the first terminal a first time window, where the first time window is an activated first time window.
  • the first terminal selects the time-frequency resource for sending the SL information within the first time window according to the instruction of the second terminal, instead of determining the time-frequency resource to be used at the first time by listening to the time-frequency resource set Time-frequency resource for sending SL information in the window. In this way, energy consumption for listening can be saved, and the probability of resource conflict for sending SL information is also reduced.
  • the method further includes: the first terminal receives control information from the second terminal, where the control information is used to instruct to extend the duration of the first time window.
  • the second terminal does not need to reconfigure the first time window to the first terminal, and the first terminal may extend a period of time according to the current configuration of the first time window.
  • the process of configuring the first time window is faster and more convenient, improving the efficiency of resource allocation.
  • control information is carried on a physical channel.
  • the physical channel is a physical sideline feedback channel.
  • the first time window includes a first sub-time window and a second sub-time window, and within the first sub-time window, the first terminal stops listening to the time-frequency resource set; In the second sub-time window, the first terminal listens to the time-frequency resource set.
  • the time-frequency resource after the end of the first time window can be selected according to the result of listening to the time-frequency resource set in the second sub-time window to send the SL information;
  • the resource reservation information after the end of the first time window cannot be obtained because the time-frequency resource set is not monitored, and the instruction of the second terminal is not obtained, and the time-frequency resource for sending the SL information is selected by random selection or based on part of the listening result. , resulting in increased resource collision probability and reduced transmission reliability.
  • the first terminal before the first terminal receives the first indication information from the second terminal within the first time window, the first terminal sends auxiliary information within the first time window, the The auxiliary information is used to trigger the second terminal to determine a time-frequency resource for the first terminal to send the first SL information.
  • the auxiliary information includes at least one of the following items: priority information of the first sideline communication information to be sent, size information of the first sideline communication information to be sent, identification information of the first terminal, and the first terminal to send the first sideline communication information. Identification information corresponding to the receiving end of the SL information.
  • an embodiment of the present application provides a communication method, which may be executed by a terminal device or by a component of the terminal device, such as a processor, a chip, or a chip system of the terminal device.
  • the method includes: the second terminal sends time window indication information to the first terminal, where the time window indication information is used to indicate the first time window; within the first time window, the first terminal stops determining by listening to the time-frequency resource set The time-frequency resource used for sending sideline communication information, the time-frequency resource set is used for the terminal to send sideline communication information; the second terminal sends the first indication information to the first terminal within the first time window; the first indication information indicates the first The terminal sends at least one time-frequency resource of the first sideline communication information.
  • the second terminal indicates to the first terminal a first time window, where the first time window is an activated first time window.
  • the first terminal selects the time-frequency resource for sending the SL information within the first time window according to the instruction of the second terminal, instead of determining the time-frequency resource to be used at the first time by listening to the time-frequency resource set Time-frequency resource for sending SL information in the window. In this way, energy consumption for listening can be saved, and the probability of resource conflict for sending SL information is also reduced.
  • the second terminal sends control information to the first terminal, where the second control information is used to instruct to extend the duration of the first time window.
  • the second terminal does not need to reconfigure the first time window to the first terminal, and the first terminal may extend a period of time according to the current configuration of the first time window.
  • the process of configuring the first time window is faster and more convenient, improving the efficiency of resource allocation.
  • control information is carried on a physical channel.
  • the physical channel is a physical sideline feedback channel.
  • the first time window includes a first sub-time window and a second sub-time window, and within the first sub-time window, the first terminal stops listening to the time-frequency resource set; In the second sub-time window, the first terminal listens to the time-frequency resource set.
  • the time-frequency resource after the end of the first time window can be selected according to the result of listening to the time-frequency resource set in the second sub-time window to send the SL information;
  • the resource reservation information after the end of the first time window cannot be obtained because the time-frequency resource set is not monitored, and the instruction of the second terminal is not obtained, and the time-frequency resource for sending the SL information is selected by random selection or based on part of the listening result. , resulting in increased resource collision probability and reduced transmission reliability.
  • the second terminal determines the time-frequency resource for the first terminal to send the first sideline communication information within the first time window by listening to the time-frequency resource set. In a possible implementation manner, the second terminal determines, through scheduling or resource configuration of the network device, time-frequency resources for the first terminal to send the first sidelink communication information within the first time window.
  • an embodiment of the present application provides a communication method, which may be executed by a terminal device, or may be executed by a component of the terminal device, such as a processor, a chip, or a chip system of the terminal device.
  • the method includes: the first terminal sends time window indication information to the second terminal, where the time window indication information is used to indicate the first time window; the first terminal stops determining by listening to the time-frequency resource set for sending within the first time window Time-frequency resources of sideline communication information, the time-frequency resource set is used for the terminal to send sideline communication information; the first terminal receives the first indication information from the second terminal within the first time window; the first indication information indicates at least one time-frequency resource; the first terminal sends the first sideline communication information on at least one time-frequency resource.
  • the first terminal determines a first time window.
  • the first terminal selects the time-frequency resource for sending the SL information in the first time window according to the instruction of the second terminal, instead of determining the time-frequency resource to be used in the first time window by listening to the time-frequency resource set The time-frequency resource for sending SL information within. In this way, energy consumption for listening can be saved, and the probability of resource conflict for sending SL information is also reduced.
  • the first terminal sends control information to the second terminal, where the control information is used to instruct to extend the duration of the first time window.
  • the first terminal does not need to reconfigure the first time window to the second terminal, and the first terminal may extend a period of time according to the configuration of the current first time window.
  • the process of configuring the first time window is faster and more convenient, improving the efficiency of resource allocation.
  • control information is carried on a physical channel.
  • the physical channel is a physical sideline feedback channel.
  • the first time window includes a first sub-time window and a second sub-time window, and within the first sub-time window, the first terminal stops listening to the time-frequency resource set; In the second sub-time window, the first terminal listens to the time-frequency resource set.
  • the time-frequency resource after the end of the first time window can be selected according to the result of listening to the time-frequency resource set in the second sub-time window to send the SL information;
  • the resource reservation information after the end of the first time window cannot be obtained because the time-frequency resource set is not monitored, and the instruction of the second terminal is not obtained, and the time-frequency resource for sending the SL information is selected by random selection or based on part of the listening result. , resulting in increased resource collision probability and reduced transmission reliability.
  • an embodiment of the present application provides a communication method, which may be executed by a terminal device, or may be executed by a component of the terminal device, such as a processor, a chip, or a chip system of the terminal device.
  • the method includes: the second terminal receives time window indication information from the first terminal, where the time window indication information is used to indicate the first time window; within the first time window, the first terminal stops determining the time-frequency resource set for monitoring the time-frequency resources for sending sideline communication information; the time-frequency resource set is used by the terminal to send sideline communication information; the second terminal sends first indication information to the first terminal within the first time window; the first indication information indicates at least one time-frequency The resource is used for the first terminal to send the first sideline communication information on at least one time-frequency resource.
  • the first terminal determines a first time window.
  • the first terminal selects the time-frequency resource for sending the SL information in the first time window according to the instruction of the second terminal, instead of determining the time-frequency resource to be used in the first time window by listening to the time-frequency resource set The time-frequency resource for sending SL information within. In this way, energy consumption for listening can be saved, and the probability of resource conflict for sending SL information is also reduced.
  • the second terminal receives control information from the first terminal, where the control information is used to instruct to extend the duration of the first time window.
  • the first terminal does not need to reconfigure the first time window to the second terminal, and the first terminal may extend a period of time according to the configuration of the current first time window.
  • the process of configuring the first time window is faster and more convenient, improving the efficiency of resource allocation.
  • control information is carried on a physical channel.
  • the physical channel is a physical sideline feedback channel.
  • the first time window includes a first sub-time window and a second sub-time window, and within the first sub-time window, the first terminal stops listening to the time-frequency resource set; In the second sub-time window, the first terminal listens to the time-frequency resource set.
  • the time-frequency resource after the end of the first time window can be selected according to the result of listening to the time-frequency resource set in the second sub-time window to send the SL information;
  • the resource reservation information after the end of the first time window cannot be obtained because the time-frequency resource set is not monitored, and the instruction of the second terminal is not obtained, and the time-frequency resource for sending the SL information is selected by random selection or based on part of the listening result. , resulting in increased resource collision probability and reduced transmission reliability.
  • an embodiment of the present application provides a communication device, which can implement the method in the first aspect or any possible implementation manner of the first aspect, or implement the second aspect or any possible implementation manner of the second aspect.
  • the apparatus comprises corresponding units or components for carrying out the above-described method.
  • the units included in the apparatus may be implemented by software and/or hardware.
  • the apparatus may be, for example, a terminal, or a chip, a chip system, or a processor that can support the terminal to implement the above method.
  • an embodiment of the present application provides a communication device, including: a processor, where the processor is coupled to a memory, and the memory is used to store a program or an instruction, when the program or instruction is executed by the processor , so that the device implements the above-mentioned first aspect or the method in any possible implementation manner of the first aspect, or implements the above-mentioned second aspect or the method in any possible implementation manner of the second aspect, or implements the above-mentioned third aspect Aspect or the method in any possible implementation manner of the third aspect, or implement the method in any possible implementation manner of the fourth aspect or the fourth aspect.
  • an embodiment of the present application provides a computer-readable storage medium on which a computer program or instruction is stored, and when the computer program or instruction is executed, causes a computer to execute the first aspect or any one of the first aspects.
  • an embodiment of the present application provides a computer program product, which includes computer program code, and when the computer program code runs on a computer, enables the computer to execute the first aspect or any possible implementation of the first aspect method, or implement the above-mentioned second aspect or any method in any possible implementation manner of the second aspect, or implement the above-mentioned third aspect or any method in any possible implementation manner of the third aspect, or implement the above-mentioned method in any possible implementation manner
  • the fourth aspect or the method in any possible implementation manner of the fourth aspect.
  • an embodiment of the present application provides a chip, including: a processor, where the processor is coupled to a memory, and the memory is used to store a program or an instruction, and when the program or instruction is executed by the processor , so that the chip implements the method in the first aspect or any possible implementation manner of the first aspect, or implements the method in the second aspect or any possible implementation manner of the second aspect, or implements the third aspect above.
  • any of the communication devices, chips, computer-readable storage media, computer program products, etc. provided above are all used to execute the corresponding methods provided above. Therefore, for the beneficial effects that can be achieved, refer to the corresponding methods. The beneficial effects of the method are not repeated here.
  • FIG. 1 is a schematic diagram of a scenario to which the technical solution provided by the embodiment of the present application is applicable;
  • FIG. 2 is a schematic diagram of a system architecture to which the technical solution provided by the embodiment of the present application is applicable;
  • FIG. 3 is a schematic structural diagram of a terminal device to which the technical solution provided by the embodiment of the present application is applied;
  • FIG. 4 is a schematic diagram 1 of a communication method provided by an embodiment of the present application.
  • FIG. 5 is a schematic flowchart 1 of a communication method provided by an embodiment of the present application.
  • FIG. 6 is a second schematic diagram of a communication method provided by an embodiment of the present application.
  • FIG. 7 is a schematic diagram 3 of a communication method provided by an embodiment of the present application.
  • FIG. 8 is a second schematic flowchart of a communication method provided by an embodiment of the present application.
  • FIG. 9 is a fourth schematic diagram of a communication method provided by an embodiment of the present application.
  • FIG. 10 is a third schematic flowchart of a communication method provided by an embodiment of the present application.
  • FIG. 11 is a schematic diagram 5 of a communication method provided by an embodiment of the present application.
  • FIG. 12 is a fourth schematic flowchart of a communication method provided by an embodiment of the present application.
  • FIG. 13 is a sixth schematic diagram of a communication method provided by an embodiment of the present application.
  • FIG. 14 is a fifth schematic flowchart of a communication method provided by an embodiment of the present application.
  • FIG. 15 is a seventh schematic diagram of a communication method provided by an embodiment of the present application.
  • FIG. 16 is a sixth schematic flowchart of a communication method provided by an embodiment of the present application.
  • FIG. 17 is a seventh schematic flowchart of a communication method provided by an embodiment of the present application.
  • FIG. 18 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • FIG. 19 is a schematic structural diagram of a terminal device provided by an embodiment of the present application.
  • FIG. 20 is a schematic structural diagram of another communication apparatus provided by an embodiment of the present application.
  • the technical solution provided in the present application can be applied to a system in which the client directly communicates with the client, such as V2X and device-to-device (device-to-device, D2D).
  • the technical solutions provided in the embodiments of the present application may be applied to the system architecture shown in FIG. 2 , and the system architecture may include a network device 200 and multiple terminal devices 100 connected to the network device 200 . Direct communication between multiple terminal devices 100 is referred to as sideline communication.
  • multiple terminal devices 100 are under the network coverage of the network device 200 , and each terminal device 100 may receive the scheduling of the network device 200 , obtain configuration information from the network device 200 , control signaling, etc.
  • the terminal devices 100 communicate through sideline communication.
  • At least one terminal device 100 is under the network coverage of the network device 200 , and at least one terminal device 100 is outside the network coverage of the network device 200 .
  • the terminal device 100 under the network coverage of the network device 200 may receive the scheduling of the network device 200 , and obtain configuration information, control signaling, and the like from the network device 200 .
  • the terminal devices 100 communicate through sideline communication.
  • a plurality of terminal devices 100 are in a communication scenario without network coverage. The terminal devices 100 communicate through sideline communication.
  • Uu (UTRAN-to-UE) air interface transmission is used between the terminal device 100 and the network device 200
  • near field communication PC-5 air interface transmission or sidelink (SL) air interface transmission is used between the terminal devices 100 .
  • the network device 200 may be a macro base station (evolved nodeB, eNB) in a universal mobile telecommunication system/long term evolution (universal mobile telecommunication system/long term evolution, UMTS/LTE) wireless communication system, or may be a heterogeneous network (heterogeneous network,
  • the micro base station eNB in the HetNet can also be a baseband processing unit (base band unit, BBU) and a radio frequency unit (remote radio unit, RRU) in a distributed base station network, or a cloud radio access network (cloud radio access network).
  • network, CRAN in the baseband pool (BBU pool) and RRU, and can also be the gNB in the future wireless communication system.
  • the terminal device 100 may be an access terminal, a UE (user equipment) unit, a UE station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a UE terminal, a UE proxy, a UE apparatus, or the like.
  • a UE user equipment
  • the access terminal may be a cellular telephone, a cordless telephone, a session initiation protocol (SIP) telephone, a wireless local loop (WLL) station, a personal digital assistant (PDA), a wireless communication Functional handheld devices (eg, mobile phones, tablets, etc.), wearable devices, computing devices or other processing devices connected to wireless modems, in-vehicle devices, in-vehicle communication modules or other embedded communication modules, terminals in 5G networks or future Terminals in evolved PLMN networks, etc.
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDA personal digital assistant
  • system architecture shown in FIG. 2 is only used for example, and is not used to limit the technical solution of the present application.
  • the system architecture may also include other devices (eg, core network), and the number of terminal devices 100 and network devices 200 may also be configured according to specific needs.
  • the communication method and apparatus provided by the embodiments of the present application can be applied to a terminal device, where the terminal device includes a hardware layer, an operating system layer running on the hardware layer, and an application layer running on the operating system layer.
  • This hardware layer includes hardware such as central processing unit (CPU), memory management unit (MMU), and memory (also called main memory).
  • the operating system may be any one or more computer operating systems that implement business processing through processes.
  • the application layer includes applications such as browsers, address books, word processing software, and instant messaging software.
  • the specific structure of the execution body of the communication method is not particularly limited in the embodiment of the present application, as long as the program that records the code of the communication method of the embodiment of the present application can be executed according to the present application.
  • the execution subject of the communication method provided by the embodiment of the present application may be a terminal device, or a functional module in the terminal device that can call a program and execute the program, or be applied to the terminal device.
  • the device for example, a chip, is not limited in this application.
  • the protocol stack structure of the terminal device 100 in the embodiment of the present application is as shown in FIG. 3 , which is, from bottom to top, a physical (physical, PHY) layer, a media access control (media access control, MAC) layer, Radio link control (radio link control, RLC) layer, packet data convergence protocol (packet data convergence protocol, PDCP) layer, application (application, APP) layer.
  • a physical (physical, PHY) layer a media access control (media access control, MAC) layer
  • Radio link control (radio link control, RLC) layer radio link control (radio link control, RLC) layer
  • packet data convergence protocol packet data convergence protocol
  • PDCP packet data convergence protocol
  • application application, APP
  • the physical layer is mainly used for telecommunication physical layer functions such as modulation and demodulation, multi-antenna mapping
  • the MAC layer is mainly used for uplink and downlink scheduling and hybrid automatic repeat request (HARQ) retransmission
  • the RLC layer is mainly used for Segmentation, retransmission processing, and order control of high-level data
  • the PDCP layer is mainly used for header compression and decompression to reduce the bit traffic that must be transmitted by the wireless interface
  • the APP layer includes a series of application packages; such as cameras, galleries, Calendar, call, map, navigation, bluetooth, music, video, SMS and other applications.
  • the resource allocation mode for sideline communication between terminal devices can be a scheduling mode or a self-selected resource mode.
  • the terminal device uses the transmission resources allocated by the network device to send and receive sideline communication information.
  • the terminal device In the self-selected resource mode, the terminal device itself determines the transmission resources for sending and receiving sideline communication information.
  • the terminal device determines the time-frequency resource for sending the sidelink communication information by sensing (sensing) the time-frequency resource set.
  • the time-frequency resource set is a resource set used for sending sidelink communication information between terminal devices in the network, and the time-frequency resource set may also be called a resource pool or a sidelink bandwidth part.
  • the set of time-frequency resources contained in SL BWP includes resources such as time domain, frequency domain, and/or code domain.
  • the time domain resources of the time-frequency resource set include one or more time units; a time unit can be a symbol (symbol), multiple symbols, a time slot (slot), a subframe (subframe) or a frame (frane) ), etc.; one or more time units may be continuous or discrete in time.
  • the frequency domain resources of the time-frequency resource set include one or more frequency domain units; a frequency domain unit may be a resource element (resource element, RE), multiple REs, a resource block (resource block, RB), multiple RBs , one subchannel (subchannel) or multiple subchannels, etc.; wherein, one subchannel includes one or more continuous or non-consecutive RBs in the frequency domain.
  • the time unit is a time slot (slot) and the frequency domain unit is a subchannel (subchannel) as an example for description; it is understandable that the communication method provided by the embodiment of the present application is also applicable to other time units and frequency domain unit.
  • time units are logically consecutive.
  • time slot 1 to time slot 8 are time slots that are physically consecutive in time, that is, physical time slots.
  • the time slot 1, time slot 3, time slot 5 and time slot 8 are configured to belong to one time-frequency resource set.
  • time slot 1 (time slot 1'), time slot 3 (time slot 2'), time slot 5 (time slot 3') and time slot 8 (time slot 4') are logically consecutive time slot. It can be understood that the consecutive time slots described in the embodiments of the present application are logically consecutive time slots.
  • the terminal device can obtain the time-frequency resource set from the network device; it can also use the pre-configured time-frequency resource set.
  • a terminal device under the network coverage of the network device may receive a system information block (SIB) of the network device, a cell-specific radio resource control (radio resource control, RRC)
  • SIB system information block
  • RRC radio resource control
  • the time-frequency resource set configuration information is obtained through signaling or UE-specific RRC signaling; the time-frequency resource set is obtained according to the time-frequency resource set configuration information.
  • the terminal device may obtain the time-frequency resource set by using the preconfigured time-frequency resource set configuration information.
  • the method for a terminal device to determine a transmission resource for sending sidelink communication information by listening to a time-frequency resource set may include:
  • the first terminal triggers a resource selection process at time slot n, and determines a time-frequency resource for sending the first SL information to be sent.
  • SL information includes physical layer sidelink shared channel (PSSCH), physical layer sidelink control channel (physical sidelink control channel, PSCCH), physical layer broadcast control channel (physical broadcast control channel, PSBCH) , at least one of a physical layer sidelink feedback channel (physical sidelink feedback channel, PSFCH), and a physical layer sidelink data channel (physical sidelink data channel, PSDCH).
  • PSSCH physical layer sidelink shared channel
  • PSCCH physical sidelink control channel
  • PSBCH physical layer broadcast control channel
  • PSFCH physical sidelink feedback channel
  • PSDCH physical sidelink data channel
  • the types of services carried by the PSSCH may include unicast, multicast and/or broadcast communication types.
  • the expression [A, B] in this application represents a value range including boundary points A and B
  • the expression (A, B) represents a value range that does not include boundary points A and B at the same time.
  • the expression [A, B) represents the value range that includes the boundary point A and does not include the boundary point B
  • the expression (A, B] represents the value range that does not include the boundary point A and includes the boundary point B. This will not be repeated elsewhere in the text.
  • the first terminal is in the listening window (eg, time slot ) to receive SL information (eg, PSCCH or PSCCH and PSSCH) from other terminals in the network within the time-frequency resource set.
  • T 0 is configured or pre-configured by the network device, Determined by the terminal according to Table 1.
  • the ⁇ SL in the table is related to the sub-carrier spacing (SCS) corresponding to the SL bandwidth part (BWP) of the terminal, and the ⁇ SL can be understood as the SCS configuration parameter of the SL BWP.
  • SCS sub-carrier spacing
  • BWP SL bandwidth part
  • Table 2 the corresponding relationship between the subcarrier spacing SCS and ⁇ SL is shown in Table 2 below.
  • the terminal can determine the parameters according to Table 1 and Table 2 Among them, Table 1 and Table 2 are predefined by the protocol.
  • the terminal device determines the transmission resources used for sending sidelink communication information by listening to the time-frequency resource set, and specifically refers to listening to the time-frequency resource set in the listening window in the time-frequency resource set to determine. Transmission resource for sending sideline communication information.
  • the first terminal detects and decodes sidelink control information (SCI) on PSCCH.
  • SCI can schedule at least one sideline transmission; for example, an SCI schedules three sideline transmissions, the first sideline transmission is the initial transmission of data carried by a PSSCH, and the next two sideline transmissions are retransmissions of the data.
  • an SCI schedules 3 sideline transmissions, and these 3 sideline transmissions are all retransmissions of one data.
  • the SCI detected by the first terminal includes the time domain and/or frequency domain resource information of the scheduled sideline transmission, the periodic time-frequency resource information (which can be indicated by the resource reservation period field) reflecting the data service period, and the priority information ( priority), etc., specifically, the priority information may indicate priority information corresponding to the PSSCH.
  • a terminal (terminal 2) in the network reserves a time-frequency resource in the selection window by sending an SCI for new transmission or retransmission of the data to be sent,
  • the time slot range of the selection window is [n+T 1 , n+T 2 ], n+T 1 is the start time slot number, n+T 2 is the end time slot number, T 1 and T 2 are based on the data of the terminal delay to be determined.
  • the first terminal detects the SCI, and learns the time-frequency resource reservation situation of the second terminal in the selection window by decoding the SCI.
  • the first terminal avoids selecting time-frequency resources reserved by other terminals within the selection window to send the SL information, so as to reduce resource collision.
  • the first terminal excludes the time-frequency resources reserved by the second terminal within the selection window from the time-frequency resources that can be used to send the first SL information, that is, excludes unavailable time-frequency resources:
  • the terminal is in the time slot An SCI is received, the field "resource reservation period” in the SCI (if the field “resource reservation period” is present) indicates the value P rsvp_RX , and the field “priority” in the SCI indicates the value prio RX ; where the value P rsvp_RX is The period of the PSSCH corresponding to the SCI, and the value prio RX is the priority value of the PSSCH corresponding to the SCI.
  • the RSRP measurement result determined by the terminal according to the SCI is higher than the threshold Th prio TX, prioRX , where the threshold Th prio TX, prioRX is a function of the priority value indicated in the received SCI and the priority value corresponding to the data to be sent by the terminal .
  • the terminal is in the time slot
  • the reserved time-frequency resources determined by the received SCI overlap with the time-frequency resources in the selection window.
  • the first terminal may determine that the remaining time-frequency resources in the resource selection window are available time-frequency resources, so as to select the available time-frequency resources for sending to-be-sent.
  • the time-frequency resource of the first SL information may be determined.
  • the number of times that the first terminal listens in the listening window can be reduced, so as to save the power of the terminal.
  • listening windows eg, time slots
  • partial listening only a part of the time slots before time slot n
  • the time-frequency resource for sending the first SL information is determined according to the result of the partial listening.
  • the first terminal does not perform listening, and selects the time-frequency resource for sending the first SL information in a random selection manner.
  • the embodiment of the present application provides a communication method, which can reduce the probability of time-frequency resource conflict for sending sideline communication information.
  • the communication method provided by this embodiment of the present application may include:
  • the first terminal acquires an activated first time window.
  • the network device or terminal configures one or more time slots in the time domain in the time-frequency resource set as a cooperation window (the first time window), or configures one or more time slots in the time domain in the preconfigured time-frequency resource set as a cooperation window (the first time window).
  • One or more of the time slots are a first time window.
  • the first time window is used by the terminal device to determine the time-frequency resource for sending the SL information in the time-frequency resource set according to the instruction of the auxiliary terminal.
  • at least one first time window may be configured in the time-frequency resource set.
  • the terminal device can activate or deactivate the configuration.
  • the first terminal stops determining the time-frequency resource for sending the SL information by listening to the time-frequency resource set; instead, it determines the time-frequency resource in the time-frequency resource set according to the instruction of the auxiliary terminal (second terminal). Time-frequency resources for sending SL information.
  • the first terminal determines the time-frequency resource for sending SL information by listening to the time-frequency resource set; Time-frequency resources for sending SL information.
  • a connection of inter-terminal cooperation is established between the first terminal and the second terminal; including the interaction of cooperation information between the first terminal and the second terminal through signaling; exemplarily, the signaling includes PC5-RRC, SL MAC CE or SCI; may also include information about establishing a connection between the first terminal and the second terminal provided by the APP layer of the first terminal to the MAC layer and the PHY layer; the cooperation information includes the identification information of the first terminal and the second terminal, which is used for the first terminal and the second terminal.
  • the terminal and the second terminal identify each other or their data; the first terminal and the second terminal belong to a cooperative peer or a cooperative group, or belong to a group of cooperative data/services.
  • the activated first time window includes a first sub-time window.
  • the first terminal stops listening to the time-frequency resource set, and stops determining the time-frequency resource used for sending the SL information in the first sub-time window by listening to the time-frequency resource set.
  • the indication of the two terminals determines the time-frequency resource used for sending the SL information within the activated first time window in the time-frequency resource set.
  • the activated first time window further includes a second sub-time window.
  • the first terminal listens to the time-frequency resource set, but does not determine the time-frequency resource for sending the SL information in the second sub-time window by listening to the time-frequency resource set, but according to the second sub-time window
  • the indication of the terminal determines, in the time-frequency resource set, time-frequency resources used for sending the SL information within the second sub-time window.
  • the time-frequency resource after the end of the first time window can be selected according to the result of listening to the time-frequency resource set in the second sub-time window to send the SL information;
  • the resource reservation information after the end of the first time window cannot be obtained because the time-frequency resource set is not monitored, and the instruction of the second terminal is not obtained, and the time-frequency resource for sending the SL information is selected by random selection or based on part of the listening result. , resulting in increased resource collision probability and reduced transmission reliability.
  • the monitoring described in the embodiments of the present application includes full-sensing (sensing) and partial-sensing (partial-sensing) resource selection methods for selecting resources.
  • the interception described in the embodiments of the present application further includes a resource selection method in which the terminal in the DRX (dis-continuous reception) mode selects resources based on interception, that is, the resources in the DRX-OFF (or DRX inactive state) time period No SCI interception; or any other situation where the resource selection method is obtained based on the non-full interception mode.
  • the first time window includes a first sub-time window and a second sub-time window.
  • the first sub-time window and the second sub-time window do not overlap in time
  • the second sub-time window is after the first sub-time window
  • the length of the cooperation window is equal to the sum of the length of the first sub-time window and the length of the second sub-time window .
  • the first terminal acquires the first time window information.
  • the first time window information includes the number of time slots included in the first time window.
  • the time slot may be a physical time slot, for example, the first time window is the length of a system frame number (system frame number, SFN) or a direct frame number (direct frame number, DFN) or the length of q SFNs, where q is greater than 1 A positive integer of ; exemplarily, the first time window is 1000ms, 2000ms, 3000ms, 4000ms, 5000ms, 6000ms, 7000ms, 8000ms, 9000ms, 1000ms or 10240ms, etc.
  • the time slot may also be a logical time slot of the time-frequency resource set, which is converted from a physical time slot.
  • the first time window information further includes at least one kind of information among the starting position of the first time window, interval information between adjacent first time windows, and the like.
  • the starting position of the first time window may be an offset (offset) value relative to SFN 0 or DFN 0, or an offset (offset) value relative to receiving the information sent by the second terminal.
  • the first terminal further acquires information of the first sub-time window.
  • the first sub-time window information includes the number of time slots or the physical time length included in the first sub-time window.
  • the time slot may be a physical time slot or a logical time slot of the time-frequency resource set, which is converted from the physical time slot.
  • the unit of the physical time length is milliseconds or seconds, such as the length of a system frame number (system frame number, SFN) or direct frame number (DFN) or the length of q SFNs, where q is a positive value greater than 1 Integer; exemplary, the cooperation window is 1000ms, 2000ms, 3000ms, 4000ms, 5000ms, 6000ms, 7000ms, 8000ms, 9000ms, 1000ms or 10240ms, etc.
  • the starting position of the first sub-time window is the same as the starting position of the first time window.
  • the first sub-time window information may further include at least one kind of information among the starting position of the first sub-time window, interval information between adjacent first sub-time windows, and the like.
  • the starting position of the first sub-time window may be an offset (offset) value relative to SFN 0 or DFN 0 or the starting position of the first time window, or an offset ( offset) value.
  • the first terminal further acquires information of the second sub-time window.
  • the second sub-time window information includes the number of time slots or the physical time length included in the second sub-time window.
  • the time slot may be a physical time slot or a logical time slot of the time-frequency resource set, which is converted from the physical time slot.
  • the unit of the physical time length is milliseconds or seconds, such as the length of a system frame number (system frame number, SFN) or direct frame number (DFN) or the length of q SFNs, where q is a positive value greater than 1 Integer; exemplary, the cooperation window is 1000ms, 2000ms, 3000ms, 4000ms, 5000ms, 6000ms, 7000ms, 8000ms, 9000ms, 1000ms or 10240ms, etc.
  • the start position of the second sub-time window is after the end position of the first time window, and the start position of the second sub-time window and the end position of the first sub-time window are adjacent in time .
  • the second sub-time window information further includes at least one kind of information among the starting position of the second sub-time window, interval information between adjacent second sub-time windows, and the like.
  • the starting position of the second sub-time window may be an offset value relative to SFN 0 or DFN 0 or the starting position of the first time window or the ending position of the first sub-time window, or relative to the received second time window. An offset value of the information sent by the terminal.
  • the first terminal acquires at least one item of the first time window information and the first sub-time window information. If the first time window includes the first sub-time window and the second sub-time window, the length of the first time window is equal to the sum of the length of the first sub-time window and the length of the second sub-time window; the first terminal obtains the information of the first time window , at least two pieces of information among the first sub-time window information and the second sub-time window information.
  • the first terminal can obtain the first time window information from the network device through RRC information, SIB information or MIB information, or obtain the first time window information from the second terminal through PC5-RRC information, MAC CE, SCI or SFCI, or determine by itself. First time window information.
  • the first terminal determines the first SL information to be sent.
  • the first terminal determines the first SL information to be sent, where the first SL information may be newly transmitted service/data or retransmitted service/data.
  • the first terminal may also determine information such as the data type, data size, and data receiving end of the first SL information to be sent.
  • the first terminal sends a resource allocation request to the second terminal within the activated first time window.
  • the resource allocation request is used to request the second terminal to allocate time-frequency resources for the first terminal to send the first SL information.
  • the second terminal determines a time-frequency resource for the first terminal to send the first SL information.
  • the second terminal determines the time-frequency resource for the first terminal to send the first SL information by listening to the time-frequency resource set. For example, the second terminal receives SL information (eg, PSCCH, or PSCCH and PSSCH) of other terminals in the time-frequency resource set within the listening window, and obtains the time-frequency resource reservation status of other terminals, so as to determine the time-frequency Idle time-frequency resources in the resource set. The second terminal determines the time-frequency resource for the first terminal to send the first SL information from the idle time-frequency resources in the time-frequency resource set.
  • SL information eg, PSCCH, or PSCCH and PSSCH
  • the resource allocation request includes auxiliary information, where the auxiliary information is used by the second terminal to determine a time-frequency resource for the first terminal to send the first SL information.
  • the auxiliary information may include priority information of the first SL information to be sent by the first terminal, size information of the first SL information to be sent, identification information of the first terminal, and reception of the first SL information to be sent by the first terminal. at least one of the identification information corresponding to the terminal.
  • the size information of the first SL information to be sent may be the size of a transport block (transport block size, TBS), or the buffer status report (buffer status report, BSR), or the child bearing the first SL information to be sent.
  • the sub-channel information may indicate the number of sub-channels and/or time slots that need to be occupied by the first SL information to be sent).
  • the above-mentioned identification information may be identification information used to identify a terminal, or identification information of data/services to be sent by a terminal to send the first SL information; the identification information may be used to identify the sender of the first SL information or The receiver; the identification information may be at least a part of the complete identification information.
  • the second terminal receives the auxiliary information, and determines, according to the auxiliary information, time-frequency resources for the first terminal to send the first SL information from the idle time-frequency resources in the time-frequency resource set.
  • the second terminal may receive the resource indication information of the network device from the network device, and determine the time-frequency resource for the first terminal to send the first SL information according to the resource indication information received from the network device.
  • the second terminal sends the first indication information to the first terminal within the activated first time window.
  • the second terminal sends first indication information to the first terminal in the first time-frequency unit within the activated first time window, where the first indication information indicates at least one time-frequency resource for the first terminal to send the first SL information.
  • the at least one time-frequency resource is temporally within the activated first time window.
  • the first time-frequency unit may be a time-frequency resource set composed of a time slot and a subchannel, or a time-frequency resource set composed of a time slot or multiple time slots and one or more subchannels.
  • the first terminal and the second terminal respectively receive first configuration information of the network device, where the first configuration information includes first time-frequency unit indication information for indicating the first time-frequency unit.
  • the first terminal and the second terminal respectively acquire the first time-frequency unit according to the first time-frequency unit indication information.
  • the first terminal and the second terminal respectively receive the SIB of the network device, the master information block (master information block, MIB), the RRC, the downlink control information (downlink control information, DCI), the MAC control parameter (control element, CE) to obtain the first configuration information.
  • the first terminal and the second terminal acquire the first time-frequency unit according to preconfigured parameters.
  • the second terminal acquires the first time-frequency unit by listening to the time-frequency resource set, or receives the first configuration information of the network device, or according to pre-configured parameters; and sends the first time-frequency unit to the first terminal.
  • Frequency unit indication information Exemplarily, the second terminal sends the first time-frequency unit to the first terminal through at least one of SL-MIB, PC5-RRC, SCI, sidelink feedback control information (SFCI), and SL MAC CE. Instructions.
  • the first terminal acquires the first time-frequency unit according to the first time-frequency unit indication information.
  • the first terminal obtains the first time-frequency unit by listening to the time-frequency resource set, or receives the first configuration information of the network device, or according to pre-configured parameters; and sends the first time-frequency unit to the second terminal.
  • Frequency unit indication information Exemplarily, the first terminal sends the first time-frequency unit indication information to the second terminal through at least one of SL-MIB, PC5-RRC, SCI, SFCI, and SL MAC CE.
  • the second terminal acquires the first time-frequency unit according to the first time-frequency unit indication information.
  • the first terminal receives the first indication information, and sends the first SL information on at least one time-frequency resource indicated by the first indication information.
  • the first terminal receives the first indication information within the activated first time window, and sends the first SL information on at least one time-frequency resource indicated by the first indication information.
  • the first terminal selects the time-frequency resource for sending the SL information in the first time window according to the instruction of the auxiliary terminal (the second terminal), Instead of determining the time-frequency resource for sending the SL information within the first time window by listening to the time-frequency resource set. In this way, not only the energy consumption of listening can be saved, but also the time-frequency resources for sending SL information can be determined according to the instruction of the second terminal, so that there is no need to select resources according to the incomplete information of listening, and the resources for sending SL information can be reduced. chance of conflict.
  • the first terminal acquires the first time window (the first time window is activated). On the first time-frequency resource in the first time window (the time-domain resource of the first time-frequency resource is the time slot s1), the first terminal sends a resource configuration request to the auxiliary terminal (the second terminal) for requesting the first terminal. The second terminal determines the time-frequency resource for the first terminal to send the first SL information. The first terminal determines to receive the first indication information in the time slot s2 according to the preconfigured parameter.
  • the first terminal obtains the first indication information on the second time-frequency resource (the time domain resource of the second time-frequency resource is the time slot s2), and determines the third time-frequency resource (the third time-frequency resource) according to the first indication information.
  • the time domain resource of the time-frequency resource is the time slot s3) to send the first SL information.
  • the first terminal selects a time-frequency resource for sending the SL information within the first time window according to the instruction of the second terminal.
  • the second terminal determines the first time window for activation, and the first terminal obtains the first time window for activation according to the instruction of the second terminal; that is, the second terminal determines that the first terminal stops listening to the time-frequency resource by The set determines the time period of the time-frequency resources used to transmit the sideline communication information.
  • the communication method provided by the embodiment of the present application includes:
  • the second terminal determines an activated first time window.
  • the network device or terminal configures one or more time slots in the time domain in the time-frequency resource set as a cooperation window (first time window), or preconfigures the time-frequency resource set in the time domain in one or more time slots.
  • One or more time slots are a first time window.
  • at least one first time window may be configured in the time-frequency resource set.
  • the second terminal determines to activate a first time window. Within the activated first time window, the first terminal stops determining the time-frequency resource for sending the sidelink communication information by listening to the time-frequency resource set.
  • the second terminal can determine the reserved usage of the time-frequency resource set of other terminals in the first time period by listening, or the second terminal can obtain the time-frequency resource set in the first time period through the scheduling or resource configuration of the network device. If the time-frequency resource of the frequency resource set is selected, the first time period may be determined as the activated first time window.
  • the second terminal indicates the activated first time window to the first terminal.
  • the second terminal acquires at least one first time window of the time-frequency resource set; wherein, the at least one first time window may be configured by the network device, or preconfigured, or predefined.
  • the first terminal acquires at least one first time window in the time-frequency resource set.
  • the at least one first time window may be configured by the network device, or preconfigured, or predefined, or indicated by the second terminal.
  • the configuration information of the at least one first time window remains unchanged for a period of time.
  • the second terminal dynamically activates or deactivates a first time window in the at least one first time window; if the first time window is activated, the first time window is the activated first time window, and the first terminal stops
  • the time-frequency resource used for sending the sidelink communication information in the activated first time window is determined by listening to the time-frequency resource set, and the time-frequency resource used in the activated first time-frequency resource set is determined in the time-frequency resource set according to the instruction of the second terminal.
  • the time-frequency resource for sending SL information within a time window if the first time window is deactivated, the first time window is the deactivated first time window, and the first terminal determines by listening to the time-frequency resource set to be used in the The time-frequency resource for sending the sideline communication information within the deactivated first time window is not the time-frequency resource for sending the SL information within the deactivated first time window in the time-frequency resource set according to the instruction of the second terminal. frequency resources.
  • the second terminal sends first control information to the first terminal, where the first control information includes activation indication information for indicating activation of a first time window of the at least one first time window; the first control information may also include The deactivation indication information is used to instruct to deactivate one first time window of the at least one first time window.
  • the second terminal may determine to activate or deactivate the first time window according to the channel state (including channel congestion and/or channel interference level, etc.) and/or the second terminal has enough basic allocated time-frequency resources.
  • the channel congestion situation may be determined according to a channel busy ratio (channel busy ratio, CBR) and/or a channel occupancy ratio (channel occupancy ratio) measured by the second terminal. Specifically, a CBR threshold and/or a CR threshold is set.
  • the CBR threshold and/or the CR threshold may be related to priority.
  • the CBR threshold and/or the CR threshold may be configured by the network device, or pre-configured, or predefined.
  • the second terminal activates the first time window.
  • the channel is congested, when the first terminal determines the time-frequency resource for sending the SL information within the activated first time window by listening to the time-frequency resource set, the probability of resource collision will increase;
  • the time-frequency resources used for sending the SL information within the activated first time window will benefit from the benefits of the central scheduling of the second terminal and reduce resource collisions.
  • the channel interference level can be determined according to the NACK received by the second terminal or the determination of discontinuous transmission (DTX); the condition for determining DTX is that the HARQ feedback information is not correctly received on the resource that should receive the HARQ feedback (not correctly received). to ACK or NACK). Specifically, when the number of consecutively received NACKs by the second terminal exceeds the first NACK threshold and/or the total number of received NACKs exceeds the second NACK threshold and/or the DTX threshold and/or the determined DTX exceeds the DTX within a period of time Threshold, it is determined that the channel interference level is high, and the second terminal activates the first time window.
  • DTX discontinuous transmission
  • the first NACK threshold and/or the second NACK threshold and/or the DTX threshold may be related to priority.
  • the first NACK threshold and/or the second NACK threshold and/or the DTX threshold may be configured by the network device, or pre-configured, or predefined.
  • the channel interference level can also be determined according to the measured reference signal received power (reference signal received power, RSRP) and/or received signal strength indicator (received signal strength indicator, RSSI); specifically, set an RSRP threshold and/or an RSSI threshold .
  • the RSRP threshold and/or the RSSI threshold may be related to priority.
  • the RSRP threshold and/or the RSSI threshold may be configured by the network device, or pre-configured, or predefined.
  • the second terminal activates the first time window.
  • the channel interference level is high, when the first terminal determines the time-frequency resource for sending the SL information within the activated first time window by listening to the time-frequency resource set, the probability of resource collision will increase. Instructing to select the time-frequency resource for sending the SL information within the activated first time window will benefit from the central scheduling of the second terminal and reduce resource collision.
  • the size of the basic allocated time-frequency resource is the minimum time-frequency resource used by a terminal for transmitting PSSCH, such as one time slot and one subchannel; the size of the basic allocated time-frequency resource may also be predefined by a standard.
  • the quantity of sufficient basic allocated time-frequency resources may be determined according to a basic allocated time-frequency resource threshold.
  • the basic allocation time-frequency resource threshold value may be related to the priority.
  • the basic allocation time-frequency resource threshold value may be configured by the network device, or pre-configured, or pre-defined.
  • the second terminal can provide a resource indication for the first terminal, and the second terminal activates the first terminal. a time window.
  • the second terminal sends the first control information to the first terminal through non-physical layer signaling such as PC5-RRC or SL MAC CE or RRC or MAC CE or pre-configuration.
  • non-physical layer signaling such as PC5-RRC or SL MAC CE or RRC or MAC CE or pre-configuration.
  • the second terminal sends the first control information to the first terminal in the time slot (f-g); for example, the first control information is GTNS (GoToNon-Sensing (GTN) signal)), and GTNS includes activation (active) or deactivation.
  • De-active information is used to activate or deactivate a first time window whose starting position is time slot f.
  • GTNS is carried with 1 bit. For example, a GTNS value of "1" indicates activation, and a GTNS value of "0" indicates deactivation; for another example, a GTNS value of "1" indicates activation, and not sending GTNS indicates deactivation.
  • the first control information is carried on a physical channel, such as PSFCH.
  • the PSFCH resource used for carrying the first control information and the PSFCH resource used for HARQ feedback ACK or NACK information are orthogonal (orthogonal), that is, do not overlap.
  • the PSFCH resource bearing the first control information is configured, or pre-configured, or predefined by the network device.
  • a PSFCH resource includes a symbol and a physical resource block (physical resource block, PRB) for carrying the first control information.
  • a PSFCH resource may also include code domain resources; for example, if the first control information is sent in a sequence, different cyclic shifts (cyclic shifts) of the sequence may be used to represent different code domain resources .
  • the time slot (f-g) is located before the time slot f, and the time slot that is closest to the time slot f in time has the PSFCH resource.
  • the time slot (f-g) is located before the time slot f, and is the time slot closest in time to the time slot f and satisfying the processing delay of the first terminal.
  • the processing delay is the delay required by the first terminal to receive and process the PSFCH.
  • f ⁇ g, f and g are both positive integers.
  • the value of g may be carried in the first control information, or configured by the network device, or provided by the configuration information of the time-frequency resource set, or pre-configured, or pre-defined.
  • the second terminal sends GTNS in the time slot (f-g), indicating that the activation starting position is the first time window of the time slot f.
  • the first terminal acquires the activated first time window according to the instruction of the second terminal.
  • the first terminal acquires at least one first time window in the time-frequency resource set.
  • the at least one first time window may be configured by the network device, or preconfigured, or predefined, or indicated by the second terminal.
  • the configuration information of the at least one first time window remains unchanged for a period of time.
  • the first terminal receives first control information from the second terminal, where the first control information is used to instruct activation or deactivation of a first time window in the at least one first time window.
  • the first terminal obtains the first control information by receiving non-physical layer signaling such as PC5-RRC or SL MAC CE or RRC or MAC CE or pre-configuration.
  • non-physical layer signaling such as PC5-RRC or SL MAC CE or RRC or MAC CE or pre-configuration.
  • the first terminal receives the first control information in the time slot (f-g); for example, the first control information is GTNS (GoToNon-Sensing (GTN) signal)), and the GTNS includes activation (active) or deactivation (de -active) information for activating or deactivating a first time window whose starting position is time slot f.
  • the first control information includes activation information
  • the first terminal determines that the starting position of activation is the first time window of time slot f, that is, the first time window whose starting position is time slot f is the first time window of activation; Within the time window, the first terminal stops determining the time-frequency resource for sending the sidelink communication information within the activated first time window by listening to the time-frequency resource set.
  • the first terminal determines that the start position of deactivation is the first time window of time slot f, that is, the first time window whose start position is time slot f is the first time window of deactivation window; within the time window, the first terminal determines, by listening to the time-frequency resource set, the time-frequency resource for sending the sidelink communication information within the deactivated first time window.
  • the first terminal determines the first SL information to be sent.
  • the first terminal sends a resource allocation request to the second terminal.
  • the second terminal determines a time-frequency resource for the first terminal to send the first SL information.
  • the second terminal sends the first indication information to the first terminal within the activated first time window.
  • the first terminal receives the first indication information, and sends the first SL information on at least one time-frequency resource indicated by the first indication information.
  • S704-S708 may refer to S602-S606, which will not be repeated here.
  • the second terminal configures the first time window for activation for the first terminal.
  • the first terminal selects the time-frequency resource for sending the SL information within the activated first time window according to the instruction of the second terminal, instead of listening to the time-frequency resource
  • the set determines the time-frequency resources used to send the SL information within the activated first time window. In this way, energy consumption for listening can be saved, and the probability of resource conflict for sending SL information is also reduced.
  • the second terminal instructs to extend the first time window.
  • the communication method provided by the embodiment of the present application may further include S709 and S710:
  • the second terminal sends the second control information to the first terminal.
  • the second control information is used to instruct to extend the duration of the first time window.
  • the extended duration of the first time window is the duration of the first time window; for another example, the extended duration of the first time window is the duration of two first time windows; for another example, the extended duration of the first time window is half The duration of the first time window.
  • the second terminal may determine the length of the extension of the first time window according to the result of monitoring the time-frequency resource set.
  • the end moment of the first time window is the start moment of the extended time window.
  • the extended time window duration is equal to the first time window duration, and the extended time window frequency domain resource configuration is the same as the first time window frequency domain resource configuration.
  • the second control information is carried with 1 bit.
  • the second control information value is "1" it means that at the end of the collaboration window, the collaboration window is extended immediately, and the extended duration is the duration of the collaboration window, and the extended time window frequency domain resource configuration and the collaborative window frequency domain resource configuration The same; if the value of the second control information is "0", it means that the extension duration is 0, that is, the cooperation window is not extended.
  • the second control information is carried on a physical channel, such as PSFCH; that is, the second terminal sends the second control information to the first terminal through the PSFCH.
  • PSFCH resources used for carrying the second control information and the PSFCH resources used for HARQ feedback of ACK or NACK information are orthogonal, ie do not overlap.
  • the PSFCH resource bearing the second control information is configured, or pre-configured, or predefined by the network device.
  • one PSFCH resource includes one symbol and one PRB, and is used to carry the second control information.
  • a PSFCH resource may also include code domain resources; exemplarily, if the second control information is sent in a sequence, different cyclic shifts (cyclic shifts) of the sequence may be used to represent different code domain resources .
  • the second control information is carried on the last PSFCH resource in time within the first time window.
  • the second control information carried on the last PSFCH resource in time within the first time window instructs to extend the first time window.
  • the first time window is immediately extended, and the extended duration is the duration of the first time window.
  • the first terminal extends the first time window according to the second control information.
  • the first terminal receives the second control information, and extends the first time window according to the second control information. For example, if the value of the second control information is "1", the first terminal immediately extends the first time window at the end of the first time window.
  • a time window frequency domain resource configuration is the same.
  • the second terminal does not need to reconfigure the first time window to the first terminal, and the first terminal may extend a period of time according to the current configuration of the first time window.
  • the process of configuring the first time window is faster and more convenient, improving the efficiency of resource allocation.
  • the first terminal determines the time period of the first time window according to its own needs.
  • the communication method provided by the embodiment of the present application includes:
  • the first terminal determines an activated first time window.
  • the network device or terminal configures one or more time slots in the time domain in the time-frequency resource set as a cooperation window (first time window), or preconfigures one or more time slots in the time domain in the time-frequency resource set.
  • the slot is a first time window.
  • at least one first time window may be configured in the time-frequency resource set.
  • the first terminal determines to activate a first time window. Within the activated first time window, the first terminal stops determining the time-frequency resource for sending the sideline communication information by listening to the time-frequency resource set.
  • the first terminal determines to stop determining the first time window of the time-frequency resource for sending the sidelink communication information by listening to the time-frequency resource set.
  • the first terminal may also determine the first time window according to the channel state (including channel congestion and/or channel interference level, etc.).
  • a CBR threshold and/or a CR threshold is set.
  • the CBR threshold and/or the CR threshold may be related to priority.
  • the CBR threshold and/or the CR threshold may be configured by the network device, or pre-configured, or predefined.
  • the first terminal determines the first time window.
  • the higher the degree of channel congestion that is, the higher the value of the CBR or CR measurement, the longer the length of the first time window.
  • the channel interference level can be determined according to the NACK received by the first terminal or the judgment of discontinuous transmission (DTX); the condition for judging DTX is that the HARQ feedback information is not correctly received on the resources that should receive the HARQ feedback (not correctly received). to ACK or NACK). Specifically, when the number of consecutively received NACKs by the first terminal exceeds the first NACK threshold and/or the total number of received NACKs exceeds the second NACK threshold and/or the DTX threshold and/or the determined DTX exceeds the DTX within a period of time Threshold, it is determined that the channel interference level is high, and the first terminal determines the first time window.
  • DTX discontinuous transmission
  • the higher the channel interference level that is, the greater the number of NACKs and/or the greater the number of DTXs that are determined, the longer the length of the first time window.
  • the first NACK threshold and/or the second NACK threshold and/or the DTX threshold may be related to priority.
  • the first NACK threshold and/or the second NACK threshold and/or the DTX threshold may be configured by the network device, or pre-configured, or predefined.
  • the channel interference level can also be determined according to the measured reference signal received power (reference signal received power, RSRP) and/or received signal strength indicator (received signal strength indicator, RSSI); specifically, set an RSRP threshold and/or an RSSI threshold .
  • RSRP reference signal received power
  • RSSI received signal strength indicator
  • the RSRP threshold and/or the RSSI threshold may be related to priority.
  • the RSRP threshold and/or the RSSI threshold may be configured by the network device, or pre-configured, or predefined.
  • the RSRP measured by the first terminal is greater than the RSRP threshold and/or the measured RSSI is greater than the RSSI threshold, it is determined that the channel interference level is high, and the first terminal determines the first time window.
  • the higher the channel interference level that is, the higher the measured value of RSRP or RSSI, the longer the length of the first time window.
  • the probability of resource collision will increase. Instructing to select the time-frequency resource for sending the SL information within the activated first time window will benefit from the central scheduling of the second terminal and reduce resource collision.
  • the first terminal indicates the activated first time window to the second terminal.
  • the second terminal acquires at least one first time window in the time-frequency resource set.
  • the at least one first time window may be configured by the network device, or preconfigured, or predefined, or indicated by the first terminal.
  • the configuration information of the at least one first time window remains unchanged for a period of time.
  • the first terminal dynamically activates or deactivates a first time window of the at least one first time window; if the first time window is activated (active), the first time window is an activated first time window, and the first time window A terminal stops determining the time-frequency resource for sending the sidelink communication information within the first time window of the activation by listening to the time-frequency resource set, but determines the time-frequency resource in the time-frequency resource set for the activation according to the instruction of the second terminal.
  • the time-frequency resource for sending SL information in the first time window of the The time-frequency resource set determines the time-frequency resource used for sending the sidelink communication information within the first time window of the deactivation, instead of determining the first time-frequency resource used for the deactivation in the time-frequency resource set according to the instruction of the second terminal.
  • Time-frequency resource for sending SL information within the time window Exemplarily, the first terminal sends first control information to the second terminal, where the first control information includes activation indication information for indicating activation of a first time window of at least one first time window; the first control information may also include The deactivation indication information is used to instruct to deactivate one first time window of the at least one first time window.
  • the first terminal sends the first control information to the second terminal through non-physical layer signaling such as PC5-RRC or SL MAC CE or RRC or MAC CE or pre-configuration.
  • non-physical layer signaling such as PC5-RRC or SL MAC CE or RRC or MAC CE or pre-configuration.
  • the first terminal sends the first control information to the second terminal in the time slot (f-w); for example, the first control information is GTNRS (GoToNon-sensing-request (GTN) signal)), and the GTNRS includes active (active) or de-active information for activating or deactivating a first time window whose starting position is time slot f.
  • GTNRS is carried with 1 bit. For example, a GTNRS value of "1" indicates activation, and a GTNRS value of "0" indicates deactivation; for another example, a GTNRS value of "1" indicates activation, and not sending GTNRS indicates deactivation.
  • the first control information is carried on a physical channel, such as PSFCH.
  • the PSFCH resource used for carrying the first control information and the PSFCH resource used for HARQ feedback ACK or NACK information are orthogonal (orthogonal), that is, do not overlap.
  • the PSFCH resource bearing the first control information is configured, or pre-configured, or predefined by the network device.
  • one PSFCH resource includes one symbol and one PRB, and is used to carry the first control information.
  • a PSFCH resource may also include code domain resources; exemplarily, if the first control information is sent in a sequence, different cyclic shifts (cyclic shifts) of the sequence may be used to represent different code domain resources .
  • the time slot (f-w) is located before the time slot (f-q), and the time slot that is closest in time to the time slot (f-q) where the PSFCH resource exists.
  • the duration q is for the second terminal to listen to the time-frequency resource set to determine within the first time window of the first terminal for the first terminal and the second terminal to exchange information and for the second terminal to provide time-frequency resources to the first terminal Time required for allocating resources for the first terminal to transmit the first SL information; f ⁇ q ⁇ w, f, q, and w are all positive integers.
  • the duration q is obtained by the second terminal from the network device or other terminals and is used for determining the interaction information between the first terminal and the second terminal within the first time window and for the second terminal to provide time-frequency resource allocation to the first terminal.
  • the value of q is a listening window duration of the second terminal.
  • the time slot (f-w) is located before the time slot (f-q), and the time length q further includes the time delay required for the second terminal to receive and process the PSFCH.
  • the first terminal sends GTNRS in the time slot (f-w) before the time slot (f-q), indicating that the activation starting position is the first time window of the time slot f.
  • the second terminal acquires the activated first time window according to the instruction of the first terminal.
  • the second terminal acquires at least one first time window in the time-frequency resource set.
  • the at least one first time window may be configured by the network device, or preconfigured, or predefined, or indicated by the first terminal.
  • the configuration information of the at least one first time window remains unchanged for a period of time.
  • the second terminal receives first control information from the first terminal, where the first control information is used to instruct activation or deactivation of one of the at least one first time windows.
  • the second terminal obtains the third control information by receiving non-physical layer signaling such as PC5-RRC or SL MAC CE or RRC or MAC CE or pre-configuration.
  • non-physical layer signaling such as PC5-RRC or SL MAC CE or RRC or MAC CE or pre-configuration.
  • the second terminal receives the first control information in the time slot (f-w); for example, the first control information is GTNRS, and the GTNRS includes activation (active) or deactivation (de-active) information for activation or deactivation A first time window starting at slot f is activated. If the first control information includes activation information, the second terminal determines that the activation starting position is the first time window of time slot f, that is, the first time window whose starting position is time slot f is the first time window of activation; Within the time window, the first terminal stops determining the time-frequency resource for sending the sidelink communication information within the activated first time window by listening to the time-frequency resource set.
  • the first control information is GTNRS
  • the GTNRS includes activation (active) or deactivation (de-active) information for activation or deactivation
  • a first time window starting at slot f is activated. If the first control information includes activation information, the second terminal determines that the activation starting position is the first time window of time slot f,
  • the second terminal determines that the starting position of the deactivation is the first time window of the time slot f, that is, the first time window that the starting position is the time slot f is the first time window of the deactivation window; within the time window, the first terminal determines, by listening to the time-frequency resource set, the time-frequency resource for sending the sidelink communication information within the deactivated first time window.
  • the first terminal determines the first SL information to be sent.
  • the first terminal sends a resource allocation request to the second terminal.
  • the second terminal determines a time-frequency resource for the first terminal to send the first SL information.
  • the second terminal sends the first indication information to the first terminal within the activated first time window.
  • the first terminal receives the first indication information, and sends the first SL information on at least one time-frequency resource indicated by the first indication information.
  • S804-S808 may refer to S602-S606, which will not be repeated here.
  • the first terminal configures the first time window for activation according to its own requirements.
  • the first terminal selects the time-frequency resource for sending the SL information within the activated first time window according to the instruction of the second terminal, instead of listening to the time-frequency resource
  • the set determines the time-frequency resources used to send the SL information within the activated first time window. In this way, energy consumption for listening can be saved, and the probability of resource conflict for sending SL information is also reduced.
  • the first terminal instructs to extend the first time window.
  • the communication method provided by the embodiment of the present application may further include S809 and S810:
  • the first terminal sends the second control information to the second terminal.
  • the second control information is used to instruct to extend the duration of the first time window.
  • the extended duration of the first time window is the duration of the first time window; for another example, the extended duration of the first time window is the duration of two first time windows; for another example, the extended duration of the first time window is half The duration of the first time window.
  • the second terminal may determine the length of the extension of the first time window according to the result of monitoring the time-frequency resource set.
  • the end moment of the first time window is the start moment of the extended time window.
  • the extended time window duration is equal to the first time window duration, and the extended time window frequency domain resource configuration is the same as the first time window frequency domain resource configuration.
  • the second control information is carried with 1 bit.
  • the second control information value is "1" it means that at the end of the collaboration window, the collaboration window is extended immediately, and the extended duration is the duration of the collaboration window, and the extended time window frequency domain resource configuration and the collaborative window frequency domain resource configuration The same; if the value of the second control information is "0", it means that the extension duration is 0, that is, the cooperation window is not extended.
  • the second control information is carried on a physical channel, such as a PSFCH; that is, the first terminal sends the second control information to the second terminal through the PSFCH.
  • the PSFCH resources used for carrying the second control information and the PSFCH resources used for HARQ feedback of ACK or NACK information are orthogonal, i.e. do not overlap.
  • the PSFCH resource bearing the second control information is configured, or pre-configured, or predefined by the network device.
  • one PSFCH resource includes one symbol and one PRB, and is used to carry the second control information.
  • a PSFCH resource may further include code domain resources; exemplarily, if the second control information is sent in a sequence, different cyclic shifts (cyclic shifts) of the sequence may be used to represent different code domain resources.
  • the second control information is carried in the last time slot in the first time window where the PSFCH resource exists which is closest in time to the time slot (j-q).
  • time slot j is the last time slot in the first time window
  • duration q is the time-frequency resource set monitored by the second terminal to determine the first time window for the first terminal to exchange information between the first terminal and the second terminal and the time required for the second terminal to provide time-frequency resources to the first terminal for allocating resources for the first terminal to transmit the first SL information.
  • the second control information carried on the last PSFCH resource closest to the time slot (j-q) in time within the first time window instructs to extend the first time window.
  • the first time window is immediately extended, and the extended duration is the duration of the first time window.
  • the second terminal extends the first time window according to the second control information.
  • the second terminal receives the second control information, and extends the first time window according to the second control information. For example, if the value of the second control information is "1", the second terminal immediately extends the first time window at the end of the first time window.
  • a time window frequency domain resource configuration is the same.
  • the first terminal does not need to reconfigure the first time window to the second terminal, and the second terminal may extend a period of time according to the configuration of the current first time window.
  • the process of configuring the first time window is faster and more convenient, improving the efficiency of resource allocation.
  • the embodiment of the present application further provides a communication method, in which the second terminal determines a first time window, and the first terminal obtains the first time window according to an instruction of the second terminal; that is, the second terminal determines that the first terminal stops listening to the time-frequency
  • the resource set determines the time period of the time-frequency resources used to transmit the sideline communication information. The probability of collision of time-frequency resources for sending sidelink communication information can be reduced.
  • the communication method provided by this embodiment of the present application may include:
  • the second terminal determines a first time window.
  • the second terminal determines that the first terminal stops determining the first time window of the time-frequency resource for sending the sidelink communication information by listening to the time-frequency resource set. For example, the second terminal can determine the reserved usage of the time-frequency resource set of other terminals in the first time period by listening, or the second terminal can obtain the time-frequency resource set in the first time period through the scheduling or resource configuration of the network device. If the time-frequency resource of the frequency resource set is selected, the first time period may be determined as the first time window. Optionally, the second terminal may also determine the first time window according to the channel state (including channel congestion and/or channel interference level, etc.). Specifically, a CBR threshold and/or a CR threshold is set.
  • the CBR threshold and/or the CR threshold may be related to priority.
  • the CBR threshold and/or the CR threshold may be configured by the network device, or pre-configured, or predefined.
  • the CBR measured by the second terminal is greater than the CBR threshold and/or the measured CR is greater than the CR threshold, it is determined that the channel is congested, and the second terminal determines the first time window.
  • the higher the degree of channel congestion, that is, the higher the value of the CBR or CR measurement the longer the length of the first time window.
  • the channel interference level can be determined according to the NACK received by the second terminal or the determination of discontinuous transmission (DTX); the condition for determining DTX is that the HARQ feedback information is not correctly received on the resource that should receive the HARQ feedback (not correctly received). to ACK or NACK).
  • the second terminal determines the first time window.
  • the higher the channel interference level that is, the greater the number of NACKs and/or the greater the number of DTXs that are determined, the longer the length of the first time window.
  • the first NACK threshold and/or the second NACK threshold and/or the DTX threshold may be related to priority.
  • the first NACK threshold and/or the second NACK threshold and/or the DTX threshold may be configured by the network device, or pre-configured, or predefined.
  • the channel interference level may also be determined according to the measured reference signal received power (RSRP) and/or received signal strength indicator (RSSI); specifically, an RSRP threshold and/or an RSSI threshold are set .
  • RSRP reference signal received power
  • RSSI received signal strength indicator
  • the RSRP threshold and/or the RSSI threshold may be related to priority.
  • the RSRP threshold and/or the RSSI threshold may be configured by the network device, or pre-configured, or predefined.
  • the second terminal determines the first time window.
  • the higher the channel interference level that is, the higher the measured value of RSRP or RSSI, the longer the length of the first time window.
  • the probability of resource collision will increase. Instructing to select the time-frequency resource for sending the SL information within the activated first time window will benefit from the benefits of the central scheduling of the second terminal and reduce resource collision.
  • the first terminal stops determining the time-frequency resource for sending the SL information by listening to the time-frequency resource set; instead, it determines the time-frequency resource for sending the SL information in the time-frequency resource set according to the instruction of the auxiliary terminal (the second terminal). Time-frequency resource of SL information.
  • a connection of inter-terminal cooperation is established between the first terminal and the second terminal; including the interaction of cooperation information between the first terminal and the second terminal through signaling; exemplarily, the signaling includes PC5-RRC, SL MAC CE or SCI; may also include information about establishing a connection between the first terminal and the second terminal provided by the APP layer of the first terminal to the MAC layer and the PHY layer; and also include the identification information of the first terminal and the second terminal for the first terminal.
  • the second terminal and the second terminal identify each other or their data; the first terminal and the second terminal belong to a cooperative counterpart or a cooperative group, or belong to a group of cooperative data/services.
  • the first time window includes a first sub-time window.
  • the first terminal stops listening to the time-frequency resource set, and stops determining the time-frequency resource used for sending the SL information in the first sub-time window by listening to the time-frequency resource set.
  • the indication of the two terminals determines the time-frequency resource used for sending the SL information within the first time window in the time-frequency resource set.
  • the first time window further includes a second sub-time window.
  • the first terminal listens to the time-frequency resource set, but does not determine the time-frequency resource for sending the SL information in the second sub-time window by listening to the time-frequency resource set, but according to the second sub-time window
  • the indication of the terminal determines, in the time-frequency resource set, time-frequency resources used for sending the SL information within the second sub-time window.
  • the time-frequency resource after the end of the first time window can be selected according to the result of listening to the time-frequency resource set in the second sub-time window to send the SL information;
  • the resource reservation information after the end of the first time window cannot be obtained because the time-frequency resource set is not monitored, and the instruction of the second terminal is not obtained, and the time-frequency resource for sending the SL information is selected by random selection or based on part of the listening result. , resulting in increased resource collision probability and reduced transmission reliability.
  • the second terminal indicates the first time window to the first terminal.
  • the second terminal sends time window indication information to the first terminal, where the time window indication information is used to indicate the first time window.
  • the second terminal sends time window indication information to the first terminal through physical layer signaling such as SCI or SFCI, or MAC CE or PC5-RRC.
  • the time window indication information includes at least one of first time window information, first sub-time window information, and second sub-time window information. The contents of the first time window information, the first sub-time window information, and the second sub-time window information have been introduced above, and will not be repeated here.
  • the second terminal sends time window indication information to the first terminal in time slot (f-r), indicating that the first terminal enters the first time window in time slot f; where r is an integer greater than or equal to 0.
  • the time window indication information may further include an indication of the value of r; or the value of r is configured by the network device, or preconfigured, or predefined.
  • the first terminal acquires the first time window according to the instruction of the second terminal.
  • the first terminal receives time window indication information from the second terminal, and acquires the first time window according to the time window indication information.
  • the first terminal receives physical layer signaling such as SCI or SFCI, or MAC CE or PC5-RRC acquisition time window indication information.
  • the first terminal when the first terminal receives the time window indication information in the time slot (f-r), it determines to enter the first time window in the time slot f; wherein, r is an integer greater than or equal to 0.
  • the time window indication information may further include an indication of the value of r; or the value of r is configured by the network device, or preconfigured, or predefined.
  • the first terminal determines the first SL information to be sent.
  • S904 may refer to S602, which will not be repeated here.
  • the first terminal sends a resource allocation request to the second terminal.
  • the resource allocation request is used to request the second terminal to allocate time-frequency resources for the first terminal to send the first SL information.
  • the second terminal determines a time-frequency resource for the first terminal to send the first SL information.
  • S906 may refer to S604, which will not be repeated here.
  • the second terminal sends the first indication information to the first terminal within the first time window.
  • the first time-frequency unit of the second terminal in the first time window sends first indication information to the first terminal, where the first indication information indicates at least one time-frequency resource for the first terminal to send the first SL information.
  • the at least one time-frequency resource is temporally within the first time window.
  • the first time-frequency unit may be a time-frequency resource set composed of a time slot and a subchannel, or a time-frequency resource set composed of a time slot or multiple time slots and one or more subchannels.
  • the first terminal receives the first indication information, and sends the first SL information on at least one time-frequency resource indicated by the first indication information.
  • the first terminal receives the first indication information within the first time window, and sends the first SL information on at least one time-frequency resource indicated by the first indication information.
  • the second terminal configures the first time window for the first terminal.
  • the first terminal selects the time-frequency resource for sending the SL information in the first time window according to the instruction of the second terminal, instead of determining the time-frequency resource to be used in the first time window by listening to the time-frequency resource set The time-frequency resource for sending SL information within. In this way, energy consumption for listening can be saved, and the probability of resource conflict for sending SL information is also reduced.
  • the second terminal may further instruct to extend the first time window.
  • reference may be made to S709 and S710, which will not be repeated here.
  • the first terminal determines the time period of the first time window according to its own needs.
  • the communication method provided by the embodiment of the present application includes:
  • the first terminal determines a first time window.
  • the first terminal determines to stop determining the first time window of the time-frequency resource for sending the sidelink communication information by listening to the time-frequency resource set.
  • the first terminal may also determine the first time window according to the channel state (including channel congestion and/or channel interference level, etc.).
  • a CBR threshold and/or a CR threshold is set.
  • the CBR threshold and/or the CR threshold may be related to priority.
  • the CBR threshold and/or the CR threshold may be configured by the network device, or pre-configured, or predefined.
  • the first terminal determines the first time window.
  • the higher the degree of channel congestion that is, the higher the value of the CBR or CR measurement, the longer the length of the first time window.
  • the channel interference level can be determined according to the NACK received by the first terminal or the judgment of discontinuous transmission (DTX); the condition for judging DTX is that the HARQ feedback information is not correctly received on the resources that should receive the HARQ feedback (not correctly received). to ACK or NACK). Specifically, when the number of consecutively received NACKs by the first terminal exceeds the first NACK threshold and/or the total number of received NACKs exceeds the second NACK threshold and/or the DTX threshold and/or the determined DTX exceeds the DTX within a period of time Threshold, it is determined that the channel interference level is high, and the first terminal determines the first time window.
  • DTX discontinuous transmission
  • the higher the channel interference level that is, the greater the number of NACKs and/or the greater the number of DTXs that are determined, the longer the length of the first time window.
  • the first NACK threshold and/or the second NACK threshold and/or the DTX threshold may be related to priority.
  • the first NACK threshold and/or the second NACK threshold and/or the DTX threshold may be configured by the network device, or pre-configured, or predefined.
  • the channel interference level can also be determined according to the measured reference signal received power (reference signal received power, RSRP) and/or received signal strength indicator (received signal strength indicator, RSSI); specifically, set an RSRP threshold and/or an RSSI threshold .
  • RSRP reference signal received power
  • RSSI received signal strength indicator
  • the RSRP threshold and/or the RSSI threshold may be related to priority.
  • the RSRP threshold and/or the RSSI threshold may be configured by the network device, or pre-configured, or predefined.
  • the RSRP measured by the first terminal is greater than the RSRP threshold and/or the measured RSSI is greater than the RSSI threshold, it is determined that the channel interference level is high, and the first terminal determines the first time window.
  • the higher the channel interference level that is, the higher the measured value of RSRP or RSSI, the longer the length of the first time window.
  • the probability of resource collision will increase. Instructing to select the time-frequency resource for sending the SL information within the activated first time window will benefit from the central scheduling of the second terminal and reduce resource collision.
  • the first terminal indicates the first time window to the second terminal.
  • the first terminal sends time window indication information to the second terminal, where the time window indication information is used to indicate the first time window.
  • the first terminal sends the time window indication information to the second terminal through physical layer signaling such as SCI or SFCI, or MAC CE or PC5-RRC.
  • the time window indication information includes at least one of first time window information, first sub-time window information, and second sub-time window information. The contents of the first time window information, the first sub-time window information, and the second sub-time window information have been introduced above, and will not be repeated here.
  • the first terminal sends time window indication information to the second terminal in the time slot (f-s), indicating that the first terminal and the second terminal enter the first time window in the time slot f; wherein, s is an integer greater than or equal to 0 .
  • the time window indication information may also include an indication of the value of s; or the value of r is configured by the network device, or preconfigured, or predefined.
  • the value of s is that the second terminal listens to the time-frequency resource set to determine within the first time window of the first terminal for the first terminal and the second terminal to exchange information and for the second terminal to provide time-frequency resources to the first terminal
  • the time required for allocating resources for the first terminal to transmit the first SL information within the first time window; or, the value of s includes the second terminal obtaining from the network device or other terminals for determining the use of the first time window.
  • the second terminal acquires the first time window according to the instruction of the first terminal.
  • the second terminal receives time window indication information from the first terminal, and acquires the first time window according to the time window indication information.
  • the second terminal receives physical layer signaling such as SCI or SFCI, or MAC CE or PC5-RRC acquisition time window indication information.
  • the second terminal when it receives the time window indication information in the time slot (f-s), it determines to enter the first time window in the time slot f; wherein, s is an integer greater than or equal to 0.
  • the time window indication information may further include an indication of the value of s; or the value of s is configured by the network device, or preconfigured, or predefined.
  • the first terminal determines the first SL information to be sent.
  • S1004 may refer to S602, which will not be repeated here.
  • the first terminal sends a resource allocation request to the second terminal.
  • the resource allocation request is used to request the second terminal to allocate time-frequency resources for the first terminal to send the first SL information.
  • the second terminal determines a time-frequency resource for the first terminal to send the first SL information.
  • S1006 may refer to S604, which will not be repeated here.
  • the second terminal sends the first indication information to the first terminal within the first time window.
  • S1007 may refer to S907, which will not be repeated here.
  • the first terminal receives the first indication information, and sends the first SL information on at least one time-frequency resource indicated by the first indication information.
  • the first terminal receives the first indication information within the first time window, and sends the first SL information on at least one time-frequency resource indicated by the first indication information.
  • the first terminal configures the first time window according to its own needs.
  • the first terminal selects the time-frequency resource for sending the SL information in the first time window according to the instruction of the second terminal, instead of determining the time-frequency resource to be used in the first time window by listening to the time-frequency resource set The time-frequency resource for sending SL information within. In this way, energy consumption for listening can be saved, and the probability of resource conflict for sending SL information is also reduced.
  • the first terminal may further instruct to extend the first time window.
  • reference may be made to S809 and S810, which will not be repeated here.
  • the embodiments of the present application further provide corresponding apparatuses, including corresponding modules for executing the foregoing embodiments.
  • the modules may be software, hardware, or a combination of software and hardware.
  • Figure 18 shows a schematic structural diagram of a device.
  • the apparatus 300 may be a terminal device, or may be a chip, a chip system, or a processor that supports the terminal device to implement the above method.
  • the apparatus 300 may be used to implement the methods described in the foregoing method embodiments, and for details, reference may be made to the descriptions in the foregoing method embodiments.
  • the apparatus 300 may include one or more processors 3001, and the processors 3001 may also be referred to as processing units, which may implement certain control functions.
  • the processor 3001 may be a general-purpose processor or a special-purpose processor or the like. For example, it may be a baseband processor or a central processing unit.
  • the baseband processor can be used to process communication protocols and communication data
  • the central processing unit can be used to control communication devices (such as base stations, baseband chips, terminals, terminal chips, DU or CU, etc.), execute software programs, process software program data.
  • the processor 3001 may also store instructions 3003, and the instructions 3003 may be executed by the processor, so that the apparatus 300 executes the methods described in the above method embodiments.
  • the processor 3001 may include a transceiver unit for implementing receiving and transmitting functions.
  • the transceiver unit may be a transceiver circuit, or an interface, or an interface circuit.
  • Transceiver circuits, interfaces or interface circuits used to implement receiving and transmitting functions may be separate or integrated.
  • the above-mentioned transceiver circuit, interface or interface circuit can be used for reading and writing code/data, or the above-mentioned transceiver circuit, interface or interface circuit can be used for signal transmission or transmission.
  • the apparatus 300 may include a circuit, and the circuit may implement the function of sending or receiving or communicating in the foregoing method embodiments.
  • the apparatus 300 may include one or more memories 3002 on which instructions 3004 may be stored, and the instructions may be executed on the processor, so that the apparatus 300 executes the above method embodiments method described.
  • data may also be stored in the memory.
  • instructions and/or data may also be stored in the processor.
  • the processor and the memory can be provided separately or integrated together. For example, the corresponding relationship described in the above method embodiments may be stored in a memory or in a processor.
  • the apparatus 300 may further include a transceiver 3005 and/or an antenna 3006 .
  • the processor 3001 may be referred to as a processing unit, and controls the apparatus 300 .
  • the transceiver 3005 may be referred to as a transceiver unit, a transceiver, a transceiver circuit, a transceiver device, or a transceiver module, etc., and is used to implement a transceiver function.
  • the apparatus 300 in this embodiment of the present application may be configured to execute the method described in FIG. 5 , FIG. 8 , FIG. 10 , FIG. 12 , or FIG. 14 in the embodiment of the present application.
  • the processors and transceivers described in this application can be implemented in integrated circuits (ICs), analog ICs, radio frequency integrated circuits (RFICs), mixed-signal ICs, application specific integrated circuits (ASICs), printed circuit boards ( printed circuit board, PCB), electronic equipment, etc.
  • the processor and transceiver can also be fabricated using various IC process technologies, such as complementary metal oxide semiconductor (CMOS), nMetal-oxide-semiconductor (NMOS), P-type Metal oxide semiconductor (positive channel metal oxide semiconductor, PMOS), bipolar junction transistor (Bipolar Junction Transistor, BJT), bipolar CMOS (BiCMOS), silicon germanium (SiGe), gallium arsenide (GaAs), etc.
  • CMOS complementary metal oxide semiconductor
  • NMOS nMetal-oxide-semiconductor
  • PMOS P-type Metal oxide semiconductor
  • BJT bipolar junction transistor
  • BiCMOS bipolar CMOS
  • SiGe silicon germanium
  • the apparatus described in the above embodiment may be a terminal device, but the scope of the apparatus described in this application is not limited thereto, and the structure of the apparatus may not be limited by FIG. 18 .
  • a device may be a stand-alone device or may be part of a larger device.
  • the means may be:
  • a set with one or more ICs may also include storage components for storing data and/or instructions;
  • ASIC such as modem (MSM)
  • FIG. 19 provides a schematic structural diagram of a terminal device.
  • the terminal device is applicable to the scenarios shown in Fig. 1-Fig. 2 .
  • FIG. 19 only shows the main components of the terminal device.
  • the terminal 400 includes a processor, a memory, a control circuit, an antenna, and an input and output device.
  • the processor is mainly used to process communication protocols and communication data, control the entire terminal, execute software programs, and process data of the software programs.
  • the memory is mainly used to store software programs and data.
  • the radio frequency circuit is mainly used for the conversion of the baseband signal and the radio frequency signal and the processing of the radio frequency signal.
  • Antennas are mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
  • Input and output devices such as touch screens, display screens, and keyboards, are mainly used to receive data input by users and output data to users.
  • the processor can read the software program in the storage unit, parse and execute the instructions of the software program, and process the data of the software program.
  • the processor performs baseband processing on the data to be sent, and outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit processes the baseband signal to obtain a radio frequency signal and sends the radio frequency signal through the antenna in the form of electromagnetic waves. .
  • the radio frequency circuit receives the radio frequency signal through the antenna, the radio frequency signal is further converted into a baseband signal, and the baseband signal is output to the processor, and the processor converts the baseband signal into data and processes the data .
  • Figure 19 shows only one memory and processor. In an actual terminal device, there may be multiple processors and memories.
  • the memory may also be referred to as a storage medium or a storage device, etc., which is not limited in this embodiment of the present application.
  • the processor may include a baseband processor and a central processing unit.
  • the baseband processor is mainly used to process communication protocols and communication data
  • the central processing unit is mainly used to control the entire terminal device, execute A software program that processes data from the software program.
  • the processor in FIG. 19 integrates the functions of the baseband processor and the central processing unit.
  • the baseband processor and the central processing unit may also be independent processors, interconnected by technologies such as a bus.
  • a terminal device may include multiple baseband processors to adapt to different network standards, a terminal device may include multiple central processors to enhance its processing capability, and various components of the terminal device may be connected through various buses.
  • the baseband processor may also be expressed as a baseband processing circuit or a baseband processing chip.
  • the central processing unit can also be expressed as a central processing circuit or a central processing chip.
  • the function of processing the communication protocol and communication data may be built in the processor, or may be stored in the storage unit in the form of a software program, and the processor executes the software program to realize the baseband processing function.
  • the antenna and control circuit with a transceiving function can be regarded as the transceiving unit 4001 of the terminal 400, and the processor having a processing function can be regarded as the processing unit 4002 of the terminal 400.
  • the terminal 400 includes a transceiver unit 4001 and a processing unit 4002 .
  • the transceiving unit may also be referred to as a transceiver, a transceiver, a transceiving device, or the like.
  • the device for implementing the receiving function in the transceiver unit 4001 may be regarded as a receiving unit, and the device for implementing the transmitting function in the transceiver unit 4001 may be regarded as a transmitting unit, that is, the transceiver unit 4001 includes a receiving unit and a transmitting unit.
  • the receiving unit may also be referred to as a receiver, a receiver, a receiving circuit, and the like
  • the transmitting unit may be referred to as a transmitter, a transmitter, or a transmitting circuit, or the like.
  • the above-mentioned receiving unit and transmitting unit may be an integrated unit, or may be multiple independent units.
  • the above-mentioned receiving unit and transmitting unit may be located in one geographic location, or may be dispersed in multiple geographic locations.
  • the apparatus 500 may be a terminal device, or may be a component of a terminal device (eg, an integrated circuit, a chip, etc.).
  • the apparatus may also be other communication modules, which are used to implement the methods in the method embodiments of the present application.
  • the apparatus 500 may include: a processing module 5002 (or referred to as a processing unit).
  • a transceiver module 5001 or referred to as a transceiver unit
  • a storage module 5003 or referred to as a storage unit
  • one or more modules as shown in FIG. 20 may be implemented by one or more processors, or by one or more processors and memory; or by one or more processors and a transceiver; or implemented by one or more processors, a memory, and a transceiver, which is not limited in this embodiment of the present application.
  • the processor, memory, and transceiver can be set independently or integrated.
  • the apparatus has the function of implementing the terminal equipment described in the embodiments of the present application.
  • the apparatus includes a module or unit or means corresponding to the terminal equipment performing the steps involved in the first terminal or the second terminal described in the embodiments of the present application.
  • the functions or units or means (means) may be implemented by software, or by hardware, or by executing corresponding software by hardware, or by a combination of software and hardware.
  • each module in the apparatus 500 in the embodiment of the present application may be used to execute the method described in FIG. 5 , FIG. 8 , FIG. 10 , FIG. 12 , or FIG. 14 in the embodiment of the present application.
  • an apparatus 500 may include: a processing module 5002 and a transceiver module 5001 .
  • the processing module 5002 is used to obtain at least one first time window in the time-frequency resource set; the time-frequency resource set is used for the terminal to send sideline communication information; the transceiver module 5001 is used to obtain the first time window from the second terminal.
  • the first control information includes activation indication information; the processing module 5002 is further configured to activate a first time window of at least one first time window according to the first control information; the processing module 5002 is further configured to stop the pass-through listening
  • the time-frequency resource set determines time-frequency resources used for sending sideline communication information within the activated first time window; the transceiver module 5001 is further configured to receive first indication information from the second terminal within the activated first time window; The first indication information indicates at least one time-frequency resource; the transceiver module 5001 is further configured to send the first sideline communication information on the at least one time-frequency resource.
  • the first control information includes deactivation indication information
  • the processing module 5002 is further configured to deactivate a first time window of the at least one first time window according to the first control information; the processing module 5002 is further configured to use and determining the time-frequency resource for sending the sidelink communication information within the deactivated first time window by listening to the time-frequency resource set.
  • the transceiver module 5001 is further configured to receive second control information from the second terminal, where the second control information is used to instruct to extend the duration of the first time window.
  • the first control information is carried on a physical channel.
  • the activated first time window includes a first sub-time window and a second sub-time window.
  • the first terminal stops listening to the time-frequency resource set; in the second sub-time Within the window, the first terminal listens to the time-frequency resource set.
  • the communication apparatus includes: a processing module 5002 and a transceiver module 5001,
  • the processing module 5002 is used to obtain at least one first time window in the time-frequency resource set; the time-frequency resource set is used for the terminal to send sideline communication information; the transceiver module 5001 is used to send the first control information to the first terminal, the first control
  • the information includes activation indication information, and the activation indication information is used to instruct to activate a first time window of at least one first time window; within the activated first time window, the first terminal stops determining the time-frequency resource set for transmission by listening to the time-frequency resource set.
  • the time-frequency resource of the sideline communication information; the transceiver module 5001 is further configured to send first indication information to the first terminal within the activated first time window; the first indication information indicates at least one time-frequency resource, which is used by the first terminal when The first sideline communication information is sent on the at least one time-frequency resource.
  • the first control information includes deactivation indication information, and the deactivation indication information is used to instruct to deactivate a first time window of the at least one first time window; within the deactivated first time window, the A terminal determines the time-frequency resource used for sending sidelink communication information by listening to the time-frequency resource set.
  • the transceiver module 5001 is further configured to send second control information to the first terminal, where the second control information is used to instruct to extend the duration of the first time window.
  • the first control information is carried on a physical channel.
  • the activated first time window includes a first sub-time window and a second sub-time window.
  • the first terminal stops listening to the time-frequency resource set; in the second sub-time Within the window, the first terminal listens to the time-frequency resource set.
  • the communication apparatus includes: a processing module 5002 and a transceiver module 5001,
  • the processing module 5002 is used to obtain at least one first time window in the time-frequency resource set; the time-frequency resource set is used for the terminal to send sideline communication information; the transceiver module 5001 is used to send the first control information to the second terminal, the first control
  • the information includes activation indication information, where the activation indication information is used to instruct to activate a first time window of at least one first time window; the processing module 5002 is further configured to stop determining the first time for activation by listening to the time-frequency resource set The time-frequency resource for sending sideline communication information within the window; the transceiver module 5001 is further configured to receive first indication information from the second terminal within the activated first time window; the first indication information indicates at least one time-frequency resource; the transceiver module 5001 is further configured to send the first sideline communication information on at least one time-frequency resource.
  • the first control information includes deactivation indication information, and the deactivation indication information is used to instruct to deactivate a first time window of at least one first time window, and the processing module 5002 is further used for deactivating a first time window.
  • the time-frequency resource used for sending the sidelink communication information is determined by listening to the time-frequency resource set.
  • the transceiver module 5001 is further configured to send second control information to the second terminal, where the second control information is used to instruct to extend the duration of the first time window.
  • the first control information is carried on a physical channel.
  • the activated first time window includes a first sub-time window and a second sub-time window.
  • the first terminal stops listening to the time-frequency resource set; in the second sub-time Within the window, the first terminal listens to the time-frequency resource set.
  • the communication apparatus includes: a processing module 5002 and a transceiver module 5001,
  • the processing module 5002 is used for acquiring at least one first time window in the time-frequency resource set; the time-frequency resource set is used for the terminal to send sideline communication information; the transceiver module 5001 is used for receiving the first control information from the first terminal, the first control
  • the information includes activation indication information, and the activation indication information is used to instruct to activate a first time window of at least one first time window; within the activated first time window, the first terminal stops determining the time-frequency resource set for transmission by listening to the time-frequency resource set.
  • Time-frequency resources of sideline communication information the transceiver module 5001 is further configured to send first indication information to the first terminal; the first indication information indicates at least one time-frequency resource, which is used by the first terminal to send on at least one time-frequency resource The first sideline communication information.
  • the first control information includes deactivation indication information, and the deactivation indication information is used to instruct to deactivate a first time window of the at least one first time window; within the deactivated first time window, the A terminal determines the time-frequency resource used for sending sidelink communication information by listening to the time-frequency resource set.
  • the transceiver module 5001 is further configured to receive second control information from the first terminal, where the second control information is used to instruct to extend the duration of the first time window.
  • the first control information is carried on a physical channel.
  • the activated first time window includes a first sub-time window and a second sub-time window.
  • the first terminal stops listening to the time-frequency resource set; in the second sub-time Within the window, the first terminal listens to the time-frequency resource set.
  • the processor in this embodiment of the present application may be an integrated circuit chip, which has signal processing capability.
  • each step of the above method embodiments may be completed by a hardware integrated logic circuit in a processor or an instruction in the form of software.
  • the above-mentioned processor may be a general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA), or other possible Programming logic devices, discrete gate or transistor logic devices, discrete hardware components.
  • a processing unit for performing the techniques at a communication device may be implemented in one or more general purpose processors, DSPs, digital signal processing devices, ASICs, A programmable logic device, FPGA, or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination of the above.
  • a general-purpose processor may be a microprocessor, or alternatively, the general-purpose processor may be any conventional processor, controller, microcontroller, or state machine.
  • a processor may also be implemented by a combination of computing devices, such as a digital signal processor and a microprocessor, multiple microprocessors, one or more microprocessors in combination with a digital signal processor core, or any other similar configuration. accomplish.
  • the memory in this embodiment of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be read-only memory (ROM), programmable read-only memory (PROM), erasable programmable read-only memory (EPROM), electrically programmable Erase programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • Volatile memory may be random access memory (RAM), which acts as an external cache.
  • RAM random access memory
  • DRAM dynamic random access memory
  • SDRAM synchronous DRAM
  • SDRAM double data rate synchronous dynamic random access memory
  • ESDRAM enhanced synchronous dynamic random access memory
  • SLDRAM synchronous link dynamic random access memory
  • direct rambus RAM direct rambus RAM
  • the present application also provides a computer-readable storage medium on which a computer program is stored, and when the computer program is executed by a computer, implements the functions of any of the foregoing method embodiments.
  • the present application also provides a computer program product, which implements the functions of any of the above method embodiments when the computer program product is executed by a computer.
  • the above-mentioned embodiments it may be implemented in whole or in part by software, hardware, firmware or any combination thereof.
  • software it can be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions. When the computer instructions are loaded and executed on a computer, all or part of the processes or functions described in the embodiments of the present application are generated.
  • the computer may be a general purpose computer, special purpose computer, computer network, or other programmable device.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be downloaded from a website site, computer, server, or data center Transmission to another website site, computer, server, or data center by wire (eg, coaxial cable, optical fiber, digital subscriber line, DSL) or wireless (eg, infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server, data center, etc. that includes an integration of one or more available media.
  • the available media may be magnetic media (eg, floppy disks, hard disks, magnetic tapes), optical media (eg, high-density digital video discs (DVDs)), or semiconductor media (eg, solid state disks, SSD)) etc.
  • system and "network” are often used interchangeably herein.
  • the term “and/or” in this article is only an association relationship to describe the associated objects, indicating that there can be three kinds of relationships, for example, A and/or B, it can mean that A exists alone, A and B exist at the same time, and A and B exist independently The three cases of B, where A can be singular or plural, and B can be singular or plural.
  • the character “is” generally means that the related objects are an "or” relationship.
  • At least one of” or “at least one of” herein mean all or any combination of the listed items, for example, "at least one of Tables, B, and C", It can be expressed as: A alone exists, B alone exists, C alone exists, A and B exist simultaneously, B and C exist simultaneously, and A, B and C exist simultaneously, where A can be singular or plural, and B can be Singular or plural, C can be singular or plural.
  • B corresponding to A shall mean that B is associated with A, and B can be determined according to A. However, it should also be understood that determining B according to A does not mean that B is determined only according to A. B may also be determined from A and/or other information.
  • the corresponding relationships shown in each table in this application may be configured or predefined.
  • the values of the information in each table are only examples, and can be configured with other values, which are not limited in this application.
  • the corresponding relationships shown in some rows may not be configured.
  • appropriate deformation adjustments can be made based on the above table, for example, splitting, merging, and so on.
  • the names of the parameters shown in the headings in the above tables may also adopt other names that can be understood by the communication device, and the values or representations of the parameters may also be other values or representations that the communication device can understand.
  • other data structures can also be used, such as arrays, queues, containers, stacks, linear lists, pointers, linked lists, trees, graphs, structures, classes, heaps, hash tables, or hash tables. Wait.
  • Predefined in this application may be understood as defining, predefining, storing, pre-storing, pre-negotiating, pre-configuring, curing, or pre-firing.
  • the systems, devices and methods described in this application can also be implemented in other ways.
  • the apparatus embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the functions, if implemented in the form of software functional units and sold or used as independent products, may be stored in a computer-readable storage medium.
  • the technical solution of the present application can be embodied in the form of a software product in essence, or the part that contributes to the prior art or the part of the technical solution.
  • the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (ROM), random access memory (RAM), magnetic disk or optical disk and other media that can store program codes .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例公开了一种通信方法及装置,涉及侧行通信领域。能够降低发送侧行通信信息的时频资源发生冲突的几率。该方法可以包括:第一终端获取时频资源集中至少一个第一时间窗;时频资源集用于终端发送侧行通信信息;第一终端从第二终端获取第一控制信息,第一控制信息包括激活指示信息;第一终端根据第一控制信息激活至少一个第一时间窗的一个第一时间窗;第一终端停止通过侦听时频资源集确定用于在激活的第一时间窗内发送侧行通信信息的时频资源;第一终端在激活的第一时间窗内从第二终端接收第一指示信息;第一指示信息指示至少一个时频资源;第一终端在至少一个时频资源上发送第一侧行通信信息。

Description

一种通信方法及装置 技术领域
本申请涉及侧行通信领域,尤其涉及一种通信方法及装置。
背景技术
在第三代合作伙伴计划(the 3rd generation partnership project,3GPP)提出的长期演进(long term evolution,LTE)技术网络中,车与任何事物通信(vehicle-to-everything,V2X)的车联网技术被提出。V2X通信是指车辆与任何事物的通信。请参考图1,V2X通信包括车与车的通信(vehicle to vehicle,V2V)、车与行人的通信(vehicle to pedestrian,V2P)、车与基础设施的通信(vehicle to infrastructure,V2I)、车与网络设备的通信(vehicle to network,V2N)等。基于V2X技术,车辆用户可以将自身的位置、速度、意图(转弯、并线、倒车)等信息向周围的车辆用户发送,也可以实时接收周围车辆用户的信息。
车与车直接通信的方式称为侧行通信。侧行通信资源分配方式包括调度模式和自选资源模式。在自选资源模式,用户设备(user equipment,UE)自己确定用于发送和接收侧行通信信息的传输资源。比如,UE通过侦听时频资源集确定用于发送侧行通信信息的时频资源。在给定的一个时刻,一个UE预约在该时刻之后的一个时频资源用于数据传输或重传。其他UE通过侦听时频资源集获知这个用户的时频资源预约情况,避免选择被预约的时频资源以降低资源碰撞。
在一些情形下,UE不能侦听或不能全部侦听到时频资源集。比如,UE发送侧行通信信息的时刻不进行侦听。再比如,为了节能,减少UE进行侦听的次数,在设定的时间段内不进行侦听。再比如,UE完全不侦听,通过随机选择的方式选择时频资源用于发送侧行通信信息。这样,UE不能获得完整的侦听结果,会导致选择的时频资源出现碰撞或冲突的概率增大,降低侧行通信传输的可靠性。
发明内容
本申请提供一种通信方法及装置,可以降低发送侧行通信信息的时频资源发生冲突的几率。
为达到上述目的,本申请的实施例采用如下技术方案:
第一方面,本申请实施例提供一种通信方法,该方法可以由终端设备执行,也可以由终端设备的部件,例如终端设备的处理器、芯片、或芯片系统等执行。该方法包括:第一终端获取时频资源集中至少一个第一时间窗;时频资源集用于终端发送侧行通信信息;第一终端从第二终端获取第一控制信息,第一控制信息包括激活指示信息;第一终端根据第一控制信息激活至少一个第一时间窗的一个第一时间窗;第一终端停止通过侦听时频资源集确定用于在激活的第一时间窗内发送侧行通信信息的时频资源;第一终端在激活的第一时间窗内从第二终端接收第一指示信息;第一指示信息指示至少一个时频资源;第一终端在至少一个时频资源上发送第一侧行通信信息。
在该方法中,第二终端确定在至少一个第一时间窗中激活一个第一时间窗。在激活的第一时间窗内,第一终端根据第二终端的指示选择用于在激活的第一时间窗内发送SL信息的时频资源,而不是通过侦听时频资源集确定用于在激活的第一时间窗内发送SL信息的时频资源。这样,既可以节省侦听的能耗,还降低了发送SL信息的资源冲突的几率。
结合第一方面,在一种可能的实现方式中,第一控制信息包括去激活指示信息,该方法还包括:第一终端根据第一控制信息去激活至少一个第一时间窗的一个第一时间窗;第一终端通过侦听时频资源集确定用于在去激活的第一时间窗内发送侧行通信信息的时频资源。也就是说,第二终端确定不激活第一时间窗时,第一终端通过侦听时频资源集确定用于发送侧行通信信息的时频资源。
结合第一方面,在一种可能的实现方式中,该方法还包括:第一终端从第二终端接收第二控制信息,第二控制信息用于指示延长第一时间窗的时长。
这样,第二终端不需要向第一终端重新配置第一时间窗,第一终端按照当前第一时间窗的配置延长一段时间即可。配置第一时间窗的流程更快捷方便,提高资源配置效率。
结合第一方面,在一种可能的实现方式中,第一控制信息承载于物理信道。
结合第一方面,在一种可能的实现方式中,第二控制信息承载于物理信道。
在一种实现方式中,该物理信道为物理侧行反馈信道。
结合第一方面,在一种可能的实现方式中,激活的第一时间窗包括第一子时间窗和第二子时间窗,在第一子时间窗内,第一终端停止侦听时频资源集;在第二子时间窗内,第一终端侦听时频资源集。这样,在第一时间窗结束之后,可以根据第二子时间窗内侦听时频资源集的结果选择在第一时间窗结束后的时频资源发送SL信息;避免在第一时间窗结束后因未侦听时频资源集而无法获得在第一时间窗结束后的资源预约信息,且未获取到第二终端的指示,通过随机选择或基于部分侦听结果选择发送SL信息的时频资源,导致资源碰撞概率增大,降低传输可靠性。
结合第一方面,在一种可能的实现方式中,在第一终端在激活的第一时间窗内从第二终端接收第一指示信息之前,第一终端在该激活的第一时间窗内发送辅助信息,该辅助信息用于触发第二终端确定用于第一终端发送第一SL信息的时频资源。其中,该辅助信息包括以下至少一项:待发送第一侧行通信信息的优先级信息,待发送第一侧行通信信息的尺寸信息,第一终端的标识信息,第一终端待发送第一SL信息的接收端对应的标识信息。
第二方面,本申请实施例提供一种通信方法,该方法可以由终端设备执行,也可以由终端设备的部件,例如终端设备的处理器、芯片、或芯片系统等执行。该方法包括:第二终端获取时频资源集中至少一个第一时间窗;时频资源集用于终端发送侧行通信信息;第二终端向第一终端发送第一控制信息,第一控制信息包括激活指示信息,激活指示信息用于指示激活至少一个第一时间窗的一个第一时间窗;在激活的第一时间窗内,第一终端停止通过侦听时频资源集确定用于发送侧行通信信息的时频资源;第二终端在激活的第一时间窗内向第一终端发送第一指示信息;第一指示信息指示至少一个时频资源,用于第一终端在至少一个时频资源上发送第一侧行通信信息。
在该方法中,第二终端确定在至少一个第一时间窗中激活一个第一时间窗。在激活的第一时间窗内,第一终端根据第二终端的指示选择用于在激活的第一时间窗内发送SL信息的时频资源,而不是通过侦听时频资源集确定用于在激活的第一时间窗内发送SL信息的时频资源。这样,既可以节省侦听的能耗,还降低了发送SL信息的资源冲突的几率。
结合第二方面,在一种可能的实现方式中,第一控制信息包括去激活指示信息,去激活指示信息用于指示去激活至少一个第一时间窗的一个第一时间窗;在去激活的第一时间窗内,第一终端通过侦听时频资源集确定用于发送侧行通信信息的时频资源。
结合第二方面,在一种可能的实现方式中,第二终端向第一终端发送第二控制信息,第二控制信息用于指示延长第一时间窗的时长。
这样,第二终端不需要向第一终端重新配置第一时间窗,第一终端按照当前第一时间窗的配置延长一段时间即可。配置第一时间窗的流程更快捷方便,提高资源配置效率。
结合第二方面,在一种可能的实现方式中,第一控制信息承载于物理信道。
结合第二方面,在一种可能的实现方式中,第二控制信息承载于物理信道。
在一种实现方式中,该物理信道为物理侧行反馈信道。
结合第二方面,在一种可能的实现方式中,激活的第一时间窗包括第一子时间窗和第二子时间窗,在第一子时间窗内,第一终端停止侦听时频资源集;在第二子时间窗内,第一终端侦听时频资源集。这样,在第一时间窗结束之后,可以根据第二子时间窗内侦听时频资源集的结果选择在第一时间窗结束后的时频资源发送SL信息;避免在第一时间窗结束后因未侦听时频资源集而无法获得在第一时间窗结束后的资源预约信息,且未获取到第二终端的指示,通过随机选择或基于部分侦听结果选择发送SL信息的时频资源,导致资源碰撞概率增大,降低传输可靠性。
结合第二方面,在一种可能的实现方式中,第二终端通过侦听时频资源集确定用于第一终端在激活的第一时间窗内发送第一侧行通信信息的时频资源。在一种可能的实现方式中,第二终端通过网络设备的调度或资源配置确定用于第一终端在激活的第一时间窗内发送第一侧行通信信息的时频资源。
第三方面,本申请实施例提供一种通信方法,该方法可以由终端设备执行,也可以由终端设备的部件,例如终端设备的处理器、芯片、或芯片系统等执行。该方法包括:第一终端获取时频资源集中至少一个第一时间窗;时频资源集用于终端发送侧行通信信息;第一终端向第二终端发送第一控制信息,第一控制信息包括激活指示信息,激活指示信息用于指示激活至少一个第一时间窗的一个第一时间窗;第一终端停止通过侦听时频资源集确定用于在激活的第一时间窗内发送侧行通信信息的时频资源;第一终端在激活的第一时间窗内从第二终端接收第一指示信息;第一指示信息指示至少一个时频资源;第一终端在至少一个时频资源上发送第一侧行通信信息。
在该方法中,第一终端确定在至少一个第一时间窗中激活一个第一时间窗。在激活的第一时间窗内,第一终端根据第二终端的指示选择用于在激活的第一时间窗内发送SL信息的时频资源,而不是通过侦听时频资源集确定用于在激活的第一时间窗内发送SL信息的时频资源。这样,既可以节省侦听的能耗,还降低了发送SL信息的资 源冲突的几率。
结合第三方面,在一种可能的实现方式中,第一控制信息包括去激活指示信息,去激活指示信息用于指示去激活至少一个第一时间窗的一个第一时间窗,第一终端在去激活的第一时间窗内通过侦听时频资源集确定用于发送侧行通信信息的时频资源。也就是说,第二终端确定不激活第一时间窗时,第一终端通过侦听时频资源集确定用于发送侧行通信信息的时频资源。
结合第三方面,在一种可能的实现方式中,第一终端向第二终端发送第二控制信息,第二控制信息用于指示延长第一时间窗的时长。这样,第一终端不需要向第二终端重新配置第一时间窗,第一终端按照当前第一时间窗的配置延长一段时间即可。配置第一时间窗的流程更快捷方便,提高资源配置效率。
结合第三方面,在一种可能的实现方式中,第一控制信息承载于物理信道。
结合第三方面,在一种可能的实现方式中,第二控制信息承载于物理信道。
在一种实现方式中,该物理信道为物理侧行反馈信道。
结合第三方面,在一种可能的实现方式中,激活的第一时间窗包括第一子时间窗和第二子时间窗,在第一子时间窗内,第一终端停止侦听时频资源集;在第二子时间窗内,第一终端侦听时频资源集。这样,在第一时间窗结束之后,可以根据第二子时间窗内侦听时频资源集的结果选择在第一时间窗结束后的时频资源发送SL信息;避免在第一时间窗结束后因未侦听时频资源集而无法获得在第一时间窗结束后的资源预约信息,且未获取到第二终端的指示,通过随机选择或基于部分侦听结果选择发送SL信息的时频资源,导致资源碰撞概率增大,降低传输可靠性。
第四方面,本申请实施例提供一种通信方法,该方法可以由终端设备执行,也可以由终端设备的部件,例如终端设备的处理器、芯片、或芯片系统等执行。该方法包括:第二终端获取时频资源集中至少一个第一时间窗;时频资源集用于终端发送侧行通信信息;第二终端从第一终端接收第一控制信息,第一控制信息包括激活指示信息,激活指示信息用于指示激活至少一个第一时间窗的一个第一时间窗;在激活的第一时间窗内,第一终端停止通过侦听时频资源集确定用于发送侧行通信信息的时频资源;第二终端在激活的第一时间窗内向第一终端发送第一指示信息;第一指示信息指示至少一个时频资源,用于第一终端在至少一个时频资源上发送第一侧行通信信息。
在该方法中,第一终端确定在至少一个第一时间窗中激活一个第一时间窗,并通知第二终端。在激活的第一时间窗内,第一终端根据第二终端的指示选择用于在激活的第一时间窗内发送SL信息的时频资源,而不是通过侦听时频资源集确定用于在激活的第一时间窗内发送SL信息的时频资源。这样,既可以节省侦听的能耗,还降低了发送SL信息的资源冲突的几率。
结合第四方面,在一种可能的实现方式中,第一控制信息包括去激活指示信息,去激活指示信息用于指示去激活至少一个第一时间窗的一个第一时间窗;在去激活的第一时间窗内,第一终端通过侦听时频资源集确定用于发送侧行通信信息的时频资源。
结合第四方面,在一种可能的实现方式中,第二终端从第一终端接收第二控制信息,第二控制信息用于指示延长第一时间窗的时长。这样,第一终端不需要向第二终端重新配置第一时间窗,第一终端按照当前第一时间窗的配置延长一段时间即可。配 置第一时间窗的流程更快捷方便,提高资源配置效率。
结合第四方面,在一种可能的实现方式中,第一控制信息承载于物理信道。
结合第四方面,在一种可能的实现方式中,第二控制信息承载于物理信道。
在一种实现方式中,该物理信道为物理侧行反馈信道。
结合第四方面,在一种可能的实现方式中,激活的第一时间窗包括第一子时间窗和第二子时间窗,在第一子时间窗内,第一终端停止侦听时频资源集;在第二子时间窗内,第一终端侦听时频资源集。这样,在第一时间窗结束之后,可以根据第二子时间窗内侦听时频资源集的结果选择在第一时间窗结束后的时频资源发送SL信息;避免在第一时间窗结束后因未侦听时频资源集而无法获得在第一时间窗结束后的资源预约信息,且未获取到第二终端的指示,通过随机选择或基于部分侦听结果选择发送SL信息的时频资源,导致资源碰撞概率增大,降低传输可靠性。
第五方面,本申请实施例提供一种通信方法,该方法可以由终端设备执行,也可以由终端设备的部件,例如终端设备的处理器、芯片、或芯片系统等执行。该方法包括:第一终端从第二终端接收时间窗指示信息,时间窗指示信息用于指示第一时间窗;第一终端根据第一时间窗信息确定第一时间窗;第一终端停止通过侦听时频资源集确定用于在第一时间窗内发送侧行通信信息的时频资源,时频资源集用于终端发送侧行通信信息;第一终端在第一时间窗内从第二终端接收第一指示信息;第一指示信息指示至少一个时频资源;第一终端在至少一个时频资源上发送第一侧行通信信息。
在该方法中,第二终端为第一终端指示第一时间窗,该第一时间窗是激活的第一时间窗。在该第一时间窗内,第一终端根据第二终端的指示选择用于在第一时间窗内发送SL信息的时频资源,而不是通过侦听时频资源集确定用于在第一时间窗内发送SL信息的时频资源。这样,既可以节省侦听的能耗,还降低了发送SL信息的资源冲突的几率。
结合第五方面,在一种可能的实现方式中,该方法还包括:第一终端从第二终端接收控制信息,控制信息用于指示延长第一时间窗的时长。
这样,第二终端不需要向第一终端重新配置第一时间窗,第一终端按照当前第一时间窗的配置延长一段时间即可。配置第一时间窗的流程更快捷方便,提高资源配置效率。
结合第五方面,在一种可能的实现方式中,控制信息承载于物理信道。在一种实现方式中,该物理信道为物理侧行反馈信道。
结合第五方面,在一种可能的实现方式中,第一时间窗包括第一子时间窗和第二子时间窗,在第一子时间窗内,第一终端停止侦听时频资源集;在第二子时间窗内,第一终端侦听时频资源集。这样,在第一时间窗结束之后,可以根据第二子时间窗内侦听时频资源集的结果选择在第一时间窗结束后的时频资源发送SL信息;避免在第一时间窗结束后因未侦听时频资源集而无法获得在第一时间窗结束后的资源预约信息,且未获取到第二终端的指示,通过随机选择或基于部分侦听结果选择发送SL信息的时频资源,导致资源碰撞概率增大,降低传输可靠性。
结合第五方面,在一种可能的实现方式中,在第一终端在第一时间窗内从第二终端接收第一指示信息之前,第一终端在该第一时间窗内发送辅助信息,该辅助信息用 于触发第二终端确定用于第一终端发送第一SL信息的时频资源。其中,该辅助信息包括以下至少一项:待发送第一侧行通信信息的优先级信息,待发送第一侧行通信信息的尺寸信息,第一终端的标识信息,第一终端待发送第一SL信息的接收端对应的标识信息。
第六方面,本申请实施例提供一种通信方法,该方法可以由终端设备执行,也可以由终端设备的部件,例如终端设备的处理器、芯片、或芯片系统等执行。该方法包括:第二终端向所述第一终端发送时间窗指示信息,时间窗指示信息用于指示第一时间窗;在第一时间窗内,第一终端停止通过侦听时频资源集确定用于发送侧行通信信息的时频资源,时频资源集用于终端发送侧行通信信息;第二终端在第一时间窗内向第一终端发送第一指示信息;第一指示信息指示第一终端发送第一侧行通信信息的至少一个时频资源。
在该方法中,第二终端为第一终端指示第一时间窗,该第一时间窗是激活的第一时间窗。在该第一时间窗内,第一终端根据第二终端的指示选择用于在第一时间窗内发送SL信息的时频资源,而不是通过侦听时频资源集确定用于在第一时间窗内发送SL信息的时频资源。这样,既可以节省侦听的能耗,还降低了发送SL信息的资源冲突的几率。
结合第六方面,在一种可能的实现方式中,第二终端向第一终端发送控制信息,第二控制信息用于指示延长第一时间窗的时长。
这样,第二终端不需要向第一终端重新配置第一时间窗,第一终端按照当前第一时间窗的配置延长一段时间即可。配置第一时间窗的流程更快捷方便,提高资源配置效率。
结合第六方面,在一种可能的实现方式中,控制信息承载于物理信道。在一种实现方式中,该物理信道为物理侧行反馈信道。
结合第六方面,在一种可能的实现方式中,第一时间窗包括第一子时间窗和第二子时间窗,在第一子时间窗内,第一终端停止侦听时频资源集;在第二子时间窗内,第一终端侦听时频资源集。这样,在第一时间窗结束之后,可以根据第二子时间窗内侦听时频资源集的结果选择在第一时间窗结束后的时频资源发送SL信息;避免在第一时间窗结束后因未侦听时频资源集而无法获得在第一时间窗结束后的资源预约信息,且未获取到第二终端的指示,通过随机选择或基于部分侦听结果选择发送SL信息的时频资源,导致资源碰撞概率增大,降低传输可靠性。
结合第六方面,在一种可能的实现方式中,第二终端通过侦听时频资源集确定用于第一终端在第一时间窗内发送第一侧行通信信息的时频资源。在一种可能的实现方式中,第二终端通过网络设备的调度或资源配置确定用于第一终端在第一时间窗内发送第一侧行通信信息的时频资源。
第七方面,本申请实施例提供一种通信方法,该方法可以由终端设备执行,也可以由终端设备的部件,例如终端设备的处理器、芯片、或芯片系统等执行。该方法包括:第一终端向第二终端发送时间窗指示信息,时间窗指示信息用于指示第一时间窗;第一终端停止通过侦听时频资源集确定用于在第一时间窗内发送侧行通信信息的时频资源,时频资源集用于终端发送侧行通信信息;第一终端在第一时间窗内从第二终端 接收第一指示信息;第一指示信息指示至少一个时频资源;第一终端在至少一个时频资源上发送第一侧行通信信息。
在该方法中,第一终端确定第一时间窗。在第一时间窗内,第一终端根据第二终端的指示选择用于在第一时间窗内发送SL信息的时频资源,而不是通过侦听时频资源集确定用于在第一时间窗内发送SL信息的时频资源。这样,既可以节省侦听的能耗,还降低了发送SL信息的资源冲突的几率。
结合第七方面,在一种可能的实现方式中,第一终端向第二终端发送控制信息,控制信息用于指示延长第一时间窗的时长。这样,第一终端不需要向第二终端重新配置第一时间窗,第一终端按照当前第一时间窗的配置延长一段时间即可。配置第一时间窗的流程更快捷方便,提高资源配置效率。
结合第七方面,在一种可能的实现方式中,控制信息承载于物理信道。在一种实现方式中,该物理信道为物理侧行反馈信道。
结合第七方面,在一种可能的实现方式中,第一时间窗包括第一子时间窗和第二子时间窗,在第一子时间窗内,第一终端停止侦听时频资源集;在第二子时间窗内,第一终端侦听时频资源集。这样,在第一时间窗结束之后,可以根据第二子时间窗内侦听时频资源集的结果选择在第一时间窗结束后的时频资源发送SL信息;避免在第一时间窗结束后因未侦听时频资源集而无法获得在第一时间窗结束后的资源预约信息,且未获取到第二终端的指示,通过随机选择或基于部分侦听结果选择发送SL信息的时频资源,导致资源碰撞概率增大,降低传输可靠性。
第八方面,本申请实施例提供一种通信方法,该方法可以由终端设备执行,也可以由终端设备的部件,例如终端设备的处理器、芯片、或芯片系统等执行。该方法包括:第二终端从第一终端接收时间窗指示信息,时间窗指示信息用于指示第一时间窗;在第一时间窗内,第一终端停止通过侦听时频资源集确定用于发送侧行通信信息的时频资源;时频资源集用于终端发送侧行通信信息;第二终端在第一时间窗内向第一终端发送第一指示信息;第一指示信息指示至少一个时频资源,用于第一终端在至少一个时频资源上发送第一侧行通信信息。
在该方法中,第一终端确定第一时间窗。在第一时间窗内,第一终端根据第二终端的指示选择用于在第一时间窗内发送SL信息的时频资源,而不是通过侦听时频资源集确定用于在第一时间窗内发送SL信息的时频资源。这样,既可以节省侦听的能耗,还降低了发送SL信息的资源冲突的几率。
结合第八方面,在一种可能的实现方式中,第二终端从第一终端接收控制信息,控制信息用于指示延长第一时间窗的时长。这样,第一终端不需要向第二终端重新配置第一时间窗,第一终端按照当前第一时间窗的配置延长一段时间即可。配置第一时间窗的流程更快捷方便,提高资源配置效率。
结合第八方面,在一种可能的实现方式中,控制信息承载于物理信道。在一种实现方式中,该物理信道为物理侧行反馈信道。
结合第八方面,在一种可能的实现方式中,第一时间窗包括第一子时间窗和第二子时间窗,在第一子时间窗内,第一终端停止侦听时频资源集;在第二子时间窗内,第一终端侦听时频资源集。这样,在第一时间窗结束之后,可以根据第二子时间窗内 侦听时频资源集的结果选择在第一时间窗结束后的时频资源发送SL信息;避免在第一时间窗结束后因未侦听时频资源集而无法获得在第一时间窗结束后的资源预约信息,且未获取到第二终端的指示,通过随机选择或基于部分侦听结果选择发送SL信息的时频资源,导致资源碰撞概率增大,降低传输可靠性。
第九方面,本申请实施例提供一种通信装置,可以实现上述第一方面或第一方面任一种可能的实施方式中的方法,或者实现上述第二方面或第二方面任一种可能的实施方式中的方法,或者实现上述第三方面或第三方面任一种可能的实施方式中的方法,或者实现上述第四方面或第四方面任一种可能的实施方式中的方法。该装置包括用于执行上述方法的相应的单元或部件。该装置包括的单元可以通过软件和/或硬件方式实现。该装置例如可以为终端、或者为可支持终端实现上述方法的芯片、芯片系统、或处理器等。
第十方面,本申请实施例提供一种通信装置,包括:处理器,所述处理器与存储器耦合,所述存储器用于存储程序或指令,当所述程序或指令被所述处理器执行时,使得该装置实现上述第一方面或第一方面任一种可能的实施方式中的方法,或者实现上述第二方面或第二方面任一种可能的实施方式中的方法,或者实现上述第三方面或第三方面任一种可能的实施方式中的方法,或者实现上述第四方面或第四方面任一种可能的实施方式中的方法。
第十一方面,本申请实施例提供一种计算机可读存储介质,其上存储有计算机程序或指令,所述计算机程序或指令被执行时使得计算机执行上述第一方面或第一方面任一种可能的实施方式中的方法,或者实现上述第二方面或第二方面任一种可能的实施方式中的方法,或者实现上述第三方面或第三方面任一种可能的实施方式中的方法,或者实现上述第四方面或第四方面任一种可能的实施方式中的方法。
第十二方面,本申请实施例提供一种计算机程序产品,其包括计算机程序代码,所述计算机程序代码在计算机上运行时,使得计算机执行上述第一方面或第一方面任一种可能的实施方式中的方法,或者实现上述第二方面或第二方面任一种可能的实施方式中的方法,或者实现上述第三方面或第三方面任一种可能的实施方式中的方法,或者实现上述第四方面或第四方面任一种可能的实施方式中的方法。
第十三方面,本申请实施例提供一种芯片,包括:处理器,所述处理器与存储器耦合,所述存储器用于存储程序或指令,当所述程序或指令被所述处理器执行时,使得该芯片实现上述第一方面或第一方面任一种可能的实施方式中的方法,或者实现上述第二方面或第二方面任一种可能的实施方式中的方法,或者实现上述第三方面或第三方面任一种可能的实施方式中的方法,或者实现上述第四方面或第四方面任一种可能的实施方式中的方法。
可以理解的,上述提供的任一种通信装置、芯片、计算机可读存储介质、计算机程序产品等均用于执行上文所提供的对应的方法,因此,其所能达到的有益效果可参考对应的方法中的有益效果,此处不再赘述。
附图说明
图1为本申请实施例提供的技术方案所适用的一种场景示意图;
图2为本申请实施例提供的技术方案所适用的一种系统架构的示意图;
图3为本申请实施例提供的技术方案所适用的一种终端设备的结构示意图;
图4为本申请实施例提供的一种通信方法的示意图一;
图5为本申请实施例提供的一种通信方法的流程示意图一;
图6为本申请实施例提供的一种通信方法的示意图二;
图7为本申请实施例提供的一种通信方法的示意图三;
图8为本申请实施例提供的一种通信方法的流程示意图二;
图9为本申请实施例提供的一种通信方法的示意图四;
图10为本申请实施例提供的一种通信方法的流程示意图三;
图11为本申请实施例提供的一种通信方法的示意图五;
图12为本申请实施例提供的一种通信方法的流程示意图四;
图13为本申请实施例提供的一种通信方法的示意图六;
图14为本申请实施例提供的一种通信方法的流程示意图五;
图15为本申请实施例提供的一种通信方法的示意图七;
[根据细则91更正 06.01.2021] 
图16为本申请实施例提供的一种通信方法的流程示意图六;
[根据细则91更正 06.01.2021] 
图17为本申请实施例提供的一种通信方法的流程示意图七;
图18为本申请实施例提供的一种通信装置的结构示意图;
图19为本申请实施例提供的终端设备的结构示意图;
图20为本申请实施例提供的另一种通信装置的结构示意图。
具体实施方式
本申请提供的技术方案可以应用于V2X、设备到设备(device-to-device,D2D)等用户端和用户端直接通信的系统中。本申请实施例提供的技术方案可以应用于如图2所示的系统架构中,该系统架构中可以包括网络设备200以及与网络设备200连接的多个终端设备100。多个终端设备100之间直接通信,称为侧行通信方式。在一些示例中,如图2的(a)所示,多个终端设备100处于网络设备200的网络覆盖下,每个终端设备100可以接收网络设备200的调度,从网络设备200获取配置信息、控制信令等。终端设备100之间通过侧行通信方式通信。在一些示例中,如图2的(b)所示,至少一个终端设备100处于网络设备200的网络覆盖下,至少一个终端设备100处于网络设备200的网络覆盖之外。处于网络设备200的网络覆盖下的终端设备100可以接收网络设备200的调度,从网络设备200获取配置信息、控制信令等。终端设备100之间通过侧行通信方式通信。在一些示例中,如图2的(c)所示,多个终端设备100处于无网络覆盖的通信场景。终端设备100之间通过侧行通信方式通信。
终端设备100和网络设备200之间采用Uu(UTRAN-to-UE)空口传输,终端设备100之间采用近场通信PC-5空口传输或者侧行链路(sidelink,SL)空口传输。
网络设备200可以是通用移动通信系统/长期演进(universal mobile telecommunication system/long term evolution,UMTS/LTE)无线通信系统中的宏基站(evolved nodeB,eNB),也可以是异构网络(heterogeneous network,HetNet)中的微基站eNB,也可以是分布式基站网络中的基带处理单元(base band unit,BBU)和射频单元(remote radio unit,RRU),也可以是云无线接入网(cloud radio access network,CRAN)中的基带池(BBU pool)和RRU,还可以是未来无线通信系统中的gNB。
终端设备100可以是接入终端、UE(user equipment)单元、UE站、移动站、移动台、远方站、远程终端、移动设备、UE终端、UE代理或UE装置等。接入终端可以是蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字处理(personal digital assistant,PDA)、具有无线通信功能的手持设备(比如,手机,平板电脑等)、可穿戴设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、车载通信模块或其它嵌入式通信模块,5G网络中的终端或未来演进的PLMN网络中的终端等。
应注意,图2所示的系统架构仅用于举例,并非用于限制本申请的技术方案。本领域的技术人员应当明白,在具体实现过程中,该系统架构中还可能包括其他设备(比如,核心网),同时也可根据具体需要来配置终端设备100和网络设备200的数量。
本申请实施例提供的通信方法和装置,可以应用于终端设备中,该终端设备包括硬件层、运行在硬件层之上的操作系统层,以及运行在操作系统层上的应用层。该硬件层包括中央处理器(central processing unit,CPU)、内存管理单元(memory management unit,MMU)和内存(也称为主存)等硬件。该操作系统可以是任意一种或多种通过进程(process)实现业务处理的计算机操作系统。该应用层包含浏览器、通讯录、文字处理软件、以及即时通信软件等应用。并且,在本申请实施例中,通信方法的执行主体的具体结构,本申请实施例并未特别限定,只要能够通过运行记录有本申请实施例的通信方法的代码的程序,以根据本申请实施例的通信方法进行通信即可,例如,本申请实施例提供的通信方法的执行主体可以是终端设备,或者,是终端设备中能够调用程序并执行程序的功能模块,或者为应用于终端设备中装置,例如,芯片,本申请对此不作限定。
可选的,本申请实施例中的终端设备100的协议栈结构如图3所示,从下到上依次为物理(physical,PHY)层、媒体接入控制(media access control,MAC)层、无线链路控制(radio link control,RLC)层、分组数据汇聚协议(packet data convergence protocol,PDCP)层、应用(application,APP)层。其中,物理层主要用于调制解调、多天线映射等电信物理层功能;MAC层主要用于上下行调度与混合自动重传请求(hybrid automatic repeat request,HARQ)重传;RLC层主要用于分段、重传处理,以及对高层数据的顺序控制;PDCP层主要用于头压缩和解压缩,以减少无线接口必须传送的比特流量;APP层包括一系列应用程序包;比如,相机,图库,日历,通话,地图,导航,蓝牙,音乐,视频,短信息等应用程序。
在本申请的各个实施例中,如果没有特殊说明以及逻辑冲突,不同的实施例之间的术语和/或描述具有一致性、且可以相互引用,不同的实施例中的技术特征根据其内在的逻辑关系可以组合形成新的实施例。
终端设备之间进行侧行通信的资源分配方式,可以采用调度模式或自选资源模式。在调度模式下,终端设备使用网络设备分配的传输资源发送和接收侧行通信信息。在自选资源模式下,终端设备自己确定用于发送和接收侧行通信信息的传输资源。
在一种实现方式中,在自选资源模式下,终端设备通过侦听(sensing)时频资源集确定用于发送侧行通信信息的时频资源。其中,时频资源集是用于网络中的终端设备之间发送侧行通信信息的资源集合,时频资源集也可以称为资源池(resource pool) 或者是一个侧行带宽部分(sidelink bandwidth part,SL BWP)所包含的时频资源的集合。时频资源集包括时域、频域和/或码域等资源。其中时频资源集的时域资源包括一个或多个时间单元;一个时间单元可以为一个符号(symbol)、多个符号、一个时隙(slot)、一个子帧(subframe)或一个帧(frane)等;一个或多个时间单元可以是在时间上连续的,也可以是离散的。时频资源集的频域资源包括一个或多个频域单元;一个频域单元可以是一个资源元素(resource element,RE)、多个RE、一个资源块(resource block,RB)、多个RB、一个子信道(subchannel)或多个子信道等;其中,一个子信道包括一个或多个在频域上连续的或非连续的RB。本申请实施例中,以时间单元为时隙(slot),频域单元为子信道(subchannel)为例进行说明;可以理解的,本申请实施例提供的通信方法同样适用于其他的时间单元和频域单元。
在一个时频资源集内,时间单元是逻辑上连续的。如图4所示,时隙1至时隙8是物理上时间连续的时隙,即物理时隙。其中时隙1,时隙3,时隙5和时隙8被配置为属于一个时频资源集。在该时频资源集内,时隙1(时隙1’),时隙3(时隙2’),时隙5(时隙3’)和时隙8(时隙4’)是逻辑连续的时隙。可以理解的,本申请实施例中所述连续的时隙为逻辑连续的时隙。
终端设备可以从网络设备获得时频资源集;也可以使用预配置的时频资源集。示例性的,在网络设备的网络覆盖范围下的终端设备可以通过接收网络设备的系统消息块(system information block,SIB)、小区级(cell-specific)的无线资源控制(radio resource control,RRC)信令或者终端用户级(UE-specific)RRC信令获得时频资源集配置信息;根据时频资源集配置信息获取时频资源集。示例性的,在网络设备的网络覆盖范围之外,终端设备可以使用预配置的时频资源集配置信息获取时频资源集。
在一种示例中,终端设备通过侦听时频资源集确定用于发送侧行通信信息的传输资源的方法可以包括:
第一终端在时隙n时刻触发资源选择过程,确定用于发送待发送的第一SL信息的时频资源。SL信息包括物理层侧行链路共享信道(physical sidelink shared channel,PSSCH),物理层侧行链路控制信道(physical sidelink control channel,PSCCH),物理层广播控制信道(physical broadcast control channel,PSBCH),物理层侧行链路反馈信道(physical sidelink feedback channel,PSFCH),和物理层侧行链路数据信道(physical sidelink data channel,PSDCH)中的至少一种。PSSCH承载的业务类型可以包括单播、组播和/或广播通信类型。
应理解,本申请中的表达式[A,B]表示包含边界点A和B的取值范围,表达式(A,B)表示同时不包含边界点A和B的取值范围。同理地,表达式[A,B)表示包含边界点A且不包含边界点B的取值范围,表达式(A,B]表示不包含边界点A且包含边界点B的取值范围。全文其他地方对此不再赘述。
第一终端在侦听窗(比如,时隙
Figure PCTCN2020142523-appb-000001
)内的时频资源集内接收来自网络中其他终端的SL信息(比如,PSCCH或PSCCH和PSSCH)。其中T 0由网络设备配置或预配置,
Figure PCTCN2020142523-appb-000002
由终端根据表1确定。表中的μ SL与终端的SL带宽部分(bandwidth part,BWP)对应的子载波间隔(sub-carrier spacing,SCS)有关,μ SL可以理解为SL BWP的SCS配置参数。具体的,子载波间隔SCS与μ SL的对应关系由下方的表2示出。终端可以根据表1和表2确定参数
Figure PCTCN2020142523-appb-000003
其中表1和表2为协议预定 义的。一种可以理解地方式为,终端设备通过侦听时频资源集确定用于发送侧行通信信息的传输资源,具体是指侦听时频资源集中的侦听窗内的时频资源集来确定用于发送侧行通信信息的传输资源。
表1
Figure PCTCN2020142523-appb-000004
表2
μ SL Δf=2 μ·15[kHz]
0 15
1 30
2 60
3 120
4 240
在一种示例中,第一终端在PSCCH上检测和解码侧行链路控制信息(sidelink control information,SCI)。一个SCI可以调度至少一次侧行传输;比如,一个SCI调度3次侧行传输,第1次侧行传输是一个PSSCH承载的数据的初传,后两次侧行传输是该数据的重传。再比如,一个SCI调度3次侧行传输,这3次侧行传输都是一个数据的重传。第一终端检测到的SCI包括调度的侧行传输的时域和/或频域资源信息,体现数据业务周期的周期性时频资源信息(可以通过resource reservation period字段指示),以及优先级信息(priority)等,具体地,优先级信息可以指示对应到PSSCH的优先级信息。也就是说,在第一时刻,网络中的一个终端(终端二)通过发送一个SCI来预约在选择窗(selection window)内的一个时频资源用于待发送的数据的新传或重传,其中选择窗的时隙范围为[n+T 1,n+T 2],n+T 1为起始时隙编号,n+T 2为结尾时隙编号,T 1和T 2根据终端的数据时延来确定。然后第一终端检测到该SCI,通过解码SCI来获知终端二在选择窗的时频资源预约情况。第一终端避免在选择窗内选择被其他终端预约的时频资源发送SL信息,以降低资源碰撞。
如果同时满足以下条件,第一终端则将终端二预约的在选择窗内的时频资源排除在可以用于发送第一SL信息的时频资源之外,即排除不可用的时频资源:
1、终端在时隙
Figure PCTCN2020142523-appb-000005
收到SCI,该SCI中的字段"resource reservation period"(若字段"resource reservation period"存在)指示了值P rsvp_RX,并且该SCI中的字段"priority"指示了值prio RX;其中值P rsvp_RX为该SCI对应的PSSCH的周期,值prio RX为该SCI对应的PSSCH的优先级值。
2、终端根据该SCI确定的RSRP测量结果高于门限Th prio TX,prioRX,其中门限Th prio TX,prioRX为接收到的SCI中指示优先级值和终端的待发送数据对应的优先级值的函数。
3、终端在时隙
Figure PCTCN2020142523-appb-000006
收到的SCI所确定的预约的时频资源和选择窗内的时频资源存在 重叠。
第一终端在其资源选择窗内排除不可用的时频资源后,可以确定资源选择窗内剩余的时频资源为可用的时频资源,从而在可用的时频资源中选择用于发送待发送的第一SL信息的时频资源。
在一些实现方式中,可以减少第一终端在侦听窗内进行侦听的次数,以节约终端电量。比如,区别于对侦听窗(比如,时隙
Figure PCTCN2020142523-appb-000007
)内的时隙进行侦听,只在时隙n之前的一部分时隙进行侦听(称为部分侦听),根据部分侦听的结果确定用于发送第一SL信息的时频资源。比如,第一终端不进行侦听,通过随机选择的方式选择用于发送第一SL信息的时频资源。
在上述方法中,当第一终端不能获得完整的侦听结果或者不侦听时,选择的时频资源出现碰撞或冲突的概率增大,降低了SL传输的可靠性。
本申请实施例提供一种通信方法,可以降低发送侧行通信信息的时频资源发生冲突的几率。
如图5所示,本申请实施例提供的通信方法可以包括:
S601、第一终端获取激活的第一时间窗。
本申请实施例中,网络设备或终端将时频资源集内时域上的一个或多个时隙配置为一个协作窗(第一时间窗),或者,预配置时频资源集内时域上的一个或多个时隙为一个第一时间窗。第一时间窗用于终端设备根据辅助终端的指示在时频资源集中确定用于发送SL信息的时频资源。具体的,可以在时频资源集内配置至少一个第一时间窗。进一步地,终端设备可以激活该配置,也可以去激活该配置。
在激活的第一时间窗内,第一终端停止通过侦听时频资源集确定用于发送SL信息的时频资源;而是根据辅助终端(第二终端)的指示在时频资源集中确定用于发送SL信息的时频资源。在去激活的第一时间窗内,第一终端通过侦听时频资源集确定用于发送SL信息的时频资源;而不是根据辅助终端(第二终端)的指示在时频资源集中确定用于发送SL信息的时频资源。
第一终端和第二终端之间建立了终端间协作的连接;包括第一终端和第二终端通过信令进行协作信息的交互;示例性的,所述信令包括PC5-RRC、SL MAC CE或SCI;也可以包括第一终端的APP层向MAC层和PHY层提供的第一终端和第二终端建立连接的信息;协作信息包括第一终端和第二终端的标识信息,用于第一终端和第二终端相互识别对方或者对方的数据;第一终端和第二终端属于一个协作对端或一个协作组,或者属于一组协作数据/业务。
在一些实施例中,激活的第一时间窗包括第一子时间窗。在第一子时间窗内,第一终端停止侦听时频资源集,并停止通过侦听时频资源集确定用于在第一子时间窗内发送SL信息的时频资源,而是根据第二终端的指示在时频资源集中确定用于在激活的第一时间窗内发送SL信息的时频资源。
在一些实施例中,激活的第一时间窗还包括第二子时间窗。在第二子时间窗内,第一终端侦听时频资源集,但是不通过侦听时频资源集确定用于在第二子时间窗内发送SL信息的时频资源,而是根据第二终端的指示在时频资源集中确定用于在第二子时间窗内发送SL信息的时频资源。这样,在第一时间窗结束之后,可以根据第二子 时间窗内侦听时频资源集的结果选择在第一时间窗结束后的时频资源发送SL信息;避免在第一时间窗结束后因未侦听时频资源集而无法获得在第一时间窗结束后的资源预约信息,且未获取到第二终端的指示,通过随机选择或基于部分侦听结果选择发送SL信息的时频资源,导致资源碰撞概率增大,降低传输可靠性。需要说明的是,本申请实施例中所述侦听包括全侦听(sensing)和半侦听(partial-sensing)选择资源的资源选择方式。半侦听,即侦听一些非连续或连续的时隙,这些非连续或连续的时隙可以是基于资源预约周期,和/或,一个SCI所能指示的时隙数确定的(例如1个SCI可以最多指示32个时隙的资源),和/或,网络设备配置的,或预配置的。本申请实施例中所述侦听还包括DRX(dis-continuous reception)模式的终端进行基于侦听选择资源的资源选择方式,即在DRX-OFF(或,DRX非激活状态)时间段内的资源不进行SCI的侦听;或其他任何基于非全侦听模式获得资源选择方式的情况。
示例性的,如图6所示,第一时间窗包括第一子时间窗和第二子时间窗。第一子时间窗和第二子时间窗在时间上不重叠,第二子时间窗在第一子时间窗之后,协作窗的长度等于第一子时间窗长度和第二子时间窗长度之和。
第一终端获取第一时间窗信息。第一时间窗信息包括第一时间窗包括的时隙个数。该时隙可以是物理时隙,例如第一时间窗为一个系统帧号(system frame number,SFN)或直连帧号(direct frame number,DFN)的长度或者q个SFN长度,q为大于1的正整数;示例性的,第一时间窗为1000ms,2000ms,3000ms,4000ms,5000ms,6000ms,7000ms,8000ms,9000ms,1000ms或10240ms等。该时隙也可以是时频资源集的逻辑时隙,由物理时隙转化而来。第一时间窗信息还包括第一时间窗的起始位置,相邻第一时间窗之间的间隔信息等信息中的至少一种信息。其中,第一时间窗起始位置可以是相对SFN 0或DFN 0的一个偏移(offset)值,或者相对于接收到第二终端发送信息的一个偏移(offset)值。
如果第一时间窗包括第一子时间窗,第一终端还获取第一子时间窗信息。第一子时间窗信息包括第一子时间窗包括的时隙个数或物理时间长度。该时隙可以是物理时隙,也可以是时频资源集的逻辑时隙,由物理时隙转化而来。该物理时间长度的单位为毫秒或者秒,例如为一个系统帧号(system frame number,SFN)或直连帧号(direct frame number,DFN)的长度或者q个SFN长度,q为大于1的正整数;示例性的,协作窗为1000ms,2000ms,3000ms,4000ms,5000ms,6000ms,7000ms,8000ms,9000ms,1000ms或10240ms等。在一种示例中,第一子时间窗的起始位置和第一时间窗的起始位置相同。可选地,第一子时间窗信息还可以包括第一子时间窗的起始位置,相邻第一子时间窗之间的间隔信息等信息中的至少一种信息。其中,第一子时间窗起始位置可以是相对SFN 0或DFN 0或第一时间窗起始位置的一个偏移(offset)值,或者相对于接收到第二终端发送信息的一个偏移(offset)值。
可选地,如果第一时间窗包括第二子时间窗,第一终端还获取第二子时间窗信息。第二子时间窗信息包括第二子时间窗包括的时隙个数或物理时间长度。该时隙可以是物理时隙,也可以是时频资源集的逻辑时隙,由物理时隙转化而来。该物理时间长度的单位为毫秒或者秒,例如为一个系统帧号(system frame number,SFN)或直连帧号(direct frame number,DFN)的长度或者q个SFN长度,q为大于1的正整数;示 例性的,协作窗为1000ms,2000ms,3000ms,4000ms,5000ms,6000ms,7000ms,8000ms,9000ms,1000ms或10240ms等。在一种示例中,第二子时间窗的起始位置在第一时间窗的结束位置之后,第二子时间窗的起始位置和第一子时间窗的结束位置在时间上是相邻的。可选地,第二子时间窗信息还包括第二子时间窗的起始位置,相邻第二子时间窗之间的间隔信息等信息中的至少一种信息。其中,第二子时间窗起始位置可以是相对SFN 0或DFN 0或第一时间窗起始位置或第一子时间窗结束位置的一个偏移(offset)值,或者相对于接收到第二终端发送信息的一个偏移(offset)值。
可以理解的,如果第一时间窗仅包括第一子时间窗,即第一时间窗的长度等于第一子时间窗长度。第一终端获取第一时间窗信息和第一子时间窗信息中至少一项。如果第一时间窗包括第一子时间窗和第二子时间窗,第一时间窗的长度等于第一子时间窗长度和第二子时间窗长度之和;第一终端获取第一时间窗信息、第一子时间窗信息和第二子时间窗信息三者中的至少两个信息。
第一终端可以通过RRC信息或SIB信息或MIB信息从网络设备获得第一时间窗信息,或通过PC5-RRC信息、MAC CE、SCI或SFCI从第二终端获得第一时间窗信息,或自己确定第一时间窗信息。
S602、第一终端确定待发送的第一SL信息。
第一终端确定待发送的第一SL信息,该第一SL信息可以是新传业务/数据或重传业务/数据。第一终端还可以确定待发送的第一SL信息的数据类型、数据大小,数据接收端等信息。
S603、第一终端在激活的第一时间窗内向第二终端发送资源分配请求。
资源分配请求用于请求第二终端分配用于第一终端发送第一SL信息的时频资源。
S604、第二终端确定用于第一终端发送第一SL信息的时频资源。
第二终端作为第一终端的辅助终端,通过侦听时频资源集确定用于第一终端发送第一SL信息的时频资源。比如,第二终端在侦听窗内的时频资源集内接收来其他终端的SL信息(比如,PSCCH,或,PSCCH和PSSCH),获取到其他终端的时频资源预约情况,从而确定时频资源集内空闲的时频资源。第二终端从时频资源集内空闲的时频资源中确定出用于第一终端发送第一SL信息的时频资源。
在一些实施例中,资源分配请求中包括辅助信息,该辅助信息用于第二终端确定用于第一终端发送第一SL信息的时频资源。示例性的,辅助信息可以包括第一终端待发送第一SL信息的优先级信息、待发送第一SL信息的尺寸信息、第一终端的标识信息和第一终端待发送第一SL信息的接收端对应的标识信息中的至少一种信息。其中,待发送第一SL信息的尺寸信息可以为一个传输块的尺寸(transport block size,TBS),或者为缓存状态报告(buffer status report,BSR),或者为承载待发送第一SL信息的子信道信息(例如,子信道信息可以指示待发送第一SL信息需要占用的子信道和/或时隙个数)。其中,上述标识信息,可以是用来标识某个终端的标识信息,或者是某个终端待发送第一SL信息的数据/业务的标识信息;标识信息可以用于识别第一SL信息发送方或接收方;该标识信息可以是完整的一个标识信息的至少一部分信息。
第二终端接收到辅助信息,根据辅助信息从时频资源集内空闲的时频资源中确定 出用于第一终端发送第一SL信息的时频资源。可选的,第二终端可以从网络设备接收网络设备的资源指示信息,根据所述从网络设备接收的资源指示信息,确定出用于第一终端发送第一SL信息的时频资源
S605、第二终端在激活的第一时间窗内向第一终端发送第一指示信息。
第二终端在激活的第一时间窗内的第一时频单元向第一终端发送第一指示信息,第一指示信息指示至少一个时频资源,用于第一终端发送第一SL信息。在一些示例中,该至少一个时频资源时域上在该激活的第一时间窗内。其中,第一时频单元可以是一个时隙和一个子信道组成的时频资源集合,也可以是一个时隙或多个时隙,和,一个或多个子信道组成的时频资源集合。
在一种实现方式中,第一终端和第二终端分别接收网络设备的第一配置信息,第一配置信息包括第一时频单元指示信息,用于指示第一时频单元。第一终端和第二终端分别根据第一时频单元指示信息获取第一时频单元。示例性的,第一终端和第二终端分别接收网络设备的SIB,主系统信息块(master information block,MIB),RRC,下行链路控制信息(downlink control information,DCI),MAC控制参数(control element,CE)中至少一个,获取该第一配置信息。
在另一种实现方式中,第一终端和第二终端根据预配置参数获取第一时频单元。
在另一种实现方式中,第二终端通过侦听时频资源集,或接收网络设备的第一配置信息,或根据预配置参数获取第一时频单元;并向第一终端发送第一时频单元指示信息。示例性的,第二终端通过SL-MIB,PC5-RRC,SCI,侧行反馈控制信息(sidelink feedback control information,SFCI),SL MAC CE中至少一种消息向第一终端发送第一时频单元指示信息。第一终端根据第一时频单元指示信息获取第一时频单元。
在另一种实现方式中,第一终端通过侦听时频资源集,或接收网络设备的第一配置信息,或根据预配置参数获取第一时频单元;并向第二终端发送第一时频单元指示信息。示例性的,第一终端通过SL-MIB,PC5-RRC,SCI,SFCI,SL MAC CE中至少一种消息向第二终端发送第一时频单元指示信息。第二终端根据第一时频单元指示信息获取第一时频单元。
S606、第一终端接收到第一指示信息,在第一指示信息指示的至少一个时频资源上发送第一SL信息。
第一终端在激活的第一时间窗内接收到第一指示信息,在第一指示信息指示的至少一个时频资源上发送第一SL信息。
本申请实施例提供的通信方法,在第一时间窗(协作窗)内,第一终端根据辅助终端(第二终端)的指示选择用于在第一时间窗内发送SL信息的时频资源,而不是通过侦听时频资源集确定用于在第一时间窗内发送SL信息的时频资源。这样,既可以节省侦听的能耗,还可以根据第二终端的指示确定发送SL信息的时频资源,这样便不需要根据侦听不完整的信息而选择资源,降低了发送SL信息的资源冲突的几率。
示例性的,如图7所示,第一终端获取第一时间窗(该第一时间窗被激活)。在第一时间窗内的第一时频资源(该第一时频资源的时域资源为时隙s1)上,第一终端向辅助终端(第二终端)发送资源配置请求,用于请求第二终端确定用于第一终端发送第一SL信息的时频资源。第一终端根据预配置参数确定在时隙s2内接收第一指示 信息。第一终端在第二时频资源上(该第二时频资源的时域资源为时隙s2)获取到第一指示信息,根据第一指示信息确定在第三时频资源上(该第三时频资源的时域资源为时隙s3)发送第一SL信息。第一终端根据第二终端的指示选择用于在第一时间窗内发送SL信息的时频资源。
在一些实施例中,第二终端确定激活的第一时间窗,第一终端根据第二终端的指示获取到激活的第一时间窗;即第二终端确定第一终端停止通过侦听时频资源集确定用于发送侧行通信信息的时频资源的时间段。如图8所示,本申请实施例提供的通信方法包括:
S701、第二终端确定激活的第一时间窗。
在一些示例中,网络设备或终端将时频资源集内时域上的一个或多个时隙配置为一个协作窗(第一时间窗),或者,预配置时频资源集内时域上的一个或多个时隙为一个第一时间窗。具体的,可以在时频资源集内配置至少一个第一时间窗。第二终端确定激活一个第一时间窗。在激活的第一时间窗内,第一终端停止通过侦听时频资源集确定用于发送侧行通信信息的时频资源。比如,第二终端能够通过侦听确定其他终端在第一时间段内时频资源集的预约使用情况,或者,第二终端能够通过网络设备的调度或资源配置,获得在第一时间段内时频资源集的时频资源,则可以将该第一时间段确定为激活的第一时间窗。
S702、第二终端向第一终端指示激活的第一时间窗。
在一种实现方式中,第二终端获取时频资源集的至少一个第一时间窗;其中,该至少一个第一时间窗可以是网络设备配置的,或是预配置的,或预定义的。第一终端获取时频资源集中的至少一个第一时间窗。其中,该至少一个第一时间窗可以是网络设备配置的,或是预配置的,或预定义的,或第二终端指示的。可选的,该至少一个第一时间窗的配置信息在一段时间内保持维持不变。第二终端动态地激活或去激活该至少一个第一时间窗中的一个第一时间窗;如果该第一时间窗被激活,该第一时间窗为激活的第一时间窗,第一终端停止通过侦听时频资源集确定用于在该激活的第一时间窗内发送侧行通信信息的时频资源,而是根据第二终端的指示在时频资源集中确定用于在该激活的第一时间窗内发送SL信息的时频资源;如果该第一时间窗被去激活,该第一时间窗为去激活的第一时间窗,第一终端通过侦听时频资源集确定用于在该去激活的第一时间窗内发送侧行通信信息的时频资源,而不是根据第二终端的指示在时频资源集中确定用于在该去激活的第一时间窗内发送SL信息的时频资源。示例性的,第二终端向第一终端发送第一控制信息,第一控制信息包括激活指示信息,用于指示激活至少一个第一时间窗的一个第一时间窗;第一控制信息还可以包括去激活指示信息,用于指示去激活至少一个第一时间窗的一个第一时间窗。第二终端可以根据信道状态(包括信道拥塞情况和/或信道干扰水平等)和/或第二终端有足够的基本分配时频资源的数量,来确定激活或去激活第一时间窗。其中,信道拥塞情况可以跟据第二终端测量的信道忙碌率(channel busy ratio,CBR)和/或信道占用率(channel occupancy ratio)来确定。具体地,设定一个CBR门限和/或CR门限。可选地,CBR门限和/或CR门限可以和优先级相关。CBR门限和/或CR门限可以是网络设备配置的,或预配值的,或预定义的。当测量的CBR大于CBR门限和/或测量的CR大于CR门限, 判定信道拥塞,第二终端激活第一时间窗。当信道拥塞时,第一终端通过侦听时频资源集确定用于在激活的第一时间窗内发送SL信息的时频资源时,会导致资源碰撞概率增大;通过第二终端的指示选择用于在激活的第一时间窗内发送SL信息的时频资源,则会受益于第二终端的中心调度的好处,减少资源的碰撞。信道干扰水平可以根据第二终端接收到的NACK或判定非连续发送(discontinuous transmission,DTX)来确定;判定DTX的条件为在应接收HARQ反馈的资源上未正确接收到HARQ反馈信息(未正确接收到ACK或NACK)。具体地,当第二终端在一段时间内,连续接收到NACK的数量超过第一NACK阈值和/或接收到的NACK总数量超过第二NACK阈值和/或DTX阈值和/或判定的DTX超过DTX阈值,判定信道干扰水平高,第二终端激活第一时间窗。可选地,第一NACK阈值和/或第二NACK阈值和/或DTX阈值可以和优先级相关。第一NACK阈值和/或第二NACK阈值和/或DTX阈值可以是网络设备配置的,或预配值的,或预定义的。信道干扰水平也可以根据测量的参考信号接收功率(reference signal received power,RSRP)和/或接收信号强度指示(received signal strength indicator,RSSI)确定;具体地,设定一个RSRP门限和/或RSSI门限。可选地,RSRP门限和/或RSSI门限可以和优先级相关。RSRP门限和/或RSSI门限可以是网络设备配置的,或预配值的,或预定义的。当测量的RSRP大于RSRP门限和/或测量的RSSI大于RSSI门限,判定信道干扰水平高,第二终端激活第一时间窗。当信道干扰水平高时,第一终端通过侦听时频资源集确定用于在激活的第一时间窗内发送SL信息的时频资源时,会导致资源碰撞概率增大,通过第二终端的指示选择用于在激活的第一时间窗内发送SL信息的时频资源,则会受益于第二终端的中心调度的好处,减少资源的碰撞。基本分配时频资源的大小为一个终端所使用的用于发送PSSCH的最小时频资源,例如一个时隙和一个子信道;基本分配时频资源的大小还可以是标准预定义的。所述有足够的基本分配时频资源的数量,可以根据一个基本分配时频资源门限值来确定。可选地,基本分配时频资源门限值可以和优先级相关。基本分配时频资源门限值可以时是网络设备配置的,或预配值的,或预定义的。当第二终端实际获得的基本分配时频资源大于基本分配时频资源门限值,判定为有足够的基本分配时频资源,第二终端能够为第一终端提供资源指示,第二终端激活第一时间窗。
在一些示例中,第二终端通过PC5-RRC或SL MAC CE或RRC或MAC CE或预配置等非物理层信令向第一终端发送第一控制信息。
示例性的,第二终端在时隙(f-g)向第一终端发送第一控制信息;比如,第一控制信息为GTNS(GoToNon-Sensing(GTN)signal)),GTNS包括激活(active)或去激活(de-active)信息,用于激活或去激活一个起始位置为时隙f的第一时间窗。示例性的,GTNS用1比特承载。比如,GTNS值为“1”表示激活,GTNS值为“0”表示去激活;再比如,GTNS值为“1”表示激活,不发送GTNS表示去激活。
在一些示例中,第一控制信息承载于物理信道上,比如PSFCH。用于承载第一控制信息的PSFCH资源和用于进行HARQ反馈ACK或NACK信息的PSFCH资源是正交的(orthogonal),即不重叠的。可选的,承载第一控制信息的PSFCH资源是网络设备配置的,或是预配置的,或预定义的。比如,一个PSFCH资源包括一个符号和一个物理资源块(physical resource block,PRB),用于承载该第一控制信息。可选地, 一个PSFCH资源还可以包括码域资源;示例性的,如果第一控制信息是通过序列的方式发送,可以用该序列的不同的循环移位(cyclic shift)表示不同的码域资源。
在一种示例中,时隙(f-g)位于时隙f之前,时间上距离时隙f最近的存在PSFCH资源的时隙。在另一种示例中,时隙(f-g)位于时隙f之前,时间上距离时隙f最近且满足第一终端处理时延的时隙。该处理时延为第一终端接收并处理PSFCH所需的时延。其中f<g,f和g均为正整数。g的值可以携带在第一控制信息中,或是网络设备配置的,或是时频资源集的配置信息提供的,或是预配置的,或预定义的。
示例性的,如图9所示,第二终端在时隙(f-g)发送GTNS,指示激活起始位置是时隙f的第一时间窗。
S703、第一终端根据第二终端的指示获取激活的第一时间窗。
在一种实现方式中,第一终端获取时频资源集中的至少一个第一时间窗。其中,该至少一个第一时间窗可以是网络设备配置的,或是预配置的,或预定义的,或第二终端指示的。可选的,该至少一个第一时间窗的配置信息在一段时间内保持维持不变。第一终端从第二终端接收第一控制信息,第一控制信息用于指示激活或去激活至少一个第一时间窗中的一个第一时间窗。
在一些示例中,第一终端接收PC5-RRC或SL MAC CE或RRC或MAC CE或预配置等非物理层信令获取第一控制信息。
示例性的,第一终端在时隙(f-g)接收到第一控制信息;比如,第一控制信息为GTNS(GoToNon-Sensing(GTN)signal)),GTNS包括激活(active)或去激活(de-active)信息,用于激活或去激活一个起始位置为时隙f的第一时间窗。如果第一控制信息包括激活信息,第一终端确定激活起始位置为时隙f的第一时间窗,即该起始位置为时隙f的第一时间窗为激活的第一时间窗;在该时间窗内,第一终端停止通过侦听时频资源集确定用于在该激活的第一时间窗内发送侧行通信信息的时频资源。如果第一控制信息包括去激活信息,第一终端确定去激活起始位置为时隙f的第一时间窗,即该起始位置为时隙f的第一时间窗为去激活的第一时间窗;在该时间窗内,第一终端通过侦听时频资源集确定用于在该去激活的第一时间窗内发送侧行通信信息的时频资源。
S704、第一终端确定待发送的第一SL信息。
S705、第一终端向第二终端发送资源分配请求。
S706、第二终端确定用于第一终端发送第一SL信息的时频资源。
S707、第二终端在激活的第一时间窗内向第一终端发送第一指示信息。
S708、第一终端接收到第一指示信息,在第一指示信息指示的至少一个时频资源上发送第一SL信息。
其中,S704-S708的具体步骤可以参考S602-S606,此处不再赘述。
本申请实施例提供的通信方法,第二终端为第一终端配置激活的第一时间窗。在设定的第一时间窗(协作窗)内,第一终端根据第二终端的指示选择用于在激活的第一时间窗内发送SL信息的时频资源,而不是通过侦听时频资源集确定用于在激活的第一时间窗内发送SL信息的时频资源。这样,既可以节省侦听的能耗,还降低了发送SL信息的资源冲突的几率。
可选的,在一些实施例中,第二终端指示延长第一时间窗。结合图8,如图10所 示,本申请实施例提供的通信方法还可以包括S709和S710:
S709、第二终端向第一终端发送第二控制信息。
第二控制信息用于指示延长第一时间窗的时长。比如,第一时间窗延长的时长为第一时间窗的时长;再比如,第一时间窗延长的时长为两个第一时间窗的时长;再比如,第一时间窗延长的时长为半个第一时间窗的时长。第二终端可以根据侦听时频资源集的结果确定第一时间窗延长的时长。
在一种实现方式中,第一时间窗结束时刻即为延长的时间窗起始时刻。延长的时间窗时长与第一时间窗时长相等,延长的时间窗频域资源配置与第一时间窗频域资源配置相同。
在一种示例中,第二控制信息用1比特承载。示例性的,如果第二控制信息值为“1”,表示在协作窗结束时刻,立即延长协作窗,延长时长为协作窗的时长,延长的时间窗频域资源配置与协作窗频域资源配置相同;如果第二控制信息值为“0”,表示延长时长为0,即不延长协作窗。
在一种实现方式中,第二控制信息承载于物理信道,比如PSFCH;即第二终端通过PSFCH向第一终端发送第二控制信息。在一种示例中,用于承载第二控制信息的PSFCH资源和用于进行HARQ反馈ACK或NACK信息的PSFCH资源是正交的(orthogonal),即不重叠的。可选的,承载第二控制信息的PSFCH资源是网络设备配置的,或是预配置的,或预定义的。比如,一个PSFCH资源包括一个符号和一个PRB,用于承载该第二控制信息。可选地,一个PSFCH资源还可以包括码域资源;示例性的,如果第二控制信息是通过序列的方式发送,可以用该序列的不同的循环移位(cyclic shift)表示不同的码域资源。
在一种示例中,第二控制信息携带在第一时间窗内时间上最后一个PSFCH资源上。示例性的,如图11所示,第一时间窗内时间上最后一个PSFCH资源上携带的第二控制信息指示延长该第一时间窗。在第一时间窗结束时刻,立即延长第一时间窗,延长时长为第一时间窗的时长。
S710、第一终端根据第二控制信息延长第一时间窗。
第一终端接收到第二控制信息,根据第二控制信息延长第一时间窗。比如,第二控制信息值为“1”,第一终端在第一时间窗结束时刻,立即延长第一时间窗,延长时长为第一时间窗的时长,延长的时间窗频域资源配置与第一时间窗频域资源配置相同。
这样,第二终端不需要向第一终端重新配置第一时间窗,第一终端按照当前第一时间窗的配置延长一段时间即可。配置第一时间窗的流程更快捷方便,提高资源配置效率。
在一些实施例中,第一终端根据自身需求确定第一时间窗的时间段。如图12所示,本申请实施例提供的通信方法包括:
S801、第一终端确定激活的第一时间窗。
网络设备或终端将时频资源集内时域上的一个或多个时隙配置为一个协作窗(第一时间窗),或者,预配置时频资源集内时域上的一个或多个时隙为一个第一时间窗。具体的,可以在时频资源集内配置至少一个第一时间窗。第一终端确定激活一个第一时间窗。在激活的第一时间窗内,第一终端停止通过侦听时频资源集确定用于发送侧 行通信信息的时频资源。
比如,第一终端根据节能需求,确定停止通过侦听时频资源集确定用于发送侧行通信信息的时频资源的第一时间窗。可选地,第一终端还可以根据信道状态(包括信道拥塞情况和/或信道干扰水平等)来确定第一时间窗。具体地,设定一个CBR门限和/或CR门限。可选地,CBR门限和/或CR门限可以和优先级相关。CBR门限和/或CR门限可以是网络设备配置的,或预配值的,或预定义的。当第一终端测量的CBR大于CBR门限和/或测量的CR大于CR门限,判定信道拥塞,第一终端确定第一时间窗。示例性的,信道拥塞程度越高,即CBR或CR测量的值越高,第一时间窗的长度越长。当信道拥塞时,第一终端通过侦听时频资源集确定用于在激活的第一时间窗内发送SL信息的时频资源时,会导致资源碰撞概率增大;通过第二终端的指示选择用于在激活的第一时间窗内发送SL信息的时频资源,则会受益于第二终端的中心调度的好处,减少资源的碰撞。信道干扰水平可以根据第一终端接收到的NACK或判定非连续发送(discontinuous transmission,DTX)来确定;判定DTX的条件为在应接收HARQ反馈的资源上未正确接收到HARQ反馈信息(未正确接收到ACK或NACK)。具体地,当第一终端在一段时间内,连续接收到NACK的数量超过第一NACK阈值和/或接收到的NACK总数量超过第二NACK阈值和/或DTX阈值和/或判定的DTX超过DTX阈值,判定信道干扰水平高,第一终端确定第一时间窗。示例性的,信道干扰水平越高,即NACK数量越多和/或判定的DTX的次数越多,第一时间窗的长度越长。可选地,第一NACK阈值和/或第二NACK阈值和/或DTX阈值可以和优先级相关。第一NACK阈值和/或第二NACK阈值和/或DTX阈值可以是网络设备配置的,或预配值的,或预定义的。信道干扰水平也可以根据测量的参考信号接收功率(reference signal received power,RSRP)和/或接收信号强度指示(received signal strength indicator,RSSI)确定;具体地,设定一个RSRP门限和/或RSSI门限。可选地,RSRP门限和/或RSSI门限可以和优先级相关。RSRP门限和/或RSSI门限可以是网络设备配置的,或预配值的,或预定义的。当第一终端测量的RSRP大于RSRP门限和/或测量的RSSI大于RSSI门限,判定信道干扰水平高,第一终端确定第一时间窗。示例性的,信道干扰水平越高,即RSRP或RSSI测量的值越高,第一时间窗的长度越长。当信道干扰水平高时,第一终端通过侦听时频资源集确定用于在激活的第一时间窗内发送SL信息的时频资源时,会导致资源碰撞概率增大,通过第二终端的指示选择用于在激活的第一时间窗内发送SL信息的时频资源,则会受益于第二终端的中心调度的好处,减少资源的碰撞。
S802、第一终端向第二终端指示激活的第一时间窗。
在一种实现方式中,第二终端获取时频资源集中的至少一个第一时间窗。其中,该至少一个第一时间窗可以是网络设备配置的,或是预配置的,或预定义的,或第一终端指示的。可选的,该至少一个第一时间窗的配置信息在一段时间内保持维持不变。第一终端动态地激活或去激活该至少一个第一时间窗的一个第一时间窗;如果该第一时间窗被激活(active),则该第一时间窗为激活的第一时间窗,第一终端停止通过侦听时频资源集确定用于在该激活的第一时间窗内发送侧行通信信息的时频资源,而是根据第二终端的指示在时频资源集中确定用于在激活的第一时间窗内发送SL信息的时 频资源;如果该第一时间窗被去激活(de-active),则该第一时间窗为去激活的第一时间窗,第一终端通过侦听时频资源集确定用于在该去激活的第一时间窗内发送侧行通信信息的时频资源,而不是根据第二终端的指示在时频资源集中确定用于在该去激活的第一时间窗内发送SL信息的时频资源。示例性的,第一终端向第二终端发送第一控制信息,第一控制信息包括激活指示信息,用于指示激活至少一个第一时间窗的一个第一时间窗;第一控制信息还可以包括去激活指示信息,用于指示去激活至少一个第一时间窗的一个第一时间窗。
在一些示例中,第一终端通过PC5-RRC或SL MAC CE或RRC或MAC CE或预配置等非物理层信令向第二终端发送第一控制信息。
示例性的,第一终端在时隙(f-w)向第二终端发送第一控制信息;比如,第一控制信息为GTNRS(GoToNon-sensing-request(GTN)signal)),GTNRS包括激活(active)或去激活(de-active)信息,用于激活或去激活一个起始位置为时隙f的第一时间窗。示例性的,GTNRS用1比特承载。比如,GTNRS值为“1”表示激活,GTNRS值为“0”表示去激活;再比如,GTNRS值为“1”表示激活,不发送GTNRS表示去激活。
在一些示例中,第一控制信息承载于物理信道上,比如PSFCH。用于承载第一控制信息的PSFCH资源和用于进行HARQ反馈ACK或NACK信息的PSFCH资源是正交的(orthogonal),即不重叠的。可选的,承载第一控制信息的PSFCH资源是网络设备配置的,或是预配置的,或预定义的。比如,一个PSFCH资源包括一个符号和一个PRB,用于承载该第一控制信息。可选地,一个PSFCH资源还可以包括码域资源;示例性的,如果第一控制信息是通过序列的方式发送,可以用该序列的不同的循环移位(cyclic shift)表示不同的码域资源。
在一种示例中,时隙(f-w)位于时隙(f-q)之前,时间上距离时隙(f-q)最近的存在PSFCH资源的时隙。其中,时长q为第二终端侦听时频资源集以确定第一终端的第一时间窗内用于第一终端和第二终端交互信息以及用于第二终端向第一终端提供时频资源分配用于第一终端传输第一SL信息的资源所需要的时间;f<q<w,f,q,w均为正整数。或者,时长q为第二终端从网络设备或其他终端获取用于确定第一时间窗内用于第一终端和第二终端交互信息和用于第二终端向第一终端提供时频资源分配用于第一终端传输第一SL信息的资源所需要的时间。比如,q的值为第二终端的一个侦听窗时长。在另一种示例中,时隙(f-w)位于时隙(f-q)之前,时长q还包括第二终端接收并处理PSFCH所需的时延。
示例性的,如图13所示,第一终端在时隙(f-q)之前的时隙(f-w)发送GTNRS,指示激活起始位置是时隙f的第一时间窗。
S803、第二终端根据第一终端的指示获取激活的第一时间窗。
在一种实现方式中,第二终端获取时频资源集中的至少一个第一时间窗。其中,该至少一个第一时间窗可以是网络设备配置的,或是预配置的,或预定义的,或第一终端指示的。可选的,该至少一个第一时间窗的配置信息在一段时间内保持维持不变。第二终端从第一终端接收第一控制信息,第一控制信息用于指示激活或去激活至少一个第一时间窗中的一个第一时间窗。
在一些示例中,第二终端接收PC5-RRC或SL MAC CE或RRC或MAC CE或预 配置等非物理层信令获取第三控制信息。
示例性的,第二终端在时隙(f-w)接收到第一控制信息;比如,第一控制信息为GTNRS,GTNRS包括激活(active)或去激活(de-active)信息,用于激活或去激活一个起始位置为时隙f的第一时间窗。如果第一控制信息包括激活信息,第二终端确定激活起始位置为时隙f的第一时间窗,即该起始位置为时隙f的第一时间窗为激活的第一时间窗;在该时间窗内,第一终端停止通过侦听时频资源集确定用于在该激活的第一时间窗内发送侧行通信信息的时频资源。如果第一控制信息包括去激活信息,第二终端确定去激活起始位置为时隙f的第一时间窗,即该起始位置为时隙f的第一时间窗为去激活的第一时间窗;在该时间窗内,第一终端通过侦听时频资源集确定用于在该去激活的第一时间窗内发送侧行通信信息的时频资源。
S804、第一终端确定待发送的第一SL信息。
S805、第一终端向第二终端发送资源分配请求。
S806、第二终端确定用于第一终端发送第一SL信息的时频资源。
S807、第二终端在激活的第一时间窗内向第一终端发送第一指示信息。
S808、第一终端接收到第一指示信息,在第一指示信息指示的至少一个时频资源上发送第一SL信息。
其中,S804-S808的具体步骤可以参考S602-S606,此处不再赘述。
本申请实施例提供的通信方法,第一终端根据自身需求配置激活的第一时间窗。在设定的第一时间窗(协作窗)内,第一终端根据第二终端的指示选择用于在激活的第一时间窗内发送SL信息的时频资源,而不是通过侦听时频资源集确定用于在激活的第一时间窗内发送SL信息的时频资源。这样,既可以节省侦听的能耗,还降低了发送SL信息的资源冲突的几率。
可选的,在一些实施例中,第一终端指示延长第一时间窗。结合图12,如图14所示,本申请实施例提供的通信方法还可以包括S809和S810:
S809、第一终端向第二终端发送第二控制信息。
第二控制信息用于指示延长第一时间窗的时长。比如,第一时间窗延长的时长为第一时间窗的时长;再比如,第一时间窗延长的时长为两个第一时间窗的时长;再比如,第一时间窗延长的时长为半个第一时间窗的时长。第二终端可以根据侦听时频资源集的结果确定第一时间窗延长的时长。
在一种实现方式中,第一时间窗结束时刻即为延长的时间窗起始时刻。延长的时间窗时长与第一时间窗时长相等,延长的时间窗频域资源配置与第一时间窗频域资源配置相同。
在一种示例中,第二控制信息用1比特承载。示例性的,如果第二控制信息值为“1”,表示在协作窗结束时刻,立即延长协作窗,延长时长为协作窗的时长,延长的时间窗频域资源配置与协作窗频域资源配置相同;如果第二控制信息值为“0”,表示延长时长为0,即不延长协作窗。
在一种实现方式中,第二控制信息承载于物理信道,比如PSFCH;即第一终端通过PSFCH向第二终端发送第二控制信息。在一种示例中,用于承载第二控制信息的PSFCH资源和用于进行HARQ反馈ACK或NACK信息的PSFCH资源是正交的 (orthogonal),即不重叠的。可选的,承载第二控制信息的PSFCH资源是网络设备配置的,或是预配置的,或预定义的。比如,一个PSFCH资源包括一个符号和一个PRB,用于承载该第二控制信息。可选地,一个PSFCH资源还可以包括码域资源;示例性的,如果第二控制信息是通过序列的方式发送,可以用该序列的不同循环移位(cyclic shift)表示不同的码域资源。
在一种示例中,第二控制信息携带在第一时间窗内时间上最后一个距离时隙(j-q)最近的存在PSFCH资源的时隙。其中,时隙j为第一时间窗内最后一个时隙;时长q为第二终端侦听时频资源集以确定第一终端的第一时间窗内用于第一终端和第二终端交互信息以及用于第二终端向第一终端提供时频资源分配用于第一终端传输第一SL信息的资源所需要的时间。示例性的,如图15所示,第一时间窗内时间上最后一个距离时隙(j-q)最近的PSFCH资源上携带的第二控制信息指示延长该第一时间窗。在第一时间窗结束时刻,立即延长第一时间窗,延长时长为第一时间窗的时长。
S810、第二终端根据第二控制信息延长第一时间窗。
第二终端接收到第二控制信息,根据第二控制信息延长第一时间窗。比如,第二控制信息值为“1”,第二终端在第一时间窗结束时刻,立即延长第一时间窗,延长时长为第一时间窗的时长,延长的时间窗频域资源配置与第一时间窗频域资源配置相同。
这样,第一终端不需要向第二终端重新配置第一时间窗,第二终端按照当前第一时间窗的配置延长一段时间即可。配置第一时间窗的流程更快捷方便,提高资源配置效率。
本申请实施例还提供一种通信方法,第二终端确定第一时间窗,第一终端根据第二终端的指示获取到第一时间窗;即第二终端确定第一终端停止通过侦听时频资源集确定用于发送侧行通信信息的时频资源的时间段。可以降低发送侧行通信信息的时频资源发生冲突的几率。
如图16所示,本申请实施例提供的通信方法可以包括:
S901、第二终端确定第一时间窗。
在一些示例中,第二终端确定第一终端停止通过侦听时频资源集确定用于发送侧行通信信息的时频资源的第一时间窗。比如,第二终端能够通过侦听确定其他终端在第一时间段内时频资源集的预约使用情况,或者,第二终端能够通过网络设备的调度或资源配置,获得在第一时间段内时频资源集的时频资源,则可以将该第一时间段确定为第一时间窗。可选地,第二终端还可以根据信道状态(包括信道拥塞情况和/或信道干扰水平等)来确定第一时间窗。具体地,设定一个CBR门限和/或CR门限。可选地,CBR门限和/或CR门限可以和优先级相关。CBR门限和/或CR门限可以是网络设备配置的,或预配值的,或预定义的。当第二终端测量的CBR大于CBR门限和/或测量的CR大于CR门限,判定信道拥塞,第二终端确定第一时间窗。示例性的,信道拥塞程度越高,即CBR或CR测量的值越高,第一时间窗的长度越长。当信道拥塞时,第二终端通过侦听时频资源集确定用于在激活的第一时间窗内发送SL信息的时频资源时,会导致资源碰撞概率增大;通过第二终端的指示选择用于在激活的第一时间窗内发送SL信息的时频资源,则会受益于第二终端的中心调度的好处,减少资源的碰撞。信道干扰水平可以根据第二终端接收到的NACK或判定非连续发送 (discontinuous transmission,DTX)来确定;判定DTX的条件为在应接收HARQ反馈的资源上未正确接收到HARQ反馈信息(未正确接收到ACK或NACK)。具体地,当第一终端在一段时间内,连续接收到NACK的数量超过第一NACK阈值和/或接收到的NACK总数量超过第二NACK阈值和/或DTX阈值和/或判定的DTX超过DTX阈值,判定信道干扰水平高,第二终端确定第一时间窗。示例性的,信道干扰水平越高,即NACK数量越多和/或判定的DTX的次数越多,第一时间窗的长度越长。可选地,第一NACK阈值和/或第二NACK阈值和/或DTX阈值可以和优先级相关。第一NACK阈值和/或第二NACK阈值和/或DTX阈值可以是网络设备配置的,或预配值的,或预定义的。信道干扰水平也可以根据测量的参考信号接收功率(reference signal received power,RSRP)和/或接收信号强度指示(received signal strength indicator,RSSI)确定;具体地,设定一个RSRP门限和/或RSSI门限。可选地,RSRP门限和/或RSSI门限可以和优先级相关。RSRP门限和/或RSSI门限可以是网络设备配置的,或预配值的,或预定义的。当第二终端测量的RSRP大于RSRP门限和/或测量的RSSI大于RSSI门限,判定信道干扰水平高,第二终端确定第一时间窗。示例性的,信道干扰水平越高,即RSRP或RSSI测量的值越高,第一时间窗的长度越长。当信道干扰水平高时,第一终端通过侦听时频资源集确定用于在激活的第一时间窗内发送SL信息的时频资源时,会导致资源碰撞概率增大,通过第二终端的指示选择用于在激活的第一时间窗内发送SL信息的时频资源,则会受益于第二终端的中心调度的好处,减少资源的碰撞。
在第一时间窗内,第一终端停止通过侦听时频资源集确定用于发送SL信息的时频资源;而是根据辅助终端(第二终端)的指示在时频资源集中确定用于发送SL信息的时频资源。
第一终端和第二终端之间建立了终端间协作的连接;包括第一终端和第二终端通过信令进行协作信息的交互;示例性的,所述信令包括PC5-RRC、SL MAC CE或SCI;也可以包括第一终端的APP层向MAC层和PHY层提供的第一终端和第二终端建立连接的信息;还包括第一终端和第二终端的标识信息,用于第一终端和第二终端相互识别对方或者对方的数据;第一终端和第二终端属于一个协作对端或一个协作组,或者属于一组协作数据/业务。
在一些实施例中,第一时间窗包括第一子时间窗。在第一子时间窗内,第一终端停止侦听时频资源集,并停止通过侦听时频资源集确定用于在第一子时间窗内发送SL信息的时频资源,而是根据第二终端的指示在时频资源集中确定用于在第一时间窗内发送SL信息的时频资源。
在一些实施例中,第一时间窗还包括第二子时间窗。在第二子时间窗内,第一终端侦听时频资源集,但是不通过侦听时频资源集确定用于在第二子时间窗内发送SL信息的时频资源,而是根据第二终端的指示在时频资源集中确定用于在第二子时间窗内发送SL信息的时频资源。这样,在第一时间窗结束之后,可以根据第二子时间窗内侦听时频资源集的结果选择在第一时间窗结束后的时频资源发送SL信息;避免在第一时间窗结束后因未侦听时频资源集而无法获得在第一时间窗结束后的资源预约信 息,且未获取到第二终端的指示,通过随机选择或基于部分侦听结果选择发送SL信息的时频资源,导致资源碰撞概率增大,降低传输可靠性。
S902、第二终端向第一终端指示第一时间窗。
在一种实现方式中,第二终端向第一终端发送时间窗指示信息,该时间窗指示信息用于指示第一时间窗。在一些示例中,第二终端通过SCI或SFCI等物理层信令,或MAC CE或PC5-RRC向第一终端发送时间窗指示信息。时间窗指示信息包含第一时间窗信息、第一子时间窗信息、第二子时间窗信息中的至少一种信息。其中第一时间窗信息、第一子时间窗信息和第二子时间窗信息的内容,在上文已经介绍,这里不再赘述。
示例性的,第二终端在时隙(f-r)向第一终端发送时间窗指示信息,指示第一终端在时隙f进入第一时间窗;其中,r为大于等于0的整数。时间窗指示信息还可以包括r的值的指示;或r的值是网络设备配置的,或是预配置的,或预定义的。
S903、第一终端根据第二终端的指示获取第一时间窗。
在一种实现方式中,第一终端从第二终端接收时间窗指示信息,根据时间窗指示信息获取第一时间窗。在一些示例中,第一终端接收SCI或SFCI等物理层信令或MAC CE或PC5-RRC获取时间窗指示信息。
示例性的,第一终端在时隙(f-r)接收到时间窗指示信息,则确定在时隙f进入第一时间窗;其中,r为大于等于0的整数。时间窗指示信息还可以包括r的值的指示;或r的值是网络设备配置的,或是预配置的,或预定义的。
S904、第一终端确定待发送的第一SL信息。
其中,S904的具体步骤可以参考S602,此处不再赘述。
S905、第一终端向第二终端发送资源分配请求。
资源分配请求用于请求第二终端分配用于第一终端发送第一SL信息的时频资源。
S906、第二终端确定用于第一终端发送第一SL信息的时频资源。
其中,S906的具体步骤可以参考S604,此处不再赘述。
S907、第二终端在第一时间窗内向第一终端发送第一指示信息。
第二终端在第一时间窗内的第一时频单元向第一终端发送第一指示信息,第一指示信息指示至少一个时频资源,用于第一终端发送第一SL信息。在一些示例中,该至少一个时频资源时域上在该第一时间窗内。其中,第一时频单元可以是一个时隙和一个子信道组成的时频资源集合,也可以是一个时隙或多个时隙,和,一个或多个子信道组成的时频资源集合。
第一终端和第二终端获取第一时频单元的方法可参考S605,此处不再赘述。
S908、第一终端接收到第一指示信息,在第一指示信息指示的至少一个时频资源上发送第一SL信息。
第一终端在第一时间窗内接收到第一指示信息,在第一指示信息指示的至少一个时频资源上发送第一SL信息。
本申请实施例提供的通信方法,第二终端为第一终端配置第一时间窗。在第一时间窗内,第一终端根据第二终端的指示选择用于在第一时间窗内发送SL信息的时频资源,而不是通过侦听时频资源集确定用于在第一时间窗内发送SL信息的时频资源。 这样,既可以节省侦听的能耗,还降低了发送SL信息的资源冲突的几率。
可选的,在一些实施例中,第二终端还可以指示延长第一时间窗。具体步骤可参考S709和S710,此处不再赘述。
在一些实施例中,第一终端根据自身需求确定第一时间窗的时间段。如图17所示,本申请实施例提供的通信方法包括:
S1001、第一终端确定第一时间窗。
比如,第一终端根据节能需求,确定停止通过侦听时频资源集确定用于发送侧行通信信息的时频资源的第一时间窗。可选地,第一终端还可以根据信道状态(包括信道拥塞情况和/或信道干扰水平等)来确定第一时间窗。具体地,设定一个CBR门限和/或CR门限。可选地,CBR门限和/或CR门限可以和优先级相关。CBR门限和/或CR门限可以是网络设备配置的,或预配值的,或预定义的。当第一终端测量的CBR大于CBR门限和/或测量的CR大于CR门限,判定信道拥塞,第一终端确定第一时间窗。示例性的,信道拥塞程度越高,即CBR或CR测量的值越高,第一时间窗的长度越长。当信道拥塞时,第一终端通过侦听时频资源集确定用于在激活的第一时间窗内发送SL信息的时频资源时,会导致资源碰撞概率增大;通过第二终端的指示选择用于在激活的第一时间窗内发送SL信息的时频资源,则会受益于第二终端的中心调度的好处,减少资源的碰撞。信道干扰水平可以根据第一终端接收到的NACK或判定非连续发送(discontinuous transmission,DTX)来确定;判定DTX的条件为在应接收HARQ反馈的资源上未正确接收到HARQ反馈信息(未正确接收到ACK或NACK)。具体地,当第一终端在一段时间内,连续接收到NACK的数量超过第一NACK阈值和/或接收到的NACK总数量超过第二NACK阈值和/或DTX阈值和/或判定的DTX超过DTX阈值,判定信道干扰水平高,第一终端确定第一时间窗。示例性的,信道干扰水平越高,即NACK数量越多和/或判定的DTX的次数越多,第一时间窗的长度越长。可选地,第一NACK阈值和/或第二NACK阈值和/或DTX阈值可以和优先级相关。第一NACK阈值和/或第二NACK阈值和/或DTX阈值可以是网络设备配置的,或预配值的,或预定义的。信道干扰水平也可以根据测量的参考信号接收功率(reference signal received power,RSRP)和/或接收信号强度指示(received signal strength indicator,RSSI)确定;具体地,设定一个RSRP门限和/或RSSI门限。可选地,RSRP门限和/或RSSI门限可以和优先级相关。RSRP门限和/或RSSI门限可以是网络设备配置的,或预配值的,或预定义的。当第一终端测量的RSRP大于RSRP门限和/或测量的RSSI大于RSSI门限,判定信道干扰水平高,第一终端确定第一时间窗。示例性的,信道干扰水平越高,即RSRP或RSSI测量的值越高,第一时间窗的长度越长。当信道干扰水平高时,第一终端通过侦听时频资源集确定用于在激活的第一时间窗内发送SL信息的时频资源时,会导致资源碰撞概率增大,通过第二终端的指示选择用于在激活的第一时间窗内发送SL信息的时频资源,则会受益于第二终端的中心调度的好处,减少资源的碰撞。
S1002、第一终端向第二终端指示第一时间窗。
在一种实现方式中,第一终端向第二终端发送时间窗指示信息,该时间窗指示信息用于指示第一时间窗。在一些示例中,第一终端通过SCI或SFCI等物理层信令或 MAC CE或PC5-RRC向第二终端发送时间窗指示信息。时间窗指示信息包含第一时间窗信息、第一子时间窗信息、第二子时间窗信息中的至少一种信息。其中第一时间窗信息、第一子时间窗信息和第二子时间窗信息的内容,在上文已经介绍,这里不再赘述。
示例性的,第一终端在时隙(f-s)向第二终端发送时间窗指示信息,指示第一终端和第二终端在时隙f进入第一时间窗;其中,s为大于等于0的整数。时间窗指示信息还可以包括s的值的指示;或r的值是网络设备配置的,或是预配置的,或预定义的。s的取值为第二终端侦听时频资源集以确定第一终端的第一时间窗内用于第一终端和第二终端交互信息以及用于第二终端向第一终端提供时频资源分配用于第一终端在第一时间窗内传输第一SL信息的资源所需要的时间;或者,s的取值包括第二终端从网络设备或其他终端获取用于确定第一时间窗内用于第一终端和第二终端交互信息和用于第二终端向第一终端提供时频资源分配用于第一终端在第一时间窗内传输第一SL信息的资源所需要的时间。
S1003、第二终端根据第一终端的指示获取第一时间窗。
在一种实现方式中,第二终端从第一终端接收时间窗指示信息,根据时间窗指示信息获取第一时间窗。在一些示例中,第二终端接收SCI或SFCI等物理层信令或MAC CE或PC5-RRC获取时间窗指示信息。
示例性的,第二终端在时隙(f-s)接收到时间窗指示信息,则确定在时隙f进入第一时间窗;其中,s为大于等于0的整数。时间窗指示信息还可以包括s的值的指示;或s的值是网络设备配置的,或是预配置的,或预定义的。
S1004、第一终端确定待发送的第一SL信息。
其中,S1004的具体步骤可以参考S602,此处不再赘述。
S1005、第一终端向第二终端发送资源分配请求。
资源分配请求用于请求第二终端分配用于第一终端发送第一SL信息的时频资源。
S1006、第二终端确定用于第一终端发送第一SL信息的时频资源。
其中,S1006的具体步骤可以参考S604,此处不再赘述。
S1007、第二终端在第一时间窗内向第一终端发送第一指示信息。
其中,S1007的具体步骤可以参考S907,此处不再赘述。
S1008、第一终端接收到第一指示信息,在第一指示信息指示的至少一个时频资源上发送第一SL信息。
第一终端在第一时间窗内接收到第一指示信息,在第一指示信息指示的至少一个时频资源上发送第一SL信息。
本申请实施例提供的通信方法,第一终端根据自身需求配置第一时间窗。在第一时间窗内,第一终端根据第二终端的指示选择用于在第一时间窗内发送SL信息的时频资源,而不是通过侦听时频资源集确定用于在第一时间窗内发送SL信息的时频资源。这样,既可以节省侦听的能耗,还降低了发送SL信息的资源冲突的几率。
可选的,在一些实施例中,第一终端还可以指示延长第一时间窗。具体步骤可参考S809和S810,此处不再赘述。
相应于上述方法实施例给出的方法,本申请实施例还提供了相应的装置,包括用 于执行上述实施例相应的模块。所述模块可以是软件,也可以是硬件,或者是软件和硬件结合。
图18给出了一种装置的结构示意图。该装置300可以是终端设备,也可以是支持终端设备实现上述方法的芯片、芯片系统、或处理器等。该装置300可用于实现上述方法实施例中描述的方法,具体可以参见上述方法实施例中的说明。
所述装置300可以包括一个或多个处理器3001,所述处理器3001也可以称为处理单元,可以实现一定的控制功能。所述处理器3001可以是通用处理器或者专用处理器等。例如可以是基带处理器或中央处理器。基带处理器可以用于对通信协议以及通信数据进行处理,中央处理器可以用于对通信装置(如,基站、基带芯片,终端、终端芯片,DU或CU等)进行控制,执行软件程序,处理软件程序的数据。
在一种可选的设计中,处理器3001也可以存有指令3003,所述指令3003可以被所述处理器运行,使得所述装置300执行上述方法实施例中描述的方法。
在另一种可选的设计中,处理器3001中可以包括用于实现接收和发送功能的收发单元。例如该收发单元可以是收发电路,或者是接口,或者是接口电路。用于实现接收和发送功能的收发电路、接口或接口电路可以是分开的,也可以集成在一起。上述收发电路、接口或接口电路可以用于代码/数据的读写,或者,上述收发电路、接口或接口电路可以用于信号的传输或传递。
在又一种可能的设计中,装置300可以包括电路,所述电路可以实现前述方法实施例中发送或接收或者通信的功能。
可选的,所述装置300中可以包括一个或多个存储器3002,其上可以存有指令3004,所述指令可在所述处理器上被运行,使得所述装置300执行上述方法实施例中描述的方法。可选的,所述存储器中还可以存储有数据。可选的,处理器中也可以存储指令和/或数据。所述处理器和存储器可以单独设置,也可以集成在一起。例如,上述方法实施例中所描述的对应关系可以存储在存储器中,或者存储在处理器中。
可选的,所述装置300还可以包括收发器3005和/或天线3006。所述处理器3001可以称为处理单元,对所述装置300进行控制。所述收发器3005可以称为收发单元、收发机、收发电路、收发装置或收发模块等,用于实现收发功能。
可选的,本申请实施例中的装置300可以用于执行本申请实施例中图5、图8、图10、图12或图14中描述的方法。
本申请中描述的处理器和收发器可实现在集成电路(integrated circuit,IC)、模拟IC、射频集成电路RFIC、混合信号IC、专用集成电路(application specific integrated circuit,ASIC)、印刷电路板(printed circuit board,PCB)、电子设备等上。该处理器和收发器也可以用各种IC工艺技术来制造,例如互补金属氧化物半导体(complementary metal oxide semiconductor,CMOS)、N型金属氧化物半导体(nMetal-oxide-semiconductor,NMOS)、P型金属氧化物半导体(positive channel metal oxide semiconductor,PMOS)、双极结型晶体管(Bipolar Junction Transistor,BJT)、双极CMOS(BiCMOS)、硅锗(SiGe)、砷化镓(GaAs)等。
以上实施例描述中的装置可以是终端设备,但本申请中描述的装置的范围并不限于此,而且装置的结构可以不受图18的限制。装置可以是独立的设备或者可以是较大 设备的一部分。例如所述装置可以是:
(1)独立的集成电路IC,或芯片,或,芯片系统或子系统;
(2)具有一个或多个IC的集合,可选的,该IC集合也可以包括用于存储数据和/或指令的存储部件;
(3)ASIC,例如调制解调器(MSM);
(4)可嵌入在其他设备内的模块;
(5)接收机、终端、智能终端、蜂窝电话、无线设备、手持机、移动单元、车载设备、网络设备、云设备、人工智能设备、机器设备、家居设备、医疗设备、工业设备等等;
(6)其他等等。
图19提供了一种终端设备的结构示意图。该终端设备可适用于图1-图2所示出的场景中。为了便于说明,图19仅示出了终端设备的主要部件。如图19所示,终端400包括处理器、存储器、控制电路、天线以及输入输出装置。处理器主要用于对通信协议以及通信数据进行处理,以及对整个终端进行控制,执行软件程序,处理软件程序的数据。存储器主要用于存储软件程序和数据。射频电路主要用于基带信号与射频信号的转换以及对射频信号的处理。天线主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。
当终端设备开机后,处理器可以读取存储单元中的软件程序,解析并执行软件程序的指令,处理软件程序的数据。当需要通过无线发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行处理后得到射频信号并将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端时,射频电路通过天线接收到射频信号,该射频信号被进一步转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。
为了便于说明,图19仅示出了一个存储器和处理器。在实际的终端设备中,可以存在多个处理器和存储器。存储器也可以称为存储介质或者存储设备等,本申请实施例对此不做限制。
作为一种可选的实现方式,处理器可以包括基带处理器和中央处理器,基带处理器主要用于对通信协议以及通信数据进行处理,中央处理器主要用于对整个终端设备进行控制,执行软件程序,处理软件程序的数据。图19中的处理器集成了基带处理器和中央处理器的功能,本领域技术人员可以理解,基带处理器和中央处理器也可以是各自独立的处理器,通过总线等技术互联。本领域技术人员可以理解,终端设备可以包括多个基带处理器以适应不同的网络制式,终端设备可以包括多个中央处理器以增强其处理能力,终端设备的各个部件可以通过各种总线连接。所述基带处理器也可以表述为基带处理电路或者基带处理芯片。所述中央处理器也可以表述为中央处理电路或者中央处理芯片。对通信协议以及通信数据进行处理的功能可以内置在处理器中,也可以以软件程序的形式存储在存储单元中,由处理器执行软件程序以实现基带处理功能。
在一个例子中,可以将具有收发功能的天线和控制电路视为终端400的收发单元 4001,将具有处理功能的处理器视为终端400的处理单元4002。如图19所示,终端400包括收发单元4001和处理单元4002。收发单元也可以称为收发器、收发机、收发装置等。可选的,可以将收发单元4001中用于实现接收功能的器件视为接收单元,将收发单元4001中用于实现发送功能的器件视为发送单元,即收发单元4001包括接收单元和发送单元。示例性的,接收单元也可以称为接收机、接收器、接收电路等,发送单元可以称为发射机、发射器或者发射电路等。可选的,上述接收单元和发送单元可以是集成在一起的一个单元,也可以是各自独立的多个单元。上述接收单元和发送单元可以在一个地理位置,也可以分散在多个地理位置。
如图20所示,本申请又一实施例提供了一种装置500。该装置可以是终端设备,也可以是终端设备的部件(例如,集成电路,芯片等等)。该装置也可以是其他通信模块,用于实现本申请方法实施例中的方法。该装置500可以包括:处理模块5002(或称为处理单元)。可选的,还可以包括收发模块5001(或称为收发单元)和存储模块5003(或称为存储单元)。
在一种可能的设计中,如图20中的一个或者多个模块可能由一个或者多个处理器来实现,或者由一个或者多个处理器和存储器来实现;或者由一个或多个处理器和收发器实现;或者由一个或者多个处理器、存储器和收发器实现,本申请实施例对此不作限定。所述处理器、存储器、收发器可以单独设置,也可以集成。
所述装置具备实现本申请实施例描述的终端设备的功能,比如,所述装置包括终端设备执行本申请实施例描述的第一终端或第二终端涉及步骤所对应的模块或单元或手段(means),所述功能或单元或手段(means)可以通过软件实现,或者通过硬件实现,也可以通过硬件执行相应的软件实现,还可以通过软件和硬件结合的方式实现。
可选的,本申请实施例中的装置500中各个模块可以用于执行本申请实施例中图5、图8、图10、图12或图14中描述的方法。
在一种可能的实施方式中,一种装置500可包括:处理模块5002和收发模块5001。
一种可能的设计中,处理模块5002,用于获取时频资源集中至少一个第一时间窗;时频资源集用于终端发送侧行通信信息;收发模块5001,用于从第二终端获取第一控制信息,第一控制信息包括激活指示信息;处理模块5002,还用于根据第一控制信息激活至少一个第一时间窗的一个第一时间窗;处理模块5002,还用于停止通过侦听时频资源集确定用于在激活的第一时间窗内发送侧行通信信息的时频资源;收发模块5001,还用于在激活的第一时间窗内从第二终端接收第一指示信息;第一指示信息指示至少一个时频资源;收发模块5001,还用于在该至少一个时频资源上发送第一侧行通信信息。
一种可能的设计中,第一控制信息包括去激活指示信息,处理模块5002,还用于根据第一控制信息去激活至少一个第一时间窗的一个第一时间窗;处理模块5002,还用于通过侦听时频资源集确定用于在去激活的第一时间窗内发送侧行通信信息的时频资源。
一种可能的设计中,收发模块5001,还用于从第二终端接收第二控制信息,第二控制信息用于指示延长第一时间窗的时长。
一种可能的设计中,第一控制信息承载于物理信道。
一种可能的设计中,激活的第一时间窗包括第一子时间窗和第二子时间窗,在第一子时间窗内,第一终端停止侦听时频资源集;在第二子时间窗内,第一终端侦听时频资源集。
在一种可能的实施方式中,通信装置包括:处理模块5002和收发模块5001,
处理模块5002,用于获取时频资源集中至少一个第一时间窗;时频资源集用于终端发送侧行通信信息;收发模块5001,用于向第一终端发送第一控制信息,第一控制信息包括激活指示信息,激活指示信息用于指示激活至少一个第一时间窗的一个第一时间窗;在激活的第一时间窗内,第一终端停止通过侦听时频资源集确定用于发送侧行通信信息的时频资源;收发模块5001,还用于在激活的第一时间窗内向第一终端发送第一指示信息;第一指示信息指示至少一个时频资源,用于第一终端在该至少一个时频资源上发送第一侧行通信信息。
一种可能的设计中,第一控制信息包括去激活指示信息,去激活指示信息用于指示去激活至少一个第一时间窗的一个第一时间窗;在去激活的第一时间窗内,第一终端通过侦听时频资源集确定用于发送侧行通信信息的时频资源。
一种可能的设计中,收发模块5001,还用于向第一终端发送第二控制信息,第二控制信息用于指示延长第一时间窗的时长。
一种可能的设计中,第一控制信息承载于物理信道。
一种可能的设计中,激活的第一时间窗包括第一子时间窗和第二子时间窗,在第一子时间窗内,第一终端停止侦听时频资源集;在第二子时间窗内,第一终端侦听时频资源集。
在一种可能的实施方式中,通信装置包括:处理模块5002和收发模块5001,
处理模块5002,用于获取时频资源集中至少一个第一时间窗;时频资源集用于终端发送侧行通信信息;收发模块5001,用于向第二终端发送第一控制信息,第一控制信息包括激活指示信息,激活指示信息用于指示激活至少一个第一时间窗的一个第一时间窗;处理模块5002,还用于停止通过侦听时频资源集确定用于在激活的第一时间窗内发送侧行通信信息的时频资源;收发模块5001,还用于在激活的第一时间窗内从第二终端接收第一指示信息;第一指示信息指示至少一个时频资源;收发模块5001,还用于在至少一个时频资源上发送第一侧行通信信息。
一种可能的设计中,第一控制信息包括去激活指示信息,去激活指示信息用于指示去激活至少一个第一时间窗的一个第一时间窗,处理模块5002,还用于在去激活的第一时间窗内通过侦听时频资源集确定用于发送侧行通信信息的时频资源。
一种可能的设计中,收发模块5001,还用于向第二终端发送第二控制信息,第二控制信息用于指示延长第一时间窗的时长。
一种可能的设计中,第一控制信息承载于物理信道。
一种可能的设计中,激活的第一时间窗包括第一子时间窗和第二子时间窗,在第一子时间窗内,第一终端停止侦听时频资源集;在第二子时间窗内,第一终端侦听时频资源集。
在一种可能的实施方式中,通信装置包括:处理模块5002和收发模块5001,
处理模块5002,用于获取时频资源集中至少一个第一时间窗;时频资源集用于终 端发送侧行通信信息;收发模块5001,用于从第一终端接收第一控制信息,第一控制信息包括激活指示信息,激活指示信息用于指示激活至少一个第一时间窗的一个第一时间窗;在激活的第一时间窗内,第一终端停止通过侦听时频资源集确定用于发送侧行通信信息的时频资源;收发模块5001,还用于向第一终端发送第一指示信息;第一指示信息指示至少一个时频资源,用于第一终端在至少一个时频资源上发送第一侧行通信信息。
一种可能的设计中,第一控制信息包括去激活指示信息,去激活指示信息用于指示去激活至少一个第一时间窗的一个第一时间窗;在去激活的第一时间窗内,第一终端通过侦听时频资源集确定用于发送侧行通信信息的时频资源。
一种可能的设计中,收发模块5001,还用于从第一终端接收第二控制信息,第二控制信息用于指示延长第一时间窗的时长。
一种可能的设计中,第一控制信息承载于物理信道。
一种可能的设计中,激活的第一时间窗包括第一子时间窗和第二子时间窗,在第一子时间窗内,第一终端停止侦听时频资源集;在第二子时间窗内,第一终端侦听时频资源集。
可以理解的是,本申请实施例中的一些可选的特征,在某些场景下,可以不依赖于其他特征,比如其当前所基于的方案,而独立实施,解决相应的技术问题,达到相应的效果,也可以在某些场景下,依据需求与其他特征进行结合。相应的,本申请实施例中给出的装置也可以相应的实现这些特征或功能,在此不予赘述。
本领域技术人员还可以理解到本申请实施例列出的各种说明性逻辑块(illustrative logical block)和步骤(step)可以通过电子硬件、电脑软件,或两者的结合进行实现。这样的功能是通过硬件还是软件来实现取决于特定的应用和整个系统的设计要求。本领域技术人员对于相应的应用,可以使用各种方法实现所述的功能,但这种实现不应被理解为超出本申请实施例保护的范围。
可以理解,本申请实施例中的处理器可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现场可编程门阵列(field programmable gate array,FPGA)或者其它可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。
本申请所描述的方案可通过各种方式来实现。例如,这些技术可以用硬件、软件或者硬件结合的方式来实现。对于硬件实现,用于在通信装置(例如,基站,终端、网络实体、或芯片)处执行这些技术的处理单元,可以实现在一个或多个通用处理器、DSP、数字信号处理器件、ASIC、可编程逻辑器件、FPGA、或其它可编程逻辑装置,离散门或晶体管逻辑,离散硬件部件,或上述任何组合中。通用处理器可以为微处理器,可选地,该通用处理器也可以为任何传统的处理器、控制器、微控制器或状态机。处理器也可以通过计算装置的组合来实现,例如数字信号处理器和微处理器,多个微处理器,一个或多个微处理器联合一个数字信号处理器核,或任何其它类似的配置来实现。
可以理解的是,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请还提供了一种计算机可读存储介质,其上存储有计算机程序,该计算机程序被计算机执行时实现上述任一方法实施例的功能。
本申请还提供了一种计算机程序产品,该计算机程序产品被计算机执行时实现上述任一方法实施例的功能。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,高密度数字视频光盘(digital video disc,DVD))、或者半导体介质(例如,固态硬盘(solid state disk,SSD))等。
可以理解,说明书通篇中提到的“实施例”意味着与实施例有关的特定特征、结构或特性包括在本申请的至少一个实施例中。因此,在整个说明书各个实施例未必一定指相同的实施例。此外,这些特定的特征、结构或特性可以任意适合的方式结合在一个或多个实施例中。可以理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
可以理解,在本申请中,“当…时”、“若”以及“如果”均指在某种客观情况下装置会做出相应的处理,并非是限定时间,且也不要求装置实现时一定要有判断的动作,也不意味着存在其它限定。
本申请中的“同时”可以理解为在相同的时间点,也可以理解为在一段时间段内,还可以理解为在同一个周期内。
本领域技术人员可以理解:本申请中涉及的第一、第二等各种数字编号仅为描述方便进行的区分,并不用来限制本申请实施例的范围。本申请中的编号(也可被称为索引)的具体取值、数量的具体取值、以及位置仅作为示意的目的,并不是唯一的表示形式,也并不用来限制本申请实施例的范围。本申请中涉及的第一个、第二个等各种数字编号也仅为描述方便进行的区分,并不用来限制本申请实施例的范围。
本申请中对于使用单数表示的元素旨在用于表示“一个或多个”,而并非表示“一个且仅一个”,除非有特别说明。本申请中,在没有特别说明的情况下,“至少一个”旨在用于表示“一个或者多个”,“多个”旨在用于表示“两个或两个以上”。
另外,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况,其中A可以是单数或者复数,B可以是单数或者复数。字符“以是一般表示前后关联对象是一种“或”的关系。
本文中术语“……中的至少一个”或“……中的至少一种”,表示所列出的各项的全部或任意组合,例如,“表、B和C中的至少一种”,可以表示:单独存在A,单独存在B,单独存在C,同时存在A和B,同时存在B和C,同时存在A、B和C这六种情况,其中A可以是单数或者复数,B可以是单数或者复数,C可以是单数或者复数。
可以理解,在本申请各实施例中,“与A相应的B应表示B与A相关联,根据A可以确定B。但还应理解,根据A确定B并不意味着仅仅根据A确定B,还可以根据A和/或其它信息确定B。
本申请中各表所示的对应关系可以被配置,也可以是预定义的。各表中的信息的取值仅仅是举例,可以配置为其他值,本申请并不限定。在配置信息与各参数的对应关系时,并不一定要求必须配置各表中示意出的所有对应关系。例如,本申请中的表格中,某些行示出的对应关系也可以不配置。又例如,可以基于上述表格做适当的变形调整,例如,拆分,合并等等。上述各表中标题示出参数的名称也可以采用通信装置可理解的其他名称,其参数的取值或表示方式也可以通信装置可理解的其他取值或表示方式。上述各表在实现时,也可以采用其他的数据结构,例如可以采用数组、队列、容器、栈、线性表、指针、链表、树、图、结构体、类、堆、散列表或哈希表等。
本申请中的预定义可以理解为定义、预先定义、存储、预存储、预协商、预配置、固化、或预烧制。
本领域普通技术人员可以理解,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本领域普通技术人员可以理解,为描述的方便和简洁,上述描述的系统、装置和 单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
可以理解,本申请中描述的系统、装置和方法也可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
本申请中各个实施例之间相同或相似的部分可以互相参考。在本申请中各个实施例、以及各实施例中的各个实施方式/实施方法/实现方法中,如果没有特殊说明以及逻辑冲突,不同的实施例之间、以及各实施例中的各个实施方式/实施方法/实现方法之间的术语和/或描述具有一致性、且可以相互引用,不同的实施例、以及各实施例中的各个实施方式/实施方法/实现方法中的技术特征根据其内在的逻辑关系可以组合形成新的实施例、实施方式、实施方法、或实现方法。以上所述的本申请实施方式并不构成对本申请保护范围的限定。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。

Claims (30)

  1. 一种通信方法,其特征在于,所述方法包括:
    第一终端获取时频资源集中至少一个第一时间窗;所述时频资源集用于终端发送侧行通信信息;
    所述第一终端从第二终端获取第一控制信息,所述第一控制信息包括激活指示信息;
    所述第一终端根据所述第一控制信息激活所述至少一个第一时间窗的一个第一时间窗;
    所述第一终端停止通过侦听所述时频资源集确定用于在激活的第一时间窗内发送侧行通信信息的时频资源;
    所述第一终端在所述激活的第一时间窗内从所述第二终端接收第一指示信息;所述第一指示信息指示至少一个时频资源;
    所述第一终端在所述至少一个时频资源上发送第一侧行通信信息。
  2. 根据权利要求1所述的方法,其特征在于,所述第一控制信息包括去激活指示信息,所述方法还包括:
    所述第一终端根据所述第一控制信息去激活所述至少一个第一时间窗的一个第一时间窗;
    所述第一终端通过侦听所述时频资源集确定用于在去激活的第一时间窗内发送侧行通信信息的时频资源。
  3. 根据权利要求1或2所述的方法,其特征在于,所述方法还包括:
    所述第一终端从第二终端接收第二控制信息,所述第二控制信息用于指示延长第一时间窗的时长。
  4. 一种通信方法,其特征在于,所述方法包括:
    第二终端获取时频资源集中至少一个第一时间窗;所述时频资源集用于终端发送侧行通信信息;
    所述第二终端向第一终端发送第一控制信息,所述第一控制信息包括激活指示信息,所述激活指示信息用于指示激活所述至少一个第一时间窗的一个第一时间窗;在激活的第一时间窗内,所述第一终端停止通过侦听所述时频资源集确定用于发送侧行通信信息的时频资源;
    所述第二终端在所述激活的第一时间窗内向所述第一终端发送第一指示信息;所述第一指示信息指示至少一个时频资源,用于所述第一终端在所述至少一个时频资源上发送第一侧行通信信息。
  5. 根据权利要求4所述的方法,其特征在于,所述第一控制信息包括去激活指示信息,所述去激活指示信息用于指示去激活所述至少一个第一时间窗的一个第一时间窗;在去激活的第一时间窗内,所述第一终端通过侦听所述时频资源集确定用于发送侧行通信信息的时频资源。
  6. 根据权利要求4或5所述的方法,其特征在于,所述方法还包括:
    所述第二终端向所述第一终端发送第二控制信息,所述第二控制信息用于指示延 长第一时间窗的时长。
  7. 一种通信方法,其特征在于,所述方法包括:
    第一终端获取时频资源集中至少一个第一时间窗;所述时频资源集用于终端发送侧行通信信息;
    所述第一终端向第二终端发送第一控制信息,所述第一控制信息包括激活指示信息,所述激活指示信息用于指示激活所述至少一个第一时间窗的一个第一时间窗;
    所述第一终端停止通过侦听所述时频资源集确定用于在激活的第一时间窗内发送侧行通信信息的时频资源;
    所述第一终端在所述激活的第一时间窗内从所述第二终端接收第一指示信息;所述第一指示信息指示至少一个时频资源;
    所述第一终端在所述至少一个时频资源上发送第一侧行通信信息。
  8. 根据权利要求7所述的方法,其特征在于,所述第一控制信息包括去激活指示信息,所述去激活指示信息用于指示去激活所述至少一个第一时间窗的一个第一时间窗,所述方法还包括:
    所述第一终端在去激活的第一时间窗内通过侦听所述时频资源集确定用于发送侧行通信信息的时频资源。
  9. 根据权利要求7或8所述的方法,其特征在于,所述方法还包括:
    所述第一终端向所述第二终端发送第二控制信息,所述第二控制信息用于指示延长第一时间窗的时长。
  10. 一种通信方法,其特征在于,所述方法包括:
    第二终端获取时频资源集中至少一个第一时间窗;所述时频资源集用于终端发送侧行通信信息;
    所述第二终端从第一终端接收第一控制信息,所述第一控制信息包括激活指示信息,所述激活指示信息用于指示激活所述至少一个第一时间窗的一个第一时间窗;在激活的第一时间窗内,所述第一终端停止通过侦听所述时频资源集确定用于发送侧行通信信息的时频资源;
    所述第二终端在所述激活的第一时间窗内向所述第一终端发送第一指示信息;所述第一指示信息指示至少一个时频资源,用于所述第一终端在所述至少一个时频资源上发送第一侧行通信信息。
  11. 根据权利要求10所述的方法,其特征在于,所述第一控制信息包括去激活指示信息,所述去激活指示信息用于指示去激活所述至少一个第一时间窗的一个第一时间窗;在去激活的第一时间窗内,所述第一终端通过侦听所述时频资源集确定用于发送侧行通信信息的时频资源。
  12. 根据权利要求10或11所述的方法,其特征在于,所述方法还包括:
    所述第二终端从所述第一终端接收第二控制信息,所述第二控制信息用于指示延长第一时间窗的时长。
  13. 根据权利要求1-12任意一项所述的方法,其特征在于,
    所述第一控制信息承载于物理信道。
  14. 根据权利要求1-13任意一项所述的方法,其特征在于,所述激活的第一时间 窗包括第一子时间窗和第二子时间窗,
    在所述第一子时间窗内,所述第一终端停止侦听所述时频资源集;
    在所述第二子时间窗内,所述第一终端侦听所述时频资源集。
  15. 一种通信装置,其特征在于,所述通信装置包括:处理模块和收发模块,
    所述处理模块,用于获取时频资源集中至少一个第一时间窗;所述时频资源集用于终端发送侧行通信信息;
    所述收发模块,用于从第二终端获取第一控制信息,所述第一控制信息包括激活指示信息;
    所述处理模块,还用于根据所述第一控制信息激活所述至少一个第一时间窗的一个第一时间窗;
    所述处理模块,还用于停止通过侦听所述时频资源集确定用于在激活的第一时间窗内发送侧行通信信息的时频资源;
    所述收发模块,还用于在所述激活的第一时间窗内从所述第二终端接收第一指示信息;所述第一指示信息指示至少一个时频资源;
    所述收发模块,还用于在所述至少一个时频资源上发送第一侧行通信信息。
  16. 根据权利要求15所述的通信装置,其特征在于,所述第一控制信息包括去激活指示信息,
    所述处理模块,还用于根据所述第一控制信息去激活所述至少一个第一时间窗的一个第一时间窗;
    所述处理模块,还用于通过侦听所述时频资源集确定用于在去激活的第一时间窗内发送侧行通信信息的时频资源。
  17. 根据权利要求15或16所述的通信装置,其特征在于,
    所述收发模块,还用于从第二终端接收第二控制信息,所述第二控制信息用于指示延长第一时间窗的时长。
  18. 一种通信装置,其特征在于,所述通信装置包括:处理模块和收发模块,
    所述处理模块,用于获取时频资源集中至少一个第一时间窗;所述时频资源集用于终端发送侧行通信信息;
    所述收发模块,用于向第一终端发送第一控制信息,所述第一控制信息包括激活指示信息,所述激活指示信息用于指示激活所述至少一个第一时间窗的一个第一时间窗;在激活的第一时间窗内,所述第一终端停止通过侦听所述时频资源集确定用于发送侧行通信信息的时频资源;
    所述收发模块,还用于在所述激活的第一时间窗内向所述第一终端发送第一指示信息;所述第一指示信息指示至少一个时频资源,用于所述第一终端在所述至少一个时频资源上发送第一侧行通信信息。
  19. 根据权利要求18所述的通信装置,其特征在于,所述第一控制信息包括去激活指示信息,所述去激活指示信息用于指示去激活所述至少一个第一时间窗的一个第一时间窗;在去激活的第一时间窗内,所述第一终端通过侦听所述时频资源集确定用于发送侧行通信信息的时频资源。
  20. 根据权利要求18或19所述的通信装置,其特征在于,
    所述收发模块,还用于向所述第一终端发送第二控制信息,所述第二控制信息用于指示延长第一时间窗的时长。
  21. 一种通信装置,其特征在于,所述通信装置包括:处理模块和收发模块,
    所述处理模块,用于获取时频资源集中至少一个第一时间窗;所述时频资源集用于终端发送侧行通信信息;
    所述收发模块,用于向第二终端发送第一控制信息,所述第一控制信息包括激活指示信息,所述激活指示信息用于指示激活所述至少一个第一时间窗的一个第一时间窗;
    所述处理模块,还用于停止通过侦听所述时频资源集确定用于在激活的第一时间窗内发送侧行通信信息的时频资源;
    所述收发模块,还用于在所述激活的第一时间窗内从所述第二终端接收第一指示信息;所述第一指示信息指示至少一个时频资源;
    所述收发模块,还用于在所述至少一个时频资源上发送第一侧行通信信息。
  22. 根据权利要求21所述的通信装置,其特征在于,所述第一控制信息包括去激活指示信息,所述去激活指示信息用于指示去激活所述至少一个第一时间窗的一个第一时间窗,
    所述处理模块,还用于在去激活的第一时间窗内通过侦听所述时频资源集确定用于发送侧行通信信息的时频资源。
  23. 根据权利要求21或22所述的通信装置,其特征在于,
    所述收发模块,还用于向所述第二终端发送第二控制信息,所述第二控制信息用于指示延长第一时间窗的时长。
  24. 一种通信装置,其特征在于,所述通信装置包括:处理模块和收发模块,
    所述处理模块,用于获取时频资源集中至少一个第一时间窗;所述时频资源集用于终端发送侧行通信信息;
    所述收发模块,用于从第一终端接收第一控制信息,所述第一控制信息包括激活指示信息,所述激活指示信息用于指示激活所述至少一个第一时间窗的一个第一时间窗;在激活的第一时间窗内,所述第一终端停止通过侦听所述时频资源集确定用于发送侧行通信信息的时频资源;
    所述收发模块,还用于向所述第一终端发送第一指示信息;所述第一指示信息指示至少一个时频资源,用于所述第一终端在所述至少一个时频资源上发送第一侧行通信信息。
  25. 根据权利要求24所述的通信装置,其特征在于,所述第一控制信息包括去激活指示信息,所述去激活指示信息用于指示去激活所述至少一个第一时间窗的一个第一时间窗;在去激活的第一时间窗内,所述第一终端通过侦听所述时频资源集确定用于发送侧行通信信息的时频资源。
  26. 根据权利要求24或25所述的通信装置,其特征在于,
    所述收发模块,还用于从所述第一终端接收第二控制信息,所述第二控制信息用于指示延长第一时间窗的时长。
  27. 根据权利要求15-26任意一项所述的通信装置,其特征在于,
    所述第一控制信息承载于物理信道。
  28. 根据权利要求15-27任意一项所述的通信装置,其特征在于,所述激活的第一时间窗包括第一子时间窗和第二子时间窗,
    在所述第一子时间窗内,所述第一终端停止侦听所述时频资源集;
    在所述第二子时间窗内,所述第一终端侦听所述时频资源集。
  29. 一种计算机程序产品,包括:至少一个处理器,以及存储器;其特征在于,
    所述存储器用于存储计算机程序,使得所述计算机程序被所述至少一个处理器执行时实现如权利要求1-14任意一项所述的方法。
  30. 一种计算机可读存储介质,其上存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现如权利要求1-14任意一项所述的方法。
PCT/CN2020/142523 2020-12-31 2020-12-31 一种通信方法及装置 WO2022141580A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN202080103795.2A CN116097889A (zh) 2020-12-31 2020-12-31 一种通信方法及装置
MX2023007798A MX2023007798A (es) 2020-12-31 2020-12-31 Metodo y aparato de comunicacion.
EP20967918.2A EP4250860A4 (en) 2020-12-31 2020-12-31 COMMUNICATION METHOD AND DEVICE
PCT/CN2020/142523 WO2022141580A1 (zh) 2020-12-31 2020-12-31 一种通信方法及装置
US18/344,016 US20230345511A1 (en) 2020-12-31 2023-06-29 Communication method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/142523 WO2022141580A1 (zh) 2020-12-31 2020-12-31 一种通信方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/344,016 Continuation US20230345511A1 (en) 2020-12-31 2023-06-29 Communication method and apparatus

Publications (1)

Publication Number Publication Date
WO2022141580A1 true WO2022141580A1 (zh) 2022-07-07

Family

ID=82260148

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/142523 WO2022141580A1 (zh) 2020-12-31 2020-12-31 一种通信方法及装置

Country Status (5)

Country Link
US (1) US20230345511A1 (zh)
EP (1) EP4250860A4 (zh)
CN (1) CN116097889A (zh)
MX (1) MX2023007798A (zh)
WO (1) WO2022141580A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022252213A1 (zh) * 2021-06-04 2022-12-08 Oppo广东移动通信有限公司 无线通信方法及设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111052833A (zh) * 2017-11-08 2020-04-21 Oppo广东移动通信有限公司 D2d通信中资源配置的方法、终端设备和网络设备
WO2020198760A2 (en) * 2020-07-17 2020-10-01 Futurewei Technologies, Inc. Methods and apparatus for resource sharing in the sidelink
CN112135350A (zh) * 2019-06-24 2020-12-25 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
WO2020264539A1 (en) * 2019-10-03 2020-12-30 Futurewei Technologies, Inc. Methods and apparatus for resource selection

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019028759A1 (zh) * 2017-08-10 2019-02-14 Oppo广东移动通信有限公司 设备对设备通信的方法和终端设备
CN111886912B (zh) * 2018-09-27 2022-01-11 Oppo广东移动通信有限公司 通信方法、终端设备和网络设备
CN111586851B (zh) * 2019-02-15 2024-02-02 华为技术有限公司 一种通信方法及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111052833A (zh) * 2017-11-08 2020-04-21 Oppo广东移动通信有限公司 D2d通信中资源配置的方法、终端设备和网络设备
CN112135350A (zh) * 2019-06-24 2020-12-25 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
WO2020264539A1 (en) * 2019-10-03 2020-12-30 Futurewei Technologies, Inc. Methods and apparatus for resource selection
WO2020198760A2 (en) * 2020-07-17 2020-10-01 Futurewei Technologies, Inc. Methods and apparatus for resource sharing in the sidelink

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
FRAUNHOFER HHI, FRAUNHOFER IIS: "Resource Allocation Enhancements", 3GPP DRAFT; R2-2009992, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Online; 20201101, 22 October 2020 (2020-10-22), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051941495 *
LG ELECTRONICS: "Discussion on feasibility and benefits for mode 2 enhancement", 3GPP DRAFT; R1-2007896, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20201026 - 20201113, 24 October 2020 (2020-10-24), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051946544 *
See also references of EP4250860A4 *

Also Published As

Publication number Publication date
EP4250860A4 (en) 2024-01-10
CN116097889A8 (zh) 2023-07-28
US20230345511A1 (en) 2023-10-26
CN116097889A (zh) 2023-05-09
MX2023007798A (es) 2023-07-11
EP4250860A1 (en) 2023-09-27

Similar Documents

Publication Publication Date Title
US20220330261A1 (en) Sidelink resource determination and sidelink signal transmission and reception method and device in wireless communication system
JP7412437B2 (ja) 情報伝送方法、端末デバイス及びネットワークデバイス
TWI710278B (zh) 業務傳輸的方法和裝置
JP2022549595A (ja) データ送信方法と装置
WO2020114129A1 (zh) 确定传输资源的方法和装置
WO2023274012A1 (zh) 侧行链路反馈信息传输的方法和通信装置
TWI718240B (zh) 用於傳輸業務的方法、移動台和網絡設備
WO2020025042A1 (zh) 资源配置的方法和终端设备
WO2021027575A1 (zh) 一种通信方法及装置
WO2020025040A1 (zh) 资源配置的方法和终端设备
TW202021391A (zh) 非連續傳輸的方法和設備
EP3595384B1 (en) Information transmission method and related device
WO2020088054A1 (zh) 通信资源的配置方法、通信装置、通信设备及存储介质
WO2020015494A1 (zh) 一种数据传输方法、网络设备、通信设备及存储介质
CN116095865A (zh) 一种资源选择方法、终端设备及存储介质
CN114424666B (zh) 一种通信方法及装置
US20230345511A1 (en) Communication method and apparatus
WO2022134076A1 (zh) 无线通信的方法和终端设备
WO2022011699A1 (zh) 一种通信方法及侧行设备
WO2018059170A1 (zh) 通信方法、基站以及终端
WO2023082356A1 (zh) 无线通信的方法和终端设备
WO2022078030A1 (zh) 资源重选辅助的方法与装置和资源重选的方法与装置
WO2020164392A1 (zh) 一种通信方法及装置
WO2024067429A1 (zh) 通信方法及通信装置
WO2021204169A1 (zh) 一种通信方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20967918

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202080103795.2

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2020967918

Country of ref document: EP

Effective date: 20230620

WWE Wipo information: entry into national phase

Ref document number: MX/A/2023/007798

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE