WO2022253030A1 - 波束处理方法及网络设备、基站、计算机可读存储介质 - Google Patents

波束处理方法及网络设备、基站、计算机可读存储介质 Download PDF

Info

Publication number
WO2022253030A1
WO2022253030A1 PCT/CN2022/094470 CN2022094470W WO2022253030A1 WO 2022253030 A1 WO2022253030 A1 WO 2022253030A1 CN 2022094470 W CN2022094470 W CN 2022094470W WO 2022253030 A1 WO2022253030 A1 WO 2022253030A1
Authority
WO
WIPO (PCT)
Prior art keywords
network node
information
base station
time domain
processing method
Prior art date
Application number
PCT/CN2022/094470
Other languages
English (en)
French (fr)
Inventor
李永
鲁照华
王瑜新
陈艺戬
窦建武
杨军
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to US18/562,561 priority Critical patent/US20240088964A1/en
Priority to KR1020237039537A priority patent/KR20230170089A/ko
Priority to EP22815077.7A priority patent/EP4351199A1/en
Publication of WO2022253030A1 publication Critical patent/WO2022253030A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/155Ground-based stations
    • H04B7/15528Control of operation parameters of a relay station to exploit the physical medium
    • H04B7/15542Selecting at relay station its transmit and receive resources
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • H04B7/06952Selecting one or more beams from a plurality of beams, e.g. beam training, management or sweeping
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0837Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using pre-detection combining
    • H04B7/0842Weighted combining
    • H04B7/086Weighted combining using weights depending on external parameters, e.g. direction of arrival [DOA], predetermined weights or beamforming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0868Hybrid systems, i.e. switching and combining
    • H04B7/088Hybrid systems, i.e. switching and combining using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/155Ground-based stations
    • H04B7/15528Control of operation parameters of a relay station to exploit the physical medium
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • H04W64/003Locating users or terminals or network equipment for network management purposes, e.g. mobility management locating network equipment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/26Cell enhancers or enhancement, e.g. for tunnels, building shadow

Definitions

  • the embodiments of the present application relate to but are not limited to the field of communication technologies, and in particular, relate to a beam processing method, network equipment, base station, and computer-readable storage medium.
  • the electromagnetic wave signal is transmitted from the transmitter, and finally reaches the receiver after attenuation.
  • the effect of the electromagnetic wave signal received by the receiver is not good.
  • the terminal when the base station Transmitting electromagnetic wave signals to the terminal, the terminal can only receive part of the electromagnetic wave signal, and the other part of the electromagnetic wave signal may not be received by the terminal due to absorption, scattering and other losses.
  • the terminal transmits electromagnetic wave signals to the base station, the base station only Part of the electromagnetic wave signal can be received, and the other part of the electromagnetic wave signal may not be received by the base station due to losses such as absorption and scattering. In either case, it will reduce the quality of wireless communication between the base station and the terminal. This makes the communication efficiency between the base station and the terminal worse.
  • Embodiments of the present application provide a beam processing method, a network device, a base station, and a computer-readable storage medium, which can improve wireless communication efficiency.
  • the embodiment of the present application provides a beam processing method applied to a network node, including:
  • the beam time domain information includes beamforming time information, and the beamforming time information is used to characterize the corresponding time;
  • first beam used to guide a signal in the first time domain, where the first beam is determined by the network node according to the first beam identification information.
  • the embodiment of the present application also provides a beam processing method applied to a base station, including:
  • the network node Sending the first beam identification information and the beam time domain information to the network node, so that the network node determines the first time domain according to the beamforming time information in the beam time domain information, and makes the network node determine the first time domain in the first beam time domain information forming a first beam for guiding signals in a time domain;
  • the beamforming time information is used to represent the time corresponding to the network node forming a beam to transmit a pilot signal, and the first beam is determined by the network node according to the first beam identification information.
  • the embodiment of the present application also provides a network device, including: a first memory, a first processor, and a computer program stored in the first memory and operable on the first processor, the first When the processor executes the computer program, the beam processing method described in the first aspect above is implemented.
  • the embodiment of the present application further provides a base station, including: a second memory, a second processor, and a computer program stored in the second memory and operable on the second processor, the second processing When the computer executes the computer program, the beam processing method as described in the second aspect above is implemented.
  • the embodiment of the present application also provides a computer-readable storage medium, which stores computer-executable instructions, and the computer-executable instructions are used to execute the beam processing method in the first aspect as described above, or to execute the above-mentioned The beam processing method of the second aspect.
  • FIG. 1 is a schematic diagram of a network topology for performing a beam processing method provided by an embodiment of the present application
  • FIG. 2 is a flowchart of a beam processing method provided by an embodiment of the present application.
  • FIG. 3 is a flowchart of forming a first beam in a beam processing method provided by an embodiment of the present application
  • FIG. 4 is a flow chart of forming a first beam in a beam processing method provided in another embodiment of the present application.
  • FIG. 5 is a flowchart of another beam processing method provided by an embodiment of the present application.
  • FIG. 6 is a schematic diagram of a network node guiding a signal between a base station and a terminal provided by an embodiment of the present application
  • FIG. 7 is a schematic diagram of a network node guiding a signal between a base station and a terminal according to another embodiment of the present application.
  • FIG. 8 is a flow chart of forming a first beam in a beam processing method provided in another embodiment of the present application.
  • FIG. 9 is a flow chart of forming a first beam in a beam processing method provided in another embodiment of the present application.
  • FIG. 10 is a flowchart of another beam processing method provided by an embodiment of the present application.
  • FIG. 11 is a flowchart of a beam processing method provided by another embodiment of the present application.
  • Fig. 12 is a flowchart of another beam processing method provided by another embodiment of the present application.
  • Fig. 13 is a flow chart before sending the first beam identification information in the beam processing method provided by another embodiment of the present application.
  • Fig. 14 is a schematic diagram of a network device provided by an embodiment of the present application.
  • Fig. 15 is a schematic diagram of a base station provided by an embodiment of the present application.
  • Embodiments of the present application provide a beam processing method, a network device, a base station, and a computer-readable storage medium.
  • the network node can determine the first beam used to guide the signal based on the first beam identification information, thereby forming a beam in the first time domain.
  • the electromagnetic wave signal sent or received by the base station is guided through the first beam, that is, the reception amount of the target electromagnetic wave signal by the base station or terminal can be improved by guiding the electromagnetic wave signal, thereby enhancing its wireless communication quality and improving Wireless communication efficiency; and, since the first time domain is correspondingly determined according to the beamforming time information, and the beamforming time information can represent the corresponding time when the network node forms a beam to guide the signal, therefore, the network node forms a beam in the first time domain
  • the corresponding beams enable network nodes to conduct signal guidance at the corresponding time, thereby avoiding chaotic guidance or signaling storms, which is conducive to improving the efficiency of wireless communication.
  • FIG. 1 is a schematic diagram of a network topology for performing a beam processing method provided by an embodiment of the present application.
  • the network topology includes a network node 100, a base station 200, and a terminal 300, wherein there may be multiple terminals 300, and each terminal 300 is matched with the base station 200, that is, the base station 200 can send each terminal 300
  • each terminal 300 can also send electromagnetic wave signals to the base station 200
  • the network node 100 has communication capabilities, and can establish a communication relationship with the base station 200, for example, the network node 100 can receive communication content from the base station 200, or can Send the communication content to the base station 200.
  • the base station 200 and the network node 100 in the network topology can communicate with each other.
  • the center communicates with the network nodes, and the above is collectively referred to as the communication between the base station 200 and the network node 100 .
  • each terminal 300 may be called an access terminal, user equipment (User Equipment, UE), subscriber unit, subscriber station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, A wireless communication device, user agent, or user device.
  • each terminal may be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a Wireless Local Loop (WLL) station, a Personal Digital Assistant (PDA), a Handheld devices with wireless communication functions, computing devices or other processing devices connected to wireless modems, vehicle-mounted devices, wearable devices, 5G networks or terminal devices in future 5G or higher networks, etc., are not specifically limited in this embodiment.
  • the base station 200 that is, the communication base station, belongs to a form of radio station, and refers to a radio transceiver station that transmits information with mobile phone terminals in a certain radio coverage area.
  • the main function of the base station is It is to provide wireless coverage, that is, to realize wireless signal transmission between a wired communication network and a wireless terminal.
  • the base station 200 is used to realize wireless communication with a terminal.
  • the network node 100 may have different configurations. It can be understood that the network node 100 may be an intelligent panel adapted to various protocols of the 4th generation wireless communication technology or the 5th generation wireless communication technology,
  • the smart panel can be integrated, including communication functions with the base station and the terminal, and can also integrate other functions such as algorithms and controls.
  • network node 100 can also be the communication medium under any circumstances, and this communication medium can integrate storage function, also can be built-in or external connection storage device, and base station 200 and terminal 300
  • the corresponding communication content can be stored for backup, and information related to the network node 100 can also be stored, for example, communication information from the base station 200, preset beams, and the working mode of the network node 100 can be stored
  • This embodiment does not specifically limit the information, the detection information for the beams in the network node 100, and the like.
  • the positional relationship between the network node 100 and the base station 200 and the terminal 300 may be random, in this case, the relative positional relationship between the network node 100 and the base station 200, the network node 100 and the terminal 300 It is not fixed.
  • the positional relationship between the terminals 300 is not limited, so the relative positional relationship between the network node 100 and each terminal 300 is also not fixed.
  • both the location information of the network node 100 and the location information of the base station 200 may be determined, that is, in this case, the relative location relationship between the network node 100 and the base station 200 is fixed, and the network The beam of the node 100 corresponding to the base station 200 can also be correspondingly determined.
  • Both the base station 200 and the network node 100 may respectively include a memory and a processor, where the memory and the processor may be connected through a bus or in other ways.
  • memory can be used to store non-transitory software programs and non-transitory computer-executable programs.
  • the memory may include high-speed random access memory, and may also include non-transitory memory, such as at least one magnetic disk storage device, flash memory device, or other non-transitory solid-state storage devices.
  • the memory optionally includes memory located remotely from the processor, and these remote memories may be connected to the processor via a network. Examples of the aforementioned networks include, but are not limited to, the Internet, intranets, local area networks, mobile communication networks, and combinations thereof.
  • the network topology and application scenarios described in the embodiments of the present application are for more clearly illustrating the technical solutions of the embodiments of the present application, and do not constitute limitations on the technical solutions provided by the embodiments of the present application. Those skilled in the art know that with the network topology The evolution of the technology and the emergence of new application scenarios, the technical solutions provided by the embodiments of the present application are also applicable to similar technical problems.
  • Network topology shown in Figure 1 does not constitute a limitation to the embodiment of the present application, and may include more or less components than shown in the figure, or combine some components, or different components layout.
  • the base station 200 or the network node 100 can call its stored beam processing program to execute the beam processing method.
  • Figure 2 is a flowchart of a beam processing method provided by an embodiment of the present application, the beam processing method can be applied to the network node in the embodiment shown in Figure 1, the method includes but is not limited to step S100 to S300.
  • Step S100 Obtain the first beam identification information and beam time domain information sent by the base station.
  • the beam time domain information includes beam forming time information, and the beam forming time information is used to represent the corresponding time when the network node forms a beam to guide the signal.
  • the first beam identification information and beam time domain information may be acquired simultaneously, but this is not limited; there may be multiple ways to send the first beam identification information and beam time domain information, for example, it may be obtained by
  • the information sent by the base station may also be sent by the base station through a control unit or a control center on a related network, which is not limited.
  • the base station has a certain relationship with the base station side, the difference is that the base station belongs to a device, and the beam is aligned with the base station to provide guidance for the communication signal between the base station and the terminal; the base station side includes the base station and may also include other devices Or the control unit, when the base station side communicates with the network node, it may be that the base station communicates with the network node, or it may be that other devices or control units at the base station side communicate with the network node, which is not limited.
  • the first beam identification information is used to indicate the beam aimed at the terminal.
  • the network node obtains the first beam identification information
  • the network node and the terminal can be connected to each other through the beam identified by the first beam identification information.
  • the identified beams can be used for cooperation;
  • the beamforming time information can also be used to characterize the time required for signal transmission between the base station and the corresponding terminal through the beam, that is, to reflect the specific application scenarios between the base station and the terminal.
  • the signal transmission enables the network node to coordinate and guide the signal transmission between the base station and the terminal based on the application scenario.
  • a base station may correspond to different terminals, there may be multiple first beam identification information and multiple beamforming time information, and each set of first beam identification information and beam time domain information corresponds to a terminal , correspondingly, the network node acquires a set of first beam identification information and beam time domain information, in this case, the network node may respectively correspond to the base station and the terminal corresponding to the set of first beam identification information and beam time domain information , it can be understood that the cooperation between any terminal and the base station is similar, therefore, in order to avoid redundancy, the description of the following related embodiments is basically described with a network node, a base station and a terminal, but this does not as a specific limit.
  • Step S200 Determine the first time domain according to the beamforming time information
  • Step S300 Form a first beam used to guide a signal in a first time domain, where the first beam is determined by a network node according to first beam identification information.
  • the network node can determine the first beam used to guide the signal based on the first beam identification information, so that the first beam can be transmitted or received by the base station under the condition of forming the first beam in the first time domain.
  • the electromagnetic wave signal is guided, that is, the electromagnetic wave signal reception of the base station or terminal can be improved through the electromagnetic wave signal guidance, thereby enhancing the quality of its wireless communication and improving the efficiency of wireless communication; and, since the first time domain is based on the beamforming time information Correspondingly determined, and the beamforming time information can represent the corresponding time when the network node forms a beam to guide the signal. Therefore, the network node forms the corresponding beam in the first time domain, so that the network node can perform signal guidance at the corresponding time, In this way, disorderly guidance or signaling storms can be avoided, which is beneficial to improving wireless communication efficiency.
  • step S300 includes but is not limited to step S310 .
  • Step S310 forming a first beam for aiming at the first terminal in the first time domain according to the first beam identification information.
  • the first beam identification information includes beam indication information
  • the beam indication information is used to indicate that the first beam is aimed at the first terminal
  • the network node obtains the first beam identification information
  • the first beam and the first terminal to which the first beam is aimed can be determined at the same time. Therefore, in this case, the electromagnetic wave signal between the first terminal and the base station can be guided by the first beam, thereby improving the communication between the first terminal and the base station. wireless communication efficiency.
  • the beam indication information may be explicit, directly indicating that the first beam is used to align the first terminal, or implicit, for example, implicitly indicated by the arrangement position of the first beam identification information The first beam is used to align the first terminal.
  • step S300 includes but not limited to steps S320 to S330.
  • Step S320 acquiring beam indication information sent by the base station, where the beam indication information is used to indicate that the first beam is aimed at the first terminal;
  • Step S330 forming a first beam for aiming at the first terminal in the first time domain according to the first beam identification information and the beam indication information.
  • the network node can determine the first beam and the first beam when the first beam identification information and the beam indication information are simultaneously acquired. Therefore, in this case, the first beam can guide the electromagnetic wave signal between the first terminal and the base station, thereby improving the wireless communication efficiency between the first terminal and the base station.
  • the beam processing method further includes but not limited to step S400.
  • Step S400 forming a second beam for aiming at the base station in the first time domain, and the second beam is determined by the network node according to the relative positional relationship between the network node and the base station.
  • the signal sent by the base station to the corresponding terminal can be guided by the network node, or the signal sent by the corresponding terminal to the base station can be guided by the network node, thereby enhancing the base station
  • the quality of wireless communication with the corresponding terminal is improved, and the efficiency of wireless communication is improved.
  • the first application scenario is, as shown in Figure 6, on the one hand, the base station transmits the corresponding downlink electromagnetic wave signal to the terminal, and since the second beam is aimed at the base station, the signal sent by the base station can be guided to the network node based on the second beam , that is, the network node accesses the guided signal; on the other hand, since the terminal is aimed at the terminal through the first beam, the signal received by the network node and sent by the base station can be further guided to the terminal based on the first beam, so that The signal receiving capacity of the terminal can be improved.
  • the second application scenario is, as shown in Figure 7, on the one hand, the terminal transmits the corresponding uplink electromagnetic wave signal to the base station, and since the first beam is aimed at the terminal, the signal sent by the terminal can be guided to the network node based on the first beam , that is, the network node accesses the guided signal; on the other hand, since the base station is aligned through the second beam, the signal received by the network node and sent by the terminal can be further guided to the base station based on the second beam, so that The signal receiving capacity of the base station can be improved.
  • the network node since the first time domain is correspondingly determined according to the beamforming time information, and the beamforming time information can represent the time corresponding to the signal transmission between the base station and the terminal, therefore, the network node forms Corresponding beams are steered, so that network nodes steer when signals are transmitted between the base station and the terminal, thereby avoiding chaotic steering or signaling storms, which is conducive to improving wireless communication efficiency.
  • the network node cannot normally guide the transmitted electromagnetic wave signal, or, the base station or the terminal transmits the electromagnetic wave signal When the signal is completed, it means that there is no related signal to be guided between the base station and the terminal at this time.
  • the network node uses different beams to aim at different terminals, when executing Once the signal guidance to the terminal is completed, a corresponding beam switching is performed, and a notification is made every time a beam is switched, and frequent switching will cause a signaling storm.
  • the beamforming time information includes a beamforming symbol
  • the beamforming symbol includes at least one of the following types:
  • OFDM Orthogonal Frequency Division Multiplexing
  • N2 is 2, 4 or 7;
  • the first beam symbol includes one OFDM symbol, and is separated from one OFDM symbol by 4 another OFDM symbol of OFDM symbols.
  • the beamforming symbol is equivalent to representing the beamforming time information in symbolic form; expressing the beamforming time in symbolic form can reduce the beam switching delay to the order of symbols, that is, it can reduce the use of network nodes to guide electromagnetic waves The communication delay caused by the signal.
  • the beamforming symbols in this embodiment are set based on OFDM technology.
  • OFDM technology the smallest frequency domain unit can be defined as a subcarrier, and the smallest time domain unit is an OFDM symbol.
  • Resource Block a resource block is defined as a specific number of continuous subcarriers, and a bandwidth block (Bandwidth Part, BWP), a bandwidth block is defined as another specific number of continuous resource blocks on a carrier; for convenience Using time-domain resources, slots are also defined, and a slot is defined as yet another specific number of consecutive OFDM symbols.
  • each beamforming symbol can be applied in a specific scenario to provide services for the adapted channel, and an example is given below for illustration.
  • the beamforming time can serve the Physical Uplink Shared Channel (PUSCH) from the terminal to the base station, and the transmission time of PUSCH is N1 consecutive OFDM symbols, that is, in the During the beamforming time, the network node forms the corresponding beam to guide the electromagnetic wave signal carrying the physical uplink shared channel to reach the base station from the terminal through the network node; similarly, it can also serve the physical downlink of N1 consecutive OFDM symbols
  • the shared channel Physical Downlink Shared Channel, PDSCH
  • PDSCH can also serve the physical downlink control channel (Physical Downlink Control Channel, PDCCH) and the physical uplink control channel (Physical Uplink Control Channel, PUCCH) of N1 consecutive OFDM symbols, It can also serve the transmission of a channel state information reference signal (Channel State Information Reference Signal, CSI-RS) that takes up 1 OFDM symbol, and can also serve the transmission of a CSI-RS that takes up 2 OFDM symbols.
  • CSI-RS Channel State Information Reference Signal
  • the CSI-RS transmission of the code division multiplexing type cdm8-FD2-TD4 with a service duration of 4 OFDM symbols can also serve the measurement reference signal (Sounding Reference Signal, SRS) with a duration of 1 to 4 OFDM symbols .
  • SRS Signal Reference Signal
  • the beamforming time can serve the transmission channel of the mini-slot, for example, 1 OFDM symbol serves the PDCCH of the mini-slot, and N2 consecutive OFDM symbols serve the mini-slot PDSCH for mini-slots, or PUSCH for mini-slots.
  • the beamforming time can serve the CSI-RS that takes up 4 OFDM symbols, for example, two consecutive OFDM symbols serve a set of CSI-RS OFDM symbols, the other two consecutive OFDM symbols serve another group of OFDM symbols carrying CSI-RS, wherein the 4 OFDM symbols carrying CSI-RS are composed of two groups of OFDM symbols, and each group includes two consecutive OFDM symbols.
  • the time of this beamforming can serve the Tracking Reference Signal (Channel State Information Reference Signal for tracking, TRS), e.g., 1 OFDM symbol serving For the first OFDM symbol bearing TRS, another OFDM symbol serves for the last OFDM symbol bearing TRS, wherein, all OFDM symbols bearing TRS include 2 OFDM symbols, and the last OFDM symbol is the same as the first OFDM symbol
  • TRS Tracking Reference Signal
  • the beamforming time can serve TRS, for example, the 2 OFDM symbols on the first 1 time slot serve 1 time slot carrying TRS 2 OFDM symbols on , the 2 OFDM symbols on the next slot serve the 2 OFDM symbols on the other slot of TRS, where all OFDM symbols carrying TRS are distributed on 2 consecutive slots , the TRS on each slot is carried in the same OFDM symbol position, and all the OFDM symbols carrying the TRS on each slot are 1 OFDM symbol and 1 OFDM symbol 4 OFDM symbols away from the other 1 OFDM symbol.
  • TRS for example, the 2 OFDM symbols on the first 1 time slot serve 1 time slot carrying TRS 2 OFDM symbols on , the 2 OFDM symbols on the next slot serve the 2 OFDM symbols on the other slot of TRS, where all OFDM symbols carrying TRS are distributed on 2 consecutive slots , the TRS on each slot is carried in the same OFDM symbol position, and all the OFDM symbols carrying the TRS on each slot are 1 OFDM symbol and 1 OFDM symbol 4 OFDM symbols away from the other 1 OFDM symbol.
  • the relevant beams in the network node can all be called spatial filters, or a combination of working parameters of each working unit in the network node, that is, each of the network nodes
  • the beams can correspond one-to-one with the spatial domain filters used by the network nodes, one spatial domain filter corresponds to one beam, or each beam corresponds to the combination of the working parameters of each working unit in the network node one-to-one, and one working parameter can be used
  • a combination corresponds to a beam.
  • the second beam in the case that the relative position between the network node and the base station is fixed, the second beam may be specifically determined by, but not limited to: the network node from several preset beams.
  • the corresponding position of the base station can be directly determined based on this information, so as to directly determine the location of the base station.
  • Fixed beams under this condition, do not need to form corresponding beams according to the first time domain, and can be determined directly from the preset beams, so that network nodes can align base stations based on fixed beams, realize signal guidance, and simplify network nodes Execution steps to save network resources.
  • the second beam may be, but not limited to, specifically determined by: the network node according to the second beam identification information sent by the base station.
  • the network node since the relative position between the network node and the base station is not fixed, the network node cannot determine the position of the base station, and thus cannot align the base station based on a fixed beam. Under this condition, the same as obtaining the first Similar to the beam identification information, the second beam is determined through the second beam identification information sent by the base station, so that the network node can align the base station based on the second beam to implement signal guidance.
  • step S300 includes but is not limited to step S340 .
  • Step S340 Periodically form the first beam in the first time domain according to the beamforming time slot information.
  • the beamforming time slot information is used to characterize the period of beamforming, that is, the time of beamforming is periodic, and is described in units of time slots, and the beam can be offset at each period formed in the gap.
  • the beam is formed on all OFDM symbols on the offset slot of each cycle, or the beam is formed on a specific OFDM symbol on the offset slot of each cycle, or the beam is formed on the offset slot of each cycle
  • the negotiated OFDM symbol on the slot is formed, or the beam is formed on the OFDM symbol pre-specified by the base station on the offset slot of each cycle, or the beam is formed on the offset slot of each cycle Formed on OFDM symbols predetermined by the network node.
  • the network node enables the periodic formation of the first beam in the first time domain by acquiring beamforming time slot information. It can be understood that when the network node acquires the second beam identification information , the second beam can also be periodically formed in the first time domain. For example, in practical applications, when the base station sends beamforming time slot information to the network node, the base station does not need to send the first beam to the network node multiple times.
  • Beam identification information even if the base station only notifies the network node of the first beam identification information once, the network node can still form the corresponding first beam multiple times according to the beamforming time slot information, and, since the first beam only Therefore, the remaining time in each cycle can be allocated to other services, for example, allocated to form additional beams that need to be aimed at other terminals, which is beneficial to improve the work efficiency of network nodes.
  • step S300 includes but not limited to steps S350 to S360 .
  • Step S350 Obtain beamforming trigger information sent by the base station, where the beamforming trigger information includes a first time interval;
  • Step S360 Forming the first beam and the second beam respectively in the first time domain according to the first time interval.
  • the beamforming trigger information is used to indicate that the base station performs a triggering operation, that is, the base station notifies the network node of the corresponding beamforming and the corresponding beamforming time point in a triggering manner, wherein the beamforming time point can be based on the triggering
  • the beamforming time point may be determined according to the beamforming time point and the set first time interval.
  • the triggering method may also include but not Limited to notifying trigger events, sending trigger signaling, emitting trigger signals, or generating trigger events.
  • the time point of triggering beamforming is denoted as Ta
  • the time point of beamforming is denoted as Tb
  • the first time interval is Tf
  • the forming trigger information informs the network node that the beamforming trigger information may include a first time interval, and the time point at which beamforming is triggered is the time point at which the beamforming trigger information is sent.
  • the network node receives the Specific beamforming trigger information, so that the first beam and the second beam can be precisely formed at a specific time point in the first time domain, where the specific time point is the time point required by the current scenario, which can meet the requirements of the current scenario The time-domain requirements for forming the corresponding beams.
  • the time point at which the base station sends the beamforming trigger information is the time point at which the network node receives the beamforming trigger information. Therefore, the base station can indirectly indicate by sending the beamforming trigger information The time point when beamforming trigger information is sent.
  • the time point of beamforming is determined according to the time point of triggering beamforming, there is no need to consider the influence of the first time interval, and it can be set according to the actual situation.
  • the base station triggers the network node at the time point Ta Corresponding to the formation of the beam, the network node will form the corresponding beam at the time point Tb, wherein the time point Tb is determined according to the time point Ta.
  • the beam processing method further includes but not limited to steps S500 to S700.
  • Step S500 Send the beam working mode supported by the network node to the base station;
  • Step S600 Obtain the first indication information sent by the base station according to the beam working mode
  • Step S700 Determine and apply the first beam working mode from the beam working modes supported by the network node according to the first indication information.
  • the network node can know the specific working mode instruction of the base station for the network node by obtaining the first instruction information sent by the base station.
  • the first instruction information sent by the base station can be controlled to Realize the control of the working mode of the network node, which provides a way to control the working mode of the network node, so that the working mode of the network node can be effectively adjusted without controlling the network node itself, and the network can be optimized Node's control flow.
  • the beam working mode supported by the network node includes a preset default beam working mode, and when the first indication information indicates the default beam working mode or is empty, the network node determines and applies the default beam working mode , or, in the case that the network node determines to apply only the default beam working mode, it may only send the default beam working mode to the base station.
  • the network node makes the division of labor of each working unit in the network node more clear, and can also reduce the configuration amount invested by the base station in the network node, thereby saving network configuration resources.
  • the initial working mode of the network node can be set to a preset default beam working mode, so that its initial working mode is in a state of parameter determination, so as to facilitate the control of the working state of the network node.
  • the beam working mode supported by the network node includes several working parameters, and the working parameters may include but not limited to at least one of the following types:
  • the area of the working surface that guides the electromagnetic wave signal is the area of the working surface that guides the electromagnetic wave signal
  • the number of elements on the working surface that guides the electromagnetic wave signal is the number of elements on the working surface that guides the electromagnetic wave signal.
  • the duration of the working mode can be the duration or duration range of the working mode, for example, it can be presented as the start time and end time of the working mode, and can be the time length of the beamforming, or the time of the beamforming Range, for example, the start time and end time of beamforming.
  • the working mode switching time point is, for example, the starting time point of the working mode and the ending time point of the working mode, or the starting time point of beamforming and the ending time point of beamforming.
  • the area of the working surface for guiding the electromagnetic wave signal may be the area of the working surface receiving the electromagnetic wave signal from the base station, the area of the working surface receiving the electromagnetic wave signal from the terminal, or the area of the working surface receiving the electromagnetic wave signal from the base station The ratio of the area of the working surface receiving the electromagnetic wave signal from the terminal to the area of the working surface receiving the electromagnetic wave signal from the base station.
  • Material parameters or materials that guide electromagnetic wave signals for example, material parameters can be electromagnetic wave absorption coefficient, electromagnetic wave loss coefficient, electrical conductivity, electromagnetic wave guiding coefficient, and materials can be superconducting materials, low superconducting materials, high superconducting materials or medium superconducting materials Material.
  • the shape of the working surface that guides the electromagnetic wave signal can be, for example, a rectangle, a circle, a parabola, a concave surface, a plane or a transparent surface.
  • the orientation of the working surface that guides the electromagnetic wave signal for example, the working surface faces upward, the working surface faces downward, or the working surface faces the base station.
  • the included angle between the normal of the working surface that guides the electromagnetic wave signal and the beam that guides the electromagnetic wave signal can be set as an acute angle, a right angle or an obtuse angle.
  • the number of units on the working surface that guides electromagnetic wave signals can be set to 1, 2 or 4.
  • the relevant beam working mode can be further determined through the corresponding working parameters, therefore, the first indication information sent by the base station can be displayed , that is, directly indicate the corresponding beam working mode through the first indication information, or may be implicit, that is, directly indicate the working parameters through the first indication information, so as to achieve the effect of indirectly indicating the corresponding beam working mode.
  • step S100 also includes but not limited to step S800.
  • Step S800 sending the first service information to the base station, so that the base station generates first beam identification information according to the first service information and the acquired target beam alignment position of the network node relative to a terminal, wherein the first service information uses In order to characterize the corresponding relationship between each beam in the network node and each beam alignment position.
  • the base station by sending the first service information to the base station, the base station can generate the first beam identification information based on the first service information, that is, the base station can easily and accurately determine the first beam identification information based on the first service information.
  • the identification information is beneficial to simplify the process execution difficulty of the base station.
  • the first beam identification information includes first implicit information
  • the first implicit information is used to characterize the target beam alignment position of the network node relative to a terminal. It can be understood that, when the network node obtains the first In the case of hidden information, since the first service information is stored in the network node, it is possible to form an alignment corresponding to the target beam alignment position in the first time domain according to the first hidden information and the first service information. Therefore, in practical applications, the base station can directly send the target beam alignment position to the network node without sending the determined information about the first beam, that is, the network node can align the target beam based on position to indirectly determine the first beam.
  • step S100 also includes but not limited to step S900.
  • Step S900 sending the second service information to the base station, so that the base station generates first beam identification information according to the second service information and the obtained first beam test parameters, wherein the second service information is used to represent each beam in the network node The correspondence between the template beams and the test values of each template beam.
  • the base station by sending the second service information to the base station, the base station can generate the first beam identification information based on the second service information, that is, the base station can easily and accurately determine the first beam identification information based on the second service information.
  • the identification information is beneficial to simplify the process execution difficulty of the base station.
  • the first beam identification information includes the second implicit information
  • the second implicit information carries the first beam test parameters for the template beam.
  • the network node obtains the second implicit information
  • the first beam corresponding to the first beam test parameter can be formed in the first time domain according to the first beam test parameter and the second service information, that is, , to form a template beam corresponding to the first beam test parameters, therefore, in practical applications, the base station can directly send the corresponding beam test parameters for the template beam to the network node without sending the determined related information of the first beam, That is, the network node may indirectly determine the first beam based on corresponding beam test parameters for the template beam.
  • FIG. 11 is a flowchart of a beam processing method provided by another embodiment of the present application.
  • the beam processing method can be applied to the base station in the embodiment shown in FIG. 1, and the method includes but is not limited to step S1000 .
  • Step S1000 Send the first beam identification information and beam time domain information to the network node, so that the network node can determine the first time domain according to the beamforming time information in the beam time domain information, and make the network node form the beam in the first time domain on the first beam of the pilot signal;
  • the beamforming time information is used to represent the time corresponding to the network node forming a beam to guide the signal, and the first beam is determined by the network node according to the first beam identification information.
  • the first beam identification information sent by the base station enables the network node to determine the first beam used to guide the signal based on the first beam identification information, thereby enabling the condition of forming the first beam in the first time domain
  • the electromagnetic wave signal sent or received by the base station is guided through the first beam, that is, the electromagnetic wave signal reception amount of the base station can be improved by guiding the electromagnetic wave signal, thereby enhancing the quality of its wireless communication and improving the efficiency of wireless communication; and, due to the first The domain is correspondingly determined according to the beamforming time information, and the beamforming time information can represent the corresponding time when the network node forms a beam to guide the signal. Therefore, making the network node form a corresponding beam in the first time domain, that is, making the network node Signal guidance can be performed at a corresponding time, thereby avoiding chaotic guidance or signaling storms, which is beneficial to improving wireless communication efficiency.
  • step S1000 in this embodiment has the same technical principle and the same technical effect as steps S100 to S300 in the above-mentioned embodiment shown in FIG. , wherein, the execution subject of the above-mentioned embodiment shown in FIG. 2 is a network node, while the execution subject of this embodiment is a base station.
  • the execution subject of this embodiment shown in FIG. 2 is a network node
  • the execution subject of this embodiment is a base station.
  • the base station can obtain relevant information of the terminal, such as location information, communication capability information, etc., so the base station can evaluate the channel transmission capability between it and the terminal, thereby borrowing This determines the corresponding beam time domain information.
  • the base station can also obtain the relevant information of the network node, so as to obtain the first beam identification information based on the relevant information. Since the relevant information corresponding to the network node may be diversified, the base station The manner of obtaining the identification information of the first beam is also not limited.
  • the beam time domain information sent by the base station also includes beamforming time slot information, and the beamforming time slot information is used to represent the period of beamforming.
  • the network node can The beamforming time slot information periodically forms the first beam and the second beam respectively in the first time domain, that is, makes the network node form the corresponding beam on the offset time slot in each period, in this case, The network node can allocate the remaining time in each cycle to other services, for example, to form another beam that needs to be aimed at other terminals, which is beneficial to improve the working efficiency of the network node.
  • the steps in this embodiment have the same technical principle and the same technical effect as the step S340 in the above-mentioned embodiment shown in FIG.
  • the execution subject of the above-mentioned embodiment shown in FIG. 8 is a network node, but the execution subject of this embodiment is a base station.
  • the technical principles and technical effects of this embodiment reference may be made to the relevant descriptions in the above-mentioned embodiment shown in FIG. 8 .
  • the base station may send beamforming trigger information to the network node, where the beamforming trigger information includes a first time interval, so that the network node can respectively form the first beam and the second beam in the first time domain according to the first time interval. Beams, so as to meet the time-domain requirements for forming corresponding beams in the current scenario.
  • the steps in this embodiment have the same technical principle and the same technical effect as the steps S350 and S360 in the above-mentioned embodiment shown in FIG.
  • the execution subject of the above-mentioned embodiment shown in FIG. 9 is a network node, while the execution subject of this embodiment is a base station.
  • the technical principles and technical effects of this embodiment reference may be made to the relevant descriptions in the embodiment shown in FIG. 9 above. In order to avoid redundant content, details are not repeated here.
  • the beamforming time information includes a beamforming symbol
  • the beamforming symbol includes at least one of the following types:
  • OFDM Orthogonal Frequency Division Multiplexing
  • N2 is 2, 4 or 7;
  • the first beam symbol includes one OFDM symbol, and is separated from one OFDM symbol by 4 another OFDM symbol of OFDM symbols.
  • the beamforming symbol in this embodiment has the same technical principle and the same technical effect as the beamforming symbol in the above-mentioned related embodiments, and the difference between the two embodiments is that the execution subject is different, wherein, The execution subject of the foregoing related embodiments is a network node, while the execution subject of this embodiment is a base station.
  • the execution subject of the foregoing related embodiments is a network node, while the execution subject of this embodiment is a base station.
  • the beam processing method also includes but not limited to step S1100.
  • Step S1100 sending beam indication information to the network node, so that the network node forms a first beam for aiming at the first terminal in the first time domain according to the first beam identification information and the beam indication information, and the beam indication information is used to indicate the first beam A beam is aimed at the first terminal.
  • step S1100 in this embodiment has the same technical principle and the same technical effect as steps S320 and S330 in the above-mentioned embodiment shown in FIG. , wherein, the execution subject of the above-mentioned embodiment shown in FIG. 4 is a network node, while the execution subject of this embodiment is a base station.
  • the execution subject of this embodiment shown in FIG. 4 is a network node, while the execution subject of this embodiment is a base station.
  • the beam processing method also includes but not limited to step S1200.
  • Step S1200 sending the second beam identification information to the network node, so that the network node determines the second beam for aiming at the base station according to the second beam identification information, and enables the network node to form the second beam in the first time domain.
  • the network node since the relative position between the network node and the base station is not fixed, the network node cannot determine the position of the base station, and thus cannot align the base station based on a fixed beam. Under this condition, the same as obtaining the first Similar to the beam identification information, the second beam is determined through the second beam identification information sent by the base station, so that the network node can align the base station based on the second beam to implement signal guidance.
  • the beam processing method further includes but not limited to steps S1300 to S1400.
  • Step S1300 Obtain the beam working mode supported by the network node sent by the network node;
  • Step S1400 Send the first instruction information to the network node according to the beam working mode, so that the network node determines and applies the first beam working mode from the beam working modes supported by the network node according to the first instruction information.
  • steps S1300 to S1400 in this embodiment have the same technical principle and the same technical effect as steps S500 to S700 in the embodiment shown in FIG.
  • the subjects are different, wherein, the execution subject in the above-mentioned embodiment shown in FIG. 10 is a network node, but the execution subject in this embodiment is a base station.
  • the execution subject in this embodiment is a network node, but the execution subject in this embodiment is a base station.
  • step S1000 also includes but is not limited to steps S1500 to S1800.
  • Step S1500 Obtain the location information of the network node, the location information of the terminal, and the first service information sent by the network node, the first service information is used to represent the correspondence between each beam in the network node and each beam alignment position;
  • Step S1600 Determine the target beam alignment position of the network node relative to the terminal according to the location information of the network node and the location information of the terminal;
  • Step S1700 Determine the target beam corresponding to the target beam alignment position according to the target beam alignment position and the first service information
  • Step S1800 Generate first beam identification information according to the target beam.
  • the base station can determine the target beam based on the location information of the network node, the location information of the terminal, and the first service information sent by the network node, and then generate the first beam identification information according to the target beam. Therefore, in practical applications, the base station can simply and accurately determine the first beam identification information based on this, thereby simplifying the execution difficulty of the process of the base station.
  • the first service information may be pre-stored in the network node, so that the base station can directly obtain the first service information from the network node; the method for the base station to obtain the location information of the network node and the location information of the terminal is not limited, for example, Measurement determination may be performed by transmitting a positioning reference signal.
  • the relevant beam working mode can be further determined through the corresponding beam alignment positions. Therefore, the first beam identification information sent by the base station can be Displayed, that is, directly indicating the corresponding beam through the first beam identification information, or implicit, that is, directly indicating the beam alignment position through the first beam identification information, so as to achieve the effect of indirectly indicating the corresponding beam .
  • the network node includes at least one set of template beams, and the test value of each set of template beams of the terminal has a corresponding relationship with its observation position, which is reflected in the fact that different observation positions correspond to different test values.
  • the corresponding relationship is described in the first
  • the form of service information is stored in the network nodes, that is, the test values of each group of fixed beams have a corresponding relationship with the beams of the network nodes that are aligned with the observation position.
  • the base station obtains
  • the corresponding template beam can be determined according to the acquired second service information, and then the first beam identification information can be determined according to the corresponding template beam.
  • this embodiment has the same technical principle and the same technical effect as steps S800 and S900 of the above-mentioned embodiments.
  • the execution subject of the illustrated embodiment is a network node, while the execution subject of this embodiment is a base station.
  • the technical principles and technical effects of this embodiment reference may be made to relevant descriptions in the embodiments shown in the above steps S800 and S900 , and details are not repeated here to avoid redundant content.
  • an embodiment of the present application also provides a network device, the network device includes: a first memory, a first processor, and a program stored in the first memory and operable on the first processor Computer program.
  • the first processor and the first memory may be connected through a first bus or in other ways.
  • the network device in this embodiment can be applied as a network node in the embodiment shown in FIG. 1, and the network device in this embodiment can constitute a part of the network topology in the embodiment shown in FIG. 1 , these embodiments all belong to the same inventive concept, so these embodiments have the same implementation principle and technical effect, and will not be described in detail here.
  • the non-transitory software programs and instructions required to implement the beam processing methods of the above embodiments are stored in the first memory, and when executed by the first processor, the beam processing methods of the above embodiments are executed, for example, the above-described Method steps S100 to S300 in Fig. 2, method steps S310 in Fig. 3, method steps S320 to S330 in Fig. 4, method steps S400 in Fig. 5, method steps S340 in Fig. 8, method steps in Fig. 9 S350 to S360, method steps S500 to S700 in FIG. 10 , method steps S800 or method steps S900.
  • an embodiment of the present application also provides a base station, which includes: a second memory, a second processor, and a computer program stored in the second memory and operable on the second processor .
  • the second processor and the second memory may be connected through a second bus or in other ways.
  • the base station in this embodiment can be applied as the base station in the embodiment shown in FIG. 1, and the base station in this embodiment can constitute a part of the network topology in the embodiment shown in FIG.
  • the examples all belong to the same inventive concept, so these embodiments have the same implementation principle and technical effect, and will not be described in detail here.
  • the non-transitory software programs and instructions required to implement the beam processing methods of the above-mentioned embodiments are stored in the second memory, and when executed by the second processor, the beam processing methods of the above-mentioned embodiments are executed, for example, the above-described Method step S1000 in FIG. 11 , method step S1100 , method step S1200 , method steps S1300 to S1400 in FIG. 12 or method steps S1500 to S1800 in FIG. 13 .
  • the device embodiments described above are only illustrative, and the units described as separate components may or may not be physically separated, that is, they may be located in one place, or may be distributed to multiple network units. Part or all of the modules can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • an embodiment of the present application also provides a computer-readable storage medium, the computer-readable storage medium stores computer-executable instructions, and the computer-executable instructions are controlled by a first processor, a second processor or Executed by a processor, for example, executed by a first processor or a second processor in the above-mentioned device embodiment, may cause the above-mentioned first processor or second processor to execute the beam processing method in the above-mentioned embodiment, for example, execute the above Described method steps S100 to S300 in FIG. 2, method steps S310 in FIG. 3, method steps S320 to S330 in FIG. 4, method steps S400 in FIG. 5, method steps S340 in FIG. 8, and method steps in FIG.
  • the embodiment of the present application includes: a beam processing method applied to a network node, the beam processing method includes obtaining the first beam identification information and beam time domain information sent by the base station side, the beam time domain information includes beam forming time information, and beam forming time information It is used to characterize the time corresponding to the network node forming a beam to guide the signal; the first time domain is determined according to the beamforming time information; the first beam used to guide the signal is formed in the first time domain, wherein the first beam is used by the network node according to The identification information of the first beam is determined.
  • the network node can determine the first beam used to guide the signal based on the first beam identification information, so that the first beam can be used by the base station under the condition of forming the first beam in the first time domain.
  • the electromagnetic wave signal sent or received is guided, that is, the electromagnetic wave signal received by the base station or terminal can be improved through the electromagnetic wave signal guidance, thereby enhancing the quality of its wireless communication and improving the efficiency of wireless communication; and, since the first time domain is based on the beam
  • the formation time information is correspondingly determined, and the beamforming time information can represent the corresponding time when the network node forms the beam to guide the signal.
  • the network node can form the corresponding beam in the first time domain, so that the network node can carry out the corresponding time at the corresponding time.
  • Signal guidance thereby avoiding chaotic guidance or signaling storms, which is conducive to improving the efficiency of wireless communication.
  • Computer storage media includes, but is not limited to, RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, digital versatile disk (DVD) or other optical disk storage, magnetic cartridges, tape, magnetic disk storage or other magnetic storage devices, or can Any other medium used to store desired information and which can be accessed by a computer.
  • communication media typically embodies computer readable instructions, data structures, program modules, or other data in a modulated data signal such as a carrier wave or other transport mechanism, and may include any information delivery media .

Abstract

一种波束处理方法及网络设备、基站、计算机可读存储介质,其中,应用于网络节点的波束处理方法,包括:获取由基站发送的第一波束标识信息和波束时域信息,波束时域信息包括波束形成时间信息,波束形成时间信息用于表征网络节点形成波束以引导信号所对应的时间(S100);根据波束形成时间信息确定第一时域(S200);在第一时域形成用于引导信号的第一波束,第一波束由网络节点根据第一波束标识信息确定(S300)。

Description

波束处理方法及网络设备、基站、计算机可读存储介质
相关申请的交叉引用
本申请基于申请号为202110621837.8、申请日为2021年06月03日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请实施例涉及但不限于通信技术领域,尤其涉及一种波束处理方法及网络设备、基站、计算机可读存储介质。
背景技术
在无线通信中,电磁波信号从发射方开始传输,经过衰减后最终达到接收方,接收方所接收到的电磁波信号的效果并不好,例如,在基站与终端之间的无线通信中,当基站向终端发射电磁波信号,终端仅能接收到其中的一部分电磁波信号,另外一部分的电磁波信号可能由于吸收、散射等损耗而不能都被终端所接收,同样地,当终端向基站发射电磁波信号,基站仅能接收到其中的一部分电磁波信号,另外一部分的电磁波信号可能由于吸收、散射等损耗而不能都都被基站所接收,无论是上述哪种情况,均会降低基站与终端之间的无线通信质量,使得基站与终端之间的通信效率变差。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本申请实施例提供了一种波束处理方法及网络设备、基站、计算机可读存储介质,能够提升无线通信效率。
第一方面,本申请实施例提供了一种波束处理方法,应用于网络节点,包括:
获取由基站侧发送的第一波束标识信息和波束时域信息,所述波束时域信息包括波束形成时间信息,所述波束形成时间信息用于表征所述网络节点形成波束以引导信号所对应的时间;
根据所述波束形成时间信息确定第一时域;
在所述第一时域形成用于引导信号的第一波束,其中,所述第一波束由所述网络节点根据所述第一波束标识信息确定。
第二方面,本申请实施例还提供了一种波束处理方法,应用于基站,包括:
向网络节点发送第一波束标识信息和波束时域信息,以使所述网络节点根据所述波束时域信息中的波束形成时间信息确定第一时域,并使所述网络节点在所述第一时域形成用于引导信号的第一波束;
其中,所述波束形成时间信息用于表征所述网络节点形成波束以传引导信号所对应的时间,所述第一波束由所述网络节点根据所述第一波束标识信息确定。
第三方面,本申请实施例还提供了一种网络设备,包括:第一存储器、第一处理器及存储在第一存储器上并可在第一处理器上运行的计算机程序,所述第一处理器执行所述计算机程序时实现如上第一方面所述的波束处理方法。
第四方面,本申请实施例还提供了一种基站,包括:第二存储器、第二处理器及存储在第二存储器上并可在第二处理器上运行的计算机程序,所述第二处理器执行所述计算机程序时实现如上第二方面所述的波束处理方法。
第五方面,本申请实施例还提供了一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令用于执行如上所述第一方面的波束处理方法,或者,执行如上所述第二方面的波束处理方法。
本申请实施例的其它特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本申请实施例而了解。本申请的目的和其他优点可通过在说明书、权利要求书以及附图中所特别指出的结构来实现和获得。
附图说明
附图用来提供对本申请技术方案的进一步理解,并且构成说明书的一部分,与本申请的实施例一起用于解释本申请的技术方案,并不构成对本申请技术方案的限制。
图1是本申请一个实施例提供的用于执行波束处理方法的网络拓扑的示意图;
图2是本申请一个实施例提供的波束处理方法的流程图;
图3是本申请一个实施例提供的波束处理方法中形成第一波束的流程图;
图4是本申请另一个实施例提供的波束处理方法中形成第一波束的流程图;
图5是本申请一个实施例提供的又一种波束处理方法的流程图;
图6是本申请一个实施例提供的网络节点引导基站与终端之间的信号的原理示意图;
图7是本申请另一个实施例提供的网络节点引导基站与终端之间的信号的原理示意图;
图8是本申请另一个实施例提供的波束处理方法中形成第一波束的流程图;
图9是本申请另一个实施例提供的波束处理方法中形成第一波束的流程图;
图10是本申请一个实施例提供的又一种波束处理方法的流程图;
图11是本申请另一个实施例提供的波束处理方法的流程图;
图12是本申请另一个实施例提供的又一种波束处理方法的流程图;
图13是本申请另一个实施例提供的波束处理方法中发送第一波束标识信息之前的流程图;
图14是本申请一个实施例提供的网络设备的示意图;以及
图15是本申请一个实施例提供的基站的示意图。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本申请,并不用于限定本申请。
需要注意的是,虽然在装置示意图中进行了功能模块划分,在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于装置中的模块划分,或流程图中的顺序执行所示出或描述的步骤。说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
本申请实施例提供了一种波束处理方法及网络设备、基站、计算机可读存储介质,网络节点能够基于第一波束标识信息确定用于引导信号的第一波束,从而能够在第一时域形成第一波束的条件下,通过第一波束以将由基站发送或接收的电磁波信号进行引导,即,通过电磁波信号引导可以提高基站或终端对目标电磁波信号的接收量,从而增强其无线通信质量,提升无线通信效率;并且,由于第一时域是根据波束形成时间信息对应确定的,而波束形成时间信息可表征网络节点形成波束以引导信号对应的时间,因此,网络节点通过在第一时域形成相应的波束,使得网络节点能够在相应的时间下进行信号引导,从而可避免产生错乱引导或者信令风暴,有利于提升无线通信效率。
下面结合附图,对本申请实施例作进一步阐述。
如图1所示,图1是本申请一个实施例提供的用于执行波束处理方法的网络拓扑的示意图。
在图1的示例中,网络拓扑包括网络节点100、基站200和终端300,其中,终端300可以有多个,每个终端300均与基站200相匹配,即,基站200能够向每个终端300发送电磁波信号,每个终端300同样能够向基站200发送电磁波信号,并且,网络节点100具有通信能力,能够与基站200建立通信联系,例如,网络节点100可以接收来自基站200的通信内容,也可以向基站200发送通信内容,换言之,该网络拓扑中的基站200与网络节点100可以相互通信,可以是基站200与网络节点100之间进行通信,或者,也可以通过相关网络中的控制单元或控制中心与网络节点进行通信,以上统称为基站200与网络节点100进行通信。
在一实施例中,各个终端300均可以称为接入终端、用户设备(User Equipment,UE)、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、无线通信设备、用户代理或用户装置。例如,各个终端均可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、5G网络或者未来5G以上网络中的终端设备等,本实施例对此并不作具体限定。
在一实施例中,基站200,即通信基站,属于无线电台站的一种形式,指在一定的无线电覆盖区中,与移动电话终端之间进行信息传递的无线电收发信电台,基站的主要功能在于提供无线覆盖,即,实现有线通信网络与无线终端之间的无线信号传输,具体在本实施例中,基站200用于实现与终端之间的无线通信。
在一实施例中,网络节点100可以有不同的配置,可以理解地是,网络节点100可以是适配于第4代无线通信技术或第5代无线通信技术的各种协议下的智能面板,该智能面板可以是集成化的,在包括有与基站以及终端之间的通信功能的同时,还可以集成其他诸如算法、控制等性能,例如,在实际应用前景中,可以是可重构智能表面(Reconfigurable Intelligent Surface,RIS)智能面板,或者,网络节点100还可以是任意情况下的通信介质,该通信介质可以集成存储功能,也可以内置或外置连接存储器件,在与基站200及终端300进行通信的情况下,能够将相应的通信内容进行存储备用,也能够存储与网络节点100相关的信息,例如,可以存储来自基站200的通信信息、预先设置好的波束、网络节点100的工作模式信息以及针对网络节点100内的波束的检测信息等,本实施例对此并不作具体限定。
在一实施例中,网络节点100和基站200、终端300之间的位置关系可以是随机的,在这种情况下,网络节点100与基站200、网络节点100与终端300之间的相对位置关系是不固定的,当存在多个终端300,各个终端300之间的位置关系不限定,因此网络节点100与每个终端300之间的相对位置关系也是不固定的。
在一实施例中,网络节点100的位置信息与基站200的位置信息均可以是已确定的,即,在这种情况下,网络节点100与基站200之间的相对位置关系是固定的,网络节点100对应于基站200的波束也是能够被相应确定的。
基站200和网络节点100均可以分别包括有存储器和处理器,其中,存储器和处理器可以通过总线或者其他方式连接。
存储器作为一种非暂态计算机可读存储介质,可用于存储非暂态软件程序以及非暂态性计算机可执行程序。此外,存储器可以包括高速随机存取存储器,还可以包括非暂态存储器,例如至少一个磁盘存储器件、闪存器件、或其他非暂态固态存储器件。在一些实施方式中,存储器可选包括相对于处理器远程设置的存储器,这些远程存储器可以通过网络连接至该处理器。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
本申请实施例描述的网络拓扑以及应用场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域技术人员可知,随着网络拓扑的演变和新应用场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
本领域技术人员可以理解的是,图1中示出的网络拓扑并不构成对本申请实施例的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
在图1所示的网络拓扑中,基站200或网络节点100可以分别调用其储存的波束处理程序,以执行波束处理方法。
基于上述网络拓扑的结构,提出本申请的波束处理方法的各个实施例。
如图2所示,图2是本申请一个实施例提供的波束处理方法的流程图,该波束处理方法可以应用于如图1所示实施例中的网络节点,该方法包括但不限于步骤S100至S300。
步骤S100:获取由基站发送的第一波束标识信息和波束时域信息,波束时域信息包括波束形成时间信息,波束形成时间信息用于表征网络节点形成波束以引导信号所对应的时间。
在一实施例中,第一波束标识信息和波束时域信息可以是同时获取的,但这并不限定;发送第一波束标识信息和波束时域信息的方式可以有多种,例如,可以由基站发送信息,也可以由基站通过相关网络上的控制单元或控制中心以发送信息,这并未限定。
可以理解地是,基站与基站侧有一定关联,不同在于:基站属于一个设备,波束通过对准基站,以提供对基站与终端通信的信号的引导;基站侧包括基站,还可能包括其它的设备或控制单元,当基站侧与网络节点通信,可以是基站与网络节点通信,也可以是基站侧中的其它设备或控制单元与网络节点通信,这并未限定。
在一实施例中,第一波束标识信息用于指示对准终端的波束,在网络节点获取到第一波束标识信息的情况下,通过第一波束标识信息所标识的波束,使得网络节点与终端之间能够通过所标识的波束进行配合;波束形成时间信息也可以用于表征基站与相应终端之间通过波束传输信号所需的时间,即,体现基站与终端之间在具体的应用场景下进行信号传输,使得网络节点能够基于该应用场景以配合引导基站与终端之间的信号传输。
需要说明的是,由于一个基站可以分别对应不同的终端,因此,可能存在多个第一波束标识信息和多个波束形成时间信息,每组第一波束标识信息和波束时域信息对应于一个终端,相应地,网络节点获取一组第一波束标识信息和波束时域信息,在这种情况下,网络节点可以分别对应于基站以及与该组第一波束标识信息和波束时域信息对应的终端,可以理解地是,任意一个终端与基站之间的配合方式是类似的,因此,为免冗余,以下相关实施例的描述基本以网络节点、基站以及一个终端来进行说明,但这并不作为具体限定。
步骤S200:根据波束形成时间信息确定第一时域;
步骤S300:在第一时域形成用于引导信号的第一波束,其中,第一波束由网络节点根据第一波束标识信息确定。
在一实施例中,网络节点能够基于第一波束标识信息确定用于引导信号的第一波束,从而能够在第一时域形成第一波束的条件下,通过第一波束以将由基站发送或接收的电磁波信号进行引导,即,通过电磁波信号引导可以提高基站或终端对目标的电磁波信号接收量,从而增强其无线通信质量,提升无线通信效率;并且,由于第一时域是根据波束形成时间信息对应确定的,而波束形成时间信息可表征网络节点形成波束以引导信号对应的时间,因此,网络节点通过在第一时域形成相应的波束,使得网络节点能够在相应的时间下进行信号引导,从而可避免产生错乱引导或者信令风暴,有利于提升无线通信效率。
如图3所示,在第一波束标识信息还包括波束指示信息,波束指示信息用于指示第一波束对准第一终端的情况下,步骤S300包括但不限于步骤S310。
步骤S310,根据第一波束标识信息在第一时域形成用于对准第一终端的第一波束。
在一实施例中,由于第一波束标识信息包括波束指示信息,且波束指示信息用于指示第一波束对准第一终端,因此,网络节点在获取到第一波束标识信息的情况下,则能够同时确定第一波束以及第一波束所对准的第一终端,因此,在这种情况下,可以通过第一波束引导第一终端与基站之间的电磁波信号,从而提升第一终端与基站之间的无线通信效率。
在一实施例中,波束指示信息,既可以显式的,直接指示出第一波束用于对准第一终端,也可以是隐式的,例如以第一波束标识信息的排列位置隐式指示出第一波束用于对准第一终端。
如图4所示,步骤S300包括但不限于步骤S320至S330。
步骤S320,获取由基站发送的波束指示信息,波束指示信息用于指示第一波束对准第一终端;
步骤S330,根据第一波束标识信息和波束指示信息在第一时域形成用于对准第一终端的第一波束。
在一实施例中,由于波束指示信息用于指示第一波束对准第一终端,因此,网络节点在同时获取到第一波束标识信息和波束指示信息的情况下,则能够确定第一波束以及第一波束所对准的第一终端,因此,在这种情况下,可以通过第一波束引导第一终端与基站之间的电磁波信号,从而提升第一终端与基站之间的无线通信效率。
如图5所示,波束处理方法还包括但不限于步骤S400。
步骤S400,在第一时域形成用于对准基站的第二波束,第二波束由网络节点根据网络节点与基站之间的相对位置关系确定。
在一实施例中,通过形成第二波束以对准基站,可以将基站发送到相应终端的信号通过网络节点进行引导,或者,将相应终端发送到基站的信号通过网络节点进行引导,从而增强基站与相应终端之间的无线通信质量,提升其无线通信效率。
可以理解地是,网络节点通过第一波束和第二波束进行引导可以分为两种应用场景:
第一种应用场景为,如图6所示,一方面,基站向终端发射相应的下行电磁波信号,由于通过第二波束对准基站,因此基于第二波束能够将基站发出的信号向网络节点引导,即,由网络节点接入所引导的信号;另一方面,由于通过第一波束对准终端,因此基于第一波束能够将网络节点所接收的由基站发出的信号进一步地引导到终端,从而能够提高终端的信号接收量。
第二种应用场景为,如图7所示,一方面,终端向基站发射相应的上行电磁波信号,由于通过第一波束对准终端,因此基于第一波束能够将终端发出的信号向网络节点引导,即,由网络节点接入所引导的信号;另一方面,由于通过第二波束对准基站,因此基于第二波束能够将网络节点所接收的由终端发出的信号进一步地引导到基站,从而能够提高基站的信号接收量。
在一实施例中,由于第一时域是根据波束形成时间信息对应确定的,而波束形成时间信息可表征基站与终端之间传输信号对应的时间,因此,网络节点通过在第一时域形成相应的波束进行引导,使得网络节点在基站和终端之间进行信号传输的情况下进行引导,从而可避免产生错乱引导或者信令风暴,有利于提升无线通信效率。
可以理解地是,在基站或终端发射电磁波信号的情况下,若第一波束和第二波束还未形成,则网络节点不能对已发射的电磁波信号进行正常引导,或者,在基站或终端发射电磁波信号完毕的情况下,说明此时的基站与终端之间不存在相关的待引导的信号,若第一波束和第二波束还未及时撤销,即,若第一波束还处于对准终端的状态,以及,第二波束还处于对准基站的状态,则可能会产生对不相关的信号的错乱引导,又或者,在时分条件下,网络节点以不同的波束去对准不同的终端,当执行完一次对终端的信号引导,则对应进行一次波束的切换,每切换一次波束就进行一次通知,那么频繁的切换就会造成信令风暴。为了避免出现上述情况,通过限制第一波束和第二波束仅在第一时域形成,使得网络节点仅在基站和终端之间进行信号传输的情况下进行相应引导,既可以避免来不及对信号进行引导,也可以避免造成错乱引导或者信令风暴,从而能够提升基站与终端之间的无线通信效率。
在一实施例中,波束形成时间信息包括波束形成符号,波束形成符号包括如下类型中的至少一个:
N1个连续正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)符号,N1为1至14之间的任一整数;
一个OFDM符号与N2个连续OFDM符号,N2为2、4或7;
两个连续OFDM符号与另两个连续OFDM符号;
一个OFDM符号,以及,与一个OFDM符号相距4个OFDM符号的另一个OFDM符号;
分别分布于连续两个时隙上的两个第一波束符号,两个第一波束符号在各自时隙上的位置相对应,第一波束符号包括一个OFDM符号,以及,与一个OFDM符号相距4个OFDM符号的另一个OFDM符号。
可以理解地是,波束形成符号,相当于以符号形式表征波束形成时间信息;以符号形式表达波束形成的时间,可以让波束切换延迟降低到符号的量级,即,可以降低利用网络节点引导电磁波信号所造成的通信延迟。本实施例的波束形成符号是基于OFDM技术而设置的,在OFDM技术中,可以定义最小的频域单元为子载波,最小的时域单元为OFDM符号,为了方便使用频域资源,也定义了资源块(Resource Block),一个资源块定义为特定数目的连续子载波,也定义了带宽块(Bandwidth Part,BWP),一个带宽块定义为一个载波上又一特定数目的连续资源块;为了方便使用时域资源,也定义了时隙(slot),一个时隙定义为又一特定数目的连续OFDM符号。
针对上述各个波束形成符号,每种波束形成符号可以应用在具体场景内,为所适配的信道提供服务,以下给出示例进行说明。
示例一:
针对N1个连续OFDM符号,该波束形成的时间可以服务于由终端通向基站的物理上行共享信道(Physical Uplink Shared Channel,PUSCH),PUSCH的传输时间为N1个连续的OFDM符号,即,在该波束形成的时间内,网络节点形成对应的波束,以引导承载物理上行共享信道的电磁波信号从终端经过网络节点而到达基站;类似地,还可以服务于占时为N1个连续OFDM符号的物理下行共享信道(Physical Downlink Shared Channel,PDSCH),还可以服务于占时为N1个连续OFDM符号的物理下行控制信道(Physical Downlink Control Channel, PDCCH)和物理上行控制信道(Physical Uplink Control Channel,PUCCH),还可以服务占时为1个OFDM符号的信道状态信息参考信号(Channel State Information Reference Signal,CSI-RS)的传输,还可以服务于占时为2个OFDM符号的CSI-RS的传输,还可以服务占时为4个OFDM符号的码分复用类型为cdm8-FD2-TD4的CSI-RS的传输,还可以服务占时为1至4个OFDM符号的测量参考信号(Sounding Reference Signal,SRS)。
针对一个OFDM符号与N2个连续OFDM符号,该波束形成的时间可以服务于迷你型时隙的传输信道,例如1个OFDM符号服务于迷你型时隙的PDCCH,N2个连续的OFDM符号服务于迷你型时隙的PDSCH,或者服务于迷你型时隙的PUSCH。
针对两个连续OFDM符号与另两个连续OFDM符号,该波束形成的时间可以服务于占时为4个OFDM符号的CSI-RS,例如,两个连续OFDM符号服务于承载CSI-RS的一组OFDM符号,另两个连续OFDM符号服务于承载CSI-RS的另一组OFDM符号,其中,承载CSI-RS的4个OFDM符号由两组OFDM符号构成,每组包括两个连续OFDM符号。
针对一个OFDM符号以及与一个OFDM符号相距4个OFDM符号的另一个OFDM符号,该波束形成的时间可以服务于跟踪参考信号(Channel State Information Reference Signal for tracking,TRS),例如,1个OFDM符号服务于承载TRS的前1个OFDM符号,另1个OFDM符号服务于承载TRS的后1个OFDM符号,其中,承载TRS的所有OFDM符号包括2个OFDM符号,后1个OFDM符号与前1个OFDM符号之间相距4个OFDM符号。
针对分别分布于连续两个时隙上的两个第一波束符号,该波束形成的时间可以服务于TRS,例如,前1个时隙上的2个OFDM符号服务于承载TRS的1个时隙上的2个OFDM符号,后1时隙上的2个OFDM符号服务于TRS的另1个时隙上的2个OFDM符号,其中,承载TRS的所有OFDM符号分布在2个连续的时隙上,在每个时隙上的TRS承载于相同的OFDM符号位置,在每个时隙上承载TRS的所有OFDM符号为1个OFDM符号与另1个相距4个OFDM符号的1个OFDM符号。
需要说明的是,网络节点内的相关波束,包括第一波束和第二波束,均可以称为空域滤波器,或者,网络节点内的各个工作单元的工作参数的组合,即,网络节点的各个波束可以用网络节点所使用的空域滤波器一一对应,一个空域滤波器对应一个波束,或者,各个波束与网络节点内的各个工作单元的工作参数的组合一一对应,可以用一个工作参数的组合对应一个波束。
针对于第二波束,在网络节点与基站之间的相对位置为固定的情况下,第二波束可以但不限于具体由:网络节点从预设的若干波束中确定。
在一实施例中,由于网络节点与基站之间的相对位置为固定的状态,则在网络节点的位置确定的情况下,可以基于该信息直接确定基站的相应位置,从而直接确定对准基站的固定波束,在该条件下,不需要根据第一时域以形成相应波束,可以直接从预先设置好的波束中确定,使得网络节点能够基于固定波束对准基站,实现信号引导,可以简化网络节点的执行步骤,节省网络资源。
针对于第二波束,在网络节点与基站之间的相对位置为未固定的情况下,第二波束可以但不限于具体由:网络节点根据由基站发送的第二波束标识信息而确定。
在一实施例中,由于网络节点与基站之间的相对位置为未固定的状态,因此网络节点无法确定基站的位置,因而无法基于固定波束以对准基站,在该条件下,与获取第一波束标识信息相类似地,通过基站发送的第二波束标识信息而确定第二波束,使得网络节点能够基于第二波束对准基站,实现信号引导。
在图8的示例中,在波束时域信息还包括波束形成时隙信息,波束形成时隙信息用于表征波束形成的周期的情况下,步骤S300包括但不限于步骤S340。
步骤S340:根据波束形成时隙信息在第一时域周期性地形成第一波束。
在一实施例中,波束形成时隙信息用于表征波束形成的周期,即,波束形成的时间是周期性的,并且以时隙为单位进行描述,波束可以在每个周期内的偏置时隙上形成。例如,波束在每个周期的偏置时隙上的所有OFDM符号上形成,或者,波束在每个周期的偏置时隙上的特定OFDM符号上形成,或者,波束在每个周期的偏置时隙上的所协商的OFDM符号上形成,或者,波束在每个周期的偏置时隙上的由基站预先指定的OFDM符号上形成,或者,波束在每个周期的偏置时隙上的由网络节点预先确定的OFDM符号上形成。
在一实施例中,网络节点通过获取波束形成时隙信息,使得在第一时域上能够周期性地形成第一波束,可以理解地是,在网络节点获取到第二波束标识信息的情况下,在第一时域上同样能够期性地形成第二波束,例如,在实际应用中,在基站向网络节点发送波束形成时隙信息的情况下,基站可以不用向网络节点多次发送第一波束标识信息,即使基站只通知网络节点一次第一波束标识信息,网络节点仍可以根据波束形成时隙信息而多次形成对应的第一波束,并且,由于第一波束仅在每个周期的偏置时隙内形成,因此可以将每个周期内的其余时间分配给其余服务,例如,分配到用于形成另外的需要对准其他终端的波束,有利于提升网络节点的工作效率。
在图9的示例中,步骤S300包括但不限于步骤S350至S360。
步骤S350:获取由基站发送的波束形成触发信息,波束形成触发信息包括第一时间间隔;
步骤S360:根据第一时间间隔在第一时域分别形成第一波束和第二波束。
在一实施例中,波束形成触发信息用于表征基站进行触发操作,即,基站以触发的方式通知网络节点对应波束的形成以及对应波束形成的时间点,其中,波束形成的时间点可以根据触发波束形成的时间点而确定, 波束形成的时间点可以根据触发波束形成的时间点与所设定的第一时间间隔而确定,除了发送波束形成触发信息之外,触发的方式还可以包括但不限于为通知触发事件、发送触发信令、发射触发信号或产生触发事件。若触发波束形成的时间点记为Ta,波束形成的时间点记为Tb,第一时间间隔为Tf,则可以通过Ta的值确定Tb的值,有如下关系式:Tb=Ta+Tf,其中,第一时间间隔可以由基站自行配置,也可以由网络节点根据实际应用场景确定并上报给基站,也可以通过协议预先确定,例如,第一时间间隔可以由基站配置,可以通过所配置的波束形成触发信息通知网络节点,波束形成触发信息可以包括第一时间间隔,触发波束形成的时间点即为发送波束形成触发信息的时间点。
在一实施例中,在波束形成触发信息的影响下,当触发波束形成的时间点确定,则波束形成的时间点可相应确定,因此,在实际应用场景下,网络节点通过接收由基站发出的特定的波束形成触发信息,从而可以在第一时域的特定时间点精确地形成第一波束和第二波束,其中,该特定时间点即为当前场景所需求的时间点,可以满足当前场景下形成相应波束的时域要求。
可以理解地是,一种情况下,基站发送波束形成触发信息的时间点,即为网络节点接收到波束形成触发信息的时间点,因此,基站能够以发送波束形成触发信息的方式来间接地指示发送波束形成触发信息的时间点。
需要说明的是,在波束形成的时间点根据触发波束形成的时间点而确定的情况下,无需考虑第一时间间隔的影响,可以根据实际情况进行设置,例如,基站在时间点Ta触发网络节点对应波束的形成,网络节点将在时间点Tb形成对应波束,其中,时间点Tb根据时间点Ta确定。
在图10的示例中,波束处理方法还包括但不限于步骤S500至S700。
步骤S500:向基站发送网络节点支持的波束工作模式;
步骤S600:获取由基站根据波束工作模式发送的第一指示信息;
步骤S700:根据第一指示信息从网络节点支持的波束工作模式中确定并应用第一波束工作模式。
在一实施例中,网络节点通过获取基站发送的第一指示信息,可以了解到基站对于网络节点的具体工作模式的指示,在实际应用场景下,可以通过控制基站所发出的第一指示信息以实现对于网络节点的工作模式的控制,这提供了一种控制网络节点的工作模式的方式,使得可以在不控制网络节点本身的情况下,即可有效地调节网络节点的工作模式,能够优化网络节点的控制流程。
在一实施例中,网络节点支持的波束工作模式包括预设的默认波束工作模式,当第一指示信息指示默认波束工作模式或者指示为空的情况下,网络节点均确定并应用默认波束工作模式,或者,在网络节点确定只应用默认波束工作模式的情况下,可以仅向基站发送默认波束工作模式。网络节点通过应用默认波束工作模式,使得网络节点内的各个工作单元的分工更加明确,也可以减少基站对网络节点所投入的配置量,从而节省网络配置资源。
在一实施例中,可以将网络节点的初始工作模式设置为预设的默认波束工作模式,以使其初始工作模式处于参数确定的状态,便于控制网络节点的工作状态。
在一实施例中,网络节点支持的波束工作模式包括若干工作参数,工作参数可以包括但不限于如下类型中的至少一个:
工作模式持续时间;
工作模式切换时间点;
引导电磁波信号的工作面的面积;
引导电磁波信号的材质参数或材质;
引导电磁波信号的工作面的形状;
引导电磁波信号的工作面的朝向;
引导电磁波信号的工作面的法线与引导电磁波信号的波束之间的夹角;
引导电磁波信号的工作面的单元数目。
其中,工作模式持续时间,可以是工作模式的持续时间长度或持续时间范围,例如,可以呈现为工作模式的起始时间与终止时间,可以是波束形成的时间长度,或者说,波束形成的时间范围,例如,波束形成的起始时间与终止时间。
工作模式切换时间点,例如为工作模式起始时间点、工作模式终止时间点,或者,波束形成的起始时间点、波束形成的终止时间点。
引导电磁波信号的工作面的面积,例如,可以是接收来自基站的电磁波信号的工作面的面积、接收来自终端的电磁波信号的工作面的面积,或者,接收来自基站的电磁波信号的工作面的面积与接收来自终端的电磁波信号的工作面的面积的比值,接收来自终端的电磁波信号的工作面的面积与接收来自基站的电磁波信号的工作面的面积的比值。
引导电磁波信号的材质参数或材质,例如,材质参数可以是电磁波吸收系数、电磁波损耗系数、电导率、电磁波引导系数,材质可以是超导材料、低超导材料、高超导材料或中超导材料。
引导电磁波信号的工作面的形状,例如,可以是矩形、圆形、抛物面、凹面、平面或透面。
引导电磁波信号的工作面的朝向,例如工作面朝上、工作面朝下或工作面朝基站。
引导电磁波信号的工作面的法线与引导电磁波信号的波束之间的夹角,例如,可以设置为锐角、直角或钝角。
引导电磁波信号的工作面的单元数目,例如,可以设置为1、2或4。
可以理解地是,由于不同的波束工作模式分别与相应的工作参数所对应,通过相应的工作参数即可以进一步确定相关的波束工作模式,因此,基站所发送的第一指示信息可以是显示化的,即,通过第一指示信息直接指示相应的波束工作模式,也可以是隐示化的,即,通过第一指示信息直接指示工作参数,以达到间接指示相应的波束工作模式的效果。
此外,步骤S100之前还包括但不限于步骤S800。
步骤S800,向基站发送第一服务信息,以使基站根据第一服务信息和所获取的网络节点相对于一个终端的目标波束对准位置,生成第一波束标识信息,其中,第一服务信息用于表征网络节点内的各个波束与各个波束对准位置之间的对应关系。
在一实施例中,通过向基站发送第一服务信息,使得基站能够基于第一服务信息生成第一波束标识信息,即,能够使得基站可以基于第一服务信息以简便、准确地确定第一波束标识信息,有利于简化基站的流程执行难度。
在一实施例中,第一波束标识信息包括第一隐示信息,第一隐示信息用于表征网络节点相对于一个终端的目标波束对准位置,可以理解地是,网络节点在获取到第一隐示信息的情况下,由于网络节点内存储有第一服务信息,因此,能够根据第一隐示信息和第一服务信息在第一时域形成用于对准与目标波束对准位置对应的终端的第一波束,因此,在实际应用中,基站可以直接向网络节点发送目标波束对准位置,而不用发送所确定的第一波束的相关信息,即,网络节点可以基于目标波束对准位置来间接地确定第一波束。
此外,步骤S100之前还包括但不限于步骤S900。
步骤S900,向基站发送第二服务信息,以使基站根据第二服务信息和所获取的第一波束测试参数,生成第一波束标识信息,其中,第二服务信息用于表征网络节点内的各个模板波束与各个模板波束的测试值之间的对应关系。
在一实施例中,通过向基站发送第二服务信息,使得基站能够基于第二服务信息生成第一波束标识信息,即,能够使得基站可以基于第二服务信息以简便、准确地确定第一波束标识信息,有利于简化基站的流程执行难度。
在一实施例中,第一波束标识信息包括第二隐示信息,第二隐示信息携带有针对模板波束的第一波束测试参数,可以理解地是,网络节点在获取到第二隐示信息的情况下,由于网络节点内存储有第二服务信息,因此,能够根据第一波束测试参数和第二服务信息在第一时域形成用于与第一波束测试参数对应的第一波束,即,形成与第一波束测试参数对应的的模板波束,因此,在实际应用中,基站可以直接向网络节点发送针对模板波束的相应波束测试参数,而不用发送所确定的第一波束的相关信息,即,网络节点可以基于针对模板波束的相应波束测试参数来间接地确定第一波束。
如图11所示,图11是本申请另一个实施例提供的波束处理方法的流程图,该波束处理方法可以应用于如图1所示实施例中的基站,该方法包括但不限于步骤S1000。
步骤S1000:向网络节点发送第一波束标识信息和波束时域信息,以使网络节点根据波束时域信息中的波束形成时间信息确定第一时域,并使网络节点在第一时域形成用于引导信号的第一波束;
其中,波束形成时间信息用于表征网络节点形成波束以引导信号所对应的时间,第一波束由网络节点根据第一波束标识信息确定。
在一实施例中,通过基站所发送的第一波束标识信息,使得网络节点能够基于第一波束标识信息确定用于引导信号的第一波束,从而能够在第一时域形成第一波束的条件下,通过第一波束以将由基站发送或接收的电磁波信号进行引导,即,通过电磁波信号引导可以提高基站电磁波信号接收量,从而增强其无线通信质量,提升无线通信效率;并且,由于第一时域是根据波束形成时间信息对应确定的,而波束形成时间信息可表征网络节点形成波束以引导信号对应的时间,因此,使得网络节点通过在第一时域形成相应的波束,即,使得网络节点能够在相应的时间下进行信号引导,从而可避免产生错乱引导或者信令风暴,有利于提升无线通信效率。
需要说明的是,本实施例中的步骤S1000与上述如图2所示实施例的步骤S100至S300,具有相同的技术原理以及相同的技术效果,两个实施例之间的区别在于执行主体不同,其中,上述如图2所示实施例的执行主体为网络节点,而本实施例的执行主体为基站。关于本实施例的技术原理以及技术效果,可以参照上述如图2所示实施例中的相关描述说明,为了避免内容重复冗余,此处不再赘述。
可以理解地是,在基站与终端所匹配的情况下,基站能够获取到终端的相关信息,例如位置信息、通信能力信息等,因此,基站能够评估其与终端之间的信道传输能力,从而藉此确定相应的波束时域信息,同理,基站也可以获取到网络节点的相关信息,从而基于相关信息得到第一波束标识信息,由于网络节点所对应的相关信息可能是多样化的,因此基站得到第一波束标识信息的方式也是不限定的。
在一实施例中,基站所发送的波束时域信息还包括波束形成时隙信息,波束形成时隙信息用于表征波束形成的周期,通过向网络节点发送波束形成时隙信息,使得网络节点根据波束形成时隙信息在第一时域分别 周期性地形成第一波束和第二波束,即,使得网络节点在每个周期内的偏置时隙上形成相应的波束,在这种情况下,网络节点可以将每个周期内的其余时间分配给其余服务,例如,分配到用于形成另外的需要对准其他终端的波束,有利于提升网络节点的工作效率。
需要说明的是,本实施例中的步骤与上述如图8所示实施例的步骤S340,具有相同的技术原理以及相同的技术效果,两个实施例之间的区别在于执行主体不同,其中,上述如图8所示实施例的执行主体为网络节点,而本实施例的执行主体为基站。关于本实施例的技术原理以及技术效果,可以参照上述如图8所示实施例中的相关描述说明,为了避免内容重复冗余,此处不再赘述。
在一实施例中,基站可以向网络节点发送波束形成触发信息,该波束形成触发信息包括第一时间间隔,使得网络节点能够根据第一时间间隔在第一时域分别形成第一波束和第二波束,从而满足当前场景下形成相应波束的时域要求。
需要说明的是,本实施例中的步骤与上述如图9所示实施例的步骤S350和S360,具有相同的技术原理以及相同的技术效果,两个实施例之间的区别在于执行主体不同,其中,上述如图9所示实施例的执行主体为网络节点,而本实施例的执行主体为基站。关于本实施例的技术原理以及技术效果,可以参照上述如图9所示实施例中的相关描述说明,为了避免内容重复冗余,此处不再赘述。
在一实施例中,波束形成时间信息包括波束形成符号,波束形成符号包括如下类型中的至少一个:
N1个连续正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)符号,N1为1至14之间的任一整数;
一个OFDM符号与N2个连续OFDM符号,N2为2、4或7;
两个连续OFDM符号与另两个连续OFDM符号;
一个OFDM符号,以及,与一个OFDM符号相距4个OFDM符号的另一个OFDM符号;
分别分布于连续两个时隙上的两个第一波束符号,两个第一波束符号在各自时隙上的位置相对应,第一波束符号包括一个OFDM符号,以及,与一个OFDM符号相距4个OFDM符号的另一个OFDM符号。
需要说明的是,本实施例中的波束形成符号与上述相关实施例中的波束形成符号,具有相同的技术原理以及相同的技术效果,两个实施例之间的区别在于执行主体不同,其中,上述相关实施例的执行主体为网络节点,而本实施例的执行主体为基站。关于本实施例的技术原理以及技术效果,可以参照上述相关实施例中的相关描述说明,为了避免内容重复冗余,此处不再赘述。
此外,波束处理方法还包括但不限于步骤S1100。
步骤S1100,向网络节点发送波束指示信息,以使网络节点根据第一波束标识信息和波束指示信息在第一时域形成用于对准第一终端的第一波束,波束指示信息用于指示第一波束对准第一终端。
可以理解地是,本实施例中的步骤S1100与上述如图4所示实施例的步骤S320和S330,具有相同的技术原理以及相同的技术效果,两个实施例之间的区别在于执行主体不同,其中,上述如图4所示实施例的执行主体为网络节点,而本实施例的执行主体为基站。关于本实施例的技术原理以及技术效果,可以参照上述如图4所示实施例中的相关描述说明,为了避免内容重复冗余,此处不再赘述。
此外,波束处理方法还包括但不限于步骤S1200。
步骤S1200,向网络节点发送第二波束标识信息,以使网络节点根据第二波束标识信息确定用于对准基站的第二波束,并使网络节点在第一时域形成第二波束。
在一实施例中,由于网络节点与基站之间的相对位置为未固定的状态,因此网络节点无法确定基站的位置,因而无法基于固定波束以对准基站,在该条件下,与获取第一波束标识信息相类似地,通过基站发送的第二波束标识信息而确定第二波束,使得网络节点能够基于第二波束对准基站,实现信号引导。
在图12的示例中,波束处理方法还包括但不限于步骤S1300至S1400。
步骤S1300:获取由网络节点发送的网络节点支持的波束工作模式;
步骤S1400:根据波束工作模式向网络节点发送第一指示信息,以使网络节点根据第一指示信息从网络节点支持的波束工作模式中确定并应用第一波束工作模式。
需要说明的是,本实施例中的步骤S1300至S1400与上述如图10所示实施例的步骤S500至S700,具有相同的技术原理以及相同的技术效果,两个实施例之间的区别在于执行主体不同,其中,上述如图10所示实施例的执行主体为网络节点,而本实施例的执行主体为基站。关于本实施例的技术原理以及技术效果,可以参照上述如图10所示实施例中的相关描述说明,为了避免内容重复冗余,此处不再赘述。
此外,在图13的示例中,在步骤S1000中的“向网络节点发送第一波束标识信息之前”还包括但不限于步骤S1500至S1800。
步骤S1500:获取网络节点的位置信息、终端的位置信息以及由网络节点发送的第一服务信息,第一服务信息用于表征网络节点内的各个波束与各个波束对准位置之间的对应关系;
步骤S1600:根据网络节点的位置信息和终端的位置信息确定网络节点相对于终端的目标波束对准位置;
步骤S1700:根据目标波束对准位置和第一服务信息确定与目标波束对准位置对应的目标波束;
步骤S1800:根据目标波束生成第一波束标识信息。
在一实施例中,基站可以通过网络节点的位置信息、终端的位置信息以及由网络节点发送的第一服务信 息而确定目标波束,进而根据目标波束生成第一波束标识信息,由于无需根据基站自身的位置信息即可确定第一波束标识信息,因此,在实际应用中,基站可以基于此简便、准确地确定第一波束标识信息,从而能够简化基站的流程执行难度。
需要说明的是,第一服务信息可以预先存储在网络节点内,使得基站可以直接从网络节点获取第一服务信息;基站获取网络节点的位置信息和终端的位置信息的方式并未限定,例如,可以采用发射定位参考信号的方式来进行测量确定。
可以理解地是,由于不同的波束对准位置分别与相应的波束所对应,通过相应的波束对准位置即可以进一步确定相关的波束工作模式,因此,基站所发送的第一波束标识信息可以是显示化的,即,通过第一波束标识信息直接指示相应的波束,也可以是隐示化的,即,通过第一波束标识信息直接指示波束对准位置,以达到间接指示相应的波束的效果。
在一实施例中,网络节点内至少包括一组模板波束,终端对于每组模板波束的测试值与其观测位置具有对应关系,体现在不同的观测位置对应于不同的测试值,该对应关系以第二服务信息的形式存储在网络节点中,即,每组固定波束的测试值与对准观测位置的网络节点的波束具有对应关系,在这种情况下,基站在获取到终端对于模板波束的测试值的情况下,根据所获取的第二服务信息即能够确定相应的模板波束,进而根据相应的模板波束确定第一波束标识信息。
需要说明的是,本实施例与上述实施例的步骤S800、步骤S900,具有相同的技术原理以及相同的技术效果,相关实施例之间的区别在于执行主体不同,其中,上述步骤S800、步骤S900所示的实施例的执行主体为网络节点,而本实施例的执行主体为基站。关于本实施例的技术原理以及技术效果,可以参照上述步骤S800、步骤S900所示实施例中的相关描述说明,为了避免内容重复冗余,此处不再赘述。
另外,参照图14,本申请的一个实施例还提供了一种网络设备,该网络设备包括:第一存储器、第一处理器及存储在第一存储器上并可在第一处理器上运行的计算机程序。
第一处理器和第一存储器可以通过第一总线或者其他方式连接。
需要说明的是,本实施例中的网络设备,可以应用为例如图1所示实施例中的网络节点,本实施例中的网络设备能够构成例如图1所示实施例中的网络拓扑的一部分,这些实施例均属于相同的发明构思,因此这些实施例具有相同的实现原理以及技术效果,此处不再详述。
实现上述实施例的波束处理方法所需的非暂态软件程序以及指令存储在第一存储器中,当被第一处理器执行时,执行上述各实施例的波束处理方法,例如,执行以上描述的图2中的方法步骤S100至S300、图3中的方法步骤S310、图4中的方法步骤S320至S330、图5中的方法步骤S400、图8中的方法步骤S340、图9中的方法步骤S350至S360、图10中的方法步骤S500至S700、方法步骤S800或方法步骤S900。
另外,参照图15,本申请的一个实施例还提供了一种基站,该基站包括:第二存储器、第二处理器及存储在第二存储器上并可在第二处理器上运行的计算机程序。
第二处理器和第二存储器可以通过第二总线或者其他方式连接。
需要说明的是,本实施例中的基站,可以应用为例如图1所示实施例中的基站,本实施例中的基站能够构成例如图1所示实施例中的网络拓扑的一部分,这些实施例均属于相同的发明构思,因此这些实施例具有相同的实现原理以及技术效果,此处不再详述。
实现上述实施例的波束处理方法所需的非暂态软件程序以及指令存储在第二存储器中,当被第二处理器执行时,执行上述各实施例的波束处理方法,例如,执行以上描述的图11中的方法步骤S1000、方法步骤S1100、方法步骤S1200、图12中的方法步骤S1300至S1400或图13中的方法步骤S1500至S1800。
以上所描述的装置实施例仅仅是示意性的,其中作为分离部件说明的单元可以是或者也可以不是物理上分开的,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。
此外,本申请的一个实施例还提供了一种计算机可读存储介质,该计算机可读存储介质存储有计算机可执行指令,该计算机可执行指令被一个第一处理器、第二处理器或控制器执行,例如,被上述设备实施例中的一个第一处理器或第二处理器执行,可使得上述第一处理器或第二处理器执行上述实施例中的波束处理方法,例如,执行以上描述的图2中的方法步骤S100至S300、图3中的方法步骤S310、图4中的方法步骤S320至S330、图5中的方法步骤S400、图8中的方法步骤S340、图9中的方法步骤S350至S360、图10中的方法步骤S500至S700、方法步骤S800或方法步骤S900,或者,图11中的方法步骤S1000、方法步骤S1100、方法步骤S1200、图12中的方法步骤S1300至S1400或图13中的方法步骤S1500至S1800。
本申请实施例包括:应用于网络节点的波束处理方法,波束处理方法包括获取由基站侧发送的第一波束标识信息和波束时域信息,波束时域信息包括波束形成时间信息,波束形成时间信息用于表征网络节点形成波束以引导信号所对应的时间;根据波束形成时间信息确定第一时域;在第一时域形成用于引导信号的第一波束,其中,第一波束由网络节点根据第一波束标识信息确定。根据本申请实施例提供的方案,网络节点能够基于第一波束标识信息确定用于引导信号的第一波束,从而能够在第一时域形成第一波束的条件下,通过第一波束以将由基站发送或接收的电磁波信号进行引导,即,通过电磁波信号引导可以提高基站或终端对于目标的电磁波信号接收量,从而增强其无线通信质量,提升无线通信效率;并且,由于第一时域是根据波束 形成时间信息对应确定的,而波束形成时间信息可表征网络节点形成波束以引导信号对应的时间,因此,网络节点通过在第一时域形成相应的波束,使得网络节点能够在相应的时间下进行信号引导,从而可避免产生错乱引导或者信令风暴,有利于提升无线通信效率。
本领域普通技术人员可以理解,上文中所公开方法中的全部或某些步骤、系统可以被实施为软件、固件、硬件及其适当的组合。某些物理组件或所有物理组件可以被实施为由处理器,如中央处理器、数字信号处理器或微处理器执行的软件,或者被实施为硬件,或者被实施为集成电路,如专用集成电路。这样的软件可以分布在计算机可读介质上,计算机可读介质可以包括计算机存储介质(或非暂时性介质)和通信介质(或暂时性介质)。如本领域普通技术人员公知的,术语计算机存储介质包括在用于存储信息(诸如计算机可读指令、数据结构、程序模块或其他数据)的任何方法或技术中实施的易失性和非易失性、可移除和不可移除介质。计算机存储介质包括但不限于RAM、ROM、EEPROM、闪存或其他存储器技术、CD-ROM、数字多功能盘(DVD)或其他光盘存储、磁盒、磁带、磁盘存储或其他磁存储装置、或者可以用于存储期望的信息并且可以被计算机访问的任何其他的介质。此外,本领域普通技术人员公知的是,通信介质通常包含计算机可读指令、数据结构、程序模块或者诸如载波或其他传输机制之类的调制数据信号中的其他数据,并且可包括任何信息递送介质。
以上是对本申请的实施方式进行的具体说明,但本申请并不局限于上述实施方式,熟悉本领域的技术人员在不违背本申请精神的前提下还可作出种种的等同变形或替换,这些等同的变形或替换均包含在本申请权利要求所限定的范围内。

Claims (25)

  1. 一种波束处理方法,应用于网络节点,包括:
    获取由基站侧发送的第一波束标识信息和波束时域信息,所述波束时域信息包括波束形成时间信息,所述波束形成时间信息用于表征所述网络节点形成波束以引导信号所对应的时间;
    根据所述波束形成时间信息确定第一时域;以及
    在所述第一时域形成用于引导信号的第一波束,其中,所述第一波束由所述网络节点根据所述第一波束标识信息确定。
  2. 根据权利要求1所述的波束处理方法,其特征在于,所述第一波束标识信息还包括波束指示信息,所述波束指示信息用于指示所述第一波束对准第一终端;
    所述在所述第一时域形成用于引导信号的第一波束,包括:
    根据所述第一波束标识信息在所述第一时域形成用于对准所述第一终端的第一波束。
  3. 根据权利要求1所述的波束处理方法,其中,所述在所述第一时域形成用于引导信号的第一波束,包括:
    获取由所述基站侧发送的波束指示信息,所述波束指示信息用于指示所述第一波束对准第一终端;以及根据所述第一波束标识信息和所述波束指示信息在所述第一时域形成用于对准所述第一终端的第一波束。
  4. 根据权利要求1至3任意一项所述的波束处理方法,其特征在于,所述方法还包括:
    在所述第一时域形成第二波束,所述第二波束由所述网络节点根据所述网络节点与所述基站侧之间的相对位置关系确定,所述第二波束用于对准基站。
  5. 根据权利要求4所述的波束处理方法,其中,所述第二波束由:
    所述网络节点根据由所述基站侧发送的第二波束标识信息而确定;
    或者,
    所述网络节点从预设的若干波束中确定。
  6. 根据权利要求1所述的波束处理方法,其中,所述波束形成时间信息包括波束形成符号,所述波束形成符号包括如下类型中的至少一个:
    N1个连续正交频分复用符号,所述N1为1至14之间的任一整数;
    一个正交频分复用符号与N2个连续正交频分复用符号,所述N2为2、4或7;
    两个连续正交频分复用符号与另两个连续正交频分复用符号;
    一个正交频分复用符号,以及,与所述一个正交频分复用符号相距4个正交频分复用符号的另一个正交频分复用符号;以及
    分别分布于连续两个时隙上的两个第一波束符号,所述两个第一波束符号在各自时隙上的位置相对应,所述第一波束符号包括一个正交频分复用符号,以及,与所述一个正交频分复用符号相距4个正交频分复用符号的另一个正交频分复用符号。
  7. 根据权利要求1所述的波束处理方法,其特征在于,所述波束时域信息还包括波束形成时隙信息,所述波束形成时隙信息用于表征波束形成的周期;
    所述在所述第一时域形成用于引导信号的第一波束,包括:
    根据所述波束形成时隙信息在所述第一时域周期性地形成所述第一波束。
  8. 根据权利要求1所述的波束处理方法,其中,所述在所述第一时域形成用于引导信号的第一波束,包括:
    获取由基站侧发送的波束形成触发信息,所述波束形成触发信息包括第一时间间隔;以及
    根据所述第一时间间隔在所述第一时域形成所述第一波束。
  9. 根据权利要求1所述的波束处理方法,其特征在于,所述获取由基站侧发送的第一波束标识信息和波束时域信息之前,还包括:
    向所述基站侧发送第一服务信息,以使所述基站侧根据所述第一服务信息和所获取的所述网络节点相对于一个终端的目标波束对准位置,生成所述第一波束标识信息,其中,所述第一服务信息用于表征所述网络节点内的各个波束与各个波束对准位置之间的对应关系。
  10. 根据权利要求1所述的波束处理方法,其中,所述第一波束标识信息包括第一隐示信息,所述第一隐示信息用于表征所述网络节点相对于一个终端的目标波束对准位置;
    所述在所述第一时域形成用于引导信号的第一波束,包括:
    根据所述第一隐示信息和所述第一服务信息在所述第一时域形成用于对准与所述目标波束对准位置对应的终端的第一波束;以及
    所述第一服务信息用于表征所述网络节点内的各个波束与各个波束对准位置之间的对应关系。
  11. 根据权利要求1所述的波束处理方法,其特征在于,所述获取由基站侧发送的第一波束标识信息和波 束时域信息之前,还包括:
    向所述基站侧发送第二服务信息,以使所述基站侧根据所述第二服务信息和所获取的所述网络节点相对于一个终端的模板波束的一组测试值,生成所述第一波束标识信息,其中,所述第二服务信息用于表征所述网络节点内的模板波束与所述模板波束的各组测试值之间的对应关系。
  12. 根据权利要求11所述的波束处理方法,其中,所述第一波束标识信息包括第二隐示信息,所述第二隐示信息用于表征所述网络节点相对于一个终端的模板波束的一组测试值;
    所述在所述第一时域形成用于引导信号的第一波束,包括:
    根据所述网络节点相对于一个终端的模板波束的一组测试值和所述第二服务信息在所述第一时域形成与所述第一波束测试参数对应的第一波束。
  13. 根据权利要求1所述的波束处理方法,其特征在于,所述方法还包括:
    向所述基站侧发送所述网络节点支持的波束工作模式;
    获取由所述基站侧根据所述波束工作模式发送的第一指示信息;以及
    根据所述第一指示信息从所述网络节点支持的所述波束工作模式中确定并应用第一波束工作模式。
  14. 一种波束处理方法,应用于基站侧,包括:
    向网络节点发送第一波束标识信息和波束时域信息,以使所述网络节点根据所述波束时域信息中的波束形成时间信息确定第一时域,并使所述网络节点在所述第一时域形成用于基站侧引导信号的第一波束;以及
    其中,所述波束形成时间信息用于表征所述网络节点形成波束以引导信号所对应的时间,所述第一波束由所述网络节点根据所述第一波束标识信息确定。
  15. 根据权利要求14所述的波束处理方法,其特征在于,所述方法还包括:
    向所述网络节点发送波束指示信息,以使所述网络节点根据所述第一波束标识信息和所述波束指示信息在所述第一时域形成用于对准第一终端的所述第一波束,所述波束指示信息用于指示所述第一波束对准所述第一终端。
  16. 根据权利要求14或15所述的波束处理方法,其特征在于,所述方法还包括:
    向所述网络节点发送第二波束标识信息,以使所述网络节点根据所述第二波束标识信息确定用于对准所述基站的第二波束,并使所述网络节点在所述第一时域形成所述第二波束。
  17. 根据权利要求14所述的波束处理方法,其中,所述波束形成时间信息包括波束形成符号,所述波束形成符号包括如下类型中的至少一个:
    N1个连续正交频分复用符号,所述N1为1至14之间的任一整数;
    一个正交频分复用符号与N2个连续正交频分复用符号,所述N2为2、4或7;
    两个连续正交频分复用符号与另两个连续正交频分复用符号;
    一个正交频分复用符号,以及,与所述一个正交频分复用符号相距4个正交频分复用符号的另一个正交频分复用符号;以及
    分别分布于连续两个时隙上的两个第一波束符号,所述两个第一波束符号在各自时隙上的位置相对应,所述第一波束符号包括一个正交频分复用符号,以及,与所述一个正交频分复用符号相距4个正交频分复用符号的另一个正交频分复用符号。
  18. 根据权利要求14所述的波束处理方法,其特征在于,所述方法还包括:
    获取由所述网络节点发送的所述网络节点支持的波束工作模式;以及
    根据所述波束工作模式向所述网络节点发送第一指示信息,以使所述网络节点根据所述第一指示信息从所述网络节点支持的所述波束工作模式中确定并应用第一波束工作模式。
  19. 根据权利要求14所述的波束处理方法,其特征在于,所述向网络节点发送第一波束标识信息之前,还包括:
    获取所述网络节点的位置信息、终端的位置信息以及由所述网络节点发送的第一服务信息,所述第一服务信息用于表征所述网络节点内的各个波束与各个波束对准位置之间的对应关系;
    根据所述网络节点的位置信息和所述终端的位置信息确定所述网络节点相对于所述终端的目标波束对准位置;
    根据所述目标波束对准位置和所述第一服务信息确定与所述目标波束对准位置对应的目标波束;以及
    根据所述目标波束生成第一波束标识信息。
  20. 根据权利要求19所述的波束处理方法,其中,所述第一波束标识信息包括第一隐示信息,所述第一隐示信息用于表征所述网络节点相对于一个终端的目标波束对准位置。
  21. 根据权利要求14所述的波束处理方法,其特征在于,所述向网络节点发送第一波束标识信息之前,还包括:
    获取所述网络节点相对于一个终端的模板波束的一组测试值和由所述网络节点发送的第二服务信息,所述第二服务信息用于表征所述网络节点内的各个模板波束与各个所述模板波束的测试值之间的对应关系;
    根据所述网络节点相对于一个终端的模板波束的一组测试值和所述第二服务信息确定与所述网络节点相对于一个终端的模板波束的一组测试值对应的目标波束;以及
    根据所述目标波束生成第一波束标识信息。
  22. 根据权利要求21所述的波束处理方法,其中,所述第一波束标识信息包括第二隐示信息,所述第二隐示信息用于表征所述网络节点相对于一个终端的模板波束的一组测试值。
  23. 一种网络设备,包括:第一存储器、第一处理器及存储在第一存储器上并可在第一处理器上运行的计算机程序,所述第一处理器执行所述计算机程序时实现如权利要求1至13中任意一项所述的波束处理方法。
  24. 一种基站,包括:第二存储器、第二处理器及存储在第二存储器上并可在第二处理器上运行的计算机程序,所述第二处理器执行所述计算机程序时实现如权利要求14至22中任意一项所述的波束处理方法。
  25. 一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令用于执行权利要求1至13中任意一项所述的波束处理方法,或者,执行权利要求14至22中任意一项所述的波束处理方法。
PCT/CN2022/094470 2021-06-03 2022-05-23 波束处理方法及网络设备、基站、计算机可读存储介质 WO2022253030A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US18/562,561 US20240088964A1 (en) 2021-06-03 2022-05-23 Beam processing method, network device, base station, and computer readable storage medium
KR1020237039537A KR20230170089A (ko) 2021-06-03 2022-05-23 빔 처리 방법 및 네트워크 장치, 기지국, 컴퓨터 판독 가능한 저장 매체
EP22815077.7A EP4351199A1 (en) 2021-06-03 2022-05-23 Beam processing method, network device, base station, and computer readable storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110621837.8A CN115441916A (zh) 2021-06-03 2021-06-03 波束处理方法及网络设备、基站、计算机可读存储介质
CN202110621837.8 2021-06-03

Publications (1)

Publication Number Publication Date
WO2022253030A1 true WO2022253030A1 (zh) 2022-12-08

Family

ID=84272158

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/094470 WO2022253030A1 (zh) 2021-06-03 2022-05-23 波束处理方法及网络设备、基站、计算机可读存储介质

Country Status (5)

Country Link
US (1) US20240088964A1 (zh)
EP (1) EP4351199A1 (zh)
KR (1) KR20230170089A (zh)
CN (1) CN115441916A (zh)
WO (1) WO2022253030A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107689855A (zh) * 2016-08-05 2018-02-13 电信科学技术研究院 信号发送、接收方法和设备
CN108293195A (zh) * 2015-11-24 2018-07-17 瑞典爱立信有限公司 用于管理无线通信网络中的信令的无线设备、无线网络节点及在其中执行的方法
CN111385812A (zh) * 2018-12-29 2020-07-07 成都华为技术有限公司 一种波束管理方法及装置
CN112075030A (zh) * 2018-04-27 2020-12-11 高通股份有限公司 用于使用多个波束的数据传输的空间分集
WO2021019287A1 (en) * 2019-07-31 2021-02-04 Telefonaktiebolaget Lm Ericsson (Publ) Methods and apparatuses for time-domain beam-sweeping
US20210036752A1 (en) * 2019-07-30 2021-02-04 At&T Intellectual Property I, L.P. Beam recovery for antenna array

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108293195A (zh) * 2015-11-24 2018-07-17 瑞典爱立信有限公司 用于管理无线通信网络中的信令的无线设备、无线网络节点及在其中执行的方法
CN107689855A (zh) * 2016-08-05 2018-02-13 电信科学技术研究院 信号发送、接收方法和设备
CN112075030A (zh) * 2018-04-27 2020-12-11 高通股份有限公司 用于使用多个波束的数据传输的空间分集
CN111385812A (zh) * 2018-12-29 2020-07-07 成都华为技术有限公司 一种波束管理方法及装置
US20210036752A1 (en) * 2019-07-30 2021-02-04 At&T Intellectual Property I, L.P. Beam recovery for antenna array
WO2021019287A1 (en) * 2019-07-31 2021-02-04 Telefonaktiebolaget Lm Ericsson (Publ) Methods and apparatuses for time-domain beam-sweeping

Also Published As

Publication number Publication date
KR20230170089A (ko) 2023-12-18
US20240088964A1 (en) 2024-03-14
CN115441916A (zh) 2022-12-06
EP4351199A1 (en) 2024-04-10

Similar Documents

Publication Publication Date Title
US11974281B2 (en) Method and apparatus for beam indication in a multi-beam system
US11973561B2 (en) Antenna panel application method, apparatus and storage medium
JP7025463B2 (ja) 複数キャリアについてのpusch上のharqの実装
US20240155611A1 (en) Method and apparatus for dynamic beam indication mechanism
US20220159580A1 (en) Power headroom report, configuring, power control, and data transmission method, apparatus, terminal, and base station
US20230262608A1 (en) POWER CONTROL FOR UPLINK TRANSMISSIONS TOWARDS MULTIPLE TRPs
US11122518B2 (en) Method for applying P-MPR and apparatus thereof
CN105813184B (zh) 增强网络信号的系统及其增强网络信号的方法
US20200275436A1 (en) Resource Determining Method, Apparatus, Network Element, and System
US20210321373A1 (en) Method and apparatus for dynamic downlink multi-beam operations
EP3954168A1 (en) Data transmission method and device
CN108668374A (zh) 一种调度请求的传输方法及装置
KR20220130109A (ko) 다중 빔 시스템에서의 동적 빔 적응
US11382059B2 (en) Method and device for sending positioning signal
US20220174719A1 (en) Antenna panel status indication method and apparatus
CN111543076A (zh) 传输方法、装置及计算机存储介质
US10932296B2 (en) Device and method of handling physical random access channel resources on a secondary cell in carrier aggregation
CN110546971A (zh) 信息指示、确定方法及装置、通信设备及存储介质
US11770808B2 (en) Resource indicating method, apparatus, access network device, terminal and system
WO2022253030A1 (zh) 波束处理方法及网络设备、基站、计算机可读存储介质
KR20220030996A (ko) 통신 시스템에서 업링크 신호를 송신하는 방법 및 장치
US11139882B2 (en) Enhanced beam adjustment procedure for beam-based operation
WO2018137401A1 (zh) 数据发送方法、装置、网络侧设备、终端和存储介质
CN115413039A (zh) 通信方法、网络设备及存储介质
CN115484676A (zh) 数据传输方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22815077

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20237039537

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020237039537

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 18562561

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2023572652

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2022815077

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022815077

Country of ref document: EP

Effective date: 20240103