WO2022253010A1 - 一种同步曝光处理方法、装置、系统及设备 - Google Patents

一种同步曝光处理方法、装置、系统及设备 Download PDF

Info

Publication number
WO2022253010A1
WO2022253010A1 PCT/CN2022/094134 CN2022094134W WO2022253010A1 WO 2022253010 A1 WO2022253010 A1 WO 2022253010A1 CN 2022094134 W CN2022094134 W CN 2022094134W WO 2022253010 A1 WO2022253010 A1 WO 2022253010A1
Authority
WO
WIPO (PCT)
Prior art keywords
image sensor
row
data
exposure
control reference
Prior art date
Application number
PCT/CN2022/094134
Other languages
English (en)
French (fr)
Inventor
赵灿
何胜远
王梁
Original Assignee
杭州海康威视数字技术股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 杭州海康威视数字技术股份有限公司 filed Critical 杭州海康威视数字技术股份有限公司
Publication of WO2022253010A1 publication Critical patent/WO2022253010A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/70Circuitry for compensating brightness variation in the scene
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/70Circuitry for compensating brightness variation in the scene
    • H04N23/73Circuitry for compensating brightness variation in the scene by influencing the exposure time
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/70Circuitry for compensating brightness variation in the scene
    • H04N23/74Circuitry for compensating brightness variation in the scene by influencing the scene brightness using illuminating means
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/50Control of the SSIS exposure
    • H04N25/53Control of the integration time
    • H04N25/531Control of the integration time by controlling rolling shutters in CMOS SSIS

Definitions

  • the present application relates to the technical field of imaging, and in particular to a method, device, system and equipment for synchronous exposure processing.
  • Image exposure is one of the important factors affecting image quality.
  • the image generated by uniform and stable exposure has the characteristics of high definition and color balance; non-uniform and unstable exposure will easily lead to underexposure at the edge of the image and sudden changes in overall brightness , low image brightness and other image quality problems.
  • the image sensor needs to convert the incoming light signal into an electrical signal during exposure. For some special occasions, such as low illumination and less light signals of special wavelengths, it needs to rely on supplementary light, such as using LED (Light Emitting Diode, Light Emitting Diode), etc. for supplementary light.
  • supplementary light such as using LED (Light Emitting Diode, Light Emitting Diode), etc.
  • the fill light needs to be kept on constantly, but this will cause the fill light and the whole The machine generates serious heat, increases power consumption, and even affects the data accuracy of other electronic devices.
  • the embodiment of the present application provides a synchronous exposure processing method, which is used to save the power consumption of the fill light and reduce the heating cost of the equipment.
  • the embodiment of the present application also provides a synchronous exposure processing method, including:
  • the data line sequence is used to describe the distribution of valid data lines in the data lines in the frame
  • the image sensor is a rolling shutter exposure image sensor
  • the image sensor and its fill light are synchronously controlled to perform an exposure operation.
  • the embodiment of the present application also provides a synchronous exposure processing system, including: a main control chip, an image sensor, a supplementary light driving circuit and a supplementary light, wherein:
  • the image sensor and the supplementary light driving circuit are respectively connected to the main control chip, the supplementary light is connected to the supplementary light driving circuit, and the image sensor is a rolling shutter exposure type image sensor;
  • the main control chip acquires the frame rate of the image sensor and the data line sequence in the frame, and the data line sequence is used to describe the distribution of valid data lines in the data lines in the frame;
  • the main control chip determines the row period of the image sensor exposure based on the frame rate and the total number of data rows in the data row sequence;
  • the main control chip obtains the control reference number of rows based on the row period and the row number of the first valid data row in the data row sequence, combined with the preset maximum exposure time of each row;
  • the main control chip synchronously controls the image sensor and its fill light to perform exposure operations based on the number of control reference lines;
  • the main control chip drives the supplementary light to execute the exposure operation by controlling the supplementary light driving circuit.
  • An embodiment of the present application further provides a video camera, including the above synchronous exposure processing system.
  • the embodiment of the present application also provides a synchronous exposure processing device, including:
  • the determination module is used to determine the frame rate of the image sensor and the data line sequence in the frame, the data line sequence is used to describe the distribution of the effective data lines in the data lines in the frame, and the image sensor is a rolling shutter exposure image sensor;
  • a first processing module configured to determine a row period for exposure of the image sensor based on the frame rate and the total number of data rows in the data row sequence
  • the second processing module is used to obtain the control reference number of rows based on the row period and the row number of the first valid data row in the data row sequence, combined with the preset maximum exposure time of each row;
  • a control module configured to synchronously control the image sensor and its supplementary light to execute the exposure operation based on the number of control reference lines.
  • the embodiment of the present application also provides an electronic device, including: a processor; and a memory arranged to store computer-executable instructions, and when executed, the executable instructions cause the processor to perform the steps of the above method.
  • the embodiment of the present application also provides a computer-readable storage medium, the computer-readable storage medium stores one or more programs, and when the one or more programs are executed by an electronic device including a plurality of application programs, the above method A step of.
  • the embodiment of the present application also provides a computer program product containing instructions, which, when run on a computer, causes the computer to execute the steps of the above-mentioned method.
  • the embodiment of the present application realizes that by analyzing the distribution of effective data lines in the frame, the number of control reference lines that can realize the synchronous control of the image sensor and the fill light can be calculated, so that the number of control reference lines can be synchronously controlled under the rolling shutter exposure.
  • the effective exposure of the image sensor and the on-off time of the fill light achieve the purpose of saving the power consumption of the fill light and reducing the heating cost of the equipment.
  • FIG. 1 is a schematic flowchart of a synchronous exposure processing method provided by an embodiment of the present application
  • Fig. 2 is a schematic diagram of the control principle of synchronous exposure provided by an embodiment of the present application
  • FIG. 3 is a schematic flowchart of an implementation of step 108 provided by an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of a synchronous exposure processing system provided by an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of a synchronous exposure processing device provided by an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of an electronic device provided by an embodiment of the present application.
  • Fig. 1 is a schematic flowchart of a synchronous exposure processing method provided by an embodiment of the present application. Referring to Fig. 1, the method may specifically include the following steps:
  • Step 102 Determine the frame rate of the image sensor and the data line sequence in the frame, the data line sequence is used to describe the distribution of valid data lines in the data lines in the frame, and the image sensor is a rolling shutter image sensor.
  • fps Framework Per Second, frame rate
  • frame rate refers to the number of frames per second transmitted by the screen.
  • frames displayed per second in animation or video refers to the number of frames collected by the image sensor per second.
  • a rolling shutter exposure image sensor refers to an image sensor in which different pixels are exposed row by row from left to right.
  • the data line sequence refers to: the sequence used to describe the data lines from the first line to the last line output by the image sensor in each frame image period, where the described content includes: the total number of data lines in the frame , and the number of rows where the valid data rows are located, such as the effective first row to effective 1080 rows, the total number of the above data rows, the total number of valid data rows and the number of rows correspond to the image sensor model, which is not limited here.
  • the black square in Figure 2 indicates that each data row starts to be exposed, and the black origin indicates that each data row ends the exposure, and the pixel data of the data row is generated.
  • the abscissa of the two coordinate systems in Figure 2 indicates the time Time, and the above The ordinate in the coordinate system represents the number of exposure lines, and the ordinate V in the following coordinate system represents the switch status of the fill light.
  • the model of the image sensor can be obtained, and then according to the model, the frame rate of the image sensor and the sequence of data rows in the frame can be obtained through query.
  • Step 104 based on the frame rate and the total number Vmax of data lines in the data line sequence, determine a line period for exposure of the image sensor.
  • the content described by the data row sequence includes the total number of data rows in the frame, and the data row sequence corresponds to the model of the image sensor, that is to say, the total number of data rows corresponds to the model of the image sensor, which can be passed
  • the image sensor model determines the total number of rows of data within a frame.
  • the formula for calculating the row period ⁇ T exposed by the above image sensor can be:
  • Step 106 based on the row period and the row number Nst of the first valid data row in the data row sequence, combined with a preset maximum exposure time for each row, the control reference row number is obtained.
  • the above-mentioned maximum exposure duration of each row refers to the maximum duration required for the image sensor to expose each data row.
  • the duration may be set artificially, or may be obtained through experimental measurement, or may be obtained through query according to the model of the image sensor.
  • the number of the first valid data row above refers to the number of the first valid data row in the frame relative to all data rows in the frame. Taking the above figure 2 as an example, the first valid data row is the first valid data row in the frame The 5th row among all data rows in , so the row number of the first valid data row is 5.
  • the above-mentioned number of control reference lines can be understood as: the number of lines where the data lines exposed by the image sensor are located when the supplementary light is controlled to be turned on.
  • the supplementary light can be controlled to turn on, so that the supplementary light can perform supplementary light during the exposure process of the effective data row.
  • control reference row number Nx2 when the data row corresponding to the control reference row number is at the first row of the data row of the current frame image, the control reference row number Nx2 can be calculated according to the following formula:
  • Nx2 Nst-t1/ ⁇ T
  • control reference line number Nx2 can be calculated according to the following formula:
  • Nx2 Vmax+Nst-t1/ ⁇ T+1
  • t1 represents the maximum exposure time in all valid data lines
  • ⁇ T represents the line period of the image sensor
  • ⁇ T 1/fps/Vmax
  • fps represents the frame rate of the image sensor
  • Vmax represents the time of all data lines in each frame of image
  • Nst represents the number of rows where the first valid data row is located.
  • the data line corresponding to the control reference line number is at the end line of the data line of the previous frame image, it means that when the exposure reaches the end line of the previous frame image, it is necessary to turn on the fill light to ensure timely detection of the data line in the current image frame.
  • control reference line number is a negative number
  • the data line corresponding to the control reference line number is in the last line of all data lines in the previous frame image
  • the last line of the previous frame image of the current frame is started, the effective data line of the current frame image has been exposed synchronously. Therefore, it is necessary to correct the number of control reference lines based on the total number of data lines to ensure synchronous exposure within the same frame. Specifically, when correcting the number of control reference lines, the number of control reference lines can be adjusted to the end of the data line in the previous frame of image according to the total number of data lines.
  • the difference between the total number of data lines and the control reference line number can be calculated. and +1, as the number of control reference lines adjusted to the previous frame image.
  • the supplementary light can be turned on, so as to ensure timely supplementary light for the exposure process of the current frame image.
  • the number of compensation lines is determined based on the time required for the supplementary light to be turned on and the line period; and the number of control reference lines is compensated based on the number of compensation lines.
  • the time required to drive the light is related to the performance of the supplementary light.
  • the shorter the time required to drive the light the smaller the number of lines that need to be compensated.
  • the longer the time required to drive the light The larger the number of rows that need to be compensated.
  • the time required for driving the supplementary light to turn on can be obtained through experimental measurement, or can be obtained by querying the model of the supplementary light.
  • the present embodiment corrects and compensates the number of control reference lines to ensure an accurate control reference number of lines, thereby effectively improving the control accuracy of synchronous exposure.
  • Step 108 Synchronously control the image sensor and its fill light to perform an exposure operation based on the number of control reference lines.
  • the fill light is a lamp used to compensate some equipment or scenes that lack illumination.
  • the fill light here refers to the camera fill light, also known as video light, machine head light, interview light, News lights, etc., which can be LED lights.
  • step 108 may be:
  • Step 302 based on the total number of valid data lines and the line period, determine the lighting duration of a single frame of the supplementary light.
  • the above-mentioned single-frame light-on duration refers to the time length during which the supplementary light is in a light-on state during the period when the image sensor captures one frame of image.
  • the effective data line includes the effective 1st line to the effective 1080th line, combined with the line cycle calculated above, the single-frame lighting time t of the supplementary light can be calculated.
  • supplementary light is performed, and t needs to be greater than or equal to the total exposure time of all valid data rows.
  • the total exposure time of all valid data rows is: the product of the number of valid data rows and the above-mentioned row period.
  • the total exposure time of all valid data rows can be calculated first, and then the sum of the above total exposure time and the preset fill light redundancy time can be calculated as the fill light The lighting duration of a single frame of the light.
  • Step 304 Generate a synchronization signal based on the number of control reference lines and the lighting duration of a single frame.
  • the synchronization signal includes a high level and a low level.
  • the image sensor can be triggered to reset the row data output counter to the number of control reference lines;
  • the synchronization signal is at a high level, , can trigger the supplementary light to enter the on state, and the duration of the high level in a single frame time is the same as the duration of the single frame lighting;
  • the synchronization signal is at a low level, control the supplementary light to enter the off state.
  • the above-mentioned first moment is the moment when the image sensor configures the row data output counter to reset the control reference row number, that is, the moment when the image sensor receives the rising edge of the synchronization signal;
  • the above second moment is the moment when the supplementary light starts to turn on, that is, the moment when the supplementary light receives the high level of the synchronization signal;
  • the aforementioned turn-on duration may be the sum of the maximum exposure time t1, the total exposure duration of all valid data lines, and other durations T and others .
  • the above opening time T can be calculated according to the following formula:
  • the above h represents the number of all valid data lines, and the above ⁇ T represents the row period for the image sensor to expose.
  • Step 306 synchronously sending a synchronous signal to the image sensor and its supplementary light, so as to control the image sensor and its supplementary light to perform a synchronous exposure operation.
  • the synchronization signal is used to trigger the image sensor to reset the line data output counter to the control reference line number, so as to trigger the image sensor to perform an exposure operation on the data line of the control reference line number in each frame period,
  • the above synchronous signal is also used to control the data row of the control reference row number in each frame period of the supplementary light to be turned on for supplementary light, so as to facilitate It is ensured that the supplementary light is turned on during the exposure process of the image sensor to the valid data row.
  • the above-mentioned row data output counter is used for: counting the quantity of row data output by the image sensor.
  • the synchronous signal may include a frame synchronous signal and a horizontal synchronous signal, and the frame synchronous signal is used to ensure that the image sensor and its supplementary light are exposed synchronously in the same frame; the horizontal synchronous signal is used for This is to ensure that the image sensor and its fill light are exposed synchronously in the same row.
  • the rising edge of the high level in the above frame synchronization signal is used to indicate that the image sensor starts to expose an image frame
  • the falling edge of the high level is used to indicate that the image sensor ends the exposure of an image frame
  • the high level indicates the exposure process of the image sensor
  • the low level indicates the exposure process of the image sensor.
  • the level represents the idle process of the image sensor
  • the supplementary light is in the working state during the high-level phase of the frame synchronization signal, and is in an idle state during the low-level phase of the frame synchronization signal.
  • the form of the synchronous signal is not limited, as long as the image sensor and the fill light can be simultaneously controlled to perform the exposure operation at the control reference line number in each frame period.
  • this embodiment provides a specific form of a synchronous signal, and the synchronous signal is a pulse width modulation signal; in addition, the above-mentioned synchronous signal can also be a VSYNC (Vertical synchronization, vertical synchronous) signal , FSIN signal, SRTQBE signal, etc.
  • VSYNC Very synchronization, vertical synchronous
  • the image sensor when the pulse width modulation signal is at a rising edge, the image sensor is triggered to reset the line data output counter to the control reference line number; when the pulse width modulation signal is at a high level, the compensation is triggered.
  • the light enters the on state, and the duration of maintaining the high level within a single frame time is the same as the duration of the single frame lighting; when the pulse width modulation signal is at a low level, the supplementary light is controlled to enter the off state.
  • the number of control reference lines that can realize the synchronous control of the image sensor and the supplementary light can be calculated, so that the number of control reference lines under rolling shutter exposure can be controlled synchronously according to the number of control reference lines.
  • the effective exposure of the image sensor and the on-off time of the fill light make the fill light turn on only when the image sensor exposes valid data rows; the fill light turns off when the image sensor exposes non-valid data rows. The purpose of saving the power consumption of the fill light and reducing the heating cost of the equipment is achieved.
  • this embodiment provides a calculation principle for controlling the number of reference lines, as follows:
  • the line data output counter of the image sensor will be reset at the moment of the rising edge of PWM (Pulse width modulation, pulse width modulation signal), and reset to the specified value according to the register setting requirements, that is, the number of control reference lines.
  • PWM Pulse width modulation, pulse width modulation signal
  • Nst represents the row number of the first valid data row
  • Nx 2 represents the row number where the reset point is located, that is, the control reference row
  • ⁇ T represents the row cycle of the image sensor exposure.
  • Nx 2 Nst-t1/ ⁇ T
  • Nx 2 calculated by the above formula is a negative value, it means that the reset point is in the last row of the total number of data rows Vmax of the previous frame image, that is, by resetting to the last row of the previous frame, the exposure of the next frame is guaranteed Normal, at this time the calculation formula for the number of rows Nx 2 where the reset point of the row data output counter is located becomes:
  • Nx 2 Vmax+Nst-t1/ ⁇ T+1
  • Nst is the actual number of rows corresponding to the first row of valid data row in Vmax;
  • Vmax is the total number of rows of all rows in the frame, including valid data rows and invalid dummy rows
  • this embodiment also provides a comparison result between the lighting time of the supplementary light when using this solution and the constant lighting time of the supplementary light when using the existing technology, as follows:
  • the image sensor row data output count reset point when the row exposure time is t1 can be calculated, corresponding to the LED lighting time T within one frame time is:
  • h is the number of valid data rows to be exposed
  • TOthers is the compensation time considering the fill light and signal delay.
  • Nx 2 is a negative value, then Nx 2 is compensated, and the number of control reference lines Nx 2 after compensation is obtained:
  • the number of compensation lines ⁇ N can be calculated:
  • the reset point needs to be advanced by at least 150 lines, that is, the number of control reference lines Nx 2 after compensation is:
  • the lighting time T of the fill light can be calculated as:
  • this embodiment specifically proposes the control relationship between the effective exposure of the image sensor and the on-off time of the supplementary light under rolling shutter exposure, so as to achieve the purpose of saving the power consumption of the supplementary light, thereby reducing the heating cost of the equipment ; It also gives a complete set of relationship between image sensor exposure time, line data output count reset point, and fill light effective power consumption; moreover, the frame rate of the image sensor is equal to the frequency of PWM, because the fill light is at The high-level phase of PWM keeps working, so the high-level time of PWM duty cycle is equal to the lighting time of LED in one frame.
  • the selection and implementation on is very general.
  • Fig. 4 is a schematic structural diagram of a synchronous exposure processing system provided by an embodiment of the present application.
  • the synchronous exposure processing system may specifically include: a main control chip, an image sensor, a supplementary light driving circuit and a supplementary light ,in:
  • the image sensor and the supplementary light driving circuit are respectively connected to the main control chip, the supplementary light is connected to the supplementary light driving circuit, and the image sensor is a rolling shutter exposure type image sensor;
  • the main control chip acquires the frame rate of the image sensor and the data line sequence in the frame, and the data line sequence is used to describe the distribution of valid data lines in the data lines in the frame;
  • the main control chip determines the row period of the image sensor exposure based on the frame rate and the total number of data rows in the data row sequence;
  • the main control chip obtains the control reference number of rows based on the row period and the row number of the first valid data row in the data row sequence, combined with the preset maximum exposure time of each row;
  • the main control chip synchronously controls the image sensor and its fill light to perform exposure operations based on the number of control reference lines;
  • the main control chip drives the supplementary light to execute the exposure operation by controlling the supplementary light driving circuit.
  • the supplementary light can be LED
  • the driving circuit of the supplementary light is an LED driving circuit
  • the main control chip sends a synchronous control signal to the synchronous pin of the LED driving circuit and the image sensor at the same time through PWM, and the synchronous pin of the image sensor receives
  • the rising edge of the PWM signal will be treated as an interrupt signal, and the internal row data output counter will be reset (the counter can be reset to any value N within the range of Vmax, "N" means after exposure from the Nth row data output) to achieve synchronization of effective image line exposure and LED lighting time.
  • the main control chip detects that the number of control reference lines is a negative number before synchronously controlling the image sensor and its supplementary light to perform the exposure operation, based on the total line number of the data line number, modify the number of control reference lines.
  • the main control chip determines the The number of compensation lines; based on the number of compensation lines, the number of control reference lines is compensated.
  • the main control chip determines the single-frame lighting duration of the supplementary light based on the total number of valid data rows and the row cycle; based on the control reference row number and the single-frame lighting duration, generates Synchronous signal: sending the synchronous signal to the image sensor and its supplementary light at the same time, so as to control the image sensor and its supplementary light to perform synchronous exposure operation.
  • the synchronization signal is used to trigger the image sensor to reset the row data output counter to the control reference row number.
  • the synchronization signal includes a frame synchronization signal and a line synchronization signal.
  • the synchronization signal is a modulated pulse width modulated signal
  • the image sensor when the pulse width modulation signal is at a rising edge, the image sensor is triggered to reset the line data output counter to the control reference line number; when the pulse width modulation signal is at a high level, the supplementary light is triggered Entering the on state, the duration of maintaining the high level within a single frame time is the same as the duration of the single frame lighting; when the pulse width modulation signal is at a low level, the supplementary light is controlled to enter the off state.
  • a camera is also provided, and the camera includes the synchronous exposure processing system provided in the corresponding embodiment as shown in FIG. 4 .
  • the synchronous exposure processing system and the camera provided by the above-mentioned embodiments can calculate the number of control reference lines that can realize the synchronous control of the image sensor and the fill light by analyzing the distribution of effective data lines in the frame, so that the number of control reference lines can be calculated according to the control reference line
  • the effective exposure of the image sensor and the on-off time of the fill light under the rolling shutter exposure are controlled synchronously by the number, so as to save the power consumption of the fill light and reduce the heating cost of the equipment.
  • Fig. 5 is a schematic structural diagram of a synchronous exposure processing device provided by an embodiment of the present application, which can be applied to the main control chip in Fig. 4, see Fig. 5, and the device may specifically include:
  • the determination module 501 is used to determine the frame rate of the image sensor and the data line sequence in the frame, the data line sequence is used to describe the distribution of valid data lines in the data lines in the frame, and the image sensor is a rolling shutter exposure type Image Sensor;
  • the first processing module 502 is configured to determine the line period of the image sensor exposure based on the frame rate and the total number of data lines in the data line sequence
  • the second processing module 503 is configured to obtain the number of control reference lines based on the line period and the number of the first valid data line in the data line sequence, combined with a preset maximum exposure time for each line;
  • the control module 504 is configured to synchronously control the image sensor and its supplementary light to execute the exposure operation based on the control reference line number.
  • the device further includes: a correction module, configured to correct the control reference number of rows based on the total number of data rows if it is detected that the number of control reference rows is a negative number.
  • a correction module configured to correct the control reference number of rows based on the total number of data rows if it is detected that the number of control reference rows is a negative number.
  • the device further includes: a compensation module, configured to determine the number of compensation lines based on the time required for the supplementary light to be turned on and the line cycle; based on the number of compensation lines, compensate the Describe the number of control reference lines.
  • a compensation module configured to determine the number of compensation lines based on the time required for the supplementary light to be turned on and the line cycle; based on the number of compensation lines, compensate the Describe the number of control reference lines.
  • control module 504 is specifically configured to: determine the lighting duration of a single frame of the supplementary light based on the total number of valid data lines and the line period; based on the number of control reference lines and the A single frame is lit for a long time to generate a synchronous signal; and the synchronous signal is sent to the image sensor and its supplementary light at the same time, so as to control the image sensor and its supplementary light to perform a synchronous exposure operation.
  • the synchronization signal is used to trigger the image sensor to reset the row data output counter to the control reference row number.
  • the synchronization signal includes a frame synchronization signal and a line synchronization signal.
  • the synchronization signal is a modulated pulse width modulation signal; wherein, when the pulse width modulation signal is at a rising edge, the image sensor is triggered to reset the row data output counter to the control reference row number; when the pulse width modulation signal is at a high level, trigger the supplementary light to enter the on state, and the duration of maintaining the high level within a single frame time is the same as the duration of the single frame lighting; the pulse width modulation signal is at a low power level Normally, the supplementary light is controlled to enter the off state.
  • the number of control reference lines that can realize the synchronous control of the image sensor and the supplementary light can be calculated, so that the number of control reference lines under rolling shutter exposure can be controlled synchronously according to the number of control reference lines.
  • the effective exposure of the image sensor and the on-off time of the fill light achieve the purpose of saving the power consumption of the fill light and reducing the heating cost of the equipment.
  • the description is relatively simple, and for relevant parts, please refer to part of the description of the method implementation.
  • the components are logically divided according to the functions to be realized.
  • the embodiment of the present application is not limited thereto, and can be Re-divide or combine individual components.
  • Fig. 6 is a schematic structural diagram of an electronic device provided by an embodiment of the present application.
  • the electronic device includes a processor, an internal bus, a network interface, a memory and a non-volatile memory, and of course may also include other business facilities. required hardware.
  • the processor reads the corresponding computer program from the non-volatile memory into the memory and then runs it, forming a synchronous exposure processing device on a logical level.
  • the embodiment of the present application does not exclude other implementations, such as logic devices or a combination of software and hardware, etc., that is to say, the execution subject of the following processing flow is not limited to each logic unit, and also Can be a hardware or logic device.
  • the bus can be an ISA (Industry Standard Architecture, industry standard architecture) bus, a PCI (Peripheral Component Interconnect, peripheral component interconnect standard) bus, or an EISA (Extended Industry Standard Architecture, extended industry standard architecture) bus, etc.
  • the bus can be divided into address bus, data bus, control bus and so on. For ease of representation, only one double-headed arrow is used in FIG. 6 , but it does not mean that there is only one bus or one type of bus.
  • Memory is used to store programs.
  • the program may include program code, and the program code includes computer operation instructions.
  • the memory which can include read only memory and random access memory, provides instructions and data to the processor.
  • the memory may include a high-speed random-access memory (Random-Access Memory, RAM), and may also include a non-volatile memory (non-volatile memory), such as at least one disk memory.
  • RAM Random-Access Memory
  • non-volatile memory such as at least one disk memory.
  • the processor is configured to execute the program stored in the memory, and specifically execute:
  • the data line sequence is used to describe the distribution of valid data lines in the data lines in the frame
  • the image sensor is a rolling shutter exposure image sensor
  • the image sensor and its fill light are synchronously controlled to perform an exposure operation.
  • the method performed by the synchronous exposure processing device disclosed in the above embodiment as shown in FIG. 5 may be applied to or implemented by a processor.
  • a processor may be an integrated circuit chip with signal processing capabilities.
  • each step of the above method can be completed by an integrated logic circuit of hardware in a processor or an instruction in the form of software.
  • the above-mentioned processor can be a general-purpose processor, including a central processing unit (Central Processing Unit, CPU), a network processor (Network Processor, NP), etc.; it can also be a digital signal processor (Digital Signal Processor, DSP), a dedicated integrated Circuit (Application Specific Integrated Circuit, ASIC), field programmable gate array (Field-Programmable Gate Array, FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components.
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • FPGA Field-Programmable Gate Array
  • a general-purpose processor may be a microprocessor, or the processor may be any conventional processor, or the like.
  • the steps of the method disclosed in the embodiments of the present application may be directly implemented by a hardware decoding processor, or implemented by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field such as random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, register.
  • the storage medium is located in the memory, and the processor reads the information in the memory, and completes the steps of the above method in combination with its hardware.
  • the synchronous exposure processing apparatus can also execute the methods shown in FIGS. 1-3 and realize the methods executed by the manager node.
  • the embodiment of the present application also provides a computer-readable storage medium, the computer-readable storage medium stores one or more programs, and when the one or more programs are included in multiple application programs When the electronic device is executed, the electronic device is made to execute the synchronous exposure processing method provided in the embodiment corresponding to FIGS. 1-3 .
  • each embodiment in the present application is described in a progressive manner, the same and similar parts of each embodiment can be referred to each other, and each embodiment focuses on the differences from other embodiments.
  • the description is relatively simple, and for relevant parts, refer to part of the description of the method embodiment.
  • the embodiments of the present application may be provided as methods, systems, or computer program products. Accordingly, the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, the present application may take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) having computer-usable program code embodied therein.
  • computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • These computer program instructions may also be stored in a computer-readable memory capable of directing a computer or other programmable data processing apparatus to operate in a specific manner, such that the instructions stored in the computer-readable memory produce an article of manufacture comprising instruction means, the instructions
  • the device realizes the function specified in one or more procedures of the flowchart and/or one or more blocks of the block diagram.
  • a computing device includes one or more processors (CPUs), input/output interfaces, network interfaces, and memory.
  • processors CPUs
  • input/output interfaces network interfaces
  • memory volatile and non-volatile memory
  • Memory may include non-permanent storage in computer-readable media, in the form of random access memory (RAM) and/or nonvolatile memory such as read-only memory (ROM) or flash RAM. Memory is an example of computer readable media.
  • RAM random access memory
  • ROM read-only memory
  • flash RAM flash random access memory
  • Computer-readable media including both permanent and non-permanent, removable and non-removable media, can be implemented by any method or technology for storage of information.
  • Information may be computer readable instructions, data structures, modules of a program, or other data.
  • Examples of computer storage media include, but are not limited to, phase change memory (PRAM), static random access memory (SRAM), dynamic random access memory (DRAM), other types of random access memory (RAM), read only memory (ROM), Electrically Erasable Programmable Read-Only Memory (EEPROM), Flash memory or other memory technology, Compact Disc Read-Only Memory (CD-ROM), Digital Versatile Disc (DVD) or other optical storage, Magnetic tape cartridge, tape magnetic disk storage or other magnetic storage device or any other non-transmission medium that can be used to store information that can be accessed by a computing device.
  • computer-readable media excludes transitory computer-readable media, such as modulated data signals and carrier waves.
  • the embodiments of the present application may be provided as methods, systems or computer program products. Accordingly, the present application can take the form of an entirely hardware embodiment, an entirely software embodiment or an embodiment combining software and hardware aspects. Furthermore, the present application may take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) having computer-usable program code embodied therein.
  • a computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Studio Devices (AREA)

Abstract

本申请提供一种同步曝光处理方法、装置、系统及设备。方法包括:确定图像传感器的帧率和帧内的数据行序列,所述数据行序列用于描述帧内数据行中有效数据行的分布情况,所述图像传感器为卷帘曝光式的图像传感器;基于所述帧率和所述数据行序列中数据行的总行数,确定所述图像传感器曝光的行周期;基于所述行周期和所述数据行序列中首个有效数据行的行数,结合预设每行最大曝光时长,得到控制基准行数;基于所述控制基准行数,同步控制所述图像传感器及其补光灯执行曝光作业。由此,可通过同步控制卷帘式曝光下图像传感器的有效曝光与补光灯的亮灭时间,达到节省补光灯功耗、降低设备的发热成本的目的。

Description

一种同步曝光处理方法、装置、系统及设备
本申请要求于2021年6月4日提交中国专利局、申请号为202110627561.4申请名称为“一种同步曝光处理方法、装置、系统及设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及摄像技术领域,尤其涉及一种同步曝光处理方法、装置、系统及设备。
背景技术
图像曝光是影响图像质量的重要因素之一,经过均匀、稳定的曝光生成的图像具有清晰度高、色彩平衡等特性;而非均匀、不稳定的曝光则容易导致图像边缘曝光不足、整体亮度突变、图像亮度低等图像质量问题。
图像传感器在曝光时需要将外界传入的光信号转化为电信号,对于某些特殊的场合,如低照度、特殊波长的光信号较少等场合,需要依赖补光灯,如使用LED(Light Emitting Diode,发光二极管)等进行补光。而在图像传感器采用卷帘式曝光的方式进行逐行曝光的情况下,为保证每行曝光时获取的光信号强度相同,补光灯需要保持常亮状态,但这样会导致补光灯及整机发热严重、功耗增加,甚至影响其他电子器件的数据精度。
因此,需要提供一种节省补光灯功耗、降低设备发热成本的方案。
发明内容
本申请实施例提供一种同步曝光处理方法,用以节省补光灯功耗、降低设备的发热成本。
本申请实施例还提供一种同步曝光处理方法,包括:
确定图像传感器的帧率和帧内的数据行序列,所述数据行序列用于描述帧内数据行中有效数据行的分布情况,所述图像传感器为卷帘曝光式的图像传感器;
基于所述帧率和所述数据行序列中数据行的总行数,确定所述图像传感器曝光的行周期;
基于所述行周期和所述数据行序列中首个有效数据行的行数,结合预设每行最大曝光时长,得到控制基准行数;
基于所述控制基准行数,同步控制所述图像传感器及其补光灯执行曝光作业。
本申请实施例还提供一种同步曝光处理系统,包括:主控芯片、图像传感器、补光灯驱动电路和补光灯,其中:
所述图像传感器和所述补光灯驱动电路分别与所述主控芯片连接,所述补光灯与所述补光灯驱动电路连接,所述图像传感器为卷帘曝光式的图像传感器;
所述主控芯片获取图像传感器的帧率和帧内的数据行序列,所述数据行序列用于描述帧内数据行中有效数据行的分布情况;
所述主控芯片基于所述帧率和所述数据行序列中数据行的总行数,确定所述图像传感器曝光的行周期;
所述主控芯片基于所述行周期和所述数据行序列中首个有效数据行的行数,结合预设每行最大曝光时长,得到控制基准行数;
所述主控芯片基于所述控制基准行数,同步控制所述图像传感器及其补光灯执行曝光作业;
所述主控芯片通过控制所述补光灯驱动电路驱动所述补光灯执行曝光作业。
本申请实施例还提供一种摄像机,包括如上述的同步曝光处理系统。
本申请实施例还提供一种同步曝光处理装置,包括:
确定模块,用于确定图像传感器的帧率和帧内的数据行序列,所述数据行序列用于描述帧内数据行中有效数据行的分布情况,所述图像传感器为卷帘曝光式的图像传感器;
第一处理模块,用于基于所述帧率和所述数据行序列中数据行的总行数,确定所述图像传感器曝光的行周期
第二处理模块,用于基于所述行周期和所述数据行序列中首个有效数据行的行数,结合预设每行最大曝光时长,得到控制基准行数;
控制模块,用于基于所述控制基准行数,同步控制所述图像传感器及其补光灯执行曝光作业。
本申请实施例还提供一种电子设备,包括:处理器;以及被安排成存储 计算机可执行指令的存储器,所述可执行指令在被执行时使所述处理器执行如上述的方法的步骤。
本申请实施例还提供一种计算机可读存储介质,所述计算机可读存储介质存储一个或多个程序,所述一个或多个程序当被包括多个应用程序的电子设备执行如上述的方法的步骤。
本申请实施例还提供一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行如上述的方法的步骤。
本申请实施例实现了,可通过分析帧内有效数据行的分布情况,计算可实现图像传感器和补光灯同步控制的控制基准行数,从而可依据控制基准行数同步控制卷帘式曝光下图像传感器的有效曝光与补光灯的亮灭时间,达到节省补光灯功耗、降低设备的发热成本的目的。
附图说明
为了更清楚地说明本申请实施例和现有技术的技术方案,下面对实施例和现有技术中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的实施例。
图1为本申请一实施例提供的一种同步曝光处理方法的流程示意图;
图2为本申请一实施例提供的同步曝光的控制原理示意图;
图3为本申请一实施例提供的步骤108的一种实现方式的流程示意图;
图4为本申请一实施例提供的一种同步曝光处理系统的结构示意图;
图5为本申请一实施例提供的一种同步曝光处理装置的结构示意图;
图6为本申请一实施例提供的一种电子设备的结构示意图。
具体实施方式
为使本申请的目的、技术方案、及优点更加清楚明白,以下参照附图并举实施例,对本申请进一步详细说明。显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
以下结合附图,详细说明本申请各实施例提供的技术方案。
图1为本申请一实施例提供的一种同步曝光处理方法的流程示意图,参见图1,所述方法具体可以包括如下步骤:
步骤102、确定图像传感器的帧率和帧内的数据行序列,数据行序列用于描述帧内数据行中有效数据行的分布情况,所述图像传感器为卷帘曝光式的图像传感器。
其中,fps(Frames Per Second,帧率)是指画面每秒传输帧数,通俗来讲就是指动画或视频每秒显示的画面数,此处是指图像传感器每秒采集的帧数。
卷帘曝光式的图像传感器指的是:不同像元按照从左到右的顺序逐行进行曝光的图像传感器。
参见图2,数据行序列是指:用于描述每一帧图像周期内图像传感器所输出的第1行至末行的数据行的序列,其中所描述的内容包括:帧内数据行的总行数、以及有效数据行所在的行数,如有效第1行至有效1080行,上述数据行的总行数、有效数据行的总数及所在行数与图像传感器型号相对应,此处不做限定。图2中的黑色方块表示每一数据行开始进行曝光,黑色原点表示每一数据行结束曝光,并生成该数据行的像素数据,图2中两个坐标系的横坐标表示时间Time,上面的坐标系中的纵坐标表示曝光的行数,下面的坐标系中的纵坐标V表示补光灯的开关状态。
具体的,可以获得图像传感器的型号,然后根据该型号,查询得到该图像传感器的帧率和帧内的数据行序列。
步骤104、基于所述帧率和所述数据行序列中数据行的总行数Vmax,确定所述图像传感器曝光的行周期。
其中,数据行序列所描述的内容中包括帧内数据行的总行数,而数据行序列与图像传感器的型号相对应,也就是说,数据行的总行数与图像传感器的型号对应,即可通过图像传感器型号确定帧内数据行的总行数。
上述图像传感器曝光的行周期ΔT的计算公式可以为:
ΔT=1/fps/Vmax
步骤106、基于所述行周期和所述数据行序列中首个有效数据行的行数Nst,结合预设每行最大曝光时长,得到控制基准行数。
其中,上述每行最大曝光时长指的是:图像传感器对各个数据行进行曝光时,所需的最大时长。该时长可以是人为设定的,也可以根据实验测量得到,或者可以根据图像传感器的型号查询得到。
上述首个有效数据行的行数指的是:帧内第一个有效数据行相对帧内所有数据行的行数,以上述图2为例,有效第1行为首个有效数据行,处于帧内所有数据行中的第5行,因此首个有效数据行的行数为5。
上述控制基准行数可以理解为:控制补光灯打开时,图像传感器进行曝光的数据行所在的行数。这样在图像传感器逐行进行曝光的情况下,当曝光至控制基准行数对应的数据行时,可以控制补光灯打开,以便于补光灯在有效数据行的曝光过程中进行补光。
本申请的一个实施例中,在控制基准行数对应的数据行处于当前帧图像的数据行的首行的情况下,可以按照如下公式计算控制基准行数Nx2:
Nx2=Nst-t1/ΔT
在控制基准行数对应的数据行处于上一帧图像的数据行的尾行的情况下,可以按照如下公式计算控制基准行数Nx2:
Nx2=Vmax+Nst-t1/ΔT+1
其中,上述t1表示所有有效数据行中的最大曝光时间,ΔT表示图像传感器的行周期,ΔT=1/fps/Vmax,fps表示图像传感器的帧率,Vmax表示每一帧图像中所有数据行的总数,Nst表示首个有效数据行所在的行数。
具体的,在控制基准行数对应的数据行处于当前帧图像的数据行的首行的情况下,说明只要在基准行数对应的数据行曝光之前打开补光灯,即可保证及时对有效数据行进行补光,这种情况下,最大曝光时间t1=(Nst-Nx2)ΔT,对该公式进行换算可得:Nx2=Nst-t1/ΔT;
在控制基准行数对应的数据行处于上一帧图像的数据行的尾行的情况下,说明在曝光至上一帧图像的尾行时,即需要打开补光灯,以保证及时对当前图像帧中的有效数据行进行补光,这种情况下,最大曝光时间t1=(Vmax+Nx2+1–Nx2)ΔT,对该公式进行换算可得:Nx2=Vmax+Nst-t1/ΔT+1。
本申请的一个实施例中,若检测到所述控制基准行数为负数,则说明控制基准行数所对应的数据行在上一帧图像所有数据行的尾行中,进而说明图 像传感器在曝光至当前帧的上一帧图像的尾行时,已经开始同步曝光当前帧图像的有效数据行了。因此,需要基于所述数据行的总行数,修正所述控制基准行数,以确保同帧内的同步曝光。具体的,在修正控制基准行数时,可以根据数据行的总行数,将控制基准行数调整至上一帧图像中数据行的尾行,例如,可以计算数据行总行数与该控制基准行数之和+1,作为调整至上一帧图像的控制基准行数。这样,在图像传感器曝光至上一帧图像的尾行时,即可以打开补光灯,以保证及时对当前帧图像的曝光过程进行补光。
本申请的一个实施例中,考虑到补光灯的启动需要一定的驱动时间,因此,需要配置行数提前量,以确保同步曝光的控制精确度,具体地:
基于所述补光灯驱动亮灯所需的时长和所述行周期,确定补偿行数;基于所述补偿行数,补偿所述控制基准行数。
具体的,可以计算驱动亮灯所需的时长与行周期的比值,对上述比值进行取整,将取整结果作为补偿行数,然后计算控制基准行数与上述补偿行数的差值,从而将控制基准行数对应的数据行提前,得到补偿后的控制基准行数,便于后续提前打开补光灯,避免图像传感器逐行曝光时各数据行的亮度不均匀。
其中,驱动亮灯所需的时长与补光灯的性能相关,相应地,驱动亮灯所需的时长越短,需要补偿的行数越小,反之,驱动亮灯所需的时长越长,需要补偿的行数越大。所述补光灯驱动亮灯所需的时长可以通过实验测量得到,也可以根据补光灯的型号查询得到。
基于此,本实施例通过对控制基准行数进行修正和补偿,以确保得到精确的控制基准行数,进而可有效提高同步曝光的控制精确度。
步骤108、基于所述控制基准行数,同步控制所述图像传感器及其补光灯执行曝光作业。
其中,补光灯是用来对某些缺乏光照度的设备或场景进行灯光补偿的一种灯具,此处的补光灯是指摄像补光灯,又称摄像灯、机头灯、采访灯、新闻灯等,其可以为LED灯。
参见图3,步骤108的一种实现方式可以为:
步骤302、基于有效数据行的总行数和行周期,确定补光灯的单帧亮灯时 长。
其中,上述单帧亮灯时长指的是:在图像传感器采集一帧图像期间,补光灯处于亮灯状态的时长。
参见图2,假设有效数据行包括有效第1行至有效第1080行,结合前文计算的行周期,可计算出补光灯的单帧亮灯时长t,其中,为保证补光灯能够在所有有效数据行的曝光过程中进行补光,t需要大于等于所有有效数据行的曝光总时间,上述所有有效数据行的曝光总时间为:有效数据行的行数与上述行周期的乘积。
具体的,在确定补光灯的单帧亮灯时长时,可以首先计算得到所有有效数据行的曝光总时间,然后计算上述曝光总时间与预设的补光冗余时间之和,作为补光灯的单帧亮灯时长。
步骤304、基于所述控制基准行数和所述单帧亮灯时长,生成同步信号。
本申请的一个实施例中,上述同步信号中包括高电平和低电平,同步信号处于上升沿时,可以触发图像传感器将行数据输出计数器重置为控制基准行数;同步信号处于高电平时,可以触发补光灯进入开启状态,单帧时间内高电平的维持时长与单帧亮灯时长相同;同步信号处于低电平时,控制补光灯进入关闭状态。
在上述方案的基础上,可以基于控制基准行数和单帧亮灯时长,确定图像传感器将行数据输出计数器重置为控制基准行数的第一时刻,并确定补光灯进入开启状态的第二时刻,以及补光灯处于开启状态的开启时长,然后基于上述第一时刻、第二时刻、开启时长确定高电平、低电平的转换时刻及持续时长,从而生成同步信号。
其中,上述第一时刻为图像传感器配置行数据输出计数器重置控制基准行数的时刻,也即为图像传感器收到同步信号的上升沿的时刻;
上述第二时刻为补光灯是开始打开的时刻,也即是补光灯收到同步信号的高电平的时刻;
上述开启时长可以是最大曝光时间t1、所有有效数据行的曝光总时长、其他时长T 其他之和,上述其他时长指的是开启补光灯所需的时长、信号延迟时间等。
上述开启时长T可以根据下述公式计算得到:
T=t1+(h-1)ΔT+T 其他
上述h表示所有有效数据行的行数,上述ΔT表示图像传感器进行曝光的行周期。
步骤306、同步向所述图像传感器及其补光灯发送同步信号,以控制所述图像传感器及其补光灯执行同步曝光作业。
其中,所述同步信号用于触发所述图像传感器将行数据输出计数器重置为所述控制基准行数,以触发图像传感器在每帧周期内的第控制基准行数的数据行进行曝光作业,以生成有效第1行至有效末行的有效数据行的行数据,上述同步信号还用于控制补光灯在每帧周期内的第控制基准行数的数据行打开以进行补光,以便于保证在图像传感器对有效数据行进行曝光的过程中,补光灯处于打开状态。其中,上述行数据输出计数器用于:计数图像传感器所输出的行数据的数量。
本申请的一个实施例中,所述同步信号可包括帧同步信号和行同步信号,帧同步信号用于确保所述图像传感器及其补光灯是在同一帧内进行同步曝光;行同步信号用于确保所述图像传感器及其补光灯是在同一行内进行同步曝光。
上述帧同步信号中高电平的上升沿用于表征图像传感器开始对一个图像帧进行曝光,高电平的下降沿用于表征图像传感器对一个图像帧结束曝光,高电平表征图像传感器的曝光过程,低电平表征图像传感器的空闲过程;
相应地,补光灯在帧同步信号的高电平阶段处于工作状态,在帧同步信号的低电平阶段处于空闲状态。
另外,需要说明的是,同步信号的形式可不做限定,只要能够在每帧周期内的第控制基准行数同时控制图像传感器和补光灯执行曝光作业即可。例如,在一具体示例中,本实施例提供了同步信号的一具体形式,所述同步信号为脉冲宽度调制信号;除此之外,上述同步信号还可以是VSYNC(Vertical synchronization,垂直同步)信号、FSIN信号、SRTQBE信号等。
参见图2,所述脉冲宽度调制信号处于上升沿时,触发所述图像传感器将行数据输出计数器重置为所述控制基准行数;所述脉冲宽度调制信号处于高电平时,触发所述补光灯进入开启状态,单帧时间内高电平的维持时长与所 述单帧亮灯时长相同;脉冲宽度调制信号处于低电平时,控制所述补光灯进入关闭状态。
由此可知,本实施例可通过分析帧内有效数据行的分布情况,计算可实现图像传感器和补光灯同步控制的控制基准行数,从而可依据控制基准行数同步控制卷帘式曝光下图像传感器的有效曝光与补光灯的亮灭时间,使得仅在图像传感器对有效数据行进行曝光时,补光灯开启;在图像传感器对非有效数据行进行曝光时,补光灯关闭。达到节省补光灯功耗、降低设备的发热成本的目的。
在另一可行实施例中,在图1对应的实施例的基础上,本实施例提供了控制基准行数的计算原理,如下:
参见图2,图像传感器的行数据输出计数器将在PWM(Pulse width modulation,脉冲宽度调制信号)上升沿到来瞬间进行重置,根据寄存器设定要求重置到指定值,即控制基准行数。重置点指的是:图像传感器在对当前帧的有效数据行首行开始曝光时,正输出的上一帧的数据行第X 2行的曝光数据输出位置点,必须满足单帧亮灯时长t>=所有有效数据行曝光总时间,才能保障图像曝光均匀,所以在每一帧周期的曝光时间的曝光区间外(取左侧点)取临近的数据输出位置点作为重置点(图上箭头指引位置),将上述重置点所在的数据行的行数作为控制基准行数。
假设该点为第Nx 2行,则由软件设置的每行行曝光时间t1计算公式:
t1=(Nst-Nx 2)ΔT
其中,Nst表示首个有效数据行的行数;Nx 2表示重置点所在的行数,即控制基准行;ΔT表示所述图像传感器曝光的行周期。
可以得出,行数据输出计数器重置点所在行数Nx 2计算公式为:
Nx 2=Nst-t1/ΔT
若上述公式计算得出的Nx 2为负值,则代表重置点在上一帧图像的数据行总行数Vmax的尾行中,即通过重置到上一帧的尾行,保障下一帧的曝光正常,此时行数据输出计数器重置点所在行数Nx 2的计算公式变为:
Nx 2=Vmax+Nst-t1/ΔT+1
其中,Nst为有效数据行首行在Vmax中对应的实际行数;
Vmax为帧内所有行的总行数,含有效数据行和无效dummy行;
ΔT为卷帘曝光的行周期,ΔT=1/fps/Vmax,Nx 2可以理解为控制基准行数。
进一步地,本实施例还提供了使用本方案时补光灯的亮灯时间和使用现有技术时补光灯的常亮时间的对比结果,如下:
根据上述计算公式,可以计算出行曝光的时间为t1时的图像传感器行数据输出计数重置点,对应到一帧时间内LED亮灯时间T为:
T=t1+(h-1)ΔT+T 其他
相比于常亮状态下的百分比为:
Figure PCTCN2022094134-appb-000001
其中,h为希望曝光的有效数据行数;
T 其他为考虑到补光灯及信号延迟的补偿时间。
在卷帘式曝光下相同的帧率和图像场景环境下,通过代入上述公式,能够计算出使用本方案中补光灯对有效数据行进行同步曝光的亮灯时间、相比于常亮状态下的百分比等参数。
下面针对某厂商提供的一款图像传感器进行示例性说明:
假设图像传感器帧率为25fps时,Vmax=6000,h=1080,要求每行曝光时长控制在最大10ms以内,则卷帘曝光的行周期ΔT为:
Figure PCTCN2022094134-appb-000002
由原厂确认,此时Nst=41,代入参数计算控制基准行数Nx 2
Figure PCTCN2022094134-appb-000003
计算出的Nx 2是负值,则对Nx 2进行补偿,得到补偿后的控制基准行数Nx 2
Figure PCTCN2022094134-appb-000004
考虑硬件LED驱动需要1ms的启动时间,因此亮灯时间需要提前1ms,基于此可以计算补偿行数ΔN:
Figure PCTCN2022094134-appb-000005
则需要重置点至少提前150行,即补偿后的控制基准行数Nx 2为:
Nx 2=4542-150=4392
进而可以计算补光灯的亮灯时间T为:
T=t1+(h-1)ΔT+T 其他=10ms+(1080-1)6.667us+1ms=18.2ms
相比常亮状态下的亮灯时间占比:
Figure PCTCN2022094134-appb-000006
对比可知,在图像传感器收到外部的同步信号时,将行数据输出计数器重置为4392,可满足亮灯时间和图像传感器有效数据行曝光的同步控制,和不使用本方案的常亮补光灯相比,使用本同步曝光方案可节省1-45.5%=54.5%的功耗。
综上所述,本实施例针对性的提出了卷帘式曝光下图像传感器有效曝光与补光灯的亮灭时间的控制关系,达到节省补光灯功耗的目的,进而降低设备的发热成本;还给出了一套完整的图像传感器曝光时间、行数据输出计数重置点、补光灯有效功耗之间的关系;而且,图像传感器的帧率等于PWM的频率,由于补光灯在PWM的高电平阶段保持工作状态,因此PWM的占空比高电平时间等于一帧时间内LED的亮灯时间,该方案的图像传感器、LED驱动电路、支持PWM的SOC芯片在嵌入式设备上的选型和实现非常通用。
图4为本申请一实施例提供的一种同步曝光处理系统的结构示意图,参见图4,所述同步曝光处理系统具体可以包括:主控芯片、图像传感器、补光灯驱动电路和补光灯,其中:
所述图像传感器和所述补光灯驱动电路分别与所述主控芯片连接,所述补光灯与所述补光灯驱动电路连接,所述图像传感器为卷帘曝光式的图像传感器;
所述主控芯片获取图像传感器的帧率和帧内的数据行序列,所述数据行序列用于描述帧内数据行中有效数据行的分布情况;
所述主控芯片基于所述帧率和所述数据行序列中数据行的总行数,确定所述图像传感器曝光的行周期;
所述主控芯片基于所述行周期和所述数据行序列中首个有效数据行的行数,结合预设每行最大曝光时长,得到控制基准行数;
所述主控芯片基于所述控制基准行数,同步控制所述图像传感器及其补光灯执行曝光作业;
所述主控芯片通过控制所述补光灯驱动电路驱动所述补光灯执行曝光作业。
其中,补光灯可以为LED,补光灯驱动电路为LED驱动电路;主控芯片通过PWM发出同步控制信号同时给LED驱动电路和图像传感器的同步引脚,图像传感器的同步引脚在收到PWM信号的上升沿时会作为中断信号处理,将对内部行数据输出计数器进行重置(该计数器可支持重置到Vmax范围内的任意值N,“N”代表从第N行开始进行曝光后的数据输出),以达到有效图像行曝光和LED亮灯时间的同步。
本申请的一个实施例中,主控芯片在所述同步控制所述图像传感器及其补光灯执行曝光作业之前,若检测到所述控制基准行数为负数,则基于所述数据行的总行数,修正所述控制基准行数。
本申请的一个实施例中,主控芯片在所述同步控制所述图像传感器及其补光灯执行曝光作业之前,基于所述补光灯驱动亮灯所需的时长和所述行周期,确定补偿行数;基于所述补偿行数,补偿所述控制基准行数。
本申请的一个实施例中,主控芯片基于有效数据行的总行数和行周期,确定补光灯的单帧亮灯时长;基于所述控制基准行数和所述单帧亮灯时长,生成同步信号;将所述同步信号同时发送至所述图像传感器及其补光灯,以控制所述图像传感器及其补光灯执行同步曝光作业。
本申请的一个实施例中,所述同步信号用于触发所述图像传感器将行数据输出计数器重置为所述控制基准行数。
本申请的一个实施例中,所述同步信号包括帧同步信号和行同步信号。
本申请的一个实施例中,所述同步信号为调制脉冲宽度调制信号;
其中,所述脉冲宽度调制信号处于上升沿时,触发所述图像传感器将行数据输出计数器重置为所述控制基准行数;所述脉冲宽度调制信号处于高电平时,触发所述补光灯进入开启状态,单帧时间内高电平的维持时长与所述单帧亮灯时长相同;脉冲宽度调制信号处于低电平时,控制所述补光灯进入关闭状态。
基于相似的发明创造,在另一实施例中,还提供了一种摄像机,所述摄像机包括如图4对应实施例提供的同步曝光处理系统。
由此可知,上述实施例提供的同步曝光处理系统和摄像机可通过分析帧内有效数据行的分布情况,计算可实现图像传感器和补光灯同步控制的控制基准行数,从而可依据控制基准行数同步控制卷帘式曝光下图像传感器的有效曝光与补光灯的亮灭时间,达到节省补光灯功耗、降低设备的发热成本的目的。
图5为本申请一实施例提供的一种同步曝光处理装置的结构示意图,可应用于图4中的主控芯片,参见图5,所述装置具体可以包括:
确定模块501,用于确定图像传感器的帧率和帧内的数据行序列,所述数据行序列用于描述帧内数据行中有效数据行的分布情况,所述图像传感器为卷帘曝光式的图像传感器;
第一处理模块502,用于基于所述帧率和所述数据行序列中数据行的总行数,确定所述图像传感器曝光的行周期
第二处理模块503,用于基于所述行周期和所述数据行序列中首个有效数据行的行数,结合预设每行最大曝光时长,得到控制基准行数;
控制模块504,用于基于所述控制基准行数,同步控制所述图像传感器及其补光灯执行曝光作业。
本申请的一个实施例中,装置还包括:修正模块,用于若检测到所述控制基准行数为负数,则基于所述数据行的总行数,修正所述控制基准行数。
本申请的一个实施例中,装置还包括:补偿模块,用于基于所述补光灯驱动亮灯所需的时长和所述行周期,确定补偿行数;基于所述补偿行数,补偿所述控制基准行数。
本申请的一个实施例中,所述控制模块504,具体用于:基于有效数据行的总行数和行周期,确定补光灯的单帧亮灯时长;基于所述控制基准行数和所述单帧亮灯时长,生成同步信号;将所述同步信号同时发送至所述图像传感器及其补光灯,以控制所述图像传感器及其补光灯执行同步曝光作业。
本申请的一个实施例中,所述同步信号用于触发所述图像传感器将行数据输出计数器重置为所述控制基准行数。
本申请的一个实施例中,所述同步信号包括帧同步信号和行同步信号。
本申请的一个实施例中,所述同步信号为调制脉冲宽度调制信号;其中,所述脉冲宽度调制信号处于上升沿时,触发所述图像传感器将行数据输出计数器重置为所述控制基准行数;所述脉冲宽度调制信号处于高电平时,触发所述补光灯进入开启状态,单帧时间内高电平的维持时长与所述单帧亮灯时长相同;脉冲宽度调制信号处于低电平时,控制所述补光灯进入关闭状态。
由此可知,本实施例可通过分析帧内有效数据行的分布情况,计算可实现图像传感器和补光灯同步控制的控制基准行数,从而可依据控制基准行数同步控制卷帘式曝光下图像传感器的有效曝光与补光灯的亮灭时间,达到节省补光灯功耗、降低设备的发热成本的目的。另外,对于上述装置实施方式而言,由于其与方法实施方式基本相似,所以描述的比较简单,相关之处参见方法实施方式的部分说明即可。而且,应当注意的是,在本申请实施例的装置的各个部件中,根据其要实现的功能而对其中的部件进行了逻辑划分,但是,本申请实施例不受限于此,可以根据需要对各个部件进行重新划分或者组合。
图6为本申请一实施例提供的一种电子设备的结构示意图,参见图6,该电子设备包括处理器、内部总线、网络接口、内存以及非易失性存储器,当然还可能包括其他业务所需要的硬件。处理器从非易失性存储器中读取对应的计算机程序到内存中然后运行,在逻辑层面上形成同步曝光处理装置。当然,除了软件实现方式之外,本申请实施例并不排除其他实现方式,比如逻辑器件抑或软硬件结合的方式等等,也就是说以下处理流程的执行主体并不限定于各个逻辑单元,也可以是硬件或逻辑器件。
网络接口、处理器和存储器可以通过总线系统相互连接。总线可以是 ISA(Industry Standard Architecture,工业标准体系结构)总线、PCI(Peripheral Component Interconnect,外设部件互连标准)总线或EISA(Extended Industry Standard Architecture,扩展工业标准结构)总线等。所述总线可以分为地址总线、数据总线、控制总线等。为便于表示,图6中仅用一个双向箭头表示,但并不表示仅有一根总线或一种类型的总线。
存储器用于存放程序。具体地,程序可以包括程序代码,所述程序代码包括计算机操作指令。存储器可以包括只读存储器和随机存取存储器,并向处理器提供指令和数据。存储器可能包含高速随机存取存储器(Random-Access Memory,RAM),也可能还包括非易失性存储器(non-volatile memory),例如至少1个磁盘存储器。
处理器,用于执行所述存储器存放的程序,并具体执行:
确定图像传感器的帧率和帧内的数据行序列,所述数据行序列用于描述帧内数据行中有效数据行的分布情况,所述图像传感器为卷帘曝光式的图像传感器;
基于所述帧率和所述数据行序列中数据行的总行数,确定所述图像传感器曝光的行周期;
基于所述行周期和所述数据行序列中首个有效数据行的行数,结合预设每行最大曝光时长,得到控制基准行数;
基于所述控制基准行数,同步控制所述图像传感器及其补光灯执行曝光作业。
上述如图5所示实施例揭示的同步曝光处理装置执行的方法可以应用于处理器中,或者由处理器实现。处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器,包括中央处理器(Central Processing Unit,CPU)、网络处理器(Network Processor,NP)等;还可以是数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施 例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
同步曝光处理装置还可执行图1-3示出的方法,并实现管理者节点执行的方法。
基于相同的发明创造,本申请实施例还提供了一种计算机可读存储介质,所述计算机可读存储介质存储一个或多个程序,所述一个或多个程序当被包括多个应用程序的电子设备执行时,使得所述电子设备执行图1-3对应的实施例提供的同步曝光处理方法。
本申请中的各个实施例均采用递进的方式描述,各个实施例之间相同相似的部分互相参见即可,每个实施例重点说明的都是与其他实施例的不同之处。尤其,对于系统实施例而言,由于其基本相似于方法实施例,所以描述的比较简单,相关之处参见方法实施例的部分说明即可。
上述对本申请特定实施例进行了描述。其它实施例在所附权利要求书的范围内。在一些情况下,在权利要求书中记载的动作或步骤可以按照不同于实施例中的顺序来执行并且仍然可以实现期望的结果。另外,在附图中描绘的过程不一定要求示出的特定顺序或者连续顺序才能实现期望的结果。在某些实施方式中,多任务处理和并行处理也是可以的或者可能是有利的。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据上述提供的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/ 或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
在一个典型的配置中,计算设备包括一个或多个处理器(CPU)、输入/输出接口、网络接口和内存。
内存可能包括计算机可读介质中的非永久性存储器,随机存取存储器(RAM)和/或非易失性内存等形式,如只读存储器(ROM)或闪存(flash RAM)。内存是计算机可读介质的示例。
计算机可读介质包括永久性和非永久性、可移动和非可移动媒体可以由任何方法或技术来实现信息存储。信息可以是计算机可读指令、数据结构、程序的模块或其他数据。计算机的存储介质的例子包括,但不限于相变内存(PRAM)、静态随机存取存储器(SRAM)、动态随机存取存储器(DRAM)、其他类型的随机存取存储器(RAM)、只读存储器(ROM)、电可擦除可编程只读存储器(EEPROM)、快闪记忆体或其他内存技术、只读光盘只读存储器(CD-ROM)、数字多功能光盘(DVD)或其他光学存储、磁盒式磁带,磁带磁磁盘存储或其他磁性存储设备或任何其他非传输介质,可用于存储可以被计算设备访问的信息。按照本文中的界定,计算机可读介质不包括暂存电脑可读媒体(transitory media),如调制的数据信号和载波。
还需要说明的是,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、商品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、商品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、商品或者设备中还存在另外的相同要素。
本领域技术人员应明白,本申请的实施例可提供为方法、系统或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
以上所述仅为本申请的实施例而已,并不用于限制本申请。对于本领域技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原理之内所作的任何修改、等同替换、改进等,均应包含在本申请的权利要求范围之内。

Claims (25)

  1. 一种同步曝光处理方法,其特征在于,包括:
    确定图像传感器的帧率和帧内的数据行序列,所述数据行序列用于描述帧内数据行中有效数据行的分布情况,所述图像传感器为卷帘曝光式的图像传感器;
    基于所述帧率和所述数据行序列中数据行的总行数,确定所述图像传感器曝光的行周期;
    基于所述行周期和所述数据行序列中首个有效数据行的行数,结合预设每行最大曝光时长,得到控制基准行数;
    基于所述控制基准行数,同步控制所述图像传感器及其补光灯执行曝光作业。
  2. 根据权利要求1所述的方法,其特征在于,在所述同步控制所述图像传感器及其补光灯执行曝光作业之前,还包括:
    若检测到所述控制基准行数为负数,则基于所述数据行的总行数,修正所述控制基准行数。
  3. 根据权利要求1或2所述的方法,其特征在于,在所述同步控制所述图像传感器及其补光灯执行曝光作业之前,还包括:
    基于所述补光灯驱动亮灯所需的时长和所述行周期,确定补偿行数;
    基于所述补偿行数,补偿所述控制基准行数。
  4. 根据权利要求1-3中任一项所述的方法,其特征在于,所述基于所述控制基准行数,同步控制所述图像传感器及其补光灯执行曝光作业,包括:
    基于所述有效数据行的总行数和行周期,确定所述补光灯的单帧亮灯时长;
    基于所述控制基准行数和所述单帧亮灯时长,生成同步信号;
    同步向所述图像传感器及其补光灯发送所述同步信号,以控制所述图像传感器及其补光灯执行同步曝光作业。
  5. 根据权利要求4所述的方法,其特征在于,
    所述同步信号用于触发所述图像传感器将行数据输出计数器重置为所述控制基准行数。
  6. 根据权利要求4所述的方法,其特征在于,所述同步信号包括帧同步信号和行同步信号。
  7. 根据权利要求4所述的方法,其特征在于,所述同步信号为脉冲宽度调制信号;
    其中,所述脉冲宽度调制信号处于上升沿时,触发所述图像传感器将行数据输出计数器重置为所述控制基准行数;所述脉冲宽度调制信号处于高电平时,触发所述补光灯进入开启状态,单帧时间内高电平的维持时长与所述单帧亮灯时长相同;所述脉冲宽度调制信号处于低电平时,控制所述补光灯进入关闭状态。
  8. 一种同步曝光处理系统,其特征在于,包括:主控芯片、图像传感器、补光灯驱动电路和补光灯,其中:
    所述图像传感器和所述补光灯驱动电路分别与所述主控芯片连接,所述补光灯与所述补光灯驱动电路连接,所述图像传感器为卷帘曝光式的图像传感器;
    所述主控芯片获取图像传感器的帧率和帧内的数据行序列,所述数据行序列用于描述帧内数据行中有效数据行的分布情况;
    所述主控芯片基于所述帧率和所述数据行序列中数据行的总行数,确定所述图像传感器曝光的行周期;
    所述主控芯片基于所述行周期和所述数据行序列中首个有效数据行的行数,结合预设每行最大曝光时长,得到控制基准行数;
    所述主控芯片基于所述控制基准行数,同步控制所述图像传感器及其补光灯执行曝光作业;
    所述主控芯片通过控制所述补光灯驱动电路驱动所述补光灯执行曝光作业。
  9. 根据权利要求8所述的系统,其特征在于,所述主控芯片在所述同步控制所述图像传感器及其补光灯执行曝光作业之前,若检测到所述控制基准行数为负数,则基于所述数据行的总行数,修正所述控制基准行数。
  10. 根据权利要求8所述的系统,其特征在于,所述主控芯片在所述同步控制所述图像传感器及其补光灯执行曝光作业之前,基于所述补光灯驱动 亮灯所需的时长和所述行周期,确定补偿行数;基于所述补偿行数,补偿所述控制基准行数。
  11. 根据权利要求8-10所述的系统,其特征在于,所述主控芯片基于有效数据行的总行数和行周期,确定补光灯的单帧亮灯时长;基于所述控制基准行数和所述单帧亮灯时长,生成同步信号;将所述同步信号同时发送至所述图像传感器及其补光灯,以控制所述图像传感器及其补光灯执行同步曝光作业。
  12. 根据权利要求11所述的系统,其特征在于,所述同步信号用于触发所述图像传感器将行数据输出计数器重置为所述控制基准行数。
  13. 根据权利要求11所述的系统,其特征在于,所述同步信号包括帧同步信号和行同步信号。
  14. 根据权利要求11所述的系统,其特征在于,所述同步信号为调制脉冲宽度调制信号;
    其中,所述脉冲宽度调制信号处于上升沿时,触发所述图像传感器将行数据输出计数器重置为所述控制基准行数;所述脉冲宽度调制信号处于高电平时,触发所述补光灯进入开启状态,单帧时间内高电平的维持时长与所述单帧亮灯时长相同;脉冲宽度调制信号处于低电平时,控制所述补光灯进入关闭状态。
  15. 一种摄像机,其特征在于,包括如权利要求8-14中任一项所述的同步曝光处理系统。
  16. 一种同步曝光处理装置,其特征在于,包括:
    确定模块,用于确定图像传感器的帧率和帧内的数据行序列,所述数据行序列用于描述帧内数据行中有效数据行的分布情况,所述图像传感器为卷帘曝光式的图像传感器;
    第一处理模块,用于基于所述帧率和所述数据行序列中数据行的总行数,确定所述图像传感器曝光的行周期
    第二处理模块,用于基于所述行周期和所述数据行序列中首个有效数据行的行数,结合预设每行最大曝光时长,得到控制基准行数;
    控制模块,用于基于所述控制基准行数,同步控制所述图像传感器及其 补光灯执行曝光作业。
  17. 根据权利要求16所述的装置,其特征在于,所述装置还包括:
    修正模块,用于若检测到所述控制基准行数为负数,则基于所述数据行的总行数,修正所述控制基准行数。
  18. 根据权利要求16或17所述的装置,其特征在于,所述装置还包括:
    补偿模块,用于基于所述补光灯驱动亮灯所需的时长和所述行周期,确定补偿行数;基于所述补偿行数,补偿所述控制基准行数。
  19. 根据权利要求16-18中任一项所述的装置,其特征在于,所述控制模块,具体用于:基于有效数据行的总行数和行周期,确定补光灯的单帧亮灯时长;基于所述控制基准行数和所述单帧亮灯时长,生成同步信号;将所述同步信号同时发送至所述图像传感器及其补光灯,以控制所述图像传感器及其补光灯执行同步曝光作业。
  20. 根据权利要求19所述的装置,其特征在于,所述同步信号用于触发所述图像传感器将行数据输出计数器重置为所述控制基准行数。
  21. 根据权利要求19所述的装置,其特征在于,所述同步信号包括帧同步信号和行同步信号。
  22. 根据权利要求19所述的装置,其特征在于,所述同步信号为调制脉冲宽度调制信号;其中,所述脉冲宽度调制信号处于上升沿时,触发所述图像传感器将行数据输出计数器重置为所述控制基准行数;所述脉冲宽度调制信号处于高电平时,触发所述补光灯进入开启状态,单帧时间内高电平的维持时长与所述单帧亮灯时长相同;脉冲宽度调制信号处于低电平时,控制所述补光灯进入关闭状态。
  23. 一种电子设备,其特征在于,包括:处理器;以及被安排成存储计算机可执行指令的存储器,所述可执行指令在被执行时使所述处理器执行如权利要求1至7中任一项所述的方法的步骤。
  24. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储一个或多个程序,所述一个或多个程序当被包括多个应用程序的电子设备执行如权利要求1至7中任一项所述的方法的步骤。
  25. 一种包含指令的计算机程序产品,其特征在于,当其在计算机上运 行时,使得计算机执行如权利要求1至7中任一项所述的方法的步骤。
PCT/CN2022/094134 2021-06-04 2022-05-20 一种同步曝光处理方法、装置、系统及设备 WO2022253010A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110627561.4 2021-06-04
CN202110627561.4A CN113438424B (zh) 2021-06-04 2021-06-04 一种同步曝光处理方法、装置、系统及设备

Publications (1)

Publication Number Publication Date
WO2022253010A1 true WO2022253010A1 (zh) 2022-12-08

Family

ID=77803814

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/094134 WO2022253010A1 (zh) 2021-06-04 2022-05-20 一种同步曝光处理方法、装置、系统及设备

Country Status (2)

Country Link
CN (1) CN113438424B (zh)
WO (1) WO2022253010A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113438424B (zh) * 2021-06-04 2022-07-08 杭州海康威视数字技术股份有限公司 一种同步曝光处理方法、装置、系统及设备
CN114280892B (zh) * 2021-10-25 2024-01-16 合肥众群光电科技有限公司 一种用于不同干膜快速曝光的方法
CN113992853B (zh) * 2021-10-27 2024-05-24 北京市商汤科技开发有限公司 补光灯控制方法、模组、设备、系统、装置及电子设备
CN114245042B (zh) * 2021-12-16 2023-12-26 重庆紫光华山智安科技有限公司 补光方法、成像装置、电子设备及可读存储介质
CN115429218A (zh) * 2022-11-03 2022-12-06 北京鹰瞳科技发展股份有限公司 一种用于采集眼底图像的方法及其相关产品
CN116320741B (zh) * 2022-12-08 2024-01-26 瀚湄信息科技(上海)有限公司 一种全局卷帘快门曝光控制方法、装置及电子设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130229553A1 (en) * 2012-03-02 2013-09-05 Casio Computer Co., Ltd. Imaging device employing rolling shutter system
US20160248986A1 (en) * 2014-02-27 2016-08-25 Sony Corporation Digital cameras having reduced startup time, and related devices, methods, and computer program products
CN111818271A (zh) * 2020-06-30 2020-10-23 浙江大华技术股份有限公司 消除图像闪烁的方法、电子设备及存储介质
CN112351184A (zh) * 2019-08-07 2021-02-09 杭州海康威视数字技术股份有限公司 一种摄像机补光方法及装置
CN112437206A (zh) * 2020-11-25 2021-03-02 杭州海康威视数字技术股份有限公司 补光控制方法和摄像机
CN113438424A (zh) * 2021-06-04 2021-09-24 杭州海康威视数字技术股份有限公司 一种同步曝光处理方法、装置、系统及设备

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7568628B2 (en) * 2005-03-11 2009-08-04 Hand Held Products, Inc. Bar code reading device with global electronic shutter control
US10182181B2 (en) * 2014-12-23 2019-01-15 Intel Corporation Synchronization of rolling shutter camera and dynamic flash light
CN110072065B (zh) * 2018-01-23 2021-04-27 舜宇光学(浙江)研究院有限公司 适用于卷帘曝光深度相机的投射器工作时间控制方法及其应用
CN110121021A (zh) * 2019-06-28 2019-08-13 四川极智朗润科技有限公司 一种适用于卷帘快门相机的光学快门系统及其成像方法
CN111107247B (zh) * 2020-02-26 2021-12-03 上海富瀚微电子股份有限公司 一种曝光方法、一种图像系统及图像系统协同工作的方法
CN112261309B (zh) * 2020-10-22 2022-04-08 北京嘀嘀无限科技发展有限公司 基于ims摄像头和dms摄像头的拍摄方法及系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130229553A1 (en) * 2012-03-02 2013-09-05 Casio Computer Co., Ltd. Imaging device employing rolling shutter system
US20160248986A1 (en) * 2014-02-27 2016-08-25 Sony Corporation Digital cameras having reduced startup time, and related devices, methods, and computer program products
CN112351184A (zh) * 2019-08-07 2021-02-09 杭州海康威视数字技术股份有限公司 一种摄像机补光方法及装置
CN111818271A (zh) * 2020-06-30 2020-10-23 浙江大华技术股份有限公司 消除图像闪烁的方法、电子设备及存储介质
CN112437206A (zh) * 2020-11-25 2021-03-02 杭州海康威视数字技术股份有限公司 补光控制方法和摄像机
CN113438424A (zh) * 2021-06-04 2021-09-24 杭州海康威视数字技术股份有限公司 一种同步曝光处理方法、装置、系统及设备

Also Published As

Publication number Publication date
CN113438424B (zh) 2022-07-08
CN113438424A (zh) 2021-09-24

Similar Documents

Publication Publication Date Title
WO2022253010A1 (zh) 一种同步曝光处理方法、装置、系统及设备
WO2021022868A1 (zh) 一种摄像机补光方法及装置
WO2015139519A1 (zh) 一种互补金属氧化物半导体摄像机及其补光方法
US8872836B2 (en) Detecting static images and reducing resource usage on an electronic device
WO2020093651A1 (zh) 自动检测和抑制条纹的方法及装置、电子设备及计算机可读存储介质
US10200623B1 (en) Image capture setting determination in flash photography operations
WO2017113343A1 (zh) 一种调节背光亮度的方法和终端
WO2022188558A1 (zh) 一种图像处理方法、装置及摄像机
CN102932603A (zh) 一种补光控制方法及摄像机
US11044417B2 (en) HDR image sensor with LFM and reduced motion blur
US10609265B2 (en) Methods and apparatus for synchronizing camera flash and sensor blanking
CN113068289B (zh) 一种改善led灯具渐变效果的方法及装置
WO2017059577A1 (zh) 眼球跟踪装置及其辅助光源控制方法及相关装置
WO2022089191A1 (zh) 背光控制方法、装置、电子设备和计算机可读存储介质
WO2022021529A1 (zh) 背光处理系统、设备、方法、背光驱动器及存储介质
CN114158156B (zh) 一种补光灯的pwm调节方法、装置、设备及存储介质
US8902261B2 (en) Light source control method of projector
JP6450591B2 (ja) 表示装置、表示方法、プログラム、及びテレビジョン受像機
CN112951150B (zh) Led显示屏节能方法、装置、设备及存储介质
JP2015046130A (ja) データ処理装置、その制御方法およびプログラム
US10534249B2 (en) Control apparatus, projection display apparatus and non-transitory computer-readable storage medium
JP2015219469A (ja) バックライト制御装置、映像表示装置、及びバックライト制御方法
CN113473036B (zh) 一种图像曝光方法、装置和电子设备
WO2024140158A1 (zh) 一种调节epd显示灰度的方法及系统
CN218728550U (zh) 驱动电路与投影装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22815057

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22815057

Country of ref document: EP

Kind code of ref document: A1