WO2022252902A1 - 电化学装置、充放电方法及电解水制氢方法 - Google Patents

电化学装置、充放电方法及电解水制氢方法 Download PDF

Info

Publication number
WO2022252902A1
WO2022252902A1 PCT/CN2022/090913 CN2022090913W WO2022252902A1 WO 2022252902 A1 WO2022252902 A1 WO 2022252902A1 CN 2022090913 W CN2022090913 W CN 2022090913W WO 2022252902 A1 WO2022252902 A1 WO 2022252902A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
hydrogen
carbon
electrolyte
electrochemical device
Prior art date
Application number
PCT/CN2022/090913
Other languages
English (en)
French (fr)
Inventor
陈维
朱正新
Original Assignee
中国科学技术大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202110621985.XA external-priority patent/CN113363629A/zh
Priority claimed from CN202110621936.6A external-priority patent/CN113355680A/zh
Application filed by 中国科学技术大学 filed Critical 中国科学技术大学
Publication of WO2022252902A1 publication Critical patent/WO2022252902A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/042Electrodes formed of a single material
    • C25B11/043Carbon, e.g. diamond or graphene
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/075Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of a single catalytic element or catalytic compound
    • C25B11/089Alloys
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/02Process control or regulation
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • C25B9/19Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/08Hybrid cells; Manufacture thereof composed of a half-cell of a fuel-cell type and a half-cell of the secondary-cell type

Definitions

  • the disclosure belongs to the technical field of electrochemical energy storage and hydrogen production by electrolysis of water, and specifically relates to an electrochemical device, a charging and discharging method, and a method for production of hydrogen by electrolysis of water.
  • the hydrogen evolution reaction and hydrogen oxidation reaction (HER/HOR) exhibited by the hydrogen electrode in catalysis have low overpotential, fast reaction kinetics and good stability. So far, hydrogen has great advantages as an electrode for large-scale energy storage batteries. Therefore, combining the advantages of hydrogen electrodes, it is particularly important to develop new hydrogen battery energy storage technologies for large-scale energy storage.
  • electrolysis of water is an important means to achieve large-scale production of hydrogen due to its relatively simple operation, relatively mature technology, and environmental friendliness.
  • the cathode and anode are simultaneously electrolyzed to generate hydrogen and oxygen during the electrolysis process.
  • the current mainstream research work is to improve or prepare a new type of diaphragm to separate the hydrogen and oxygen generated during the electrolysis process, but the effect is still not very good. significantly. Therefore, the development of new hydrogen production methods by electrolysis of water is of great significance for the cheap development and utilization of hydrogen energy.
  • a first aspect of the present disclosure provides an electrochemical device, comprising an electrolyte, which is an aqueous solution containing soluble ions; a first electrode, which is a carbon-based electrode, configured to achieve reversible adsorption of the soluble ions; and The second electrode, which is a catalytic electrode, is configured to perform a hydrogen evolution reaction at the interface between it and the electrolyte solution.
  • a second aspect of the present disclosure provides a method of charging and discharging using an electrochemical device, the electrochemical device comprising: an electrolyte solution that is an aqueous solution containing soluble ions; a first electrode that is a carbon-based electrode configured for realize the reversible adsorption and desorption of the soluble ions; the second electrode, which is a catalytic electrode, is configured to perform a hydrogen evolution reaction and a hydrogen oxidation reaction at the interface between it and the electrolyte; and a diaphragm is arranged on the Between the first electrode and the second electrode; the charging and discharging method includes applying a first external voltage to the first electrode and the second electrode during the charging process, and reversible adsorption of soluble ions occurs on the first electrode , a hydrogen evolution reaction occurs at the interface between the second electrode and the electrolyte; during the discharge process, the reversible desorption of the soluble ions occurs at the first electrode, and the reversible desorption of the soluble
  • a third aspect of the present disclosure provides a method for producing hydrogen by decoupling electrolysis of water using an electrochemical device, the electrochemical device comprising: an electrolyte, which is an aqueous solution containing soluble ions; a first electrode, which is a carbon-based electrode, configured to achieve reversible adsorption and desorption of said soluble ions; and a second electrode, being a catalytic electrode, configured to perform a hydrogen evolution reaction and an oxygen evolution reaction at an interface between it and said electrolyte; said The decoupled water electrolysis hydrogen production method includes: in the hydrogen evolution reaction, applying a second external voltage to the first electrode and the second electrode to electrolyze the electrolyte, and the interface between the second electrode and the electrolyte occurs In the hydrogen evolution reaction, the adsorption of soluble ions occurs on the first electrode; in the oxygen evolution reaction, a third external voltage opposite to the second external voltage is applied to the first electrode and the second electrode.
  • Fig. 1 schematically shows a working diagram of an electrochemical device according to an embodiment of the present disclosure
  • Fig. 2 schematically shows a working diagram of another electrochemical device according to an embodiment of the present disclosure
  • FIG. 3 schematically shows a flow chart of a charging and discharging method using an electrochemical device according to an embodiment of the present disclosure
  • Fig. 4 schematically shows a flow chart of a decoupled water electrolysis hydrogen production method using an electrochemical device according to an embodiment of the present disclosure
  • Figure 5 schematically shows the curves of the charge and discharge test results of the medium carbon-hydrogen battery using activated carbon electrodes in acid electrolyte and 25°C according to Example 1 of the present disclosure
  • Fig. 6 schematically shows the test result curve of the cycle performance of the carbon-hydrogen battery using the activated carbon electrode in the acid electrolyte and 25°C according to Example 1 of the present disclosure
  • Figure 7 schematically shows the comparison curves of the charge and discharge test results of the carbon-hydrogen battery and the carbon-carbon battery in acid electrolyte and 25°C according to Example 1 of the present disclosure
  • Figure 8 schematically shows the curves of charge and discharge test results of carbon-hydrogen batteries using activated carbon electrodes in acid electrolytes and different temperatures according to Example 1 of the present disclosure
  • Fig. 9 schematically shows the test result curves of the cycle performance of the carbon-hydrogen battery using the activated carbon electrode in the acid electrolyte and -20°C according to Example 1 of the present disclosure
  • Figure 10 schematically shows the curves of the charge and discharge test results of the carbon-hydrogen battery using the activated carbon electrode in the neutral electrolyte and 25°C according to Example 2 of the present disclosure
  • Fig. 11 schematically shows the test result curves of the cycle performance of the carbon-hydrogen battery using the activated carbon electrode in the neutral electrolyte and 25°C according to Example 2 of the present disclosure
  • Figure 12 schematically shows the curves of the charge and discharge test results of carbon-hydrogen batteries using activated carbon electrodes in alkaline electrolytes and 25°C according to Example 3 of the present disclosure
  • Figure 13 schematically shows the electrochemical performance test results curves of the carbon-hydrogen battery using the reduced graphene electrode in acidic and 25°C electrolytes according to Example 4 of the present disclosure
  • Fig. 14 schematically shows the electrolytic curve diagram of producing hydrogen at a current of 20mA in an acidic electrolyte through a two-electrode step-by-step method using a platinum electrode as a catalytic electrode according to Example 5 of the present disclosure;
  • Fig. 15 schematically shows the electrolytic curve cycle diagram of producing hydrogen at a current of 20mA in an acidic electrolyte through a two-electrode step-by-step method using a platinum electrode as a catalytic electrode according to Example 5 of the present disclosure;
  • Fig. 16 schematically shows an electrolytic curve diagram of producing hydrogen at a current of 50mA in an acidic electrolyte through a two-electrode step-by-step method using a platinum ruthenium iridium electrode as a catalytic electrode according to Example 6 of the present disclosure;
  • Fig. 17 schematically shows the electrolytic curve cycle diagram of producing hydrogen at a current of 10mA in an acidic electrolyte through a two-electrode step-by-step method using a platinum-titanium mesh electrode as a catalytic electrode according to Example 7 of the present disclosure;
  • Fig. 18 schematically shows the electrolytic curve cycle diagram of producing hydrogen at a current of 10mA in a neutral electrolyte through a two-electrode step-by-step method using a platinum-titanium mesh electrode as a catalytic electrode according to Embodiment 8 of the present disclosure;
  • Fig. 19 schematically shows an electrolytic curve cycle diagram of producing hydrogen at a current of 10mA in alkaline electrolyte through a two-electrode step-by-step method using a platinum-titanium mesh electrode as a catalytic electrode according to Embodiment 9 of the present disclosure;
  • Figure 20 schematically shows the process of producing hydrogen in alkaline electrolyte through a three-electrode step-by-step method using a platinum electrode for hydrogen evolution as a catalytic electrode and a platinum-titanium mesh electrode as an oxygen evolution catalytic electrode at a current of 10mA according to Embodiment 10 of the present disclosure. Electrolysis curve diagram.
  • Electrochemical device 100. Electrochemical device
  • the first electrode 220.
  • the second electrode 210.
  • the first electrode 220.
  • the second electrode 220.
  • the electrochemical device includes a first electrode, a second electrode and an electrolyte, wherein the first electrode is a carbon-based electrode material that realizes the reversible adsorption and desorption of various ions, and the second electrode is a carbon-based electrode material capable of It is a catalytic electrode material for hydrogen evolution, hydrogen oxidation and oxygen evolution reactions.
  • the electrolyte contains various soluble ions.
  • the electrochemical device has more than 100,000 stable cycles and fast charge and discharge capabilities in energy storage applications, and can work in environments with different high and low temperatures and a full pH range.
  • the electrochemical device can also decouple electrolyzed water to produce hydrogen in a full pH environment, avoiding the simultaneous generation of hydrogen and oxygen, and improving the efficiency of electrolyzed water.
  • an electrochemical device 100 is provided.
  • Fig. 1 schematically shows a working diagram of an electrochemical device according to an embodiment of the present disclosure.
  • the electrochemical device 100 includes: an electrolyte, which is an aqueous solution containing soluble ions; a first electrode 110, which is a carbon-based electrode configured to achieve reversible adsorption and desorption of soluble ions; a second electrode 120 that is a catalytic electrode configured to perform a hydrogen evolution reaction and a hydrogen oxidation reaction at an interface between it and the electrolyte; and a separator 130 , disposed between the first electrode 110 and the second electrode 120 .
  • an electrolyte which is an aqueous solution containing soluble ions
  • a first electrode 110 which is a carbon-based electrode configured to achieve reversible adsorption and desorption of soluble ions
  • a second electrode 120 that is a catalytic electrode configured to perform a hydrogen evolution reaction and a hydrogen oxidation reaction at an interface between it and
  • the electrochemical device 100 is used as a carbon-hydrogen battery in the energy storage process.
  • the first electrode 110 is a positive electrode, and carbon-based electrode materials are used to allow adsorption and desorption of ions on the substrate.
  • the second electrode 120 is a negative electrode, and adopts a catalytic hydrogen gas electrode, so that rapid hydrogen evolution reaction and hydrogen oxidation reaction can occur on the surface of the catalyst. It can be understood that for the charging and discharging process of the battery, when charging, hydrogen evolution reaction occurs at the negative electrode, while the adsorption of soluble ions occurs at the positive electrode; during discharge, hydrogen oxidation occurs at the negative electrode, while the desorption of soluble ions occurs at the positive electrode.
  • the battery system shows good compatibility, has the advantages of fast charge and discharge capacity, longer cycle life, and is suitable for different high and low temperature working environments.
  • an electrochemical device 200 is also provided.
  • Fig. 2 schematically shows a working diagram of another electrochemical device according to an embodiment of the present disclosure.
  • the electrochemical device 200 includes: an electrolyte, which is an aqueous solution containing soluble ions; a first electrode 210, It is a carbon-based electrode configured to achieve reversible adsorption and desorption of soluble ions; the second electrode 220 is a catalytic electrode configured to perform hydrogen evolution reaction and oxygen evolution reaction at the interface between it and the electrolyte.
  • the electrochemical device 200 is used as an electrolytic cell in the process of electrolyzing water to produce hydrogen.
  • the first electrode 210 is used as an anode, and carbon-based electrode materials are used to adsorb ions on the substrate.
  • the second electrode 220 is The cathode, using a catalytic electrode, can undergo a rapid hydrogen evolution reaction on the surface of the catalyst; the first electrode 210 is used as the cathode, and the desorption of ions can occur on the substrate, and the second electrode 220 is used as the anode, and a rapid oxygen evolution reaction can occur on the catalyst surface . Therefore, the two-step method of hydrogen evolution and oxygen evolution will avoid the above-mentioned problem of needing to purify the prepared gas, and the diaphragm can not be used in the process of electrolysis of water, thus simplifying the preparation method of high-purity hydrogen and high-purity oxygen , greatly reducing the cost.
  • the electrolyte solution is one of acidic, neutral or alkaline aqueous solution.
  • the electrochemical device 100 or 200 can work in aqueous electrolytes with different pH values.
  • the main reason is that the first electrode 110 or 210 can perform reversible adsorption and desorption in aqueous electrolytes with different pH, and the second electrode 120 or 220 can also perform reversible hydrogen evolution, oxygen evolution and hydrogen oxidation reactions in aqueous electrolytes with different pH.
  • KOH solution to the aqueous solution to obtain an alkaline electrolyte.
  • the soluble ions in the electrolyte include soluble cations and soluble anions.
  • Soluble cations are one or more of potassium ions, sodium ions, lithium ions, magnesium ions, aluminum ions, calcium ions, barium ions, strontium ions, hydrogen ions, and ammonium ions, and the corresponding ion concentration is 0.01-30mol /L.
  • Anions are hydroxide, sulfate, nitrate, perchlorate, phosphate, monohydrogen phosphate, dihydrogen phosphate, hypophosphite, phosphite, acetate, carbonate, bicarbonate, chloride One or more of them, the corresponding ion concentration is 0.01-30mol/L.
  • the carbon-based electrode used as the first electrode 110 or 210 is graphite, graphene, carbon cloth, carbon paper, activated carbon, carbon microfiber modified by heteroatom treatment or not modified by heteroatom treatment. , carbon nanofibers, carbon felts, graphite felts, metal organic frameworks, covalent organic frameworks, Prussian blue derivatives; the heteroatom here refers to at least one of nitrogen, phosphorus, sulfur, and oxygen.
  • the electrode material of the above-mentioned carbon-based electrode has the advantages of large specific surface area and strong adsorption. Based on the high electric adsorption capacity, it is beneficial to the alternate cycle of hydrogen evolution reaction and oxygen evolution reaction, and matches with hydrogen evolution reaction and hydrogen oxidation reaction.
  • the electrochemical adsorption capacity of the carbon-based electrode is 0.001-1000mAh/cm 2 .
  • the catalytic electrode as the second electrode 120 or 220 is a current collector carrying a catalyst, for example, the catalyst shown in FIG. 1 or 2 is attached to the surface of the gas diffusion layer substrate as a current collector.
  • the current collector has the advantage of rapid three-phase interfacial reaction, and can carry catalysts that catalyze hydrogen evolution, oxygen evolution, and hydrogen oxidation reactions.
  • the catalyst of the above-mentioned catalytic electrode includes at least one of a noble metal, a noble metal compound, a non-noble metal, a non-noble metal compound, and a carbon material.
  • a noble metal a noble metal compound
  • a non-noble metal a non-noble metal compound
  • a carbon material a carbon material.
  • catalysts for hydrogen evolution, oxygen evolution and hydrogen oxidation reactions There are many types of catalysts for hydrogen evolution, oxygen evolution and hydrogen oxidation reactions, and the reaction is promoted on the three-phase interface through the active sites on the catalyst surface.
  • the catalyst includes Pt, Pd, Ir, Ru, PtNi, PtCo, PtMo, PtW, PtNiCo, PtNiMo, PdNi, PdCo, PdMo, PdW, PdNiCo, PdNiMo, IrNi, IrCo, IrMo, IrW, IrNiCo , IrNiMo, RuNi, RuCo, RuMo, RuW, RuNiCo, RuNiMo; or at least one of PtO 2 , PtOH, PtC, IrO 2 , IrC, IrN, IrS, IrP, RuO 2 , RuC, RuN, RuS, RuP At least one of PtO 2 , PtOH, PtC, IrO 2 , IrC, IrN, IrS, IrP, RuO 2 , RuC, RuN, RuS, RuP At least one of PtO 2
  • noble metal-based catalysts including noble metals and noble metal compounds
  • non-noble metal-based catalysts including non-noble metals and non-noble metal compounds
  • carbon material catalysts have the advantage of low price, but their catalytic activity is often relatively poor.
  • the second electrode 220 in the electrochemical device 200 includes a hydrogen evolution catalytic electrode configured to perform a hydrogen evolution reaction at the interface between it and the electrolyte; and an oxygen evolution catalytic electrode configured to The oxygen evolution reaction is carried out at the interface with the electrolyte; wherein, the hydrogen evolution catalytic electrode and the oxygen evolution catalytic electrode are the same electrode or different electrodes.
  • three electrodes can be provided, that is, the hydrogen evolution catalytic electrode that can catalyze the electrolysis of water to generate hydrogen, the oxygen evolution catalytic electrode and the carbon-based electrode that can catalyze the electrolysis of water to generate oxygen; or only two electrodes can be provided, namely , the hydrogen evolution catalytic electrode and the oxygen evolution catalytic electrode are the same electrode, and a carbon-based electrode.
  • FIG. 3 schematically shows a flow chart of a charging and discharging method using an electrochemical device according to an embodiment of the present disclosure. As shown in FIGS. 1 and 3 , the method includes operations S110 and S120.
  • operation S110 during the charging process, a first external voltage is applied to the first electrode 110 and the second electrode 120, reversible adsorption of soluble ions occurs on the first electrode 110, and the interface between the second electrode 120 and the electrolyte solution A hydrogen evolution reaction occurs; in operation S120 , during the discharge process, reversible desorption of soluble ions occurs at the first electrode 110 , and a hydrogen oxidation reaction occurs at the interface between the second electrode 120 and the electrolyte solution.
  • the hydrogen pressure inside the electrochemical device 100 is 1-100 atm, and the hydrogen pressure within this range is favorable for the hydrogen oxidation reaction to occur on the second electrode 120 .
  • the temperature range for the normal operation of the electrochemical device is -70 to 60°C.
  • the first electrode, the second electrode and the electrolyte of the electrochemical device can withstand high and low temperatures and can work normally.
  • Electrochemical device structures include button batteries, cylindrical batteries or flow batteries.
  • the button battery structure has the characteristics of small size and easy operation, and is often used at the laboratory level; the cylindrical battery structure has the characteristics of high energy density, and is often used in notebooks.
  • Portable energy sources such as computers and digital cameras;
  • the flow battery structure has the characteristics of large battery capacity, and is often used in large-scale energy storage devices.
  • a method for producing hydrogen by decoupled electrolysis of water using the above-mentioned electrochemical device 200 is also provided.
  • Fig. 4 schematically shows a flow chart of a method for producing hydrogen by decoupled electrolysis of water using an electrochemical device according to an embodiment of the present disclosure. As shown in Fig. 2 and Fig. 4 , the method includes operations S210 and S220.
  • a second external voltage is applied to the first electrode 210 and the second electrode 220 to electrolyze the electrolyte, a hydrogen evolution reaction occurs at the interface between the second electrode 220 and the electrolyte, and a soluble Adsorption of ions;
  • a third external voltage opposite to the second external voltage is applied to the first electrode 210 and the second electrode 220 to electrolyze the electrolyte solution, and the interface between the second electrode 220 and the electrolyte solution Oxygen evolution reaction occurs, and the desorption of soluble ions occurs on the first electrode 210; wherein the hydrogen evolution reaction in operation S210 and the oxygen evolution reaction in operation S220 are alternately cycled.
  • hydrogen evolution and oxygen evolution are carried out in two steps in the present disclosure.
  • the recycling of carbon electrodes is realized, and at the same time, the electrolysis of hydrogen at different time periods is effectively realized, and finally The mixture of hydrogen and oxygen is effectively prevented, thereby simplifying the preparation method of high-purity hydrogen and high-purity oxygen, and greatly reducing the cost.
  • the hydrogen evolution reaction in operation S210 and the oxygen evolution reaction in operation S220 are respectively performed at a constant current, and the magnitude of the current and the electrolysis time are configured so that no gas is generated on the carbon electrode.
  • the constant current can continuously and stably evolve hydrogen and oxygen.
  • Example 1 Electrochemical device applied to energy storage process
  • Preparation of acidic electrolyte Prepare 9M H 3 PO 4 solution to obtain acidic electrolyte.
  • the positive electrode is coated with commercially available activated carbon on the titanium foil, and the negative electrode is coated with commercially available platinum carbon on the gas diffusion layer substrate.
  • the electric adsorption capacity of the carbon electrode is 0.2mAh/cm 2 .
  • the shell is a stainless steel flanged ball valve (purchased from Swagelok Company), which plays the role of filling and sealing high-pressure hydrogen.
  • the described positive electrode, negative electrode and diaphragm material are assembled in the form of button electricity.
  • the electrolyte is the acidic electrolyte prepared above, filled with the diaphragm, and the assembled electrochemical device is a carbon-hydrogen battery.
  • FIG. 5 schematically shows the curves of the charge and discharge test results of the medium carbon-hydrogen battery using activated carbon electrodes in acid electrolyte and 25°C according to Example 1 of the present disclosure
  • Figure 6 schematically shows the curves according to Example 1 of the present disclosure Medium carbon-hydrogen battery using activated carbon electrode cycle performance test results curves in acid electrolyte and 25 ° C
  • Figure 7 schematically shows the carbon-hydrogen battery and carbon-carbon battery in acid electrolyte according to Example 1 of the present disclosure Compare the curve with the charge and discharge test results at 25°C.
  • the carbon-hydrogen battery of the present embodiment has a discharge specific capacity of 98mAh/g at a low current density of 1A/g, and can carry out 30A/g high current charge and discharge, and the specific capacity is still maintained at 47mAh/g (such as Figure 5). After 50,000 stable cycles at a high current of 20A/g, the capacity retention rate is still 88% (as shown in Figure 6). In addition, the energy storage capacity of the carbon-hydrogen battery of this embodiment is much higher than the specific capacity of the carbon-carbon battery (as shown in FIG. 7 ).
  • FIG 8 schematically shows the curves of the charge and discharge test results of the carbon-hydrogen battery using the activated carbon electrode in the acid electrolyte and different temperatures according to Example 1 of the present disclosure;
  • Figure 8a shows the charge and discharge curves of the battery at different temperatures;
  • Figure 8e shows the capacity graph of the battery at different temperatures.
  • the carbon-hydrogen battery of this embodiment has a specific discharge capacity of 108mAh/g (40°C), 98mAh/g (25°C), 46mAh/g (-20°C), and 38mAh/g (-40°C). , 28mAh/g (-50°C) at a low current density of 1A/g, as shown in Figures 8a and 8e.
  • FIG. 8b shows the charging and discharging curves of the battery at 60°C. It can be seen that the carbon-hydrogen battery of this embodiment has a discharge specific capacity of 100mAh/g at a low current density of 6A/g, and can perform high current charge and discharge of 30A/g, and the specific capacity is still maintained at 75mAh/g, such as Figure 8b shows.
  • FIG. 9 schematically shows the test result curves of the cycle performance of the carbon-hydrogen battery using the activated carbon electrode in the acid electrolyte and -20°C according to Example 1 of the present disclosure. It can be seen that the carbon-hydrogen battery of this embodiment has a stable cycle of 10,000 times at a current of 4A/g, and the capacity has almost no decay, as shown in FIG. 9 .
  • Example 2 Electrochemical device applied to energy storage process
  • Preparation of neutral electrolyte prepare 1M KH 2 PO 4 and 1M K 2 HPO 4 phosphate buffer solution to obtain a neutral electrolyte.
  • the positive electrode is coated with commercially available activated carbon on the titanium foil, and the negative electrode is coated with commercially available platinum carbon on the gas diffusion layer substrate.
  • the electric adsorption capacity of the carbon electrode is 0.14mAh/cm 2 .
  • Fig. 10 schematically shows the charge and discharge test result curve of carbon-hydrogen battery using activated carbon electrode in neutral electrolyte according to Example 2 of the present disclosure
  • Fig. 11 schematically shows the carbon-hydrogen battery according to Example 2 of the present disclosure
  • the battery adopts the cycle performance test result curve of the activated carbon electrode in the neutral electrolyte.
  • the carbon-hydrogen battery carbon in this embodiment is activated carbon, and when the electrolyte is neutral, the discharge specific capacity can reach 69mAh/g at a current rate as low as 1A/g, and it can perform 20A/g high current charge and discharge , the specific capacity remains at 42mAh/g, as shown in Figure 10. After 100,000 stable cycles at a high current of 10A/g, the capacity retention rate is still 85%, as shown in Figure 11.
  • Embodiment 3 Electrochemical device applied to energy storage process
  • Preparation of alkaline electrolyte configure 2M KOH solution to obtain alkaline electrolyte.
  • the positive electrode is coated with commercially available activated carbon on the titanium foil, and the negative electrode is coated with commercially available platinum carbon on the gas diffusion layer substrate.
  • the electric adsorption capacity of the carbon electrode is 0.14mAh/cm 2 .
  • Fig. 12 schematically shows the curve of the charge and discharge test results of the carbon-hydrogen battery using the activated carbon electrode in the alkaline electrolyte according to Example 3 of the present disclosure. It can be seen that the carbon-hydrogen battery carbon in this embodiment is activated carbon, and when the electrolyte is alkaline, the discharge specific capacity can reach 74mAh/g at a current rate as low as 1A/g, and it can perform 20A/g high current charge and discharge , the specific capacity remains at 45mAh/g, as shown in Figure 12.
  • Embodiment 4 Electrochemical device applied to energy storage process
  • Preparation of acidic electrolyte Prepare 9M H 3 PO 4 solution to obtain acidic electrolyte.
  • the positive electrode is coated with commercially available reduced graphene on the titanium foil, and the negative electrode is coated with commercially available platinum carbon on the gas diffusion layer substrate.
  • the electric adsorption capacity of the carbon electrode is 0.2mAh/cm 2 .
  • Figure 13 schematically shows the electrochemical performance test result curve of the carbon-hydrogen battery in Example 4 of the present disclosure using a reduced graphene electrode in an acidic electrolyte, wherein Figure 13a is a charge and discharge curve of the battery, and Figure 13b is Cycle performance graph of the battery.
  • the carbon-hydrogen battery of this embodiment has a discharge specific capacity of 53mAh/g at a current rate as low as 1A/g, and can perform high-current charge and discharge of 30A/g, and the specific capacity is still maintained at 40mAh/g, such as Figure 13a shows. After a stable cycle of 30,000 times at a high current of 20A/g, the capacity has almost no fading, as shown in Figure 13b.
  • Example 5 Electrochemical device is applied to hydrogen production process of decoupled electrolyzed water
  • the electrolyte is an acidic aqueous solution
  • the hydrogen and oxygen generated by the electrolysis of water are separated by two electrodes, and the hydrogen evolution catalytic electrode and the oxygen evolution catalytic electrode are made into one electrode.
  • Catalytic electrodes for generating hydrogen and oxygen are commercially available platinum electrodes, and carbon electrodes are commercially available activated carbon coated on titanium foil.
  • the carbon electrode has an electric adsorption capacity of 0.33mAh/cm 2 .
  • the platinum electrodes have an area of 1 square centimeter, and the carbon electrodes have an area of 6 square centimeters.
  • the electrolyte in the electrolytic cell uses 0.5M sulfuric acid solution, and a constant current is used to electrolyze water. First, the hydrogen evolution reaction occurs. In the electrolytic cell, the cathode is connected to the platinum electrode, and the anode is connected to the carbon electrode. The 20mA current is electrolyzed for 360 seconds, and hydrogen gas is generated on the platinum electrode.
  • the oxygen evolution reaction occurs, the cathode and anode are reversely connected, the anode is connected to the platinum-titanium mesh electrode, and the cathode is connected to the carbon electrode for electrolytic oxygen production reaction.
  • the same 20mA current is electrolyzed for 360 seconds, and oxygen is generated on the platinum electrode.
  • Fig. 14 schematically shows the electrolysis curve diagram of producing hydrogen under 20mA current in the acidic electrolyte through the two-electrode step-by-step method using the platinum electrode as the catalytic electrode according to Example 5 of the present disclosure
  • Example 5 is an electrolysis curve cycle diagram for producing hydrogen in an acidic electrolyte through a two-electrode step-by-step method using a platinum electrode as a catalytic electrode at a current of 20 mA. It can be seen that the hydrogen evolution and oxygen evolution of electrolytic water are carried out alternately for more than 40 hours, and it can still work stably, as shown in Figure 15. There is no gas generated on the carbon electrode during the cycle, and hydrogen and oxygen can be generated in different time periods.
  • Example 6 Electrochemical device applied to decoupled water electrolysis hydrogen production process
  • the electrolyte is an acidic aqueous solution, and the hydrogen and oxygen generated by the electrolysis of water are separated through two electrodes, and the hydrogen evolution catalytic electrode and the oxygen evolution catalytic electrode are made into one electrode.
  • the catalytic electrodes for generating hydrogen and oxygen are all platinum ruthenium iridium dioxide electrodes.
  • the electrodes are uniformly coated on titanium foil with commercially available platinum carbon, ruthenium carbon and iridium dioxide powders on the market.
  • the carbon electrodes are available in the market.
  • the purchased commercial activated carbon is coated on the titanium foil, and the electric adsorption capacity of the carbon electrode is 0.21mAh/cm 2 .
  • the platinum electrodes have an area of 1 square centimeter, and the carbon electrodes have an area of 2 square centimeters.
  • the electrolyte in the electrolytic cell uses 0.5M sulfuric acid solution, and a constant current is used to electrolyze water.
  • the cathode is connected to the platinum electrode, and the anode is connected to the carbon electrode.
  • the electrolysis time is 150 seconds with a current of 10mA. Hydrogen gas is generated on the platinum electrode to complete the hydrogen evolution reaction.
  • the cathode and anode are reversely connected, the anode is connected to the platinum electrode, and the cathode is connected to the carbon electrode for electrolytic oxygen generation reaction.
  • the same 10mA current is electrolyzed for 150 seconds. Hydrogen is generated on the platinum electrode and oxygen is generated on the electrode to complete the oxygen evolution reaction.
  • FIG. 16 schematically shows the electrolytic curve of producing hydrogen in an acidic electrolyte through a two-electrode step-by-step method using a platinum ruthenium iridium electrode as a catalytic electrode at a current of 50 mA according to Example 6 of the present disclosure. During the whole process, no gas is generated on the carbon electrode, and hydrogen and oxygen can be generated in different time periods.
  • Example 7 Electrochemical device is applied to hydrogen production process of decoupled electrolyzed water
  • the electrolyte is an acidic aqueous solution, and the hydrogen and oxygen generated by the electrolysis of water are separated through two electrodes, and the hydrogen evolution catalytic electrode and the oxygen evolution catalytic electrode are made into one electrode.
  • the catalytic electrodes for generating hydrogen and oxygen are all platinum-titanium mesh electrodes, and the carbon electrodes are commercially available activated carbon coated on carbon paper.
  • the electric adsorption capacity of the carbon electrodes is 1mAh/cm 2 .
  • the area of the platinum-titanium mesh electrode is 1 square centimeter, and the area of the carbon electrode is 1 square centimeter.
  • the electrolyte in the electrolytic cell uses 0.5M sulfuric acid solution, and a constant current is used to electrolyze water. First, in the electrolytic cell, the cathode is connected to the platinum-titanium mesh electrode, the anode is connected to the carbon electrode, and the current is 10mA for 360 seconds.
  • Fig. 17 schematically shows the cycle diagram of the electrolysis curve for producing hydrogen in an acidic electrolyte through a two-electrode step-by-step method using a platinum-titanium mesh electrode as a catalytic electrode at a current of 10 mA according to Example 7 of the present disclosure.
  • Example 8 Electrochemical device applied to decoupled water electrolysis hydrogen production process
  • the electrolyte is a neutral aqueous solution, and the hydrogen and oxygen generated by the electrolysis of water are separated through two electrodes, and the hydrogen evolution catalytic electrode and the oxygen evolution catalytic electrode are made into one electrode.
  • the catalytic electrodes for generating hydrogen and oxygen are all made of platinum-titanium mesh electrodes, and the carbon electrodes are commercially available activated carbon coated on carbon paper.
  • the electric adsorption capacity of the carbon electrodes is 0.6mAh/cm 2 .
  • the area of the platinum-titanium mesh electrode is 1 square centimeter, and the area of the carbon electrode is 1 square centimeter.
  • the electrolyte in the electrolytic cell uses 1M phosphate buffer solution, and a constant current is used to electrolyze water. First, in the electrolytic cell, the cathode is connected to the platinum-titanium mesh electrode, the anode is connected to the carbon electrode, and the current is 10mA for 216 seconds.
  • Fig. 18 schematically shows the cycle diagram of the electrolysis curve for producing hydrogen at a current of 10 mA in a neutral electrolyte through a two-electrode step-by-step method using a platinum-titanium mesh electrode as a catalytic electrode according to Example 8 of the present disclosure.
  • Example 9 Electrochemical device is applied to hydrogen production process of decoupled electrolyzed water
  • the electrolyte is an alkaline aqueous solution, and the hydrogen and oxygen generated by the electrolysis of water are separated through two electrodes, and the hydrogen evolution catalytic electrode and the oxygen evolution catalytic electrode are made into one electrode.
  • the catalytic electrodes for generating hydrogen and oxygen are all made of platinum-titanium mesh electrodes, and the carbon electrodes are commercially available activated carbon coated on carbon paper.
  • the electric adsorption capacity of the carbon electrodes is 0.6mAh/cm 2 .
  • the area of the platinum-titanium mesh electrode is 1 square centimeter, and the area of the carbon electrode is 1 square centimeter.
  • the electrolyte in the electrolytic cell uses 2M potassium hydroxide solution, and a constant current is used to electrolyze water. First, in the electrolytic cell, the cathode is connected to the platinum-titanium mesh electrode, the anode is connected to the carbon electrode, and the current is 10mA for 216 seconds.
  • Fig. 19 schematically shows the cycle diagram of the electrolysis curve for producing hydrogen at a current of 10 mA in an alkaline electrolyte through a two-electrode step-by-step method using a platinum-titanium mesh electrode as a catalytic electrode according to Example 9 of the present disclosure.
  • Example 10 Electrochemical device applied to decoupled water electrolysis hydrogen production process
  • the electrolyte is an alkaline aqueous solution, and the hydrogen and oxygen generated by the electrolysis of water are separated by three electrodes, and the hydrogen evolution catalytic electrode and the oxygen evolution catalytic electrode form an electrode separately.
  • the catalytic electrode for generating hydrogen is platinum electrode
  • the catalytic electrode for oxygen generation is platinum-titanium mesh electrode
  • the carbon electrode is commercial activated carbon coated on titanium foil.
  • the electric adsorption capacity of carbon electrode is 0.23mAh/cm 2 .
  • Both the platinum electrode and the platinum-titanium mesh electrode have an area of 1 square centimeter, and the carbon electrode has an area of 6 square centimeters.
  • the electrolyte in the electrolytic cell uses 2M potassium hydroxide solution, and a constant current is used to electrolyze water. First, in the electrolytic cell, the cathode is connected to the platinum electrode, the anode is connected to the carbon electrode, and 20mA current is electrolyzed for 252 seconds.
  • FIG. 20 schematically shows the process of producing hydrogen in alkaline electrolyte through a three-electrode step-by-step method using a platinum electrode for hydrogen evolution as a catalytic electrode and a platinum-titanium mesh electrode as an oxygen evolution catalytic electrode at a current of 10mA according to Embodiment 10 of the present disclosure. Electrolysis curve diagram. During the whole process, no gas is generated on the carbon electrode, and hydrogen and oxygen can be generated in different time periods.

Abstract

本公开提供了一种电化学装置,包括电解液,为含可溶性离子的水溶液;第一电极,为碳基电极,被配置用于实现所述可溶性离子可逆的吸附;第二电极,为催化电极,被配置用于在其与所述电解液之间的界面进行析氢反应。本公开还提供了使用电化学装置的充放电方法及去耦合电解水制氢方法。

Description

电化学装置、充放电方法及电解水制氢方法 技术领域
本公开属于电化学储能及电解水制氢技术领域,具体涉及一种电化学装置、充放电方法及电解水制氢方法。
背景技术
近年来,传统的化石燃料被大量消耗,对人类生存环境造成了严重污染,当今国际社会都在大力呼吁开发清洁高效的可再生能源,这将对整个世界的可持续发展具有重要意义。氢能源作为高效、洁净和理想的可再生能源已经受到了全世界的广泛重视。因此,大规模应用和廉价地生产氢气是开发和利用氢能的重要环节之一。
据研究,氢气电极在催化方面表现出的析氢反应与氢气氧化反应(HER/HOR),具有低的过电位、快速的反应动力学以及良好的稳定性。至此,氢气作为大规模储能电池的电极具有非常大的优势。因此,结合氢气电极的优势,发展新的氢气电池储能技术对于大规模储能显得尤为重要。
此外,电解水方法因操作相对简单,技术相对成熟,环境友好,是实现大规模生产氢气的重要手段。然而常规电解水技术在电解过程中阴阳极同时电解生成氢气和氧气,目前主流研究工作在于改进或者制备新型的隔膜,以隔开在电解水过程中产生的氢气和氧气,但效果仍然并不十分显著。因此,发展新的电解水制氢方法对于廉价地开发和利用氢能有重要意义。
发明内容
本公开的第一个方面提供了一种电化学装置,包括电解液,为含可溶性离子的水溶液;第一电极,为碳基电极,被配置用于实现所述可溶性离子可逆的吸附;以及第二电极,为催化电极,被配置用于在其与所述电解液之间的界面进行析氢反应。
本公开的第二个方面提供了一种使用电化学装置的充放电方法,所述电化学装置包括:电解液,为含可溶性离子的水溶液;第一电极,为碳基电极,被配置用于实现所述可溶性离子可逆的吸附和脱附;第二电极,为催化电极,被配置用于在其与所述电解液之间的界面进行析氢反应和氢气氧化反应;以及隔膜,设置于所述第一电极与所述第二电极之间;所述充放电方法包括在充电过程中,向第一电极和第二电极施加第一外电压,在所述第一电极上发生可溶性离子可逆的吸附,在所述第二电极与电解液之间的界面发生析氢反应;在放电过程中,在所述第一电极发生所述可溶性离子可逆的脱附,在所述第二电极与所述电解液之间的 界面发生氢气氧化反应。
本公开的第三个方面提供了一种使用电化学装置的去耦合电解水制氢方法,所述电化学装置包括:电解液,为含可溶性离子的水溶液;第一电极,为碳基电极,被配置用于实现所述可溶性离子可逆的吸附和脱附;以及第二电极,为催化电极,被配置用于在其与所述电解液之间的界面进行析氢反应和析氧反应;所述去耦合电解水制氢方法包括:在析氢反应中,向第一电极和第二电极施加第二外电压以对电解液进行电解,在所述第二电极与所述电解液之间的界面发生所述析氢反应,在所述第一电极上发生可溶性离子的吸附;在析氧反应中,向所述第一电极和所述第二电极施加与所述第二外电压反向的第三外电压以对所述电解液进行电解,在所述第二电极与所述电解液之间的界面发生所述析氧反应,在所述第一电极上发生所述可溶性离子的脱附;其中所述析氢反应和所述析氧反应交替循环进行。
附图说明
图1示意性示出了根据本公开实施例中一种电化学装置的工作示意图;
图2示意性示出了根据本公开实施例中另一种电化学装置的工作示意图;
图3示意性示出了根据本公开实施例中使用电化学装置的充放电方法流程图;
图4示意性示出了根据本公开实施例中使用电化学装置的去耦合电解水制氢方法流程图;
图5示意性示出了根据本公开实施例1中中碳-氢气电池采用活性炭电极在酸性电解液与25℃下的充放电测试结果曲线;
图6示意性示出了根据本公开实施例1中碳-氢气电池采用活性炭电极在酸性电解液与25℃下的循环性能测试结果曲线;
图7示意性示出了根据本公开实施例1中碳-氢气电池与碳-碳电池在酸性电解液与25℃下的充放电测试结果对比曲线;
图8示意性示出了根据本公开实施例1中碳-氢气电池采用活性炭电极在酸性电解液与不同温度的充放电测试结果曲线;
图9示意性示出了根据本公开实施例1中碳-氢气电池采用活性炭电极在酸性电解液与-20℃的循环性能测试结果曲线;
图10示意性示出了根据本公开实施例2中碳-氢气电池采用活性炭电极在中性电解液与25℃的充放电测试结果曲线;
图11示意性示出了根据本公开实施例2中碳-氢气电池采用活性炭电极在中性电解液与25℃的循环性能测试结果曲线;
图12示意性示出了根据本公开实施例3中碳-氢气电池采用活性炭电极在碱性电解液与 25℃的充放电测试结果曲线;
图13示意性示出了根据本公开实施例4中碳-氢气电池采用还原石墨烯电极在酸性与25℃电解液的电化学性能测试结果曲线;
图14示意性示出了根据本公开实施例5在酸性电解液通过两电极分步法采用铂电极作为催化电极在20mA电流下制取氢气的电解曲线图;
图15示意性示出了根据本公开实施例5在酸性电解液通过两电极分步法采用铂电极作为催化电极在20mA电流下制取氢气的电解曲线循环图;
图16示意性示出了根据本公开实施例6在酸性电解液通过两电极分步法采用铂钌铱电极作为催化电极在50mA电流下制取氢气的电解曲线图;
图17示意性示出了根据本公开实施例7在酸性电解液通过两电极分步法采用铂钛网电极作为催化电极在10mA电流下制取氢气的电解曲线循环图;
图18示意性示出了根据本公开实施例8在中性电解液通过两电极分步法采用铂钛网电极作为催化电极在10mA电流下制取氢气的电解曲线循环图;
图19示意性示出了根据本公开实施例9在碱性电解液通过两电极分步法采用铂钛网电极作为催化电极在10mA电流下制取氢气的电解曲线循环图;
图20示意性示出了根据本公开实施例10在碱性电解液通过三电极分步法采用铂电极析氢作为催化电极及采用铂钛网电极作为析氧催化电极在10mA电流下制取氢气的电解曲线图。
附图标记:
100、电化学装置;
110、第一电极;120、第二电极;130、隔膜;
200、电化学装置;
210、第一电极;220、第二电极。
具体实施方式
在实现本公开的过程中发现,电化学装置包括第一电极、第二电极和电解液,其中第一电极是实现各种离子可逆地吸附和脱附的碳基电极材料,第二电极是能实现析氢、氢气氧化和析氧反应的催化电极材料,电解液中含有各种可溶性离子。该电化学装置在储能应用方面具有超过10万次的稳定循环和快速的充放电能力,并且,可在不同高低温以及全pH范围的环境下进行工作。另外,该电化学装置也能够在全pH的环境去耦合电解水制氢,避免氢气和氧气的同时产生,提高电解水的效率。
具体而言,根据本公开的实施例,提供了电化学装置100。图1示意性示出了根据本公 开实施例中一种电化学装置的工作示意图,如图1所示,电化学装置100包括:电解液,为含可溶性离子的水溶液;第一电极110,为碳基电极,被配置用于实现可溶性离子可逆的吸附和脱附;第二电极120,为催化电极,被配置用于在其与电解液之间的界面进行析氢反应和氢气氧化反应;以及隔膜130,设置于第一电极110与第二电极120之间。
根据本公开的实施例,电化学装置100作为碳-氢气电池应用于储能过程中,此时第一电极110为正极,采用碳基电极材料,能够在基底发生离子的吸附和脱附,第二电极120为负极,采用催化性氢气电极,能够在催化剂表面发生快速的析氢反应与氢气氧化反应。可以理解,对于电池的充放电过程,在充电时,在负极发生析氢反应,而正极发生可溶性离子的吸附;在放电时,在负极发生氢气氧化反应,而正极发生可溶性离子的脱附。该电池体系表现出良好的兼容性,具有快速的充放电能力,更长的循环寿命,适用于不同高低温工作环境等优点。
根据本公开的实施例,还提供了电化学装置200。图2示意性示出了根据本公开实施例中另一种电化学装置的工作示意图,如图2所示,电化学装置200包括:电解液,为含可溶性离子的水溶液;第一电极210,为碳基电极,被配置用于实现可溶性离子可逆的吸附和脱附;第二电极220,为催化电极,被配置用于在其与电解液之间的界面进行析氢反应和析氧反应。
由于常规的电解水技术在电解过程中阴阳极同时电解生成氢气和氧气,这将很容易导致氢气和氧气的混合,致使所制备的气体不纯,后续的提纯则将大大增大制备成本。根据本公开的实施例,电化学装置200作为电解池应用于电解水制氢过程中,以第一电极210为阳极,采用碳基电极材料,能够在基底发生离子的吸附,第二电极220为阴极,采用催化电极,能够在催化剂表面发生快速的析氢反应;以第一电极210为阴极,能够在基底发生离子的脱附,第二电极220为阳极,能够在催化剂表面发生快速的析氧反应。由此析氢与析氧分两步法进行将避免前述需要对制备的气体进行提纯的这一问题,在电解水过程中可以不使用隔膜,由此简化了高纯度氢气和高纯度氧气的制备方法,大大地降低了成本。
根据本公开的实施例,在电化学装置100或200中,电解液为酸性、中性或碱性水溶液中的一种。
具体而言,电化学装置100或200可在不同酸碱度的水系电解液进行工作。主要在于第一电极110或210能在不同酸碱度的水系电解液进行可逆的吸附和脱附,第二电极120或220也能在不同酸碱度的水系电解液进行可逆析氢、析氧与氢气氧化反应。例如水溶液中加入H 3PO 4得到酸性电解液,水溶液中加入磷酸盐缓冲溶液得到中性电解液,水溶液中加入KOH溶液得到碱性电解液。
根据本公开的实施例,电解液中可溶性离子包括可溶性阳离子和可溶性阴离子。可溶性阳离子为钾离子、钠离子、锂离子、镁离子、铝离子、钙离子、钡离子、锶离子、氢离子、铵根离子中的一种或多种,其相应的离子浓度在0.01~30mol/L。阴离子为氢氧根、硫酸根、硝酸根、高氯酸根、磷酸根、磷酸一氢根、磷酸二氢根、次亚磷酸根、亚磷酸根、醋酸根、碳酸根、碳酸氢根、氯离子中的一种或多种,其相应的离子浓度在0.01~30mol/L。
这些可溶性阳离子和可溶性阴离子均能够可逆地在第一电极110或210与电解液之间的界面上发生吸附和脱附。
根据本公开的实施例,作为第一电极110或210的碳基电极为经杂原子处理改性或未经杂原子处理改性的石墨、石墨烯、碳布、碳纸、活性炭、碳微米纤维、碳纳米纤维、碳毡、石墨毡、金属有机框架、共价有机框架、普鲁士蓝衍生物中的至少一种;这里的杂原子指的是氮、磷、硫、氧中的至少一种。上述碳基电极的电极材料具有比表面积大,吸附性强的优点,基于较高的电吸附容量,利于析氢反应和析氧反应的交替循环,以及与析氢反应和氢气氧化反应的匹配。可选的,碳基电极的电化学吸附容量为0.001~1000mAh/cm 2
根据本公开的实施例,作为第二电极120或220的催化电极为承载催化剂的集流体,例如图1或2所示催化剂附着在作为集流体的气体扩散层基底表面。集流体具有能快速发生三相界面反应的优点,并且可承载催化析氢、析氧与氢气氧化反应的催化剂。
根据本公开的实施例,上述催化电极的催化剂包括贵金属、贵金属化合物、非贵金属、非贵金属化合物和碳材料中的至少一种。析氢、析氧与氢气氧化反应的催化剂具有多种类型,通过催化剂表面的活性位点在三相界面上促进反应的进行。
根据本公开的实施例,催化剂包括Pt、Pd、Ir、Ru、PtNi、PtCo、PtMo、PtW、PtNiCo、PtNiMo、PdNi、PdCo、PdMo、PdW、PdNiCo、PdNiMo、IrNi、IrCo、IrMo、IrW、IrNiCo、IrNiMo、RuNi、RuCo、RuMo、RuW、RuNiCo、RuNiMo中的至少一种;或者PtO 2、PtOH、PtC、IrO 2、IrC、IrN、IrS、IrP、RuO 2、RuC、RuN、RuS、RuP中的至少一种,或者PtO 2、PtOH、PtC、IrO 2、IrC、IrN、IrS、IrP、RuO 2、RuC、RuN、RuS、RuP中的至少一种与纳米碳的混合物;或者Ni、NiMo、NiCoMo、MoC、MoC 2、MoO 2、MoS 2、MoP、WC、WC 2、WO 2、WS 2、WP、NiN、NiS、NiP、NiPS中的至少一种,或者Ni、NiMo、NiCoMo、MoC、MoC 2、MoO 2、MoS 2、MoP、WC、WC 2、WO 2、WS 2、WP、NiN、NiS、NiP、NiPS中的至少一种与纳米碳的混合物;或者碳材料的微米或纳米球、微米或纳米颗粒、微米或纳米片、微米或纳米线、微米或纳米管结构中的一种。
更具体地,贵金属类催化剂,包括贵金属和贵金属化合物等,具有催化活性高的优点,非贵金属类催化剂,包括非贵金属和非贵金属化合物等,具有与贵金属相差甚微的催化活性, 且廉价的优点,碳材料类催化剂具有价格低廉的优点但催化活性往往比较差。
根据本公开的实施例,电化学装置200中第二电极220包括析氢催化电极,被配置用于在其与电解液之间的界面进行析氢反应;以及析氧催化电极,被配置用于在其与电解液之间的界面进行析氧反应;其中,析氢催化电极和析氧催化电极为同一电极或不同电极。换言之,可以设置三个电极,即,对电解水生成氢气具有催化作用的析氢催化电极、对电解水生成氧气具有催化作用的析氧催化电极和碳基电极;也可以只设置两个电极,即,析氢催化电极与析氧催化电极为同一个电极,和碳基电极。
根据本公开的实施例,还提供了使用上述电化学装置100的充放电方法。图3示意性示出了根据本公开实施例中使用电化学装置的充放电方法流程图,如图1和图3所示,该方法包括操作S110和S120。
在操作S110,在充电过程中,向第一电极110和第二电极120施加第一外电压,在第一电极110上发生可溶性离子可逆的吸附,在第二电极120与电解液之间的界面发生析氢反应;在操作S120,在放电过程中,在第一电极110发生可溶性离子可逆的脱附,在第二电极120与电解液之间的界面发生氢气氧化反应。
根据本公开的实施例,电化学装置100内部的氢气压力为1~100atm,氢气压力在该范围内有利于第二电极120上发生氢气氧化反应。电化学装置正常工作的温度范围为-70~60℃,电化学装置的第一电极、第二电极以及电解液都能承受高低温,并且能够正常工作。电化学装置结构包括扣电电池、圆柱形电池或液流电池,扣电电池结构具有体积小,容易操作的特点,常用于实验室水平;圆柱型电池结构具有能量密度高的特点,常用于笔记本电脑、数码相机等便携式能源;液流电池结构具有电池容量大的特点,常用于大规模储能设备上。
根据本公开的实施例,还提供了使用上述电化学装置200的去耦合电解水制氢方法。图4示意性示出了根据本公开实施例中使用电化学装置的去耦合电解水制氢方法流程图,如图2和图4所示,该方法包括操作S210和S220。
在操作S210,向第一电极210和第二电极220施加第二外电压以对电解液进行电解,在第二电极220与电解液之间的界面发生析氢反应,在第一电极210上发生可溶性离子的吸附;在操作S220,向第一电极210和第二电极220施加与第二外电压反向的第三外电压以对电解液进行电解,在第二电极220与电解液之间的界面发生析氧反应,在第一电极210上发生可溶性离子的脱附;其中操作S210的析氢反应和操作S220的析氧反应交替循环进行。
根据本公开的实施例,本公开中析氢与析氧分两步法进行,通过析氢与析氧的交替循环,实现了碳电极的循环利用,同时有效实现了在不同时段电解制氢气,并最终有效防止了氢气与氧气的混合,由此简化了高纯度氢气和高纯度氧气的制备方法,大大地降低了成本。
根据本公开的实施例,操作S210的析氢反应和操作S220的析氧反应分别在恒定电流下进行,电流大小和电解时间被配置为使碳电极上没有任何气体生成。恒电流可以持续稳定地析氢和析氧。
下面通过多个具体实施例对本公开的技术方案作进一步详细说明。需要说明的是,下文中的具体实施例仅用于示例,并不用于限制本公开。
实施例1:电化学装置应用于储能过程
制备酸性电解液:配置9M H 3PO 4溶液,得到酸性电解液。
正极采用市场可以购买到商业化活性炭涂在钛箔上,负极采用市售的商业化铂碳分涂在气体扩散层基底上,碳电极的电吸附容量为0.2mAh/cm 2
电化学装置的组装:外壳为不锈钢材质的法兰连接球阀(购自Swagelok公司),起到充入并密封高压氢气的作用。内部为所叙述的正极、负极与隔膜材料以扣电形式进行组装,电解液为上述所配制的酸性电解液,填充满隔膜,组装得到的电化学装置为碳-氢气电池。
对以上电池的电化学性能进行25℃测试。图5示意性示出了根据本公开实施例1中中碳-氢气电池采用活性炭电极在酸性电解液与25℃下的充放电测试结果曲线;图6示意性示出了根据本公开实施例1中碳-氢气电池采用活性炭电极在酸性电解液与25℃下的循环性能测试结果曲线;图7示意性示出了根据本公开实施例1中碳-氢气电池与碳-碳电池在酸性电解液与25℃下的充放电测试结果对比曲线。
可知,本实施例的碳-氢气电池,在1A/g低的电流密度下放电比容量可达98mAh/g,且能够进行30A/g大电流充放电,比容量仍保持在47mAh/g(如图5所示)。在20A/g大电流下稳定循环50000次,容量保持率仍有88%(如图6所示)。另外,本实施例的碳-氢气电池的储能容量远远高于碳-碳电池的比容量(如图7所示)。
对以上电池的电化学性能分别进行高低温40~-50℃测试。图8示意性示出了根据本公开实施例1中碳-氢气电池采用活性炭电极在酸性电解液与不同温度的充放电测试结果曲线;图8a所示为电池的不同温度下充放电曲线图;图8e所示为电池的不同温度下容量图。可知,本实施例的碳-氢气电池,放电比容量分别可达108mAh/g(40℃),98mAh/g(25℃),46mAh/g(-20℃),38mAh/g(-40℃),28mAh/g(-50℃)在1A/g低的电流密度下,如图8a及8e所示。
对以上电池的电化学性能进行高温60℃测试。图8b所示为电池的60℃充放电曲线图。可知,本实施例的碳-氢气电池,放电比容量可达100mAh/g在6A/g低的电流密度下,且能够进行30A/g大电流充放电,比容量仍保持在75mAh/g,如图8b所示。
对以上电池的电化学性能进行低温零下-60℃测试,图8c所示为电池-60℃充放电曲线图。 可知,本实施例的碳-氢气电池,放电比容量仍可达36mAh/g在0.05A/g的电流密度下,仍能正常进行充放电,如图8c所示。
对以上电池的电化学性能进行低温零下-70℃测试,图8d所示为电池-70℃充放电曲线图。可知,本实施例的碳-氢气电池,放电比容量仍可达27mAh/g在0.02A/g的电流密度下,仍能正常进行充放电,如图8d所示。
对以上电池的电化学性能进行低温零下-20℃测试。图9示意性示出了根据本公开实施例1中碳-氢气电池采用活性炭电极在酸性电解液与-20℃的循环性能测试结果曲线。可知,本实施例的碳-氢气电池,在4A/g电流下稳定循环10000次,容量几乎没有衰减,如图9所示。
实施例2:电化学装置应用于储能过程
制备中性电解液:配置1M KH 2PO 4与1M K 2HPO 4磷酸盐缓冲溶液,得到中性电解液。
正极采用市场可以购买到商业化活性炭涂在钛箔上,负极采用市售的商业化铂碳分涂在气体扩散层基底上,碳电极的电吸附容量为0.14mAh/cm 2
水系碳-氢气电池的组装与实施例1相同。
对以上中性电解液的电化学性能进行25℃测试。图10示意性示出了根据本公开实施例2中碳-氢气电池采用活性炭电极在中性电解液的充放电测试结果曲线;图11示意性示出了根据本公开实施例2中碳-氢气电池采用活性炭电极在中性电解液的循环性能测试结果曲线。
可知,本实施例的碳-氢气电池碳为活性碳,电解液为中性时,放电比容量可达69mAh/g在1A/g低的电流倍率下,且能够进行20A/g大电流充放电,比容量仍保持在42mAh/g,如图10所示。在10A/g大电流下稳定循环100000次,容量保持率仍有85%,如图11所示。
实施例3:电化学装置应用于储能过程
制备碱性电解液:配置2M KOH溶液,得到碱性电解液。
正极采用市场可以购买到商业化活性炭涂在钛箔上,负极采用市售的商业化铂碳分涂在气体扩散层基底上,碳电极的电吸附容量为0.14mAh/cm 2
水系碳-氢气电池的组装与实施例1相同。
对以上碱性电解液的电化学性能进行25℃测试。图12示意性示出了根据本公开实施例3中碳-氢气电池采用活性炭电极在碱性电解液的充放电测试结果曲线。可知,本实施例的碳-氢气电池碳为活性碳,电解液为碱性时,放电比容量可达74mAh/g在1A/g低的电流倍率下,且能够进行20A/g大电流充放电,比容量仍保持在45mAh/g,如图12所示。
实施例4:电化学装置应用于储能过程
制备酸性电解液:配置9M H 3PO 4溶液,得到酸性电解液。
正极采用市场可以购买到商业化还原石墨烯涂在钛箔上,负极采用市售的商业化铂碳分涂在气体扩散层基底上,碳电极的电吸附容量为0.2mAh/cm 2
水系碳-氢气电池的组装与实施例1相同。
对以上电池的电化学性能进行25℃测试。图13示意性示出了根据本公开实施例4中碳-氢气电池采用还原石墨烯电极在酸性电解液的电化学性能测试结果曲线,其中图13a是是电池的充放电曲线图,图13b是电池的循环性能图。可知,本实施例的碳-氢气电池,放电比容量可达53mAh/g在1A/g低的电流倍率下,且能够进行30A/g大电流充放电,比容量仍保持在40mAh/g,如图13a所示。在20A/g大电流下稳定循环30000次,容量几乎没有衰减,如图13b所示。
实施例5:电化学装置应用于去耦合电解水制氢过程
本实施例电解液为酸性的水溶液,通过两电极对电解水生成氢气与氧气进行分离,析氢催化电极与析氧催化电极做成一个电极。
生成氢气与氧气的催化电极均采用市场可以购买到商业化铂电极,碳电极采用市场可以购买到商业化活性炭涂在钛箔上,碳电极的电吸附容量为0.33mAh/cm 2。铂电极面积均为1平方厘米,碳电极的面积为6平方厘米。电解槽中电解液使用0.5M硫酸溶液,采用恒定电流进行电解水。首先,发生的析氢反应,在电解槽中,阴极连接铂电极,阳极连接碳电极,20mA电流电解,时间为360秒,铂电极上生成氢气。然后,发生的析氧反应,将阴阳极反向连接,阳极连接铂钛网电极,阴极连接碳电极进行电解产氧反应,同样20mA电流电解,时间为360秒,铂电极上生成氧气。
图14示意性示出了根据本公开实施例5在酸性电解液通过两电极分步法采用铂电极作为催化电极在20mA电流下制取氢气的电解曲线图;图15示意性示出了根据本公开实施例5在酸性电解液通过两电极分步法采用铂电极作为催化电极在20mA电流下制取氢气的电解曲线循环图。可知,电解水析氢与析氧交替进行超过40h,仍能稳定工作如图15所示。循环整个过程碳电极上没有任何气体生成,氢气与氧气可在不同时间段产生。
实施例6:电化学装置应用于去耦合电解水制氢过程
电解质为酸性的水溶液,通过两电极对电解水生成氢气与氧气进行分离,析氢催化电极与析氧催化电极做成一个电极。
生成氢气与氧气的催化电极均采用铂钌二氧化铱电极,该电极采用市场可以购买到商业化的铂碳、钌碳、二氧化铱粉末均匀的涂覆在钛箔上,碳电极采用市场可以购买到商业化活性炭涂覆在钛箔上,碳电极的电吸附容量为0.21mAh/cm 2。铂电极面积均为1平方厘米,碳电极的面积为2平方厘米。电解槽中电解液使用0.5M硫酸溶液,采用恒定电流进行电解水。首先,在电解槽中,阴极连接铂电极,阳极连接碳电极,10mA电流电解,时间为150秒,铂电极上生成氢气,完成析氢反应。然后,将阴阳极反向连接,阳极连接铂电极,阴极连接碳电极进行电解产氧反应,同样10mA电流电解,时间为150秒,铂电极上生成氢气电极上生成氧气,完成析氧反应。图16示意性示出了根据本公开实施例6在酸性电解液通过两电极分步法采用铂钌铱电极作为催化电极在50mA电流下制取氢气的电解曲线图。整个过程碳电极上没有任何气体生成,氢气与氧气可在不同时间段产生。
实施例7:电化学装置应用于去耦合电解水制氢过程
电解质为酸性的水溶液,通过两电极对电解水生成氢气与氧气进行分离,析氢催化电极与析氧催化电极做成一个电极。碳-氢气电池在去耦合电解水方面的应用。
生成氢气与氧气的催化电极均采用铂钛网电极,碳电极采用市场可以购买到商业化活性炭涂在碳纸上,碳电极的电吸附容量为1mAh/cm 2。铂钛网电极面积均为1平方厘米,碳电极的面积为1平方厘米。电解槽中电解液使用0.5M硫酸溶液,采用恒定电流进行电解水。首先,在电解槽中,阴极连接铂钛网电极,阳极连接碳电极,10mA电流电解,时间为360秒,铂钛网电极上生成氢气,完成析氢反应。然后,将阴阳极反向连接,阳极连接铂钛网电极,阴极连接碳电极进行电解产氧反应,同样10mA电流电解,时间为360秒,铂钛网电极上生成氧气,完成析氧反应。图17示意性示出了根据本公开实施例7在酸性电解液通过两电极分步法采用铂钛网电极作为催化电极在10mA电流下制取氢气的电解曲线循环图。可知,电解水析氢与析氧交替进行超过180h,整个过程依然稳定的工作运行,如图17所示。整个过程碳电极上没有任何气体生成,氢气与氧气可在不同时间段产生。
实施例8:电化学装置应用于去耦合电解水制氢过程
电解质为中性的水溶液,通过两电极对电解水生成氢气与氧气进行分离,析氢催化电极与析氧催化电极做成一个电极。
生成氢气与氧气的催化电极均采用铂钛网电极,碳电极采用市场可以购买到商业化活性炭涂在碳纸上,碳电极的电吸附容量为0.6mAh/cm 2。铂钛网电极面积均为1平方厘米,碳电极的面积为1平方厘米。电解槽中电解液使用1M磷酸缓冲溶液,采用恒定电流进行电解水。 首先,在电解槽中,阴极连接铂钛网电极,阳极连接碳电极,10mA电流电解,时间为216秒,铂钛网电极上生成氢气,完成析氢反应。然后,将阴阳极反向连接,阳极连接铂钛网电极,阴极连接碳电极进行电解产氧反应,同样10mA电流电解,时间为216秒,铂钛网电极上生成氧气,完成析氧反应。图18示意性示出了根据本公开实施例8在中性电解液通过两电极分步法采用铂钛网电极作为催化电极在10mA电流下制取氢气的电解曲线循环图。可知,电解水析氢与析氧交替进行超过60h,整个过程依然稳定的工作运行,如图18所示。整个过程碳电极上没有任何气体生成,氢气与氧气可在不同时间段产生。
实施例9:电化学装置应用于去耦合电解水制氢过程
电解质为碱性的水溶液,通过两电极对电解水生成氢气与氧气进行分离,析氢催化电极与析氧催化电极做成一个电极。
生成氢气与氧气的催化电极均采用铂钛网电极,碳电极采用市场可以购买到商业化活性炭涂在碳纸上,碳电极的电吸附容量为0.6mAh/cm 2。铂钛网电极面积均为1平方厘米,碳电极的面积为1平方厘米。电解槽中电解液使用2M氢氧化钾溶液,采用恒定电流进行电解水。首先,在电解槽中,阴极连接铂钛网电极,阳极连接碳电极,10mA电流电解,时间为216秒,铂钛网电极上生成氢气,完成析氢反应。然后,将阴阳极反向连接,阳极连接铂钛网电极,阴极连接碳电极进行电解产氧反应,同样10mA电流电解,时间为216秒,铂钛网电极上生成氧气,完成析氧反应。图19示意性示出了根据本公开实施例9在碱性电解液通过两电极分步法采用铂钛网电极作为催化电极在10mA电流下制取氢气的电解曲线循环图。可知,电解水析氢与析氧交替进行超过24h,整个过程依然稳定的工作运行,如图19所示。整个过程碳电极上没有任何气体生成,氢气与氧气可在不同时间段产生。
实施例10:电化学装置应用于去耦合电解水制氢过程
电解质为碱性的水溶液,通过三电极对电解水生成氢气与氧气进行分离,析氢催化电极与析氧催化电极各自单独成一个电极。
生成氢气的催化电极采用铂电极,生成氧气的催化电极采用铂钛网电极,碳电极采用市场可以购买到商业化活性炭涂在钛箔上,碳电极的电吸附容量为0.23mAh/cm 2。铂电极与铂钛网电极面积均为1平方厘米,碳电极的面积为6平方厘米。电解槽中电解液使用2M氢氧化钾溶液,采用恒定电流进行电解水。首先,在电解槽中,阴极连接铂电极,阳极连接碳电极,20mA电流电解,时间为252秒,铂电极上生成氢气,完成析氢反应。然后,将阳极连接铂钛网电极,阴极连接碳电极进行电解产氧反应,同样20mA电流电解,时间为252秒, 铂钛网电极上生成氧气,完成析氧反应。图20示意性示出了根据本公开实施例10在碱性电解液通过三电极分步法采用铂电极析氢作为催化电极及采用铂钛网电极作为析氧催化电极在10mA电流下制取氢气的电解曲线图。整个过程碳电极上没有任何气体生成,氢气与氧气可在不同时间段产生。
以上所述本公开的具体实施方式,并不构成对本公开保护范围的限定。任何根据本公开的技术构思所作出的各种其他相应的改变与变形,均应包含在本公开权利要求的保护范围内。

Claims (14)

  1. 一种电化学装置,包括:
    电解液,为含可溶性离子的水溶液;
    第一电极,为碳基电极,被配置用于实现所述可溶性离子可逆的吸附;以及
    第二电极,为催化电极,被配置用于在其与所述电解液之间的界面进行析氢反应。
  2. 根据权利要求1所述的电化学装置,其中,所述第一电极还被配置用于实现所述可溶性离子可逆的脱附;第二电极还被配置用于在其与所述电解液之间的界面进行氢气氧化反应;
    所述电化学装置还包括:
    隔膜,设置于所述第一电极与所述第二电极之间。
  3. 根据权利要求1所述的电化学装置,其中,所述第一电极还被配置用于实现所述可溶性离子可逆的脱附;第二电极还被配置用于在其与所述电解液之间的界面进行析氧反应。
  4. 根据权利要求3所述的电化学装置,其中,所述第二电极包括:
    析氢催化电极,被配置用于在其与所述电解液之间的界面进行析氢反应;以及
    析氧催化电极,被配置用于在其与所述电解液之间的界面进行析氧反应;
    其中,所述析氢催化电极和所述析氧催化电极为同一电极或不同电极。
  5. 根据权利要求1所述的电化学装置,其中,所述可溶性离子包括可溶性阳离子和可溶性阴离子,所述可溶性阳离子和所述可溶性阴离子的离子浓度分别为0.01~30mol/L。
  6. 根据权利要求5所述的电化学装置,其中,所述可溶性阳离子选自钾离子、钠离子、锂离子、镁离子、铝离子、钙离子、钡离子、锶离子、氢离子、铵根离子中的一种或多种;
    所述可溶性阴离子选自氢氧根、硫酸根、硝酸根、高氯酸根、磷酸根、磷酸一氢根、磷酸二氢根、次亚磷酸根、亚磷酸根、醋酸根、碳酸根、碳酸氢根、氯离子中的一种或多种。
  7. 根据权利要求1所述的电化学装置,其中,所述碳基电极的电化学吸附容量为0.001-1000mAh/cm 2
  8. 根据权利要求1所述的电化学装置,其中,所述碳基电极为经杂原子处理改性或未经杂原子处理改性的石墨、石墨烯、碳布、碳纸、活性炭、碳微米纤维、碳纳米纤维、碳毡、石墨毡、金属有机框架、共价有机框架、普鲁士蓝衍生物中的至少一种;所述杂原子选自氮、磷、硫、氧中的至少一种。
  9. 根据权利要求1所述的电化学装置,其中,所述催化电极为承载催化剂的集流体。
  10. 根据权利要求9所述的电化学装置,其中,所述催化剂包括贵金属、贵金属化合物、非贵金属、非贵金属化合物和碳材料中的至少一种。
  11. 根据权利要求10所述的电化学装置,其中,所述催化剂包括Pt、Pd、Ir、Ru、PtNi、PtCo、PtMo、PtW、PtNiCo、PtNiMo、PdNi、PdCo、PdMo、PdW、PdNiCo、PdNiMo、IrNi、IrCo、IrMo、IrW、IrNiCo、IrNiMo、RuNi、RuCo、RuMo、RuW、RuNiCo、RuNiMo中的至少一种;或者PtO 2、PtOH、PtC、IrO 2、IrC、IrN、IrS、IrP、RuO 2、RuC、RuN、RuS、RuP中的至少一种,或者PtO 2、PtOH、PtC、IrO 2、IrC、IrN、IrS、IrP、RuO 2、RuC、RuN、RuS、RuP中的至少一种与纳米碳的混合物;或者Ni、NiMo、NiCoMo、MoC、MoC 2、MoO 2、MoS 2、MoP、WC、WC 2、WO 2、WS 2、WP、NiN、NiS、NiP、NiPS中的至少一种,或者Ni、NiMo、NiCoMo、MoC、MoC 2、MoO 2、MoS 2、MoP、WC、WC 2、WO 2、WS 2、WP、NiN、NiS、NiP、NiPS中的至少一种与纳米碳的混合物;或者所述碳材料的微米或纳米球、微米或纳米颗粒、微米或纳米片、微米或纳米线、微米或纳米管结构中的一种。
  12. 一种使用电化学装置的充放电方法,其中,所述电化学装置包括:
    电解液,为含可溶性离子的水溶液;
    第一电极,为碳基电极,被配置用于实现所述可溶性离子可逆的吸附和脱附;
    第二电极,为催化电极,被配置用于在其与所述电解液之间的界面进行析氢反应和氢气氧化反应;以及
    隔膜,设置于所述第一电极与所述第二电极之间;
    所述充放电方法包括:
    在充电过程中,向第一电极和第二电极施加第一外电压,在所述第一电极上发生可溶性离子可逆的吸附,在所述第二电极与电解液之间的界面发生析氢反应;
    在放电过程中,在所述第一电极发生所述可溶性离子可逆的脱附,在所述第二电极与所述电解液之间的界面发生氢气氧化反应。
  13. 根据权利要求12所述的充放电方法,其中,所述电化学装置内部的氢气压力为1~100atm;和/或所述电化学装置正常工作的温度范围为-70~60℃;和/或所述电化学装置结构包括扣电电池、圆柱形电池或液流电池。
  14. 一种使用电化学装置的去耦合电解水制氢方法,其中,所述电化学装置包括:
    电解液,为含可溶性离子的水溶液;
    第一电极,为碳基电极,被配置用于实现所述可溶性离子可逆的吸附和脱附;
    第二电极,为催化电极,被配置用于在其与所述电解液之间的界面进行析氢反应和析氧反应;
    所述去耦合电解水制氢方法包括:
    向第一电极和第二电极施加第二外电压以对电解液进行电解,在所述第二电极与所述电 解液之间的界面发生所述析氢反应,在所述第一电极上发生可溶性离子的吸附;
    向所述第一电极和所述第二电极施加与所述第二外电压反向的第三外电压以对所述电解液进行电解,在所述第二电极与所述电解液之间的界面发生所述析氧反应,在所述第一电极上发生所述可溶性离子的脱附;
    其中,所述析氢反应和所述析氧反应交替循环进行。
PCT/CN2022/090913 2021-06-03 2022-05-05 电化学装置、充放电方法及电解水制氢方法 WO2022252902A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202110621936.6 2021-06-03
CN202110621985.X 2021-06-03
CN202110621985.XA CN113363629A (zh) 2021-06-03 2021-06-03 水系碳-氢气二次电池
CN202110621936.6A CN113355680A (zh) 2021-06-03 2021-06-03 在电解水中分离析氢与析氧的方法及装置

Publications (1)

Publication Number Publication Date
WO2022252902A1 true WO2022252902A1 (zh) 2022-12-08

Family

ID=84323859

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/090913 WO2022252902A1 (zh) 2021-06-03 2022-05-05 电化学装置、充放电方法及电解水制氢方法

Country Status (1)

Country Link
WO (1) WO2022252902A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015023019A (ja) * 2013-07-17 2015-02-02 安東 孝止 水素およびハロゲン元素イオンを活物質とする炭素極蓄電池
CN104362393A (zh) * 2014-10-10 2015-02-18 恩力能源科技(南通)有限公司 一种可充放水系离子电池
CN105821436A (zh) * 2016-05-09 2016-08-03 复旦大学 一种基于三电极体系的双电解槽两步法氯碱电解方法及装置
CN112803095A (zh) * 2021-01-29 2021-05-14 中国科学技术大学 一种水系卤素-氢气二次电池
CN113355680A (zh) * 2021-06-03 2021-09-07 中国科学技术大学 在电解水中分离析氢与析氧的方法及装置
CN113363629A (zh) * 2021-06-03 2021-09-07 中国科学技术大学 水系碳-氢气二次电池

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015023019A (ja) * 2013-07-17 2015-02-02 安東 孝止 水素およびハロゲン元素イオンを活物質とする炭素極蓄電池
CN104362393A (zh) * 2014-10-10 2015-02-18 恩力能源科技(南通)有限公司 一种可充放水系离子电池
CN105821436A (zh) * 2016-05-09 2016-08-03 复旦大学 一种基于三电极体系的双电解槽两步法氯碱电解方法及装置
CN112803095A (zh) * 2021-01-29 2021-05-14 中国科学技术大学 一种水系卤素-氢气二次电池
CN113355680A (zh) * 2021-06-03 2021-09-07 中国科学技术大学 在电解水中分离析氢与析氧的方法及装置
CN113363629A (zh) * 2021-06-03 2021-09-07 中国科学技术大学 水系碳-氢气二次电池

Similar Documents

Publication Publication Date Title
Zhang et al. Multiwall carbon nanotube encapsulated Co grown on vertically oriented graphene modified carbon cloth as bifunctional electrocatalysts for solid-state Zn-air battery
Chen et al. Multiscale hierarchical structured NiCoP enabling ampere‐level water splitting for multi‐scenarios green energy‐to‐hydrogen systems
CN105734600B (zh) 一种三电极体系双电解槽两步法电解水制氢的装置及方法
KR102408081B1 (ko) 이산화탄소계 산화 환원 커플을 가진 산화 환원 흐름 배터리
Zhao et al. Pt/C as a bifunctional ORR/iodide oxidation reaction (IOR) catalyst for Zn-air batteries with unprecedentedly high energy efficiency of 76.5%
Sun et al. Highly efficient water splitting driven by zinc-air batteries with a single catalyst incorporating rich active species
Zheng et al. NiCo2O4 nanoflakes supported on titanium suboxide as a highly efficient electrocatalyst towards oxygen evolution reaction
CN104993159B (zh) 一种双功能催化剂及其制备和在金属空气电池中的应用
JP6426723B2 (ja) タングステン系材料、スーパバッテリーおよびスーパキャパシタ
WO2012162390A1 (en) Flow battery and mn/v electrolyte system
Guo et al. A novel design of an electrolyser using a trifunctional (HER/OER/ORR) electrocatalyst for decoupled H 2/O 2 generation and solar to hydrogen conversion
CN113381097B (zh) 水系普鲁士蓝衍生物-氢气二次电池
CN106252674A (zh) 一种氮掺杂炭载非贵金属氧还原/氧析出双功能催化剂
CN112803095A (zh) 一种水系卤素-氢气二次电池
Qiu et al. Defect engineering tuning of MnO2 nanorods bifunctional cathode for flexible asymmetric supercapacitors and microbial fuel cells
Zhou et al. Fe-Co dual atomic doublets on N, P codoped carbon as active sites in the framework of heterostructured hollow fibers towards high-performance flexible Zn-Air battery
Ge et al. Electrocatalytic activity of cobalt phosphide-modified graphite felt toward VO2+/VO2+ redox reaction
Zhu et al. Ultrafast charge in Zn-based batteries through high-potential deposition
Zheng et al. Bridge-linking interfacial engineering of triple carbons for highly efficient and binder-free electrodes toward flexible Zn-air batteries
CN111416129B (zh) 一种酸碱非对称电解液锌-醌电池
CN113363629A (zh) 水系碳-氢气二次电池
Shi et al. Reduced graphene oxide coated manganese dioxide electrode prepared by polyvinylpyrrolidone assisted electrodeposition
US10211494B1 (en) Lithium hydrogen secondary electrochemical cell
Ratsoma et al. Application of nickel foam in electrochemical systems: a review
Wang et al. Job-synergistic engineering from Fe3N/Fe sites and sharp-edge effect of hollow star-shaped nitrogen-doped carbon structure for high-performance zinc-air batteries

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22814949

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE