WO2022252763A1 - 多色光源及投影设备 - Google Patents

多色光源及投影设备 Download PDF

Info

Publication number
WO2022252763A1
WO2022252763A1 PCT/CN2022/082083 CN2022082083W WO2022252763A1 WO 2022252763 A1 WO2022252763 A1 WO 2022252763A1 CN 2022082083 W CN2022082083 W CN 2022082083W WO 2022252763 A1 WO2022252763 A1 WO 2022252763A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
laser
color
combining
light source
Prior art date
Application number
PCT/CN2022/082083
Other languages
English (en)
French (fr)
Inventor
颜珂
Original Assignee
青岛海信激光显示股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海信激光显示股份有限公司 filed Critical 青岛海信激光显示股份有限公司
Priority to CN202280030431.5A priority Critical patent/CN117751322A/zh
Publication of WO2022252763A1 publication Critical patent/WO2022252763A1/zh
Priority to US18/516,249 priority patent/US20240085771A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2033LED or laser light sources
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/1006Beam splitting or combining systems for splitting or combining different wavelengths
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • G02B27/283Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising used for beam splitting or combining
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2013Plural light sources
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/206Control of light source other than position or intensity
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2073Polarisers in the lamp house

Definitions

  • the present application relates to the field of optoelectronic technology, in particular to a multi-color light source and projection equipment.
  • a laser is used as a light source of a projection device, and the laser light emitted by the laser is modulated and then projected onto a screen, thus realizing the projection display of the projection device.
  • the coherence of the laser light emitted by the laser is strong, and the laser light will interfere during the transmission in space, causing the laser light to appear bright and dark spots after being projected on the screen. This phenomenon is also called the speckle effect of laser projection.
  • a multicolor light source includes: a laser, a light combining component, and a polarity adjustment component;
  • the laser is used to emit multiple colors of laser light to the light combination component, and the light combination component is used to mix the multiple colors of laser light and shoot it to the polarity adjustment component; the polarity adjustment The component is used to adjust the polarization direction of at least part of the incident laser light to obtain the target laser light.
  • a projection device in another aspect of the present application, includes: the above-mentioned multicolor light source, a light valve, and a lens;
  • the multi-color light source is used to emit laser light to the light valve, the light valve is used to modulate the incoming laser light and shoot it to the lens, and the lens is used to project the incoming laser light to form a projection screen.
  • Fig. 1 is a schematic structural diagram of a polychromatic light source provided by an embodiment of the present application
  • Fig. 2 is a schematic structural diagram of another polychromatic light source provided by the embodiment of the present application.
  • Fig. 3 is a schematic structural diagram of a polarity adjustment component provided by an embodiment of the present application.
  • Fig. 4 is a schematic structural diagram of another multi-color light source provided by the embodiment of the present application.
  • Fig. 5 is a schematic structural diagram of another multi-color light source provided by the embodiment of the present application.
  • Fig. 6 is a schematic structural diagram of a polychromatic light source provided by another embodiment of the present application.
  • Fig. 7 is a schematic structural diagram of another polychromatic light source provided by another embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of a projection device provided by an embodiment of the present application.
  • Embodiments of the present application provide a multicolor light source and a projection device, which can reduce the speckle effect in a projected picture and improve the display effect of the projected picture.
  • FIG. 1 is a schematic structural diagram of a polychromatic light source provided by an embodiment of the present application.
  • the multicolor light source 10 may include: a laser 101 , a light combination component 102 and a polarity adjustment component 103 .
  • the polarization direction of the laser can reflect the polarity of the laser, and adjusting the polarization direction of the laser means changing the polarity of the laser.
  • the polarity adjustment component in the embodiment of the present application is also the polarization direction adjustment component.
  • the laser 101 may be a multi-color laser, and the laser 101 is used to emit multiple colors of laser light to the light combination component 102 .
  • the light-combining component 102 is used to mix the multiple colors of laser light and emit them to the polarity adjusting component 103 .
  • the polarity adjustment component 103 is used to adjust the polarization direction of at least part of the incident laser light to obtain the target laser light.
  • the laser 101 may be a three-color laser, and different light-emitting areas of the laser may emit laser light of different colors. If the laser includes three light emitting areas, the three light emitting areas can emit green laser light, blue laser light and red laser light respectively.
  • the laser light in the optical path after the polarity adjustment component 103 is called the target laser light.
  • each color of the at least one color of laser light may also include three parts of laser light, wherein the polarization directions of each part of laser light are different.
  • the laser beams of multiple colors are combined into one spot.
  • the lasers of multiple colors exist at each position of the one spot, so after entering the polarity adjustment component, part of the combined light spot enters the polarity adjustment component, while the remaining part of the combined light spot does not pass through the polarity adjustment component.
  • the polarity adjustment component can adjust the polarization directions of a part of the laser beams of multiple colors in the combined light spot, so that the laser beams of each color have different polarization directions.
  • the above-mentioned at least one color of laser light is the multiple color laser light.
  • the lasers of multiple colors emitted by the laser can be directed to the polarity adjustment component after light mixing, and then at least part of the injected laser light can be adjusted by the polarity adjustment component.
  • the polarization direction of the laser light is adjusted so that the laser light of the same color has different polarization directions among the multiple colors of laser light. In this way, the coherence of the laser light emitted by the multi-color light source can be reduced, thereby reducing the speckle effect caused by projection based on the laser light, and improving the projection effect of the projection device.
  • the polarity adjustment component 103 may have various arrangement modes, and the embodiment of the present application will be introduced with reference to the accompanying drawings.
  • the polarity adjustment component 103 is arranged in the transmission path of part of the laser beam emitted from the light combination assembly 102, so that only this part of the laser light enters the polarity adjustment Part 103.
  • the polarity adjustment component 103 can adjust the polarization directions of the laser beams of the partial beams incident on the component, so as to realize the adjustment of the polarization directions of the partial laser beams in the laser beams emitted by the light combination component 102 .
  • the laser beam emitted from the light-combining component 102 is the laser spot obtained by mixing the lasers of various colors emitted by the laser.
  • the light output direction of the light combination assembly 102 is the target direction (such as the x direction in Figure 1), and on a plane perpendicular to the target direction, the orthographic projection of the polarity adjustment component 103 covers the light spot formed by the laser light emitted by the light combination assembly 102 part of the area.
  • the orthographic projection covers half, one third or other areas of the light spot.
  • the polarity adjustment component may be any one of a half-wave plate, a quarter-wave plate and a three-quarter wave plate.
  • the half-wave plate can rotate the polarization direction of the laser beam entering the half-wave plate by ninety degrees, so that when a part of the laser beam passes through the half-wave plate, the polarity is changed relative to the beam of the other part of the combined laser spot. Ninety degree deflection.
  • the polarity of a part of the light spot is different from that of the remaining part of the light spot, and since the combined light spot is mixed by two-color or multi-color lasers, the color of each color in the multi-color combined light spot
  • the lasers all have different polarities, so that the coherence of the same color laser beams is reduced, and the speckle effect can be improved when applying projection imaging.
  • the half-wave plate can be set by selecting the wavelength of one of the laser colors.
  • the polarity of one of the laser colors Ninety-degree conversion can occur, but the laser light of another color is understood according to the polarity deflection of approximately ninety degrees, but it is also possible to achieve the result that different parts of the same color laser spot have different polarities.
  • the polarity adjustment component 103 can also be a quarter-wave plate, and the quarter-wave plate can adjust the incident laser light into circularly polarized light or elliptically polarized light.
  • polarity adjustment Part 103 can also be a three-quarter wave plate, and the three-quarter wave plate can also adjust the incident laser light to circularly polarized light or elliptically polarized light, but the polarization direction is in the same relationship as the improvement effect of the quarter wave plate. Ten degrees of difference.
  • the polarity adjustment component may also be spliced by any two or three of half-wave plates, quarter-wave plates and three-quarter wave plates. In this way, the polarization directions of the laser beams incident on different regions of the polarity adjusting member are adjusted to different degrees.
  • the multicolor laser beams combined by the light combination assembly 102 may have the same polarity, for example, the red, green, and blue laser beams are all P light or S light, that is, if When the red light emitted from the laser and the green light and blue light emitted from the laser have different polarities, one of the polarized lights can be converted first to obtain a beam of uniform polarity before combining the beams to achieve uniform polarization.
  • the characteristics are also passed through the same optical components, such as lenses, it is easy to obtain consistent optical transmittance or reflectance, better uniformity and easy to reduce light loss, which is conducive to improving the projection display effect.
  • the polarity adjustment component can also adjust the polarity of part of the combined light spots, so that for a laser spot of one color, different light spots have different polarities.
  • FIG. 2 is a schematic structural diagram of another polychromatic light source provided by the embodiment of the present application.
  • the polarity adjustment component 103 is arranged in the transmission path of all the laser beams emitted from the light combination assembly 102 , so that all the laser light emitted from the light combination assembly 102 enters the polarity adjustment component 103 .
  • the laser light emitted from the light combining assembly 102 is directed toward the polarity adjusting member 103 along a target direction (eg, the x direction in FIG. 2 ).
  • the orthographic projection of the polarity adjustment component 103 completely covers the light spot formed by the laser light emitted by the light combining assembly 102 .
  • the polarity adjusting part 103 can still only change the polarity of a part of the combined laser light beams, or Parts of the different combined laser beams undergo different polarity changes.
  • Fig. 3 is a schematic structural diagram of a polarity adjustment component provided by an embodiment of the present application.
  • the polarity adjustment component 103 includes first regions 1031 and second regions 1032 alternately arranged in the direction perpendicular to the target direction (the y direction in FIG. 2 ), the first regions 1031 and the second regions 1032 adjusts the polarization direction of the laser to different degrees.
  • different adjustments can be made to the laser beams of multiple colors emitted by the light combination component 102 through the first zone and the second zone, and the uniform distribution of the laser beams with different polarization directions in the laser beams of the same color can be ensured, further weakening the coherence of the laser beams of the same color .
  • the areas of the subregions in the polarity adjustment component are equal.
  • the total number of partitions in the polarity adjustment component may be greater than the number threshold. The more symmetrical the division of the divisions is, the smaller the area of each division is, and the higher the distribution uniformity of the laser beams with different polarization directions among the laser beams of the same color is.
  • the material of the first region in the polarity adjustment component may be any one of a half-wave plate, a quarter-wave plate and a three-quarter-wave plate.
  • the material of the second area may be a transparent material, or any one of half-wave plate, quarter-wave plate and three-quarter wave plate different from that of the first area.
  • the second area does not adjust the polarization direction of the incident laser light, so that is to say, the polarity adjustment component only adjusts the polarization direction of half of the incident laser light, It is ensured that each color of the target laser light emitted from the polarity adjustment component has a different polarization direction.
  • the polarization directions of the laser beams entering the polarity adjustment part are all adjusted, but the polarization direction of each color laser can be adjusted by different areas, and the target laser can still be guaranteed Each color of laser light has a different polarization direction.
  • the material of the first area is a half-wave plate, and the material of the second area is a transparent layer material.
  • the material of the first area is a quarter wave plate
  • the material of the second area is a three quarter wave plate.
  • the polarity adjustment component may not only include the first area and the second area, but may also include a third area, and the first area, the second area and the third area may be arranged circularly in sequence.
  • the polarity adjusting component may further include a fourth area, and the first area, the second area, the third area and the fourth area may be arranged in a cycle in sequence.
  • the first zone, the second zone, the third zone and the fourth zone can all be made of transparent material, half-wave plate, quarter-wave plate and three-quarter wave plate, and the different zones The material is different.
  • the laser light of each color thus emitted from the polarity adjustment assembly may have three or four polarization directions.
  • the polarity adjusting component in the above example may be fixedly arranged, or may also be arranged rotatably.
  • the multi-color light source in the embodiment of the present application may have various optional structures, and the light source structure of the three-color light source is taken as an example to introduce below. It should be noted that, for different multi-color light source structures, the above-mentioned multiple arrangement methods of the polarity adjustment component are applicable.
  • the multicolor light source 10 includes a multicolor laser 101, and the light emitting surface of the multicolor laser includes a plurality of light emitting surfaces arranged along the target direction (such as the x direction).
  • Each of the plurality of light-emitting regions is used to emit laser light of one color, for example, the plurality of light-emitting regions emit green laser light, blue laser light and red laser light respectively.
  • the multi-color laser 101 may be an MCL type laser, which has various chips arranged in rows and columns, and emits three-color laser light.
  • the light-combining component 102 in the multi-color light source 10 includes a plurality of light-combining lenses arranged in sequence along the target direction, and the plurality of light-combining lenses correspond to the plurality of light exit areas one by one.
  • Each light-combining lens is located on the light-emitting side of the corresponding light-emitting area, the laser light emitted from each light-emitting area is directed to the corresponding light-combining lens, and each light-combining lens reflects the laser light emitted from the corresponding light-emitting area along the target direction.
  • the first light-combining lens can reflect the green laser light towards the second light-combining lens.
  • the second light-combining lens can be a dichroic mirror, and the second light-combining lens can transmit green light and reflect blue light.
  • the second light-combining lens transmits the green laser light emitted from the first light-combining lens to the third light-combining lens along the target direction, and reflects the blue laser light emitted from its corresponding light-emitting area to the third light-combining lens .
  • the third light-combining lens is also a dichroic mirror, which can transmit blue light and green light and reflect red light.
  • the third light-combining lens transmits the green laser light and the blue laser light emitted by the second light-combining lens to the polarity adjustment component along the target direction, and reflects the red laser light emitted from the corresponding light-emitting area to the polarity adjustment component. In this way, the laser light of different colors emitted from each light exit area of the laser achieves light mixing at the third light-combining lens.
  • the red laser light emitted by the laser is P-polarized light
  • the blue laser and green laser light are S-polarized light
  • the polarization directions of the P-polarized light and the S-polarized light are perpendicular.
  • a half-wave plate B can also be arranged between the laser 101 and the light-combining component 102, and the positive projection of the half-wave plate B on the light-emitting surface of the laser covers the blue laser light. And the light emitting area of the green laser.
  • the blue laser and the green laser emitted by the laser pass through the half-wave plate B and then shoot to the light-combining component, and the red laser directly shoots to the light-combining component, so that the polarization directions of the lasers that are directed to the light-combining component are all the same, and different colors are improved. Laser light mixing effect.
  • FIG. 4 is a schematic structural diagram of yet another multi-color light source provided by the embodiment of the present application.
  • the lasers in the multicolor light source 10 may include: a first laser 101a and a second laser 101b, wherein the first laser 101a is a multicolor laser, specifically, it may be the laser used in Figure 1 or Figure 2
  • the MCL type three-color laser, and the second laser 101b is a monochromatic laser, specifically, a red laser.
  • the light combination components in the multicolor light source 10 include: a first light combination lens group 102a and a second light combination lens group 102b.
  • the first light combining lens group 102a, the second light combining lens group 102b and the polarity adjustment member 103 can be arranged sequentially along the target direction (x direction), the first light combining lens group 102a is located on the light emitting side of the first laser 101a, the second The light-combining lens group 102b is located on the light-emitting side of the second laser 101b.
  • the arrangement direction of the first laser 101a and the first combination lens group 102a, and the arrangement direction of the second laser 101b and the second combination lens group 102b are both perpendicular to the target direction.
  • the arrangement direction of the first laser 101a and the first combination lens group 102a, and the arrangement direction of the second laser 101b and the second combination lens group 102b are both in the y direction.
  • the arrangement direction of the first laser 101a and the first combination lens group 102a may also be different from the arrangement direction of the second laser 101b and the second combination lens group 102b.
  • the arrangement direction of the first laser 101a and the first light combining lens group 102a and the arrangement direction of the second laser 101b and the second light combining lens group 102b can also be opposite, perpendicular or at a certain angle.
  • the first laser 101a can emit lasers of multiple colors to the first light combining lens group 102a, and the first light combining lens group 102a mixes the incident laser light of multiple colors and shoots them to the polarity adjustment member 103 along the target direction .
  • the introduction of the first laser 101a emitting laser light and the first light combining lens group 102a mixing the incident laser light can refer to the related introduction of the laser 101 and the light combining assembly 102 in the above-mentioned first optional structure. , which will not be described in detail in the embodiment of the present application.
  • the second laser 101b can emit laser light of one of the multiple colors (such as red laser) to the second light combining lens group 102b, and the second light combining lens group 102b can emit the incident laser light to the pole along the target direction. Sex adjustment part 103.
  • the light mixing of the laser light emitted by the first laser 101a and the second laser 101b is realized at the second light combining lens group 102b.
  • the red laser among the lasers of multiple colors emitted from the first light combining lens group 102a needs to be directed out of the lens in the second light combining lens group 102b, so as to prevent the lens from blocking the red laser light.
  • the lenses in the second combination lens group 102b can transmit blue light and green light, and reflect red light. Or the lenses in the second combination lens group 102b can reflect light of all colors, so all the laser light emitted from the first combination lens group 102a needs to go out of the lenses in the second combination lens group 102b.
  • the second light combining lens group 102b may include two dichroic mirrors, and on a plane perpendicular to the target direction, the orthographic projections of the two dichroic mirrors are respectively located on both sides of the orthographic projection of the first light combining mirror group 102a.
  • the red laser light emitted by the second laser 101b is divided into two laser beams after being reflected by the second light combining mirror group 102b, and the two laser beams are respectively located on both sides of the laser light reflected by the first light combining mirror group 102a, so as to avoid the
  • the second combination lens group 102b blocks the laser light emitted by the first combination lens group 102a.
  • FIG. 4 takes the arrangement of the polarity adjusting member 103 as an example where the polarity adjusting member 103 is located in the upper half of the laser beam obtained after light mixing, that is, the side of the laser beam away from the laser is taken as an example.
  • the polarity adjustment component 103 can also be located in the lower half of the laser beam obtained after light mixing, or can also be located in the middle of the laser beam obtained after light mixing, and allow half of the laser beam in the beam to pass through The polarity adjustment component.
  • the arrangement of the polarity adjustment component 103 may also adopt other examples in the above-mentioned embodiments.
  • the multicolor light source 10 may further include a beam expander 104 .
  • the beam expanding part 104 can be located between the first light combining lens group 102a and the second light combining lens group 102b, and the blue laser and the green laser light emitted by the first light combining lens group 102a can shoot to the beam expanding part 104, so as to The beam is expanded by the beam expander 104 and then directed to the polarity adjustment member 103 .
  • the beam expander 104 may include a diffuser, a fly-eye lens or a diffraction element.
  • the blue laser light and the red laser light at the periphery of the green laser light in the light beam emitted by the first light combining lens group 102a may not pass through the beam expander 104, or all the laser light in the light beam emitted by the first light combining lens group 102a The beam expander 104 may pass.
  • red light-emitting chips need to be installed in multicolor lasers to emit more red laser light.
  • the beams of the blue laser and the green laser are thicker, and the light spots of the red laser on the first light combining lens group are larger than those of the blue laser and the green laser.
  • the lasers of various colors emitted by the multi-color laser are mixed in the first light combining lens group, and the blue laser and the green laser are more concentrated in the center of the beam.
  • the beam expander 104 is used to expand the blue laser beam and the green laser beam emitted by the first light combining lens group 102a, so that the size difference between the spot of the blue laser and the green laser and the spot of the red laser can be reduced, and the improvement can be improved.
  • Laser light mixing uniformity In a specific implementation, the beam expander can also be located between the first laser and the first light combining mirror group, so that the spot size differences of the laser beams of various colors directed to the first light combining mirror group are all small. The embodiment of the application does not illustrate this method.
  • FIG. 5 is a schematic structural diagram of another polychromatic light source provided by an embodiment of the present application.
  • the laser in the polychromatic light source 10 can comprise: the first laser 101a and the second laser 101b
  • the light combining assembly in the polychromatic light source 10 comprises: light combining lens group 102a and polarization beam splitter (polarization beam splitter , PBS) 102c.
  • the polarizing beamsplitter prism 102c can be formed by cementing a pair of high-precision right-angled prisms.
  • the surfaces of the hypotenuses in the sections of the two right-angled prisms are glued together, and the surface of the hypotenuse of one right-angled prism is coated with a polarizing light-splitting medium film.
  • the polarization beam splitter can allow the incoming P-polarized light to pass completely, while the incoming S-polarized light is reflected at an exit angle of 45 degrees.
  • the P-polarized light is referred to as light in the first polarization direction
  • the S-polarized light is referred to as light in the second polarization direction.
  • the light-combining lens group 102a, the polarization beam-splitting prism 102c and the polarity adjustment component 103 can be arranged sequentially along the target direction (x direction), the light-combining lens group 102a is located at the light output side of the first laser 101a, and the polarization beam-splitting prism 102c is located at the second laser the light-emitting side of 101b.
  • the arrangement direction of the first laser 101a and the combination lens group 102a, and the arrangement direction of the second laser 101b and the polarization beam splitter prism 102c are both perpendicular to the target direction.
  • the arrangement direction of the first laser 101a and the combination lens group 102a, and the arrangement direction of the second laser 101b and the polarization beam splitter prism 102c are both in the y direction.
  • the arrangement direction of the first laser 101a and the combination lens group 102a may also be different from the arrangement direction of the second laser 101b and the polarization beam splitter prism 102c.
  • the arrangement direction of the first laser 101a and the light combining lens group 102a and the arrangement direction of the second laser 101b and the polarization beam splitter prism 102c can also be opposite, perpendicular or at a certain angle.
  • the first laser 101a can emit laser beams of multiple colors to the combining lens group 102a, and the combining lens group 102a mixes the incident laser beams of multiple colors and emits them to the polarity adjusting component 103 along the target direction. It should be noted that, for the introduction of the first laser 101a emitting laser light and the light combining lens group 102a mixing the incident laser light, you can refer to the relevant introduction of the laser 101 and the light combining assembly 102 in the above-mentioned first optional structure. The application examples will not be described in detail.
  • the polychromatic light source 10 further includes a half-wave plate B1, as shown in FIG. 5, the half-wave plate B1 may be located between the first laser 101a and the combination lens group 102a.
  • the half-wave plate may also be located between the second light combining lens and the third light combining lens in the light combining lens group.
  • the blue laser light and the green laser light originally emitted by the first laser 101 a that are S-polarized light can be converted into P-polarized light.
  • the red laser light emitted by the first laser 101a is directly directed to the light-combining lens group 102a without passing through the half-wave plate. Therefore, the laser light received and emitted by the light combining lens group 102a is all P polarized light.
  • the second laser 101b can emit laser light of one of the multiple colors to the polarization beam splitter prism 102c, and the laser light emitted from the second laser 101b to the polarization beam splitter prism 102c is S polarized light.
  • the second laser 101b emits red laser light
  • the polychromatic light source 10 further includes a half-wave plate B2 located between the second laser 101b and the polarization beam splitter prism 101c.
  • the red laser light emitted by the second laser 101b which is originally P-polarized light, can become S-polarized light after passing through the half-wave plate B2 and then go to the polarization beam splitter prism 102c.
  • the laser beams received by the polarization splitter prism 102c from the light combining lens group 102a are all P-polarized light
  • the laser beams from the second laser 101b are all S-polarized light.
  • the polarization beam splitter prism 102c can transmit the incident P-polarized laser light toward the polarity adjustment component 103 along the target direction, and reflect the incident S-polarized light towards the polarity adjustment component 103 along the target direction.
  • Light mixing of the laser light emitted by the first laser 101a and the second laser 101b is realized at the polarization beam splitter prism 102c.
  • Fig. 5 takes the polarity adjusting part 103 that can be arranged in the part of the optical path of the combined light beam, and the polarity adjusting part 103 is located in the lower half of the laser beam obtained after light mixing as an example, that is, the laser beam is far away from the laser beam. Take one side as an example.
  • the polarity adjustment component 103 can also be located in the upper half of the laser beam obtained after light mixing, or can also be located in the middle of the laser beam obtained after light mixing, and allow half of the laser beam in the beam to pass through The polarity adjustment component.
  • the polarity adjustment component 103 may also be arranged in the second optional arrangement described above.
  • FIG. 6 is a schematic structural diagram of a polychromatic light source provided by another embodiment of the present application.
  • Multiple monochromatic lasers can be used in the multicolor light source 10 to respectively provide light of various colors required by the multicolor light source.
  • the lasers in the polychromatic light source 10 may include: a first laser 101a, a second laser 101b, and a third laser 101c.
  • the light-combining components in the multi-color light source 10 include: a first light-combining mirror 1021 , a second light-combining mirror 1022 and a third light-combining mirror 1023 .
  • the first light combining mirror 1021 is located on the light emitting side of the first laser 101a
  • the second light combining mirror 1022 is located on the light emitting side of the second laser 101b
  • the third light combining mirror 1023 is located on the light emitting side of the third laser 101c.
  • the first laser 101a, the first light combining mirror 1021 and the polarity adjustment component 103 may be arranged sequentially along the target direction (such as the x direction).
  • the first light-combining mirror 1021 , the second light-combining mirror 1022 and the second laser 101 b are sequentially arranged along a direction perpendicular to the target direction (such as a direction opposite to the y direction).
  • the second light combining mirror 1022 and the third light combining mirror 1023 are sequentially arranged along the target direction.
  • the arrangement direction of the third laser 101c and the third light combining mirror 1023 is perpendicular to the target direction, for example, the arrangement direction is the y direction.
  • the first laser 101a can send laser light of the first color (such as red laser) to the first light combining mirror 1021
  • the second laser 101b can send the laser light of the second color (such as green laser) to the second light combining mirror 1022
  • the third The laser 101c can emit laser light of a third color (such as blue laser light) to the third light combining mirror 1023
  • the third light combining mirror 1023 can reflect the incident laser light of the third color to the second light combining mirror 1022 along the direction opposite to the target direction; the second light combining mirror 1022 can transmit the incident laser light of the second color to the second light combining mirror 1022 A light combining mirror 1021 , and reflects the incident laser light of the third color to the first light combining mirror 1021 .
  • the first light combining mirror 1021 can transmit the incident laser light of the first color to the polarity adjusting part 103 along the target direction, and reflect the incident laser light of the second color and the third color towards the polarity along the target direction. Adjustment part 103.
  • the light mixing of the lasers of three colors respectively emitted by the three lasers is realized at the first light combining mirror 1021 .
  • the second light-combining mirror and the third light-combining mirror may also be arranged in sequence along a direction opposite to the target direction.
  • the light combining mirrors in the light combining assembly can also be arranged in other ways, and it is only necessary to ensure that the laser light emitted by each laser can be mixed behind a certain light combining mirror.
  • the polarity adjustment components 103 can all be arranged in the combined optical path of the multicolor laser. In a specific implementation, the polarity adjustment component 103 can also be arranged in a smaller size in the optical path of part of the combined light beams. For example, the polarity adjustment component 103 is located in the lower half, upper half or middle part of the laser beam obtained after light mixing, so that half of the laser light in the beam passes through the polarity adjustment component. In a specific implementation, please continue to refer to FIG. 6 , a half-wave plate B3 may also be disposed between the first light combining mirror 1021 and the second light combining mirror 1022 .
  • the half-wave plate B3 can convert the blue laser light and the green laser light emitted by the second light combining mirror 1022 from S polarized light to P polarized light, and then emit to the first light combining mirror 1021 . In this way, it can be ensured that the polarization directions of the laser light of each color incident on the first light combining mirror 1021 are all the same, and the light mixing uniformity of the laser light can be improved.
  • Fig. 7 is a schematic structural diagram of another polychromatic light source provided by another embodiment of the present application.
  • the polychromatic light source 10 may further include: a beam shrinking component 105 , a converging lens 107 and a uniform light component 108 .
  • the polychromatic light source 10 may further include a diffuser plate 106 located in front of the converging lens 107 .
  • the target laser light can pass through the beam shrinking part 105, the diffuser plate 106, the converging lens 107 and the light homogenizing part 108 in sequence, and then be emitted for image projection.
  • the beam shrinking part 105 can shrink the incident laser light and shoot it to the diffuser plate 106, and the diffuser plate 106 can diffuse the incident laser light and shoot it to the converging lens 107, and the converging lens 107 can converge the incident laser light to the uniform light component 108.
  • the homogenizing component 108 can homogenize the incident laser light before emitting it.
  • the beam shrinking component 105 may include a convex lens and a concave lens, and the uniform light component 108 is a light guide as an example.
  • the beam shrinking component 105 may also include two convex lenses, for example, the beam shrinking component may be a Keplerian telescope; the uniform light component 108 may also be a fly-eye lens.
  • FIG. 7 introduces additional components of the multicolor light source.
  • the components added in FIG. 7 relative to FIG. 1 can be added to the polarity adjustment component, which is not limited in this embodiment of the present application.
  • the constricting component 105 may not be provided in this structure, and the volume of the polychromatic light source is smaller.
  • the lasers of multiple colors emitted by one or more lasers are mixed and directed to the polarity adjustment component, and the polarity adjustment component is oppositely irradiated.
  • the polarization directions of at least part of the laser beams in the incoming laser beams are adjusted so that there are multiple colors of lasers in the laser beams, and the same color of lasers has different polarization directions.
  • the part of the laser beams whose polarization direction is adjusted by the polarity adjustment component is half of the beams of the laser beams of multiple colors emitted by the multi-color light source, that is, it can occupy 1/2 of the area of the light spot.
  • FIG. 8 is a schematic structural diagram of a projection device provided by an embodiment of the present application.
  • the projection device may include a light source 10 , a light valve 110 and a lens 111 .
  • the multicolor light source 10 may adopt any of the multicolor light source architectures illustrated in FIGS. 1 to 6 , in order to provide three-color laser beams with reduced coherence.
  • the multicolor light source 10 adopts the multicolor light source shown in FIG. 1 or FIG. 7 as an example for description.
  • the homogenizing component 108 in the illumination light path can direct the laser light to the light valve 110, and the light valve 110 can modulate the incident laser light and then direct it to the lens 111, and the lens 111 can project the incident laser light to form a projection image .
  • the light valve 110 may include a plurality of reflective sheets, and each reflective sheet may be used to form a pixel in the projection screen, and the light valve 110 may make the corresponding reflective sheet of the pixel to be displayed in a bright state according to the image to be displayed. Reflect the laser light to the lens 111 to realize the modulation of the light.
  • the lens 111 may include a plurality of lenses (not shown in the figure). Regarding the arrangement of various structures in the projection device shown in FIG. 8 , each lens in the lens 111 may be arranged in sequence in a direction perpendicular to the paper surface outward. The laser light emitted from the light valve 110 can sequentially pass through a plurality of lenses in the lens 111 and irradiate to the screen, so as to realize the projection of the laser light by the lens 111 and realize the display of the projected image.
  • the projection device may also include an illumination mirror group 112 located between the light homogenization component 108 and the light valve 110, and the laser light emitted after being homogenized by the light homogenization component 108 can pass through the illumination mirror group 112 to the light valve 110.
  • the illuminating lens group 112 may include a reflector F, a lens T, and a total internal reflection prism (TIR) prism L.
  • the laser light emitted by the uniform light component 108 can be directed to the reflection sheet F, and the reflection sheet F can reflect the incident light to the convex lens T, and the convex lens T can converge the incident laser light to the total internal reflection prism L, and the total internal reflection prism L will The incident laser light is reflected to the light valve 110 .
  • the lasers of multiple colors emitted by the laser can be directed to the polarity adjustment component after light mixing, and then the polarity adjustment component
  • the polarization direction of at least part of the laser light is adjusted so that the laser light of the same color has different polarization directions among the multiple colors of laser light.
  • the polarity adjustment component can be located only in part of the laser light In the optical path of the combined beam, only the part of the beam incident on the component is changed in polarity.
  • the polarity adjustment component can also be located in the optical path of all combined laser light beams.
  • the lasers of different colors in the same combined light spot have different polarities, so that at least the correlation of the same color lasers can be reduced, thereby reducing the coherence of the multicolored lasers emitted by the multicolored light source , thereby reducing the speckle effect caused by projection based on the polychromatic light source, and improving the projection effect of the projection device.
  • At least one of A and B in the present application may mean that A exists alone, B exists alone, or A and B exist simultaneously.
  • At least one of A, B, and C means that seven relationships can exist, which can mean: A alone, B alone, C alone, A and B at the same time, A and C at the same time, C and B at the same time , there are seven situations A, B and C at the same time.
  • first and second are used for descriptive purposes only, and should not be understood as indicating or implying relative importance.
  • the term “plurality” means two or more, unless otherwise clearly defined.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Projection Apparatus (AREA)
  • Lasers (AREA)

Abstract

一种多色光源(10)及投影设备,属于光电技术领域。多色光源(10)包括:激光器(101)、合光组件(102)和极性调整部件(103);激光器(101)用于向合光组件(102)发出多种颜色的激光,合光组件(102)用于将该多种颜色的激光混光后射向极性调整部件(103);极性调整部件(103)用于调整射入的激光中至少部分激光的偏振方向以得到目标激光,目标激光中存在至少一种颜色的激光满足:同一颜色的激光中部分激光的偏振方向不同于剩余部分激光的偏振方向。

Description

多色光源及投影设备
相关申请的交叉引用
本申请要求在2021年5月31日提交的申请号为202110599419.3,发明名称为“多色光源及投影设备”的中国专利申请的优先权、及在2021年6月29日提交的申请号为202110729592.0,发明名称为“多色光源及投影设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及光电技术领域,特别涉及一种多色光源及投影设备。
背景技术
随着光电技术的发展,对于投影设备的投影效果的要求越来越高。
相关技术中,采用激光器作为投影设备的光源,该激光器发出的激光经过调制后被投射至屏幕上,如此实现投影设备的投影显示。但是,激光器发出的激光的相干性较强,激光在空间中传输的过程中会产生干涉,导致激光在屏幕上投射后会呈现明暗相间的斑点。此种现象也称为激光投影的散斑效应。
因此,相关技术中投影设备的投影效果较差。
发明内容
本申请一方面,提供了一种多色光源,所述多色光源包括:激光器、合光组件和极性调整部件;
所述激光器用于向所述合光组件发出多种颜色的激光,所述合光组件用于将所述多种颜色的激光混光后射向所述极性调整部件;所述极性调整部件用于调整射入的激光中至少部分激光的偏振方向以得到目标激光,所述目标激光中存在至少一种颜色的激光满足:同一颜色的激光中部分激光的偏振方向不同于剩余部分激光的偏振方向。
本申请另一方面,提供了一种投影设备,所述投影设备包括:上述的多色光源,以及光阀和镜头;
所述多色光源用于向所述光阀发出激光,所述光阀用于将射入的激光进行调制后射向所述镜头,所述镜头用于对射入的激光进行投射以形成投影画面。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例提供的一种多色光源的结构示意图;
图2是本申请实施例提供的另一种多色光源的结构示意图;
图3是本申请实施例提供的一种极性调整部件的结构示意图;
图4是本申请实施例提供的再一种多色光源的结构示意图;
图5是本申请实施例提供的又一种多色光源的结构示意图;
图6是本申请另一实施例提供的一种多色光源的结构示意图;
图7是本申请另一实施例提供的另一种多色光源的结构示意图;
图8是本申请实施例提供的一种投影设备的结构示意图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施方式作进一步地详细描述。
随着光电技术的发展,对于投影设备的投影画面的显示效果的要求越来越高。目前投影设备的光源发出的光线的相干性较强,导致投影设备投射的投影画面中存在较为严重的散斑效应,投影画面的显示效果较差。本申请实施例提供了一种多色光源和投影设备,可以减弱投影画面中的散斑效应,提高投影画面的显示效果。
图1是本申请实施例提供的一种多色光源的结构示意图。如图1所示,该多色光源10可以包括:激光器101、合光组件102和极性调整部件103。需要说明的是,激光的偏振方向可以反映激光的极性,对激光的偏振方向进行调整也即是对激光的极性进行更改。本申请实施例中的极性调整部件也即是偏振方向调整部件。
该激光器101可以为多色激光器,激光器101用于向合光组件102发出多种颜色的激光。合光组件102用于将该多种颜色的激光混光后射向极性调整部件103。极性调整部件103用于调整射入的激光中至少部分激光的偏振方向以得到目标激光。在一具体实施中,该激光器101可以为三色激光器,该激光器中不同的出光区可以射出不同颜色的激光。如该激光器包括三个出光区,该三个出光区可以分别射出绿色激光、蓝色激光和红色激光。
本申请将极性调整部件103之后的光路中的激光称为目标激光。目标激光中存在至少一种颜色的激光满足:同一颜色的激光中部分激光的偏振方向不同于剩余部分激光的偏振方向。也即是,该至少一种颜色的激光中每种颜色的激光至少包括第一部分激光和第二部分激光,第一部分激光的偏振方向与第二部分激光的偏振方向不同;也可以称为该至少一种颜色的激光中每种颜色的激光具有不同的偏振方向。在一具体实施中,该至少一种颜色的激光中每种颜色的激光也可以包括三部分激光,其中各部分激光的偏振方向均不同。
在一具体实施中,该多种颜色的激光经过合光组件混光得到的激光光束中,多种颜色的激光光束合成一个光斑,在合光均匀性较佳即多种颜色的激光混光均匀时,在该一个光斑的各个位置均存在该多种颜色的激光,故射入极性调整部件后,部分合光光斑入射至极性调整部件,而剩余部分合光光斑不通过极性调整部件,极性调整部件可以对该合光光斑中多种颜色的激光光束的一部分均进行偏振方向的调整,以使每种颜色的激光光束均具有不同的偏振方向。此时上述至少一种颜色的激光即为该多种颜色的激光。
综上所述,本申请实施例提供的多色光源中,激光器发出的多种颜色的激光在混光后可以射向极性调整部件,进而由极性调整部件对射入的激光中至少部分激光的偏振方向进行调整,使该多种颜色的激光中存在同一颜色的激光具有不同的偏振方向。如此可以降低多色光源发出的激光的相干性,进而减弱基于该激光进行投射带来的散斑效应,提高投影设备的投影效果。
本申请实施例中,极性调整部件103可以具有多种设置方式,本申请实施例将结合附图进行介绍。
在一种可选设置方式中,请继续参考图1,极性调整部件103设置在从合光组件102射出的激光光束中部分激光的传输路径中,如此仅有该部分激光射入极性调整部件103。极性调整部件103可以对射入该部件的部分光束的激光的偏振方向均进行调整,实现对合光组件102射出的激光光束中部分激光的偏振方向进行调整。从合光组件102射出的激光光束也即是激光器发出的多种颜色的激光混光后所得的激光光斑。示例地,合光组件102的出光方向为目标方向(如图1中的x方向),在垂直目标方向的平面上,极性调整部件103的正投影覆盖合光组件102射出的激光形成的光斑中的部分区域。如该正投影覆盖该光斑的一半、三分之一或者其他大小的区域。
在一具体实施中,极性调整部件可以为半波片、四分之一波片和四分之三波片中的任一种。
以半波片为例进行说明。由于激光器发出的每种颜色的激光均为线偏振光,为P光或S光。半波片可以将射入该半波片的激光的偏振方向旋转九十度,从而当一部分激光光束通过半波片后,相对于合光激光光斑的另一部分的光束而言,极性发生了九十度偏转。从而多色合光光斑而言,一部分光斑的极性与剩余部分的光斑的极性不同,且由于合光光斑是双色或多色激光进行混光后的,所以多色合光光斑中每种颜色的激光均具有不同的极性,这样相同颜色激光光束的相干性降低,在应用投影成像时散斑效应可以得到改善。需要说明的是,在针对多色激光的合光光斑的光路中时,半波片可以选择其中一种颜色的激光的波长来设置,因此,严格来讲,其中一种颜色的激光的极性可以发生九十度的转换,但另外颜色的激光则按照近似九十度的极性偏转来理解,但是也可以达到同一颜色激光光斑的不同部分具有极性不同的结果。比如,在红、绿、蓝三基色的合光光束中,可以选择绿色激光或者红色激光的波长来设置半波片,对散斑的改善程度会更为明显。
在一种实施方式中,极性调整部件103还可以是四分之一波片,四分之一波片可以将射入的激光调整为圆偏振光或者椭圆偏振光,类似的,极性调整部件103还可以是四分之三波片,四分之三波片也可以将射入的激光调整为圆偏振光或者椭圆偏振光,但偏振方向与四分之一波片的改善效果呈九十度差异。或者,在一具体实施中,极性调整部件也可以由半波片、四分之一波片和四分之三波片中的任两种或者三种拼接而成。如此,射入极性调整部件不同区域的激光的偏振方向被调整的程度不同。
需要说明的是,在上述示例中,经过合光组件102合光后的多色激光光束可具有相同的极性,比如,红、绿、蓝三色激光均为P光或S光,即如果从激光器出射的红光和从激光器出射的绿光、蓝光具有不同的极性时,可以先针对其中一种极性的光进行转换,获得一致极性的光束后再进行合光,一致的偏振特性也经过相同的光学部件时,比如透镜,容易获得一致的光学透过率或反射率,均匀性较佳且易于降低光损,均利于提高投影显示效果。
或者,若多色激光的极性分布不同时,也可以不进行极性一致的转换,而是允许合光光斑中,一种颜色的激光与其他颜色的激光的极性不同,在多色激光混合均匀时,极性调整部件也可以实现对部分合光光斑的极性进行调整,实现对于一种颜色的激光光斑来说,不同光斑部分具有不同的极性。
在另一种可选设置方式中,图2是本申请实施例提供的另一种多色光源的结构示意图。请参考图2,极性调整部件103设置在从合光组件102射出的激光光束中全部激光的传输路径中,如此从合光组件102射出的激光全部射入极性调整部件103。例如,从合光组件102射出的激光沿目标方向(如图2中的x方向)射向极性调整部件103。在垂直目标方向的平面上,极性调整部件103的正投影完全覆盖合光组件102射出的激光形成的光斑。
在图2所示的光路中,虽然极性调整部件103几乎被全部的激光合光光束照射到,但极性调整部件103可以仍是仅改变部分激光合光光束的极性,也可以是对不同的激光合光光束的部分进行不同的极性改变。
图3是本申请实施例提供的一种极性调整部件的结构示意图。如图3所示,极性调整组件103包括在垂直目标方向的方向(如图2中的y方向)上交替设置的第一区1031和第二区1032,该第一区1031和第二区1032对激光的偏振方向的调整程度不同。如此可以通过第一区和第二区对合光组件102射出的多种颜色的激光进行不同的调整,且保证同一颜色的激光中不同偏振方向的激光均匀分布,进一步地减弱同色激光的相干性。在一具体实施中,极性调整部件中各个分区的面积均相等。极性调整部件中各个分区的总数可以大于个数阈值。该各个分区的划分越对称每个分区的面积越小,同一颜色的激光中不同偏振方向的激光的分布均匀性越高。
在一具体实施中,极性调整部件中第一区的材质可以为半波片、四分之一波片和四分之三波片中的任一种。第二区的材质可以为透明材质,或者半波片、四分之一波片和四分之三波片中不同于第一区的任一种。
当第二区的材质为透明材质时,该第二区不对射入的激光的偏振方向进行调整,如此也即是极性调整部件仅对射入的激光中的一半激光的偏振方向进行调整,保证从极性调整部件射出的目标激光中每种颜色的激光具有不同的偏振方向。
当第二区的材质也为波片时,射入极性调整部件的激光的偏振方向均被调整,但是每种颜色的激光均可以被不同的区进行偏振方向的调整,仍可保证目标激光中每种颜色的激光具有不同的偏振方向。
示例地,该第一区的材质为半波片,第二区的材质为透明层材质。或者该第一区的材质为四分之一波片,第二区的材质为四分之三波片。如此可以保证同一颜色的激光被第一区和第二区分别调整偏振方向后,得到的该种颜色的两个偏振方向的差异最大,该差异为九十度;进而可以最大程度地减弱激光的相干性。
在一具体实施中,极性调整部件也可以不仅包括第一区和第二区,还可以包括第三区,该第一区、第二区和第三区可以依次循环排布。在一具体实施中,极性调整部件还可以包括第四区,该第一区、第二区、第三区和第四区可以依次循环排布。该第一区、第二区、第三区和第四区可以均由透明材质、半波片、四分之一波片和四分之三波片中的一种制成,且不同区的材质不同。如此从极性调整组件射出的每种颜色的激光可以具有三种或四种偏振方向。
以及,在一具体实施中,上述示例的极性调整部件可以固定设置,或者,也可以旋转设置。
本申请实施例中的多色光源可以具有多种可选结构,下面以三色光源的光源架构为例进行介绍。需要说明的是,对于不同的多色光源架构,极性调整部件的上述多种设置方式适用。
在一种可选结构中,请继续参考图1和图2,多色光源10包括一个多色激光器101,该多色激光器的出光面包括沿目标方向(如x方向)排布的多个出光区,该多个出光区中每个出光区用于发出一种颜色的激光,如该多个出光区分别发出绿色激光、蓝色激光和红色激光。具体地,该多色激光器101可以为一个MCL型激光器,具有行、列设置的多种芯片,发出三色激光。
多色光源10中的合光组件102包括沿目标方向依次排布的多个合光镜片,该多个合光镜片与该多个出光区一一对应。每个合光镜片位于对应的出光区的出光侧,每个出光区射出的激光射向对应的合光镜片,每个合光镜片将对应的出光区射出的激光沿目标方向反射。
在目标方向上,第一个合光镜片可以将绿色激光反射向第二个合光镜片。该第二个合光镜片可以为二向色镜,该第二个合光镜片可以透过绿光且反射蓝光。该第二个合光镜片将第一个合光镜片射出的绿色激光沿目标方向透射至第三个合光镜片,且将其对应的出光区射出的蓝色激光反射至第三个合光镜片。第三个合光镜片也为二向色镜,该第三个合光镜片可以透过蓝光和绿光且反射红光。该第三个合光镜片将第二个合光镜片射出的绿色激光和蓝色激光沿目标方向透射至极性调整部件,且将对应的出光区射出的红色激光反射至极性调整部件。如此,该激光器的各个出光区射出的不同颜色的激光在第三个合光镜片处实现混光。
需要说明的是,激光器发出的红色激光为P偏振光,而蓝色激光和绿色激光为S偏振光,P偏振光和S偏振光的偏振方向垂直。在一具体实施中,请继续参考图1或图2,激光器101与合光组件102之间还可以设置有半波片B,在激光器的出光面上半波片B的正投影覆盖蓝色激光和绿色激光的出光区。激光器发出的蓝色激光和绿色激光经过该半波片B后再射向合光组件,红色激光直接射向合光组件,以使射向合光组件的激光的偏振方向均相同,提高不同颜色的激光的混光效果。
在另一具体实施中,图4是本申请实施例提供的再一种多色光源的结构示意图。为了保证投影画面的显示亮度和色彩平衡,多色光源10中采用两种激光器来提供投影画面所需的激光光束。如图4所示,多色光源10中的激光器可以包括:第一激光器101a和第二激光器101b,其中第一激光器101a为多色激光器,具体地,可以为图1或图2中所应用的MCL型三色激光器,以及第二激光器101b为单色激光器,具体地,可以为红色激光器。多色光源10中的合光组件包括:第一合光镜组102a和第二合光镜组102b。
第一合光镜组102a、第二合光镜组102b和极性调整部件103可以沿目标方向(x方向)依次排布,第一合光镜组102a位于第一激光器101a的出光侧,第二合光镜组102b位于第二激光器101b的出光侧。第一激光器101a与第一合光镜组102a的排布方向,以及第二激光器101b与第二合光镜组102b的排布方向,均垂直于目标方向。如第一激光器101a与第一合光镜组102a的排布方向,以及第二激光器101b与第二合光镜组102b的排布方向,均为y方向。在一具体实施中,第一激光器101a与第一合光镜组102a的排布方向,也可以不同于第二激光器101b与第二合光镜组102b的排布方向。如第一激光器101a与第一合光镜组102a的排布方向,与第二激光器101b与第二合光镜组102b的排布方向,也可以相反、垂直或者成一定的夹角。
第一激光器101a可以向第一合光镜组102a出射多种颜色的激光,第一合光镜组102a将射入的该多种颜色的激光混光后沿目标方向射向极性调整部件103。需要说明的是,第 一激光器101a出射激光以及第一合光镜组102a对入射的激光进行混光的介绍,可以参考上述第一种可选结构中对激光器101与合光组件102的相关介绍,本申请实施例不再赘述。第二激光器101b可以向第二合光镜组102b出射该多种颜色中某一种颜色的激光(如红色激光),第二合光镜组102b可以将射入的激光沿目标方向射向极性调整部件103。在第二合光镜组102b处实现第一激光器101a和第二激光器101b发出的激光的混光。
从第一合光镜组102a出射的多种颜色的激光中的红色激光需射向第二合光镜组102b中的镜片之外,以避免该镜片对该红色激光的阻挡。如该第二合光镜组102b中的镜片可以透过蓝光和绿光,且反射红光。或者该第二合光镜组102b中的镜片可以反射所有颜色的光,如此,第一合光镜组102a出射的所有激光均需射向第二合光镜组102b中的镜片之外。示例地,第二合光镜组102b可以包括两个分光镜片,在垂直目标方向的平面上,该两个分光镜片的正投影分别位于第一合光镜组102a的正投影的两侧。如此,第二激光器101b发出的红色激光在经过第二合光镜组102b反射后分为两束激光,且该两束激光分别位于第一合光镜组102a反射的激光的两侧,避免第二合光镜组102b对第一合光镜组102a射出的激光的阻挡。
图4以极性调整部件103的设置方式以极性调整部件103位于混光后得到的激光光束的上半部分为例,也即是该激光光束远离激光器的一侧为例进行实施。在一具体实施中,该极性调整部件103也可以位于混光后得到的激光光束的下半部分,或者也可以位于混光后得到的激光光束的中间,且使光束中的一半激光穿过该极性调整部件。在一具体实施中,该极性调整部件103的设置方式也可以采用上述实施例中其他示例。
在一具体实施中,请继续参考图4,多色光源10还可以包括扩束部件104。该扩束部件104可以位于第一合光镜组102a和第二合光镜组102b之间,第一合光镜组102a射出的蓝色激光和绿色激光可以射向该扩束部件104,以经过该扩束部件104扩束后再射向极性调整部件103。在一具体实施中,该扩束部件104可以包括扩散片、复眼透镜或衍射元件。在一具体实施中,第一合光镜组102a射出的光束中蓝色激光与绿色激光外围的红色激光可以不经过扩束部件104,或者第一合光镜组102a射出的光束中所有激光均可以经过扩束部件104。
需要说明的是,由于进行画面投影所需的红光分量较多,故通常多色激光器中需设置较多红色发光芯片以发出较多红色激光,多色激光器发出的红色激光的光束相较于蓝色激光和绿色激光的光束更粗,在第一合光镜组上红色激光的光斑大于蓝色激光与绿色激光的光斑。多色激光器发出的各种颜色的激光在第一合光镜组混合后,蓝色激光与绿色激光较集中于光束中心。本申请实施例中采用扩束部件104对第一合光镜组102a射出的蓝色激光和绿色激光扩束,如此可以降低蓝色激光和绿色激光的光斑与红色激光的光斑的尺寸差异,提高激光的混光均匀性。在一具体实施中,扩束部件也可以位于第一激光器与第一合光镜组之间,以使射向第一合光镜组的各种颜色的激光的光斑尺寸差异均较小,本申请实施例未对此种方式进行示意。
与图4示例不同的,图5是本申请实施例提供的又一种多色光源的结构示意图。如图5所示,多色光源10中的激光器可以包括:第一激光器101a和第二激光器101b,多色光源10中的合光组件包括:合光镜组102a和偏振分光棱镜(polarization beam splitter,PBS)102c。偏振分光棱镜102c可以由一对高精度直角棱镜胶合而成,该两个直角棱镜的截面中斜边所在面相胶合,且一个直角棱镜的斜边所在面上镀有偏振分光介质膜。该偏振分光棱 镜可以允许射入的P偏振光完全通过,而将射入的S偏振光以45度的出射角被反射。本申请实施例将该P偏振光称为第一偏振方向的光,将S偏振光称为第二偏振方向的光。
合光镜组102a、偏振分光棱镜102c和极性调整部件103可以沿目标方向(x方向)依次排布,合光镜组102a位于第一激光器101a的出光侧,偏振分光棱镜102c位于第二激光器101b的出光侧。第一激光器101a与合光镜组102a的排布方向,以及第二激光器101b与偏振分光棱镜102c的排布方向,均垂直于目标方向。如第一激光器101a与合光镜组102a的排布方向,以及第二激光器101b与偏振分光棱镜102c的排布方向,均为y方向。在一具体实施中,第一激光器101a与合光镜组102a的排布方向,也可以不同于第二激光器101b与偏振分光棱镜102c的排布方向。如第一激光器101a与合光镜组102a的排布方向,与第二激光器101b与偏振分光棱镜102c的排布方向,也可以相反、垂直或者成一定的夹角。
第一激光器101a可以向合光镜组102a出射多种颜色的激光,合光镜组102a将射入的该多种颜色的激光混光后沿目标方向射向极性调整部件103。需要说明的是,第一激光器101a出射激光以及合光镜组102a对入射的激光进行混光的介绍,可以参考上述第一种可选结构中对激光器101与合光组件102的相关介绍,本申请实施例不再赘述。多色光源10还包括半波片B1,如图5所示,该半波片B1可以位于第一激光器101a和合光镜组102a之间。在一具体实施中,该半波片也可以位于合光镜组中的第二个合光镜片与第三个合光镜片之间。如此,可以将第一激光器101a发出的原本为S偏振光的蓝色激光和绿色激光转换为P偏振光。而第一激光器101a发出的红色激光未经过半波片直接射向合光镜组102a。故合光镜组102a接收并射出的激光均为P偏振光。
第二激光器101b可以向偏振分光棱镜102c出射该多种颜色中某一种颜色的激光,由第二激光器101b射向偏振分光棱镜102c的激光为S偏振光。如第二激光器101b射出红色激光,多色光源10还包括位于第二激光器101b与偏振分光棱镜101c之间的半波片B2。第二激光器101b射出的原本为P偏振光的红色激光,在经过半波片B2后可以变为S偏振光射向偏振分光棱镜102c。
如此,偏振分光棱镜102c接收的源自合光镜组102a的激光均为P偏振光,源自第二激光器101b的激光均为S偏振光。偏振分光棱镜102c可以将射入的P偏振光激光沿目标方向透射向极性调整部件103,且将射入的S偏振光沿目标方向反射向极性调整部件103。在该偏振分光棱镜102c处实现了第一激光器101a与第二激光器101b发出的激光的混光。
图5以极性调整部件103的可以设置于合光光束的部分光路中,且极性调整部件103位于混光后得到的激光光束的下半部分为例,也即是该激光光束远离激光器的一侧为例。在一具体实施中,该极性调整部件103也可以位于混光后得到的激光光束的上半部分,或者也可以位于混光后得到的激光光束的中间,且使光束中的一半激光穿过该极性调整部件。在一具体实施中,该极性调整部件103的设置方式也可以采用上述第二种可选设置方式。
以及,图6是本申请另一实施例提供的一种多色光源的结构示意图。多色光源10中可以采用多个单色激光器来分别提供多色光源所需发出的多种颜色的光。如图6所示,多色光源10中的激光器可以包括:第一激光器101a、第二激光器101b和第三激光器101c。多色光源10中的合光组件包括:第一合光镜1021、第二合光镜1022和第三合光镜1023。
第一合光镜1021位于第一激光器101a的出光侧,第二合光镜1022位于第二激光器101b的出光侧,第三合光镜1023位于第三激光器101c的出光侧。第一激光器101a、第一合光镜1021和极性调整部件103可以沿目标方向(如x方向)依次排布。第一合光镜1021、 第二合光镜1022和第二激光器101b沿垂直目标方向的方向(如y方向的反方向)依次排布。第二合光镜1022与第三合光镜1023沿目标方向依次排布。第三激光器101c与第三合光镜1023的排布方向垂直目标方向,如该排布方向为y方向。
第一激光器101a可以向第一合光镜1021发出第一颜色的激光(如红色激光),第二激光器101b可以向第二合光镜1022发出第二颜色的激光(如绿色激光),第三激光器101c可以向第三合光镜1023发出第三颜色的激光(如蓝色激光)。第三合光镜1023可以将射入的第三颜色的激光沿目标方向的反方向反射向第二合光镜1022;第二合光镜1022可以将射入的第二颜色的激光透射向第一合光镜1021,且将射入的第三颜色的激光反射向第一合光镜1021。第一合光镜1021可以将射入的第一颜色的激光沿目标方向透射向极性调整部件103,且将射入的第二颜色的激光和第三颜色的激光沿目标方向反射向极性调整部件103。在第一合光镜1021处实现了三个激光器分别发出的三种颜色的激光的混光。在一具体实施中,第二合光镜与第三合光镜也可以沿目标方向的反方向依次排布。或者,合光组件中的各个合光镜也可以按照其他方式排布,仅需保证实现该各个激光器发出的激光能在某一合光镜之后混光即可。
图6以极性调整部件103可以全部设置于多色激光的合光光路中。在一具体实施中,该极性调整部件103的设置方式也可以以较小的尺寸设置于部分合光光束的光路中。如极性调整部件103位于混光后得到的激光光束的下半部分、上半部分或者中间部分,使光束中的一半激光穿过该极性调整部件。在一具体实施中,请继续参考图6,第一合光镜1021与第二合光镜1022之间还可以设置有半波片B3。该半波片B3可以将第二合光镜1022射出的蓝色激光和绿色激光由S偏振光转变为P偏振光,进而射向第一合光镜1021。如此可以保证射向第一合光镜1021的各个颜色的激光的偏振方向均相同,提高激光的混光均匀性。
图7是本申请另一实施例提供的另一种多色光源的结构示意图。如图7所示,在图1示例的基础上,该多色光源10还可以包括:缩束部件105、会聚透镜107和匀光部件108。在一具体实施中,该多色光源10还可以包括位于会聚透镜107之前的扩散板106。经极性调整部件103调整激光的偏振方向得到目标激光后,该目标激光可以依次穿过缩束部件105、扩散板106、会聚透镜107和匀光部件108后射出,进而用于进行画面投射。缩束部件105可以将射入的激光缩束后射向扩散板106,扩散板106可以将射入的激光扩散后射向会聚透镜107,会聚透镜107可以将射入的激光会聚至匀光部件108,匀光部件108可以将射入的激光匀化后射出。
如图7以该缩束部件105可以包括一个凸透镜和一个凹透镜,匀光部件108为光导管为例。在一具体实施中,该缩束部件105也可以包括两个凸透镜,如该缩束部件可以为开普勒望远镜;匀光部件108也可以为复眼透镜。需要说明的是,图7以在多色光源的上述第一种可选结构的基础上,对多色光源的附加部件进行介绍。对于其他可选结构,均可以在极性调整部件中添加图7相对图1增加的部件,本申请实施例不做限定。在一具体实施中,对于多色光源的上述第三种可选结构,由于第一激光器射出的激光与第二激光器射出的激光均可以直接在偏振分光棱镜处混光,混光后所得的光束较细,故此种结构中也可以不设置缩束部件105,多色光源的体积较小。
综上所述,本申请以上多个实施例提供的多色光源中,一种或多种激光器发出的多种颜色的激光在混光后射向极性调整部件,由极性调整部件对射入的激光光束中的至少部分 激光光束的偏振方向进行调整,使该激光光束中多种颜色的激光存在同一颜色的激光具有不同的偏振方向。其中,经过极性调整部件进行偏振方向调整的部分激光为多色光源发出的多种颜色的激光的光束的一半,即可以占1/2光斑的面积。由此同一合光光斑的不同部分具有不同的偏振极性,可以降低多色光源发出的激光的相干性,进而减弱基于该激光进行投射带来的散斑效应,提高多色光源所在的投影设备的投影效果。
图8是本申请实施例提供的一种投影设备的结构示意图。如图8所示,投影设备可以包括光源10、光阀110和镜头111。在图8提供的投影设备示例中,多色光源10可以采用图1至6任一举例的多色光源架构,目的是提供相干性降低的三色激光光束。
为简便,在图8的示例中,以多色光源10采用图1或图7所示的多色光源为例进行说明。
其中,照明光路中的匀光部件108可以将激光射向光阀110,光阀110可以将射入的激光进行调制后射向镜头111,镜头111可以对射入的激光进行投射以形成投影画面。
示例地,光阀110可以包括多个反射片,每个反射片可以用于形成投影画面中的一个像素,光阀110可以根据待显示的图像使其中需呈亮态显示的像素对应的反射片将激光反射至镜头111,以实现对光线的调制。镜头111可以包括多个透镜(图中未示出),对于图8所示的投影设备中各个结构的排布方式,镜头111中的各个透镜可以按照垂直纸面向外的方向依次排布。从光阀110射出的激光可以依次通过镜头111中的多个透镜射至屏幕,以实现镜头111对激光的投射,实现投影画面的显示。
在一具体实施中,请继续参考图8,投影设备还可以包括位于匀光部件108与光阀110之间的照明镜组112,经匀光部件108匀化后射出的激光可以通过照明镜组112射向光阀110。该照明镜组112可以包括反射片F、透镜T以及全内反射(total internal reflection prism,TIR)棱镜L。匀光部件108射出的激光可以射向反射片F,反射片F可以将射入的光线反射至凸透镜T,凸透镜T可以将射入的激光会聚至全内反射棱镜L,全内反射棱镜L将射入的激光反射至光阀110。
综上所述,本申请实施例提供的投影设备中的多色光源中,激光器发出的多种颜色的激光在混光后可以射向极性调整部件,进而由极性调整部件对射入的激光中至少部分激光的偏振方向进行调整,使该多种颜色的激光中存在同一颜色的激光具有不同的偏振方向,在不同的示例中,极性调整部件可以以较小的尺寸仅位于部分激光合光光束的光路中,仅改变入射至部件的光束部分的极性。极性调整部件也可以位于全部的激光合光光束的光路中,对激光极性进行改变的功能分区可以为多个,多个分区可以间隔设置,这样可以将一个合光光束中多个不同区域的光束的极性均进行改变。通过上述多种示例的设置,实现同一合光光斑中不同颜色的激光均具有不同的极性,这样至少相同颜色的激光的相关性可以降低,从而降低多色光源发出的多色激光的相干性,进而减弱基于该多色光源进行投射带来的散斑效应,提高投影设备的投影效果。
本申请中术语“A和B的至少一种”可以表示:单独存在A,单独存在B,同时存在A和B这三种情况。“A、B和C的至少一种”表示可以存在七种关系,可以表示:单独存在A,单独存在B,单独存在C,同时存在A和B,同时存在A和C,同时存在C和B,同时存在A、B和C这七种情况。在本申请实施例中,术语“第一”和“第二”仅用于描 述目的,而不能理解为指示或暗示相对重要性。术语“多个”指两个或两个以上,除非另有明确的限定。
以上所述仅为本申请的可选实施例,并不用以限制本申请,凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (13)

  1. 一种多色光源,其特征在于,所述多色光源包括:激光器、合光组件和极性调整部件;
    所述激光器用于向所述合光组件发出多种颜色的激光,所述合光组件用于将所述多种颜色的激光混光后射向所述极性调整部件;所述极性调整部件用于调整射入的激光中至少部分激光的偏振方向以得到目标激光,所述目标激光中存在至少一种颜色的激光满足:同一颜色的激光中部分激光的偏振方向不同于剩余部分激光的偏振方向。
  2. 根据权利要求1所述的多色光源,其特征在于,混光后的所述多种颜色的激光光束中的部分激光射入所述极性调整部件,所述极性调整部件用于调整射入的激光的偏振方向。
  3. 根据权利要求2所述的多色光源,其特征在于,所述极性调整部件包括半波片、四分之一波片和四分之三波片中的至少一种。
  4. 根据权利要求1所述的多色光源,其特征在于,混光后的所述多种颜色的激光沿目标方向全部射入所述极性调整部件,所述极性调整部件包括在垂直所述目标方向的方向上,交替设置的第一区和第二区;所述第一区与所述第二区对激光的偏振方向的调整程度不同。
  5. 根据权利要求4所述的多色光源,其特征在于,所述第一区的材质为半波片、四分之一波片和四分之三波片中的任一波片;
    所述第二区的材质为透明材质,或者所述半波片、四分之一波片和四分之三波片中不同于所述任一波片的波片。
  6. 根据权利要求1至5任一所述的多色光源,其特征在于,经所述极性调整部件进行偏振方向调整的部分激光为所述多种颜色的激光光束的一半。
  7. 根据权利要求1至5任一所述的多色光源,其特征在于,所述多色光源中的激光器包括:第一激光器,所述第一激光器发出第一颜色的激光、第二颜色的激光和第三颜色的激光;
    所述极性调整部件位于所述第一颜色的激光、所述第二颜色的激光和所述第三颜色的激光的合光光路中。
  8. 根据权利要求1至5任一所述的多色光源,其特征在于,所述多色光源中的激光器包括:第一激光器和第二激光器,
    所述多色光源中的合光组件包括:第一合光镜组和第二合光镜组;
    所述第一合光镜组位于所述第一激光器的出光侧,所述第二合光镜组位于所述第二激光器的出光侧;
    所述第一激光器用于向所述第一合光镜组出射第一颜色的激光、第二颜色的激光和第三颜色的激光;
    所述第二激光器用于向所述第二合光镜组出射一种颜色的激光;
    所述极性调整部件设置于所述第一合光镜组和所述第二合光镜组的出光光路中。
  9. 根据权利要求1至5任一所述的多色光源,其特征在于,所述多色光源中的激光器包括:第一激光器和第二激光器,所述多色光源中的合光组件包括:合光镜组和偏振分光棱镜PBS;
    所述合光镜组位于所述第一激光器的出光侧,所述PBS位于所述第二激光器的出光侧;
    所述第一激光器用于向所述合光镜组出射所述多种颜色的激光,所述合光镜组用于将射入的激光混光后射向所述PBS;
    由所述合光镜组射向所述PBS的激光的偏振方向均为第一偏振方向;
    所述第二激光器用于向所述PBS出射所述多种颜色中一种颜色的激光,由所述第二激光器射向所述PBS的激光的偏振方向为第二偏振方向;
    所述PBS用于将射入的所述第一偏振方向的光透射向极性调整部件,且将射入的所述第二偏振方向的光反射向所述极性调整部件。
  10. 根据权利要求1至5任一所述的多色光源,其特征在于,所述多色光源中的激光器包括:第一激光器、第二激光器和第三激光器;所述多色光源中的合光组件包括:第一合光镜、第二合光镜和第三合光镜,分别位于所述第一激光器、所述第二激光器和所述第三激光器的出光侧;
    所述第一激光器、所述第二激光器和所述第三激光器分别用于向所述第一合光镜发出第一颜色的激光,向所述第二合光镜发出第二颜色的激光,以及向所述第三合光镜发出第三颜色的激光;
    所述第一合光镜用于反射第一颜色的激光;
    所述第二合光镜用于透射第二颜色激光并反射第一颜色的激光;
    所述第三合光镜用于透射第三颜色激光并反射来自所述第二合光镜的第一颜色的激光和第二颜色的激光;
    极性调整部件设置于所述第三合光镜的出光光路中。
  11. 根据权利要求1至5任一所述的多色光源,其特征在于,所述多色光源还包括:半波片,设置在至少一种颜色的激光在与其他颜色的激光合光之前的光路中。
  12. 根据权利要求1至5任一所述的多色光源,其特征在于,所述极性调整部件固定设置,或者,旋转设置。
  13. 一种投影设备,其特征在于,所述投影设备包括:权利要求1至11任一所述的多色光源,以及光阀和镜头;
    所述多色光源用于向所述光阀发出激光光束,所述光阀用于将射入的激光光束进行调制后射向所述镜头,所述镜头用于对射入的激光光束进行投射以形成投影画面。
PCT/CN2022/082083 2021-05-31 2022-03-21 多色光源及投影设备 WO2022252763A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280030431.5A CN117751322A (zh) 2021-05-31 2022-03-21 多色光源及投影设备
US18/516,249 US20240085771A1 (en) 2021-05-31 2023-11-21 Laser source assembly and projection apparatus

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202110599419.3 2021-05-31
CN202110599419 2021-05-31
CN202110729592.0 2021-06-29
CN202110729592.0A CN113376947A (zh) 2021-05-31 2021-06-29 多色光源及投影设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/516,249 Continuation-In-Part US20240085771A1 (en) 2021-05-31 2023-11-21 Laser source assembly and projection apparatus

Publications (1)

Publication Number Publication Date
WO2022252763A1 true WO2022252763A1 (zh) 2022-12-08

Family

ID=77481413

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/082083 WO2022252763A1 (zh) 2021-05-31 2022-03-21 多色光源及投影设备

Country Status (3)

Country Link
US (1) US20240085771A1 (zh)
CN (3) CN113341639A (zh)
WO (1) WO2022252763A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113341639A (zh) * 2021-05-31 2021-09-03 青岛海信激光显示股份有限公司 三色激光光源及投影设备
CN114721159A (zh) * 2022-03-31 2022-07-08 青岛海信激光显示股份有限公司 投影光源
CN117389106B (zh) * 2023-12-08 2024-04-02 宜宾市极米光电有限公司 一种投影光源

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103149780A (zh) * 2011-11-28 2013-06-12 索尼公司 投影设备
CN107505807A (zh) * 2017-10-10 2017-12-22 青岛海信电器股份有限公司 一种激光光源及投影显示设备
CN207281393U (zh) * 2017-09-29 2018-04-27 歌尔科技有限公司 消散斑装置、激光光源及激光投影系统
CN207457625U (zh) * 2017-11-22 2018-06-05 歌尔科技有限公司 消散斑装置、激光光源及激光投影系统
CN112731749A (zh) * 2019-10-28 2021-04-30 青岛海信激光显示股份有限公司 激光投影设备
CN113376947A (zh) * 2021-05-31 2021-09-10 青岛海信激光显示股份有限公司 多色光源及投影设备

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115826340A (zh) * 2020-03-31 2023-03-21 青岛海信激光显示股份有限公司 激光光源
CN212276207U (zh) * 2020-06-24 2021-01-01 宜宾市极米光电有限公司 一种混合激光光源系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103149780A (zh) * 2011-11-28 2013-06-12 索尼公司 投影设备
CN207281393U (zh) * 2017-09-29 2018-04-27 歌尔科技有限公司 消散斑装置、激光光源及激光投影系统
CN107505807A (zh) * 2017-10-10 2017-12-22 青岛海信电器股份有限公司 一种激光光源及投影显示设备
CN207457625U (zh) * 2017-11-22 2018-06-05 歌尔科技有限公司 消散斑装置、激光光源及激光投影系统
CN112731749A (zh) * 2019-10-28 2021-04-30 青岛海信激光显示股份有限公司 激光投影设备
CN113376947A (zh) * 2021-05-31 2021-09-10 青岛海信激光显示股份有限公司 多色光源及投影设备

Also Published As

Publication number Publication date
CN117751322A (zh) 2024-03-22
CN113341639A (zh) 2021-09-03
CN113376947A (zh) 2021-09-10
US20240085771A1 (en) 2024-03-14

Similar Documents

Publication Publication Date Title
WO2022252763A1 (zh) 多色光源及投影设备
US10819961B2 (en) Light source apparatus for use in projection three-dimensional display apparatus, with dynamic diffusion plate
US20090262309A1 (en) Projection type video display apparatus
KR20020005696A (ko) 반사 lcd용 광학 시스템
CN111722463B (zh) 激光投影装置
JP3055683B2 (ja) 電子画像表示投射装置
US11275253B2 (en) Laser projector
CN112987472A (zh) 多色光源及投影设备
JP2005164769A (ja) 照明装置及び投写型映像表示装置
CN112987471A (zh) 多色光源和投影设备
TW451106B (en) Projection display device to display electronic image
JP3646597B2 (ja) 投写型画像表示装置
EP3561593B1 (en) Projection display system
JP2015222418A (ja) 色分離合成系およびこれを用いた色分離合成装置、画像表示装置
US20050280778A1 (en) Projection optical system and image display apparatus using same
US7359122B2 (en) Prism assembly
CN111722461A (zh) 激光投影装置
US7845802B2 (en) Illumination apparatus and projection display apparatus
US20020089679A1 (en) Color separating/synthesizing apparatus
US7213924B2 (en) Image projection apparatus and image projection system
KR20030079268A (ko) 프로젝션 디스플레이 시스템
WO2022174840A1 (zh) 光源和激光投影设备
CN111837073B (zh) 图像显示设备
WO2020186749A1 (zh) 激光投影装置
JP2002090874A (ja) 光学装置およびそれを用いた投射型表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22814811

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280030431.5

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22814811

Country of ref document: EP

Kind code of ref document: A1