WO2022252712A1 - 线激光模组及自移动设备 - Google Patents

线激光模组及自移动设备 Download PDF

Info

Publication number
WO2022252712A1
WO2022252712A1 PCT/CN2022/077855 CN2022077855W WO2022252712A1 WO 2022252712 A1 WO2022252712 A1 WO 2022252712A1 CN 2022077855 W CN2022077855 W CN 2022077855W WO 2022252712 A1 WO2022252712 A1 WO 2022252712A1
Authority
WO
WIPO (PCT)
Prior art keywords
line laser
camera
emitting device
main body
obstacle
Prior art date
Application number
PCT/CN2022/077855
Other languages
English (en)
French (fr)
Inventor
于光
龙永吉
刘丹
Original Assignee
北京石头世纪科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京石头世纪科技股份有限公司 filed Critical 北京石头世纪科技股份有限公司
Priority to JP2023574566A priority Critical patent/JP2024522553A/ja
Priority to KR1020237045356A priority patent/KR20240015110A/ko
Priority to EP22814760.9A priority patent/EP4351124A1/en
Priority to AU2022284813A priority patent/AU2022284813A1/en
Priority to CA3221161A priority patent/CA3221161A1/en
Publication of WO2022252712A1 publication Critical patent/WO2022252712A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/20Control system inputs
    • G05D1/24Arrangements for determining position or orientation
    • G05D1/243Means capturing signals occurring naturally from the environment, e.g. ambient optical, acoustic, gravitational or magnetic signals
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/20Control system inputs
    • G05D1/24Arrangements for determining position or orientation
    • G05D1/247Arrangements for determining position or orientation using signals provided by artificial sources external to the vehicle, e.g. navigation beacons
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/54Mounting of pick-up tubes, electronic image sensors, deviation or focusing coils
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/40Parts or details of machines not provided for in groups A47L11/02 - A47L11/38, or not restricted to one of these groups, e.g. handles, arrangements of switches, skirts, buffers, levers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
    • G05D1/0225Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory involving docking at a fixed facility, e.g. base station or loading bay
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0231Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
    • G05D1/0238Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using obstacle or wall sensors
    • G05D1/024Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using obstacle or wall sensors in combination with a laser
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0231Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
    • G05D1/0242Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using non-visible light signals, e.g. IR or UV signals
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0231Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
    • G05D1/0246Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using a video camera in combination with image processing means
    • G05D1/0248Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using a video camera in combination with image processing means in combination with a laser
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/20Control system inputs
    • G05D1/24Arrangements for determining position or orientation
    • G05D1/247Arrangements for determining position or orientation using signals provided by artificial sources external to the vehicle, e.g. navigation beacons
    • G05D1/249Arrangements for determining position or orientation using signals provided by artificial sources external to the vehicle, e.g. navigation beacons from positioning sensors located off-board the vehicle, e.g. from cameras
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/60Intended control result
    • G05D1/656Interaction with payloads or external entities
    • G05D1/661Docking at a base station
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/0007Applications not otherwise provided for
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/10Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from different wavelengths
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/20Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from infrared radiation only
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/45Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from two or more image sensors being of different type or operating in different modes, e.g. with a CMOS sensor for moving images in combination with a charge-coupled device [CCD] for still images
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/55Optical parts specially adapted for electronic image sensors; Mounting thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/57Mechanical or electrical details of cameras or camera modules specially adapted for being embedded in other devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/90Arrangement of cameras or camera modules, e.g. multiple cameras in TV studios or sports stadiums
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D2105/00Specific applications of the controlled vehicles
    • G05D2105/10Specific applications of the controlled vehicles for cleaning, vacuuming or polishing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors

Definitions

  • Embodiments of the present disclosure relate to a line laser module and self-moving equipment.
  • Self-mobile devices such as sweeping robots can automatically perform actions such as cleaning, mopping, and vacuuming, and thus have been widely used.
  • the self-mobile device will detect obstacles that may be encountered in the current working path in real time and perform corresponding obstacle avoidance actions.
  • the current autonomous mobile devices have low accuracy in identifying obstacles, making it difficult to avoid them accurately.
  • a line laser module including:
  • the first image acquisition component is arranged on the main body, and includes a first camera, at least one pair of laser emitting devices and a first image processing module, and the pair of laser emitting devices are arranged on both sides of the first camera, configured In order to emit a line laser projected linearly to the outside of the main body, the first camera is configured to collect a first environmental image containing the line laser, and the first image processing module is configured to acquire Obstacle distance information;
  • the second image acquisition component includes a second camera and a second image processing module, the second camera is configured to acquire a second environment image, and the second image processing module is configured to acquire obstacles according to the second environment image type information.
  • the first image processing module acquires the obstacle distance information based on a triangulation ranging method.
  • the second image processing module includes:
  • a feature extraction module configured to perform feature extraction on the second environment image to obtain feature information
  • the recognition module is configured to input the feature information into a pre-trained obstacle recognition model to recognize obstacle type information.
  • the second image processing module further includes:
  • a training module configured to use the collected training data to generate the obstacle recognition model.
  • the laser emitting device is configured to emit infrared light
  • the first camera is an infrared camera
  • the second camera is an RGB camera.
  • the first image acquisition component further includes:
  • the first filter lens is arranged on the side of the first camera away from the main body, configured so that only infrared light enters the first camera;
  • the second image acquisition component also includes:
  • the second filter lens is arranged on the side of the second camera away from the main body, configured so that only visible light enters the second camera.
  • the main body portion includes a first end and a second end, and a connection portion connecting the first end and the second end;
  • the pair of laser emitting devices are respectively arranged at the first end and the second end; the first camera and the second camera are arranged at the connecting part.
  • the line laser module further includes:
  • the pile return positioning device is arranged on the main body and is configured to communicate with the charging pile.
  • the pile return positioning device includes an infrared emitting device and at least two infrared receiving devices, the infrared emitting device is configured to send an infrared signal to the charging pile, and the at least two infrared receiving devices An infrared receiving device is configured to receive an infrared signal from the charging pile.
  • the first image acquisition component and the second image acquisition component are connected to a main control unit, and the main control unit is configured to provide The second image acquisition component sends an operation instruction.
  • the laser emitting device includes:
  • a line laser generator configured to generate a line laser
  • a laser driving circuit the laser driving circuit is connected to the main control unit, and the laser driving circuit controls the line laser generator based on an operation instruction issued by the main control unit.
  • the laser driving circuit includes:
  • the first amplifying circuit is used to receive the control signal sent by the main control unit, amplify the control signal and send it to the laser generator, so as to control the laser generator to turn on and off;
  • the second amplifying circuit is configured to receive the adjustment signal sent by the main control unit, amplify the adjustment signal and send it to the laser generator, so as to control the power generated by the line laser generator.
  • the optical axis of the first camera intersects the horizontal direction downward
  • the optical axis of the second camera intersects the horizontal direction upward.
  • the angle between the optical axis of the first camera and the horizontal direction is 7 degrees, and the angle between the optical axis of the second camera and the horizontal direction is 5 degrees.
  • a self-mobile device comprising:
  • the line laser module described in any one of the above items is arranged on the main body of the device;
  • a device control module configured to control the mobile device to move according to the obstacle distance information and the obstacle type information.
  • the mobile device further includes:
  • the buffer component is arranged on the side of the first image acquisition assembly and the second image acquisition assembly away from the main body, and has open mouth
  • the buffer component is provided with a supplementary light located on the periphery of the opening.
  • Fig. 1 is a partial structural diagram of a line laser module according to an alternative embodiment of the present disclosure.
  • Fig. 2 is a schematic structural diagram of a line laser module according to another optional embodiment of the present disclosure.
  • Fig. 3 is a partial structural diagram of a buffer component according to an alternative embodiment of the present disclosure.
  • Fig. 4 is a schematic diagram of the working principle of a line laser generator according to an alternative embodiment of the present disclosure.
  • Fig. 5 is a schematic diagram of the relationship between the line laser generator and the viewing angle of the first camera according to an optional embodiment of the present disclosure.
  • Fig. 6 is a partial structural schematic diagram of a main body according to an alternative embodiment of the present disclosure.
  • Fig. 7 is a partial structural diagram of a main body according to another alternative embodiment of the present disclosure.
  • FIG. 8 is a block diagram of an alternative embodiment of a line laser module according to the present disclosure.
  • FIG. 9 is a block diagram of another alternative embodiment of a line laser module according to the present disclosure.
  • Example embodiments will now be described more fully with reference to the accompanying drawings.
  • Example embodiments may, however, be embodied in many forms and should not be construed as limited to the embodiments set forth herein; rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the concept of example embodiments to those skilled in the art.
  • the same reference numerals in the drawings denote the same or similar structures, and thus their detailed descriptions will be omitted.
  • the drawings are merely schematic illustrations of the present disclosure and are not necessarily drawn to scale.
  • At least one embodiment of the present disclosure provides a line laser module, which can be applied to autonomous mobile devices. At least one embodiment of the present disclosure also provides a self-moving device, the self-moving device includes the above-mentioned line laser module.
  • the autonomous mobile device is an intelligent cleaning device, such as a sweeping robot, a mopping robot, a ground polishing robot or a weeding robot. For ease of description, this embodiment describes the technical solution of the present disclosure by taking a sweeping robot as an example.
  • the autonomous mobile device may include: a device body 200, a perception system, a device control module, a driving system, a cleaning system, an energy system, and a human-computer interaction system Wait.
  • the various systems coordinate with each other to enable the self-mobility device to move autonomously to perform cleaning functions.
  • the above-mentioned systems in the mobile device are integrally arranged in the device main body 200 .
  • the device body 200 has an approximately circular shape (both front and rear are circular), and may also have other shapes, including but not limited to an approximately D-shape with a front and rear circle.
  • the sensing system includes a line laser module located on the top or side of the main body 200 of the device.
  • the device control module is connected to the line laser module and controls the function of the self-moving device according to the sensing results of the line laser module.
  • the specific position of the line laser module on the device main body 200 is not limited.
  • it may be but not limited to the front side, rear side, left side, right side, top, middle and bottom of the device body 200 .
  • the line laser module is arranged at the middle position, the top position or the bottom position of the device main body 200 in the height direction.
  • the line laser module is set on the front side of the device main body 200; the front side is from the mobile device forward The side to which the device body 200 faces during movement.
  • the self-moving device may also include a charging pile, which is suitable for being connected or separated from the device main body 200. When cleaning, it is separated from the charging pile for cleaning operations.
  • the charging pile includes an infrared emitting device configured to emit infrared signals, such as near-field infrared signals.
  • the line laser module also includes a pile-back positioning device 190 that communicates with the charging pile. It can be understood that the pile-back positioning device 190 is disposed on the main body 140, and the pile-back positioning device 190 is configured to receive infrared signals emitted by the charging pile.
  • the line laser module includes a pile-back positioning device 190.
  • the device control module controls the pile-back positioning device 190 to be charged. Search for infrared signals near the pile, and when the pile return positioning device 190 receives the infrared signal, guide the device main body 200 to dock with the charging pile according to the infrared signal.
  • the pile-back positioning device 190 also includes an infrared emitting device 150 configured to emit an infrared signal.
  • the device control module controls the infrared emitting device 150 to emit an infrared signal to the charging pile, so that the device The main body 200 is charged.
  • the peg positioning device 190 includes an infrared receiving device 160 and an infrared emitting device 150, wherein the infrared receiving device 160 is configured to receive an infrared signal, and the infrared emitting device 150 is configured to emit an infrared signal.
  • the infrared receiving device 160, the infrared emitting device 150, the first camera 120, the second camera 130, and the line laser emitting device 110 are all arranged on the main body 140, realizing the modular design of the perception system , easy to assemble and maintain.
  • the infrared receiving device 160 of the pile-back positioning device 190 includes at least two infrared detectors, and the at least two infrared detectors are evenly arranged on the top of the device body in the lateral direction of the device body. Such setting is beneficial to ensure the reliability of the infrared receiving device 160 receiving the incoming infrared signal, and ensure the reliability of the communication connection between the device main body 200 and the charging pile.
  • the infrared receiving device may include any number of infrared detectors.
  • the infrared emitting device 150 of the back pile positioning device 190 includes at least one infrared lamp. It can be understood that the infrared receiving device 160 and the infrared emitting device 150 may also be arranged in other positions that meet requirements, which is not specifically limited in the present disclosure.
  • the device control module is configured to control the mobile device to move according to the obstacle distance information and the obstacle type information.
  • the obstacle distance information indicates the distance of the obstacle from the mobile device.
  • the device control module can be directly connected to the main control unit 003, and can directly obtain obstacle distance information and obstacle type information obtained by the main control unit 003 after processing the first environment image and the second environment image.
  • the device control module can also be connected to the main control unit 003 through a memory, and the obstacle distance information and obstacle type information obtained by the main control unit 003 can be stored in the memory, and the device control module can directly call the obstacle stored in the memory. Distance information and obstacle type information.
  • the device control module and the main control unit 003 may be two independent circuits.
  • the device control module and the main control unit 003 may be two independent chips.
  • the device control module and the main control unit 003 may be integrated in the same circuit.
  • the device control module and the main control unit 003 can be integrated into the same chip.
  • the type of the chip is not particularly limited here, as long as the respective functions can be realized.
  • the device body 200 may also be provided with moving mechanisms such as rollers and crawlers, and the device control module may control the moving mechanism to move from the mobile device.
  • moving mechanisms such as rollers and crawlers
  • the self-moving device further includes a buffer component 170 , the buffer component 170 is arranged on the front side of the device main body 200 , and the line laser module is located between the buffer component 170 and the device main body 200 , that is, the first camera 120, the second camera 130, the line laser emitting device 110, and the pile-back positioning device 190 are located between the buffer component 170 and the device main body 200, so that the buffer component 170 is opposite to the first camera 120, the second camera 130, the line
  • the laser emitting device 110 and the pile-back positioning device 190 have played a certain protective role, protecting the first camera 120, the second camera 130, the line laser emitting device 110, and the pile-back positioning device from being damaged by external forces, which is conducive to improving the first camera.
  • a window 171 is arranged at a position opposite to the first camera 120 and the second camera 130 through the buffering part 170, so that external ambient light can enter the first camera 120 and the second camera 130, and through the buffering part 170 and the line laser emitting device 110 Windows are arranged at the relative position, so that the laser emitted by the line laser emitting device 110 can be emitted outwards from the buffer component 170, and a window is arranged at the position opposite to the pile-back positioning device 190 by the buffer component 170, so that the pile-back positioning device can 190 receives infrared signals and emits infrared signals to ensure the reliability of the line laser module.
  • the buffer component 170 can be equivalent to the impact plate of the main body 200 of the equipment.
  • the part 140 is installed on the device main body 200 , and then the buffer member 170 (such as a strike plate) is connected to the main part 140 or the device main body 200 .
  • the buffer component 170 includes a strike plate 172 and an elastic member, the strike plate 172 and the main body 140 are connected by the elastic member, the line laser module is located inside the strike plate 172, and the elastic member can be set in When the buffer component 170 collides with an obstacle, it reduces the force of the collision plate 172 acting on the device body 200 and the line laser module, which plays a certain buffering role and further reduces the damage of the obstacle to the device body and the line laser module.
  • the rubber cushion By arranging the rubber cushion outside the impact plate 172, when the buffer member 170 collides with the obstacle, the rubber cushion directly contacts the obstacle, that is, the rubber cushion plays a good protective role against the impact plate 172, and the rubber cushion
  • the cushion layer is an elastic member, which can further play the role of cushioning. That is to say, the present disclosure makes the cushioning component 170 have a double-layer cushioning effect through the elastic member and the rubber pad, which greatly reduces the possibility of obstacles damaging the equipment main body 200 and the line laser module, and improves the safety of the self-moving equipment. reliability.
  • the elastic member is an elastic column and/or a spring, and may also be other elastic members meeting requirements.
  • the self-mobile device further includes a supplementary light 180 and an ambient light sensor configured to detect the brightness of ambient light
  • the supplementary light 180 is disposed on the buffer component 170 and is close to the second camera 130
  • the corresponding window 171 enables the second camera 130 to capture the environment image clearly and accurately when the ambient light is too weak, that is, the current ambient light does not meet the exposure operation of the second camera 130. 180 to fill in light to meet the shooting requirements of the second camera 130, ensure that the second camera 130 can clearly and accurately capture environmental images, and improve the accuracy of obstacle recognition.
  • the line laser module includes: a main body 140 and a first image acquisition assembly 001, wherein the first image acquisition assembly 001 includes a first camera 120 arranged on the main body 140, at least one line laser emitting device 110 And the first image processing module 011, the at least one line laser emitting device 110 is located near the first camera 120, and is configured to emit a linear line laser projection, and the first camera 120 cooperates with the at least one line laser emitting device 110 working, and configured to collect a first environment image; the first image processing module 011 is configured to obtain obstacle distance information according to the first environment image. The obstacle distance information indicates the distance between the first camera and the obstacle when the first environment image is captured.
  • the at least one line laser emitting device 110 is movably connected with the main body 140, and/or the main body 140 is a movable structure, so that the azimuth and rotation angle of the line laser emitting device 110 can be adjusted.
  • the first camera 120 and the at least one line laser emitting device 110 cooperate with each other to be able to identify obstacles or terrain in front of the device main body 200 to perform corresponding obstacle avoidance operations or Sweeping operation.
  • the azimuth and rotation angle of the line laser emitting device can be adjusted by adjusting the position of the laser emitting device relative to the main body 140 through the flexible connection between the line laser emitting device and the main body 140 .
  • the main body 140 is a movable structure, so that the azimuth and rotation angle of the line laser emitting device can be adjusted by adjusting the relative positions of the components of the main body 140 .
  • the line laser emitting device is movably connected with the main body part 140 and the main body part 140 is a movable structure, so that adjusting the position of the line laser emitting device relative to the main body part 140 and adjusting the relative positions of each part of the main body part 140 can emit the line laser light.
  • the azimuth and rotation of the device 110 are adjusted. Therefore, when the line laser emitting device 110 is assembled to the main body part 140, it is convenient to adjust the irradiation angle and irradiation range of the line laser emitted by the line laser emitting device 110, so that the line laser emitted by the line laser emitting device 110 can be quickly and conveniently adjusted.
  • the laser is perpendicular to the horizontal plane and the line laser is located within the field of view of the first camera 120 . Such a structure helps to simplify assembly operations and improve assembly efficiency.
  • the line laser can be located within the field of view of the first camera 120, so as to ensure that the first camera 120 can accurately and comprehensively capture the laser light emitted by the line laser.
  • the reflected light emitted by the device and reflected by obstacles improves the accuracy and comprehensiveness of the environment image acquired by the first camera 120 .
  • the line laser emitting device is then fixed by dispensing glue.
  • the line laser is perpendicular to the horizontal plane, which is beneficial to improve the range of distance measurement.
  • the at least one line laser emitting device 110 is movably connected with the main body 140 , so that the azimuth and rotation angle of the line laser emitting device 110 can be adjusted by adjusting the position of the line laser emitting device 110 relative to the main body 140 .
  • the main body 140 is a movable structure, so that the azimuth and rotation angle of the at least one line laser emitting device 110 can be adjusted by adjusting the relative positions of the components of the main body 140 .
  • the at least one line laser emitting device 110 is movably connected with the main body 140, and the main body 140 is a movable structure, so that the position of the at least one line laser emitting device 110 relative to the main body 140 can be adjusted, and the components of the main body 140 can be adjusted.
  • the relative position of the at least one line laser emitting device 110 can be adjusted in azimuth and rotation.
  • the embodiments provided in the present disclosure adjust the azimuth angle and rotation angle of the at least one line laser emitting device 110 in different ways, which can satisfy different structures of the main body 140, the at least one line laser emitting device 110 and the main body 140. Requirements for different connection methods.
  • the at least one line laser emitting device 110 is configured to emit a line laser with a linear projection.
  • the at least one line laser emitting device emits a laser plane to the outside. After the laser plane reaches the obstacle, a line will be formed on the surface of the obstacle. Laser, through which the laser is used to obtain an image of the environment.
  • the plane AOB shown in FIG. 1 represents the laser plane emitted by the line laser emitting device 110 , which is a vertical plane.
  • the plane ABF and the plane CDE shown in FIG. 4 respectively represent the laser planes emitted by the first line laser emitting device 110 and the second line laser emitting device 111 , wherein the line segment AB and the line segment CD represent the line laser light.
  • the line laser emitting device may be a laser tube. It is understood that the line laser emitting device may also be of other structures that meet requirements, which is not specifically limited in the present disclosure. It can be understood that wave mirrors may also be provided in the emitting directions of the first-line laser emitting device 100 and the second-line laser emitting device 110 (for example, the traveling direction of the mobile device). In some embodiments of the present disclosure, the wave mirror is a concave lens.
  • a concave lens is set in front of the laser tube, and the laser tube emits light of a specific wavelength (such as infrared light), which becomes divergent light after passing through the concave lens, thus forming a straight line on the plane perpendicular to the optical path.
  • a specific wavelength such as infrared light
  • the line laser module includes two line laser emitting devices 110, which are respectively arranged on both sides of the first camera 120, and the first camera 120 and the line laser emitting devices work together. That is, the two line laser emitting devices 110 all emit line lasers perpendicular to the horizontal plane and within the field of view of the first camera 120, and the first environmental image collected by the first camera 120 is the two line lasers.
  • the line laser emitted by the emission device and reflected by obstacles can obtain the obstacle distance information according to the first environmental image, and can also measure the distance between the obstacle and the equipment main body 200 or the line laser module, and then carry out corresponding avoidance. faulty operation.
  • the two line lasers by reasonably adjusting the installation position and installation angle of the two line laser emitting devices 110 relative to the main body 140, and/or adjusting the relative positions of the components of the main body 140, the two line lasers
  • the rotation angle and azimuth angle of the emitting device 110 are adjusted, wherein, the rotation angle of the two laser emitting devices 110 is adjusted so that the line laser is perpendicular to the horizontal plane, and the azimuth angle of the two laser emitting devices 110 is adjusted for the line.
  • the angle between the line lasers emitted by the two line laser emitting devices and the optical axis of the first camera 120 is adjusted so that the line lasers are located within the field of view of the first camera 120 .
  • the line laser is used for dispensing and fixing, and then the measurement of the distance of the obstacle in front of the device main body 200 can be realized.
  • FIG. 4 is a schematic diagram of the working principle of the line laser generator, wherein, the letter P represents the first camera 120, and the letters E and F represent the two sides (or peripheral sides) of the first camera 120. ) of the line laser generator 110; the straight lines PM and PN represent the two boundaries of the horizontal field of view of the first camera 120, that is, ⁇ MPN represents the horizontal field of view of the first camera 120.
  • the first line laser emitting device 100 emits the laser plane FAB to the outside, and the second laser emitting device 110 emits the laser plane ECD to the outside. After the laser planes FAB and ECD reach the obstacle, a line of laser light will be formed on the surface of the obstacle, as shown in FIG.
  • Line segment AB and line segment CD Since the line segment AB and the line segment CD of the line laser emitted by the line laser generator are located within the field of view of the first camera, the line laser can help detect information such as the outline, height and/or width of the object within the field of view of the first camera, The first camera 120 can collect a first environment image detected by the line laser.
  • the main control unit 003 is configured to send an operation instruction to the first image acquisition component 001 .
  • the main control unit 003 can calculate the distance from the line laser module or the device main body 200 where the line laser module is located to the obstacle in front according to the first environment image collected by the first camera 120 .
  • the distance between the line laser module or the device main body 200 and the obstacle in front can be calculated by using the distance triangulation method.
  • FIG. 5 is a schematic diagram of a viewing angle of the embodiment shown in FIG. 4 .
  • the letter P represents the first camera 120
  • the letters E and F represent the line laser emitting devices 110 located on both sides of the first camera 120
  • point A represents the projection of the line segment AB in the horizontal plane
  • point D represents the projection of the line segment CD in the horizontal plane
  • ⁇ MPN represents the horizontal field of view of the first camera 120
  • point O represents the intersection of the line laser emitted by the line laser emitting device 110 and the optical axis of the first camera 120 .
  • the focal length of the first camera 120 is known, and the line laser generator F
  • the emission angle is known, that is, the angle between the straight line FA and the optical axis PO is known, and the length of the line segment OP is known;
  • the distance between the second line laser generator 110 and the image plane of the first camera 120 The distance between them is known, and the image of point A on the obstacle in the first environment image captured by the first camera 120 is defined as A', because point A' will be closer to the optical axis PO of the first camera 120
  • Certain offset, and the offset is known, according to the triangular similarity principle, combined with the above known conditions, the distance between A and F can be measured, that is, the distance between the obstacle and the line laser emitting device 110 can be obtained.
  • the terrain conditions in front can also be determined according to the deformation characteristics of the line segment reflected by the first camera 120 by the line laser after being reflected by obstacles, so as to determine what operation to perform, such as performing obstacle avoidance operations or continuing to clean operate.
  • the number of the first cameras 120 is not specifically limited, for example, the number of the first cameras 120 may be one, two, three or other numbers meeting requirements. It can be understood that, in the embodiment of the present disclosure, the number of the line laser emitting devices 110 is not specifically limited, for example, there may be two or more line laser emitting devices 110 . The number of line laser emitting devices 110 distributed on each side of the first camera 120 is also not limited, and the number of line laser emitting devices 110 on each side of the first camera 120 can be one, two or more; , the number of line laser emitting devices 110 on both sides of the first camera 120 may be the same or different. It can be understood that when there are multiple line laser emitting devices 110 on either side of the first camera 120 , the multiple line laser emitting devices 110 can be distributed left and right, or can be distributed up and down, which is not specifically limited in the present disclosure.
  • the first camera 120 can not only measure the distance of the obstacle in front of the device main body 200, obtain the distance information of the obstacle, but also identify the type of the obstacle, and obtain the obstacle type information. If the timing is different, the first camera 120 is used to measure the distance of the obstacle and identify the type of the obstacle.
  • the main control unit 003 first determines the type of the obstacle according to the first environment image collected by the first camera 120, determines whether the device main body 200 needs to perform an obstacle avoidance operation according to the type of the obstacle, and determines whether the device main body 200 needs to perform an obstacle avoidance operation During the obstacle avoidance operation, the main control unit 003 determines the distance of the obstacle according to the second environment image collected by the first camera 120 to obtain the obstacle distance information to perform the corresponding obstacle avoidance operation. When the device body 200 does not need to perform the obstacle avoidance operation , the self-mobile device continues the previous operation, thereby reducing the possibility of misoperation of the self-mobile device for obstacle avoidance.
  • the line laser emitting device 110 is movably connected with the main body 140 , and the main body 140 is a movable structure.
  • the main body 140 includes a main body 141 and a connecting piece 143
  • the first camera 120 is disposed on the main body 141
  • the line laser emitting device 110 is connected to the main body 141 through the connecting piece 143, wherein the connecting piece 143 is set There is a through hole, and the line laser emitting device 110 is pierced through the connecting piece 143 through the through hole, and the line laser emitting device 110 is rotatably connected with the connecting piece 143, that is, the line laser emitting device 110 can rotate in the through hole of the connecting piece 143, and then The rotation angle of the line laser emitting device 110 is adjusted so that the line laser is perpendicular to the horizontal plane to expand the range of distance measurement.
  • the connecting piece 143 is movably connected with the main body 141.
  • the connecting piece 143 can rotate horizontally relative to the main body 141, that is, the rotating shaft of the connecting piece 143 relative to the main body 141 is a straight line in the vertical direction, so that the connecting piece 143 drives the line laser emitting device 110
  • Rotating relative to the main body 141 in the horizontal plane can adjust the azimuth angle of the line laser emitting device 110 so that the line laser emitted by the line laser emitting device 110 is within the field of view of the first camera 120 .
  • the connecting part 143 is movable relative to the body 141, so that during the assembly process, by placing the line laser emitting device 110 in the through hole of the connecting part 143 Rotating to a proper position, the adjustment of the rotation angle of the line laser emitting device 110 can be realized, that is, the adjustment of the line laser emitting device 110 can be realized.
  • the azimuth angle of the line laser emitting device 110 can be adjusted, that is, the adjustment of the line laser emitting device 110 and the first camera 120 can be realized, and the operation is simple.
  • the connecting piece 143, the body 141, and the line laser emitting device 110 can be fixedly connected by a fixing device, such as using adhesives, glue, etc.
  • the end 142, the body 141, and the line laser emitting device 110 are fixed, and the operation is simple.
  • the main body 141 is provided with a positioning groove 144
  • the connecting piece 143 is provided with a protruding structure 145 matching the positioning groove 144
  • the connecting piece 143 is positioned in the positioning groove 144 through the protruding structure 145.
  • Rotate horizontally For example, the protruding structure 145 protrudes in the vertical direction, so that the connecting piece 143 can rotate in the horizontal direction relative to the main body 141, that is, the rotating shaft of the connecting piece 143 relative to the main body 141 is a straight line in the vertical direction.
  • the connecting piece The protruding structure 145 of 143 rotates horizontally in the positioning groove 144 of the main body 141, which can drive the line laser emitting device 110 to rotate horizontally with the protruding structure 145 as the rotation axis relative to the main body 141, thereby enabling the line laser emitting device 110 to emit
  • the laser is located within the field of view of the first camera 120 to realize the debugging of the line laser generator 110 and the first camera 120 , with simple structure and convenient operation.
  • the positioning groove 144 can be a circular positioning groove, and the protruding structure 145 is a cylindrical protruding structure, and the cooperation between the circular positioning groove and the cylindrical protruding structure is beneficial to improve the connection between the connecting piece 143 and the body 141. Rotational flexibility and reliability. It can be understood that the positioning groove 144 can also be a groove structure of other shapes that meet requirements.
  • the line laser emitting device 110 is cylindrical, the outer peripheral side of the line laser emitting device 110 is provided with a first stepped structure 111 , and the main body 140 is provided with a The installation groove of the emission device 110, the inner wall of the installation groove is provided with a second step structure 149, through the matching of the first step structure 111 and the second step structure 149, the movement of the line laser emission device 110 along the axial direction can be limited , which is conducive to improving assembly efficiency.
  • the line laser emitting device 110 is movably connected with the main body 140, and the main body 140 is a movable structure.
  • the main body 140 includes a body 141 and end portions 142 located on both sides of the body 141 , the first camera 120 is disposed on the body 141 , and the line laser emitting device 110 is disposed on the end portion 142 .
  • each end 142 is pivotally connected to the body 141, such as the end 142 is hinged to the body 141, so that the end 142 can rotate relative to the body 141, and the line laser emitting device 110 is connected to the end 142.
  • the line laser emitting device 110 can rotate relative to the mounting groove in the end 142, and then the rotation angle of the line laser emitting device 110 can be adjusted so that the line laser is perpendicular to Horizontal plane, expanding the range of distance measurement. Since the line laser emitting device 110 is mounted to the end 142, and the end 142 can rotate relative to the body 141, the azimuth angle of the line laser emitting device 110 can be adjusted so that the line laser emitting device 110 emits the line laser at the first position. Within the field of view angle of a camera 120 .
  • the line laser emitting device 110 is rotatable relative to the end portion 142, the end portion 142 is pivotally connected to the body 141, so that during the assembly process, by rotating the line laser emitting device 110 to a suitable position, the The adjustment of the rotation angle of the line laser emitting device 110 is to realize the adjustment of the line laser emitting device 110.
  • the calibration of the azimuth angle of the line laser emitting device 110 can be realized. That is, the coordination and calibration of the line laser emitting device 110 and the first camera 120 is realized, and the operation is simple and the installation is convenient.
  • the end 142, the body 141, and the line laser emitting device 110 can be fixedly connected by a fixing device, such as using adhesives, glue, etc.
  • the end 142, the body 141, and the line laser emitting device 110 are fixed, and the operation is simple.
  • the linear laser emitting device 110 is movably connected with the main body 140 .
  • the main body 140 is provided with an installation cavity configured to install the line laser emitting device 110, the line laser emission device 110 is movably disposed in the installation cavity, the installation cavity includes a first end and a second end, and the cross section of the first end The area is smaller than the cross-sectional area of the second end, that is to say, the mounting cavity is a flared structure, and the cross-sectional area passing through the first end is greater than the cross-sectional area of the line laser emitting device 110, indicating that the line laser emitting device 110 can be installed in the mounting cavity.
  • Activity is provided with an installation cavity configured to install the line laser emitting device 110, the line laser emission device 110 is movably disposed in the installation cavity, the installation cavity includes a first end and a second end, and the cross section of the first end The area is smaller than the cross-sectional area of the second end, that is to say, the mounting cavity is a flared structure, and the cross-
  • the front end of the line laser emitting device 110 is close to the first end of the installation cavity, by rotating the line laser emission device 110 relative to the axis of the installation cavity, the rotation angle of the line laser emission device 110 can be adjusted so that the line laser is perpendicular to Horizontal plane, expanding the range of distance measurement.
  • the azimuth of the line laser emitting device 110 can be adjusted so that the line laser emitted by the line laser emitting device 110 is within the field of view of the first camera 120 .
  • the line laser emitting device 110 since the line laser emitting device 110 is movably arranged in the installation cavity of the main body 140, the line laser emission device 110 can rotate around the axis of the installation cavity and around the point (front end) in the installation cavity, so that During the adjustment process, by reasonably adjusting the installation angle and installation position of the line laser emitting device 110 and the main body 140, the calibration of the rotation angle and azimuth angle of the line laser emitting device 110 can be realized, and the operation is simple and the calibration is convenient. It can be understood that after the adjustment of the rotation angle and azimuth angle of the line laser emitting device 110 is completed, the line laser emitting device 110 can be fixedly connected with the main body 140 by using a fixing device, such as using adhesives, glue, etc. to emit the line laser The device 110 is fixed on the main body 140, and the assembly of the line laser emitting device 110 and the main body 140 can be completed, and the operation is simple.
  • the main body portion 140 is a movable structure. As shown in Figure 6, the main body 140 includes a body 141, an end 142 and a connecting portion 146, the end 142 is located on both sides of the body 141, the first camera 120 is arranged on the body 141, and the line laser emitting device 110 is arranged on the end 142 , such as the line laser emitting device 110 is fixedly or detachably mounted on the end 142 .
  • the connecting part 146 is pivotally connected to the body 141, and the end part 142 is connected to the connecting part 146, and then the connecting part 146 can be pivoted relative to the main body 141 to adjust the azimuth angle of the line laser emitting device 110, so that the line laser emitting device
  • the line laser emitted by 110 is located in the field of view of the first camera 120 .
  • the end part 142 is connected to the connecting part 146 through rotation. When the end part 142 rotates relative to the connecting part 146, the rotation angle of the line laser emitting device 110 can be adjusted so that the line laser is perpendicular to the horizontal plane, thereby expanding the range of distance measurement.
  • connection part 146 is hinged to the body 141, and a hole is provided on the side of the connection part 146 facing the end part 142.
  • the end part 142 is provided with a cylindrical protrusion matching the hole.
  • the azimuth angle of the line laser emitting device 110 can be adjusted.
  • the main body 141 and the connecting portion 146 are fixed, such as by glue or other limiting structures, so that the alignment of the optical system formed by the line laser emitting device 110 and the first camera 120 can be realized.
  • the main body 140 is a movable structure, that is, the end 142 is movably connected to the body 141 through the connecting portion 146, so that during the calibration process, by reasonably adjusting the relative positions of the end 142, the connecting portion 146, and the body 141,
  • the adjustment of the rotation angle and azimuth angle of the line laser emitting device 110 installed at the end 142 can be realized, and the operation is simple and the calibration is convenient.
  • the end portion 142, the connecting portion 146, and the body 141 can be fixedly connected by a fixing device, such as using an adhesive, glue, or a limiting portion. 147 and the like fix the end portion 142, the connecting portion 146, and the body 141, and the operation is simple.
  • the main body 140 is a movable structure. As shown in FIG. 7 , in one embodiment of the present disclosure, the main body 140 includes a body 141 , an end 142 and a limiting portion 147 , the end 142 is located on both sides of the body 141 , and the first camera 120 is disposed on the body 141 .
  • the line laser emitting device 110 is disposed at the end 142 .
  • the end 142 is connected to the body 141 by rotation, for example, the end 142 is ball-connected to the body 141, so that the end 142 can swing relative to the body 141 and can rotate relative to the body 141, while the line laser emits
  • the device 110 is assembled on the end part 142, and then the azimuth and rotation angle of the line laser emitting device 110 can be adjusted by swinging and rotating the end part 142 relative to the body 141, which is easy to operate and easy to calibrate.
  • the end portion 142 is ball-connected to the body 141, the body 141 is provided with a limiting hole 148, the limiting portion 147 is a fastening bolt, and the line laser emitting device 110 is adjusted by rotating the end portion 142 relative to the body 141 When the line laser is perpendicular to the horizontal plane, the calibration of the line laser emitting device 110 can be realized. By adjusting the swing position of the end 142 relative to the body 141, the azimuth of the line laser emitting device 110 can be adjusted.
  • the line laser emitted by the line laser emitting device 110 is located at a suitable position within the field of view of the first camera 120, so that the debugging of the line laser emitting device 110 and the first camera 120 can be realized, and then the tightening bolt is used to pass through the limit hole 148, limit and fix the position of the end portion 142 relative to the body 141, just fix the end portion 142 and the body 141, and the operation is simple. It can be understood that the number of limiting holes 148 on the body 141 can be one, two or more.
  • the fastening bolt can pass through the limiting hole 148 to fix the end portion 142 and the main body 141 .
  • the fastening bolt can also be an elastic member, that is, the end of the fastening bolt abutting against the end portion 142 is an elastic member, and the end portion 142 and the body 141 are reliably connected by elasticity.
  • the spherical surface of the end portion 142 can also be provided with positioning holes that are compatible with the set bolts, so that the set bolts pass through the limiting holes 148 and are pressed together with the positioning holes, which is conducive to improving the position of the end portion 142.
  • the line laser module includes two line laser emitting devices.
  • the main body part includes two end parts, and also includes two connecting parts, and the two connecting parts respectively connect the two end parts to the main part, and the two line laser emitting devices are respectively arranged on the two end parts. on one end.
  • the line laser emitting device 110 includes a line laser generator 1101 and a laser driving circuit 1102, wherein the line laser driving circuit 1102 can receive a driving signal and drive the line according to the driving signal.
  • a laser generator 1101 generates line laser light.
  • the laser driving circuit 1102 may include an amplifying circuit configured to amplify the driving signal and send the amplified driving signal to the line laser generator 1101 to make the line laser generator 1101 emit light.
  • the driving signal may include a control signal and an adjustment signal.
  • the control signal may be used to control the line laser generator 1101 to be turned on or off, and the line laser generator 1101 may be used to adjust the laser power generated by the line laser generator 1101 through the adjustment signal.
  • the amplifying circuit may include a first amplifying circuit 1102a and a second amplifying circuit 1102b, wherein:
  • the first amplifying circuit 1102a is configured to receive the control signal sent by the main control unit 003, amplify the control signal and send it to the line laser generator 1101, so as to control the line laser generator 1101 to turn on and off; and
  • the second amplifying circuit 1102b is configured to receive the adjustment signal sent by the main control unit 003, amplify the adjustment signal and send it to the line laser generator 1101, so as to control the transmission power of the line laser generator 1101.
  • the specific structures of the first amplifying circuit 1102a and the second amplifying circuit 1102b are not specifically limited here, as long as the signal amplifying function can be realized.
  • the line laser module further includes a second image acquisition component 002, and the second image acquisition component 002 includes a second camera 130 and a second camera 130 arranged on the main body 140.
  • the second image processing module 021, the second camera 130 is configured to capture a second environment image.
  • the second image acquisition component 002 can be connected with the main control unit 003 and receive operation instructions from the main control unit 003 .
  • the second camera 130 is connected with the main control unit 003 of the mobile device, and the main control unit 003 can control the exposure of the second camera 130, and the second camera 130 acquires the second camera 130 according to the exposure instruction of the main control unit.
  • the main control unit analyzes and processes the second environmental image, and can identify the types of obstacles.
  • the first camera 120, the second camera 130 and the line laser emitting device 110 work together to identify the obstacle distance information according to the first environment image collected by the first camera 120, and according to the second camera 130
  • the second environment image collected at 130 identifies obstacle type information. Therefore, the type of the obstacle can be determined according to the second environment image captured by the second camera 130, and whether the device main body 200 needs to perform an obstacle avoidance operation can be determined according to the type of obstacle, and when the device main body 200 needs to perform an obstacle avoidance operation, through the second A camera 120 and a line laser emitting device 110 cooperate with each other to determine the distance of obstacles to perform corresponding obstacle avoidance operations. Possibility of erroneously performing obstacle avoidance maneuvers.
  • the number of second environmental images is multiple, such as 500, 1000 or other numbers that meet the requirements, such as the number of second environmental images that can be determined by adjusting the exposure frequency of the second camera 130 quantity.
  • the main control unit performs image segmentation on a plurality of second environmental images captured by the second camera 130 to obtain segmented images marked with obstacle type information. Then input the segmented segmented image into the trained obstacle model, then perform feature extraction on the segmented image, perform confidence matching on the extracted feature information and the trained obstacle model, and determine according to the confidence matching result The type of obstacle.
  • the line laser module provided by the embodiment of the present disclosure can determine the type of obstacle through the second environment image acquired by the second camera 130, so that the self-mobile device can determine whether to perform an obstacle avoidance operation or Execute the previous action. And when it is necessary to perform an obstacle avoidance operation, the device control module controls the first camera 120 and the line laser emitting device 110 to work together, and determines the relationship between the obstacle and the line laser module or the device main body 200 according to the first environment image acquired by the first camera 120 . to perform obstacle avoidance operations.
  • the drive system can drive the device main body 200 to move to move the balloon, that is, the balloon will not affect the cleaning route.
  • the controller controls the device main body 200 to perform the cleaning operation according to the original cleaning route, instead of performing the obstacle avoidance operation, which can clean the position where the balloon is located, improves the accuracy of obstacle avoidance, and is beneficial to expand the cleaning range. That is to say, in this case, the controller does not need to control the line laser emitting device 110 and the first camera 120 to work.
  • the device control module controls the device main body 200 to perform an obstacle avoidance operation to change the cleaning route.
  • the equipment control module controls the line laser emitting device 110 to work and emit the line laser
  • the first camera 120 captures the first environmental image of the reflected light reflected from the chair
  • the equipment control module determines the line laser module or the equipment main body 200 according to the first environmental image The distance between the chair and the chair, and then re-plan the cleaning route according to the distance to perform obstacle avoidance operations, which improves the obstacle avoidance effect.
  • the number of the second cameras 130 is not specifically limited, for example, the number of the second cameras 130 may be one, two, three or other numbers meeting requirements. It can be understood that the second camera 130 can be a monocular camera or a binocular camera. In some possible embodiments, the first camera 120 and the second camera 130 are set separately, or the first camera 120 and the second camera 130 A camera module can also be formed, and the present disclosure does not specifically limit the setting modes of the first camera 120 and the second camera 130 .
  • the optical axis of the first camera intersects the horizontal direction downward
  • the optical axis of the second camera intersects the horizontal direction upward. That is to say, the first camera looks down on the surface to be cleaned from above, which is set up to see lower obstacles.
  • the second camera looks up from the bottom to see more spatial features and improve user video experience.
  • the included angle between the optical axis of the first camera and the horizontal direction is 7 degrees
  • the included angle between the optical axis of the second camera and the horizontal direction is 5 degrees. That is to say, the second camera looks up from below in order to see more spatial features and improve the user's video experience.
  • the main body part may include a first end and a second end and a connection part connecting the first end and the second end;
  • the line laser module includes two laser emitting devices, respectively arranged on The first end and the second end; the first camera and the second camera are arranged at the connecting part.
  • the first camera 120 is a black-and-white camera, that is, an infrared camera, and a first filter lens is arranged in front of the black-and-white camera.
  • the first filter lens can be an infrared lens, which only allows infrared light to pass through.
  • the line laser emitting device 110 working in cooperation with the first camera 120 is an infrared laser tube, and emits infrared laser.
  • the second camera 130 is an RGB camera.
  • a second filter lens is arranged in front of the RGB camera.
  • the second filter lens is a visible light lens. If the visible lens is a white light lens, only visible light is allowed to pass through.
  • the first camera 120 and the second camera 130 may also have other structures that meet requirements, which are not specifically limited in the present disclosure.
  • the first camera 120 and the second camera 130 are arranged side by side along the horizontal direction, that is, the first camera and the second camera 130 are distributed left and right, for example, the first camera 120 is located on the left side of the second camera 130, Or the first camera 120 is located on the right side of the second camera 130.
  • This structure is conducive to reducing the distance in the vertical direction of the line laser module, and can be applied to the device body 200 with a smaller vertical size, expanding the product range. range of use.
  • the line laser emitting device 110 is distributed on both sides of the first camera 120 and the second camera 130, that is, the first camera 120 and the second camera 130 are located between the line laser emitting devices 110 on both sides. between.
  • the first camera 120 and the second camera 130 are arranged side by side along the vertical direction, that is, the first camera and the second camera 130 are distributed up and down, such as the first camera 120 is located above the second camera 130, Or the first camera 120 is located below the second camera 130 .
  • This structure is beneficial to reduce the distance of the line laser module in the horizontal direction, and can be applied to the device main body 200 with a small horizontal size, thereby expanding the application range of the product.
  • the line laser emitting device 110 is distributed on both sides of the first camera 120 and the second camera 130, that is, the first camera 120 and the second camera 130 are located between the line laser emitting devices 110 on both sides. between.
  • the main body 140 includes a body 141 and end portions 142 located on both sides of the body 141 , the first camera 120 and the second camera 130 are assembled on the body 141 , and the line laser emitting device 110 is assembled on the end 142 .
  • the line laser emitting device 110 is movably connected to the end portion 142, and can rotate and swing relative to the end portion 142, so that the rotation angle and azimuth angle of the line laser can be adjusted.
  • the second image processing module 021 may include a feature extraction module 0211 and a recognition module 0212, wherein:
  • the feature extraction module 0211 is configured to perform feature extraction on the second environment image to obtain feature information; and the identification module 0212 is configured to input the feature information into the obstacle identification model to identify obstacle type information.
  • gray scale information and position information of pixels satisfying certain conditions in the second environment image may be used as feature information.
  • the feature extraction module 0211 may be used to perform preprocessing on the second environment image, for example, to perform binarization on the second environment image. Then, the grayscale information and position information of each pixel in the preprocessed second environment image are acquired. Then, the preset gray scale range is compared with the gray scale information of each pixel to obtain the gray scale information within the gray scale range and the position information of the corresponding pixel as feature information.
  • feature information may also be extracted from the second environment image in other ways, which are not specifically limited here.
  • the obstacle recognition model can be obtained by training samples of obstacle images in advance, it can be a neural network model, or a classifier or other models, as long as it can be judged whether there is an obstacle in the second environment image according to the feature information. Can.
  • the training method of the obstacle recognition model and the specific working process of judging whether there is an obstacle are not specifically limited here. Obstacles in the present disclosure may be scraps of paper, books, table legs, doors, refrigerators, curtains, etc., which will not be listed one by one here.
  • the identification module 0212 may input feature information into the obstacle classification model to identify obstacle type information when judging that there is an obstacle in the second environment image.
  • the obstacle classification model can be obtained by training samples of obstacle classification in advance, it can be a neural network model, a classifier or other models, as long as the type of the obstacle can be judged according to the feature information.
  • the training method of the obstacle recognition model and the specific working process of judging the type of obstacles are not specifically limited here.
  • the second image processing module 021 also includes a training module 0213 configured to use the collected training data to generate an obstacle recognition model.
  • the obstacle type information indicates whether the obstacle needs to be cleaned and whether it can be driven over.
  • obstacles can be divided into three types according to their size, for example:
  • the first is obstacles that can be driven over and cleaned, such as paper scraps.
  • the second type is obstacles that cannot be driven through but need to be cleaned, such as books.
  • the third type is obstacles that cannot be driven through and do not need to be cleaned, such as doors, walls, table legs, etc.
  • the recognition result is that there is no obstacle. For example, if no obstacle distance information is detected in the first environment image, or obstacle type information is not detected in the second environment image, it is determined that there is no obstacle.
  • the recognition result is that there is an obstacle.
  • the type of the obstacle can be determined according to the second environment image. For example, the obstacle distance information is received, and it is determined that there is an obstacle in the obstacle type information.
  • the device control module can control the self-mobile device to continue moving according to the current moving path, and clean up the obstacle.
  • the position information of the obstacle can be obtained according to the obstacle distance information, and the steering distance information, steering direction information and steering angle information of the self-mobile device can be determined through the device control module, In this way, the mobile route is re-planned, that is, the obstacle avoidance route is planned, and then the self-mobile device is controlled to perform the obstacle avoidance operation according to the obstacle avoidance route, so as to avoid obstacles that cannot be cleaned.
  • the mobile device may include a reminder device, which may be connected to the device control module, and the device control module may control the reminder device to issue an alarm by at least one of sound and light.
  • the device control module may control the reminder device to issue an alarm by at least one of sound and light.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Multimedia (AREA)
  • Automation & Control Theory (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Electromagnetism (AREA)
  • Signal Processing (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Human Computer Interaction (AREA)
  • Optical Radar Systems And Details Thereof (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Measurement Of Optical Distance (AREA)
  • Electric Vacuum Cleaner (AREA)
  • Image Analysis (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

本申请公开了一种线激光模组及自移动设备,涉及智能终端技术领域。线激光模组包括主体部;第一图像采集组件,设于所述主体部,且包括第一摄像头、至少一个激光发射装置和第一图像处理模块,所述激光发射装置设于所述第一摄像头附近,配置为向所述主体部外发射投影呈线性的线激光,所述第一摄像头配置为采集包含线激光的第一环境图像,所述第一图像处理模块配置为根据所述第一环境图像来获取障碍物距离信息;以及第二图像采集组件,包括第二摄像头和第二图像处理模块,所述第二摄像头配置为采集第二环境图像,所述第二图像处理模块配置为根据所述第二环境图像来获取障碍物类型信息。

Description

线激光模组及自移动设备
相关申请的交叉引用
本申请要求2021年6月2日提交的中国专利申请号202110615607.0、发明名称为“线激光模组及自移动设备”中国专利申请的优先权,该中国专利申请的全部公开内容通过引用并入于此。
技术领域
本公开的实施例涉及一种线激光模组及自移动设备。
背景技术
扫地机器人等自移动设备可自动执行清扫、拖地、吸尘等动作,因而获得了广泛的应用。在清洁过程中,自移动设备会实时检测当前工作路径中可能遇到的障碍物并执行相应的避障动作。但是,目前的自移动设备对障碍物进行识别的准确性较低,难以精确避让。
需要说明的是,在上述背景技术部分公开的信息仅用于加强对本公开的背景的理解,因此可以包括不构成对本领域普通技术人员已知的现有技术的信息。
公开内容
根据本公开的一个方面,提供一种线激光模组,包括:
主体部;
第一图像采集组件,设于所述主体部,且包括第一摄像头、至少一对激光发射装置和第一图像处理模块,所述一对激光发射装置设于所述第一摄像头两侧,配置为向所述主体部外发射投影呈线性的线激光,所述第一摄像头配置为采集包含线激光的第一环境图像,所述第一图像处理模块配置为根据所述第一环境图像来获取障碍物距离信息;
第二图像采集组件,包括第二摄像头和第二图像处理模块,所述第二摄像头配置为采集第二环境图像,所述第二图像处理模块配置为根据所述第二环境图像来获取障碍物类型信息。
在本公开的一种示例性实施例中,所述第一图像处理模块基于三角测距法来获取所述障碍物距离信息。
在本公开的一种示例性实施例中,所述第二图像处理模块包括:
特征提取模块,配置为对所述第二环境图像进行特征提取,得到特征信息;
识别模块,配置为将所述特征信息输入预先训练的障碍物识别模型,以识别出障碍物类型信息。
在本公开的一种示例性实施例中,所述第二图像处理模块还包括:
训练模块,配置为使用所收集的训练数据来生成所述障碍物识别模型。
在本公开的一种示例性实施例中,所述激光发射装置配置为发射红外光,所述第一摄像头为红外摄像头;所述第二摄像头为RGB摄像头。
在本公开的一种示例性实施例中,所述第一图像采集组件还包括:
第一滤光透镜,设于所述第一摄像头背离所述主体部的一侧,配置为使得只有红外光进入所述第一摄像头;
所述第二图像采集组件还包括:
第二滤光透镜,设于所述第二摄像头背离所述主体部的一侧,配置为使得只有可见光进入所述第二摄像头。
在本公开的一种示例性实施例中,所述主体部包括第一端和第二端以及连接所述第一端和所述第二端的连接部;
所述一对激光发射装置分别设于所述第一端和所述第二端;所述第一摄像头和所述第二摄像头设于所述连接部。
在本公开的一种示例性实施例中,所述线激光模组还包括:
回桩定位装置,设于所述主体部,配置为与充电桩通信连接。
在本公开的一种示例性实施例中,所述回桩定位装置包括红外发射装置和至少两个红外接收装置,所述红外发射装置配置为向所述充电桩发送红外信号,所述至少两个红外接收装置配置为接收来自所述充电桩的红外信号。
在本公开的一种示例性实施例中,所述第一图像采集组件和所述第二图像采集组件与主控单元连接,所述主控单元配置为向所述第一图像采集组件和所述第二图像采集组件发送操作指令。
在本公开的一种示例性实施例中,所述激光发射装置包括:
线激光发生器,配置为产生线激光;
激光驱动电路,所述激光驱动电路与所述主控单元连接,所述激光驱动电路基于所述主控单元发出的操作指令来控制所述线激光发生器。
在本公开的一种示例性实施例中,所述激光驱动电路包括:
第一放大电路,用于接收所述主控单元发出的控制信号,并将所述控制信号放大后发送给所述激光发生器,以控制所述激光发生器开启和 关闭;
第二放大电路,配置为接收所述主控单元发出的调节信号,并将所述调节信号放大后发送给所述激光发生器,以控制所述线激光发生器的产生功率。
在本公开的一种示例性实施例中,所述第一摄像头的光轴与水平方向朝下相交,所述第二摄像头的光轴与水平方向朝上相交。
在本公开的一种示例性实施例中,所述第一摄像头的光轴与水平方向的夹角为7度,所述第二摄像头的光轴与水平方向的夹角为5度。
根据本公开的一个方面,提供一种自移动设备,包括:
设备主体;
上述任意一项所述线激光模组,设于所述设备主体上;
设备控制模块,配置为根据所述障碍物距离信息和所述障碍物类型信息控制所述自移动设备移动。
在本公开的一种示例性实施例中,所述自移动设备还包括:
缓冲部件,设于所述第一图像采集组件和所述第二图像采集组件背离所述主体部的一侧,且具有分别与所述第一图像采集组件和所述第二图像采集组件相对的开口;
所述缓冲部件设有位于所述开口外围的补光灯。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本公开的实施例,并与说明书一起用于解释本公开的原理。显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为根据本公开的一个可选实施例的线激光模组的部分结构示意图。
图2为根据本公开的另一个可选实施例的线激光模组的结构示意图。
图3为根据本公开的一个可选实施例的缓冲部件的部分结构示意图。
图4为根据本公开的一个可选实施例的线激光发生器的工作原理示意图。
图5为根据本公开的一个可选实施例的线激光发生器与第一摄像头视场角关系示意图。
图6为根据本公开的一个可选实施例的主体部的部分结构示意图。
图7为根据本公开的另一个可选实施例的主体部的部分结构示意图。
图8为根据本公开线激光模组一可选实施例的方框图。
图9为根据本公开线激光模组另一可选实施例的方框图。
具体实施方式
现在将参考附图更全面地描述示例实施方式。然而,示例实施方式能够以多种形式实施,且不应被理解为限于在此阐述的实施方式;相反,提供这些实施方式使得本公开将全面和完整,并将示例实施方式的构思全面地传达给本领域的技术人员。图中相同的附图标记表示相同或类似的结构,因而将省略它们的详细描述。此外,附图仅为本公开的示意性图解,并非一定是按比例绘制。
用语“一个”、“一”、“该”、“所述”和“至少一个”用以表示存在一个或多个要素/组成部分/等;用语“包括”和“具有”用以表示开放式的包括在内的意思并且是指除了列出的要素/组成部分/等之外还可存在另外的要素/组成部分/等;用语“第一”、“第二”等仅作为标记使用,不是对其对象的数量限制。
本公开的至少一个实施例提供了一种线激光模组,所述线激光模组可应用于自移动设备。本公开的至少一个实施例还提供了一种自移动设备,所述自移动设备包括上述线激光模组。在本公开的一个实施例中,所述自移动设备是智能清洁设备,如扫地机器人、拖地机器人、地面抛光机器人或除草机器人。为了便于描述,本实施方式以扫地机器人为例来描述本公开的技术方案。
如图1-图5所示,在本公开的一个可选实施例中,自移动设备可以包括:设备主体200、感知系统、设备控制模块、驱动系统、清洁系统、能源系统和人机交互系统等。各个系统相互协调配合,使自移动设备能够自主移动以实现清洁功能。自移动设备中的上述各系统集成地设置在设备主体200内。
设备主体200具有近似圆形的形状(前后都为圆形),也可具有其他形状,包括但不限于前方后圆的近似D形形状。感知系统包括位于设备主体200上方或侧方的线激光模组,设备控制模块与线激光模组相连接,并根据线激光模组的感知结果对自移动设备进行功能控制。
在本公开的实施例中,并不限定线激光模组在设备主体200的具体位置。例如可以是但不限于设备主体200的前侧、后侧、左侧、右侧、顶部、中部以及底部等等。进一步,线激光模组设置在设备主体200高度方向上的中部位置、顶部位置或底部位置。
在本公开的一些实施例中,自移动设备向前移动执行作 业任务,为了更好的探测前方的环境信息,线激光模组设置于设备主体200的前侧;前侧是自移动设备向前移动过程中设备主体200朝向的一侧。
在本公开的一些实施例中,自移动设备还可以包括充电桩,充电桩与设备主体200适于连接或分离,如设备主体200需要进行充电时,与充电桩对接充电,当设备主体200进行清扫时,与充电桩分离进行清扫操作。充电桩包括红外发射装置,配置为发射红外信号,如近场红外信号。线激光模组还包括与充电桩通信连接的回桩定位装置190,可以理解的是,回桩定位装置190设置于主体部140,回桩定位装置190配置为接收充电桩发射的红外信号。
在本公开的一些实施例中,线激光模组包括回桩定位装置190,当线激光模组所安装在得设备主体200要回充时,所述设备控制模块控制回桩定位装置190在充电桩附近搜索红外信号,并在回桩定位装置190接收到红外信号时,根据红外信号引导设备主体200与充电桩对接。进一步地,回桩定位装置190还包括配置为发射红外信号的红外发射装置150,当设备主体200与充电桩成功对接时,设备控制模块控制红外发射装置150向充电桩发射红外信号,以对设备主体200进行充电。
例如,回桩定位装置190包括红外接收装置160和红外发射装置150,其中,红外接收装置160配置为接收红外信号,红外发射装置150配置为发射红外信号。在本公开的一些实施例中,红外接收装置160和红外发射装置150与第一摄像头120、第二摄像头130、线激光发射装置110均设置在主体部140上,实现了感知系统的模块化设计,便于装配和维修。
进一步地,回桩定位装置190的红外接收装置160包括至少两个红外探测器,所述至少两个红外探测器在设备主体的横向方向上均匀设置在设备主体的顶部。这样设置,有利于确保红外接收装置160接收进场红外信号的可靠性,以及确保设备主体200与充电桩通讯连接的可靠性。在本公开的一些实施例中,所述红外接收装置可以包括任意数量的红外探测器。回桩定位装置190的红外发射装置150包括至少一个红外灯。可以理解的是,红外接收装置160和红外发射装置150也可以设置在满足要求的其他位置,本公开不做具体限定。
在本公开的一些实施例中,所述设备控制模块配置为根据障碍物距离信息和障碍物类型信息控制自移动设备移动。所述障碍物距离信息表示障碍物距离自移动设备的距离。设备控制模块可直接与主控单元003连接,可直接获取主控单元003对第一环境图像和第二环境图像处理后得到的障碍物距离信息和障碍物类型信息。或者,设备控制模块也可通过一存储器与主控单元003连接,主控单元003得到的障碍物距离信息和障碍物类型信息可存储于该存储器,设备控制模块可直接 调用存储器中存储的障碍物距离信息和障碍物类型信息。
在本公开的一些实施例中,设备控制模块与主控单元003可以是分别独立的两个电路。例如,设备控制模块与主控单元003可以是两个独立的芯片。在本公开的一些实施例中,设备控制模块与主控单元003可以集成在同一电路中。例如,设备控制模块与主控单元003可以集成于同一芯片中。该芯片的类型在此不做特殊限定,只要能实现各自的功能即可。
在本公开的一些实施例中,设备主体200还可设有滚轮、履带等移动机构,设备控制模块可控制移动机构实现自移动设备移动。
在本公开的一些实施例中,如图3所示,自移动设备还包括缓冲部件170,缓冲部件170设置在设备主体200的前侧,线激光模组位于缓冲部件170和设备主体200之间,即第一摄像头120、第二摄像头130、线激光发射装置110、回桩定位装置190位于缓冲部件170和设备主体200之间,使得缓冲部件170对第一摄像头120、第二摄像头130、线激光发射装置110和回桩定位装置190起到了一定的保护作用,保护第一摄像头120、第二摄像头130、线激光发射装置110、回桩定位装置不受外力的破坏,有利于提高第一摄像头120、第二摄像头130、线激光发射装置110、回桩定位装置190的使用寿命。通过缓冲部件170与第一摄像头120、第二摄像头130相对的位置处设置有窗口171,以使得外部环境光能够进入第一摄像头120和第二摄像头130,通过缓冲部件170与线激光发射装置110相对的位置处设置窗口,以使线激光发射装置110发射的激光能够从缓冲部件170向外发射,通过缓冲部件170与回桩定位装置190相对的位置处设置有窗口,能够使回桩定位装置190接收红外信号和发射红外信号,进而确保线激光模组工作的可靠性。
可以理解的是,缓冲部件170可以相当于设备主体200的撞板,在主体部上安装线激光模组时,先将装配有第一摄像头120、第二摄像头130和线激光发射装置110的主体部140安装在设备主体200上,然后再将缓冲部件170(如撞板)与主体部140或设备主体200连接。
在本公开的一些实施例中,缓冲部件170包括撞板172和弹性件,撞板172和主体部140通过弹性件连接,线激光模组位于撞板172的内侧,弹性件的设置,能够在缓冲部件170与障碍物相撞时,减少撞板172作用于设备主体200、线激光模组的力,起到了一定的缓冲作用,进一步降低了障碍物对设备主体和线激光模组的损坏。通过在撞板172的外部设置橡胶垫层,使得在缓冲部件170与障碍物相撞时,橡胶垫层与障碍物直接接触,即橡胶垫层对撞板172起到了良好的保护作用,且橡胶垫层为弹性件,能够进一步起到缓冲的作用。也就是说,本公开通过弹性件和橡胶垫层,使得缓冲部件170具有双层缓冲的作用, 大大降低了障碍物对设备主体200和线激光模组损坏的可能性,提高了自移动设备的可靠性。具体地,弹性件为弹性柱和/或弹簧,也可以为满足要求的其他弹性件。
在本公开的一些实施例中,自移动设备还包括补光灯180和环境光传感器,环境光传感器配置为检测环境光线的亮度,补光灯180设置在缓冲部件170上并靠近第二摄像头130所对应的窗口171,使得在环境光线较弱不能满足第二摄像头130清晰、准确捕获环境图像的情况下,即当前的环境光线不满足第二摄像头130的曝光操作的情况下,利用补光灯180进行补光,以满足第二摄像头130的拍摄需求,确保第二摄像头130能够清晰、准确捕获环境图像,提高对障碍物识别的准确性。
如图8所示,线激光模组包括:主体部140和第一图像采集组件001,其中,第一图像采集组件001包括设置于主体部140的第一摄像头120、至少一个线激光发射装置110和第一图像处理模块011,所述至少一个线激光发射装置110位于第一摄像头120附近,配置为发出投影呈线性的线激光,第一摄像头120与所述至少一个线激光发射装置110相互配合工作,并配置为采集第一环境图像;第一图像处理模块011配置为根据第一环境图像获取障碍物距离信息。所述障碍物距离信息表示拍摄所述第一环境图像时所述第一摄像头距障碍物的距离。所述至少一个线激光发射装置110与主体部140活动连接,和/或主体部140为活动结构,以使线激光发射装置110的方位角和旋转角可调节。
本公开实施例提供的线激光模组,第一摄像头120和所述至少一个线激光发射装置110相互配合,能够对设备主体200前方的障碍物或地形进行识别,以进行对应的避障操作或清扫操作。通过线激光发射装置与主体部140活动连接,通过调整激光发射装置相对于主体部140的位置,能够对线激光发射装置的方位角和旋转角进行调节。主体部140为活动结构,使得通过调整主体部140的各部件的相对位置,能够对线激光发射装置的方位角和旋转角进行调节。另外,线激光发射装置与主体部140活动连接且主体部140为活动结构,使得调整线激光发射装置相对于主体部140的位置、调整主体部140的各部件的相对位置,能够对线激光发射装置110的方位角和旋转角进行调节。从而,在将线激光发射装置110装配至主体部140时,方便对线激光发射装置110发射的线激光的照射角度和照射范围进行调节,以快速、方便地使线激光发射装置110发出的线激光垂直于水平面且使所述线激光位于第一摄像头120的视场内。这样的结构有助于简化装配操作,提高装配效率。
进一步地,通过合理调节所述至少一个线激光发射装置110的方位角,能够使线激光位于第一摄像头120的视场范围内,以确保第一摄像头120能够准确、全面的捕获由线激光发射装置发射的、经 障碍物反射的反射光线,提高第一摄像头120获取环境图像的准确性和全面性。可以理解的是,通过调整设置在第一摄像头120附近的所述至少一个线激光发射装置110的方位角,之后对所述线激光发射装置进行点胶固定。通过合理所述调节线激光发射装置的旋转角,使线激光与水平面垂直,有利于提高测距范围。
所述至少一个线激光发射装置110与主体部140活动连接,使得通过调整线激光发射装置110相对于主体部140的位置,能够对线激光发射装置110的方位角和旋转角进行调节。主体部140为活动结构,使得通过调整主体部140的各部件的相对位置,能够对所述至少一个线激光发射装置110的方位角和旋转角进行调节。所述至少一个线激光发射装置110与主体部140活动连接,且主体部140为活动结构,使得调整所述至少一个线激光发射装置110相对于主体部140的位置、且调整主体部140各部件的相对位置,能够对所述至少一个线激光发射装置110的方位角和旋转角进行调节。本公开提供的实施例通过不同的方式对所述至少一个线激光发射装置110的方位角和旋转角进行调节,能够满足主体部140不同结构、所述至少一个线激光发射装置110与主体部140不同连接方式的需求。
进一步地,所述至少一个线激光发射装置110配置为发射投影呈线性的线激光,如所述至少一个线激光发射装置对外发射激光平面,激光平面到达障碍物后会在障碍物表面形成一条线激光,通过该线激光来获取环境图像。图1所示的平面AOB表征线激光发射装置110发射的激光平面,其为竖直面。图4所示的平面ABF和平面CDE分别表征第一线激光发射装置110和第二线激光发射装置111所发射的激光平面,其中,线段AB和线段CD表征线激光。在本公开的一些实施例中,线激光发射装置可以为激光管,可以理解的是,线激光发射装置也可以为满足要求的其他结构,本公开不做具体限定。可以理解的是,也可以在第一线激光发射装置100和第二线激光发射装置110的发射方向(例如,自移动设备的行进方向)上设置波浪镜。在本公开的一些实施例中,波浪镜为凹透镜。例如,在激光管的前方设置凹透镜,激光管发射特定波长的光(如红外光),经过凹透镜后,变成发散的光线,从而在垂直光路的平面上形成为一条直线。
如图4和图5所示,所述线激光模组包括两个线激光发射装置110,分别设置在第一摄像头120的两侧,第一摄像头120与线激光发射装置相互配合工作。即,所述两个线激光发射装置110均发出垂直于水平面且位于所述第一摄像头120的视场范围内的线激光,第一摄像头120采集的第一环境图像为所述两个线激光发射装置发射出的经障碍物反射的线激光,根据第一环境图像能够获取障碍物距离信息,还可测量障碍物与设备主体200、或线激光模组之间的距离,进而进行对应的避障操作。
在本实施例中,通过合理调整所述两个线激光发射装置110相对于主体部140的安装位置和安装角度,和/或调整主体部140各部件的相对位置,对所述两个线激光发射装置110的旋转角和方位角进行调节,其中,调整所述两个线激光发射装置110的旋转角使线激光垂直于水平面,调整线所述两个激光发射装置110的方位角,对所述两个线激光发射装置发出的线激光与第一摄像头120的光轴之间的角度进行调整,进而使得线激光位于第一摄像头120的视场范围内。然后调节位于第一摄像头120两侧的线激光发射装置110的方位角,确定两侧的线激光发射装置110发射出去的线激光在第一摄像头120的视场角内的交点,即对两侧的线激光进行点胶固定,进而能够实现对设备主体200前方的障碍物的距离的测量。
在本公开的一个实施例中,如图4所示为线激光发生器的工作原理示意图,其中,字母P表示第一摄像头120,字母E和F表示位于第一摄像头120两侧(或周侧)的线激光发生器110;直线PM和PN表示第一摄像头120的水平视场的两个边界,即∠MPN表示第一摄像头120的水平视场角。第一线激光发射装置100对外发射激光平面FAB,第二激光发射装置110对外发射激光平面ECD,激光平面FAB和ECD到达障碍物后会在障碍物表面形成一条线激光,即图4中所示线段AB和线段CD。由于线激光发生器发出的线激光线段AB和线段CD位于第一摄像头的视场范围内,使得线激光可帮助探测第一摄像头视场角内的物体的轮廓、高度和/或宽度等信息,第一摄像头120可采集由线激光探测到的第一环境图像。
进一步地,主控单元003配置为向第一图像采集组件001发送操作指令。例如,主控单元003可根据第一摄像头120采集的第一环境图像,可以计算出线激光模组或线激光模组所在的设备主体200到前方障碍物的距离。例如,利用三角测距法即可计算线激光模组或设备主体200与其前方障碍物的距离。在本公开的一个实施例中,如图5所示,图5为图4所示实施例的一个视角的示意图。其中,字母P表示第一摄像头120,字母E和F表示位于第一摄像头120两侧的线激光发射装置110;A点表示线段AB在水平面内的投影,D点表示线段CD在水平面内的投影,∠MPN表示第一摄像头120的水平视场角,O点表示线激光发射装置110发射的线激光与第一摄像头120的光轴的交点。以位于点F的第二线激光发生器110为例,当线激光发射装置110和第一摄像头120均固定安装至主体部140后,第一摄像头120的焦距是已知的,线激光发生器F的发射角是已知的,即直线FA与光轴PO之间的夹角是已知的,线段OP之的长度是已知的;第二线激光发生器110与第一摄像头120的像平面之间的离是已知的,定义由障碍物上的A点在第一摄像头120采集到的第一环境图像中的像为A’,由于A’点会较第一摄像头120的光轴PO发生一定偏移,且该偏移量已知,根据 三角形相似原理,结合上述已知条件,即可测量A与F之间的距离,即能够得到障碍物与线激光发射装置110之间的距离。可以理解的是,也可以根据第一摄像头120采集的由线激光经障碍物反射后的线段的变形特征,来确定前方的地形情况,以确定执行何种操作,如进行避障操作或继续清扫操作。
在本公开提供的一些可能实现的实施例中,对第一摄像头120的数量不做具体限定,如第一摄像120头可以为一个、两个、三个或满足要求的其他数量个。可以理解的是,在本公开的实施例中,对线激光发射装置110的数量也不做具体限定,例如线激光发射装置110可以是两个或者两个以上。对于分布于第一摄像头120的每一侧的线激光发射装置110的数量也不做限定,第一摄像头120每一侧的线激光发射装置110的数量可以是一个、两个或多个;另外,第一摄像头120两侧的线激光发射装置110的数量可以相同,也可以不相同。可以理解的是,当第一摄像头120任一侧的线激光发射装置110的数量为多个时,多个线激光发射装置110可以左右分布,也可以上下分布,本公开不做具体限定。
进一步地,在一些可能实现的实施例中,第一摄像头120既能够实现对设备主体200前方障碍物的距离测量,获取障碍物距离信息,也能够对障碍物的种类进行识别,获取障碍物类型信息。如利用时序的不同,利用第一摄像头120分别进行障碍物的距离测量和障碍物的种类识别。举例而言,主控单元003先根据第一摄像头120采集的第一环境图像,确定障碍物的种类,根据障碍物的种类确定设备主体200是否需要进行避障操作,并在设备主体200需要进行避障操作时,主控单元003根据第一摄像头120采集的第二环境图像确定障碍物的距离获取障碍物距离信息,以进行对应的避障操作,在设备主体200不需要进行避障操作时,则自移动设备继续之前的操作,从而减少了自移动设备避障误操作的可能性。
在根据本公开的一些实施例中,如图1所示,线激光发射装置110与主体部140活动连接,主体部140为活动结构。在本公开的一些实施例中,主体部140包括本体141和连接件143,第一摄像头120设置于本体141,线激光发射装置110通过连接件143与本体141相连接,其中,连接件143设置有通孔,线激光发射装置110通过通孔穿设于连接件143,且线激光发射装置110与连接件143转动连接,即线激光发射装置110能够在连接件143的通孔内转动,进而对线激光发射装置110的旋转角进行调整,以使线激光垂直于水平面,扩大测距范围。连接件143与本体141活动连接,例如,连接件143相对于本体141可水平转动,即连接件143相对于本体141旋转的转轴为竖直方向的直线,使得连接件143带动线激光发射装置110在水平面内相对于本体141进行转动,能够对线激光发射装置110的方位角进行调节,以使线激光发 射装置110发射的线激光位于第一摄像头120的视场角内。
可以理解的是,由于线激光发射装置110相对于连接件143可转动,连接件143相对于本体141可移动,使得在装配过程中,通过将线激光发射装置110在连接件143的通孔内转动至合适位置,即可实现对线激光发射装置110旋转角的调整,即实现线激光发射装置110的调整。通过将连接件143相对于本体141旋转至合适位置,即可实现对线激光发射装置110的方位角的调整,即实现线激光发射装置110与第一摄像头120的调整,操作简单。可以理解的是,当线激光发射装置110的旋转角和方位角调整完成后,可以利用固定装置将连接件143、本体141、线激光发射装置110固定连接,如利用粘结剂、胶水等将端部142、本体141、线激光发射装置110固定住,操作简单。
在本公开的一个实施例中,进一步地,本体141设置有定位槽144,连接件143设置有与定位槽144相适配的凸起结构145,连接件143通过凸起结构145在定位槽144内水平转动。例如,凸起结构145沿竖直方向凸起,使得连接件143相对于本体141在水平方向上可旋转,即连接件143相对于本体141旋转的转轴为竖直方向的直线,因此,连接件143的凸起结构145在本体141的定位槽144内水平转动,能够带动线激光发射装置110相对于本体141以凸起结构145为转轴进行水平转动,进而能够使线激光发射装置110发射的线激光位于第一摄像头120的视场角内,以实现线激光发生器110与第一摄像头120的调试,结构简单,操作方便。可以理解的是,定位槽144可以为圆形定位槽,凸起结构145为圆柱状凸起结构,通过圆形定位槽和圆柱状凸起结构相配合,有利于提高连接件143相对于本体141转动的灵活性和可靠性。可以理解的是,定位槽144也可以为满足要求的其他形状的槽结构。
在本公开的一些实施例中,如图1所示,线激光发射装置110呈圆柱状,线激光发射装置110的外周侧设置有第一台阶结构111,主体部140设置有配置为安装线激光发射装置110的安装槽,安装槽的内壁设置有第二台阶结构149,通过第一台阶结构111和第二台阶结构149相适配,能够对线激光发射装置110沿轴线方向的移动进行限位,有利于提高装配效率。
在本公开的一些实施例中,线激光发射装置110与主体部140活动连接,主体部140为活动结构。如图2所示,主体部140包括本体141和位于本体141两侧的端部142,第一摄像头120设置于本体141,线激光发射装置110设置于端部142。在本公开的一些实施例中,每个端部142与本体141枢转连接,如端部142与本体141铰接,使得端部142能够相对于本体141旋转,线激光发射装置110与端部142转动连接,如线激光发射装置110呈圆柱状,线激光发射装置110能够相对于端部142中的安装槽转动,进而能够对线激光发射装置110的旋转角进行调整,以使线激光垂直于水平面,扩大测距范围。由于线 激光发射装置110安装至端部142,而端部142能够相对于本体141旋转,进而能够对线激光发射装置110的方位角进行调节,以使线激光发射装置110发射的线激光位于第一摄像头120的视场角内。
可以理解的是,由于线激光发射装置110相对于端部142可转动,端部142与本体141枢转连接,使得在装配过程中,通过将线激光发射装置110转动至合适位置,即可实现对线激光发射装置110旋转角的调整,即实现线激光发射装置110的调整,通过将端部142相对于本体141旋转至合适位置,即可实现对线激光发射装置110的方位角的校准,即实现线激光发射装置110与第一摄像头120的配合校准,操作简单,安装方便。可以理解的是,当线激光发射装置110的旋转角和方位角调整完成后,可以利用固定装置将端部142、本体141、线激光发射装置110固定连接,如利用粘结剂、胶水等将端部142、本体141、线激光发射装置110固定住,操作简单。
在本公开的一些实施例中,线激光发射装置110与主体部140是活动连接的。例如,主体部140设置有配置为安装线激光发射装置110的安装腔,线激光发射装置110活动地设置于安装腔内,安装腔包括第一端和第二端,且第一端的横截面面积小于第二端的横截面面积,也就是说,安装腔为扩口结构,通过第一端的横截面面积大于线激光发射装置110的横截面面积,说明线激光发射装置110能够在安装腔内活动。其中,线激光发射装置110的前端靠近安装腔的第一端,通过线激光发射装置110相对于安装腔的轴线转动,能够对线激光发射装置110的旋转角进行调整,以使线激光垂直于水平面,扩大测距范围。通过线激光发射装置110的后端相对于前端转动,能够对对线激光发射装置110的方位角进行调节,以使线激光发射装置110发射的线激光位于第一摄像头120的视场角内。
可以理解的是,由于线激光发射装置110活动地设置在主体部140的安装腔内,线激光发射装置110在安装腔内即可绕安装腔的轴线旋转又可绕点(前端)旋转,使得在调整过程中,通过合理调节线激光发射装置110与主体部140的安装角度和安装位置,即可实现对线激光发射装置110的旋转角和方位角的校准,操作简单,校准方便。可以理解的是,当线激光发射装置110的旋转角和方位角调整完成后,可以利用固定装置将线激光发射装置110与主体部140固定连接,如利用粘结剂、胶水等将线激光发射装置110固定在主体部140上,即可完成线激光发射装置110与主体部140的装配,操作简单。
在本公开的一些实施例中,主体部140为活动结构。如图6所示,主体部140包括本体141、端部142和连接部146,端部142位于本体141的两侧,第一摄像头120设置于本体141,线激光发射装置110设置于端部142,如线激光发射装置110固定或可拆卸地安装在端部142。连接部146与本体141枢转连接,而端部142与连接部146 相连接,进而连接部146相对于本体141枢转能够对线激光发射装置110的方位角进行调节,以使线激光发射装置110发射的线激光位于第一摄像头120的视场内。通过端部142与连接部146转动连接,当端部142相对于连接部146转动,能够对线激光发射装置110的旋转角进行调整,以使线激光垂直于水平面,进而扩大测距范围。
在本公开的一些实施例中,连接部146与本体141铰接,连接部146朝向端部142的一侧设置有孔,端部142设置有与所述孔相适配的圆柱凸起,当线激光发射装置110装配至端部142后,将端部142的圆柱凸起插入所述孔,并在所述孔中转动以调节线激光发射装置110的旋转角,当线激光垂直于水平面后,将端部142与连接部146固定住,如利用胶水或其他固定结构固定,即可实现线激光发射装置110的调试。然后,调整连接部146相对于本体141的位置,即可对线激光发射装置110的方位角进行调节,当线激光发射装置110发射的线激光位于第一摄像头120的视场角内的合适位置后,将本体141与连接部146固定住,如利用胶水或其他限位结构固定,即可实现线激光发射装置110与第一摄像头120形成的光学系统的校准。可以理解的是,由于主体部140为活动结构,即端部142通过连接部146与本体141活动连接,使得在校准过程中,通过合理调节端部142、连接部146、本体141的相对位置,即可实现对安装在端部142的线激光发射装置110的旋转角和方位角的调整,操作简单,校准方便。可以理解的是,当线激光发射装置110的旋转角和方位角校准完成后,可以利用固定装置将端部142、连接部146、本体141固定连接,如利用粘结剂、胶水、限位部147等将端部142、连接部146、本体141固定住,操作简单。
在本公开一些实施例中,主体部140为活动结构。如图7所示,在本公开的一个实施例中,主体部140包括本体141、端部142和限位部147,端部142位于本体141的两侧,第一摄像头120设置于本体141,线激光发射装置110设置于端部142。如图7所示,通过端部142与本体141转动连接,例如,端部142与本体141球连接,使得端部142能够相对于本体141摆动,并能够相对于本体141转动,而线激光发射装置110装配于端部142,进而通过端部142相对于本体141摆动和转动,即可实现对线激光发射装置110的方位角和旋转角进行调节,操作简单,校准方便。
在本公开的一些实施例中,端部142与本体141球连接,本体141设置有限位孔148,限位部147为紧定螺栓,通过端部142相对于本体141转动调整线激光发射装置110的旋转角,当线激光垂直于水平面,即可实现线激光发射装置110的校准,通过调整端部142相对于本体141的摆动位置,即可对线激光发射装置110的方位角进行调节,当线激光发射装置110发射的线激光位于第一摄像头120的视场角内的合适位置,即可实现对线激光发射装置110与第一摄像头120的调试, 然后利用紧定螺栓穿过限位孔148,对端部142相对于本体141的位置进行限位固定,将端部142和本体141进行固定即可,操作简单。可以理解的是,本体141上的限位孔148的数量可以为一个、两个或多个,根据限位孔148的不同位置,设置不同数量的限位孔148,以满足端部142相对于本体141转动至不同位置,均可使紧定螺栓通过限位孔148将端部142和本体141进行固定。其中,紧定螺栓也可以为弹性件,即紧定螺栓与端部142抵接的一端为弹性件,利用弹性将端部142和本体141可靠连接。可以理解的是,端部142的球形面上也可以设置与紧定螺栓相适配的定位孔,使得紧定螺栓穿过限位孔148与定位孔配合后压紧,有利于提高端部142与本体141固定连接的可靠性。
在本公开的一些实施例中,所述线激光模组包括两个线激光发射装置。在这种情况下,主体部包括两个端部,还包括两个连接部,两个连接部分别将两个端部连接至主体部,所述两个线激光发射装置分别设置在所述两个端部上。所述两个端部中的每一个通过一个连接部连接至所述主体部的细节请参照上文所述,在此不再赘述。
在本公开的一些实施例中,如图9所示,线激光发射装置110包括线激光发生器1101和激光驱动电路1102,其中,线激光驱动电路1102可接收驱动信号,并根据驱动信号驱动线激光发生器1101产生线激光。
进一步的,激光驱动电路1102可包括放大电路,所述放大电路配置为对驱动信号进行放大,并将放大后的驱动信号向线激光发生器1101发送,以使线激光发生器1101发光。在本公开的一些实施方式中,驱动信号可包括控制信号和调节信号,可通过控制信号控制线激光发生器1101开或关,通过调节信号调节线激光发生器1101的产生的激光功率。
在本公开的一些实施例中,如图9所示,放大电路可包括第一放大电路1102a和第二放大电路1102b,其中:
第一放大电路1102a配置为接收主控单元003发出的控制信号,并将控制信号放大后发送给线激光发生器1101,以控制线激光发生器1101开启和关闭;以及
第二放大电路1102b配置为接收主控单元003发出的调节信号,将调节信号放大后发送给线激光发生器1101,以控制线激光发生器1101的发射功率。
第一放大电路1102a和第二放大电路1102b的具体结构在此不做特殊限定,只要能实现信号放大功能即可。
在本公开的一些实施例中,如图8和图9所示,线激光模组还包括第二图像采集组件002,第二图像采集组件002包括设置于主体部140的第二摄像头130和第二图像处理模块021,第二摄像头130配置为捕获第二环境图像。第二图像采集组件002可与主控单元003 连接,并接收来自主控单元003的操作指令。举例而言,第二摄像头130与自移动设备的主控单元003相连接,主控单元003能够对第二摄像头130进行曝光控制,第二摄像头130根据所述主控单元的曝光指令获取第二环境图像,主控单元对第二环境图像进行分析和处理,能够识别障碍物的种类。
在本公开的一些实施例中,第一摄像头120、第二摄像头130和线激光发射装置110配合工作,根据第一摄像头120采集的第一环境图像对障碍物距离信息进行识别,根据第二摄像头130采集的第二环境图像对障碍物类型信息进行识别。因此,根据第二摄像头130捕获的第二环境图像能够确定障碍物的种类,根据障碍物的种类确定设备主体200是否需要进行避障操作,并在设备主体200需要进行避障操作时,通过第一摄像头120和线激光发射装置110相互配合确定障碍物的距离,以进行对应的避障操作,在设备主体200不需要进行避障操作时,则继续进行之前的操作,从而减少了自移动设备错误执行避障操作的可能性。
在本公开的一些实施例中,第二环境图像的数量为多个,如500个、1000个或满足要求的其他数量个,如可以通过调整第二摄像头130的曝光频率确定第二环境图像的数量。主控单元将第二摄像头130拍摄的多个第二环境图像进行图像分割,得到标注有障碍物种类信息的分割图像。然后将分割后的分割图像输入到训练好的障碍物模型中,然后对分割图像进行特征提取,将提取的特征信息与训练好的障碍物模型进行置信度匹配,根据置信度匹配结果,来确定障碍物的种类。
也就是说,本公开实施例提供的线激光模组,通过第二摄像头130获取的第二环境图像能够确定障碍物的种类,进而使得自移动设备能够根据障碍物的种类确定执行避障操作或执行之前的操作。并在需要进行避障操作时,设备控制模块控制第一摄像头120和线激光发射装置110配合工作,并根据第一摄像头120获取的第一环境图像确定障碍物与线激光模组或设备主体200之间的距离,以执行避障操作。
例如,当根据第二摄像头130捕获的第二环境图像确定障碍物为气球,由于气球的重量较轻,驱动系统驱动设备主体200移动即可带动气球移动,即气球并不会影响清扫路线,因此,控制器控制设备主体200按照原清扫路线执行清扫操作,而不执行避障操作,能够对气球所在位置处进行清扫,提高避障的准确性,并有利于扩大清扫范围。也就是说,此种情况下,控制器不需要控制线激光发射装置110和第一摄像头120工作。
又例如,根据第二摄像头130捕获的第二环境图像确定障碍物为椅子,由于椅子的重量较重,如果按照原清扫路线进行清扫,设备主体200会与椅子发生碰撞存在损坏的可能性,即椅子影响了清扫路线,因此,设备控制模块控制设备主体200进行避障操作以改变清扫 路线。即设备控制模块控制线激光发射装置110工作发射线激光,第一摄像头120捕获从椅子反射回来的反射光线的第一环境图像,设备控制模块根据第一环境图像确定线激光模组或设备主体200到椅子之间的距离,进而根据该距离重新规划清扫路线以进行避障操作,提高了避障效果。
进一步地,在本公开的实施例中,对第二摄像头130的数量不做具体限定,如第二摄像头130可以为一个、两个、三个或满足要求的其他数量个。可以理解的是,第二摄像头130可以为单目摄像头或双目摄像头,在一些可能实现的实施例中,第一摄像头120和第二摄像头130单独设置,或第一摄像头120和第二摄像头130也可以组成摄像头模组,对于第一摄像头120和第二摄像头130的设置模式,本公开不做具体限定。
在本公开的一些实施例中,所述第一摄像头的光轴与水平方向朝下相交,所述第二摄像头的光轴与水平方向朝上相交。也就是说,第一摄像头从上俯视待清洁表面,这样设置是为了看到更低矮的障碍物。第二摄像头是从下仰视,以便看到更多的空间特征以及提升用户视频体验。所述第一摄像头的光轴与水平方向的夹角为7度,所述第二摄像头的光轴与水平方向的夹角为5度。也就是说,第二摄像头是从下仰视,以便看到更多的空间特征以及提升用户视频体验。
在本公开的一些实施例中,主体部可包括第一端和第二端以及连接第一端和所述第二端的连接部;所述线激光模组包括两个激光发射装置,分别设于第一端和第二端;第一摄像头和第二摄像头设于所述连接部。
在本公开的一些实施例中,第一摄像头120为黑白摄像头,即红外摄像头,黑白摄像头的前方设置有第一滤光透镜,第一滤光透镜可为红外透镜,只允许红外光通过,可以理解的是,与第一摄像头120配合工作的线激光发射装置110为红外激光管,发射的是红外激光。第二摄像头130为RGB摄像头,RGB摄像头的前方设置有第二滤光透镜,第二滤光透镜为可见光透镜,如可见透镜为白光透镜,只允许可见光通过。可以理解的是,第一摄像头120和第二摄像头130也可以为满足要求的其他结构,本公开不做具体限定。
在本公开的一些实施例中,第一摄像头120和第二摄像头130沿水平方向并列设置,即第一摄像头和第二摄像头130左右分布,如第一摄像头120位于第二摄像头130的左侧,或第一摄像头120位于第二摄像头130的右侧,该种结构,有利于减小线激光模组竖直方向的距离,能够应用于竖直方向尺寸较小的设备主体200上,扩大了产品的使用范围。可以理解的是,此种情况下,线激光发射装置110分布在第一摄像头120和第二摄像头130的两侧,即第一摄像头120和第二摄像头130位于两侧的线激光发射装置110之间。
在本公开的一些实施例中,第一摄像头120和第二摄像头130沿竖直方向并列设置,即第一摄像和第二摄像头130上下分布,如第一摄像头120位于第二摄像头130的上方,或第一摄像头120位于第二摄像头130的下方。该种结构,有利于减小线激光模组水平方向的距离,能够应用于水平方向尺寸较小的设备主体200上,扩大了产品的使用范围。可以理解的是,此种情况下,线激光发射装置110分布在第一摄像头120和第二摄像头130的两侧,即第一摄像头120和第二摄像头130位于两侧的线激光发射装置110之间。
进一步地,主体部140包括本体141和位于本体141两侧的端部142,第一摄像头120和第二摄像头130装配在本体141上,线激光发射装置110装配在端部142上。通过线激光发射装置110与端部142活动连接,并相对于端部142可旋转和摆动,能够调节线激光的旋转角和方位角。
在本公开的一些实施例中,如图9所示,第二图像处理模块021可包括特征提取模块0211和识别模块0212,其中:
特征提取模块0211配置为对第二环境图像进行特征提取,得到特征信息;以及,识别模块0212配置为将特征信息输入障碍物识别模型,以识别出障碍物类型信息。
举例而言,可将第二环境图像中满足一定条件的像素的灰阶信息和位置信息作为特征信息。例如,可通过特征提取模块0211对第二环境图像进行预处理,例如,对第二环境图像进行二值化等。然后,再获取预处理后的第二环境图像中各个像素的灰阶信息和位置信息。再将对预设的灰阶范围与每个像素的灰阶信息进行比较,得出位于灰阶范围内的灰阶信息和对应的像素的位置信息,作为特征信息。
当然,还可通过其它方式在第二环境图像中提取特征信息,在此不做特殊限定。
障碍物识别模型可为预先通过障碍物图像的样本训练而得到,其可以是神经网络模型,也可以是分类器或其它模型,只要能根据特征信息判断出第二环境图像中是否存在障碍物即可。障碍物识别模型的训练方法,以及判断是否存在障碍物的具体工作过程,在此不做特殊限定。本公开中的障碍物可以是纸屑、书本、桌腿、门、冰箱、窗帘等在此不再一一列举。
识别模块0212可在判断第二环境图像中存在障碍物时,将特征信息输入至障碍物分类模型中,识别障碍物类型信息。
障碍物分类模型可为预先通过障碍物分类的样本训练而得到,其可以是神经网络模型,也可以是分类器或其它模型,只要能根据特征信息判断出障碍物的类型即可。障碍物识别模型的训练方法,以及判断障碍物的类型具体工作过程,在此不做特殊限定。相应的,第二图像处理模块021还包括训练模块0213,配置为使用所收集的训练数据 来生成障碍物识别模型。
障碍物类型信息表示障碍物是否需要清洗且是否可以被驶过。本公开中,可根据障碍物的尺寸将障碍物分为三种类型,举例而言:
第一种是可以驶过,且能够清扫的障碍物,例如纸屑等。
第二种是无法驶过,但需要清扫的障碍物,例如书本等。
第三种是无法驶过,且无需清扫的障碍物,例如门、墙壁、桌腿等。在本公开的一些实施例中,若仅在第一环境图像和第二环境图像中的一个环境图像中检测到障碍物,则识别结果为不存在障碍物。例如,如果从第一环境图像中未检测到障碍物距离信息,或在第二环境图像中未检测到障碍物类型信息,则判断不存在障碍物。
若第一环境图像和第二环境图像中均存在出障碍物,则识别结果为存在障碍物,此时,可根据第二环境图像判断障碍物的类型。例如,接收到障碍物距离信息,且障碍物类型信息中判断存在障碍物。
对于第一种障碍物,则设备控制模块可控制自移动设备按照当前移动路径继续移动,并对障碍物进行清扫。
对于第二种和第三种障碍物,则可根据障碍物距离信息得出的障碍物的位置信息,并可通过设备控制模块确定自移动设备的转向距离信息、转向方向信息及转向角度信息,从而重新规划移动路线,即规划避障路线,再控制自移动设备按照避障路线执行避障操作,从而避让无法清扫的障碍物。
进一步的,在本公开的一些实施方式中,自移动设备可包括提醒装置,该提醒装置可与设备控制模块连接,设备控制模块可控制提醒装置通过发声和发光中至少一种方式发出警报。对于第二种障碍物,不仅可通过上述重新规划移动路线的方式避障,还可通过提醒装置发出提示音,从而在避障的同时,提醒用户及时清洗自移动设备无法清扫的障碍物。
本公开已经通过上述实施例进行了说明,但应当理解的是,上述实施例只是用于举例和说明的目的,而非意在将本公开限制于所描述的实施例范围内。此外本领域技术人员可以理解的是,本公开并不局限于上述实施例,根据本公开的教导还可以做出更多种的变型和修改,这些变型和修改均落在本公开所要求保护的范围以内。本公开的保护范围由附属的权利要求书及其等效范围所界定。

Claims (16)

  1. 一种线激光模组,包括:
    主体部;
    第一图像采集组件,设于所述主体部,且包括第一摄像头、至少一个激光发射装置和第一图像处理模块,所述激光发射装置设于所述第一摄像头附近,配置为向所述主体部外发射投影呈线性的线激光,所述第一摄像头配置为采集包含线激光的第一环境图像,所述第一图像处理模块配置为根据所述第一环境图像来获取障碍物距离信息;以及
    第二图像采集组件,包括第二摄像头和第二图像处理模块,所述第二摄像头配置为采集第二环境图像,所述第二图像处理模块配置为根据所述第二环境图像来获取障碍物类型信息。
  2. 根据权利要求1所述的线激光模组,其中,所述第一图像处理模块基于三角测距法来获取所述障碍物距离信息。
  3. 根据权利要求1所述的线激光模组,其中,所述第二图像处理模块包括:
    特征提取模块,配置为对所述第二环境图像进行特征提取,得到特征信息;
    识别模块,配置为将所述特征信息输入障碍物识别模型,以识别出障碍物类型信息。
  4. 根据权利要求3所述的线激光模组,其中,所述第二图像处理模块还包括:
    训练模块,配置为使用训练数据生成所述障碍物识别模型。
  5. 根据权利要求1所述的线激光模组,其中,所述激光发射装置配置为发射红外光,所述第一摄像头为红外摄像头;所述第二摄像头为RGB摄像头。
  6. 根据权利要求5所述的线激光模组,其中,所述第一图像采集组件还包括:
    第一滤光透镜,设于所述第一摄像头背离所述主体部的一侧,配置为使得只有红外光进入所述第一摄像头;
    所述第二图像采集组件还包括:
    第二滤光透镜,设于所述第二摄像头背离所述主体部的一侧,配置为使得只有可见光进入所述第二摄像头。
  7. 根据权利要求1所述的线激光模组,其中所述主体部包括本体、第一端、以及第一连接部,所述第一连接部配置为将所述第一端连接至所述本体;
    其中,所述线激光模组包括第一线激光发射装置,所述第一线激光发射装置设于所述第一端,以及所述第一摄像头和所述第二摄像头设于所述本体。
  8. 根据权利要求1所述的线激光模组,其中,所述线激光模组还包括:
    回桩定位装置,设于所述主体部,配置为与充电桩通信连接。
  9. 根据权利要求8所述的线激光模组,其中,所述回桩定位装置包括红外发射装置和至少两个红外接收装置,所述红外发射装置配置为向所述充电桩发送第一红外信号,所述至少两个红外接收装置配置为接收来自所述充电桩的第二红外信号。
  10. 根据权利要求1所述的线激光模组,其还包括主控单元,其中,所述第一图像采集组件和所述第二图像采集组件与所述主控单元连接,所述主控单元配置为向所述第一图像采集组件和所述第二图像采集组件发送操作指令。
  11. 根据权利要求10所述的线激光模组,其中,所述线激光发射装置包括:
    线激光发生器,配置为产生线激光;
    激光驱动电路,所述激光驱动电路与所述主控单元连接,所述激光驱动电路基于所述主控单元发出的操作指令来控制所述线激光发生器。
  12. 根据权利要求11所述的线激光模组,其中,所述激光驱动电路包括:
    第一放大电路,配置为接收所述主控单元发出的控制信号,并将所述控制信号放大后发送给所述激光发生器,以控制所述激光发生器开启和关闭;以及
    第二放大电路,配置为接收所述主控单元发出的调节信号,并将所述调节信号放大后发送给所述激光发生器,以控制所述线激光发生器的产生功率。
  13. 根据权利要求1所述的线激光模组,其中,所述第一摄像头的第一光轴相对于水平方向向下倾斜,所述第二摄像头的第二光轴相对于水平方向向上倾斜。
  14. 根据权利要求13所述的线激光模组,其中,所述第一摄像头的第一光轴与水平方向的第一夹角为7度,所述第二摄像头的第二光轴与水平方向的第二夹角为5度。
  15. 一种自移动设备,包括:
    设备主体;
    如权利要求1所述的线激光模组,设于所述设备主体上;
    设备控制模块,配置为根据所述障碍物距离信息和所述障碍物类型信息控制所述自移动设备移动。
  16. 根据权利要求15所述的自移动设备,其中,所述自移动设备还包括:
    缓冲部件,设于所述第一图像采集组件和所述第二图像采集组件背离所述主体部的一侧,且具有分别与所述第一图像采集组件和所述第二 图像采集组件相对的开口;
    所述缓冲部件设有位于所述开口外围的补光灯。
PCT/CN2022/077855 2021-06-02 2022-02-25 线激光模组及自移动设备 WO2022252712A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2023574566A JP2024522553A (ja) 2021-06-02 2022-02-25 ラインレーザモジュール及び自走機器
KR1020237045356A KR20240015110A (ko) 2021-06-02 2022-02-25 선형 레이저 모듈 및 셀프 모바일 디바이스
EP22814760.9A EP4351124A1 (en) 2021-06-02 2022-02-25 Line laser module and self-moving device
AU2022284813A AU2022284813A1 (en) 2021-06-02 2022-02-25 Line laser module and self-moving device
CA3221161A CA3221161A1 (en) 2021-06-02 2022-02-25 Line laser module and self-moving device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110615607.0A CN114374777B (zh) 2021-06-02 2021-06-02 线激光模组及自移动设备
CN202110615607.0 2021-06-02

Publications (1)

Publication Number Publication Date
WO2022252712A1 true WO2022252712A1 (zh) 2022-12-08

Family

ID=81138725

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/077855 WO2022252712A1 (zh) 2021-06-02 2022-02-25 线激光模组及自移动设备

Country Status (9)

Country Link
US (2) US11966233B2 (zh)
EP (1) EP4351124A1 (zh)
JP (1) JP2024522553A (zh)
KR (1) KR20240015110A (zh)
CN (2) CN114374777B (zh)
AU (1) AU2022284813A1 (zh)
CA (1) CA3221161A1 (zh)
TW (2) TW202413888A (zh)
WO (1) WO2022252712A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120081542A1 (en) * 2010-10-01 2012-04-05 Andong University Industry-Academic Cooperation Foundation Obstacle detecting system and method
CN210015368U (zh) * 2019-07-31 2020-02-04 深圳赤马人工智能有限公司 移动机器人回桩充电系统
CN211012988U (zh) * 2019-11-19 2020-07-14 珠海市一微半导体有限公司 基于激光视觉信息避障导航的移动机器人
CN111505602A (zh) * 2019-01-30 2020-08-07 南昌欧菲生物识别技术有限公司 电子装置及三维扫描方法
CN212415596U (zh) * 2019-12-30 2021-01-29 科沃斯机器人股份有限公司 结构光模组及自主移动设备
CN212521620U (zh) * 2019-12-30 2021-02-12 科沃斯机器人股份有限公司 结构光模组及自主移动设备
CN112864778A (zh) * 2021-03-08 2021-05-28 北京石头世纪科技股份有限公司 线激光模组和自移动设备

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7164118B2 (en) * 2004-10-29 2007-01-16 Deere & Company Method and system for obstacle detection
US8855929B2 (en) 2010-01-18 2014-10-07 Qualcomm Incorporated Using object to align and calibrate inertial navigation system
WO2017222558A1 (en) * 2016-06-24 2017-12-28 Isee, Inc. Laser-enhanced visual simultaneous localization and mapping (slam) for mobile devices
CN108459596A (zh) * 2017-06-30 2018-08-28 炬大科技有限公司 一种移动电子设备以及该移动电子设备中的方法
KR102050632B1 (ko) * 2017-08-02 2019-12-03 주식회사 에스오에스랩 다채널 라이다 센서 모듈
JP2020507137A (ja) 2017-12-11 2020-03-05 ベイジン ディディ インフィニティ テクノロジー アンド ディベロップメント カンパニー リミティッド 車両周辺の物体を識別して測位するためのシステムおよび方法
US10771766B2 (en) * 2018-03-30 2020-09-08 Mediatek Inc. Method and apparatus for active stereo vision
CN111571561B (zh) * 2019-08-07 2021-08-31 上海肇观电子科技有限公司 移动机器人
CN211508646U (zh) * 2019-12-14 2020-09-15 武汉木神机器人有限责任公司 一种移动机器人充电装置
CN110960138A (zh) 2019-12-30 2020-04-07 科沃斯机器人股份有限公司 结构光模组及自主移动设备
CN212932957U (zh) * 2020-06-09 2021-04-09 深圳市视晶无线技术有限公司 激光探测装置
KR20220019930A (ko) * 2020-08-11 2022-02-18 삼성전자주식회사 로봇 및 그 제어 방법
CN115480559A (zh) * 2021-05-31 2022-12-16 苏州宝时得电动工具有限公司 自移动设备及躲避障碍的控制方法、存储介质

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120081542A1 (en) * 2010-10-01 2012-04-05 Andong University Industry-Academic Cooperation Foundation Obstacle detecting system and method
CN111505602A (zh) * 2019-01-30 2020-08-07 南昌欧菲生物识别技术有限公司 电子装置及三维扫描方法
CN210015368U (zh) * 2019-07-31 2020-02-04 深圳赤马人工智能有限公司 移动机器人回桩充电系统
CN211012988U (zh) * 2019-11-19 2020-07-14 珠海市一微半导体有限公司 基于激光视觉信息避障导航的移动机器人
CN212415596U (zh) * 2019-12-30 2021-01-29 科沃斯机器人股份有限公司 结构光模组及自主移动设备
CN212521620U (zh) * 2019-12-30 2021-02-12 科沃斯机器人股份有限公司 结构光模组及自主移动设备
CN112864778A (zh) * 2021-03-08 2021-05-28 北京石头世纪科技股份有限公司 线激光模组和自移动设备

Also Published As

Publication number Publication date
JP2024522553A (ja) 2024-06-21
EP4351124A1 (en) 2024-04-10
TW202413888A (zh) 2024-04-01
CA3221161A1 (en) 2022-12-08
US20220390947A1 (en) 2022-12-08
US20240231363A1 (en) 2024-07-11
US11966233B2 (en) 2024-04-23
CN114374777A (zh) 2022-04-19
AU2022284813A1 (en) 2024-01-18
TW202248597A (zh) 2022-12-16
KR20240015110A (ko) 2024-02-02
CN114374777B (zh) 2023-06-16
CN116647746A (zh) 2023-08-25
TWI828176B (zh) 2024-01-01

Similar Documents

Publication Publication Date Title
WO2022188365A1 (zh) 自移动设备
WO2022188364A1 (zh) 线激光模组和自移动设备
WO2022188366A1 (zh) 线激光模组和自移动设备
US12064080B2 (en) Cleaning robot and control method thereof
KR102070283B1 (ko) 청소기 및 그 제어방법
JP2002182742A (ja) モービルロボット及びその経路補正方法
GB2382251A (en) Mobile Robot
KR102560462B1 (ko) 이동 로봇
JP2022511832A (ja) 情報を自律型装置へ伝達するための光学標示
KR20180074537A (ko) 청소 로봇
KR20180074510A (ko) 청소 로봇
WO2022252712A1 (zh) 线激光模组及自移动设备
AU2020409806B2 (en) Mobile robot and control method therefor
CN215119524U (zh) 线激光模组和自移动设备
US20230248203A1 (en) Method for controlling robot cleaner
KR102337393B1 (ko) 이동 로봇
KR102300790B1 (ko) 이동 로봇 및 그 제어방법
CN114521849A (zh) 用于扫地机器人的tof光学系统和扫地机器人
CN218451584U (zh) 一种广角三维避障激光雷达装置及扫地机器人
US20230277024A1 (en) Cleaning robot and controlling method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22814760

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023574566

Country of ref document: JP

Ref document number: 3221161

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 20237045356

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2022284813

Country of ref document: AU

Ref document number: AU2022284813

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2022814760

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2023136083

Country of ref document: RU

ENP Entry into the national phase

Ref document number: 2022814760

Country of ref document: EP

Effective date: 20240102

ENP Entry into the national phase

Ref document number: 2022284813

Country of ref document: AU

Date of ref document: 20220225

Kind code of ref document: A