WO2022188366A1 - 线激光模组和自移动设备 - Google Patents

线激光模组和自移动设备 Download PDF

Info

Publication number
WO2022188366A1
WO2022188366A1 PCT/CN2021/113646 CN2021113646W WO2022188366A1 WO 2022188366 A1 WO2022188366 A1 WO 2022188366A1 CN 2021113646 W CN2021113646 W CN 2021113646W WO 2022188366 A1 WO2022188366 A1 WO 2022188366A1
Authority
WO
WIPO (PCT)
Prior art keywords
line laser
laser transmitter
main body
obstacle
camera device
Prior art date
Application number
PCT/CN2021/113646
Other languages
English (en)
French (fr)
Inventor
于光
龙永吉
王明川
王征
Original Assignee
北京石头世纪科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京石头世纪科技股份有限公司 filed Critical 北京石头世纪科技股份有限公司
Priority to EP21929832.0A priority Critical patent/EP4307496A1/en
Publication of WO2022188366A1 publication Critical patent/WO2022188366A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/60Intended control result
    • G05D1/656Interaction with payloads or external entities
    • G05D1/661Docking at a base station
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/025Constructional details of solid state lasers, e.g. housings or mountings
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/40Parts or details of machines not provided for in groups A47L11/02 - A47L11/38, or not restricted to one of these groups, e.g. handles, arrangements of switches, skirts, buffers, levers
    • A47L11/4011Regulation of the cleaning machine by electric means; Control systems and remote control systems therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • B60L53/35Means for automatic or assisted adjustment of the relative position of charging devices and vehicles
    • B60L53/36Means for automatic or assisted adjustment of the relative position of charging devices and vehicles by positioning the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • B60L53/35Means for automatic or assisted adjustment of the relative position of charging devices and vehicles
    • B60L53/37Means for automatic or assisted adjustment of the relative position of charging devices and vehicles using optical position determination, e.g. using cameras
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C15/00Surveying instruments or accessories not provided for in groups G01C1/00 - G01C13/00
    • G01C15/002Active optical surveying means
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/20Control system inputs
    • G05D1/24Arrangements for determining position or orientation
    • G05D1/242Means based on the reflection of waves generated by the vehicle
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/23Arrangements of two or more lasers not provided for in groups H01S3/02 - H01S3/22, e.g. tandem arrangements of separate active media
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L2201/00Robotic cleaning machines, i.e. with automatic control of the travelling movement or the cleaning operation
    • A47L2201/04Automatic control of the travelling movement; Automatic obstacle detection
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • B60L53/35Means for automatic or assisted adjustment of the relative position of charging devices and vehicles
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D2105/00Specific applications of the controlled vehicles
    • G05D2105/10Specific applications of the controlled vehicles for cleaning, vacuuming or polishing
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D2109/00Types of controlled vehicles
    • G05D2109/10Land vehicles
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D2111/00Details of signals used for control of position, course, altitude or attitude of land, water, air or space vehicles
    • G05D2111/10Optical signals
    • G05D2111/14Non-visible signals, e.g. IR or UV signals
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D2111/00Details of signals used for control of position, course, altitude or attitude of land, water, air or space vehicles
    • G05D2111/10Optical signals
    • G05D2111/17Coherent light, e.g. laser signals

Definitions

  • the present disclosure relates to the field of cleaning equipment, in particular to a line laser module and a self-moving equipment.
  • robots with intelligent systems such as sweeping robots, mopping robots, vacuum cleaners, lawn mowers, etc. These robots can automatically travel in an area and perform cleaning or removal operations without the need for a user.
  • the robot usually avoids obstacles through distance measurement, and communicates with the charging pile through inductive components and locates and docks.
  • An embodiment of the first aspect of the present disclosure provides a line laser module, including: a camera device for collecting environmental images; line laser emitters, disposed on both sides of the camera device, and used for emitting laser light with a linear projection , the camera device and the line laser transmitter work together; the return pile positioning device is used to receive the infrared signal emitted by the charging pile.
  • the line laser module further includes: a filter is arranged in front of the camera device, so that only infrared light can enter the camera device; the pile return positioning device further includes an infrared emission device for transmitting infrared signals.
  • the line laser module further includes: a fixing seat, and the camera device, the line laser transmitter, and the piling-returning positioning device are arranged on the fixing seat.
  • the line laser transmitter is movably connected to the fixing base, and/or the fixing base is a movable structure, so that the azimuth and rotation angle of the line laser transmitter can be adjusted.
  • the fixing base includes a body and a connecting piece
  • the camera device is arranged on the body
  • the line laser transmitter is pierced through the connecting piece
  • the line laser emitter is rotatably connected with the connecting piece, and the rotation angle of the line laser emitter can be adjusted
  • the connecting piece is movably connected with the body, and can adjust the azimuth and orientation angle of the line laser transmitter.
  • the body is provided with a positioning groove
  • the connecting piece is provided with a raised structure adapted to the positioning groove, and the raised structure can rotate horizontally in the positioning groove to drive the line laser transmitter to rotate relative to the body.
  • the fixing base includes a body, an end portion and a connecting portion, the end portion is located on at least one side of the body and is connected to the body through the connecting portion, the camera device is arranged on the body, and the line laser transmitter is arranged at the end portion; wherein, the connection The part is pivotally connected with the main body, which can adjust the azimuth and orientation angle of the line laser transmitter;
  • the fixing base includes a main body, an end portion and a limiting portion, the end portions are located on both sides of the main body, the camera device is arranged on the main body, and the line laser transmitter is arranged at the end portion; The rotation angle and the azimuth orientation angle of the line laser transmitter are adjusted, and the limiting portion is arranged between the end portion and the body to limit the rotation of the end portion relative to the body.
  • the fixing base includes a main body and ends located on both sides of the main body, the camera device is arranged on the main body, and the line laser transmitter is movably arranged on the end portion; wherein, the end portion is pivotally connected with the main body, and can be aligned with the line laser emitter.
  • the azimuth and orientation angle of the line laser transmitter can be adjusted, and the line laser transmitter is rotatably connected with the end, so that the rotation angle of the line laser transmitter can be adjusted.
  • the fixing base is provided with an installation cavity
  • the line laser transmitter is movably arranged in the installation cavity
  • the installation cavity includes a first end and a second end
  • the cross-sectional area of the first end is smaller than the cross-sectional area of the second end
  • the cross-sectional area of the first end is larger than the cross-sectional area of the line laser transmitter; wherein, the front end of the line laser transmitter is close to the first end, and the line laser transmitter rotates relative to the installation cavity, which can adjust the rotation angle of the line laser transmitter. Adjustment, the rear end of the line laser transmitter swings relative to the front end, and the azimuth and orientation angle of the line laser transmitter can be adjusted.
  • the line laser transmitter is cylindrical, and the outer peripheral side of the line laser transmitter is provided with a first stepped structure; the fixing base is provided with an installation groove for installing the line laser transmitter, and the inner wall of the installation groove is provided with a second stepped structure ; wherein, the first step structure and the second step structure are adapted to limit the movement of the line laser transmitter along the axial direction.
  • An embodiment of the second aspect of the present disclosure provides a self-moving device, including: a device body; a controller; the line laser module according to any embodiment of the first aspect, the line laser module is disposed on the device body, and the controller It is electrically connected with the camera device and the line laser transmitter, and controls the function of the self-moving device according to the environmental image captured by the camera device.
  • the self-moving equipment further includes: a charging pile, which is suitable for connection or separation from the main body of the equipment, and the charging pile includes an infrared emitting device for transmitting infrared signals; wherein the controller is connected to the pile-returning positioning device of the line laser module. Connect, and guide the main body of the device to dock with the charging pile according to the infrared signal received by the back-pile positioning device, and transmit infrared signals to the charging pile when the main body of the device and the charging pile are successfully docked.
  • the self-moving device further includes: a buffer part, which is arranged on the front side of the main body of the device, the line laser module is located between the buffer part and the main body of the device, the buffer part and the camera device of the line laser module, the line laser transmitter, A window is arranged at the opposite position of the pile return positioning device.
  • the self-moving device further includes: a supplementary light, which is arranged on the buffer part; the controller is connected to the supplementary light, and is used to control the turning on or off of the supplementary light.
  • the self-moving device further includes: a device control module, which is electrically connected to the camera and controls the movement of the self-moving device according to the obstacle position information and obstacle type information in the environmental image captured by the camera.
  • a device control module which is electrically connected to the camera and controls the movement of the self-moving device according to the obstacle position information and obstacle type information in the environmental image captured by the camera.
  • the self-moving device further includes: a main control unit, which is electrically connected to the camera device and the device control module, and processes the environmental images captured by the camera device to obtain obstacle position information and obstacle type information, wherein the device controls The module receives obstacle location information and obstacle type information from the main control unit.
  • a main control unit which is electrically connected to the camera device and the device control module, and processes the environmental images captured by the camera device to obtain obstacle position information and obstacle type information, wherein the device controls The module receives obstacle location information and obstacle type information from the main control unit.
  • the self-moving device further includes: a memory that is electrically connected to the main control unit and the device control module, and receives and stores obstacle location information and obstacle type information from the main control unit, wherein the device control module receives from the memory Obstacle location information and obstacle type information.
  • the device control module and the main control unit are independent of each other or integrated together.
  • the self-moving device further includes: a reminder device connected to the device control module, and under the control of the device control module, an alarm is issued by at least one of sounding and emitting light.
  • the line laser module includes a back-pile positioning device, a camera device, and a line laser transmitter, a sensing component that is about to be communicated and connected to the charging pile, and is connected to the front of the main body of the device.
  • the sensing components for road condition measurement are integrated into a line laser module, which realizes the modular design of the sensing system and facilitates assembly and maintenance.
  • FIG. 1 is a partial structural schematic diagram of a line laser module according to an optional embodiment of the present disclosure
  • FIG. 2 is a schematic structural diagram of a line laser module according to another optional embodiment of the present disclosure.
  • FIG. 3 is a partial structural schematic diagram of a protection plate according to an optional embodiment of the present disclosure.
  • FIG. 4 is a schematic diagram of the working principle of a line laser transmitter according to an optional embodiment of the present disclosure
  • 5 is a schematic diagram of the relationship between the line laser transmitter and the field of view angle of the camera according to an optional embodiment of the present disclosure
  • FIG. 6 is a partial structural schematic diagram of a fixing base according to an optional embodiment of the present disclosure.
  • FIG. 7 is a partial structural schematic diagram of a fixing seat according to another optional embodiment of the present disclosure.
  • FIG. 8 is a time point diagram of a time-sharing control according to an embodiment of the present disclosure.
  • Raised structure 146 Connection part
  • Limiting part 148 Limiting hole
  • Second step structure 150 Infrared emission device
  • An optional embodiment of the present disclosure provides a line laser module, and another optional embodiment of the present disclosure provides a self-moving device, wherein the line laser module is applied to the self-moving device.
  • Mobile devices are smart cleaning devices such as robot vacuums, mopping robots, floor polishing robots or weeding robots. For convenience of description, this embodiment uses a cleaning robot as an example to describe the technical solutions of the present disclosure.
  • the self-moving device may include: a device body 200, a sensing system, a control system, a driving system, a cleaning system, an energy system, a human-computer interaction system, and the like.
  • the various systems coordinate with each other to enable the cleaning equipment to move autonomously for cleaning functions.
  • functional elements and the like constituting each of the above-described systems are integrally provided in the apparatus main body 200 .
  • the device body 200 has an approximately circular shape (circles at the front and rear), and may also have other shapes, including but not limited to an approximately D-shaped shape with a front and a rear circle.
  • the sensing system includes a line laser module located above or on the side of the main body 200 of the device.
  • the controller of the control system is connected to the line laser module, and performs functional control of the self-moving device according to the sensing result of the line laser module.
  • the specific position of the line laser module on the device main body 200 is not limited.
  • it may be, but not limited to, the front side, the rear side, the left side, the right side, the top, the middle, the bottom, and the like of the device body 200 .
  • the line laser module is arranged at the middle position, the top position or the bottom position in the height direction of the device main body 200 .
  • the self-moving device moves forward to perform work tasks.
  • the line laser module is arranged on the front side of the device main body 200; The side to which the device body 200 faces when the mobile device moves forward.
  • the self-moving device further includes a charging pile, which is suitable for connection or separation from the device main body 200.
  • a charging pile which is suitable for connection or separation from the device main body 200.
  • the charging pile includes an infrared transmitting device for transmitting infrared signals. It can be understood that, when the device main body 200 needs to be charged back to the pile, the device main body 200 needs to be matched, positioned and connected to the charging pile.
  • the line laser module includes: a camera device 120 for collecting environmental images; a line laser transmitter 110 , which is arranged on at least one side of the camera device 120 and is used for emitting a laser with a linear projection, The camera device 120 cooperates with the line laser transmitter 110; the return-to-pile positioning device 190 is used to receive the infrared signal emitted by the charging pile.
  • the line laser module provided by the embodiment of the present disclosure, through the cooperation of the camera device 120 and the line laser transmitter 110, can sense the road conditions in front of the device main body 200, such as identifying obstacles or terrain in front of the device main body 200, so as to Perform corresponding obstacle avoidance operations or cleaning operations.
  • the line laser module also includes a pile-returning positioning device 190.
  • the controller controls the pile-returning positioning device 190 to search for infrared signals near the charging pile.
  • the back-to-pile positioning device 190 receives the infrared signal, it guides the device main body 200 to perform docking charging with the charging pile according to the infrared signal.
  • the back-pile positioning device 190 realizes the communication connection and matching positioning with the charging pile
  • the infrared emitting device 150 realizes the communication connection with the charging pile.
  • the line laser module provided in this embodiment includes a pile-returning positioning device 190 , a camera device 120 , and a line laser transmitter 110 , and further connects the sensing components that are communicatively connected with the charging pile and matched and positioned to the front of the device main body 200 .
  • the sensing components for road condition measurement are integrated into a line laser module, which realizes the modular design of the sensing system and facilitates assembly and maintenance.
  • the pile-returning positioning device 190 also includes an infrared transmitting device 150 for transmitting infrared signals.
  • the controller controls the infrared transmitting device 150 to transmit infrared signals to the charging pile, so as to transmit infrared signals to the device main body. 200 to charge.
  • the pile-returning positioning device 190 includes an infrared receiving device 160 and an infrared transmitting device 150, wherein the infrared receiving device 160 is used for receiving infrared signals, and the infrared transmitting device 150 is used for transmitting infrared signals.
  • the infrared emission device 150, the camera device 120, the camera device 120, and the line laser transmitter 110 are all arranged on the fixing base 140, which realizes the modular design of the sensing system and facilitates assembly and maintenance.
  • the line laser module and the equipment main body 200 are detachably connected.
  • the infrared transmitting device 150 or the infrared receiving device 160 fails, the line laser module is disassembled from the equipment main body and the infrared transmitting device 150 or the infrared receiving device is disassembled. 160 for maintenance and debugging with the charging pile. Since the infrared transmitting device 150 and the infrared receiving device 160 are parts of the line laser module, that is, the infrared transmitting device 150 and the infrared receiving device 160 are arranged on the line laser module, while the line laser module Compared with the equipment main body 200, the group is smaller in size and lighter in weight. Therefore, in the process of maintaining and debugging the infrared emitting device 150 and the infrared receiving device 160, it is convenient for operators to carry and move the line laser module.
  • the line laser module further includes a fixed seat 140 , and the camera device 120 , the line laser transmitter 110 , and the pile-returning positioning device 190 are all arranged on the fixed seat 140 , thereby realizing the modular block design of the line laser module. It can be understood that the line laser module is assembled to the device body by connecting the fixing base 140 to the device body 200 .
  • the infrared receiving device 160 of the pile-returning positioning device 190 includes infrared lamps, and the number of the infrared receiving devices 160 is at least two, for example, the number of the infrared receiving devices 160 can be two, three, four or other satisfying requirements. amount.
  • the infrared emitting device 150 of the pile-returning positioning device 190 includes infrared lamps, and the number of the infrared emitting devices 150 is one, two, three or other quantities that meet the requirements.
  • the infrared receiving device 160 and the infrared transmitting device 150 of the pile-returning positioning device 190 are both infrared lamps, and a plurality of infrared lamps are distributed on the top of the fixing base 140 at intervals along the length direction of the fixing base 140 .
  • Such an arrangement is beneficial to The reliability of receiving the incoming infrared signal by the infrared receiving device 160 is ensured, and the reliability of the communication connection between the device main body 200 and the charging pile is ensured.
  • the infrared receiving device 160 and the infrared transmitting device 150 may also be arranged at other positions that meet the requirements, which are not specifically limited in the present disclosure.
  • the line laser transmitter 110 is used to emit a laser with a linear projection.
  • the line laser transmitter 110 emits a laser plane to the outside. After the laser plane reaches the obstacle, a line laser will be formed on the surface of the obstacle, and the line laser will be used for detection. environment image.
  • the plane AOB shown in FIG. 1 represents the plane perpendicular to the line laser of the line laser transmitter 110
  • the plane ABF and the plane CDE shown in FIG. 4 represent the laser plane of the line laser transmitter 110
  • the line segments AB and The line segment CD characterizes the line laser.
  • the line laser transmitter 110 may be a laser tube. It is understood that the line laser transmitter 110 may also be other structures that meet the requirements, which is not specifically limited in the present disclosure.
  • a wave mirror can also be arranged in the emission direction (such as the front) of the online laser transmitter 110.
  • the wave mirror is a concave lens, for example, a concave lens is arranged in front of the laser tube, and the laser tube emits light of a specific wavelength (such as infrared light). light), after passing through the concave lens, it becomes a divergent light ray, thus forming a straight line on the plane perpendicular to the optical path.
  • the line laser emitters 110 are distributed on at least one side of the camera device 120 , and the camera device 120 and the line laser emitter 110 cooperate with each other, that is, the first environment image collected by the camera device 120 is a line laser
  • the line laser emitted by the transmitter 110 is reflected by the obstacle, and the distance between the obstacle and the device main body 200 or the line laser module can be measured according to the first environment image, and then the corresponding obstacle avoidance operation can be performed.
  • the line laser emitters 110 may be a pair, and the pair of line laser emitters 110 are distributed on both sides of the camera device 120 .
  • the line laser in order to enable the camera device 120 to timely and accurately collect the environmental image detected by the line laser, the line laser needs to be located within the field of view of the camera device 120.
  • 4 is a schematic diagram of the working principle of the line laser transmitter 110, wherein the letter P represents the camera device 120, the letters E and F represent the line laser transmitter 110 located on both sides of the camera device 120; the straight lines PM and PN represent the camera device
  • the two boundaries of the horizontal field of view of 120 namely ⁇ MPN, represent the horizontal field of view of the camera 120 .
  • the line laser transmitter 110 emits the laser plane FAB and the laser plane ECD to the outside.
  • a line laser is formed on the obstacle surface, namely the line segment AB and the line segment CD shown in FIG. 4 . Since the line segment AB and the line segment CD emitted by the line laser transmitter 110 are located within the field of view of the camera 120 , the line laser can help detect the contour, height and/or width of objects within the field of view of the camera 120 , etc. information, the camera device 120 can collect images of the environment detected by the line laser.
  • the controller can calculate the distance from the line laser module or the equipment main body 200 where the line laser module is located to the obstacle in front according to the first environment image collected by the camera 120. Specifically, it can be calculated by using the triangulation ranging method. The distance between the line laser module or the device main body 200 and the obstacle in front of it. Specifically, as shown in FIG. 5 , and FIG. 4 is a schematic diagram of the embodiment shown in FIG. 4 from a viewing angle.
  • the letter P represents the camera device 120
  • the letters E and F represent the line laser emitters 110 located on both sides of the camera device 120
  • point A represents the projection of the line segment AB in the horizontal plane
  • point D represents the projection of the line segment CD in the horizontal plane
  • ⁇ MPN represents the horizontal field angle of the camera 120
  • point O represents the intersection of the line laser emitted by the line laser emitter 110 and the optical axis of the camera 120 .
  • the focal length of the camera device 120 is known, and the emission angle of the line laser transmitter F is known , that is, the angle between the straight line FA and the optical axis PO is known, the distance between the line segments OP is known; the vertical distance between the line laser emitter F and the center of the camera 120 in the horizontal plane is known,
  • the environmental image reflected by the obstacle A point collected by the camera 120 is defined as the point A'.
  • the point A' will have a certain offset from the optical axis line PO of the camera 120, and the offset is known, according to The triangle similarity principle, combined with the above-mentioned known conditions, can measure the distance between A and F, that is, the distance between the obstacle and the line laser transmitter 110 can be obtained. It can be understood that the terrain situation in front can also be determined according to the deformation characteristics of the line segment reflected by the line laser reflected by the obstacle collected by the camera 120 to determine specific functional operations, such as performing an obstacle avoidance operation or continuing a cleaning operation. .
  • the number of camera devices 120 is not specifically limited, for example, the number of camera devices 120 may be one, two, three, or other numbers that meet requirements.
  • the camera device 120 may be a monocular camera or a binocular camera.
  • the total number of line laser transmitters 110 is not specifically limited, for example, the number of line laser transmitters 110 may be two or more.
  • the number of line laser emitters 110 distributed on each side of the camera device 120 is also not limited, and the number of line laser emitters 110 on each side of the camera device 120 may be one, two or more;
  • the number of line laser transmitters 110 on both sides of the device 120 may be the same or different. It can be understood that when the number of line laser emitters 110 on either side of the camera device 120 is multiple, the multiple line laser emitters 110 may be uniformly distributed or non-uniformly distributed, which is not specifically limited in the present disclosure.
  • the camera device 120 can not only measure the distance of the obstacle in front of the device main body 200, but also can identify the type of the obstacle. If the time sequence is different, the camera device 120 is used to measure the distance of the obstacle and identify the type of the obstacle, respectively.
  • the controller first determines the type of the obstacle according to a part of the environmental image collected by the camera 120, determines whether the device main body 200 needs to perform an obstacle avoidance operation according to the type of the obstacle, and when the device main body 200 needs to perform the obstacle avoidance operation During operation, the controller determines the distance of the obstacle according to another part of the environmental image collected by the camera 120 to perform the corresponding obstacle avoidance operation. When the device main body 200 does not need to perform the obstacle avoidance operation, it directly performs the cleaning operation. , thereby reducing the possibility of misoperation of obstacle avoidance from mobile devices.
  • the line laser emitting device 110 may include a line laser transmitter and a laser driving circuit, wherein the line laser driving circuit may receive a driving signal and drive the line laser transmitter to emit the line laser according to the driving signal.
  • the laser driving circuit may include an amplifying circuit, through which the driving signal may be amplified, and the amplified driving signal may be sent to the line laser transmitter, so that the line laser transmitter emits light.
  • the driving signal may include a control signal and an adjustment signal
  • the line laser transmitter may be turned on or off by the control signal
  • the transmission power of the line laser transmitter may be adjusted by the adjustment signal.
  • the amplifying circuit may include a first amplifying circuit and a second amplifying circuit, wherein:
  • the first amplifying circuit is used to receive the control signal sent by the main control unit, amplify the control signal and send it to the line laser transmitter, so as to control the line laser transmitter to be turned on and off.
  • the second amplifying circuit is used to receive the adjustment signal sent by the main control unit, amplify the adjustment signal and send it to the line laser transmitter to control the transmission power of the line laser transmitter.
  • the specific structures of the first amplifying circuit and the second amplifying circuit are not particularly limited here, as long as the signal amplifying function can be achieved.
  • the line laser module includes: a main body part and a first environment image capturing assembly, wherein the first environment image capturing assembly includes a camera disposed on the main body part, at least a pair of line
  • the laser emission device and the first environmental image processing module, a pair of line laser emission devices are located on both sides of the camera device, and are used to emit line lasers with a linear projection.
  • the camera device and the line laser emission device cooperate with each other and are used to collect the first Environment image; the first environment image processing module can obtain the obstacle position information according to the first environment image.
  • the first environment image collected by the camera device is used to measure the distance of the obstacle; when the online laser is turned off and the fill light is turned on, the second environment image collected by the camera device is used.
  • the image is used to identify the type of obstacle. Therefore, the type of the obstacle can be determined according to the second environment image captured by the camera 120, and whether the device main body 200 needs to perform the obstacle avoidance operation can be determined according to the type of the obstacle, and when the device main body 200 needs to perform the obstacle avoidance operation, the camera device 120 and the line laser transmitter 110 cooperate with each other to determine the distance of the obstacle, so as to perform the corresponding obstacle avoidance operation.
  • the cleaning operation is directly performed, thereby reducing the obstacle avoidance error of the mobile device. possibility of operation.
  • the number of the second environment images is multiple, such as 500, 1000, or other numbers that meet the requirements.
  • the number of the second environment images can be determined by adjusting the exposure frequency of the camera 120 .
  • the control system performs image segmentation on the plurality of second environment images captured by the camera 120 . Then input the segmented segmented image into the trained obstacle model, then perform feature extraction on the segmented image, and perform confidence matching between the extracted feature information and the trained obstacle model, and determine according to the confidence matching result.
  • Type of obstacle is a configurabled.
  • the type of the obstacle can be determined by the second environment image obtained by the camera 120, so that the self-mobile device can determine the obstacle avoidance operation according to the type of the obstacle or the original The cleaning route is used for cleaning operations.
  • the controller controls the camera device 120 and the line laser transmitter 110 to work together, and determines the distance between the obstacle and the line laser module or the equipment main body 200 according to the first environment image obtained by the camera device 120 . distance to perform the corresponding obstacle avoidance operation.
  • the driving system can drive the movement of the device body 200 to move the balloon, that is, the balloon will not affect the cleaning route. Therefore, control the The main body 200 of the controller control device performs the cleaning operation according to the original cleaning route, but does not perform the obstacle avoidance operation, and can clean the position where the balloon is located, which is beneficial to expand the cleaning range.
  • the controller controls the apparatus main body 200 to perform an obstacle avoidance operation to change the cleaning route. That is, the controller controls the line laser transmitter 110 to work to emit the line laser, the camera device 120 captures the first environment image of the reflected light reflected from the chair, and the controller determines the distance between the line laser module or the device main body 200 and the chair according to the first environment image. The distance between them, and then the cleaning route is re-planned according to the distance for obstacle avoidance operation, which improves the obstacle avoidance effect.
  • the camera device 120 is a black-and-white camera, and an infrared lens is arranged in front of the black-and-white camera, allowing only infrared light to pass through.
  • the device 110 is an infrared laser tube, which emits infrared laser light.
  • a second environment image processing module is further included, and the second environment image processing module may include a feature extraction module and an identification module, wherein:
  • the feature extraction module is used to perform feature extraction on the second environment image to obtain feature information.
  • the grayscale information and position information of pixels satisfying certain conditions in the second environment image may be used as feature information.
  • the feature extraction module may preprocess the second environment image, for example, perform binarization on the second environment image. Then, the grayscale information and position information of each pixel in the preprocessed second environment image are acquired. Then, the preset gray-scale range is compared with the gray-scale information of each pixel, and the gray-scale information located in the gray-scale range and the position information of the corresponding pixel are obtained as characteristic information.
  • feature information can also be extracted from the second environment image in other ways, which are not limited herein.
  • the identification module is used to input the feature information into the pre-trained obstacle identification model to identify the obstacle type information.
  • the obstacle recognition model can be obtained by training samples of obstacle images in advance, and it can be a neural network model, a classifier or other models, as long as it can judge whether there is an obstacle in the second environment image according to the feature information. Can.
  • the training method of the obstacle recognition model and the specific working process of judging whether there is an obstacle are not specially limited here. Obstacles in the present disclosure may be paper scraps, books, table legs, doors, refrigerators, curtains, etc., which will not be listed here.
  • the identification module can input the feature information into the pre-trained obstacle classification model to identify the obstacle type information.
  • the obstacle classification model can be obtained by training samples of obstacle classification in advance, which can be a neural network model, a classifier or other models, as long as the type of obstacles can be judged according to the feature information.
  • the training method of the obstacle recognition model and the specific working process of judging whether to judge the type of the obstacle are not specially limited here.
  • the second environment image processing module further includes a training module for generating an obstacle recognition model using the collected training data.
  • obstacles can be classified into three types according to their size, for example:
  • the first is an obstacle that can be driven over and can be cleaned, such as paper scraps.
  • the second is obstacles that cannot be driven but need to be cleaned, such as books.
  • the third is obstacles that cannot be driven through and do not need to be cleaned, such as doors, walls, table legs, etc.
  • the fixing base 140 includes a main body 141 and ends 142 located on both sides of the main body 141 .
  • Launcher 110 is fitted on end 142 .
  • the line laser transmitter 110 is movably connected to the fixing base 140 , and/or the fixing base 140 is a movable structure, so that by adjusting the position of the line laser transmitter 110 relative to the fixing base 140 position, and/or adjusting the relative positions of the components of the fixing base 140, the azimuth and rotation angle of the line laser transmitter 110 can be adjusted, so that when the line laser The irradiation angle and irradiation range of the line laser emitted by the line laser transmitter 110 are adjusted, so as to quickly and conveniently realize the calibration of the line laser transmitter 110 itself and the calibration with the camera device 120 , the operation is simple and convenient, and it is beneficial to improve the assembly efficiency. .
  • adjusting the rotation angle of the line laser transmitter 110 can make the line laser perpendicular to the horizontal plane, that is, to achieve self-alignment of the line laser transmitter 110 .
  • Adjusting the azimuth angle of the line laser transmitter 110 can adjust the angle between the line laser and the optical axis of the camera device 120 , so that the line laser is located within the field of view of the camera device 120 , that is, the line laser transmitter 110 is realized. Coordinate calibration with the camera 120 to ensure that the camera 120 can accurately and comprehensively capture the reflected light reflected by the obstacles reflected by the light emitted by the line laser transmitter 110, thereby improving the accuracy and comprehensiveness of the environmental image obtained by the camera 120.
  • the azimuth and orientation angles of the line laser emitting devices 110 on both sides of the camera device 120 are adjusted respectively, and then the line lasers on both sides are glued and fixed.
  • the line laser is made perpendicular to the horizontal plane, which is beneficial to improve the ranging range.
  • the line laser transmitter 110 is movably connected with the fixing base 140 , so that by adjusting the position of the line laser transmitter 110 relative to the fixing base 140 , the azimuth and rotation angle of the line laser transmitter 110 can be adjusted.
  • the fixed seat 140 is a movable structure, so that the azimuth orientation angle and the rotation angle of the line laser transmitter 110 can be adjusted by adjusting the relative positions of the respective components of the fixed seat 140;
  • the line laser transmitter 110 is movably linked with the fixed seat 140, and the fixed seat 140 is a movable structure, so that the position of the line laser transmitter 110 relative to the fixed seat 140 can be adjusted, and the relative positions of the parts of the fixed seat 140 itself can be adjusted, so that the line laser transmitter 110 can be aligned.
  • the azimuth and rotation angle can be adjusted.
  • the embodiments provided in the present disclosure adjust the azimuth orientation angle and rotation angle of the line laser transmitter 110 in different ways, which can meet the requirements of different structures of the fixing base 140 and different connection methods between the line laser transmitter 110 and the fixing base 140 .
  • the line laser transmitter 110 is movably connected to the fixing base 140 , and the fixing base 140 is a movable structure.
  • the fixing base 140 includes a main body 141 , an end portion 142 and a connecting piece 143
  • the camera device 120 is disposed on the main body 141
  • the line laser transmitter 110 is connected with the end portion 142 through the connecting piece 143
  • the connecting piece 143 is provided with a connecting piece 143 .
  • the line laser transmitter 110 is pierced through the connecting piece 143 through the through hole, and the line laser emitter 110 is rotatably connected with the connecting piece 143, that is, the line laser emitter 110 can rotate in the through hole of the connecting piece 143, and then the line laser The rotation angle of the laser transmitter 110 is adjusted so that the line laser is perpendicular to the horizontal plane, thereby expanding the range of distance measurement.
  • the connecting piece 143 is movably connected with the end portion 142, for example, the connecting piece 143 can rotate horizontally relative to the end portion 142.
  • the axis of rotation of the end portion 142 is a straight line in the vertical direction, so that the connecting member 143 drives the line laser transmitter 110 to rotate relative to the end portion 142, and the azimuth and orientation angle of the line laser transmitter 110 can be adjusted, so that the line laser transmitter 110 can emit light.
  • the line laser emitted by the detector 110 is located within the field of view of the camera 120 . Azimuth heading angle
  • the connecting piece 143 is movable relative to the end portion 142 , so that during the calibration process, by placing the line laser emitter 110 in the through hole of the connecting piece 143 After rotating to a proper position, the calibration of the rotation angle of the line laser transmitter 110 can be realized, that is, the self-calibration of the line laser transmitter 110 can be realized.
  • the azimuth and orientation angle of the line laser transmitter 110 can be calibrated, that is, the alignment of the line laser transmitter 110 and the camera device 120 can be realized. The operation is simple and the calibration is easy. convenient.
  • the connecting piece 143 , the end portion 142 and the line laser transmitter 110 can be fixedly connected by using a fixing device, such as adhesive or glue.
  • a fixing device such as adhesive or glue.
  • the end portion 142, the main body 141, and the line laser transmitter 110 are fixed, and the operation is simple.
  • the main body 141 is provided with a positioning groove 144
  • the connecting member 143 is provided with a raised structure 145 that is adapted to the positioning groove 144, and the raised structure 145 is horizontally rotated in the positioning groove 144, specifically , the protruding structure 145 protrudes in the vertical direction, so that the connecting piece 143 rotates relative to the end 142 in a plane parallel to the horizontal plane, that is, the axis of rotation of the connecting piece 143 relative to the body 141 is a straight line in the vertical direction.
  • the raised structure 145 of the connector 143 rotates horizontally in the positioning groove 144 of the end portion 142, which can drive the line laser transmitter 110 to rotate horizontally relative to the end portion 142 with the raised structure 145 as the rotation axis, thereby enabling the line laser transmitter 110 to rotate horizontally.
  • the line laser emitted by 110 is located within the field of view of the camera device 120, so as to realize the coordination and calibration of the line laser transmitter 110 and the camera device 120, the structure is simple, and the operation is convenient.
  • the positioning groove 144 can be a circular positioning groove
  • the convex structure 145 is a cylindrical convex structure.
  • the cooperation between the circular positioning groove and the cylindrical convex structure is beneficial to improve the relative relationship between the connector 143 and the body 141 .
  • Rotational flexibility and reliability It can be understood that the positioning groove 144 can also be a groove structure of other shapes that meet the requirements.
  • the fixed seat 140 is a movable structure.
  • the fixing base 140 includes a main body 141 , an end portion 142 and a connecting portion 146 , the end portions 142 are located on both sides of the main body 141 , the camera device 120 is arranged on the main body 141 , and the line laser transmitter 110 is arranged on the end portion 142, such as the line laser transmitter 110 is fixedly or detachably mounted on the end 142.
  • the connecting portion 146 is pivotally connected with the main body 141 , and the end portion 142 is connected with the connecting portion 146 , and the connecting portion 146 swings relative to the main body 141 to adjust the azimuth angle of the line laser transmitter 110 , so that the line laser can be emitted
  • the line laser emitted by the detector 110 is located within the field of view of the camera 120 .
  • the end portion 142 is rotatably connected with the connecting portion 146. When the end portion 142 rotates relative to the connecting portion 146, the rotation angle of the line laser transmitter 110 can be adjusted so that the line laser is perpendicular to the horizontal plane, thereby expanding the range of distance measurement.
  • the connecting portion 146 is hinged with the body 141 , a cylindrical groove is provided on the side of the connecting portion 146 facing the end portion 142 , and the end portion 142 is provided with a cylindrical protrusion that matches the cylindrical groove.
  • the line laser emits After the laser transmitter 110 is assembled to the end 142, the cylindrical protrusion of the end 142 is placed in the cylindrical groove, and rotated relative to the cylindrical groove to adjust the rotation angle of the line laser transmitter 110.
  • the end portion 142 and the connecting portion 146 are fixed, such as by using glue or other limiting structures, to realize the self-calibration of the line laser transmitter 110 .
  • the azimuth and orientation angle of the line laser transmitter 110 can be adjusted.
  • the main body 141 and the connecting portion 146 are fixed, such as by glue or other limiting structures, so that the alignment of the line laser transmitter 110 and the camera device 120 can be realized.
  • the fixed seat 140 is a movable structure, that is, the end portion 142 is movably connected with the main body 141 through the connecting portion 146, so that during the calibration process, by reasonably adjusting the relative positions of the end portion 142, the connecting portion 146 and the main body 141, In this way, the calibration of the rotation angle and the azimuth orientation angle of the line laser transmitter 110 installed on the end portion 142 can be realized, and the operation is simple and the calibration is convenient.
  • the end portion 142 , the connecting portion 146 , and the main body 141 can be fixedly connected by using a fixing device, such as adhesive, glue, limiter
  • a fixing device such as adhesive, glue, limiter
  • the end portion 142, the connecting portion 146, and the main body 141 are fixed by the portion 147, etc., and the operation is simple.
  • the fixed seat 140 is a movable structure.
  • the fixing base 140 includes a main body 141 , an end portion 142 and a limiting portion 147 .
  • the end portions 142 are located on both sides of the main body 141 . As shown in FIG.
  • the end portion 142 is rotatably connected with the main body 141, specifically, the end portion 142 is spherically connected with the main body 141, so that the end portion 142 can swing relative to the main body 141 and can rotate relative to the main body 141, while the line laser
  • the transmitter 110 is assembled on the end 142, and then the azimuth and rotation angle of the line laser transmitter 110 can be adjusted by swinging and rotating the end 142 relative to the body 141, which is simple to operate and easy to calibrate.
  • the end portion 142 is spherically connected with the body 141 , the body 141 is provided with a limiting hole 148 , and the limiting portion 147 is a set bolt.
  • the self-calibration of the line laser transmitter 110 can be realized.
  • the line laser emitted by 110 is located at a suitable position within the field of view of the camera device 120, so that the alignment of the line laser transmitter 110 and the camera device 120 can be achieved.
  • the position of the 142 relative to the main body 141 is limited and fixed, and the end portion 142 and the main body 141 can be fixed, and the operation is simple.
  • the number of the limiting holes 148 on the main body 141 may be one, two or more. According to different positions of the limiting holes 148, different numbers of the limiting holes 148 are provided to meet the relative When the body 141 is rotated to different positions, the end portion 142 and the body 141 can be fixed by the fixing bolts through the limiting holes 148 .
  • the fixing bolt may also be an elastic piece, that is, the end of the fixing bolt abutting against the end portion 142 is an elastic piece, and the end portion 142 and the main body 141 are reliably connected by elasticity.
  • the spherical surface of the end portion 142 can also be provided with positioning holes adapted to the fixing bolts, so that the fixing bolts pass through the limiting holes 148 and are matched with the positioning holes and then pressed, which is beneficial to improve the end portion 142.
  • the reliability of the fixed connection with the body 141 can also be provided with positioning holes adapted to the fixing bolts, so that the fixing bolts pass through the limiting holes 148 and are matched with the positioning holes and then pressed, which is beneficial to improve the end portion 142.
  • the line laser transmitter 110 is movably connected to the fixing base 140, and the fixing base 140 is a movable structure.
  • the fixing base 140 includes a main body 141 and ends 142 located on both sides of the main body 141 .
  • the end portion 142 is pivotally connected to the body 141, for example, the end portion 142 is hinged to the body 141, so that the end portion 142 can swing relative to the body 141, and the line laser transmitter 110 is rotatably connected to the end portion 142, such as a line laser transmitter 110 is cylindrical, and the line laser transmitter 110 can be rotated relative to the installation slot in the end portion 142, so that the rotation angle of the line laser transmitter 110 can be adjusted so that the line laser is perpendicular to the horizontal plane and the ranging range can be expanded.
  • the azimuth and orientation angle of the line laser emitter 110 can be adjusted so that the line laser emitted by the line laser emitter 110 is located at the position of the line laser emitter 110. within the field of view of the camera 120 .
  • the line laser transmitter 110 is rotatable relative to the end portion 142, the end portion 142 is pivotally connected with the main body 141, so that during the calibration process, the line laser transmitter 110 can be rotated to an appropriate position to achieve
  • the calibration of the rotation angle of the line laser transmitter 110 is to realize the self-calibration of the line laser transmitter 110.
  • the azimuth and orientation angle of the line laser transmitter 110 can be adjusted.
  • Calibration that is, to realize the coordinated calibration of the line laser transmitter 110 and the camera device 120 , is simple in operation and convenient in calibration.
  • the end portion 142, the main body 141, and the line laser transmitter 110 can be fixedly connected by using a fixing device, such as adhesive, glue, etc.
  • a fixing device such as adhesive, glue, etc.
  • the end 142, the main body 141 and the line laser transmitter 110 are fixed, and the operation is simple.
  • the line laser transmitter 110 and the fixing base 140 are movably connected.
  • the fixing base 140 is provided with a mounting cavity for installing the line laser 110 is movably arranged in the installation cavity, the installation cavity includes a first end and a second end, and the cross-sectional area of the first end is smaller than the cross-sectional area of the second end, that is, the installation cavity is a flared structure, through the first end
  • the cross-sectional area of the end is larger than the cross-sectional area of the line laser transmitter 110, indicating that the line laser transmitter 110 can move in the installation cavity.
  • the front end of the line laser transmitter 110 is close to the first end of the installation cavity.
  • the rotation angle of the line laser transmitter 110 can be adjusted so that the line laser is perpendicular to the horizontal plane. Expand the ranging range.
  • the azimuth orientation angle of the line laser emitter 110 can be adjusted so that the line laser emitted by the line laser emitter 110 is located within the field of view of the camera device 120 .
  • the line laser transmitter 110 since the line laser transmitter 110 is movably arranged in the installation cavity of the fixed seat 140, the line laser transmitter 110 can rotate and swing relative to the body 141, so that during the calibration process, the line laser can be adjusted reasonably.
  • the installation angle and installation position of the transmitter 110 and the fixing base 140 can realize the calibration of the rotation angle and the azimuth orientation angle of the line laser transmitter 110, and the operation is simple and the calibration is convenient.
  • the line laser transmitter 110 can be fixedly connected with the fixing seat 140 by using a fixing device, such as using adhesive, glue, etc.
  • a fixing device such as using adhesive, glue, etc.
  • the line laser transmitter 110 is cylindrical, the outer peripheral side of the line laser transmitter 110 is provided with a first stepped structure 111 , and the fixing seat 140 is provided with a The installation groove of the line laser transmitter 110 is installed.
  • the inner wall of the installation groove is provided with a second step structure 149.
  • the self-moving device further includes a device control module for controlling the movement of the self-moving device according to the obstacle location information and the obstacle type information.
  • the device control module can be directly connected with the main control unit, and can directly acquire the obstacle position information and the obstacle type information obtained by the main control unit after processing the first environment image and the second environment image.
  • the device control module can also be connected to the main control unit through a memory, the obstacle location information and obstacle type information obtained by the main control unit can be stored in the memory, and the device control module can directly call the obstacle location information stored in the memory. and obstacle type information.
  • the device control module and the main control unit can be two separate circuits, or can be integrated in the same circuit, for example, the device control module and the main control unit can be two independent chips, or can be integrated in the same chip .
  • the type of the chip is not particularly limited here, as long as it can realize the respective functions.
  • the equipment main body 200 may also be provided with moving mechanisms such as rollers and crawlers, and the equipment control module can control the moving mechanism to move from the mobile equipment.
  • moving mechanisms such as rollers and crawlers
  • the recognition result is that there is no obstacle. For example, the obstacle position information is not received, or it is judged that there is no obstacle in the obstacle type information.
  • the recognition result is that there is an obstacle, and at this time, the type of the obstacle can be determined according to the second environment image. For example, the obstacle position information is received, and the obstacle type information determines that there is an obstacle.
  • the device control module can control the self-moving device to continue to move according to the current moving path, and clean the obstacle.
  • the position information of the obstacles can be obtained according to the position information of the obstacles, and the steering distance information, steering direction information and steering angle information of the mobile device can be determined through the device control module.
  • the moving route is re-planned, that is, the obstacle avoidance route is planned, and then the self-mobile device is controlled to perform the automatic obstacle avoidance action according to the obstacle avoidance route, so as to avoid the obstacles that cannot be cleaned.
  • the self-moving device may include a reminder device, which may be connected to the device control module, and the device control module may control the reminder device to issue an alarm by at least one of sounding and emitting light.
  • the reminder device can emit a prompt sound, so as to remind the user to clean the obstacle that cannot be cleaned by the mobile device in time while avoiding the obstacle.
  • the self-moving device further includes a buffer part 170 .
  • the buffer part 170 is arranged on the front side of the device main body 200 , and the line laser module is located between the buffer part 170 and the device.
  • the arrangement of the buffer member 170 has a certain protective effect on the equipment main body 200 and the line laser module, so as to prevent the self-moving cleaning equipment from contacting and colliding with obstacles during the forward movement and damaging the equipment main body 200.
  • the line laser module is directly exposed to the external environment, it is easy to collide with obstacles and be damaged, thereby helping to improve the reliability of the device main body 200 and the line laser module.
  • the camera device 120 , the line laser transmitter 110 , and the pile-returning positioning device 190 are located between the buffer member 170 and the equipment main body 200 , so that the buffer member 170 is responsive to the camera device 120 , the line laser transmitter 110 , and the pile-returning positioning device 190 .
  • the camera device 120 , the line laser transmitter 110 , and the pile return positioning device 190 are protected from damage by external forces, which is beneficial to improve the service life of the camera device 120 , the line laser transmitter 110 , and the pile return positioning device 190 .
  • a window 171 is provided at the position opposite to the camera device 120 through the buffer part 170 so that external ambient light can enter the camera device 120, and a window is provided at the position opposite to the line laser emitter 110 through the buffer part 170, so that the line laser can be emitted
  • the laser light emitted by the device 110 can be emitted from the buffer member 170, and a window is provided at the position opposite the buffer member 170 and the pile-returning positioning device 190, so that the pile-returning positioning device 190 can receive infrared signals and emit infrared signals, thereby ensuring line The reliability of laser module work.
  • the windows corresponding to the camera device 120, the line laser transmitter 110, the infrared receiving device 160, and the infrared transmitting device 150 may be partially connected, or all connected, or arranged at intervals, which can satisfy the different settings of the above-mentioned components.
  • the location requirements are not specifically limited in this disclosure.
  • the window corresponding to the camera device 120 on the buffer part 170 can be set in the middle position of the front side of the device main body 200 , such as the window 171 shown in FIG.
  • the corresponding positions of the device 110 are respectively provided with windows; and the windows corresponding to the infrared receiving device 160 and the infrared transmitting device 150 are located at the upper position of the protective plate, and the windows of the infrared receiving device and the infrared transmitting device are arranged at intervals, and are connected with the camera device and the infrared transmitting device.
  • the window corresponding to the camera device and the window corresponding to the line laser transmitter are set at intervals.
  • the buffer member 170 can be equivalent to the strike plate of the equipment main body 200.
  • the camera device 120, the camera device 120, the line laser transmitter 110 and the pile return positioning device 190 are first assembled.
  • the fixing base 140 is installed on the device main body 200 , and then the buffer member 170 (eg, a striker plate) is connected to the fixing base 140 or the device main body 200 .
  • the buffer member 170 includes a strike plate 172 and an elastic member, the strike plate 172 and the device main body 200 are connected by the elastic member, the line laser module is located inside the strike plate 172, and the elastic member
  • the force of the collision plate 172 acting on the device main body 200 and the line laser module can be reduced, which plays a certain buffering effect and further reduces the impact of the obstacle on the setting main body and the line laser module. damage to the group.
  • the rubber cushion By arranging a rubber cushion on the outside of the collision plate 172, when the buffer member 170 collides with an obstacle, the rubber cushion is in direct contact with the obstacle, that is, the rubber cushion has a good protective effect on the collision plate 172, and the rubber
  • the cushion layer is an elastic part, which can further play a role of buffering. That is to say, the present disclosure enables the buffer member 170 to have a double-layer buffer function through the elastic member and the rubber cushion layer, which greatly reduces the possibility of damage to the device main body 200 and the line laser module caused by obstacles, and improves the self-moving device. reliability.
  • the elastic members are elastic columns and/or springs, and may also be other elastic members that meet the requirements.
  • the self-moving device further includes an infrared fill light 180 and an ambient light sensor.
  • the ambient light sensor is used to detect the brightness of the ambient light
  • the infrared fill light 180 It is arranged on the buffer part 170 and is close to the window 171 corresponding to the camera 120 , so that the current ambient light does not satisfy the exposure of the camera 120 when the ambient light is weak and cannot satisfy the clear and accurate capture of the ambient image by the camera 120 .
  • the infrared fill light 180 is used to fill light to meet the shooting requirements of the camera 120 , to ensure that the camera 120 can clearly and accurately capture environmental images, and to improve the accuracy of obstacle recognition.
  • the controller of the self-moving device is connected with the infrared fill light 180 and the ambient light sensor, and controls the working state of the infrared fill light 180 according to the detection signal of the ambient light sensor, so as to complement the exposure operation of the camera 120.
  • Light For example, when the ambient light sensor detects that the ambient light is dark and the ambient light is insufficient, the exposure operation requirements of the camera device 120 cannot be met, or under the circumstance of the ambient light, the second ambient image captured by the camera device 120 cannot be accurately and clearly captured.
  • the ambient light sensor sends a signal to the controller, and the controller controls the infrared fill light 180 to work according to the received signal, and increases the illumination, so that the ambient light after the fill light meets the shooting requirements of the camera 120, According to the relatively clear second environment image captured by the camera device 120 , the type of the obstacle can be confirmed accurately and quickly.
  • the ambient light sensor detects that the ambient light is bright enough to meet the requirements of the exposure operation of the camera 120
  • the ambient light sensor sends a signal to the controller, and the controller controls the infrared fill light 180 to stop working according to the received signal. , is conducive to saving energy.
  • the controller of the self-mobile device may determine the intensity of the ambient light based on the brightness of the image captured by the camera, so as to control the turn-on or turn-off of the fill light.
  • the ambient light sensor is arranged on the fixing seat 140
  • the ambient light sensor is arranged on the buffer member 170
  • the ambient light sensor is arranged on the fixing seat 140 and the buffer member 170, the ambient light sensor
  • the different arrangement positions of the light sensor can meet the requirements of different structures of the ambient light sensor, different structures of the buffer member 170, and different structures of the fixing seat 140. It can be understood that, arranging the ambient light sensor on at least one of the fixing base 140 and the buffer part 170 realizes the modular design of the sensing system of the self-moving device, which is convenient for equipment and maintenance. It can be understood that the ambient light sensor can also be provided on the device body 200 .
  • the number of the infrared fill light 180 is one, two or more, and other numbers that meet the requirements, which are not specifically limited in the present disclosure.
  • the infrared fill light 180 is arranged below, and/or on the side, and/or above the window 171 corresponding to the camera device 120, and on the buffer member. No specific limitation is made.
  • the infrared fill light 180 is an LED infrared fill light 180, and may also be other infrared fill lights 180 that meet the requirements.
  • An embodiment of a third aspect of the present disclosure provides a self-moving device, including: a device body;
  • controller line laser module, the line laser module includes a camera device and a line laser transmitter, the line laser module is arranged on the main body of the equipment, the controller is connected with the camera device and the line laser The transmitter is electrically connected and controls the self-moving device according to the environmental image captured by the camera.
  • the mobile device further includes: an infrared fill light, which is arranged on the buffer component; the controller is connected to the fill light, and is used to control the turning on or off of the infrared fill light.
  • the camera device collects a first environment image when the line laser transmitter is turned on, and collects a second environment image when the fill light is turned on; the target object and the camera device are obtained according to the first environment image. The distance between them; the target object is identified according to the second environment image.
  • the camera device collects a third environment image; the pixels in the first environment image correspond to those in the third environment image.
  • the pixel points of the positions are different to obtain a corrected laser image; and the distance between the target object and the camera device is obtained according to the corrected laser image.
  • the first environment image is collected and obtained by the camera device under a preset first exposure parameter; the second environment image is collected and obtained by the camera device under the second exposure parameter, and the first environment image is obtained.
  • the second exposure parameter is obtained according to the imaging quality of the second environment image of the previous frame collected and combined with the exposure parameter at that time; wherein, the exposure parameter includes exposure time and/or exposure gain.
  • a filter is provided in front of the camera, so that only infrared light can enter the camera.
  • the camera device uses fixed exposure at time t1
  • the opening time of the left-line laser transmitter is consistent with the exposure time of the camera device
  • the camera device uses fixed exposure at time t2
  • the turn-on time of the right-line laser is consistent with the exposure time of the camera device
  • the fill light device is turned on at time t3
  • the camera device uses automatic exposure
  • the exposure parameters refer to the previous frame for object recognition.
  • the exposure parameters include exposure time and/or exposure gain, that is, the first environment image is acquired by the camera under the preset first exposure parameter, the second environment image is acquired by the camera under the second exposure parameter, and the second exposure
  • the parameters can be obtained according to the imaging quality of the second environment image of the previous frame acquired and in combination with the exposure parameters at that time.
  • the camera device may acquire a third environment image, stop emitting laser light of the first predetermined wavelength and light of the second predetermined wavelength when acquiring the third environment image, and the target object is not irradiated by the laser light or supplementary light.
  • the third environment image is used to perform operations with the first environment image and the second environment image, to remove background noise, further reduce the influence of lights, strong light, etc., to ensure that all laser emitting devices and supplementary light devices are turned off to shoot a
  • the purpose of shooting is to make a difference between the pixels in the first environment image and the corresponding pixels in the third environment image to obtain a corrected laser image, so as to reduce the influence of the external light source on the line laser as much as possible. For example, when the target object is illuminated by natural light, a natural light image is obtained, the laser ranging result of the target object in the scene under sunlight is optimized, and then the distance between the target object and the camera device can be obtained according to the corrected laser image.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • General Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Optical Radar Systems And Details Thereof (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

公开一种线激光模组和一种自移动设备。线激光模组用于自移动设备,包括:摄像装置,用于采集环境图像;线激光发射器,设置于摄像装置的两侧,并用于发出投影呈线形的激光,摄像装置和线激光发射器配合工作;回桩定位装置,用于接收充电桩发射的红外信号。由此,将与充电桩通讯连接的感知部件,与对设备主体前方进行路况测量的感知部件集成为线激光模组,实现了感知系统的模块化设计,便于装配和维修。

Description

线激光模组和自移动设备
相关申请的交叉引用
本申请要求2021年3月8日提交的中国专利申请号202110252310.2的优先权,该中国专利申请的全部内容通过引用并入本文。
技术领域
本公开涉及清洁设备领域,具体而言涉及一种线激光模组和一种自移动设备。
背景技术
随着技术的发展,出现了各种各样的具有智能系统的机器人,比如扫地机器人、拖地机器人、吸尘器、除草机等。这些机器人可以在无使用者操作的情况下,在某一区域自动行进并进行清洁或清除操作。机器人通常通过距离测量的方式进行避障,并通过感应部件与充电桩进行通讯连接和定位对接。
发明内容
在公开内容部分中引入了一系列简化形式的概念,这将在具体实施方式部分中进一步详细说明。本公开的此部分并不意味着要试图限定出所要求保护的技术方案的关键特征和必要技术特征,更不意味着试图确定所要求保护的技术方案的保护范围。
本公开第一方面的实施例,提供了一种线激光模组,包括:摄像装置,用于采集环境图像;线激光发射器,设置于摄像装置的两侧,并用于发出投影呈线形的激光,摄像装置和线激光发射器配合工作;回桩定位装置,用于接收充电桩发射的红外信号。
可选地,线激光模组还包括:摄像装置的前方设置有滤光片,用于使得仅仅红外光能够进入摄像装置;回桩定位装置还包括用于发射红外信号的红外发射装置。
可选地,线激光模组还包括:固定座,摄像装置、线激光发射器、回桩定位装置设置于固定座。
可选地,线激光发射器与固定座活动连接,和/或固定座为活动结构,以使线激光发射器的方位朝向角和旋转角可调节。
可选地,固定座包括本体和连接件,摄像装置设置于本体,线激光发射器穿设于连接件,线激光发射器与连接件转动连接,能够对线激光发射器的旋转角进行调节,连接件与本体活动连接,能够对线激光发射器的方位朝向角进行调节。
可选地,本体设置有定位槽,连接件设置有与定位槽相适配的凸起结构,凸起结构能够在定位槽内水平转动以带动线激光发射器相对于本体转动。。
可选地,固定座包括本体、端部和连接部,端部位于本体的至少一侧,并通过连接部与本体连接,摄像装置设置于本体,线激光发射器设置于端部;其中,连接部与本体枢转连接,能够对线激光发射器的方位朝向角进行调节,端部与连接部转动连接,能够对线激光发射器的旋转角进行调节。
可选地,固定座包括本体、端部和限位部,端部位于本体的两侧,摄像装置设置于本体,线激光发射器设置于端部;其中,端部与本体转动连接,能够对线激光发射器的旋转角和方位朝向角进行调节,限位部设于端部和本体之间并对端部相对于本体的转动进行限位。
可选地,固定座包括本体和位于本体两侧的端部,摄像装置设置于本体,线激光发射器活动地设置于端部;其中,端部与本体枢转连接,能够对线激光发射器的方位朝向角进行调节,线激光发射器与端部转动连接,能够对线激光发射器的旋转角进行调节。
可选地,固定座设置有安装腔,线激光发射器活动地设置于安装腔内,安装腔包括第一端和第二端,第一端的横截面面积小于第二端的横截面面积,且第一端的横截面面积大于线激光发射器的横截面面积;其中,线激光发射器的前端靠近第一端,线激光发射器相对于安装腔转动,能够对线激光发射器的旋转角进行调节,线激光发射器的后端相对于前端摆动,能够对线激光发射器的方位朝向角进行调节。
可选地,线激光发射器呈圆柱状,线激光发射器的外周侧设置有第一台阶结构;固定座设置有用于安装线激光发射器的安装槽,安装槽的内壁设置有第二台阶结构;其中,第一台阶结构和第二台阶结构相适配,用于对线激光发射器沿轴向方向的移动进行限位。
本公开的第二方面的实施例,提供了一种自移动设备,包括:设备主体;控制器;第一方面任一实施例的线激光模组,线激光模组设置于设备主体,控制器与摄像装置和线激光发射器电连接,并根据摄像装置捕获的环境图像 对自移动设备进行功能控制。
可选地,自移动设备还包括:充电桩,与设备主体适于连接或分离,充电桩包括红外发射装置,用于发射红外信号;其中,控制器与线激光模组的回桩定位装置相连接,并根据回桩定位装置接收到的红外信号引导设备主体与充电桩进行对接,并在设备主体与充电桩成功对接时,向充电桩发射红外信号。
可选地,自移动设备还包括:缓冲部件,设置于设备主体的前侧,线激光模组位于缓冲部件与设备主体之间,缓冲部件与线激光模组的摄像装置、线激光发射器、回桩定位装置相对的位置处设置有窗口。
可选地,自移动设备还包括:补光灯,设置于缓冲部件;控制器与补光灯相连接,用于控制补光灯的开启或者关闭。
可选地,自移动设备还包括:设备控制模块,与摄像装置电连接,并且根据摄像装置捕获的环境图像中的障碍物位置信息和障碍物类型信息来控制自移动设备移动。
可选地,自移动设备还包括:主控单元,与摄像装置和设备控制模块电连接,并且对摄像装置捕获的环境图像进行处理以得到障碍物位置信息和障碍物类型信息,其中,设备控制模块从主控单元接收障碍物位置信息和障碍物类型信息。
可选地,自移动设备还包括:存储器,与主控单元和设备控制模块电连接,并且接收并存储来自主控单元的障碍物位置信息和障碍物类型信息,其中,设备控制模块从存储器接收障碍物位置信息和障碍物类型信息。
可选地,在自移动设备中,设备控制模块与主控单元彼此独立或集成在一起。
可选地,自移动设备还包括:提醒装置,与设备控制模块连接,并且在设备控制模块的控制下通过发声和发光中至少一种方式发出警报。
根据本公开实施例所提供的线激光模组和自移动设备,线激光模组包括回桩定位装置、摄像装置、线激光发射器,即将与充电桩通讯连接的感知部件,与对设备主体前方进行路况测量的感知部件集成为线激光模组,实现了感知系统的模块化设计,便于装配和维修。
附图说明
本公开的下列附图在此作为本公开实施例的一部分用于理解本公开。附 图中示出了本公开的实施例及其描述,用来解释本公开的原理。
附图中:
图1为根据本公开的一个可选实施例的线激光模组的部分结构示意图;
图2为根据本公开的另一个可选实施例的线激光模组的结构示意图;
图3为根据本公开的一个可选实施例的保护板的部分结构示意图;
图4为根据本公开的一个可选实施例的线激光发射器的工作原理示意图;
图5为根据本公开的一个可选实施例的线激光发射器与摄像装置视场角关系示意图;
图6为根据本公开的一个可选实施例的固定座的部分结构示意图;
图7为根据本公开的另一个可选实施例的固定座的部分结构示意图;
图8为根据本公开实施例中一种分时控制时间点图。
附图标记说明
110:线激光发射器          111:第一台阶结构
120:摄像装置              140:固定座
141:本体                  142:端部
143:连接件                144:定位槽
145:凸起结构              146:连接部
147:限位部                148:限位孔
149:第二台阶结构          150:红外发射装置
160:红外接收装置          170:缓冲部件
171:窗口                  180:补光灯
190:回桩定位装置          200:设备主体
具体实施方式
在下文的描述中,给出了大量具体的细节以便提供对本公开所提供的技术方案更为彻底的理解。然而,对于本领域技术人员而言显而易见的是,本公开所提供的技术方案可以无需一个或多个这些细节而得以实施。
应予以注意的是,这里所使用的术语仅是为了描述具体实施例,而非意图限制根据本公开的示例性实施例。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式。此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在所述特征、整体、步骤、操作、元件和/或组件,但不排除存在或附加一个或多个其他特征、整体、 步骤、操作、元件、组件和/或它们的组合。
现在,将参照附图更详细地描述根据本公开的示例性实施例。然而,这些示例性实施例可以多种不同的形式来实施,并且不应当被解释为只限于这里所阐述的实施例。应当理解的是,提供这些实施例是为了使得本公开的公开彻底且完整,并且将这些示例性实施例的构思充分传达给本领域普通技术人员。
本公开的可选实施例提供了一种线激光模组,本公开另外的可选实施例提供了一种自移动设备,其中,线激光模组是应用于自移动设备的,具体地,自移动设备是智能清洁设备,如扫地机器人、拖地机器人、地面抛光机器人或除草机器人。为了便于描述,本实施方式以扫地机器人为例来描述本公开的技术方案。
在本公开的一个可选实施例中,自移动设备可以包括:设备主体200、感知系统、控制系统、驱动系统、清洁系统、能源系统和人机交互系统等。各个系统相互协调配合,使清洁设备能够自主移动以实现清洁功能。清洁设备中构成上述各系统的功能元件等集成地设置在设备主体200内。
设备主体200具有近似圆形的形状(前后都为圆形),也可具有其他形状,包括但不限于前方后圆的近似D形形状。感知系统包括位于设备主体200上方或侧方的线激光模组,控制系统的控制器与线激光模组相连接,并根据线激光模组的感知结果对自移动设备进行功能控制。
在公开请提供的实施例中,并不限定线激光模组在设备主体200的具体位置。例如可以是但不限于设备主体200的前侧、后侧、左侧、右侧、顶部、中部以及底部等等。进一步,线激光模组设置在设备主体200高度方向上的中部位置、顶部位置或底部位置。
在本公开提供的一些可以实现的实施例中,自移动设备向前移动执行作业任务,为了更好的探测前方的环境信息,线激光模组设置于设备主体200的前侧;前侧是自移动设备向前移动过程中设备主体200朝向的一侧。
进一步地,自移动设备还包括充电桩,充电桩与设备主体200适于连接或分离,如设备主体200需要进行充电时,与充电桩对接充电,当设备主体200进行清扫时,与充电桩分离进行清扫操作。充电桩包括红外发射装置,用于发射红外信号。可以理解的是,在设备主体200需要回桩充电时,设备主体200需要与充电桩进行匹配定位和通讯连接。
如图1和图2所示,线激光模组包括:摄像装置120,用于采集环境图 像;线激光发射器110,设置于摄像装置120的至少一侧,并用于发出投影呈线形的激光,摄像装置120和线激光发射器110配合工作;回桩定位装置190,用于接收充电桩发射的红外信号。
本公开实施例提供的线激光模组,通过摄像装置120和线激光发射器110相互配合,能够对设备主体200前方的路况进行感知,如对设备主体200前方的障碍物或地形进行识别,以进行对应的避障操作或清扫操作。通过线激光模组还包括回桩定位装置190,当线激光模组安装在设备主体200上并在设备主体200回充过程中,控制器控制回桩定位装置190在充电桩附近搜索红外信号,并在回桩定位装置190接收到红外信号时,根据红外信号引导设备主体200与充电桩进行对接充电。即回桩定位装置190实现与充电桩的通讯连接和匹配定位,红外发射装置150实现与充电桩的通讯连接。也就是说,本实施例提供的线激光模组包括回桩定位装置190、摄像装置120、线激光发射器110,进而将与充电桩通讯连接和匹配定位的感知部件,与对设备主体200前方进行路况测量的感知部件集成为线激光模组,实现了感知系统的模块化设计,便于装配和维修。
进一步地,回桩定位装置190还包括用于发射红外信号的红外发射装置150,当设备主体200与充电桩成功对接时,控制器控制红外发射装置150向充电桩发射红外信号,以对设备主体200进行充电。也就是说,回桩定位装置190包括红外接收装置160和红外发射装置150,其中,红外接收装置160用于接收红外信号,红外发射装置150用于发射红外信号,本实施例将红外接收装置160和红外发射装置150与摄像装置120、摄像装置120、线激光发射器110均设置在固定座140上,实现了感知系统的模块化设计,便于装配和维修。
进一步地,线激光模组与设备主体200为可拆卸连接,当红外发射装置150或红外接收装置160发生故障时,将线激光模组从设备主体上拆卸下来对红外发射装置150或红外接收装置160进行维修,并与充电桩进行调试,由于红外发射装置150和红外接收装置160为线激光模组的部件,即红外发射装置150和红外接收装置160设置在线激光模组上,而线激光模组与设备主体200相比,体积小、重量轻,因此,在对红外发射装置150和红外接收装置160进行维持和调试过程中,便于操作人员对线激光模组进行搬运和移动。
具体地,线激光模组还包括固定座140,摄像装置120、线激光发射器110、回桩定位装置190均设置于固定座140,进而实现线激光模组的模块块设计。可以理解的是,通过固定座140与设备主体200相连接,将线激光模组装配至设备主体上。
进一步地,回桩定位装置190的红外接收装置160包括红外灯,红外接收装置160的数量为至少两个,如红外接收装置160的数量可以为两个、三个、四个或满足要求的其他数量个。回桩定位装置190的红外发射装置150包括红外灯,红外发射装置150的数量为一个、两个、三个或满足要求的其他数量个。具体地,回桩定位装置190的红外接收装置160和红外发射装置150均为红外灯,多个红外灯沿固定座140的长度方向间隔地分布在固定座140的顶部,这样的设置,有利于确保红外接收装置160接收进场红外信号的可靠性,以及确保设备主体200与充电桩通讯连接的可靠性。可以理解的是,红外接收装置160和红外发射装置150也可以设置在满足要求的其他位置,本公开不做具体限定。
进一步地,线激光发射器110用于发出投影呈线形的激光,如线激光发射器110对外发射激光平面,激光平面到达障碍物后会在障碍物表面形成一条线激光,通过该线激光来探测环境图像。其中,图1所示的平面AOB表征线激光发射器110的与线激光垂直的平面,图4所示的平面ABF和平面CDE表征线激光发射器110的激光平面,图4中的线段AB和线段CD表征线激光。具体地,线激光发射器110可以为激光管,可以理解的是,线激光发射器110也可以为满足要求的其他结构,本公开不做具体限定。可以理解的是,也可以在线激光发射器110的发射方向(如前方)设置波浪镜,具体地,波浪镜为凹透镜,如在激光管的前方设置凹透镜,激光管发射特定波长的光(如红外光),经过凹透镜后,变成发散的光线,从而在垂直光路的平面上形成为一条直线。
如图4和图5所示,线激光发射器110分布在摄像装置120的至少一侧,摄像装置120与线激光发射器110相互配合工作,即摄像装置120采集的第一环境图像为线激光发射器110发射出的线激光经障碍物反射的反射光线,根据第一环境图像能够测量障碍物与设备主体200、或线激光模组之间的距离,进而进行对应的避障操作。可以理解的是,线激光发射器110可以为一对,一对线激光发射器110分布在摄像装置120的两侧。
在本实施例中,为了使摄像装置120能够及时、准确地采集线激光探测 的环境图像,需要使线激光位于摄像装置120的视场角范围内。如图4所示为线激光发射器110的工作原理示意图,其中,字母P表示摄像装置120,字母E和F表示位于摄像装置120两侧的线激光发射器110;直线PM和PN表示摄像装置120的水平视场的两个边界,即∠MPN表示摄像装置120的水平视场角。线激光发射器110对外发射激光平面FAB和激光平面ECD,激光平面到达障碍物后会在障碍物表面形成一条线激光,即图4中所示线段AB和线段CD。由于线激光发射器110发射出去的线激光线段AB和线段CD位于摄像装置120的视场范围内,使得线激光可帮助探测摄像装置120视场角内的物体的轮廓、高度和/或宽度等信息,摄像装置120可采集由线激光探测到的环境图像。
进一步地,控制器根据摄像装置120采集的第一环境图像,可以计算出线激光模组或线激光模组所在的设备主体200到前方障碍物的距离,具体地,利用三角测距法即可计算线激光模组或设备主体200与其前方障碍物的距离。具体地,如图5所示,图4为图4所示实施例的一个视角的示意图。其中,字母P表示摄像装置120,字母E和F表示位于摄像装置120两侧的线激光发射器110;A点表示线段AB在水平面内的投影,D点表示线段CD在水平面内的投影,∠MPN表示摄像装置120的水平视场角,O点表示线激光发射器110发射的线激光与摄像装置120的光轴的交点。以线激光发射器F为例,当线激光发射器110和摄像装置120均固定安装至固定座140后,摄像装置120的焦距是已知的,线激光发射器F的发射角是已知的,即直线FA与光轴PO之间的夹角是已知的,线段OP之间的距离是已知的;线激光发射器F与摄像装置120在水平面内的中心垂直距离是已知的,定义由摄像装置120采集到的由障碍物A点反射的环境图像为A’点,由于A’点会较摄像装置120的光轴直线PO发生一定偏移,且该偏移量已知,根据三角形相似原理,结合上述已知条件,即可测量A与F之间的距离,即能够得到障碍物与线激光发射器110之间的距离。可以理解的是,也可以根据摄像装置120采集的由线激光经障碍物反射后的线段的变形特征,来确定前方的地形情况,以确定具体的功能操作,如进行避障操作或继续清扫操作。
在本公开提供的一些可能实现的实施例中,对摄像装置120的数量不做具体限定,如摄像装置120可以为一个、两个、三个或满足要求的其他数量个。具体地,摄像装置120可以为单目摄像头,也可以为双目摄像头。可以理解的是,在本实施例中,对线激光发射器110的总数量也不做具体限定, 例如线激光发射器110可以是两个或者两个以上。对于分布于摄像装置120的每一侧的线激光发射器110的数量也不做限定,摄像装置120每一侧的线激光发射器110的数量可以是一个、两个或多个;另外,摄像装置120两侧的线激光发射器110的数量可以相同,也可以不相同。可以理解的是,当摄像装置120任一侧的线激光发射器110的数量为多个时,多个线激光发射器110可以均匀分布也可以非均匀分布,本公开不做具体限定。
进一步地,在一些可能实现的实施例中,摄像装置120既能够实现对设备主体200前方障碍物的距离测量,同时,也能够对障碍物的种类进行识别。如利用时序的不同,利用摄像装置120分别进行障碍物的距离测量和障碍物的种类识别。举例而言,控制器先根据摄像装置120采集的环境图像中的一部分,确定障碍物的种类,根据障碍物的种类确定设备主体200是否需要进行避障操作,并在设备主体200需要进行避障操作时,控制器根据摄像装置120采集的环境图像中的另一部分,来确定障碍物的距离,以进行对应的避障操作,在设备主体200不需要进行避障操作时,则直接进行清扫操作,从而减少了自移动设备避障误操作的可能性。
在本公开的一些实施例中,线激光发射装置110可包括线激光发射器和激光驱动电路,其中,线激光驱动电路可接收驱动信号,并根据驱动信号驱动线激光发射器发射线激光。
进一步的,激光驱动电路可包括放大电路,通过放大电路可对驱动信号进行放大,并将放大后的驱动信号向线激光发射器发送,以使线激光发射器发光。在本公开的一些实施方式中,驱动信号可包括控制信号和调节信号,可通过控制信号控制线激光发射器开或关,通过调节信号调节线激光发射器的发射功率。具体而言,放大电路可包括第一放大电路和第二放大电路,其中:
第一放大电路用于接收主控单元发出的控制信号,并将控制信号放大后发送给线激光发射器,以控制线激光发射器开启和关闭。
第二放大电路用于接收主控单元发出的调节信号,将调节信号放大后发送给线激光发射器,以控制线激光发射器的发射功率。
第一放大电路和第二放大电路的具体结构在此不做特殊限定,只要能实现信号放大功能即可。
在本公开提供的一些可能实现的实施例中,线激光模组包括:主体部和 第一环境图像采集组件,其中,第一环境图像采集组件包括设置于主体部的摄像装置、至少一对线激光发射装置和第一环境图像处理模块,一对线激光发射装置位于摄像装置的两侧,并用于发出投影呈线形的线激光,摄像装置与线激光发射装置相互配合工作,并用于采集第一环境图像;第一环境图像处理模块可根据第一环境图像获取障碍物位置信息。
在本实施例中,在线激光开启的情况下,摄像装置采集的第一环境图像用于对障碍物的距离进行测量;在线激光关闭和补光灯开启的情况下,摄像装置采集的第二环境图像用于对障碍物的种类进行识别。因此,根据摄像装置120捕获的第二环境图像能够确定障碍物的种类,根据障碍物的种类确定设备主体200是否需要进行避障操作,并在设备主体200需要进行避障操作时,通过摄像装置120和线激光发射器110相互配合确定障碍物的距离,以进行对应的避障操作,在设备主体200不需要进行避障操作时,则直接进行清扫操作,从而减少了自移动设备避障误操作的可能性。
具体地,第二环境图像的数量为多个,如500个、1000个或满足要求的其他数量个,如可以通过调整摄像装置120的曝光频率确定第二环境图像的数量。控制系统将摄像装置120拍摄的多个第二环境图像进行图像分割。然后将分割后的分割图像输入到训练好的障碍物模型中,然后对分割图像进行特征提取,将提取的特征信息与训练好的障碍物模型进行置信度匹配,根据置信度匹配结果,来确定障碍物的种类。
也就是说,本公开实施例提供的线激光模组,通过摄像装置120获取的第二环境图像能够确定障碍物的种类,进而使得自移动设备能够根据障碍物的种类确定避障操作或按原清扫路线进行清扫操作。并在需要进行避障操作时,控制器控制摄像装置120和线激光发射器110配合工作,并根据摄像装置120获取的第一环境图像确定障碍物与线激光模组或设备主体200之间的距离,以执行对应的避障操作。
例如,根据摄像装置120捕获的第二环境图像确定障碍物为气球,由于气球的重量较轻,驱动系统驱动设备主体200移动即可带动气球移动,即气球并不会影响清扫路线,因此,控制器控制设备主体200按照原清扫路线执行清扫操作,而不执行避障操作,能够对气球所在位置处进行清扫,有利于扩大清扫范围。
又例如,根据摄像装置120捕获的第二环境图像确定障碍物为椅子,由于椅子的重量较重,如果按照原清扫路线进行清扫,设备主体200会与椅子 发生碰撞存在损坏的可能性,即椅子影响了清扫路线,因此,控制器控制设备主体200进行避障操作以改变清扫路线。即控制器控制线激光发射器110工作发射线激光,摄像装置120捕获从椅子反射回来的反射光线的第一环境图像,控制器根据第一环境图像确定线激光模组或设备主体200到椅子之间的距离,进而根据该距离重新规划清扫路线以进行避障操作,提高了避障效果。
在本公开提供的一些可能实现的实施例中,摄像装置120为黑白摄像头,黑白摄像头的前方设置有红外透镜,只允许红外光通过,可以理解的是,与摄像装置120配合工作的线激光发射器110为红外激光管,发射的是红外激光。
在本公开的一些实施例中,还包括第二环境图像处理模块,该第二环境图像处理模块可包括特征提取模块和识别模块,其中:
特征提取模块用于对第二环境图像进行特征提取,得到特征信息。
举例而言,可将第二环境图像中满足一定条件的像素的灰阶信息和位置信息作为特征信息。具体而言,可通过特征提取模块对第二环境图像进行预处理,例如,对第二环境图像进行二值化等。然后,再获取预处理后的第二环境图像中各个像素的灰阶信息和位置信息。再将对预设的灰阶范围与每个像素的灰阶信息进行比较,得出位于灰阶范围内的灰阶信息和对应的像素的位置信息,作为特征信息。
当然,还可通过其它方式在第二环境图像中提取特征信息,在此不做特殊限定。
识别模块用于将特征信息输入预先训练的障碍物识别模型,以识别出障碍物类型信息。
障碍物识别模型可为预先通过障碍物图像的样本训练而得到,其可以是神经网络模型,也可以是分类器或其它模型,只要能根据特征信息判断出第二环境图像中是否存在障碍物即可。障碍物识别模型的训练方法,以及判断是否存在障碍物的具体工作过程,在此不做特殊限定。本公开中的障碍物可以是纸屑、书本、桌腿、门、冰箱、窗帘等在此不再一一列举。
识别模块可在判断第二环境图像中存在障碍物时,将特征信息输入至预先训练的障碍物分类模型中,识别障碍物类型信息。
障碍物分类模型可为预先通过障碍物分类的样本训练而得到,其可以是 神经网络模型,也可以是分类器或其它模型,只要能根据特征信息判断出障碍物的类型即可。障碍物识别模型的训练方法,以及判断是否判断障碍物的类型具体工作过程,在此不做特殊限定。相应的,第二环境图像处理模块还包括训练模块,用于使用所收集的训练数据来生成障碍物识别模型。
本公开中,可根据障碍物的尺寸将障碍物分为三种类型,举例而言:
第一种是可以驶过,且能够清扫的障碍物,例如纸屑等。
第二种是无法驶过,但需要清扫的障碍物,例如书本等。
第三种是无法驶过,且无需清扫的障碍物,例如门、墙壁、桌腿等。
进一步地,如图1和图2所示,固定座140包括本体141和位于本体141两侧的端部142,摄像装置120、红外发射装置150、红外接收装置160装配在本体141上,线激光发射器110装配在端部142上。
在本公开提供的一些可能实现的实施例中,通过线激光发射器110与固定座140活动连接,和/或固定座140为活动结构,使得通过调整线激光发射器110相对于固定座140的位置,和/或调整固定座140自身各部件的相对位置,能够对线激光发射器110的方位朝向角和旋转角进行调节,进而在将线激光发射器110装配至固定座140时,方便对线激光发射器110发射的线激光的照射角度和照射范围进行调节,以快速、方便地实现线激光发射器110的自身校准以及与摄像装置120的配合校准,操作简单方便,有利于提高装配效率。
进一步地,调整线激光发射器110的旋转角可以使线激光垂直于水平面,即实现线激光发射器110的自身校准。调整线激光发射器110的方位朝向角能够对线激光与摄像装置120的光轴之间的角度进行调整,进而使得线激光位于摄像装置120的视场角范围内,即实现线激光发射器110与摄像装置120的配合校准,以确保摄像装置120能够准确、全面的捕获由线激光发射器110发射的光线经障碍物反射的反射光线,提高摄像装置120获取环境图像的准确性和全面性。可以理解的是,通过对摄像装置120两侧的线激光发射装置110分别调整方位朝向角,之后对两侧的线激光进行点胶固定。通过合理调节线激光发射器110的旋转角,使线激光与水平面垂直,有利于提高测距范围。具体地,一方面,线激光发射器110与固定座140活动连接,使得通过调整线激光发射器110相对于固定座140的位置,能够对线激光发射器110的方位朝向角和旋转角进行调节;另一方面,固定座140为活动结构,使得通过调整固定座140自身各部件的相对位置,能够对线激光发射器110的方 位朝向角和旋转角进行调节;再一方面,线激光发射器110与固定座140活动链接,且固定座140为活动结构,使得调整线激光发射器110相对于固定座140的位置、且调整固定座140自身各部件的相对位置,能够对线激光发射器110的方位朝向角和旋转角进行调节。本公开公开提供的实施例通过不同的方式对线激光发射器110的方位朝向角和旋转角进行调节,能够满足固定座140不同结构、线激光发射器110与固定座140不同连接方式的需求。
在本公开提供的一些可能实现的实施例中,如图1所示,线激光发射器110与固定座140活动连接,固定座140为活动结构。具体地,固定座140包括本体141、端部142和连接件143,摄像装置120设置于本体141,线激光发射器110通过连接件143与端部142相连接,其中,连接件143设置有通孔,线激光发射器110通过通孔穿设于连接件143,且线激光发射器110与连接件143转动连接,即线激光发射器110能够在连接件143的通孔内转动,进而对线激光发射器110的旋转角进行调整,以使线激光垂直于水平面,扩大测距范围。通过连接件143与端部142活动连接,如连接件143相对于端部142可水平转动,具体地,连接件143相对于端部142在平行于水平面的平面内转动,即连接件143相对于端部142旋转的转轴为竖直方向的直线,使得连接件143带动线激光发射器110相对于端部142进行转动,能够对线激光发射器110的方位朝向角进行调节,以使线激光发射器110发射的线激光位于摄像装置120的视场角内。方位朝向角
可以理解的是,由于线激光发射器110相对于连接件143可转动,连接件143相对于端部142可移动,使得在校准过程中,通过将线激光发射器110在连接件143的通孔内转动至合适位置,即可实现对线激光发射器110旋转角的校准,即实现线激光发射器110的自我校准。通过将连接件143相对于端部142移动至合适位置,即可实现对线激光发射器110的方位朝向角的校准,即实现线激光发射器110与摄像装置120的配合校准,操作简单,校准方便。可以理解的是,当线激光发射器110的旋转角和方位朝向角校准完成后,可以利用固定装置将连接件143、端部142、线激光发射器110固定连接,如利用粘结剂、胶水等将端部142、本体141、线激光发射器110固定住,操作简单。
在本实施例中,进一步地,本体141设置有定位槽144,连接件143设置有与定位槽144相适配的凸起结构145,通过凸起结构145在定位槽144内水平转动,具体地,凸起结构145沿竖直方向凸起,使得连接件143相对 于端部142在平行于水平面的平面内旋转,即连接件143相对于本体141旋转的转轴为竖直方向的直线,因此,连接件143的凸起结构145在端部142的定位槽144内水平转动,能够带动线激光发射器110相对于端部142以凸起结构145为转轴进行水平转动,进而能够使线激光发射器110发射的线激光位于摄像装置120的视场角内,以实现线激光发射器110与摄像装置120的配合校准,结构简单,操作方便。可以理解的是,定位槽144可以为圆形定位槽,凸起结构145为圆柱状凸起结构,通过圆形定位槽和圆柱状凸起结构相配合,有利于提高连接件143相对于本体141转动的灵活性和可靠性。可以理解的是,定位槽144也可以为满足要求的其他形状的槽结构。
在本公开提供的一些可能实现的实施例中,固定座140为活动结构。如图7所示,其中,固定座140包括本体141、端部142和连接部146,端部142位于本体141的两侧,摄像装置120设置于本体141,线激光发射器110设置于端部142,如线激光发射器110固定或可拆卸地安装在端部142。通过连接部146与本体141枢转连接,而端部142与连接部146相连接,进而连接部146相对于本体141摆动能够对线激光发射器110的方位朝向角进行调节,以使线激光发射器110发射的线激光位于摄像装置120的视场角内。通过端部142与连接部146转动连接,当端部142相对于连接部146转动,能够对线激光发射器110的旋转角进行调整,以使线激光垂直于水平面,进而扩大测距范围。
具体地,连接部146与本体141铰接,连接部146朝向端部142的一侧设置有圆柱形凹槽,端部142设置有与圆柱形凹槽相适配的圆柱凸起,当线激光发射器110装配至端部142后,将端部142的圆柱凸起放置在圆柱形凹槽,并相对于圆柱形凹槽转动以调节线激光发射器110的旋转角,当线激光垂直于水平面后,将端部142与连接部146固定住,如利用胶水或其他限位结构固定,即可实现线激光发射器110的自我校准。然后,调整连接部146相对于本体141的摆动位置,即可对线激光发射器110的方位朝向角进行调节,当线激光发射器110发射的线激光位于摄像装置120的视场角内的合适位置后,将本体141与连接部146固定住,如利用胶水或其他限位结构固定,即可实现线激光发射器110与摄像装置120的配合校准。可以理解的是,由于固定座140为活动结构,即端部142通过连接部146与本体141活动连接,使得在校准过程中,通过合理调节端部142、连接部146、本体141的相对位置,即可实现对安装在端部142的线激光发射器110的旋转角和方位朝向角 的校准,操作简单,校准方便。可以理解的是,当线激光发射器110的旋转角和方位朝向角校准完成后,可以利用固定装置将端部142、连接部146、本体141固定连接,如利用粘结剂、胶水、限位部147等将端部142、连接部146、本体141固定住,操作简单。
在本公开提供的一些可能实现的实施例中,固定座140为活动结构。其中,固定座140包括本体141、端部142和限位部147,端部142位于本体141的两侧,摄像装置120设置于本体141,线激光发射器110设置于端部142。如图8所示,通过端部142与本体141转动连接,具体地,端部142与本体141球连接,使得端部142能够相对于本体141摆动,并能够相对于本体141转动,而线激光发射器110装配于端部142,进而通过端部142相对于本体141摆动和转动,即可实现对线激光发射器110的方位朝向角和旋转角进行调节,操作简单,校准方便。
具体地,端部142与本体141球连接,本体141设置有限位孔148,限位部147为紧定螺栓,通过端部142相对于本体141转动调整线激光发射器110的旋转角,当线激光垂直于水平面,即可实现线激光发射器110的自我校准,通过调整端部142相对于本体141的摆动位置,即可对线激光发射器110的方位朝向角进行调节,当线激光发射器110发射的线激光位于摄像装置120的视场角内的合适位置,即可实现对线激光发射器110与摄像装置120的配合校准,然后利用紧定螺栓穿过限位孔148,对端部142相对于本体141的位置进行限位固定,将端部142和本体141进行固定即可,操作简单。可以理解的是,本体141上的限位孔148的数量可以为一个、两个或多个,根据限位孔148的不同位置,设置不同数量的限位孔148,以满足端部142相对于本体141转动至不同位置,均可使紧定螺栓通过限位孔148将端部142和本体141进行固定。其中,紧定螺栓也可以为弹性件,即紧定螺栓与端部142抵接的一端为弹性件,利用弹性将端部142和本体141可靠连接。可以理解的是,端部142的球形面上也可以设置与紧定螺栓相适配的定位孔,使得紧定螺栓穿过限位孔148与定位孔配合后压紧,有利于提高端部142与本体141固定连接的可靠性。
在本公开提供的一些可能实现的实施例中,线激光发射器110与固定座140活动连接,固定座140为活动结构。如图2所示,其中,固定座140包括本体141和位于本体141两侧的端部142,摄像装置120设置于本体141,线激光发射器110设置于端部142。具体地,端部142与本体141枢转连接, 如端部142与本体141铰接,使得端部142能够相对于本体141摆动,线激光发射器110与端部142转动连接,如线激光发射器110呈圆柱状,线激光发射器110能够相对于端部142中的安装槽转动,进而能够对线激光发射器110的旋转角进行调整,以使线激光垂直于水平面,扩大测距范围。由于线激光发射器110安装至端部142,而端部142能够相对于本体141摆动,进而能够对线激光发射器110的方位朝向角进行调节,以使线激光发射器110发射的线激光位于摄像装置120的视场角内。
可以理解的是,由于线激光发射器110相对于端部142可转动,端部142与本体141枢转连接,使得在校准过程中,通过将线激光发射器110转动至合适位置,即可实现对线激光发射器110旋转角的校准,即实现线激光发射器110的自我校准,通过将端部142相对于本体141摆动至合适位置,即可实现对线激光发射器110的方位朝向角的校准,即实现线激光发射器110与摄像装置120的配合校准,操作简单,校准方便。可以理解的是,当线激光发射器110的旋转角和方位朝向角校准完成后,可以利用固定装置将端部142、本体141、线激光发射器110固定连接,如利用粘结剂、胶水等将端部142、本体141、线激光发射器110固定住,操作简单。
在本公开提供的一些可能实现的实施例中,线激光发射器110与固定座140是活动连接的,具体地,固定座140设置有用于安装线激光发射器110的安装腔,线激光发射器110活动地设置于安装腔内,安装腔包括第一端和第二端,且第一端的横截面面积小于第二端的横截面面积,也就是说,安装腔为扩口结构,通过第一端的横截面面积大于线激光发射器110的横截面面积,说明线激光发射器110能够在安装腔内活动。其中,线激光发射器110的前端靠近安装腔的第一端,通过线激光发射器110相对于安装腔转动,能够对线激光发射器110的旋转角进行调整,以使线激光垂直于水平面,扩大测距范围。通过线激光发射器110的后端相对于前端摆动,能够对对线激光发射器110的方位朝向角进行调节,以使线激光发射器110发射的线激光位于摄像装置120的视场角内。
可以理解的是,由于线激光发射器110活动地设置在固定座140的安装腔内,线激光发射器110相对于本体141既可以转动又可以摆动,使得在校准过程中,通过合理调节线激光发射器110与固定座140的安装角度和安装位置,即可实现对线激光发射器110的旋转角和方位朝向角的校准,操作简单,校准方便。可以理解的是,当线激光发射器110的旋转角和方位朝向角 校准完成后,可以利用固定装置将线激光发射器110与固定座140固定连接,如利用粘结剂、胶水等将线激光发射器110固定在固定座140上,即可完成线激光发射器110与固定座140的装配,操作简单。
在本公开提供的一些可能实现的实施例中,如图1所示,线激光发射器110呈圆柱状,线激光发射器110的外周侧设置有第一台阶结构111,固定座140设置有用于安装线激光发射器110的安装槽,安装槽的内壁设置有第二台阶结构149,通过第一台阶结构144和第二台阶结构149相适配,能够对线激光发射器110沿轴线方向的移动进行限位,有利于提高装配效率。
在本公开提供的一些可能实现的实施例中,自移动设备还包括设备控制模块,用于根据障碍物位置信息和障碍物类型信息控制自移动设备移动。设备控制模块可直接与主控单元连接,可直接获取主控单元对第一环境图像和第二环境图像处理后得到的障碍物位置信息和障碍物类型信息。或者,设备控制模块也可通过一存储器与主控单元连接,主控单元得到的障碍物位置信息和障碍物类型信息可存储于该存储器,设备控制模块可直接调用存储器中存储的障碍物位置信息和障碍物类型信息。
此外,设备控制模块与主控单元可以是分别独立的两个电路,也可以集成于同一电路中,例如,设备控制模块与主控单元可以是两个独立的芯片,也可以集成于同一芯片中。该芯片的类型在此不做特殊限定,只要能实现各自的功能即可。
设备主体200还可设有滚轮、履带等移动机构,设备控制模块可控制移动机构实现自移动设备移动。
在本公开的一些实施方式中,若第一环境图像和第二环境图像中仅一个存在障碍物,则识别结果为不存在障碍物。例如,未接收到障碍物位置信息,或障碍物类型信息中判断不存在障碍物。
若第一环境图像和第二环境图像中均存在出障碍物,则识别结果为存在障碍物,此时,可根据第二环境图像判断障碍物的类型。例如,接收到障碍物位置信息,且障碍物类型信息中判断存在障碍物。
对于第一种障碍物,则设备控制模块可控制自移动设备按照当前移动路径继续移动,并对障碍物进行清扫。
对于第二种和第三种障碍物,则可根据障碍物位置信息得出的障碍物的位置信息,并可通过设备控制模块确定自移动设备的转向距离信息、转向方 向信息及转向角度信息,从而重新规划移动路线,即规划避障路线,再控制自移动设备按照避障路线执行自动避障动作,从而避让无法清扫的障碍物。
进一步的,在本公开的一些实施方式中,自移动设备可包括提醒装置,该提醒装置可与设备控制模块连接,设备控制模块可控制提醒装置通过发声和发光中至少一种方式发出警报。对于第二种障碍物,不仅可通过上述重新规划移动路线的方式避障,还可通过提醒装置发出提示音,从而在避障的同时,提醒用户及时清洗自移动设备无法清扫的障碍物。
在本公开提供的一些可能实现的实施例中,如图3所示,自移动设备还包括缓冲部件170,缓冲部件170设置在设备主体200的前侧,线激光模组位于缓冲部件170和设备主体200之间,缓冲部件170的设置,对设备主体200和线激光模组起到了一定的保护作用,避免自移清洁设备在向前移动过程中与障碍物接触碰撞而损坏设备主体200,避免线激光模组直接暴露在外部环境中易与障碍物碰撞而损坏,进而有利于提高设备主体200和线激光模组的可靠性。
具体地,摄像装置120、线激光发射器110、回桩定位装置190位于缓冲部件170和设备主体200之间,使得缓冲部件170对摄像装置120、线激光发射器110、回桩定位装置190起到了一定的保护作用,保护摄像装置120、线激光发射器110、回桩定位装置190不受外力的破坏,有利于提高摄像装置120、线激光发射器110、回桩定位装置190的使用寿命。通过缓冲部件170与摄像装置120相对的位置处设置有窗口171,以使得外部环境光能够进入摄像装置120,通过缓冲部件170与线激光发射器110相对的位置处设置窗口,以使线激光发射器110发射的激光能够从缓冲部件170向外发射,通过缓冲部件170与回桩定位装置190相对的位置处设置有窗口,能够使回桩定位装置190接收红外信号和发射红外信号,进而确保线激光模组工作的可靠性。
可以理解的是,摄像装置120、线激光发射器110、红外接收装置160、红外发射装置150所对应的窗口可以部分相连通、或全部相连通、或相互间隔设置,能够满足上述各部件不同设置位置的需求,本公开不做具体限定。例如,可以将缓冲部件170上摄像装置120所对应的窗口设于设备主体200的前侧中间位置,如图3中所示的窗口171;缓冲部件170上与摄像装置120两侧的线激光发射器110相对应的位置处分别设置有窗口;而红外接收装置 160和红外发射装置150对应的窗口位于保护板的上部位置,且红外接收装置和红外发射装置的窗口间隔设置,并与摄像装置和摄像装置所对应的窗口、线激光发射器对应的窗口间隔设置。
可以理解的是,缓冲部件170可以相当于设备主体200的撞板,在安装线激光模组时,先将装配有摄像装置120、摄像装置120和线激光发射器110、回桩定位装置190的固定座140安装在设备主体200上,然后再将缓冲部件170(如撞板)与固定座140或设备主体200连接。
在本公开提供的一些可以实现的实施例中,缓冲部件170包括撞板172和弹性件,撞板172和设备主体200通过弹性件连接,线激光模组位于撞板172的内侧,弹性件的设置,能够在缓冲部件170与障碍物相撞时,减少撞板172作用于设备主体200、线激光模组的力,起到了一定的缓冲作用,进一步降低了障碍物对设置主体和线激光模组的损坏。通过在撞板172的外部设置橡胶垫层,使得在缓冲部件170与障碍物相撞时,橡胶垫层与障碍物直接接触,即橡胶垫层对撞板172起到了良好的保护作用,且橡胶垫层为弹性件,能够进一步起到缓冲的作用。也就是说,本公开通过弹性件和橡胶垫层,使得缓冲部件170具有双层缓冲的作用,大大降低了障碍物对设备主体200和线激光模组损坏的可能性,提高了自移动设备的可靠性。具体地,弹性件为弹性柱和/或弹簧,也可以为满足要求的其他弹性件。
在本公开提供的一些可能实现的实施例中,如图3所示,自移动设备还包括红外补光灯180和环境光传感器,环境光传感器用于检测环境光线的亮度,红外补光灯180设置在缓冲部件170上并靠近摄像装置120所对应的窗口171,使得在环境光线较弱不能满足摄像装置120清晰、准确捕获环境图像的情况下,即当前的环境光线不满足摄像装置120的曝光操作的情况下,利用红外补光灯180进行补光,以满足摄像装置120的拍摄需求,确保摄像装置120能够清晰、准确捕获环境图像,提高对障碍物识别的准确性。
进一步地,自移动设备的控制器与红外补光灯180和环境光传感器相连接,并根据环境光传感器的检测信号控制红外补光灯180的工作状态,以对摄像装置120的曝光操作进行补光。例如,当环境光传感器检测到环境光线较暗、环境光线不足,无法满足摄像装置120的曝光操作要求,或者在该环境光线情况下,通过摄像装置120拍摄的第二环境图像无法准确、清晰地确认障碍物的种类时,环境光传感器发送信号至控制器,控制器根据接收到的 信号控制红外补光灯180工作,增加光照,以使补光后的环境光线满足摄像装置120的拍摄需求,根据摄像装置120拍摄的较为清晰的第二环境图像能够准确、快速地确认障碍物的种类。可以理解的是,当环境光传感器检测到环境光线较亮满足摄像装置120的曝光操作的要求时,环境光传感器发送信号至控制器,控制器根据接收到的信号控制红外补光灯180停止工作,有利于节约能源。在可选的实施例中,自移动设备的控制器可基于摄像头所采集的图像的明暗度,来确定环境光线的强弱,从而控制补光灯的开启或关闭。
进一步地,一方面,环境光传感器设置在固定座140,另一方面,环境光传感器设置在缓冲部件170上,再一方面,环境光传感器设置在固定座140和缓冲部件170上,环境光传感器的不同设置位置能够满足环境光传感器不同结构、缓冲部件170不同结构、固定座140不同结构的需求。可以理解的是,将环境光传感器设置在固定座140和缓冲部件170中的至少一个上,实现了自移动设备的感知系统的模块化设计,便于装备和维修。可以理解的是,环境光传感器也可以设置在设备主体200上。
可以理解的是,红外补光灯180的数量为一个、两个或多个,以及满足要求的其他数量个,本公开不做具体限定。具体地,红外补光灯180设置在摄像装置120所对应的窗口171的下方、和/或侧方、和/或上方,并位于缓冲部件上,本公开对红外补光灯180的具体设置位置不做具体限定。具体地,红外补光灯180为LED红外补光灯180,也可以为满足要求的其他红外补光灯180。
本公开的第三方面的实施例,提供了一种自移动设备,包括:设备主体;
控制器;线激光模组,所述线激光模组包括摄像装置和线激光发射器,所述线激光模组设置于所述设备主体,所述控制器与所述摄像装置和所述线激光发射器电连接,并根据所述摄像装置捕获的环境图像对所述自移动设备进行控制。
可选地,移动设备还包括:红外补光灯,设置于所述缓冲部件;所述控制器与所述补光灯相连接,用于控制所述红外补光灯的开启或者关闭。
可选地,摄像装置在所述线激光发射器开启时采集第一环境图像,在所述补光灯开启时采集第二环境图像;根据所述第一环境图像获得目标物体与所述摄像装置之间的距离;根据所述第二环境图像对所述目标物体进行识别。
可选地,在关闭所述线激光发射器和所述补光灯时,所述摄像装置采集第三环境图像;将所述第一环境图像中的像素点与所述第三环境图像中对应 位置的像素点做差,获得修正激光图像;根据所述修正激光图像获得所述目标物体与所述摄像装置之间的距离。
可选地,所述第一环境图像由所述摄像装置在预设的第一曝光参数下采集获得;所述第二环境图像由所述摄像装置在第二曝光参数下采集获得,所述第二曝光参数根据采集的前一帧第二环境图像的成像质量并结合当时的曝光参数获得;其中,曝光参数包括曝光时间和/或曝光增益。
可选地,所述摄像装置的前方设置有滤光片,用于使得仅仅红外光能够进入所述摄像装置。
图8为根据本公开实施例中一种分时控制时间点图,t 1时刻摄像装置使用固定曝光,左线激光发射器打开时间和摄像装置曝光时间一致,t 2时刻摄像装置使用固定曝光,右线激光打开时间和摄像装置曝光时间一致,t 3时刻补光装置开启,摄像装置使用自动曝光,曝光参数参考的是上一个进行物体识别的帧。曝光参数包括曝光时间和/或曝光增益,即第一环境图像由摄像装置在预设的第一曝光参数下采集获得,第二环境图像由摄像装置在第二曝光参数下采集获得,第二曝光参数可根据采集的前一帧第二环境图像的成像质量并结合当时的曝光参数获得。
在一些实施例中,摄像装置可采集获得第三环境图像,采集第三环境图像时停止发射第一预定波长的激光和第二预定波长的光,目标物体不受激光或补光的照射。第三环境图像是用来和第一环境图像和第二环境图像做运算,用以去掉背景噪声,进一步降低如灯光、强光等的影响,保证所有激光发射装置和补光装置关闭时拍摄一张即可),拍摄的目的是将第一环境图像中的像素点与第三环境图像中对应位置的像素点做差,获得修正激光图像,以尽可能的减少外部光源对线激光的影响。例如此时目标物体受自然光照射,则获得自然光图像,优化阳光下的场景中对目标物体的激光测距结果,然后可根据修正激光图像获得目标物体与摄像装置之间的距离。
本公开已经通过上述实施例进行了说明,但应当理解的是,上述实施例只是用于举例和说明的目的,而非意在将本公开限制于所描述的实施例范围内。此外本领域技术人员可以理解的是,本公开并不局限于上述实施例,根据本公开的教导还可以做出更多种的变型和修改,这些变型和修改均落在本公开所要求保护的范围以内。本公开的保护范围由附属的权利要求书及其等效范围所界定。

Claims (20)

  1. 一种线激光模组,用于自移动设备,包括:
    摄像装置,用于采集环境图像;
    线激光发射器,设置于所述摄像装置的至少一侧,并用于发出投影呈线形的激光,所述摄像装置和所述线激光发射器配合工作;
    回桩定位装置,用于接收充电桩发射的红外信号。
  2. 根据权利要求1所述的线激光模组,还包括:
    所述摄像装置的前方设置有滤光片,用于使得仅仅红外光能够进入所述摄像装置;
    所述回桩定位装置还包括用于发射红外信号的红外发射装置。
  3. 根据权利要求1所述的线激光模组,还包括:
    固定座,所述摄像装置、所述线激光发射器、所述回桩定位装置设置于所述固定座。
  4. 根据权利要求3所述的线激光模组,其中,
    所述线激光发射器与所述固定座活动连接,和/或所述固定座为活动结构,以使所述线激光发射器的方位朝向角和旋转角可调节。
  5. 根据权利要求4所述的线激光模组,其中,
    所述固定座包括本体和连接件,所述摄像装置设置于所述本体,所述线激光发射器穿设于所述连接件,所述线激光发射器与所述连接件转动连接,能够对所述线激光发射器的旋转角进行调节,所述连接件与所述本体活动连接,能够对所述线激光发射器的方位朝向角进行调节。
  6. 根据权利要求5所述的线激光模组,其中,
    所述本体设置有定位槽,所述连接件设置有与所述定位槽相适配的凸起结构,所述凸起结构能够在所述定位槽内水平转动以带动所述线激光发射器相对于所述本体转动。
  7. 根据权利要求4所述的线激光模组,其中,
    所述固定座包括本体、端部和连接部,所述端部位于所述本体的至少一侧,并通过所述连接部与所述本体连接,所述摄像装置设置于所述本体,所述线激光发射器设置于所述端部;
    其中,所述连接部与所述本体枢转连接,能够对所述线激光发射器的方位朝向角进行调节,所述端部与所述连接部转动连接,能够对所述线激光发 射器的旋转角进行调节。
  8. 根据权利要求4所述的线激光模组,其中,
    所述固定座包括本体、端部和限位部,所述端部位于所述本体的两侧,所述摄像装置设置于所述本体,所述线激光发射器设置于所述端部;
    其中,所述端部与所述本体转动连接,能够对所述线激光发射器的旋转角和方位朝向角进行调节,所述限位部设于所述端部和所述本体之间并对所述端部相对于所述本体的转动进行限位。
  9. 根据权利要求4所述的线激光模组,其中,
    所述固定座包括本体和位于所述本体两侧的端部,所述摄像装置设置于所述本体,所述线激光发射器活动地设置于所述端部;
    其中,所述端部与所述本体枢转连接,能够对所述线激光发射器的方位朝向角进行调节,所述线激光发射器与所述端部转动连接,能够对所述线激光发射器的旋转角进行调节。
  10. 根据权利要求4所述的线激光模组,其中,
    所述固定座设置有安装腔,所述线激光发射器活动地设置于所述安装腔内,所述安装腔包括第一端和第二端,所述第一端的横截面面积小于所述第二端的横截面面积,且所述第一端的横截面面积大于所述线激光发射器的横截面面积;
    其中,所述线激光发射器的前端靠近所述第一端,所述线激光发射器相对于所述安装腔转动,能够对所述线激光发射器的旋转角进行调节,所述线激光发射器的后端相对于前端摆动,能够对所述线激光发射器的方位朝向角进行调节。
  11. 根据权利要求3至10中任一项所述的线激光模组,其中,
    所述线激光发射器呈圆柱状,所述线激光发射器的外周侧设置有第一台阶结构;
    所述固定座设置有用于安装所述线激光发射器的安装槽,所述安装槽的内壁设置有第二台阶结构;
    其中,所述第一台阶结构和所述第二台阶结构相适配,用于对所述线激光发射器沿轴向方向的移动进行限位。
  12. 一种自移动设备,包括:
    设备主体;
    控制器;以及
    如权利要求1至11中任一项所述的线激光模组,所述线激光模组设置于所述设备主体,所述控制器与所述摄像装置和所述线激光发射器电连接,并根据所述摄像装置捕获的环境图像对所述自移动清洁设备进行功能控制。
  13. 根据权利要求12所述的自移动设备,还包括:
    充电桩,与所述设备主体适于连接或分离,所述充电桩包括红外发射装置,用于发射红外信号;
    其中,所述控制器与所述线激光模组的回桩定位装置相连接,并根据所述回桩定位装置接收到的红外信号引导所述设备主体与所述充电桩进行对接,并在所述设备主体与所述充电桩成功对接时,向所述充电桩发射红外信号。
  14. 根据权利要求13所述的自移动设备,还包括:
    缓冲部件,设置于所述设备主体的前侧,所述线激光模组位于所述缓冲部件与所述设备主体之间,所述缓冲部件与所述线激光模组的摄像装置、线激光发射器、回桩定位装置相对的位置处设置有窗口。
  15. 根据权利要求14所述的自移动设备,还包括:
    红外补光灯,设置于所述缓冲部件;
    所述控制器与所述补光灯相连接,用于控制所述补光灯的开启或者关闭。
  16. 根据权利要求12所述的自移动设备,还包括:
    设备控制模块,与所述摄像装置电连接,并且根据所述摄像装置捕获的环境图像中的障碍物位置信息和障碍物类型信息来控制所述自移动设备移动。
  17. 根据权利要求16所述的自移动设备,还包括:
    主控单元,与所述摄像装置和所述设备控制模块电连接,并且对所述摄像装置捕获的环境图像进行处理以得到所述障碍物位置信息和所述障碍物类型信息,其中,
    所述设备控制模块从所述主控单元接收所述障碍物位置信息和所述障碍物类型信息。
  18. 根据权利要求16所述的自移动设备,还包括:
    存储器,与所述主控单元和所述设备控制模块电连接,并且接收并存储来自所述主控单元的所述障碍物位置信息和所述障碍物类型信息,其中,
    所述设备控制模块从所述存储器接收所述障碍物位置信息和所述障碍物类型信息。
  19. 根据权利要求16至18中任一项所述的自移动设备,其中,
    所述设备控制模块与所述主控单元彼此独立或集成在一起。
  20. 根据权利要求16至18中任一项所述的自移动设备,还包括:
    提醒装置,与所述设备控制模块连接,并且在所述设备控制模块的控制下通过发声和发光中至少一种方式发出警报。
PCT/CN2021/113646 2021-03-08 2021-08-19 线激光模组和自移动设备 WO2022188366A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP21929832.0A EP4307496A1 (en) 2021-03-08 2021-08-19 Line laser module and self-moving device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110252310.2A CN112909712A (zh) 2021-03-08 2021-03-08 线激光模组和自移动设备
CN202110252310.2 2021-03-08

Publications (1)

Publication Number Publication Date
WO2022188366A1 true WO2022188366A1 (zh) 2022-09-15

Family

ID=76107946

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/113646 WO2022188366A1 (zh) 2021-03-08 2021-08-19 线激光模组和自移动设备

Country Status (3)

Country Link
EP (1) EP4307496A1 (zh)
CN (1) CN112909712A (zh)
WO (1) WO2022188366A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112909712A (zh) * 2021-03-08 2021-06-04 北京石头世纪科技股份有限公司 线激光模组和自移动设备
CN112864778A (zh) * 2021-03-08 2021-05-28 北京石头世纪科技股份有限公司 线激光模组和自移动设备
CN117878707B (zh) * 2024-03-13 2024-05-14 德中(深圳)激光智能科技有限公司 一种稳固型二氧化碳激光器

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105615778A (zh) * 2016-01-22 2016-06-01 杭州信多达电器有限公司 一种带红外摄像功能的扫地机
CN106443697A (zh) * 2015-08-06 2017-02-22 信泰光学(深圳)有限公司 自走式装置及其环境测距装置
CN107517374A (zh) * 2017-07-19 2017-12-26 西安工业大学 一种线阵相机视场的确定方法及装置
US20180344115A1 (en) * 2017-06-01 2018-12-06 Lg Electronics Inc. Moving robot and controlling method thereof
CN208913404U (zh) * 2018-06-16 2019-05-31 青岛西斯创新科技有限公司 一种单目视觉装配系统
CN210015368U (zh) * 2019-07-31 2020-02-04 深圳赤马人工智能有限公司 移动机器人回桩充电系统
CN110960138A (zh) * 2019-12-30 2020-04-07 科沃斯机器人股份有限公司 结构光模组及自主移动设备
CN110974083A (zh) * 2019-12-30 2020-04-10 科沃斯机器人股份有限公司 结构光模组及自主移动设备
CN111083332A (zh) * 2019-12-30 2020-04-28 科沃斯机器人股份有限公司 结构光模组、自主移动设备以及光源区分方法
CN111093019A (zh) * 2019-12-30 2020-05-01 科沃斯机器人股份有限公司 地形识别、行进与地图构建方法、设备及存储介质
CN210927761U (zh) * 2020-01-10 2020-07-03 北京石头世纪科技股份有限公司 智能清洁设备
CN111505602A (zh) * 2019-01-30 2020-08-07 南昌欧菲生物识别技术有限公司 电子装置及三维扫描方法
CN112864778A (zh) * 2021-03-08 2021-05-28 北京石头世纪科技股份有限公司 线激光模组和自移动设备
CN112909712A (zh) * 2021-03-08 2021-06-04 北京石头世纪科技股份有限公司 线激光模组和自移动设备
CN113031607A (zh) * 2021-03-08 2021-06-25 北京石头世纪科技股份有限公司 自移动设备

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108445019A (zh) * 2018-04-04 2018-08-24 苏州优纳科技有限公司 轮毂毛坯外观检测装置及检测方法
CN110488249A (zh) * 2019-09-06 2019-11-22 深圳市银星智能科技股份有限公司 一种激光雷达装置及移动机器人
CN212521620U (zh) * 2019-12-30 2021-02-12 科沃斯机器人股份有限公司 结构光模组及自主移动设备

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106443697A (zh) * 2015-08-06 2017-02-22 信泰光学(深圳)有限公司 自走式装置及其环境测距装置
CN105615778A (zh) * 2016-01-22 2016-06-01 杭州信多达电器有限公司 一种带红外摄像功能的扫地机
US20180344115A1 (en) * 2017-06-01 2018-12-06 Lg Electronics Inc. Moving robot and controlling method thereof
CN107517374A (zh) * 2017-07-19 2017-12-26 西安工业大学 一种线阵相机视场的确定方法及装置
CN208913404U (zh) * 2018-06-16 2019-05-31 青岛西斯创新科技有限公司 一种单目视觉装配系统
CN111505602A (zh) * 2019-01-30 2020-08-07 南昌欧菲生物识别技术有限公司 电子装置及三维扫描方法
CN210015368U (zh) * 2019-07-31 2020-02-04 深圳赤马人工智能有限公司 移动机器人回桩充电系统
CN110960138A (zh) * 2019-12-30 2020-04-07 科沃斯机器人股份有限公司 结构光模组及自主移动设备
CN111083332A (zh) * 2019-12-30 2020-04-28 科沃斯机器人股份有限公司 结构光模组、自主移动设备以及光源区分方法
CN111093019A (zh) * 2019-12-30 2020-05-01 科沃斯机器人股份有限公司 地形识别、行进与地图构建方法、设备及存储介质
CN110974083A (zh) * 2019-12-30 2020-04-10 科沃斯机器人股份有限公司 结构光模组及自主移动设备
CN210927761U (zh) * 2020-01-10 2020-07-03 北京石头世纪科技股份有限公司 智能清洁设备
CN112864778A (zh) * 2021-03-08 2021-05-28 北京石头世纪科技股份有限公司 线激光模组和自移动设备
CN112909712A (zh) * 2021-03-08 2021-06-04 北京石头世纪科技股份有限公司 线激光模组和自移动设备
CN113031607A (zh) * 2021-03-08 2021-06-25 北京石头世纪科技股份有限公司 自移动设备

Also Published As

Publication number Publication date
EP4307496A1 (en) 2024-01-17
CN112909712A (zh) 2021-06-04

Similar Documents

Publication Publication Date Title
WO2022188364A1 (zh) 线激光模组和自移动设备
WO2022188366A1 (zh) 线激光模组和自移动设备
WO2022188365A1 (zh) 自移动设备
RU2210492C2 (ru) Мобильный робот и способ корректировки его курса
US20230346187A1 (en) Cleaning robot, cleaning robot system and operating method thereof
RU2628970C2 (ru) Система и способ для ведения автоматического очистительного устройства по траектории
US20130204483A1 (en) Robot cleaner
KR102100474B1 (ko) 인공지능 청소기 및 그 제어방법
JP2022511832A (ja) 情報を自律型装置へ伝達するための光学標示
KR102070283B1 (ko) 청소기 및 그 제어방법
CN114374777B (zh) 线激光模组及自移动设备
CN210931169U (zh) 一种机器人
US9606545B1 (en) Self-propelled apparatus with an anti-drop system
CN215119524U (zh) 线激光模组和自移动设备
TW202413888A (zh) 線鐳射模組及自移動設備
US20240184304A1 (en) Line laser module and self-moving device
US20230248203A1 (en) Method for controlling robot cleaner
US20200371526A1 (en) Obstacle sensor system and autonomous device using the same
KR20210004453A (ko) 청소기 및 그 제어방법
US11998159B2 (en) Vacuum cleaner and control method thereof
CN111670066A (zh) 玩具车

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21929832

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2021929832

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021929832

Country of ref document: EP

Effective date: 20231009