WO2022252431A1 - 差速器与电机高度集成结构 - Google Patents

差速器与电机高度集成结构 Download PDF

Info

Publication number
WO2022252431A1
WO2022252431A1 PCT/CN2021/117508 CN2021117508W WO2022252431A1 WO 2022252431 A1 WO2022252431 A1 WO 2022252431A1 CN 2021117508 W CN2021117508 W CN 2021117508W WO 2022252431 A1 WO2022252431 A1 WO 2022252431A1
Authority
WO
WIPO (PCT)
Prior art keywords
differential
motor
highly integrated
integrated structure
gear
Prior art date
Application number
PCT/CN2021/117508
Other languages
English (en)
French (fr)
Inventor
孙利锋
胡晓华
周文武
Original Assignee
浙江盘毂动力科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202110608722.5A external-priority patent/CN113565941A/zh
Priority claimed from CN202110608936.2A external-priority patent/CN113565942A/zh
Application filed by 浙江盘毂动力科技有限公司 filed Critical 浙江盘毂动力科技有限公司
Publication of WO2022252431A1 publication Critical patent/WO2022252431A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H48/00Differential gearings
    • F16H48/06Differential gearings with gears having orbital motion
    • F16H48/08Differential gearings with gears having orbital motion comprising bevel gears
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H48/00Differential gearings
    • F16H48/38Constructional details
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/02Gearboxes; Mounting gearing therein
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/02Gearboxes; Mounting gearing therein
    • F16H57/023Mounting or installation of gears or shafts in the gearboxes, e.g. methods or means for assembly
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/04Features relating to lubrication or cooling or heating

Definitions

  • the invention belongs to the technical field of driving devices, in particular to a highly integrated structure of a differential gear and a motor.
  • a motor commonly known as a motor, refers to an electromagnetic device that converts or transmits electrical energy according to the law of electromagnetic induction.
  • the differential is a mechanism that enables the left and right drive wheels of a car to rotate at different speeds. It is mainly composed of left and right side shaft gears, two planetary gears and a gear carrier. The function is to make the left and right wheels roll at different speeds when the car is turning or driving on an uneven road, that is, to ensure the pure rolling motion of the driving wheels on both sides.
  • the differential is installed to adjust the speed difference between the left and right wheels.
  • a Chinese invention patent discloses a driving device for motor vehicles [Application No.: 201680066980.2].
  • the differential has a first planetary gear set and a second planetary gear set, the first planetary gear set and the second planetary gear set are rotatably supported on a common connection, wherein the first A planetary gear set meshes with at least the first sun gear, said second planetary gear set meshes with at least the second sun gear, and the two planetary gear sets mesh with each other at least in pairs, and wherein at least the second sun gear meshes with the
  • the torque vectoring unit is connected to redistribute torque between the first sun gear and the second sun gear, wherein the first planetary gear set also meshes with the third sun gear, wherein the first Three sun gears are connected with the torque vectoring unit to redistribute torque between the first sun gear and the second sun gear.
  • the differential gear and the motor of this invention patent are respectively arranged independently, so there is the problem that the above-mentioned structure is not compact enough and requires a large power assembly space.
  • the purpose of the present invention is to solve the above problems and provide a highly integrated structure of a differential gear and a motor that has a compact structure and can save space in the vehicle powertrain.
  • the present invention adopts the following technical solutions:
  • a highly integrated structure of a differential and a motor including a differential and a motor, the differential includes a differential housing, the half shaft for power output is connected to the differential drive, and the differential is installed Inside the electric machine and the differential case housing forms the shaft of rotation of said electric machine.
  • the motor includes a motor outer casing, and the differential gear outer casing is rotatably mounted on the bearing chamber of the motor outer casing.
  • a stator and a rotor capable of rotating relative to the stator are arranged inside the motor housing, and the stator is fixedly connected to the motor housing, and the differential housing is located on the motor housing. Inside the outer casing and connected to the rotor.
  • the planetary gear connected to the differential housing is arranged inside the differential housing, the half shaft is connected to the differential housing, and the half shaft end
  • the side is provided with a side gear, and the side gear is meshed with the planetary gear.
  • the planetary gears are located inside the rotor.
  • each planetary gear meshes with two half shafts, and the planetary gears are rotatably connected to the differential housing Moreover, the rotation center of the planetary gears is located on the axis of the planetary gears, and relatively independent rotations can occur between the two planetary gears.
  • the line connecting the centers of the two planetary gears and the center of the two half shafts are perpendicular to each other.
  • the axis of the planetary gear coincides with the axis of the rotor; the planetary gear is a bevel gear.
  • the motor includes a motor housing, and a circulating oil passage is provided inside the motor housing, and lubricating ports are provided at both ends of the circulating oil passage, and inside the differential there are A lubricating cavity, the lubricating cavity communicates with the circulating oil passage through the lubricating port.
  • the lubricating port communicates with the lubricating cavity through an oil guide groove
  • the oil guide groove is arranged on the inner surface of the differential and is recessed toward the inside of the differential
  • the oil guiding groove is arranged on the outer surface of the semi-shaft and is recessed toward the inside of the semi-shaft.
  • the oil guiding groove is arranged on the inner surface of the differential and extends in a spiral shape, and the axis of the oil guiding groove coincides with the axis of the half shaft.
  • the oil guide groove includes several oil guide channels connected in sequence, and the included angle between the center line of the oil guide channel and the axle center line is 45-75 degrees.
  • the oil guide groove is arranged on the outer surface of the half shaft, and each half shaft is provided with at least two oil guide grooves, and the oil inlet of each oil guide groove is located at a different position. same.
  • an oil stirring groove arranged on the differential and/or the half shaft is also included.
  • the oil stirring grooves are arranged on the differential, there are several oil stirring grooves and the oil stirring grooves are evenly distributed along the axis of the half shaft; or the oil stirring grooves are arranged on On the half shaft, there are several oil stirring grooves, and the oil stirring grooves are evenly distributed along the circumference of the axis of the half shaft.
  • the oil churning groove is located directly above or directly below the lubricating port.
  • the differential is drivingly connected to the half shaft, at least two lubricating ports are located above the half shaft, and at least two lubricating ports are located on the half shaft.
  • the circulation oil passage includes an upper circulation oil passage located above the half shaft and a lower circulation oil passage located below the half shaft. The two lubricating ports above the half shaft are connected through the upper circulation oil passage. The lubricating port under the shaft is connected through the lower circulation oil passage.
  • the advantage of the present invention is:
  • the present invention integrates the differential and the motor, so that the differential and the motor can share a part of the structure, so that the overall structure is compact and the vehicle powertrain space can be saved.
  • the present invention connects the differential to the rotor of the motor, and internal parts of the differential such as planetary gears can be arranged inside the rotor, thereby further improving the degree of integration and further saving the space of the vehicle powertrain.
  • the present invention applies the integrated modularized planetary reduction mechanism to the drive system, adapts to different torque output requirements, makes the application of the powertrain closer to the needs of users, and also shortens the development cycle and reduces production costs.
  • the present invention is provided with a circulating oil passage in the motor casing, and while lubricating oil is transported through the circulating oil passage to lubricate the differential, it can also play a role in cooling the motor, so that it can be better applied to the differential and
  • the motor is integrated into the structure to prolong the service life of the structure.
  • the present invention also has a second seal between the lubricating port and the installation cavity, so as to prevent the lubricating oil from leaking into the installation cavity and affecting the internal structure of the motor such as the rotor and stator, and the sealing effect is good.
  • Fig. 1 is a structural representation of the present invention
  • Fig. 2 is a schematic structural view of the drive assembly
  • differential 1 motor 2, bearing 3, differential housing 11, planetary gear 12, half shaft 13, first seal 14, lubricating cavity 15, oil guiding groove 16, oil stirring groove 17, half shaft Gear 18, second seal 19, motor housing 21, stator 22, rotor 23, lubrication port 24, circulating oil passage 25, installation cavity 26, drive assembly 100, oil guide channel 161, planetary reduction mechanism 200, the first A sun gear 201 , a first planetary gear 202 , a first frame 203 , a second sun gear 204 , a second planetary gear 205 , a second frame 206 , an output shaft 207 , an upper circulating oil passage 251 , and a lower circulating oil passage 252 .
  • This embodiment provides a highly integrated differential gear and motor structure, as shown in Figure 1, including a drive assembly 100 and a planetary reduction mechanism 200, the drive assembly 100 includes a motor 2 integrated with a differential gear 1, so The planetary reduction mechanism 200 is drivingly connected to the differential 1 .
  • the present invention applies the integrated modularized planetary reduction mechanism 200 to the drive system, adapts to different torque output requirements, makes the application of the powertrain closer to the needs of users, and also shortens the development cycle and reduces production costs.
  • the planetary reduction mechanism 200 is a two-stage planetary reduction mechanism, that is, the planetary reduction mechanism 200 includes a first sun gear 201 that is drivingly connected to the differential 1, and the first sun gear 201 and the first planetary gear 202 One end of the first frame 203 is connected with the center of the first planetary gear 202, and the other end is drivingly connected with the second sun gear 204, and the second sun gear 204 is engaged with the second planetary gear 205, and one end of the second frame 206 It is connected with the center of the second planetary wheel 205 , and the other end is drivingly connected with the output shaft 207 .
  • the power is input to the first sun gear 201 through the differential 1, and then transmitted to the output through the first planetary gear 202, the first frame 203, the second sun gear 204, the second planetary gear 205 and the second frame 206 in sequence. on axis 207.
  • the axes of the first sun gear 201 and the second sun gear 204 coincide with each other. This can ensure that the power is transmitted along the same straight line to ensure the stability of the power transmission process.
  • the first sun gear 201 has the same radius as the second sun gear 204
  • the first planetary gear 202 has the same radius as the second planetary gear 205
  • the first frame 203 has the same radius as the second frame 206.
  • the diameter of the first sun gear 201 is 1.0-1.5 times the diameter of the first planetary gear 202 . This can ensure that the reduction ratio of the planetary reduction mechanism 200 is within a preferred range.
  • FIG. 1 and FIG. 2 there is also a half shaft 13 between the differential 1 and the planetary reduction mechanism 200 , and two half shafts 13 are arranged and symmetrically connected to both sides of the differential 1 .
  • the planetary reduction mechanism 200 is connected to the half shafts 13 in a one-to-one correspondence.
  • the power of the motor 2 is transmitted to the two wheel hubs of the electric vehicle through the differential 1 and two half shafts 13 .
  • the axis of the half shaft 13 coincides with the axis of the planetary reduction mechanism 200 . This can ensure the stability of the transmission process.
  • the differential 1 includes a differential housing 11, and the half shaft 13 for output power is drivingly connected with the differential 1, and the differential 1 is installed in the motor 2 and the differential
  • the housing 11 constitutes the shaft of the motor 2 .
  • the motor 2 includes a motor housing 21 , and the differential housing 11 is rotatably installed on the bearing chamber of the motor housing 21 .
  • the differential case 11 is used as a part of the rotating shaft of the motor 2, so that the differential 1 and the motor 2 have at least a part of the common structure, that is, the present invention integrates the differential 1 and the motor 2, so that the differential 1 A part of the structure can be shared with the motor 2, so that the overall structure is compact and the vehicle powertrain space can be saved.
  • the part of the structure shared by the differential gear 1 and the motor 2 can also be other parts or structures besides the casing.
  • the motor 2 includes a motor outer casing 21, a stator 22 and a rotor 23 that can rotate relative to the stator 22 are arranged inside the motor outer casing 21, and the stator 22 is fixedly connected to the motor outer casing 21.
  • the differential 1 is located inside the motor housing 21 and connected to the rotor 23 .
  • the differential 1 includes a differential case 11 connected to the rotor 23, the differential case 11 is provided with a planetary gear 12 connected to the differential case 11, and also includes a planetary reduction gear.
  • the mechanism 200 drives the connected half shaft 13, the end of the half shaft 13 away from the planetary reduction mechanism 200 is connected to the differential case 11, the end of the half shaft 13 is provided with a side gear 18, and the side gear 18 meshes with planetary gear 12.
  • the planetary gear 12 is located inside the rotor 23, and there are two planetary gears 12 oppositely arranged, and each planetary gear 12 is meshed with two half shafts 13, and the planetary gear 12 is connected to the differential
  • the outer casing 11 is rotationally connected and the rotation center of the planetary gears 12 is located on the axis of the planetary gears 12 , and relatively independent rotation can occur between the two planetary gears 12 .
  • Planetary gear 12 can select the bevel gear in the prior art for use.
  • the power is transmitted to the differential case 11 by the rotor 23 integrated on the differential case 11.
  • the internal structure of the entire differential 1 is equivalent to a As a whole, there is no relative rotation between the parts.
  • the rotation of the planetary gear 12 around its own axis direction absorbs the difference in resistance, so that the side gear 18 can rotate at different speeds, and finally transmits to the side shafts 13 on both sides, improving the driving comfort of the vehicle.
  • the differential 1 is connected to the rotor 23 of the motor 2, and the internal components of the differential 1 such as the planetary gear 12 and other structures can be arranged inside the rotor 23, thereby further improving the degree of integration and further saving the powertrain of the vehicle. into space. Moreover, the installation is more convenient, and bolts can be used to directly realize the installation connection.
  • a line connecting the centers of the two planetary gears 12 and a line connecting the centers of the two half shafts 13 are perpendicular to each other. This can further ensure that the two planetary gears 12 exert the effect of absorbing the difference in resistance, and further improve the driving comfort of the vehicle.
  • the axis of the planetary gear 12 coincides with the axis of the rotor 23 .
  • a first seal 14 is provided between the motor 2 and the half shaft 13 , and the first seal 14 is close to the outside of the motor to prevent lubricating oil from leaking to the outside of the motor 2 .
  • the motor 2 includes a motor outer shell 21, the motor outer shell 21 has an installation cavity 26, the differential 1 is located in the installation cavity 26, and the motor outer shell 21 is also provided with a circulation oil passage 25, the circulation The oil passage 25 communicates with the differential 1 through the lubricating port 24.
  • a second seal 19 is also provided between the lubricating port 24 and the installation cavity 26. The lubricating port 24 is located between the first seal 14 and the second seal. Between 19.
  • the second seal 19 is close to the inner side of the motor, and is used to prevent lubricating oil from leaking into the installation cavity 26 . Therefore, compared with the prior art, the present invention also has a second seal 19 between the lubricating port 24 and the installation cavity 26, thereby preventing lubricating oil from leaking into the installation cavity 26 and affecting the motor 2 and the rotor 23. , Stator 22 and other internal structures of the motor, the sealing effect is good
  • the differential 1 includes a differential housing 11 with a lubricating cavity 15 inside, the lubricating port 24 communicates with the lubricating cavity 15, and the lubricating oil in the circulating oil passage 25 can pass through the lubricating port. 24 flows into the lubricating cavity 15 to realize lubrication.
  • the second seal 19 is located between the differential case 11 and the motor case 21, and the inner surface of the second seal 19 is in sealing contact with the differential case 11, and the outer surface of the second seal 19 It is sealingly attached to the motor housing 21 .
  • the installation cavity 26 is also provided with a stator 22 and a rotor 23 that can rotate relative to the stator 22 .
  • the stator 22 is fixedly connected to the motor casing 21
  • the differential casing 11 is connected to the rotor 23 .
  • both the first sealing member 14 and the second sealing member 19 can be selected from specific structures commonly used for sealing in the prior art, such as oil seals.
  • a bearing 3 is also provided between the differential housing 11 and the motor housing 21 to reduce the frictional force between the two, and the bearing 3 is also located between the first sealing member 14 and the second sealing member Between 19. In this way, the frictional force between the differential outer casing 11 and the motor outer casing 21 can be reduced, thereby reducing wear.
  • the motor 2 is a disc motor. Since the disc motor has a relatively small axial length, the distance between the two bearings 3 can also be narrowed.
  • the seals 14 , 19 are annular, and the axes of the seals 14 , 19 coincide with the axis of the half shaft 13 . This can further ensure the sealing effect during use.
  • a circulating oil channel 25 is further provided in the motor housing 21 , and the end of the circulating oil channel 25 communicates with the lubricating port 24 .
  • a circulating oil passage 25 is arranged in the motor outer casing 21 , and while lubricating oil is transported through the circulating oil passage 25 to lubricate the differential 1 , it can also play a role in cooling the motor 2 .
  • circulation oil passages 25 are provided, and the circulation oil passages 25 are uniformly distributed along the axis of the half shaft 13 . Setting the position of the circulating oil passage 25 in this way can ensure the uniformity of the cooling effect on the motor outer casing 21 .
  • the lubricating ports 24 are provided with at least four, and at least two lubricating ports 24 are located above the half shaft 13, at least two lubricating ports 24 are located below the semi shaft 13, and the circulating oil passage 25 includes a The upper circulation oil passage 251 above the half shaft 13 and the lower circulation oil passage 252 below the half shaft 13, the two lubrication ports 24 above the half shaft 13 are connected through the upper circulation oil passage 251, and the two lubrication ports below the half shaft 13 The ports 24 communicate with each other through the lower circulating oil passage 252 .
  • the lubricating port 24 communicates with the lubricating cavity 15 through the oil guide groove 16, the oil guide groove 16 is arranged on the inner surface of the differential 1 and is recessed toward the inside of the differential 1 or described
  • the oil guide groove 16 is disposed on the outer surface of the half shaft 13 and is recessed toward the inside of the half shaft 13 . That is, the oil guide groove 16 can be arranged on the inner surface of the differential 1 or on the outer surface of the half shaft 13 .
  • the oil guide groove 16 extends in a spiral shape, and the axis of the oil guide groove 16 coincides with the axis of the half shaft 13 .
  • the oil guide groove 16 is arranged on the outer surface of the half shaft 13, and each half shaft 13 is provided with at least two oil guide grooves 16, and the oil inlet of each oil guide groove 16 is located at a different position.
  • two oil guide grooves 16 are provided, and the positions of the oil inlets of the two oil guide grooves 16 differ from each other by 90 degrees on the surface of the half shaft 13, so that lubricating oil in different directions can be easily introduced into the oil guide groove 16.
  • the oil guide groove 16 includes several oil guide channels 161 connected in sequence, and the included angle between the center line of the oil guide channel 161 and the axis line of the half shaft 13 is 45-75 degrees.
  • the oil guide channel 161 is set within this angle range, which can have the advantages of good oil guide effect and low processing difficulty.
  • the included angle between the centerline of the oil guide passage 161 and the axis of the half shaft 13 is 60 degrees.
  • the oil stirring groove 17 can be arranged on the differential case 11 or on the half shaft 13 , or can be arranged on the differential case 11 and the half shaft 13 at the same time.
  • the oil stirring groove 17 was arranged on the differential case 11, there were several oil stirring grooves 17 and the oil stirring grooves 17 were evenly distributed along the axis of the axle shaft 13; when the oil stirring groove 17 was arranged on the axle shaft 13, There are several oil grooves 17 and the oil stirring grooves 17 are evenly distributed along the circumferential direction of the axis of the half shaft 13 .
  • the uniform setting of the oil stirring groove 17 can ensure that the mass distribution of the differential case 11 and the half shaft 13 is uniform, thereby ensuring the stability of the rotation process.
  • the oil guide groove 16 makes the lubricating oil form an axial movement inside the differential case 11, so that it circulates continuously between the differential case 11 and the motor case 21; oil, so that the lubricating oil generates centrifugal force, thereby entering the circulating oil passage 25 inside the motor housing 21 to speed up the circulation of the lubricating oil.
  • the present invention does not limit the specific position of the oil stirring groove 17, as long as it can accelerate the flow of lubricating oil when rotating. But preferably, the oil stirring groove 17 is located directly above or directly below the lubricating port 24 .
  • the motor 2 includes a motor housing 21, the differential 1 includes a differential housing 11, the differential housing 11 is fixedly connected to the motor housing 21, and the differential housing 11 and The motor housing 21 shares a part of the housing.
  • the method of integrating the differential 1 on the outside of the motor 2 is adopted.
  • the differential housing 11 of the differential 1 and the motor housing 21 of the motor 2 have a partly shared structure, that is, the differential 1 and the motor 2 have a common structure.
  • the motors 2 share part of the housing.
  • This embodiment provides a highly integrated structure of the differential gear and the motor, and its specific structure is roughly the same as that in Embodiment 1, the difference is only in the specific integration method of the differential gear 1 and the motor 2, specifically , also includes a housing, the differential 1 and the motor 2 are located in the housing, the output shaft of the motor 2 is connected to the input shaft of the differential 1 .
  • the differential 1 and the motor 2 are jointly arranged in a large housing, and the housing is a shared structure of the differential 1 and the motor 2. In the housing, the differential 1 and the motor 2 The two are still connected through the output shaft and the input shaft.

Abstract

本发明属于驱动装置技术领域,尤其涉及一种差速器与电机高度集成结构。本发明针对现有技术中整体结构不够紧凑,需要较大的动力总成空间的问题,提供一种差速器与电机高度集成结构,包括差速器和电机,所述电机包括差速器和电机,用于输出动力的半轴与差速器驱动连接,所述差速器连接在电机上且差速器和电机至少共用一部分结构。本发明将差速器与电机相互集成,使得差速器与电机可共用一部分结构,从而使得整体结构紧凑,可节省的车辆动力总成空间的优势。

Description

差速器与电机高度集成结构 技术领域
本发明属于驱动装置技术领域,尤其涉及一种差速器与电机高度集成结构。
背景技术
电机,俗称马达,是指依据电磁感应定律实现电能转换或传递的一种电磁装置。差速器是能够使汽车左、右驱动轮实现以不同转速转动的机构。主要由左右半轴齿轮、两个行星齿轮及齿轮架组成。功用是当汽车转弯行驶或在不平路面上行驶时,使左右车轮以不同转速滚动,即保证两侧驱动车轮作纯滚动运动。差速器是为了调整左右轮的转速差而装置的。
技术问题
现有技术中的电机和差速器大都独立设置,这就导致了整体结构不够紧凑,需要较大的动力总成空间的问题。
例如,中国发明专利公开了一种用于机动车的驱动装置[申请号:201680066980.2],该发明专利包括所述驱动装置包括差速器和扭矩矢量分配单元,所述扭矩矢量分配单元具有电机,其中所述差速器具有第一行星齿轮组和第二行星齿轮组,所述第一行星齿轮组和所述第二行星齿轮组在共同的连接部上可转动地支承,其中所述第一行星齿轮组至少与第一太阳轮啮合,所述第二行星齿轮组至少与第二太阳轮啮合,并且这两个行星齿轮组至少成对地彼此啮合,并且其中至少所述第二太阳轮与所述扭矩矢量分配单元连接,以便在所述第一太阳轮和第二太阳轮之间再分配扭矩,其特征在于,所述第一行星齿轮组也与第三太阳轮啮合,其中所述第三太阳轮与所述扭矩矢量分配单元连接,以便在所述第一太阳轮和第二太阳轮之间再分配扭矩。
该发明专利的差速器和电机分别独立设置,故存在上述结构不够紧凑,需要较大的动力总成空间的问题。
技术解决方案
本发明的目的是针对上述问题,提供一种结构紧凑,可节省的车辆动力总成空间的差速器与电机高度集成结构。
为达到上述目的,本发明采用了下列技术方案:
一种差速器与电机高度集成结构,包括差速器和电机,所述差速器包括差速器外壳体,用于输出动力的半轴与差速器驱动连接,所述差速器安装在电机内且差速器外壳体构成所述电机的转轴。
在上述的差速器与电机高度集成结构中,所述电机包括电机外壳体,所述差速器外壳体旋转安装在电机外壳体的轴承室上。
在上述的差速器与电机高度集成结构中,所述电机外壳体内设有定子和可发生相对定子转动的转子,所述定子固定连接在电机外壳体上,所述差速器外壳体位于电机外壳体内部且连接在转子上。
在上述的差速器与电机高度集成结构中,所述差速器外壳体内设有连接在差速器外壳体上的行星齿轮,半轴连接在差速器外壳体上,所述半轴端部设有半轴齿轮,所述半轴齿轮与行星齿轮相啮合。
在上述的差速器与电机高度集成结构中,所述行星齿轮位于转子内部。
在上述的差速器与电机高度集成结构中,所述半轴设有两根且对称连接在差速器外壳体的两侧。
在上述的差速器与电机高度集成结构中,所述行星齿轮设有两个且相对设置,每个行星齿轮均与两根半轴相啮合,所述行星齿轮与差速器外壳体转动连接且行星齿轮转动中心位于行星齿轮的轴心线上,两个行星齿轮之间可发生相对独立的转动。
在上述的差速器与电机高度集成结构中,两个行星齿轮中心的连线与两根半轴中心的连线相互垂直。
在上述的差速器与电机高度集成结构中,所述行星齿轮的轴心线与转子的轴心线相重合;所述行星齿轮为圆锥齿轮。
在上述的差速器与电机高度集成结构中,所述电机包括电机外壳体,所述电机外壳体内设有循环油道,所述循环油道两端均设有润滑口,差速器内部具有润滑空腔,所述润滑空腔通过润滑口与循环油道相连通。
在上述的差速器与电机高度集成结构中,所述循环油道设有若干条,且循环油道沿半轴的轴心线周向均匀分布。
在上述的差速器与电机高度集成结构中,所述润滑口与润滑空腔之间通过导油槽相连通,所述导油槽设置在差速器内表面上且向差速器内部凹陷或所述导油槽设置在半轴外表面上且向半轴内部凹陷。
在上述的差速器与电机高度集成结构中,所述导油槽设置在差速器内表面上且呈螺旋状延伸,导油槽的轴心线与半轴的轴心线相重合。
在上述的差速器与电机高度集成结构中,所述导油槽包括若干根依次连通的导油通道,所述导油通道中心线与半轴轴心线的夹角为45-75度。
在上述的差速器与电机高度集成结构中,所述导油槽设置在半轴外表面,每根半轴上至少设有两条导油槽,且每条导油槽的进油口所处位置不相同。
在上述的差速器与电机高度集成结构中,还包括设置在差速器和/或半轴上的搅油槽。
在上述的差速器与电机高度集成结构中,所述搅油槽设置在差速器上,搅油槽具有若干个且搅油槽沿半轴轴心线周向均匀分布;或所述搅油槽设置在半轴上,搅油槽具有若干个且搅油槽沿半轴轴心线周向均匀分布。
在上述的差速器与电机高度集成结构中,所述搅油槽位于润滑口的正上方或正下方。
在上述的差速器与电机高度集成结构中,所述润滑口设有至少四个,差速器上驱动连接有半轴,至少两个润滑口位于半轴上方,至少两个润滑口位于半轴下方,所述循环油道包括位于半轴上方的上循环油道和位于半轴下方的下循环油道,两个位于半轴上方的润滑口通过上循环油道相连通,两个位于半轴下方的润滑口通过下循环油道相连通。
有益效果
在此处与现有的技术相比,本发明的优点在于:
1、本发明将差速器与电机相互集成,使得差速器与电机可共用一部分结构,从而使得整体结构紧凑,可节省的车辆动力总成空间的优势。
2、本发明将差速器连接在电机的转子上,差速器的内部零部件例如行星齿轮等结构可设置在转子内部,从而进一步提高了集成程度,进一步节省了车辆动力总成的空间。
3、本发明将集成模块化的行星减速机构应用于驱动系统中,适应了不同的扭矩输出需求,使动力总成的应用更加贴近用户需求,同时也缩短开发周期,降低了生产成本。
4、本发明在电机外壳体内设置有循环油道,润滑油通过循环油道的输送润滑差速器的同时,还可起到对电机降温的作用,从而可较好的应用于差速器与电机集成结构内,延长该结构的使用寿命。
5、本发明在润滑口和安装空腔之间还设有第二密封件,从而可防止润滑油泄漏至安装空腔内而影响电机转子、定子等电机内部结构,密封效果好。
附图说明
图1是本发明的结构示意图;
图2是驱动总成的结构示意图;
图中:差速器1、电机2、轴承3、差速器外壳体11、行星齿轮12、半轴13、第一密封件14、润滑空腔15、导油槽16、搅油槽17、半轴齿轮18、第二密封件19、电机外壳体21、定子22、转子23、润滑口24、循环油道25、安装空腔26、驱动总成100、导油通道161、行星减速机构200、第一太阳轮201、第一行星轮202、第一框架203、第二太阳轮204、第二行星轮205、第二框架206、输出轴207、上循环油道251、下循环油道252。
本发明的最佳实施方式
下面结合附图和具体实施方式对本发明做进一步详细的说明。
实施例1
本实施例提供一种差速器与电机高度集成结构,如图1所示,包括驱动总成100和行星减速机构200,所述驱动总成100包括集成有差速器1的电机2,所述行星减速机构200与差速器1驱动连接。
使用时,驱动总成100输出的动力通过行星减速机构200减速后再传递至输出轴。故本发明将集成模块化的行星减速机构200应用于驱动系统中,适应了不同的扭矩输出需求,使动力总成的应用更加贴近用户需求,同时也缩短开发周期,降低了生产成本。
具体的说,行星减速机构200为二级行星减速机构,即所述行星减速机构200包括与差速器1驱动连接的第一太阳轮201,所述第一太阳轮201与第一行星轮202相啮合,第一框架203一端与第一行星轮202的中心相连,另一端与第二太阳轮204驱动连接,所述第二太阳轮204与第二行星轮205相啮合,第二框架206一端与第二行星轮205的中心相连,另一端与输出轴207驱动连接。
使用时,动力通过差速器1输入至第一太阳轮201,再依次经过第一行星轮202、第一框架203、第二太阳轮204、第二行星轮205和第二框架206传递至输出轴207上。
优选地,所述第一太阳轮201与第二太阳轮204的轴心线相互重合。这样可以保证动力沿同一条直线传递,以保证动力传递过程的稳定性。
优选地,所述第一太阳轮201与第二太阳轮204的半径相等,所述第一行星轮202与第二行星轮205的半径相等,所述第一框架203与第二框架206的半径相等,所述第一太阳轮201的直径为第一行星轮202直径的1.0-1.5倍。这样可以保证行星减速机构200的减速比在优选范围内。
结合图1和图2所示,所述差速器1与行星减速机构200之间还设有半轴13,所述半轴13设有两根且对称连接在差速器1的两侧,所述行星减速机构200与半轴13一一对应连接。电机2的动力通过差速器1和两根半轴13传递至电动车的两个轮毂上。
优选地,所述半轴13的轴心线与行星减速机构200的轴心线相互重合。这样可以保证传动过程的稳定性。
如图2所示,所述差速器1包括差速器外壳体11,用于输出动力的半轴13与差速器1驱动连接,所述差速器1安装在电机2内且差速器外壳体11构成所述电机2的转轴。具体的可通过以下安装方式实现,所述电机2包括电机外壳体21,所述差速器外壳体11旋转安装在电机外壳体21的轴承室上。将差速器外壳体11用作为构成电机2转轴的一部分,使得差速器1与电机2至少具有一部分的共用结构,即本发明将差速器1与电机2相互集成,使得差速器1与电机2可共用一部分结构,从而使得整体结构紧凑,可节省的车辆动力总成空间的优势。
其中,差速器1与电机2所共用的一部分结构除壳体外,也还可以是其他的零部件或结构。
优选地,所述电机2包括电机外壳体21,所述电机外壳体21内设有定子22和可发生相对定子22转动的转子23,所述定子22固定连接在电机外壳体21上,所述差速器1位于电机外壳体21内部且连接在转子23上。所述差速器1包括连接在转子23上的差速器外壳体11,所述差速器外壳体11内设有连接在差速器外壳体11上的行星齿轮12,还包括与行星减速机构200驱动连接的半轴13,所述半轴13远离行星减速机构200的一端连接在差速器外壳体11上,所述半轴13端部设有半轴齿轮18,所述半轴齿轮18与行星齿轮12相啮合。所述半轴13设有两根且对称连接在差速器外壳体11的两侧。
具体的说,行星齿轮12位于转子23内部,且所述行星齿轮12设有两个且相对设置,每个行星齿轮12均与两根半轴13相啮合,所述行星齿轮12与差速器外壳体11转动连接且行星齿轮12转动中心位于行星齿轮12的轴心线上,两个行星齿轮12之间可发生相对独立的转动。行星齿轮12可选用现有技术中的圆锥齿轮。
使用时,动力由集成在差速器外壳体11上的转子23,传递至差速器外壳体11上,当车辆直线行驶且左右驱动车轮转速相同时,整个差速器1内部结构相当于一个整体,各零件之间没有相对转动。当车辆转弯时,通过行星齿轮12围绕其自身轴线方向的自转,从而吸收阻力差,使得半轴齿轮18可以以不同的转速转动,最终传到至两边半轴13,提高车辆行驶的舒适性。本发明将差速器1连接在电机2的转子23上,差速器1的内部零部件例如行星齿轮12等结构可设置在转子23内部,从而进一步提高了集成程度,进一步节省了车辆动力总成的空间。而且安装更加方便,可利用螺栓直接实现安装连接。
优选地,两个行星齿轮12中心的连线与两根半轴13中心的连线相互垂直。这样可进一步保证两个行星齿轮12发挥吸收阻力差的效果,进一步提高车辆行驶的舒适性。
优选地,所述行星齿轮12的轴心线与转子23的轴心线相重合。
如图2所示,所述电机2与半轴13之间设有第一密封件14,第一密封件14靠近电机外侧,用于防止润滑油泄漏至电机2外侧。所述电机2包括电机外壳体21,电机外壳体21内具有安装空腔26,所述差速器1位于安装空腔26内,电机外壳体21内还设有循环油道25,所述循环油道25通过润滑口24与差速器1相连通,所述润滑口24与安装空腔26之间还设有第二密封件19,润滑口24位于第一密封件14与第二密封件19之间。第二密封件19靠近电机内侧,用于防止润滑油泄漏至安装空腔26内。故本发明相比于现有技术中,在润滑口24和安装空腔26之间还设有第二密封件19,从而可防止润滑油泄漏至安装空腔26内而影响电机2是转子23、定子22等电机内部结构,密封效果好
具体的说,所述差速器1包括内部具有润滑空腔15的差速器外壳体11,所述润滑口24与润滑空腔15相连通,循环油道25内的润滑油可通过润滑口24流至润滑空腔15内,实现润滑。所述第二密封件19位于差速器外壳体11与电机外壳体21之间,且第二密封件19的内表面与差速器外壳体11密封贴合,第二密封件19的外表面与电机外壳体21密封贴合。所述安装空腔26内还设有定子22和可发生相对定子22转动的转子23,所述定子22固定连接在电机外壳体21上,所述差速器外壳体11连接在转子23上。
其中,第一密封件14和第二密封件19均可选用现有技术中常用于密封的具体结构,例如可以是油封。
如图2所示,所述差速器外壳体11与电机外壳体21之间还设有用于减小两者之间摩擦力轴承3,轴承3也位于第一密封件14和第二密封件19之间。这样可以降低差速器外壳体11与电机外壳体21之间的摩擦力,降低磨损。
优选地,电机2为盘式电机。由于盘式电机具有较小的轴向长度,这样也可以使得两个轴承3之间的距离较窄。
如图2所示,所述密封件14、19呈环形,且密封件14、19的轴心线与半轴13的轴心线相重合。这样可以进一步保证使用时的密封效果。
优选地,所述电机外壳体21内还设有循环油道25,所述循环油道25的端部与润滑口24相连通。本发明在电机外壳体21内设置有循环油道25,润滑油通过循环油道25的输送润滑差速器1的同时,还可起到对电机2降温的作用。
进一步优选地,所述循环油道25设有若干条,且循环油道25沿半轴13的轴心线周向均匀分布。这样设置循环油道25的位置可以保证对电机外壳体21降温效果的均匀性。
具体的说,所述润滑口24设有至少四个,且至少两个润滑口24位于半轴13上方,至少两个润滑口24位于半轴13下方,所述循环油道25包括位于半轴13上方的上循环油道251和位于半轴13下方的下循环油道252,两个位于半轴13上方的润滑口24通过上循环油道251相连通,两个位于半轴13下方的润滑口24通过下循环油道252相连通。
如图2所示,所述润滑口24与润滑空腔15之间通过导油槽16相连通,所述导油槽16设置在差速器1内表面上且向差速器1内部凹陷或所述导油槽16设置在半轴13外表面上且向半轴13内部凹陷。即导油槽16可设置在差速器1的内表面也可设置在半轴13的外表面。
优选地,所述导油槽16呈螺旋状延伸,导油槽16的轴心线与半轴13的轴心线相重合。
优选地,所述导油槽16设置在半轴13外表面,每根半轴13上至少设有两条导油槽16,且每条导油槽16的进油口所处位置不相同。例如,导油槽16设置有两条,两条导油槽16的进油口位置在半轴13表面相差90度的距离,这样可以方便将不同方向的润滑油导入导油槽16内。
如图2所示,所述导油槽16包括若干根依次连通的导油通道161,所述导油通道161中心线与半轴13轴心线的夹角为45-75度。导油通道161设置在这个角度范围内,可兼具导油效果好和加工难度低的优势。优选地,导油通道161中心线与半轴13轴心线的夹角为60度。
如图2所示,还包括设置在差速器外壳体11和/或半轴13上的搅油槽17。即搅油槽17可设置在差速器外壳体11上也可设置在半轴13上,或同时设置在差速器外壳体11和半轴13上。当搅油槽17设置在差速器外壳体11上时,搅油槽17具有若干个且搅油槽17沿半轴13轴心线周向均匀分布;当搅油槽17设置在半轴13上时,搅油槽17具有若干个且搅油槽17沿半轴13轴心线周向均匀分布。搅油槽17均匀设置可保证差速器外壳体11和半轴13的质量分布均匀,从而确保转动过程的稳定性。
使用过程中,导油槽16使润滑油在差速器外壳体11内部形成轴向运动,而使其在差速器外壳体11和电机外壳体21之间不断地循环;再通过搅油槽17搅油,使润滑油产生离心力,从而进入电机外壳体21内部的循环油道25内,加快润滑油的循环。
本发明对搅油槽17的具体位置不作限定,只要能起到转动时加速润滑油流动的效果即可。但优选地,所述搅油槽17位于润滑口24的正上方或正下方。
实施例2
本实施例提供一种差速器与电机高度集成结构,其具体结构与实施例1中的具体结构大致相同,不同之处仅在于差速器1与电机2的具体集成方式上,具体的说,所述电机2包括电机外壳体21,所述差速器1包括差速器外壳体11,所述差速器外壳体11固定连接在电机外壳体21上,且差速器外壳体11和电机外壳体21共用一部分壳体。该实施例中采用的是将差速器1集成在电机2外侧的方式,差速器1的差速器外壳体11与电机2的电机外壳体21具有部分共用结构,即差速器1和电机2共用部分壳体。
实施例3
本实施例提供一种差速器与电机高度集成结构,其具体结构与实施例1中的具体结构大致相同,不同之处仅在于差速器1与电机2的具体集成方式上,具体的说,还包括壳体,所述差速器1和所述电机2均位于壳体内,电机2的输出轴与差速器1的输入轴相连接。该实施例中采用的是将差速器1和电机2共同设置在一个大的壳体内,壳体为差速器1和电机2二者的共用结构,在壳体内,差速器1和电机2二者仍通过输出轴和输入轴相连接。
本文中所描述的具体实施例仅仅是对本发明精神作举例说明。本发明所属技术领域的技术人员可以对所描述的具体实施例做各种各样的修改或补充或采用类似的方式替代,但并不会偏离本发明的精神或者超越所附权利要求书所定义的范围。
尽管本文较多地使用了差速器1、电机2、轴承3、差速器外壳体11、行星齿轮12、半轴13、第一密封件14、润滑空腔15、导油槽16、搅油槽17、半轴齿轮18、第二密封件19、电机外壳体21、定子22、转子23、润滑口24、循环油道25、安装空腔26、驱动总成100、导油通道161、行星减速机构200、第一太阳轮201、第一行星轮202、第一框架203、第二太阳轮204、第二行星轮205、第二框架206、输出轴207、上循环油道251、下循环油道252等术语,但并不排除使用其它术语的可能性。使用这些术语仅仅是为了更方便地描述和解释本发明的本质;把它们解释成任何一种附加的限制都是与本发明精神相违背的。

Claims (19)

  1. 一种差速器与电机高度集成结构,包括差速器(1)和电机(2),所述差速器(1)包括差速器外壳体(11),用于输出动力的半轴(13)与差速器(1)驱动连接,其特征在于:所述差速器(1)安装在电机(2)内且差速器外壳体(11)构成所述电机(2)的转轴。
  2. 如权利要求1所述的差速器与电机高度集成结构,其特征在于:所述电机(2)包括电机外壳体(21),所述差速器外壳体(11)旋转安装在电机外壳体(21)的轴承室上。
  3. 如权利要求2所述的差速器与电机高度集成结构,其特征在于:所述电机外壳体(21)内设有定子(22)和可发生相对定子(22)转动的转子(23),所述定子(22)固定连接在电机外壳体(21)上,所述差速器外壳体(11)位于电机外壳体(21)内部且连接在转子(23)上。
  4. 如权利要求3所述的差速器与电机高度集成结构,其特征在于:所述差速器外壳体(11)内设有连接在差速器外壳体(11)上的行星齿轮(12),半轴(13)连接在差速器外壳体(11)上,所述半轴(13)端部设有半轴齿轮(18),所述半轴齿轮(18)与行星齿轮(12)相啮合。
  5. 如权利要求4所述的差速器与电机高度集成结构,其特征在于:所述行星齿轮(12)位于转子(23)内部。
  6. 如权利要求4所述的差速器与电机高度集成结构,其特征在于:所述半轴(13)设有两根且对称连接在差速器外壳体(11)的两侧。
  7. 如权利要求6所述的差速器与电机高度集成结构,其特征在于:所述行星齿轮(12)设有两个且相对设置,每个行星齿轮(12)均与两根半轴(13)相啮合,所述行星齿轮(12)与差速器外壳体(11)转动连接且行星齿轮(12)转动中心位于行星齿轮(12)的轴心线上,两个行星齿轮(12)之间可发生相对独立的转动。
  8. 如权利要求6所述的差速器与电机高度集成结构,其特征在于:两个行星齿轮(12)中心的连线与两根半轴(13)中心的连线相互垂直。
  9. 如权利要求4所述的差速器与电机高度集成结构,其特征在于:所述行星齿轮(12)的轴心线与转子(23)的轴心线相重合;所述行星齿轮(12)为圆锥齿轮。
  10. 如权利要求1所述的差速器与电机高度集成结构,所述电机(2)包括电机外壳体(21),所述电机外壳体(21)内设有循环油道(25),所述循环油道(25)两端均设有润滑口(24),差速器(1)内部具有润滑空腔(15),所述润滑空腔(15)通过润滑口(24)与循环油道(25)相连通。
  11. 如权利要求10所述的差速器与电机高度集成结构,其特征在于:所述循环油道(25)设有若干条,且循环油道(25)沿半轴(13)的轴心线周向均匀分布。
  12. 如权利要求10所述的差速器与电机高度集成结构,其特征在于:所述润滑口(24)与润滑空腔(15)之间通过导油槽(16)相连通,所述导油槽(16)设置在差速器(1)内表面上且向差速器(1)内部凹陷或所述导油槽(16)设置在半轴(13)外表面上且向半轴(13)内部凹陷。
  13. 如权利要求12所述的差速器与电机高度集成结构,其特征在于:所述导油槽(16)设置在差速器(1)内表面上且呈螺旋状延伸,导油槽(16)的轴心线与半轴(13)的轴心线相重合。
  14. 如权利要求12所述的差速器与电机高度集成结构,其特征在于:所述导油槽(16)包括若干根依次连通的导油通道(161),所述导油通道(161)中心线与半轴(13)轴心线的夹角为45-75度。
  15. 如权利要求12所述的差速器与电机高度集成结构,其特征在于:所述导油槽(16)设置在半轴(13)外表面,每根半轴(13)上至少设有两条导油槽(16),且每条导油槽(16)的进油口所处位置不相同。
  16. 如权利要求10所述的差速器与电机高度集成结构,其特征在于:还包括设置在差速器(1)和/或半轴(13)上的搅油槽(17)。
  17. 如权利要求16所述的差速器与电机高度集成结构,其特征在于:所述搅油槽(17)设置在差速器(1)上,搅油槽(17)具有若干个且搅油槽(17)沿半轴(13)轴心线周向均匀分布;或所述搅油槽(17)设置在半轴(13)上,搅油槽(17)具有若干个且搅油槽(17)沿半轴(13)轴心线周向均匀分布。
  18. 如权利要求16所述的差速器与电机高度集成结构,其特征在于:所述搅油槽(17)位于润滑口(24)正上方或正下方的。
  19. 如权利要求10所述的差速器与电机高度集成结构,其特征在于:所述润滑口(24)设有至少四个,差速器(1)上驱动连接有半轴(13),至少两个润滑口(24)位于半轴(13)上方,至少两个润滑口(24)位于半轴(13)下方,所述循环油道(25)包括位于半轴(13)上方的上循环油道(251)和位于半轴(13)下方的下循环油道(252),两个位于半轴(13)上方的润滑口(24)通过上循环油道(251)相连通,两个位于半轴(13)下方的润滑口(24)通过下循环油道(252)相连通。
PCT/CN2021/117508 2021-06-01 2021-09-09 差速器与电机高度集成结构 WO2022252431A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202110608722.5 2021-06-01
CN202110608722.5A CN113565941A (zh) 2021-06-01 2021-06-01 差速器与电机高度集成结构
CN202110608936.2A CN113565942A (zh) 2021-06-01 2021-06-01 设置在差速器与电机集成结构内的油路
CN202110608936.2 2021-06-01

Publications (1)

Publication Number Publication Date
WO2022252431A1 true WO2022252431A1 (zh) 2022-12-08

Family

ID=84323803

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/117508 WO2022252431A1 (zh) 2021-06-01 2021-09-09 差速器与电机高度集成结构

Country Status (1)

Country Link
WO (1) WO2022252431A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102774281A (zh) * 2011-05-06 2012-11-14 奥迪股份公司 驱动装置
CN103633775A (zh) * 2013-11-29 2014-03-12 华南理工大学 一种内置差减总成的电动汽车驱动电机
CN107933272A (zh) * 2017-11-17 2018-04-20 航科汽车底盘系统(镇江)有限公司 一种用于新能源汽车的集成式行星齿轮减速差速电机
CN108351010A (zh) * 2015-11-24 2018-07-31 舍弗勒技术股份两合公司 用于机动车的驱动装置
WO2019011505A1 (de) * 2017-07-12 2019-01-17 Robert Bosch Gmbh Antriebseinrichtung zum antreiben einer elektrischen achse
CN110696608A (zh) * 2018-07-09 2020-01-17 陕西汉德车桥有限公司 一种中央电机减速驱动桥及装有该驱动桥的车辆

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102774281A (zh) * 2011-05-06 2012-11-14 奥迪股份公司 驱动装置
CN103633775A (zh) * 2013-11-29 2014-03-12 华南理工大学 一种内置差减总成的电动汽车驱动电机
CN108351010A (zh) * 2015-11-24 2018-07-31 舍弗勒技术股份两合公司 用于机动车的驱动装置
WO2019011505A1 (de) * 2017-07-12 2019-01-17 Robert Bosch Gmbh Antriebseinrichtung zum antreiben einer elektrischen achse
CN107933272A (zh) * 2017-11-17 2018-04-20 航科汽车底盘系统(镇江)有限公司 一种用于新能源汽车的集成式行星齿轮减速差速电机
CN110696608A (zh) * 2018-07-09 2020-01-17 陕西汉德车桥有限公司 一种中央电机减速驱动桥及装有该驱动桥的车辆

Similar Documents

Publication Publication Date Title
US11772479B2 (en) Electric wheel assembly with integrated hub motor
CN104696445B (zh) 轮边减速器
CN113635709B (zh) 具有单个执行器的多模式转矩定向分配电动驱动桥
KR20120100244A (ko) 인휠 구동장치
JP2012034481A (ja) 車両用モータ駆動装置
CN215806129U (zh) 差速器与电机高度集成结构
CN215817745U (zh) 应用于差速器与电机集成结构上的密封结构
CN113565941A (zh) 差速器与电机高度集成结构
CN106864252B (zh) 一种转向与驱动集成式轮边电驱动系统及车辆
WO2022252431A1 (zh) 差速器与电机高度集成结构
CN209987734U (zh) 一种低速大扭矩电动轮装置和电动汽车
CN209870113U (zh) 一种新能源汽车二合一动力总成
CN215806128U (zh) 设置在差速器与电机集成结构内的油路
CN105605176A (zh) 一种基于ww型双联行星齿轮结构的压力无级变速器
CN215763202U (zh) 一种同轴式驱动润滑结构
CN216300750U (zh) 具有行星减速的驱动系统
CN113565942A (zh) 设置在差速器与电机集成结构内的油路
JP2004132440A (ja) 動力伝達装置の潤滑構造
CN220505753U (zh) 差速器及车辆
CN216069584U (zh) 一种电驱系统总成
CN218929188U (zh) 轮毂电机
WO2024036608A1 (zh) 流体向心引导装置及车辆用动力系统
CN219529771U (zh) 一种斜齿行星减速机
CN216200320U (zh) 变速箱用换向结构以及变速箱
CN220129887U (zh) 一种工程机械快速自散热车桥

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21943785

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE