WO2022252414A1 - 一种燃煤机组煤风同步动态协控方法 - Google Patents

一种燃煤机组煤风同步动态协控方法 Download PDF

Info

Publication number
WO2022252414A1
WO2022252414A1 PCT/CN2021/115072 CN2021115072W WO2022252414A1 WO 2022252414 A1 WO2022252414 A1 WO 2022252414A1 CN 2021115072 W CN2021115072 W CN 2021115072W WO 2022252414 A1 WO2022252414 A1 WO 2022252414A1
Authority
WO
WIPO (PCT)
Prior art keywords
coal
unit
wet
air
combustion
Prior art date
Application number
PCT/CN2021/115072
Other languages
English (en)
French (fr)
Inventor
宋玉宝
赵民
何金亮
梅振锋
金理鹏
杨万荣
朱仓海
Original Assignee
苏州西热节能环保技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州西热节能环保技术有限公司 filed Critical 苏州西热节能环保技术有限公司
Publication of WO2022252414A1 publication Critical patent/WO2022252414A1/zh
Priority to US18/090,580 priority Critical patent/US11822316B2/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N1/00Regulating fuel supply
    • F23N1/02Regulating fuel supply conjointly with air supply
    • F23N1/022Regulating fuel supply conjointly with air supply using electronic means
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/04Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
    • G05B13/042Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators in which a parameter or coefficient is automatically adjusted to optimise the performance
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/4155Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by programme execution, i.e. part programme or machine function execution, e.g. selection of a programme
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/003Systems for controlling combustion using detectors sensitive to combustion gas properties
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/003Systems for controlling combustion using detectors sensitive to combustion gas properties
    • F23N5/006Systems for controlling combustion using detectors sensitive to combustion gas properties the detector being sensitive to oxygen
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/50Machine tool, machine tool null till machine tool work handling
    • G05B2219/50333Temperature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Definitions

  • the invention belongs to the technical field of coal-fired units, and in particular relates to a coal-fired unit coal wind synchronous dynamic cooperative control method.
  • Automatic generation control AGC is an important function in the unit energy management system EMS (Energy Management System).
  • EMS Electronic Management System
  • the common traditional serial coal wind sequence control logic is shown in Figure 1: After receiving the unit load up and down command After that, the high and medium pressure adjustment valve of the steam turbine is opened/closed; after the steam pressure is reduced/increased, an instruction to increase/decrease the amount of coal is issued, and the coal is burned into the furnace through the coal mill, pulverized coal pipeline, and burner; the economizer outlet The oxygen content of the flue gas is reduced/literally, and the blower baffle door is opened/closed. The combustion-supporting air enters the furnace for combustion through the coal mill and the wind box, so as to realize the expected change of the oxygen content of the operating wet basis.
  • this traditional serial sequential control logic mode tends to cause the amount of combustion-supporting air entering the furnace to lag behind the increase and decrease of coal amount for a long time, breaking the wind-coal balance
  • the combustion atmosphere causes drastic fluctuations in the concentration of flue gas nitrogen oxides at the outlet of the boiler economizer and the amount of oxygen on a wet basis during operation.
  • the load increases, the operating wet-based oxygen content decreases with the increase of coal volume, and the concentration of nitrogen oxides decreases significantly; when the load decreases, the operating wet-based oxygen volume increases with the decrease of coal volume, and the concentration of nitrogen oxides increases significantly .
  • the concentration of flue gas nitrogen oxides at the outlet of a typical boiler economizer varies from 180 to 350 mg/m 3 during the process of lifting and lowering the load, while the online CEMS measurement lag time of nitrogen oxides at the inlet of the downstream SCR flue gas denitrification system is about 1 to 3 minutes.
  • the adjustment of the amount of denitrification ammonia injection lags behind the changes in the working conditions of the unit, so it is easy to cause excessive ammonia injection in a local period of time, the concentration of nitrogen oxide emissions is very low, and the concentration of ammonia escape is high, which will aggravate the blockage of ammonium bisulfate in the air preheater, or As a result, the amount of ammonia injected is insufficient in a certain period of time, and the concentration of nitrogen oxide emissions exceeds the standard.
  • the purpose of the present invention is to provide a coal-fired unit coal air synchronous dynamic cooperative control method, which is used to solve the problem that the amount of combustion-supporting air lags behind the adjustment of coal supply during the rapid peak-shaving process of the unit.
  • a coal-fired unit coal wind synchronous dynamic cooperative control method including the following steps in sequence:
  • S3 Calculate the predicted value of the required combustion-supporting dry air volume and the predicted value of the generated wet flue gas volume under different loads, and compare the required combustion-supporting dry air volume prediction value of the hourly total coal consumption under different loads Verify whether the relative deviation is within the acceptable range with its design value, the predicted value of the generated wet flue gas volume and its design value;
  • S6 According to the load command curve of the unit, determine the target value of the load command at the future time point, and calculate the load change rate of the unit within the time, calculate the coal feed amount at the future time point, and calculate the coal feed change within the time point, and then Calculation of the variation of combustion-supporting dry air and combustion-supporting wet air within the time;
  • S7 Calculate the change value of the operating wet-based oxygen amount caused by the change of the combustion-supporting dry air amount, and calculate the flue gas operating wet-based oxygen amount at the future time point according to the corresponding functional relationship between the unit load and the designed flue gas operating wet-based oxygen amount, and Calculate the change value of the set wet-based oxygen amount within the time, and obtain the change amount of the operating wet-based oxygen amount within the time;
  • the present invention has the following advantages compared with the prior art:
  • the present invention accurately calculates the amount of combustion-supporting dry air and wet flue gas in real time on-line, and according to the change of unit load command, sets the coal feeding amount and the adjustment amount of the operating wet base oxygen amount synchronously and in the same proportion, and proposes a parallel preset coal feeding amount
  • the air-coal synchronous dynamic coordinated control method with the operating wet-based oxygen maintains the balanced combustion situation of the air-powder in the boiler, effectively improves the follow-up response of the combustion-supporting dry air, and greatly reduces the operating wet base at the outlet of the boiler economizer.
  • the response lag time of the oxygen amount improves the adjustment synchronization between the load, coal combustion and combustion-supporting dry air, improves the stability of the nitrogen oxide concentration at the boiler outlet, and effectively reduces the steam pressure and temperature fluctuations caused by over-regulation
  • the amplitude creates important conditions for the stable operation of the SCR denitrification system.
  • a coal-fired unit coal wind synchronous dynamic cooperative control method accurately calculates the combustion-supporting dry air volume and wet flue gas volume in real time online, and then obtains the target value of the coal supply volume to be adjusted according to the change of the unit load command.
  • the target value of the operating wet-based oxygen to be adjusted is set simultaneously with the adjustment amount of the coal feed rate and the operating wet-based oxygen in the same proportion.
  • L is the unit load, the unit is MW,
  • Q net,b is the low calorific value of the design coal, the unit is MJ/kg,
  • O 2,b is the wet basis oxygen content of the designed flue gas operation, the unit is %.
  • the variance is greater than 0.9, it indicates that the accuracy of the fitting is high, and then calculate the actual combustion-supporting dry air volume per unit mass of coal W air,act , and calculate the air saturated vapor pressure based on the real-time measured air temperature, relative humidity and atmospheric pressure and the volume fraction of water vapor per unit volume of dry air Then calculate the actual combustion-supporting wet air volume W air,act,wet per unit mass of coal combustion and the actual wet flue gas volume W flue,act,wet produced by unit mass coal combustion:
  • W flue,th,wet is the theoretical wet flue gas volume per unit mass of coal combustion, the unit is m 3 /kg,
  • W air,th,dry is the amount of theoretical combustion-supporting dry air per unit mass of coal, in m 3 /kg
  • W air,act,dry is the actual combustion-supporting dry air volume per unit mass of coal, in m 3 /kg,
  • W flue, act , wet is the amount of wet flue gas produced per unit mass of coal-fired wet basis, in m 3 /kg,
  • Q net is the lower calorific value of coal, the unit is MJ/kg
  • is the relative humidity of the air in %
  • P atm is the atmospheric pressure in Pa
  • W air,h is the predicted value of the combustion-supporting dry air volume required for the total amount of coal burned per hour, in m 3 /h,
  • W flue,h is the predicted value of wet flue gas generated by the total coal combustion per hour, in m 3 /h,
  • W flue,act,wet is the predicted value of theoretical wet flue gas volume per unit mass of coal combustion, the unit is m 3 /kg,
  • is the proportion of combustion heat loss of the furnace coal, and its value is 0.42%.
  • W air,h is the predicted value of the combustion-supporting dry air volume required for the total amount of coal burned per hour, in m 3 /h,
  • W flue,h is the predicted value of wet flue gas generated by the total coal combustion per hour, in m 3 /h,
  • W air,b is the design value of the combustion-supporting dry air volume required for the total amount of coal burned per hour, in m 3 /h,
  • W flue,b is the design value of the amount of wet flue gas generated by the total coal combustion per hour, and the unit is m 3 /h.
  • Q net,b is the low calorific value of the designed coal feed, in MJ/kg
  • W coal,act is the actual coal supply under the current unit load L ⁇ , the unit is t/h,
  • W coal,b, ⁇ is the designed coal supply under the current unit load L ⁇ , the unit is t/h.
  • BW air,act,dry is the amount of dry air for combustion, the unit is m 3 /h,
  • BW air,act,wet is the amount of combustion-supporting wet air, the unit is m 3 /h,
  • BW flue,act,wet is the outlet wet flue gas volume, the unit is m 3 /h.
  • W air,th,dry is the amount of theoretical combustion-supporting dry air per unit mass of coal, in m 3 /kg
  • W flue,th,wet is the theoretical wet flue gas volume per unit mass of coal combustion, the unit is m 3 /kg,
  • act is the actual flue gas operating wet base oxygen content, the unit is %
  • W coal,act is the actual coal supply under the current unit load L ⁇ , the unit is t/h,
  • ⁇ W coal W coal, ⁇ + ⁇ -W coal,act ,
  • E L is the unit load change rate within ⁇ time, the unit is %,
  • L ⁇ + ⁇ is the unit load after ⁇ time, the unit is MW
  • W coal,act is the actual coal supply under the current unit load L ⁇ , the unit is t/h,
  • ⁇ BW air,act,dry is the variation of combustion-supporting dry air within ⁇ , the unit is m 3 /h,
  • ⁇ BW air,act,wet is the variation of combustion-supporting wet air within ⁇ , the unit is m 3 /h,
  • W air,act,dry is the actual combustion-supporting dry air volume per unit mass of coal, in m 3 /kg,
  • ⁇ O 2,1 is the change value of the operating wet base oxygen amount caused by the change of the combustion-supporting dry air amount, the unit is %,
  • ⁇ BW air,act,dry is the variation of combustion-supporting dry air within ⁇ , the unit is m 3 /h,
  • BW flue, act is the outlet wet flue gas volume, the unit is m 3 /h,
  • ⁇ O 2,2 is the change value of the set oxygen amount within ⁇ time, the unit is %
  • O 2,b, ⁇ is the wet base oxygen content of flue gas operation at the time point of ⁇ in the future, the unit is %,
  • act is the actual operating wet base oxygen content, the unit is %,
  • ⁇ O 2 is the variation of running wet basis oxygen within ⁇ time, the unit is %.
  • W cool,new is the target value of the coal supply to be adjusted, the unit is t/h,
  • W coal,act is the actual coal supply under the current unit load L ⁇ , the unit is t/h,
  • ⁇ W coal is the change of coal feeding within ⁇ , the unit is t/h,
  • ⁇ O 2 is the variation of running wet basis oxygen within ⁇ time, the unit is %.
  • L is the unit load, the unit is MW;
  • W coal,b is the designed coal supply, the unit is t/h;
  • Table 2 The design value and forecast value of the required combustion dry air volume and the wet flue gas volume of the total coal combustion per hour

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • Software Systems (AREA)
  • Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Evolutionary Computation (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Artificial Intelligence (AREA)
  • Regulation And Control Of Combustion (AREA)
  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)

Abstract

一种燃煤机组煤风同步动态协控方法,包括如下步骤:分别确定机组负荷与设计给煤量和烟气运行湿基氧量的函数关系;回归得到单位质量燃煤理论湿烟气量和助燃干空气量,并计算单位质量燃煤实际助燃干空气量;验证每小时燃煤总量的所需助燃干空气量和产生湿烟气量预测值偏差在可接受范围内;计算实际给煤低位热值;计算助燃干空气量和出口湿烟气量;根据未来时间点的负荷指令目标值,计算给煤变化量和助燃干空气变化量;得到运行湿基氧量变化量;最后得到拟调节的给煤量和运行湿基氧量目标值。该方法提高了助燃干空气量的调节跟随响应性,减小了省煤器出口运行湿基氧量的响应滞后时间,改善了负荷、燃煤和助燃干空气三者之间的调节同步性。

Description

一种燃煤机组煤风同步动态协控方法 技术领域
本发明属于燃煤机组技术领域,具体涉及一种燃煤机组煤风同步动态协控方法。
背景技术
自动发电量控制AGC(Automatic Generation Control)是机组能量管理系统EMS(Energy Management System)中的一项重要功能,常见的传统串联式煤风顺序控制逻辑如图1所示:接到机组负荷升降指令后,汽机高中压调门开大/关小;汽压降低/升高后,发出给煤量加/减指令,燃煤经磨煤机、煤粉管道、燃烧器进入炉膛燃烧;省煤器出口烟气氧量降/升,送风机挡板门开大/关小指令,助燃风经磨煤机、风箱进入炉膛燃烧,实现运行湿基氧量的期望变化。
燃煤机组在2%MCR/min及以上灵活调峰快速升降负荷过程中,这种传统的串联式顺序控制逻辑模式易导致入炉助燃风量长时间滞后于煤量的加减,打破风煤均衡燃烧氛围,造成锅炉省煤器出口烟气氮氧化物浓度和运行湿基氧量剧烈波动。当负荷升高时,运行湿基氧量随煤量增加而降低,氮氧化物浓度大幅度降低;当负荷降低时,运行湿基氧量随煤量减少而增加,氮氧化物浓度大幅度增加。
典型的锅炉省煤器出口烟气氮氧化物浓度在升降负荷过程中,变化范围达到180~350mg/m 3,而下游SCR烟气脱硝系统入口氮氧化物在线CEMS测量滞后时间约1~3min,进一步使脱硝喷氨量调节滞后于机组工况变化,因此易造成局部时间段内过量喷氨,氮氧化物排放浓度很低,氨逃逸浓度很高,加剧空气预热器硫酸氢铵堵塞,或造成局部时间段内喷氨量不足,氮氧化物排放浓度超标。
目前,有技术在尝试解决煤风不同步的控制策略问题:
参见CN110658721A公开了一种应用于火电机组AGC-R模式的自适应预投煤方法及系统。该方法缩短了加减燃料相对于负荷指令的滞后时间,提高了机组协调变负荷能力。但是该方法仅使机组在增减负荷过程中可以对增减煤量提前预判,无法解决对于助燃风量的提前预判。
参见CN103513640A公开了一种燃煤机组自动发电控制系统整体优化方法及系统。该方法虽然一定程度上提高了风煤燃烧的协调性,但仍没有缩短加减煤指令与加减风到位之间的大延迟滞后时间,因此无法解决动态快速变负荷期间的不均衡燃烧态势。
发明内容
本发明的目的是提供一种燃煤机组煤风同步动态协控方法,用于解决机组快速调峰过程中出现的助燃风量滞后给煤量调节的问题。
为达到上述目的,本发明采用的技术方案是:
一种燃煤机组煤风同步动态协控方法,依次包括如下步骤:
S1:在机组稳态运行模式下,获取不同负荷下的设计给煤量和烟气运行湿基氧量,进而确定机组负荷L与设计给煤量的对应函数关系、机组负荷与设计烟气运行湿基氧量的对应函数关系;
S2:采用回归分析方法,拟合得到基于低位热值的单位质量燃煤理论湿烟气量和单位质量燃煤理论助燃干空气量的回归函数,判断回归函数的准确性,计算得到单位质量燃煤实际助燃干空气量,根据空气温 度、相对湿度和大气压力,计算空气饱和蒸汽压和单位体积干空气中的水蒸气占比,进而计算单位质量燃煤实际助燃湿空气量和单位质量燃煤实际产生的湿烟气量;
S3:计算不同负荷下每小时燃煤总量的所需助燃干空气量预测值和产生湿烟气量预测值,通过比较不同负荷下每小时燃煤总量的所需助燃干空气量预测值与其设计值、产生湿烟气量预测值与其设计值,验证相对偏差是否在可接受范围内;
S4:获取机组的当前负荷和实际给煤量,通过机组负荷与设计给煤量的对应函数关系计算当前机组负荷下的设计给煤量,并计算实际给煤低位热值;
S5:根据机组的实际给煤量、实际运行湿基氧量以及实际给煤低位热值,计算出进入锅炉的助燃干空气量和助燃湿空气量,锅炉省煤器出口湿烟气量;
S6:根据机组的负荷指令曲线,确定未来时间点的负荷指令目标值,并计算时间内的机组负荷变化率,计算得到未来时间点的给煤量,并计算时间内的给煤变化量,再计算时间内的助燃干空气变化量和助燃湿空气变化量;
S7:计算助燃干空气量变化引起的运行湿基氧量变化值,根据机组负荷与设计烟气运行湿基氧量的对应函数关系,计算得到未来时间点的烟气运行湿基氧量,并计算时间内的设定湿基氧量变化值,得到时间内的运行湿基氧量变化量;
S8:在机组原顺序控制逻辑的给煤量指令和运行湿基氧量指令基础上,同时分别预先叠加给煤变化量和运行湿基氧量变化量,得到拟调节的给煤量目标值和拟调节的运行湿基氧量目标值。
由于上述技术方案运用,本发明与现有技术相比具有下列优点:
本发明通过在线实时准确计算助燃干空气量和湿烟气量,并根据机组负荷指令变化,同步同比例设定给煤量和运行湿基氧量的调节量,提出了并行预置给煤量和运行湿基氧量的风煤同步动态协控方法,维持了锅炉内的风粉均衡燃烧态势,有效提高了助燃干空气的跟随响应性,大幅度减小了锅炉省煤器出口运行湿基氧量的响应滞后时间,改善了负荷、燃煤和助燃干空气三者之间的调节同步性,改善了锅炉出口氮氧化物浓度的稳定性,有效降低了过度调节引发的蒸汽压力和温度波动幅度,为SCR脱硝系统的稳定运行创造了重要条件。
附图说明
附图1为传统串联式风煤顺序协调控制的逻辑框图;
附图2为本实施例中的煤风同步动态协调控制的逻辑框图。
具体实施方式
下面将结合附图对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
如图2所示的一种燃煤机组煤风同步动态协控方法,在线实时准确计算助燃干空气量和湿烟气量,再根据机组负荷指令变化,得到拟调节的给煤量目标值和拟调节的运行湿基氧量目标值,同步同比例设定给煤量和运行湿基氧量的调节量。依次包括如下步骤:
S1:在机组稳态运行模式下,获得不同负荷下的设计给煤量和烟气运行湿基氧量,进而确定:以机组负荷L为自变量的设计给煤量W coal,b折线函数、以机组负荷L为自变量的设计烟气运行湿基氧量O 2,b折线函数:
W coal,b=f(L,Q net,b),
O 2,b=g(L),
式中:
L为机组负荷,单位为MW,
W coal,b为设计给煤量,单位为t/h,
Q net,b为设计煤低位热值,单位为MJ/kg,
O 2,b为设计烟气运行湿基氧量,单位为%。
S2:采用回归分析方法,通过拟合已有的多组电站锅炉煤种样品的元素分析和工业分析数据,得到基于低位热值的单位质量燃煤理论湿烟气量W flue,th,wet和单位质量燃煤理论助燃干空气量W air,th,dry,并通过方差判断回归函数的准确性,如方差大于0.9则表明拟合的准确性高,进而计算单位质量燃煤实际助燃干空气量W air,act,并根据实时测得的空气温度、相对湿度和大气压力,计算空气饱和蒸汽压
Figure PCTCN2021115072-appb-000001
和单位体积干空气中的水蒸气体积占比
Figure PCTCN2021115072-appb-000002
进而计算单位质量燃煤实际助燃湿空气量W air,act,wet和单位质量燃煤实际产生的湿烟气量W flue,act,wet
W flue,th=α 1×Q net1
W air,th=α 2×Q net2
Figure PCTCN2021115072-appb-000003
Figure PCTCN2021115072-appb-000004
Figure PCTCN2021115072-appb-000005
Figure PCTCN2021115072-appb-000006
Figure PCTCN2021115072-appb-000007
式中:
W flue,th,wet为单位质量燃煤理论湿烟气量,单位为m 3/kg,
W air,th,dry为单位质量燃煤理论助燃干空气量,单位为m 3/kg,
W air,act,dry为单位质量燃煤实际助燃干空气量,单位为m 3/kg,
W flue,act, wet为单位质量燃煤湿基产生的湿烟气量,单位为m 3/kg,
Q net为煤低位热值,单位为MJ/kg,
O 2为烟气运行湿基氧量,单位为%,
α 1、α 2、β 1、β 2均为常数,分别为0.2467、0.2496、0.718、0.3125,
Figure PCTCN2021115072-appb-000008
为空气饱和蒸汽压,单位为Pa,
T air为空气温度,单位为℃,
ф为空气相对湿度,单位为%,
P atm为大气压力,单位为Pa,
Figure PCTCN2021115072-appb-000009
为单位体积干空气中的水蒸汽体积占比。
S3:根据工业分析(收到基灰、收到基水、低位热值)和元素分析(碳、氢、氧、氮、硫)结果,得到不同负荷下每小时燃煤总量所需助燃干空气量设计值W air,b和产生湿烟气量设计值W flue,b
计算不同负荷设计湿基氧量下每小时燃煤总量的所需助燃干空气量预测值W air,h和产生湿烟气量预测值W flue,h
W air,h=W air,act,dry×W coal,b×(1-γ)×1000,
W flue,h=W flue,act,wet×W coal,b×(1-γ)×1000,
式中:
W air,h为每小时燃煤总量的所需助燃干空气量预测值,单位为m 3/h,
W flue,h为每小时燃煤总量的产生湿烟气量预测值,单位为m 3/h,
W air,act,dry为单位质量燃煤实际助燃干空气量,单位为m 3/kg,
W flue,act,wet为单位质量燃煤理论湿烟气量预测值,单位为m 3/kg,
W coal,b为设计给煤量,单位为t/h,
γ为入炉煤的燃烧热损失比例,其值为0.42%。
计算不同负荷下每小时燃煤总量的所需助燃干空气量预测值W air,h与其设计值W air,b之间的相对偏差δ 1、产生湿烟气量预测值W flue,h与其设计值W flue,b之间的相对偏差δ 2,若相对偏差δ 1和δ 2均在-5%~+5%内,则拟合后的偏差在可接受范围内:
Figure PCTCN2021115072-appb-000010
Figure PCTCN2021115072-appb-000011
式中:
W air,h为每小时燃煤总量的所需助燃干空气量预测值,单位为m 3/h,
W flue,h为每小时燃煤总量的产生湿烟气量预测值,单位为m 3/h,
W air,b为每小时燃煤总量的所需助燃干空气量设计值,单位为m 3/h,
W flue,b为每小时燃煤总量的产生湿烟气量设计值,单位为m 3/h。
S4:获取机组DCS系统显示的当前机组负荷L i和实际给煤量W coal,act,通过机组负荷L与设计给煤量W coal,b的对应函数关系计算当前机组负荷L τ下的设计给煤量W coal,b,τ,并计算实际给煤低位热值Q net,act
Figure PCTCN2021115072-appb-000012
式中:
Q net,act为实际给煤低位热值,单位为MJ/kg,
Q net,b为设计给煤低位热值,单位为MJ/kg,
W coal,act为当前机组负荷L τ下的实际给煤量,单位为t/h,
W coal,b,τ为当前机组负荷L τ下的设计给煤量,单位为t/h。
S5:根据机组DCS系统显示的实际给煤量W coal,act、实际运行湿基氧量O 2,act以及实际给煤低位热值 Q net,act,计算出实际运行负荷L τ下的进入锅炉的助燃干空气量BW air,act,dry和助燃湿空气量BW air,act,wet,锅炉省煤器出口湿烟气量BW flue,act,wet
Figure PCTCN2021115072-appb-000013
Figure PCTCN2021115072-appb-000014
Figure PCTCN2021115072-appb-000015
式中:
BW air,act,dry为助燃干空气量,单位为m 3/h,
BW air,act,wet为助燃湿空气量,单位为m 3/h,
BW flue,act,wet为出口湿烟气量,单位为m 3/h。
W air,th,dry为单位质量燃煤理论助燃干空气量,单位为m 3/kg,
W flue,th,wet为单位质量燃煤理论湿烟气量,单位为m 3/kg,
O 2,act为实际烟气运行湿基氧量,单位为%,
Figure PCTCN2021115072-appb-000016
为单位体积干空气中的水蒸汽体积占比。
W coal,act为当前机组负荷L τ下的实际给煤量,单位为t/h,
S6:根据电网调度中心提前设定机组的负荷指令曲线,确定未来Δτ时间点的负荷指令目标值,并计算Δτ时间内的机组负荷变化率E L,计算得到未来Δτ时间点的给煤量W coal,τ+Δτ,并计算Δτ时间内的给煤变化量ΔW coal,再计算Δτ时间内的助燃干空气变化量ΔBW air,act和助燃湿空气变化量ΔBW air,act,wet
Figure PCTCN2021115072-appb-000017
Figure PCTCN2021115072-appb-000018
ΔW coal=W coal,τ+Δτ-W coal,act
ΔBW air,act,dry=W air,act,dry×ΔW coal×1000,
Figure PCTCN2021115072-appb-000019
式中:
E L为Δτ时间内的机组负荷变化率,单位为%,
L τ为当前机组负荷,单位为MW,
L τ+Δτ为Δτ时间后的机组负荷,单位为MW,
W coal,τ+Δτ为未来Δτ时间点的给煤量,单位为t/h,
W coal,act为当前机组负荷L τ下的实际给煤量,单位为t/h,
ΔW coal为Δτ时间内的给煤变化量,单位为t/h,
ΔBW air,act,dry为Δτ时间内的助燃干空气变化量,单位为m 3/h,
ΔBW air,act,wet为Δτ时间内的助燃湿空气变化量,单位为m 3/h,
W air,act,dry为单位质量燃煤实际助燃干空气量,单位为m 3/kg,
Figure PCTCN2021115072-appb-000020
为单位体积干空气中的水蒸汽体积占比。
S7:根据助燃干空气变化量ΔBW air,act,dry,折算出助燃干空气量变化引起的运行湿基氧量变化值ΔO 2,1,根据机组负荷L与设计烟气运行湿基氧量O 2,b的对应函数关系,获得未来Δτ时间点的烟气运行湿基氧量O 2,b,τ,并计算Δτ时间内的设定湿基氧量变化值ΔO 2,2,从而计算得到Δτ时间内的运行湿基氧量变化量ΔO 2
Figure PCTCN2021115072-appb-000021
ΔO 2,2=O 2,b,τ-O 2,act
ΔO 2=ΔO 2,1+ΔO 2,2
式中:
ΔO 2,1为助燃干空气量变化引起的运行湿基氧量变化值,单位为%,
ΔBW air,act,dry为Δτ时间内的助燃干空气变化量,单位为m 3/h,
ΔBW air,act,wet为Δτ时间内的助燃湿空气变化量,单位为m 3/h,
BW flue,act为出口湿烟气量,单位为m 3/h,
ΔO 2,2为Δτ时间内的设定氧量变化值,单位为%,
O 2,b,τ为未来Δτ时间点的烟气运行湿基氧量,单位为%,
O 2,act为实际运行湿基氧量,单位为%,
ΔO 2为Δτ时间内的运行湿基氧量变化量,单位为%。
S8:在机组原DCS顺序控制逻辑的给煤量指令和运行湿基氧量指令基础上,同时分别预先叠加给煤变化量ΔW coal和运行湿基氧量变化量ΔO 2,得到拟调节的给煤量目标值W coal,new和拟调节的运行湿基氧量目标值O 2,new
W coal,new=W coal,act+ΔW coal
O 2,new=O 2,act+ΔO 2
式中:
W cool,new为拟调节的给煤量目标值,单位为t/h,
W coal,act为当前机组负荷L τ下的实际给煤量,单位为t/h,
ΔW coal为Δτ时间内的给煤变化量,单位为t/h,
O 2,new为拟调节的运行湿基氧量目标值,单位为%,
O 2,act为实际运行湿基氧量,单位为%,
ΔO 2为Δτ时间内的运行湿基氧量变化量,单位为%。
以下具体给出实施例进行详细阐述:
选择某350MW的机组,通过计算获取当前机组负荷为300MW时,30秒内拟调节的给煤量目标值和拟调节的运行湿基氧量目标值,依次包括如下步骤:
S1:在机组稳态运行模式下,分别获取负荷367.5MW、350MW、367.5MW、175MW、87.5MW下的给煤量和烟气运行湿基氧量,设计给煤低位热值Q net,b为21.652MJ/kg,如表1所示,则机组负荷L与设计给煤量W coal,b的具体函数关系为:
W coal,b=k×L+b,
式中:
L为机组负荷,单位为MW;
W coal,b为设计给煤量,单位为t/h;
k和b均为常数,分别为0.3545和9.7697。
表1:不同负荷下的给煤量和烟气运行湿基氧量
Figure PCTCN2021115072-appb-000022
S2:已知设计烟气运行湿基氧量O 2,b为3.6%、设计给煤低位热值Q net,b为21.652MJ/kg,则可计算得出W flue,th,wet=6.059548m 3/kg,W air,th,dry=5.716839m 3/kg,且通过拟合已有的500多组电站锅炉煤种样品的元素分析和工业分析数据得到的单位质量燃煤理论湿烟气量W flue,th,wet和单位质量燃煤理论助燃干空气量W air,th,dry的方差分别为0.9763和0.9858,均大于0.9,因此拟合的准确性高,进而计算出单位质量燃煤实际助燃干空气量为W air,act,wet=6.97741m 3/kg。设计空气温度为20℃,相对湿度为55%,大气压力为101000Pa,计算单位体积干空气中的水蒸汽占比为
Figure PCTCN2021115072-appb-000023
S3:当机组负荷为367.5MW时,根据工业分析和元素分析结果,得到机组负荷367.5MW下每小时燃煤总量的所需助燃干空气量设计值W air,b为952746m 3/h、产生湿烟气量W flue,b设计值为1030231m 3/h;已知设计给煤量W coal,b为139.23t/h,则每小时燃煤总量的所需助燃干空气量预测值W air,h=6.97741×139.23×(1-0.42%)×1000=967385m 3/h,每小时燃煤总量的产生湿烟气量预测值W flue,h=7.3552×139.23×(1-0.42%)×1000=1019768m 3/h;则助燃干空气量相对偏差
Figure PCTCN2021115072-appb-000024
产生湿烟气量相对偏差
Figure PCTCN2021115072-appb-000025
其他负荷下的计算过程与367.5MW负荷下的计算过程相同,在此不再赘述,具体计算结果如表2中所示。
根据表2中的计算结果可知,不同负荷下每小时燃煤总量的所需助燃干空气量预测值W air,h与其设计值W air,b之间的相对偏差为1.54%~2.61%,产生湿烟气量预测值W flue,h与其设计值W flue,b之间的相对偏差为-0.1.02%~+0.63%,相对偏差均在-5%~5%之间,则由此可判断拟合后的偏差在可接受范围内。
表2:每小时燃煤总量的所需助燃干空气量和产生湿烟气量的设计值与预测值
Figure PCTCN2021115072-appb-000026
Figure PCTCN2021115072-appb-000027
S4:当前机组负荷L τ为300MW,机组DCS系统显示的实际给煤量W coal,act为121.5t/h,通过机组负荷L与设计给煤量W coal,b的对应函数关系,得到实际运行负荷300MW下的设计给煤量W coal,b,τ=0.3545×300+9.769=116.12t/h,则可计算出实际给煤低位热值
Figure PCTCN2021115072-appb-000028
S5:当前机组负荷L τ为300MW时,获取实际运行湿基氧量O 2,act为3.2%,
则可计算出进入锅炉的助燃干空气量为:
Figure PCTCN2021115072-appb-000029
计算出锅炉省煤器出口湿烟气量为:
Figure PCTCN2021115072-appb-000030
S6:当前时间为13:15:00,机组DCS系统显示的当前机组负荷L τ为300MW,根据电网调度中心提前设定的机组的负荷指令曲线,得到30秒后的机组负荷L τ+Δτ为303.85MW或295.765MW,
因此计算出30秒内的机组负荷变化率
Figure PCTCN2021115072-appb-000031
Figure PCTCN2021115072-appb-000032
Figure PCTCN2021115072-appb-000033
计算得到未来30秒的给煤量
Figure PCTCN2021115072-appb-000034
Figure PCTCN2021115072-appb-000035
Figure PCTCN2021115072-appb-000036
并计算30秒内的给煤变化量ΔW coal=123.059-121.5=1.559t/h或ΔW coal=119.784-121.5=-1.716t/h,
再计算30秒内的助燃干空气变化量
Figure PCTCN2021115072-appb-000037
Figure PCTCN2021115072-appb-000038
Figure PCTCN2021115072-appb-000039
Figure PCTCN2021115072-appb-000040
S7:根据助燃空气变化量ΔBW air,act,dry,折算出助燃空气量变化引起的运行湿基氧量变化值
Figure PCTCN2021115072-appb-000041
Figure PCTCN2021115072-appb-000042
根据机组负荷L与设计烟气运行湿基氧量O 2,b的对应函数关系,获得未来30秒的烟气运行湿基氧量设计值O 2,b,τ为3.6%,并计算30秒内的设定湿基氧量变化值ΔO 2,2=3.6-3.2=0.40%,
从而计算得到30秒内的运行湿基氧量变化量ΔO 2=0.252+0.40=0.652%或ΔO 2=-0.286+0.40=0.114%。
S8:在机组原DCS顺序控制逻辑的给煤量指令和运行湿基氧量指令基础上,同时分别预先叠加给煤变化量和运行湿基氧量变化量,得到拟调节的给煤量目标值:
W coal,new=121.5+1.559=123.059t/h或W coal,new=121.5-1.716=119.784t/h,
得到拟调节的运行湿基氧量目标值:
O 2,new=3.2+0.652=3.852%或O 2,new=3.2+0.114=3.314%。
得到拟调节的给煤量目标值W coal,new=119.784t/h和拟调节的运行湿基氧量目标值O 2,new=3.314%,进而同步同比例设定给煤量和运行湿基氧量的调节量。
上述实施例只为说明本发明的技术构思及特点,其目的在于让熟悉此项技术的人士能够了解本发明的内容并据以实施,并不能以此限制本发明的保护范围。凡根据本发明精神实质所作的等效变化或修饰,都应涵盖在本发明的保护范围之内。

Claims (15)

  1. 一种燃煤机组煤风同步动态协控方法,其特征在于:包括如下步骤:
    S1:在机组稳态运行模式下,获取不同负荷下的设计给煤量和烟气运行湿基氧量,进而确定机组负荷L与设计给煤量W coal,b的对应函数关系、机组负荷L与设计烟气运行湿基氧量O 2,b的对应函数关系;
    S2:采用回归分析方法,拟合得到基于低位热值的单位质量燃煤理论湿烟气量W flue,th,wet和单位质量燃煤理论助燃干空气量W air,th,dry的回归函数,判断回归函数的准确性,计算得到单位质量燃煤实际助燃干空气量W air,act,dry,根据空气温度、相对湿度和大气压力,计算空气饱和蒸汽压
    Figure PCTCN2021115072-appb-100001
    和单位体积干空气中的水蒸气占比
    Figure PCTCN2021115072-appb-100002
    进而计算单位质量燃煤实际助燃湿空气量W air,act,wet和单位质量燃煤实际产生的湿烟气量W flue,act,wet
    S3:计算不同负荷下每小时燃煤总量的所需助燃干空气量预测值W air,h和产生湿烟气量预测值W flue,h,通过比较不同负荷下每小时燃煤总量的所需助燃干空气量预测值W air,h与其设计值W air,b、产生湿烟气量预测值W flue,h与其设计值W flue,b,验证相对偏差δ是否在可接受范围内;
    S4:获取机组的当前机组负荷L τ和实际给煤量W coal,act,通过机组负荷L与设计给煤量W coal,b的对应函数关系计算当前机组负荷L τ下的设计给煤量W coal,b,τ,并计算实际给煤低位热值Q net,act
    S5:根据机组的实际给煤量W coal,act、实际运行湿基氧量O 2,act以及实际给煤低位热值Q net,act,计算出实时进入锅炉的助燃干空气量BW air,act,dry和助燃湿空气量BN air,act,wet,锅炉省煤器出口湿烟气量BW flue,act,wet
    S6:根据机组的负荷指令曲线,确定未来Δτ时间点的负荷指令目标值,并计算Δτ时间内的机组负荷变化率E L,计算得到未来Δτ时间点的给煤量W coal,τ+Δτ,并计算Δτ时间内的给煤变化量ΔW coal,再计算Δτ时间内的助燃干空气变化量ΔBW air,act,dry和助燃湿空气变化量ΔBW air,act,wet
    S7:计算助燃干空气量变化引起的运行湿基氧量变化值ΔO 2,1,根据机组负荷L与设计烟气运行湿基氧量O 2,b的对应函数关系,计算得到未来Δτ时间点的烟气运行湿基氧量O 2,b,τ,并计算Δτ时间内的设定湿基氧量变化值ΔO 2,2,得到Δτ时间内的运行湿基氧量变化量ΔO 2
    S8:在机组原顺序控制逻辑的给煤量指令和运行湿基氧量指令基础上,同时分别预先叠加给煤变化量ΔW coal和运行湿基氧量变化量ΔO 2,得到拟调节的给煤量目标值W coal,new和拟调节的运行湿基氧量目标值O 2,new
  2. 根据权利要求1所述的燃煤机组煤风同步动态协控方法,其特征在于:所述的机组负荷L与设计给煤量W coal,b的对应函数关系、机组负荷L与设计烟气运行湿基氧量O 2,b的对应函数关系分别为:
    W coal,b=f*L,Q net,b),
    O 2,b=g(L),
    式中:
    L为机组负荷,单位为MW,
    W coal,b为设计给煤量,单位为t/h,
    Q net,b为设计煤低位热值,单位为MJ/kg,
    O 2,b为设计烟气运行湿基氧量,单位为%。
  3. 根据权利要求1所述的燃煤机组煤风同步动态协控方法,其特征在于:所述的单位质量燃煤理论湿烟气量W flue,th,wet和所述的单位质量燃煤理论助燃干空气量W air,th,dry通过拟合多组已有的电站锅炉煤种样品的元素分析和工业分析数据获得。
  4. 根据权利要求3所述的燃煤机组煤风同步动态协控方法,其特征在于:所述的工业分析数据包括收到基灰、收到基水、低位热值,所述的元素分析数据包括碳、氢、氧、氮、硫成分。
  5. 根据权利要求1所述的燃煤机组煤风同步动态协控方法,其特征在于:所述的单位质量燃煤理论湿烟气量W flue,th,wet、所述的单位质量燃煤理论助燃干空气量W air,th,dry、所述的空气饱和蒸气压
    Figure PCTCN2021115072-appb-100003
    单位体积干空气中的水蒸汽体积占比为
    Figure PCTCN2021115072-appb-100004
    单位质量燃煤实际助燃湿空气量W air,act,wet、单位质量燃煤实际产生的湿烟气量W flue,act,wet和所述的单位质量燃煤实际助燃干空气量W air,act,dry分别为:
    W flue,th,wet=α 1×Q net1
    W air,th,dry=α 2×Q net2
    Figure PCTCN2021115072-appb-100005
    Figure PCTCN2021115072-appb-100006
    Figure PCTCN2021115072-appb-100007
    Figure PCTCN2021115072-appb-100008
    Figure PCTCN2021115072-appb-100009
    式中:
    W flue,th,wet为单位质量燃煤理论湿烟气量,单位为m 3/kg,
    W air,th,dry为单位质量燃煤理论助燃干空气量,单位为m 3/kg,
    Q net为煤低位热值,单位为MJ/kg,
    α 1、α 2、β 1、β 2均为常数,
    Figure PCTCN2021115072-appb-100010
    为空气饱和蒸汽压,单位为Pa,
    T air为空气温度,单位为℃,
    ф为空气相对湿度,单位为%,
    P atm为大气压力,单位为Pa,
    W air,act,dry为单位质量燃煤实际助燃干空气量,单位为m 3/kg,
    W air,th,dry为单位质量燃煤理论助燃干空气量,单位为m 3/kg,
    W flue,th,wet为单位质量燃煤理论湿烟气量,单位为m 3/kg,
    W flue,act,wet为单位质量燃煤实际产生湿烟气量,单位为m 3/kg,
    O 2为烟气运行湿基氧量,单位为%,
    Figure PCTCN2021115072-appb-100011
    为单位体积干空气中的水蒸汽体积占比。
  6. 根据权利要求1所述的燃煤机组煤风同步动态协控方法,其特征在于:所述的回归函数的准确性通过方差进行判断,所述的方差大于0.9。
  7. 根据权利要求1所述的燃煤机组煤风同步动态协控方法,其特征在于:所述的每小时燃煤总量的设计运 行湿基氧量下的所需助燃空气量预测值W air,h和产生烟气量预测值W flue,h分别为:
    W air,h=W air,act,dry×W coal,b×(1-γ)×1000,
    W flue,h=W flue,act,wet×W coal,b×(1-γ)×1000,
    式中:
    W air,h为每小时燃煤总量的所需助燃干空气量预测值,单位为m 3/h,
    W flue,h为每小时燃煤总量的产生湿烟气量预测值,单位为m 3/h,
    W air,act,dry为单位质量燃煤实际助燃干空气量,单位为m 3/kg,
    W flue,th,wet为单位质量燃煤理论湿烟气量,单位为m 3/kg,
    W coal,b为设计给煤量,单位为t/h,
    γ为入炉煤的未燃烧热损失比例。
  8. 根据权利要求1所述的燃煤机组煤风同步动态协控方法,其特征在于:所述的相对偏差δ的可接受范围为-5%~+5%,所述的相对偏差δ包括每小时燃煤总量的所需助燃干空气量预测值W air,h与其设计值W air,b的相对偏差δ 1、产生湿烟气量预测值W flue,h与其设计值W flue,b的相对偏差δ 2,所述的相对偏差δ 1和所述的相对偏差δ 2分别为:
    Figure PCTCN2021115072-appb-100012
    Figure PCTCN2021115072-appb-100013
    式中:
    W air,h为每小时燃煤总量的所需助燃干空气量预测值,单位为m 3/h,
    W flue,h为每小时燃煤总量的产生湿烟气量预测值,单位为m 3/h,
    W air,b为每小时燃煤总量的所需助燃干空气量设计值,单位为m 3/h,
    W flue,b为每小时燃煤总量的产生湿烟气量设计值,单位为m 3/h。
  9. 根据权利要求1所述的燃煤机组煤风同步动态协控方法,其特征在于:所述的实际给煤低位热值Q net,act为:
    Figure PCTCN2021115072-appb-100014
    式中:
    Q net,act为实际给煤低位热值,单位为MJ/kg,
    Q net,b为设计给煤低位热值,单位为MJ/kg,
    W coal,act为当前机组负荷L τ下的实际给煤量,单位为t/h,
    W coal,b,i为当前机组负荷L τ下的设计给煤量,单位为t/h。
  10. 根据权利要求1所述的燃煤机组煤风同步动态协控方法,其特征在于:所述的当前机组负荷L τ、实际给煤量W coal,act、实际运行湿基氧量O 2,act、实际给煤低位热值Q net,act均通过机组的DCS系统获取。
  11. 根据权利要求1所述的燃煤机组煤风同步动态协控方法,其特征在于:在实际运行湿基氧量下,所述的助燃干空气量BW air,act,dry、助燃湿空气量BW air,act,wet和出口湿烟气量BW flue,act,wet分别为:
    Figure PCTCN2021115072-appb-100015
    Figure PCTCN2021115072-appb-100016
    Figure PCTCN2021115072-appb-100017
    式中:
    BW air,act,dry为助燃干空气量,单位为m 3/h,
    BW air,act,wet为助燃湿空气量,单位为m 3/h,
    O 2,act为实际运行湿基氧量,单位为%,
    W air,th,dry为单位质量燃煤理论助燃干空气量,单位为m 3/kg,
    W flue,th,wet为单位质量燃煤理论湿烟气量,单位为m 3/kg,
    BW flue,act,wet为出口湿烟气量,单位为m 3/h,
    W coal,act为当前机组负荷L τ下的实际给煤量,单位为t/h,
    Figure PCTCN2021115072-appb-100018
    为单位体积干空气中的水蒸汽体积占比。
  12. 根据权利要求1所述的燃煤机组煤风同步动态协控方法,其特征在于:所述的负荷指令曲线通过电网调度中心提前设定。
  13. 根据权利要求1所述的燃煤机组煤风同步动态协控方法,其特征在于:所述的Δτ时间内的机组负荷变化率E L、所述的未来Δτ时间点的给煤量W coal,τ+Δτ、所述的Δτ时间内的给煤变化量ΔW coal、所述的Δτ时间内的助燃干空气变化量ΔBW air,act,dry和助燃湿空气变化量ΔBW air,act,wet分别为:
    Figure PCTCN2021115072-appb-100019
    Figure PCTCN2021115072-appb-100020
    ΔW coal=W coal,τ+Δτ-W coal,act
    ΔBW air,act,dry=W air,act,dry×ΔW coal×1000,
    Figure PCTCN2021115072-appb-100021
    式中:
    E L为Δτ时间内的机组负荷变化率,单位为%,
    L τ为当前机组负荷,单位为MW,
    L τ+Δτ为Δτ时间后的机组负荷,单位为MW,
    W coal,τ+Δτ为未来Δτ时间点的给煤量,单位为t/h,
    W coal,act为当前机组负荷L τ下的当前实际给煤量,单位为t/h,
    ΔW coal为Δτ时间内的给煤变化量,单位为t/h,
    ΔBW air,act,dry为Δτ时间内的助燃干空气变化量,单位为m 3/h,
    ΔBW air,act,wet为Δτ时间内的助燃湿空气变化量,单位为m 3/h,
    W air,act,dry为单位质量燃煤实际助燃干空气量,单位为m 3/kg,
    Figure PCTCN2021115072-appb-100022
    为单位体积干空气中的水蒸汽体积占比。
  14. 根据权利要求1所述的燃煤机组煤风同步动态协控方法,其特征在于:所述的助燃干空气量变化引起的运行湿基氧量变化值ΔO 2,1、所述的Δτ时间内的设定湿基氧量变化值ΔO 2,2、所述的Δτ时间内的运行湿基氧量变化量ΔO 2分别为:
    Figure PCTCN2021115072-appb-100023
    ΔO 2,2=O 2,b,τ-O 2,act
    ΔO 2=ΔO 2,1+ΔO 2,2
    式中:
    ΔO 2,1为助燃干空气量变化引起的运行湿基氧量变化值,单位为%,
    ΔBW air,act,dry为Δτ时间内的助燃干空气变化量,单位为m 3/h,
    ΔBW air,act,wet为Δτ时间内的助燃湿空气变化量,单位为m 3/h,
    BW flue,act,wet为出口湿烟气量,单位为m 3/h,
    ΔO 2,2为Δτ时间内的设定湿基氧量变化值,单位为%,
    O 2,b,τ为未来Δτ时间点的烟气运行湿基氧量,单位为%,
    O 2,act为实际运行湿基氧量,单位为%,
    ΔO 2为Δτ时间内的运行湿基氧量变化量,单位为%。
  15. 根据权利要求1所述的燃煤机组煤风同步动态协控方法,其特征在于:所述的拟调节的给煤量目标值W coal,new和所述的拟调节的运行湿基氧量目标值O 2,new分别为:
    W coal,new=W coal,act+ΔW coal
    O 2,new=O 2,act+ΔO 2
    式中:
    W coal,new为拟调节的给煤量目标值,单位为t/h,
    W coal,act为当前机组负荷L τ下的实际给煤量,单位为t/h,
    ΔW coal为Δτ时间内的给煤变化量,单位为t/h,
    O 2,new为拟调节的运行湿基氧量目标值,单位为%,
    O 2,act为实际运行湿基氧量,单位为%,
    ΔO 2为Δτ时间内的运行湿基氧量变化量,单位为%。
PCT/CN2021/115072 2021-05-31 2021-08-27 一种燃煤机组煤风同步动态协控方法 WO2022252414A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/090,580 US11822316B2 (en) 2021-05-31 2022-12-29 Coal-air synchronous dynamic coordinated control method for coal-fired unit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110598232.1A CN113341713B (zh) 2021-05-31 2021-05-31 一种燃煤机组煤风同步动态协控方法
CN202110598232.1 2021-05-31

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/090,580 Continuation US11822316B2 (en) 2021-05-31 2022-12-29 Coal-air synchronous dynamic coordinated control method for coal-fired unit

Publications (1)

Publication Number Publication Date
WO2022252414A1 true WO2022252414A1 (zh) 2022-12-08

Family

ID=77472331

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/115072 WO2022252414A1 (zh) 2021-05-31 2021-08-27 一种燃煤机组煤风同步动态协控方法

Country Status (3)

Country Link
US (1) US11822316B2 (zh)
CN (1) CN113341713B (zh)
WO (1) WO2022252414A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116189805A (zh) * 2023-04-19 2023-05-30 北京全应科技有限公司 一种基于氧量预测的煤质变化监测方法
CN118332426A (zh) * 2024-06-11 2024-07-12 西安热工研究院有限公司 一种煤炭分析监测系统的运行方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118002296A (zh) * 2024-02-04 2024-05-10 中国电力工程顾问集团有限公司 适用于电站深度调峰的磨煤机智能控制方法及装置

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070113631A1 (en) * 2003-11-27 2007-05-24 Eberhard Deuker Method for determining fluctuating fuel properties during the operaion of a power plant
CN101498934A (zh) * 2009-01-05 2009-08-05 东南大学 整体煤气化联合循环电站的协调控制方法
CN102095774A (zh) * 2009-12-09 2011-06-15 华北电力科学研究院有限责任公司 烟气干基氧量测量方法及系统
CN102778880A (zh) * 2012-08-02 2012-11-14 国电南京自动化股份有限公司 基于能量平衡的整体煤气化联合循环电站协调控制方法
CN102799110A (zh) * 2012-09-10 2012-11-28 上海迪吉特控制系统有限公司 多燃料混烧锅炉燃料自适应控制系统
CN103513640A (zh) * 2013-10-11 2014-01-15 国家电网公司 一种燃煤机组自动发电控制系统整体优化方法及系统
CN106225009A (zh) * 2016-07-26 2016-12-14 西安西热电站信息技术有限公司 一种基于电厂sis系统的判断机组变负荷下的给煤量的方法
CN107451395A (zh) * 2017-06-30 2017-12-08 华电电力科学研究院 一种燃气内燃机排气流量和排气能量计算方法
CN110658721A (zh) * 2019-10-09 2020-01-07 中国能源建设集团华中电力试验研究院有限公司 应用于火电机组agc-r模式的自适应预投煤方法及系统
CN110991069A (zh) * 2019-12-12 2020-04-10 神华北电胜利能源有限公司 基于湿基氧的锅炉效率计算方法、存储介质及电子设备
CN111308886A (zh) * 2020-04-07 2020-06-19 兰州陇能电力科技有限公司 一种燃煤机组协调控制方法及系统

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101788155A (zh) * 2010-01-22 2010-07-28 云南电力试验研究院(集团)有限公司 煤质自适应的火电机组协调与自动发电控制方法
CN103148473B (zh) * 2013-03-12 2014-11-12 华北电力科学研究院有限责任公司 一种基于co的电站锅炉优化运行方法及系统
CN106439770B (zh) * 2016-09-20 2019-05-07 广东电网有限责任公司电力科学研究院 一种1045mw超超临界机组贫煤锅炉汽温的控制方法
CN109519957B (zh) * 2018-09-29 2019-11-12 东南大学 一种超超临界锅炉闭环燃烧优化控制方法
CN110135065B (zh) * 2019-05-15 2024-02-09 吉林大学 一种基于煤质软测量技术的燃烧配风优化方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070113631A1 (en) * 2003-11-27 2007-05-24 Eberhard Deuker Method for determining fluctuating fuel properties during the operaion of a power plant
CN101498934A (zh) * 2009-01-05 2009-08-05 东南大学 整体煤气化联合循环电站的协调控制方法
CN102095774A (zh) * 2009-12-09 2011-06-15 华北电力科学研究院有限责任公司 烟气干基氧量测量方法及系统
CN102778880A (zh) * 2012-08-02 2012-11-14 国电南京自动化股份有限公司 基于能量平衡的整体煤气化联合循环电站协调控制方法
CN102799110A (zh) * 2012-09-10 2012-11-28 上海迪吉特控制系统有限公司 多燃料混烧锅炉燃料自适应控制系统
CN103513640A (zh) * 2013-10-11 2014-01-15 国家电网公司 一种燃煤机组自动发电控制系统整体优化方法及系统
CN106225009A (zh) * 2016-07-26 2016-12-14 西安西热电站信息技术有限公司 一种基于电厂sis系统的判断机组变负荷下的给煤量的方法
CN107451395A (zh) * 2017-06-30 2017-12-08 华电电力科学研究院 一种燃气内燃机排气流量和排气能量计算方法
CN110658721A (zh) * 2019-10-09 2020-01-07 中国能源建设集团华中电力试验研究院有限公司 应用于火电机组agc-r模式的自适应预投煤方法及系统
CN110991069A (zh) * 2019-12-12 2020-04-10 神华北电胜利能源有限公司 基于湿基氧的锅炉效率计算方法、存储介质及电子设备
CN111308886A (zh) * 2020-04-07 2020-06-19 兰州陇能电力科技有限公司 一种燃煤机组协调控制方法及系统

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116189805A (zh) * 2023-04-19 2023-05-30 北京全应科技有限公司 一种基于氧量预测的煤质变化监测方法
CN118332426A (zh) * 2024-06-11 2024-07-12 西安热工研究院有限公司 一种煤炭分析监测系统的运行方法
CN118332426B (zh) * 2024-06-11 2024-08-09 西安热工研究院有限公司 一种煤炭分析监测系统的运行方法

Also Published As

Publication number Publication date
US20230185282A1 (en) 2023-06-15
CN113341713B (zh) 2022-08-30
CN113341713A (zh) 2021-09-03
US11822316B2 (en) 2023-11-21

Similar Documents

Publication Publication Date Title
WO2022252414A1 (zh) 一种燃煤机组煤风同步动态协控方法
CN103576655B (zh) 一种电站锅炉燃烧子空间建模及多目标优化方法和系统
CN105148727B (zh) 燃煤发电机组脱硝优化控制方法和系统
CN109084324B (zh) 生物质锅炉的燃烧风量控制系统及控制方法
CN101556038B (zh) 循环流化床锅炉稳定运行与经济燃烧优化控制系统
CN110699502B (zh) 一种高精度预测高炉热风炉煤气消耗量的方法
CN108679592B (zh) 一种生物质锅炉的锅炉负荷控制系统及控制方法
CN110848733A (zh) 一种基于煤质在线监测的燃烧优化方法
CN112524637A (zh) 一种基于风粉和co在线监测的锅炉燃烧优化方法和系统
CN117308076A (zh) 一种燃煤电站锅炉燃烧优化方法及控制系统
CN105240868A (zh) 基于风煤比煤质校正的锅炉自动燃烧调整控制方法
CN104075341A (zh) 基于反馈的低氮燃烧控制方法和系统
CN109086949B (zh) 基于煤气成份变化的高炉煤气发生量及其热值预测方法
CN109519960B (zh) 基于含氧量和飞灰含碳量在线监测的煤粉炉燃烧调控方法
CN105605609A (zh) 一种火电厂锅炉燃烧氧量优化方法
CN115981154A (zh) 一种适用于电厂机组协调控制系统低碳寻优的试验方法
CN110298502A (zh) 基于能效最优的锅炉最佳氧量计算方法
CN206958958U (zh) 二次风门开度调节系统
CN202512382U (zh) 链条锅炉燃烧滚动自寻优-pid复合控制系统
CN204665343U (zh) 燃煤锅炉的氧气含量控制系统
CN112348703A (zh) 一种基于供电煤耗最低的最优运行氧量简化分析方法
Shen et al. Design of Boiler Steam Temperature Control System
CN113032970A (zh) 一种电站烟气含氧量的测量方法及系统
CN115371035B (zh) 超临界煤气锅炉稳定运行控制方法及系统
RU2534920C1 (ru) Способ автоматического регулирования соотношения топливо-воздух в топке котла

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21943768

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21943768

Country of ref document: EP

Kind code of ref document: A1