WO2022252217A1 - 一种基于薄膜扩散梯度技术的多环芳烃被动采样装置及其应用 - Google Patents

一种基于薄膜扩散梯度技术的多环芳烃被动采样装置及其应用 Download PDF

Info

Publication number
WO2022252217A1
WO2022252217A1 PCT/CN2021/098339 CN2021098339W WO2022252217A1 WO 2022252217 A1 WO2022252217 A1 WO 2022252217A1 CN 2021098339 W CN2021098339 W CN 2021098339W WO 2022252217 A1 WO2022252217 A1 WO 2022252217A1
Authority
WO
WIPO (PCT)
Prior art keywords
dgt
sampling device
film
passive sampling
bentonite
Prior art date
Application number
PCT/CN2021/098339
Other languages
English (en)
French (fr)
Inventor
张兆永
高永超
郑立稳
黄玉杰
张闻
赵庆庆
陈贯虹
王加宁
Original Assignee
山东省科学院生态研究所(山东省科学院中日友好生物技术研究中心)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山东省科学院生态研究所(山东省科学院中日友好生物技术研究中心) filed Critical 山东省科学院生态研究所(山东省科学院中日友好生物技术研究中心)
Priority to PCT/CN2021/098339 priority Critical patent/WO2022252217A1/zh
Publication of WO2022252217A1 publication Critical patent/WO2022252217A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/40Concentrating samples
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N13/00Investigating surface or boundary effects, e.g. wetting power; Investigating diffusion effects; Analysing materials by determining surface, boundary, or diffusion effects

Definitions

  • the invention relates to the technical field of gradient thin film diffusion, in particular to a passive sampling device for polycyclic aromatic hydrocarbons based on thin film diffusion gradient technology and its application.
  • Polycyclic aromatic hydrocarbons are a class of aromatic pollutants that widely exist in air, water and soil.
  • the structure of this kind of compound is characterized by two or more benzene rings, which can be divided into fused ring type and non-fused ring type aromatic hydrocarbon organic compounds according to their structure.
  • Polycyclic aromatic hydrocarbons are extremely carcinogenic, teratogenic, mutagenic and neurotoxic, and are mainly derived from the combustion of fossil fuels, production of gas and coal tar, wood processing, oil spills, and waste combustion.
  • Naphthalene is the simplest fused-ring aromatic hydrocarbon, which is composed of two benzene rings sharing two adjacent carbon atoms, and its solubility in natural water is 3.17mg/L.
  • Naphthalene is mainly used in the production of phthalic anhydride (about 70% of the total usage), as a dye intermediate (such as ⁇ -naphthol) and as a rubber processing aid (about 15% of the total usage), insecticide Agents (about 6% of the total usage), tanning agents (about 4% of the total usage).
  • the content of PAHs in the water environment is obtained through active sampling and then measured in the laboratory.
  • the disadvantages of the existing active sampling methods are: 1) The sampling is random. Due to the unevenness of the pollutants in the water environment, the concentration of pollutants in the sediment is generally much higher than that in the water body, and will further accumulate. 2) For compounds that exist in trace amounts in the water environment, multiple sampling or a single collection of a large number of samples is often required, the workload is heavy, and the time for sample processing and testing costs are high. 3) The traditional sampling method is extensive, and the test data is difficult to accurately reflect the real content of pollutants in the water environment, and cannot reflect the dynamic equilibrium content.
  • Passive sampling technology The principle of passive sampling technology is to transfer the analyte from one medium (environment) to another medium (passive sampler) through the free diffusion of molecules.
  • Passive sampling technology often obtains the concentration of a certain pollutant within a certain period of time by setting up passive absorption devices. It is called a "green sampling technology" because it does not require additional energy to complete sample collection and can also play a pre-enrichment role.
  • passive sampling technology has attracted much attention due to its advantages of low cost, convenient use, and in-situ sampling, and has developed rapidly.
  • Passive sampling technology simplifies the monitoring operation process and sample processing steps, does not consume energy during the monitoring process, and is relatively easy to transport and deploy.
  • Passive samplers can be deployed in aquatic environments for short or long term. In the end, it is possible to obtain the concentration of pollutants in the water environment that can reflect the deployment period, and can more accurately reflect the pollution in the water environment.
  • DGT Dynamic Gradients in Thin-films, DGT
  • DGT diffusive Gradients in Thin-films, DGT
  • the DGT device is composed of a fixed layer (fixed membrane) and a diffusion layer (diffusion membrane and filter membrane).
  • the target ions pass through the diffusion layer in the form of diffusion, and then are captured by the fixed membrane, forming a linear gradient distribution in the diffusion layer (Fig. 1 ).
  • flat-plate DGT devices are generally used to obtain vertical or two-dimensional profile information of the target.
  • a circular DGT is generally used.
  • the flat-plate DGT device consists of a bottom plate and a cover plate.
  • the fixed membrane, the diffusion membrane and the filter membrane are placed on the base in sequence and fixed with the cover plate.
  • DGT devices are mainly used for the monitoring of heavy metal elements and rare earth elements in the environment. In recent years, they have also been developed to monitor organic pollutants, such as tetracycline antibiotics, perfluorinated (polyfluorinated) compounds, etc.
  • the DGT sampling device for cycloaromatic hydrocarbons has not been reported yet.
  • the invention provides a method for monitoring water and soil polycyclic aromatic hydrocarbons (naphthalene) by using a DGT passive sampling device.
  • the calcium-based bentonite was modified to prepare an adsorption film, and after the in-situ monitoring was completed, the adsorption film was eluted to obtain an eluent.
  • the accurate monitoring of the compound was realized by measuring the concentration of polycyclic aromatic hydrocarbon naphthalene in the eluent. There is no need to collect a large number of samples during this process, thereby avoiding the defects of extensive sampling, poor accuracy and high detection cost in traditional methods.
  • a DGT adsorption film contains calcium-based bentonite, and the film matrix is acrylamide and methylenebisacrylamide matrix.
  • the provided adsorption membrane is used as an adsorption membrane in a flat-plate DGT device.
  • preparation method of the DGT adsorption membrane the preparation method of the DGT device and its application include the following steps:
  • Step 1 Take 15ml Tween 80, 5g sodium dodecylsulfonate, dissolve in deionized water, and prepare 50ml modifier solution.
  • Step 2 Then take 20g of bentonite, add 100ml of deionized water, and configure it into 80% bentonite slurry. After the bentonite slurry is ultrasonicated for 30min, stir for 1h with a magnetic stirrer, then add 50ml of prepared modifier solution, and shake at room temperature ( 25° C.) for 24 hours, and then centrifuged at 3000 r/min for 20 minutes to remove the supernatant.
  • Step 3 Take 15g of cetyltrimethylammonium bromide and 5g of tetramethylammonium bromide to further configure 50ml of modified aqueous solution, and the ratio of modifiers is 3:1. Then add the bentonite modified by centrifugation to remove the supernatant, after ultrasonication for 30min, shake at room temperature (25°C) for 24 hours, then centrifuge at 4000r/min for 20min, dry the remaining solid in an oven at 105°C, and grind with an agate mortar After passing through a 200-mesh fine sieve, set aside.
  • Step 4 Preparation of modified bentonite adsorption membrane: Weigh 2.0 g of the ground bentonite prepared in Step 3 and add it to 10 ml of a solution prepared from 28.5% acrylamide and 2.5% N-N'methylenebisacrylamide. Use a glass rod to stir for 10 minutes, ultrasonically disperse for 25 minutes, add 70 ⁇ l of newly prepared ammonium persulfate (concentration 10%, w/v) reagent and 10 ⁇ l tetramethylethylenediamine (TEMED, company, ultra-pure) reagent, and mix quickly Immediately thereafter poured between glass plates separated by 0.4 mm plastic spacers.
  • ammonium persulfate concentration 10%, w/v
  • TEMED tetramethylethylenediamine
  • Step 5 Place the newly configured adsorption membrane in an oven at 15 ⁇ 1°C for 30 minutes, then transfer to an incubator with a temperature of 60 ⁇ 1°C to polymerize the gel, and cut the required flat plate (18.5cm ⁇ 3cm) .
  • Step 6 The diffusion membrane in the DGT is configured by 15% acrylamide and 0.3% chitosan cross-linking agent.
  • the steps are as follows: Weigh 15g of acrylamide and 0.3g of chitosan, then configure 100ml of the solution, heat it on the electric heating plate at 160°C, use a liquid gun to suck it into the middle of two pieces of glass separated by Teflon plastic sheets, and spread it after cooling Membrane cuts (18.5 cm x 3 cm). A 0.45 ⁇ m nitrocellulose membrane was used as the filter membrane.
  • the DGT assembly is shown in Figure 2.
  • Step 7 1 Carry out indoor DGT monitoring, configure 15mg/l, 25mg/l, 35mg/l, 100mg/l indoor cultivation water experiment, 15mg/kg, 25mg/kg, 35mg/kg, 100mg/kg soil cultivation experiment, in In the two experiments, a Nacl concentration of 0.01mol/L was configured. After the water body in the experiment was equilibrated for 72 hours, the device was taken out after 24 hours of monitoring, and the storage time was 24 hours. Take out the DGT device, clean the surface of the device, place the device flat on a clean table, pry it open with a clean screwdriver, use clean tweezers to take out the adsorption film, and seal it for storage.
  • Figure After the soil is balanced, use a clean plastic spoon to take a small amount of treated soil (about 3g) into the DGT round hole, shake gently on the table in parallel to make the soil fully contact with the surface of the filter membrane, and continue to add soil until it is filled lumen. Transfer the loaded DGT device to a ziplock bag with a small amount of deionized water in advance, and the mouth of the bag is in a semi-closed state. After standing at constant temperature for 24 hours, the soil was removed, the DGT device was rinsed with deionized water, the fixed film was taken out and placed in a ziplock bag, and a small amount of deionized water was added to moisten it. After sealing, it was stored at 4°C for analysis.
  • Step 8 1 Slicing and extraction of the fixed film: the accumulation of polycyclic aromatic hydrocarbon naphthalene on the fixed film is obtained by a two-step method of slicing and extraction. Cut into strips or blocks (1mm ⁇ 1.8cm). After slicing, all the strips or cubes of fixed membranes were picked in sequence into centrifuge tubes filled with methanol/ethanol (1:1.05), soaked for 16 hours, and analyzed by liquid chromatography. Determination of the concentration of polycyclic aromatic hydrocarbon naphthalene elements in the eluent.
  • the diffusion flux (FDGT) of the DGT device to the target can be calculated by formula (1) and formula (2):
  • the target ion accumulation (M) in the fixed membrane is generally calculated by solvent extraction according to formula (4):
  • C e is the concentration of the extractant
  • V e is the volume of the extractant
  • V g is the volume of the fixed membrane
  • f e is the extraction rate of the target ion on the fixed membrane by the extractant.
  • F DGT /C DGT reflects the soil, The content of the dissolved state in the sediment and the buffering capacity of the weakly bound state of the solid phase to its dissolved state.
  • a modified bentonite DGT device is used for water, soil and sediment Monitoring of PAHs at the Matter-Water Interface. After the adsorption film was eluted with methanol/ethanol eluent, the concentration of naphthalene in the eluent was determined by liquid chromatography.
  • the invention realizes the real-time monitoring of the dissolved polycyclic aromatic hydrocarbon naphthalene on the water body, the soil and the sediment-water interface, avoids the collection of a large number of samples, and significantly reduces the detection cost.
  • Figure 1 is a schematic diagram of the gradient film diffusion principle.
  • Fig. 2 The structure of the water body flat plate DGT device and the soil circular DGT device.
  • the preparation method of the adsorption film is as follows:
  • Step 1 Take 15ml Tween 80, 5g sodium dodecylsulfonate, dissolve in deionized water, and prepare 50ml modifier solution.
  • Step 2 Then take 20g of bentonite, add 100ml of deionized water, and configure it into 80% bentonite slurry. After the bentonite slurry is ultrasonicated for 30min, stir for 1h with a magnetic stirrer, then add 50ml of prepared modifier solution, and shake at room temperature ( 25° C.) for 24 hours, and then centrifuged at 3000 r/min for 20 minutes to remove the supernatant.
  • Step 3 Take 15g of cetyltrimethylammonium bromide and 5g of tetramethylammonium bromide to further configure 50ml of modified aqueous solution, and the ratio of modifiers is 3:1. Then add the bentonite modified by centrifugation to remove the supernatant, after ultrasonication for 30min, shake at room temperature (25°C) for 24 hours, then centrifuge at 4000r/min for 20min, dry the remaining solid in an oven at 105°C, and grind with an agate mortar After passing through a 200-mesh fine sieve, set aside.
  • Step 4 Preparation of modified bentonite adsorption membrane: Weigh 2.0 g of the ground bentonite prepared in Step 3 and add it to 10 ml of a solution prepared from 28.5% acrylamide and 2.5% N-N'methylenebisacrylamide. Use a glass rod to stir for 10 minutes, ultrasonically disperse for 25 minutes, add 70 ⁇ l of newly prepared ammonium persulfate (concentration 10%, w/v) reagent and 10 ⁇ l tetramethylethylenediamine (TEMED, company, ultra-pure) reagent, and mix quickly Immediately thereafter poured between glass plates separated by 0.4 mm plastic spacers.
  • ammonium persulfate concentration 10%, w/v
  • TEMED tetramethylethylenediamine
  • Step 5 Place the newly configured adsorption membrane in an oven at 15 ⁇ 1°C for 30 minutes, then transfer to an incubator with a temperature of 60 ⁇ 1°C to polymerize the gel, and cut the required flat plate (18.5cm ⁇ 3cm) .
  • a DGT device was used to monitor PAHs in water. The steps include the following:
  • 1Assembly of DGT device Wash the DGT device with acid (3%, HNO 3 ), put the adsorption membrane, 0.8mm diffusion membrane, and 0.45 ⁇ m polyethylene filter membrane on the bottom plate in sequence, and drive out the air bubbles between the membranes , and put the cover on.
  • the completed device was put into a container filled with 0.03mol ⁇ L -1 NaNO 3 solution, and then filled with pure nitrogen gas into the water for more than 16h before use.
  • the steps are basically the same as in Implementation 1.
  • the adsorption film and diffusion film are made and assembled in the same way.
  • the difference from Implementation 1 is that the naphthalene content in the soil is monitored.
  • the main steps include the following:
  • 1Assembly of DGT device Clean the DGT device with acid, put the adsorption membrane, 0.8mm diffusion membrane, and 0.45 ⁇ m polyethylene filter membrane on the bottom plate in sequence, and cover with the cover after driving out the air bubbles between the membranes.
  • the completed device was put into a container filled with 0.03mol ⁇ L -1 NaNO 3 solution, and then filled with pure nitrogen gas into the water for more than 16h before use.
  • 4Fixed membrane extraction use methanol/ethanol (1:1.05), soak for 16 hours to analyze the concentration of naphthalene, a polycyclic aromatic hydrocarbon compound.
  • the steps in this example are consistent with those in Examples 1 and 2, making and assembling the adsorption film and diffusion film.
  • the difference from Implementation 1 and 2 is that the content of the sediment-water interface is monitored.
  • the main steps include the following:
  • 1Assembly of DGT device Wash the DGT device with acid (3%, HNO 3 ), put the adsorption membrane, 0.8mm diffusion membrane, and 0.45 ⁇ m polyethylene filter membrane on the bottom plate in sequence, and drive out the air bubbles between the membranes , and put the cover on.
  • the completed device was put into a container filled with 0.03mol ⁇ L -1 NaNO 3 solution, and then filled with pure nitrogen gas into the water for more than 16h before use.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

一种基于薄膜扩散梯度技术的多环芳烃被动采样装置及其应用。其中,被动采样装置包括吸附膜,该吸附膜的制备方法如下:首先,以吐温80、十二烷基磺酸钠、十六烷基三甲基溴化铵、四甲基溴化铵对钙基膨润土进行修饰;然后,采用丙烯酰胺、N-N'亚甲基双丙烯酰胺、过硫酸铵和四甲基乙二胺组合制备钙DGT吸附膜;最后,以丙烯酰胺和壳聚糖交联剂为扩散膜,以醋酸纤维膜为滤膜,组成DGT被动采样装置,并采用该被动采样装置进行水体、土壤和沉积物-水界面中多环芳烃萘的监测。采样完成后,用甲醇/乙醇洗脱液对吸附膜洗脱,而后采用液相色谱仪测定洗脱液中萘的浓度。该被动采样装置可实现对水体、土壤和沉积物-水界面溶解态多环芳烃萘的监测,避免了大量的样品采集,显著降低了检测成本。

Description

一种基于薄膜扩散梯度技术的多环芳烃被动采样装置及其应用 技术领域
本发明涉及梯度薄膜扩散技术领域,具体的涉及一种基于薄膜扩散梯度技术的多环芳烃被动采样装置及其应用。
背景技术
多环芳烃是一类芳香族的污染物,广泛地存在于空气、水体和土壤中。这类化合物的结构特点是有两个或两个以上的苯环,按照其结构分为稠环型和非稠环型环芳烃类有机物。多环芳烃具有极强的致癌、致畸、致突变性及神经毒性,主要来源于化石燃料的燃烧、煤气煤焦油的生产、木材的加工、石油泄漏以及废物燃烧等过程。萘(naphthalene)是最简单的稠环芳烃,是由2个苯环共用2个相邻碳原子稠合而成,在自然水体中溶解度为3.17mg/L。萘主要用于生产邻苯二甲酸酐(约占总使用量的70%),作为染料中间体(如β-萘酚)和橡胶加工助剂(约占总使用量的15%),杀虫剂(约占总使用量的6%),鞣革剂(约占总使用量的4%)。
迄今为止水环境中的多环芳烃含量都是通过主动采样,然后在实验室测取获得。现有的主动采样方式的缺点在于:1)采样具有随机性,由于水环境中污染物存在的不均匀,如沉积物中污染物浓度一般大大高于水体,并会进一步累积,还有“二次释放”的风险;2)对于水环境中痕量存在的化合物往往需要多次采样或单次采集大量样品,工作量大,处理样品的时间和测试成本都较高。3)传统采样方法粗放,测试数据难以难以准确反应水环境中污染物质在真实含量,并且不能反映动态平衡含量。
被动采样技术的原理是将待测物从一种介质(环境)通过分子的自由扩散进入到另一介质(被动采样器)。被动采样技术往往通过设置被动吸收装置,来获取某一时间段内某种污染物的浓度。因其不需要额外的能量来完成样品采集同时又能够起到预富集作用,故被称为一种“绿色采样技术”。近年来被动采样技术因其廉价、使用方便、可原位采样等优点备受关注,并得以迅速发展。被动采样技术简化了监测的操作流程和样品处理步骤,在监测过程中无需消耗能源且相对易于运输和部署。被动采样器可以短期或长期部署在水环境中。最终可以获取可以反映部署时间段内水环境中污染物的浓度,可以更准确反映水环境中的污染情 况。
薄膜扩散梯度(Diffusive Gradients in Thin-films,DGT)技术主要利用自由扩散原理(Fick第一定律),通过对目标物在扩散层的梯度扩散及其缓冲动力学过程的研究,获得目标物在环境介质中的有效态含量与空间分布、离子态-络合态结合动力学、以及固-液之间交换动力学的信息(图1)。DGT装置由固定层(即固定膜)和扩散层(扩散膜和滤膜)叠加组成,目标离子以扩散方式穿过扩散层,随即被固定膜捕获,并在扩散层形成线性梯度分布(图1)。对于沉积物、湿地土壤等空间异质性大的环境介质,一般采用平板型DGT装置获取目标物的垂向或者二维剖面的信息。对于土壤一般采用圆形DGT。平板式DGT装置由底板和盖板组成,固定膜、扩散膜和滤膜依次放置在底座上,并用盖板固定。目前DGT装置主要用于环境中重金属元素,稀土元素等的监测,近年来也发展到有机污染物的监测,如四环素类抗生度,全氟(多氟)化合物等,目前对于水体和土壤中多环芳烃DGT采样装置还未见相关的报道。
针对现有技术的缺陷,急需一种新型的DGT被动采样装置对水体和土壤中的多环芳烃进行监测。
发明内容
针对现有技术的不足,本发明提供一种利用DGT被动采样装置监测水体和土壤多环芳烃(萘)的方法。以钙基膨润土经修饰后制备吸附膜,原位监测完成后再对吸附膜洗脱得到洗脱液,通过测定洗脱液中多环芳烃萘的浓度实现对该化合物的准确监测。在此过程中无需大量采集样品,从而避免了传统方式采样粗放、准确性差和检测成本高的缺陷。
本发明的技术方案如下:
一种DGT吸附膜,所述的吸附膜中含有钙基膨润土,膜基体为丙烯酰胺和亚甲基双丙烯酰胺基体。所提供的吸附膜作为平板式DGT装置中的吸附膜使用。
进一步地,所述的DGT吸附膜的制备方法、DGT装置的制备方法及其应用,包括以下步骤:
步骤一:取15ml吐温80,5g十二烷基磺酸钠,溶于去离子水,配置成50ml改性剂溶液。
步骤二:然后取20g膨润土,加入100ml去离子水,配置成80%的膨润土浆 液,将膨润土浆液超声30min后,采用磁力搅拌器搅拌1h,后加入50ml已配制的改性剂溶液,室温震荡(25℃)24小时,然后在3000r/min下离心20min,去上清液。
步骤三:取15g十六烷基三甲基溴化铵和5g四甲基溴化铵进一步配置改性水溶液50ml,改性剂比例为3:1。然后加入离心后去上清液改性的膨润土,超声30min后,室温震荡(25℃)24小时,然后在4000r/min下离心20min,剩余固体在烘箱中105℃烘干,采用玛瑙研钵研磨后过200目细筛,备用。
步骤四:制备改性膨润土吸附膜:称取2.0g步骤三制备的研磨后的膨润土,加入到10ml的由28.5%丙烯酰胺和2.5%N-N’亚甲基双丙烯酰胺配制的溶液中,使用玻璃棒搅拌10分钟,超声分散25分钟,添加70μl新配置的过硫酸铵(浓度10%,w/v)试剂和10μl四甲基乙二胺(TEMED,公司,超纯)试剂,迅速混合后立即倒入用0.4mm塑料垫片隔开的玻璃板之间。
步骤五:将新配置的吸附膜在15±1℃的烘箱中放置30分钟,然后转移到温度为60±1℃的培养箱中使凝胶聚合,切割所需平板式(18.5cm×3cm)。
步骤六:DGT中扩散膜由15%丙烯酰胺和0.3%壳聚糖交联剂配置而成。步骤如下:称取15g丙烯酰胺和0.3g壳聚糖,然后配置100ml溶液,在电热板160℃加热后,用液枪吸取加入有特氟龙塑料片间隔的两片玻璃中间,冷却后进行扩散膜切割(18.5cm×3cm)。滤膜使用0.45μm的硝酸纤维素膜。DGT组装如图2所示。
步骤七:①进行室内DGT监测,配置15mg/l,25mg/l,35mg/l,100mg/l室内培养水体实验,15mg/kg,25mg/kg,35mg/kg,100mg/kg土壤培养实验,在两个实验中配置0.01mol/L的Nacl浓度,待实验水体平衡72小时后,再监测24h后取出装置,放置时间为24h。取出DGT装置,清洗装置表面,将装置平放在洁净的台上,用干净的螺丝刀将其撬开,使用干净的镊子将吸附膜取出,密封保存。
②称取10g-30g土样加入塑料容器中(每个装置测定需土壤约10g,如同时收集土壤溶液,土壤样品量需适当加大),加入最大田间持水量70%~80%的去离子水,充分搅拌均匀后(可使用电动非金属搅拌器),覆盖保鲜膜防止水分蒸发,于恒温下(一般25℃)放置平衡48h。图=土壤平衡后,用干净塑料勺先取少量处 理好的土壤(约3g)放入DGT圆孔中,在桌面上轻轻平行抖动,使得土壤与滤膜表面充分接触,继续添加土壤直至填满内腔。将装好的DGT装置转移到事先放有少量去离子水的自封袋中,袋口处于半封闭状态。在恒温条件下放置24h后,将土壤移除,利用去离子水冲洗DGT装置,取出固定膜放入自封袋中,并滴入少量去离子水湿润,密封后,4℃条件下保存待分析。
步骤八:①固定膜的切片与提取:固定膜上的多环芳烃萘积累量采用切片-提取两步方法获得,首先将固定膜从暴露窗口处切开,按一维(垂向)方向切成条状或块状(1mm×1.8cm),切片后所有条状或方块固定膜按顺序依次挑入装有甲醇/乙醇(1:1.05)离心管中,浸泡16h后,采用液相色谱法测定洗脱液中多环芳烃萘元素的浓度。
②取出土壤DGT装置,清洗装置表面,将装置平放在洁净的台上,用干净的螺丝刀将其撬开,使用干净的镊子将吸附膜取出,密封保存。采用甲醇/乙醇(1:1.05)离心管中,浸泡过滤后解析多环芳烃化合物萘的浓度,
根据Fick定律,采用公式1-4计算吸附膜上的扩散/累积通量。
DGT装置对目标物的扩散通量(FDGT)可用公式(1)和公式(2)计算:
Figure PCTCN2021098339-appb-000001
Figure PCTCN2021098339-appb-000002
式中:t为DGT装置放置时间(s);M为DGT装置放置时间段固定膜对目标离子的积累量(μg);A为DGT装置暴露窗口面积(cm 2);Δg为扩散层厚度(cm);D为目标离子在扩散层中的扩散系数(cm 2·s -1);C DGT为扩散层线性梯度靠近环境介质一端的浓度(mg·L -1)。将公式(1)和公式(2)结合,得到C DGT的计算公式(3):
Figure PCTCN2021098339-appb-000003
固定膜中目标离子积累量(M)一般采用溶剂提取的方法,根据公式(4)计算得到:
Figure PCTCN2021098339-appb-000004
式中:C e为提取液浓度;V e为提取剂体积;V g为固定膜体积;f e为提取剂对固定膜上目标离子的提取率。当DGT装置测定水体时,DGT吸收目标物中的自由离子态组分,将促使弱结合络合物的解离,因此F DGT/C DGT反映水体目标物自由离子态组分的含量及弱结合络合物对该形态的解离和缓冲能力。当DGT装置测定沉积物时,DGT吸收造成孔隙水中目标物溶解态组分降低,导致固相弱结合态组分通过解吸或溶解对溶解态组分进行缓冲,因此F DGT/C DGT反映土壤、沉积物中溶解态的含量及固相弱结合态对其溶解态的缓冲能力。
本发明的有益效果在于:
以钙基改性膨润土DGT吸附膜、以15%丙烯酰胺和0.3%壳聚糖交联剂为扩散膜,以0.45μm醋酸纤维膜为滤膜,组成改性膨润土DGT装置进行水体、土壤和沉积物-水界面多环芳烃萘的监测。采用甲醇/乙醇洗脱液对吸附膜进行洗脱后,采用液相色谱仪测定洗脱液中萘的浓度。吸附浓度和溶液测试浓度具有较好的对应,对水体中总吸附达到94.5%,对土壤中萘浓度吸附达到92.7%。本发明实现了对水体、土壤和沉积物-水界面溶解态多环芳烃萘的实时监测,避免了大量的样品采集,显著降低了检测成本。
附图说明:
图1为梯度薄膜扩散原理示意图。
图2水体平板式DGT装置和土壤圆形DGT装置的结构。
具体实施方式:
吸附膜的制备方法为:
步骤一:取15ml吐温80,5g十二烷基磺酸钠,溶于去离子水,配置成50ml改性剂溶液。
步骤二:然后取20g膨润土,加入100ml去离子水,配置成80%的膨润土浆液,将膨润土浆液超声30min后,采用磁力搅拌器搅拌1h,后加入50ml已配制的改性剂溶液,室温震荡(25℃)24小时,然后在3000r/min下离心20min,去上清液。
步骤三:取15g十六烷基三甲基溴化铵和5g四甲基溴化铵进一步配置改性水溶液50ml,改性剂比例为3:1。然后加入离心后去上清液改性的膨润土,超声30min后,室温震荡(25℃)24小时,然后在4000r/min下离心20min,剩余固体 在烘箱中105℃烘干,采用玛瑙研钵研磨后过200目细筛,备用。
步骤四:制备改性膨润土吸附膜:称取2.0g步骤三制备的研磨后的膨润土,加入到10ml的由28.5%丙烯酰胺和2.5%N-N’亚甲基双丙烯酰胺配制的溶液中,使用玻璃棒搅拌10分钟,超声分散25分钟,添加70μl新配置的过硫酸铵(浓度10%,w/v)试剂和10μl四甲基乙二胺(TEMED,公司,超纯)试剂,迅速混合后立即倒入用0.4mm塑料垫片隔开的玻璃板之间。
步骤五:将新配置的吸附膜在15±1℃的烘箱中放置30分钟,然后转移到温度为60±1℃的培养箱中使凝胶聚合,切割所需平板式(18.5cm×3cm)。
实施例1
以15%丙烯酰胺和0.3%壳聚糖交联剂为扩散膜,以0.45μm醋酸纤维膜为滤膜,组成DGT装置进行水体多环芳烃萘监测。步骤包括如下:
①DGT装置组装:将DGT装置泡酸洗净(3%,HNO 3),在底板上依次叠加放入吸附膜、0.8mm扩散膜、0.45μm聚乙烯滤膜,在赶出膜之间的气泡后,盖上盖板。做好的装置放入盛有0.03mol·L -1 NaNO 3溶液的容器中,然后向水中充入纯氮气16h以上待用。
②将DGT装置手工投放到水体中,设置水体中萘的浓度为15mg/l,25mg/l,35mg/l,100mg/l室内培养水体实验,静置72小时待其水环境中完全平衡,放入DGT装置,将DGT完全浸没与水体中,放置一段时间(24h)。
③取出DGT装置,清洗装置表面,将装置平放在洁净的台上,用干净的螺丝刀将其撬开,使用干净的镊子将吸附膜取出,密封保存。
④固定膜的切片与提取:固定膜上的萘积累量采用切片-两步提取方法获得,首先将固定膜从暴露窗口处切开,按一维(垂向)方向切成条状(1mm×1.8cm),切片后所有条状固定膜按顺序依次挑入装有甲醇/乙醇(1:1.05)离心管中,浸泡洗脱16h后采用液相色谱法解析多环芳烃萘的浓度。
实施例2
本实施例中步骤与实施1基本相同,吸附膜,扩散膜制作和组装一致,与实施1的区别在于对土壤萘含量进行监测,主要步骤包括如下:
①DGT装置组装:将DGT装置泡酸洗净,在底板上依次叠加放入吸附膜、0.8mm扩散膜、0.45μm聚乙烯滤膜,在赶出膜之间的气泡后,盖上盖板。做 好的装置放入盛有0.03mol·L -1 NaNO 3溶液的容器中,然后向水中充入纯氮气16h以上待用。
②设置土壤中萘的浓度为15mg/l,25mg/l,35mg/l和100mg/l,平衡72小时后进行DGT装置萘的监测。称取10g-30g土样加入塑料容器中(每个装置测定需土壤约10g,如同时收集土壤溶液,土壤样品量需适当加大),加入最大田间持水量70%~80%的去离子水,充分搅拌均匀后(可使用电动非金属搅拌器),覆盖保鲜膜防止水分蒸发,于恒温下(一般25℃)放置平衡48h。
土壤平衡后,用干净塑料勺先取少量处理好的土壤(约3g)放入DGT圆孔中,在桌面上轻轻平行抖动,使得土壤与滤膜表面充分接触,继续添加土壤直至填满内腔。将装好的DGT装置转移到事先放有少量去离子水的自封袋中,袋口处于半封闭状态。在恒温条件下放置24h后,将土壤移除,利用去离子水冲洗DGT装置,取出固定膜放入自封袋中,并滴入少量去离子水湿润,密封后,4℃条件下保存待分析。
③取出DGT装置,清洗装置表面,将装置平放在洁净的台上,用干净的螺丝刀将其撬开,使用干净的镊子将吸附膜取出,密封保存。
④固定膜提取:采用甲醇/乙醇(1:1.05),浸泡16h后解析多环芳烃化合物萘的浓度。
实施例3
本实施例中步骤与实施例1,2吸附膜,扩散膜制作和组装一致,与实施1,2的区别在于对沉积物-水界面含量进行监测,主要步骤包括如下:
①DGT装置组装:将DGT装置泡酸洗净(3%,HNO 3),在底板上依次叠加放入吸附膜、0.8mm扩散膜、0.45μm聚乙烯滤膜,在赶出膜之间的气泡后,盖上盖板。做好的装置放入盛有0.03mol·L -1 NaNO 3溶液的容器中,然后向水中充入纯氮气16h以上待用。
②将DGT装置手工插入沉积物-水界面中,设置水体中萘的浓度为15mg/l,25mg/l,35mg/l,100mg/l,静置72小时待其水体,沉积物中完全平衡,放入DGT装置,将DGT完全浸没与水体中,留2-4cm在水面以上,24h小时后拔出装置处理,测试。
③取出DGT装置,清洗装置表面,将装置平放在洁净的台上,用干净的螺 丝刀将其撬开,使用干净的镊子将吸附膜取出,密封保存。
④固定膜的切片与提取:固定膜上的萘积累量采用切片-两步提取方法获得,首先将固定膜从暴露窗口处切开,按一维(垂向)或二维(横向×垂向)方向切成条状(1mm×1.8cm),切片后所有条状固定膜按顺序依次挑入装有1mol·L -1甲醇/乙醇(一维400μl,二维40μl)离心管中,浸泡16h后采用液相色谱法解析多环芳烃萘的浓度,获取DGT装置中萘的浓度。

Claims (3)

  1. 一种DGT吸附膜,其特征在于,包括以下步骤:
    步骤一:15ml吐温80、5g十二烷基磺酸钠,溶于去离子水,配置成50ml改性剂溶液;
    步骤二:取20g膨润土,加入100ml去离子水,配置成80%的膨润土浆液;将膨润土浆液超声30min后,采用磁力搅拌器搅拌1h,加入50ml配制的改性剂溶液,室温震荡24小时,然后在3000r/min下离心20min,去上清液;
    步骤三:取15g十六烷基三甲基溴化铵和5g四甲基溴化铵配置改性水溶液50ml;加入离心后去上清液改性的膨润土,超声30min后,室温震荡24小时,然后在4000r/min下离心20min,剩余固体在烘箱中105℃烘干,采用玛瑙研钵研磨后过200目细筛、备用;
    步骤四:制备改性膨润土吸附膜,称取2.0g步骤三制备的研磨后的膨润土,加入到10ml的由28.5%丙烯酰胺和2.5%N-N’亚甲基双丙烯酰胺配制的溶液中,使用玻璃棒搅拌10分钟,然后超声分散25分钟;然后添加70μl新配置的过硫酸铵(浓度10%,w/v)试剂和10μl四甲基乙二胺试剂中,然后迅速混合后立即倒入用0.4mm塑料垫片隔开的玻璃板之间;然后将玻璃组件在水平放置在15±1℃的烘箱中30分钟,然后转移到温度为60±1℃的培养箱中使凝胶聚合,然后切割为平板或圆形吸附膜。
  2. 一种DGT被动采样装置,其特征在于,以权利要求1所述的DGT吸附膜、以15%丙烯酰胺和0.3%壳聚糖交联剂制成的扩散膜,以0.45μm醋酸纤维膜为滤膜,组成改性膨润土DGT被动采样装置。
  3. 一种权利要求2所述的DGT被动采样装置在监测水体、土壤或沉积物-水界面多环芳烃萘中的应用。
PCT/CN2021/098339 2021-06-04 2021-06-04 一种基于薄膜扩散梯度技术的多环芳烃被动采样装置及其应用 WO2022252217A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/098339 WO2022252217A1 (zh) 2021-06-04 2021-06-04 一种基于薄膜扩散梯度技术的多环芳烃被动采样装置及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/098339 WO2022252217A1 (zh) 2021-06-04 2021-06-04 一种基于薄膜扩散梯度技术的多环芳烃被动采样装置及其应用

Publications (1)

Publication Number Publication Date
WO2022252217A1 true WO2022252217A1 (zh) 2022-12-08

Family

ID=84323723

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/098339 WO2022252217A1 (zh) 2021-06-04 2021-06-04 一种基于薄膜扩散梯度技术的多环芳烃被动采样装置及其应用

Country Status (1)

Country Link
WO (1) WO2022252217A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105148847A (zh) * 2015-07-20 2015-12-16 农业部环境保护科研监测所 一种易动态重金属吸附结合相凝胶膜及其制备方法
WO2017177099A1 (en) * 2016-04-07 2017-10-12 North Carolina State University Passive sampler and methods of making
CN108452780A (zh) * 2018-04-28 2018-08-28 南京大学 一种选择性固定四价硒的吸附膜及其制备方法
CN109772278A (zh) * 2019-03-08 2019-05-21 南京大学 一种同步固定砷、锑、钒离子的吸附膜及其制备方法
CN111103216A (zh) * 2019-12-27 2020-05-05 南京国兴环保产业研究院有限公司 一种环境中同步采集氨氮、硝氮和磷酸根的薄膜扩散梯度dgt采集装置及其生产方法
CN111992189A (zh) * 2020-08-28 2020-11-27 南京维申环保科技有限公司 一种用于生物膜dgt装置的吸附膜、制备方法及应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105148847A (zh) * 2015-07-20 2015-12-16 农业部环境保护科研监测所 一种易动态重金属吸附结合相凝胶膜及其制备方法
WO2017177099A1 (en) * 2016-04-07 2017-10-12 North Carolina State University Passive sampler and methods of making
CN108452780A (zh) * 2018-04-28 2018-08-28 南京大学 一种选择性固定四价硒的吸附膜及其制备方法
CN109772278A (zh) * 2019-03-08 2019-05-21 南京大学 一种同步固定砷、锑、钒离子的吸附膜及其制备方法
CN111103216A (zh) * 2019-12-27 2020-05-05 南京国兴环保产业研究院有限公司 一种环境中同步采集氨氮、硝氮和磷酸根的薄膜扩散梯度dgt采集装置及其生产方法
CN111992189A (zh) * 2020-08-28 2020-11-27 南京维申环保科技有限公司 一种用于生物膜dgt装置的吸附膜、制备方法及应用

Similar Documents

Publication Publication Date Title
US11579049B2 (en) Diffusive gradients in thin films (DGT) probe test device for sediment core in lake and test method using the same
Yantasee et al. Simultaneous detection of cadmium, copper, and lead using a carbon paste electrode modified with carbamoylphosphonic acid self-assembled monolayer on mesoporous silica (SAMMS)
Karickhoff et al. Sorption dynamics of hydrophobic pollutants in sediment suspensions
CN105381781B (zh) 一种混合三种金属氧化物的吸附膜及其制备方法和基于梯度扩散薄膜技术测定氟离子的方法
Mao et al. Stir bar sorptive extraction approaches with a home-made portable electric stirrer for the analysis of polycyclic aromatic hydrocarbon compounds in environmental water
Ma et al. Determination of endocrine-disrupting compounds in water by carbon nanotubes solid-phase microextraction fiber coupled online with high performance liquid chromatography
CN104492376A (zh) 一种活性炭吸附膜的制备方法和基于梯度扩散薄膜技术测定湿地土壤或沉积物中双酚类物质的方法
WO2021103429A1 (zh) 一种环境水样中四种磺胺类抗生素的分析检测方法
Ren et al. Development of a new diffusive gradient in the thin film (DGT) method for the simultaneous measurement of CH 3 Hg+ and Hg 2+
CN112540094B (zh) 一种土壤易解离态重金属的快速纳米纤维膜测定方法
Li et al. Salt-assisted graphene oxide dispersive solid phase microextraction for sensitive detection of malachite green and crystal violet by HPLC
Wang et al. On-site separation and enrichment of heavy metal ions in environmental waters with multichannel in-tip microextraction device based on chitosan cryogel
US20090044605A1 (en) Device for leaching extraction and assessment
Larner et al. Evaluation of paper-based diffusive gradients in thin film samplers for trace metal sampling
Panavaitė et al. Silicone glue coated stainless steel wire for solid phase microextraction
CN111060511A (zh) 一种沉积物营养物的po-dgt联用检测装置及采集检测方法
WO2022252217A1 (zh) 一种基于薄膜扩散梯度技术的多环芳烃被动采样装置及其应用
CN101750442A (zh) 单分散性双金属Au/Pt纳米颗粒修饰的检测水中汞的电极及其制备方法
Doig et al. Dialysis minipeeper for measuring pore‐water metal concentrations in laboratory sediment toxicity and bioavailability tests
CN107790104B (zh) 基于edta改性材料的重金属有效态吸附膜及其制备方法
CN108731963A (zh) 水稻土中极性有机污染物的被动采样装置和方法
Loussala et al. Mesoporous silica hybridized by ordered mesoporous carbon for in‐tube solid‐phase microextraction
CN105289541B (zh) 一种固定氟离子的吸附膜及其制备方法
CN114295420B (zh) 一种辅助检测痕量毒品的提取液及其制备和使用方法
Kędziora-Koch et al. Needle-trap device (NTD) packed with reduced graphene oxide (rGO) for sample preparation prior to the determination of polycyclic aromatic hydrocarbons (PAHs) from aqueous samples by gas chromatography–mass spectrometry (GC-MS)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21943578

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 22/04/2024)