WO2022252215A1 - 触控层组及触控显示装置 - Google Patents

触控层组及触控显示装置 Download PDF

Info

Publication number
WO2022252215A1
WO2022252215A1 PCT/CN2021/098333 CN2021098333W WO2022252215A1 WO 2022252215 A1 WO2022252215 A1 WO 2022252215A1 CN 2021098333 W CN2021098333 W CN 2021098333W WO 2022252215 A1 WO2022252215 A1 WO 2022252215A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensing
touch
line segment
electrode
sensing electrode
Prior art date
Application number
PCT/CN2021/098333
Other languages
English (en)
French (fr)
Inventor
薄赜文
孙雪菲
李园园
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to CN202180001450.0A priority Critical patent/CN115917482A/zh
Priority to PCT/CN2021/098333 priority patent/WO2022252215A1/zh
Publication of WO2022252215A1 publication Critical patent/WO2022252215A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means

Definitions

  • the present disclosure relates to the field of display technology, in particular to a touch layer group and a touch display device.
  • touch technologies include mutual capacitive touch technology and self-capacitive touch technology.
  • mutual capacitive touch technology With the increase of display size, the disadvantages of products adopting mutual capacitive touch technology such as high capacitive load of touch electrodes, serious noise received by touch electrodes, and large degree of remote signal attenuation gradually appear.
  • products using self-capacitive touch technology have obvious advantages in capacitive load, touch report rate, signal-to-noise ratio, etc. Much attention.
  • a touch layer set includes: a base layer, a plurality of effective touch wires disposed on the base layer, and a plurality of sensing electrodes disposed on the base layer.
  • the extension direction of at least one effective touch trace is parallel to the first direction, and the plurality of effective touch traces are arranged along a second direction, and the second direction crosses the first direction;
  • a sensing The electrode is coupled to at least one effective touch trace; wherein, the sensing electrode includes a plurality of sensing main lines arranged along the second direction, and the extension direction of at least one of the sensing main lines is parallel to the
  • the first direction is formed by alternately connecting a plurality of first sensing line segments and a plurality of second sensing line segments, at least one of the first sensing line segments is parallel to the first direction, and at least one of the second sensing line segments is parallel to the first direction.
  • the line segment is inclined to the first direction;
  • the sensing electrode also includes a plurality of third sensing line segments connected to a main sensing line, at least one of the third sensing line segments is inclined to the first direction, and at least one The third sensing line segment has a free line end;
  • the plurality of sensing electrodes include: a first sensing electrode and a second sensing electrode adjacent along the first direction, the first sensing electrode and the second sensing electrode In the second sensing electrode, a break point between two sensing main lines in the same extending direction is located on the second sensing line segment at one end of one of the sensing main lines.
  • At least one of the third sensing line segments is parallel to one of the second sensing line segments; at least one of the effective touch traces includes at least one coupling portion, and the coupling portion is connected to one of the second sensing line segments.
  • the sensing electrodes are electrically connected; in addition to the plurality of coupling parts, the orthographic projection of at least one effective touch trace on the base layer and the orthographic projection of the sensing electrodes on the base layer No overlapping areas.
  • the plurality of second sensing line segments includes a plurality of first oblique line segments and a plurality of second oblique line segments, and the first direction is clockwise to one of the first oblique line segments.
  • the angle of the extension direction is an acute angle, and the angle between the first direction clockwise and the extension direction of a second oblique line segment is an obtuse angle; the distance between the first sensing electrode and the second sensing electrode Among the plurality of breakpoints, some of the breakpoints are located on the first oblique line segment, and the other part of the breakpoints are located on the second oblique line segment.
  • a plurality of breakpoints between the first sensing electrode and the second sensing electrode are alternately distributed on the first oblique line segment and the second oblique line segment.
  • the plurality of sensing electrodes further include: a third sensing electrode adjacent to the first sensing electrode along the second direction; edge sensing electrodes in the first sensing electrodes At least one breakpoint is set on the main detection line, and the at least one breakpoint divides the edge sensing main line into multiple broken lines; at least one of the multiple broken lines is not connected to the first sensing electrode The broken line is connected to the third sensing electrode; wherein, the edge sensing main line is the sensing main line of the first sensing electrode closest to the third sensing electrode.
  • the at least one break point is located on the second sensing line segment of the edge sensing main line in the first sensing electrode.
  • the upper edge of the cross-section of the second sensing line segment provided with the breakpoint is perpendicular to the extension direction of the second sensing line segment, and the upper edge is the edge of the cross-section away from the lining. bottom edge.
  • the sensing electrode and at least one effective touch wiring coupled to the sensing electrode are arranged in different layers; the touch layer group further includes An insulating layer between the effective touch traces; the coupling portion is coupled to the sensing electrode through at least one via hole on the insulating layer.
  • the sensing electrode and at least one effective touch trace coupled to the sensing electrode are arranged on the same layer; the coupling part is coupled to the sensing electrode through a bridge , an insulating layer is provided between the bridge and the sensing electrode.
  • two adjacent main sensing lines are connected through at least one connecting portion, and the connecting portion is formed by connecting at least two third sensing line segments.
  • the positions of the plurality of connecting portions in two adjacent columns are staggered in the second direction, and the direction of the columns is parallel to the first direction.
  • At least two connecting parts are arranged between the two sensing main lines adjacently arranged along the second direction; among the at least two connecting parts, the adjacent two At least four first sensing line segments are arranged between the connecting parts.
  • the touch control layer group further includes: a plurality of dummy touch wires arranged on the same layer as the plurality of effective touch wires, and the extension direction of at least one of the dummy touch wires Parallel to the first direction, and the at least one dummy touch wire is arranged along the second direction, the shape of the dummy touch wire is substantially the same as that of the effective touch wire; a sensing electrode corresponding to The effective touch lines and the virtual touch lines are equally spaced along the second direction.
  • At least one of the sensing electrodes has a first area, each of the effective touch traces located in the first area and a plurality of the sensing main lines located in the first area Arranged alternately; at least one of the sensing electrodes also has two second areas, at least one of the virtual touch traces located in the second area and a plurality of the main sensing lines located in the first area Arranged alternately; the two second regions are respectively located on both sides of the first region along the second direction.
  • a dummy touch wire includes at least one dummy touch wire segment; the dummy touch wire segment is coupled to one of the sensing electrodes.
  • At least one virtual touch line segment is formed by alternately connecting a plurality of first touch line segments and a plurality of second touch line segments, and at least one of the first touch line segments is parallel to the first touch line segment. direction, at least one second touch line segment is inclined to the first direction; the plurality of second touch line segments includes a plurality of third oblique line segments and a plurality of fourth oblique line segments, and a plurality of third oblique line segments A line segment and a plurality of fourth oblique line segments are arranged alternately along the first direction; the third oblique line segment is parallel to the first oblique line segment; the fourth oblique line segment is parallel to the second oblique line segment In the first sensing electrode and the second sensing electrode, among the multiple breakpoints between the two virtual touch line segments in the same extension direction, some of the breakpoints are located in the first sensing electrode On the three oblique line segments, another part of breakpoints is located on the fourth o
  • a plurality of breakpoints among the plurality of virtual touch trace segments are alternately located on the third oblique line segment and the fourth oblique line segment.
  • the upper edge of the section of the second touch line segment provided with the breakpoint is perpendicular to the extension direction of the second touch line segment, and the upper edge is the edge of the section that is far away from the lining. bottom edge.
  • the touch layer group further includes: at least one fourth sensing line segment, the fourth sensing line segment is perpendicular to the first sensing line segment connected thereto.
  • a touch display device comprising the touch layer set as described in any one of the foregoing embodiments.
  • the touch display device has a display area; the display area includes a plurality of sub-pixel areas and a pixel defining area for defining the plurality of sub-pixel areas; effective touch wiring and sensing The electrodes are all located in the pixel defining area.
  • the sensing electrodes in the touch layer group and the orthographic projections of the effective touch traces passing through the sensing electrodes on the base layer form a plurality of meshes.
  • the pixel area corresponds to one of the meshes.
  • m there are m sub-pixel regions between two adjacent sensing main lines along the second direction; m ⁇ 1, m is a positive integer.
  • n 2.
  • the touch display device is a self-luminous display device; the self-luminous display device includes a display substrate and an encapsulation layer for encapsulating the display substrate; the encapsulation layer is multiplexed as the The base layer of the touch layer group.
  • FIG. 1 is a structural diagram of a touch display device according to some embodiments of the present disclosure
  • FIG. 2 is an area division diagram of a touch display device according to some embodiments of the present disclosure
  • FIG. 3A is a structural diagram of a touch display device according to some embodiments of the present disclosure.
  • FIG. 3B is a structural diagram of a touch display device according to other embodiments of the present disclosure.
  • FIG. 3C is a structural diagram of a touch display device according to some other embodiments of the present disclosure.
  • FIG. 4A is a structural diagram of a touch display device according to some other embodiments of the present disclosure.
  • 4B is a structural diagram of a touch display device according to some other embodiments of the present disclosure.
  • FIG. 5 is a structural diagram of sensing electrodes according to some embodiments of the present disclosure.
  • FIG. 6 is a structural diagram of a sensing main line according to some embodiments of the present disclosure.
  • FIG. 7 is a structural diagram of a first sensing electrode and a second sensing electrode according to some embodiments of the present disclosure.
  • Fig. 8 is a structural diagram of a first sensing electrode and a second sensing electrode according to still other embodiments of the present disclosure.
  • FIG. 9 is a structural diagram of a first sensing electrode and a third sensing electrode according to some embodiments of the present disclosure.
  • FIG. 10 is a structural diagram of breakpoint setting according to some embodiments of the present disclosure.
  • FIG. 11 is a structural diagram of effective touch traces and sensing electrodes coupling according to some embodiments of the present disclosure.
  • Fig. 12 is a structural diagram of effective touch traces and sensing electrodes coupling according to still other embodiments of the present disclosure.
  • FIG. 13 is a structural diagram of effective touch traces and sensing electrodes coupling according to some other embodiments of the present disclosure.
  • Fig. 14 is a structural diagram of a connection part according to some embodiments of the present disclosure.
  • FIG. 15 is a structural diagram of sensing electrodes according to some embodiments of the present disclosure.
  • 16 is a structural diagram of sensing electrodes according to some embodiments of the present disclosure.
  • Fig. 17 is a structural diagram of sensing electrodes according to some embodiments of the present disclosure.
  • FIG. 18 is a structural diagram of a touch layer group according to some embodiments of the present disclosure.
  • FIG. 19 is a structural diagram of a touch layer group according to some other embodiments of the present disclosure.
  • FIG. 20 is a structural diagram of sensing electrodes according to some embodiments of the present disclosure.
  • FIG. 21 is a structural diagram of a touch display device according to some embodiments of the present disclosure.
  • FIG. 22 is a diagram of a pixel structure according to some embodiments of the present disclosure.
  • first and second are used for descriptive purposes only, and cannot be understood as indicating or implying relative importance or implicitly specifying the quantity of indicated technical features. Thus, a feature defined as “first” and “second” may explicitly or implicitly include one or more of these features. In the description of the embodiments of the present disclosure, unless otherwise specified, "plurality” means two or more.
  • the expressions “coupled” and “connected” and their derivatives may be used.
  • the term “connected” may be used in describing some embodiments to indicate that two or more elements are in direct physical or electrical contact with each other.
  • the term “coupled” may be used when describing some embodiments to indicate that two or more elements are in direct physical or electrical contact.
  • the terms “coupled” or “communicatively coupled” may also mean that two or more elements are not in direct contact with each other, but yet still co-operate or interact with each other.
  • the embodiments disclosed herein are not necessarily limited by the context herein.
  • At least one of A, B and C has the same meaning as “at least one of A, B or C” and both include the following combinations of A, B and C: A only, B only, C only, A and B A combination of A and C, a combination of B and C, and a combination of A, B and C.
  • a and/or B includes the following three combinations: A only, B only, and a combination of A and B.
  • the term “if” is optionally interpreted to mean “when” or “at” or “in response to determining” or “in response to detecting,” depending on the context.
  • the phrases “if it is determined that " or “if [the stated condition or event] is detected” are optionally construed to mean “when determining ! or “in response to determining ! depending on the context Or “upon detection of [stated condition or event]” or “in response to detection of [stated condition or event]”.
  • references herein include the stated value as well as mean values that are within acceptable deviations from the specified value, as determined by one of ordinary skill in the art. Determined by one taking into account the measurement in question and the errors associated with the measurement of a particular quantity (ie, limitations of the measurement system).
  • Exemplary embodiments are described herein with reference to cross-sectional and/or plan views that are idealized exemplary drawings.
  • the thickness of layers and regions are exaggerated for clarity. Accordingly, variations in shape from the drawings as a result, for example, of manufacturing techniques and/or tolerances are contemplated.
  • example embodiments should not be construed as limited to the shapes of regions illustrated herein but are to include deviations in shapes that result, for example, from manufacturing. For example, an etched region illustrated as a rectangle will, typically, have curved features.
  • the regions illustrated in the figures are schematic in nature and their shapes are not intended to illustrate the actual shape of a region of a device and are not intended to limit the scope of example embodiments.
  • touch display device with both touch control function and image display function
  • the touch display device may include but not limited to mobile phones, tablet computers, personal digital assistants (personal digital assistant, PDA) , on-board computer, etc., the embodiment of the present disclosure does not limit the use of the touch display device.
  • PDA personal digital assistant
  • the above-mentioned touch display device includes a touch layer group and a display panel.
  • a plurality of film layer structures for realizing touch sensing can be laminated to form a touch layer group, and a touch display device integrated with a touch layer group can realize touch sensing function .
  • the touch display device 100 has a touch sensing area 104 , and the touch of the user's finger on the touch display device 100 can be sensed in the touch sensing area 104 .
  • the touch layer group includes a base layer 61 and a plurality of sensing electrodes 62 disposed on the base layer 61 , the base layer 61 is used to carry the plurality of sensing electrodes 62 , and the sensing electrodes 62 and the ground form capacitance, ie self-capacitance.
  • the capacitance of the finger When a finger touches the touch sensing area 104 of the touch display device 100 , the capacitance of the finger will be superimposed on the sensing electrode 62 , so that the capacitance formed between the sensing electrode 62 and the ground changes.
  • the coordinates of the touch point can be determined according to the change amount of the capacitance formed by the plurality of sensing electrodes 62 and the ground before and after the touch, so as to realize touch sensing.
  • the pattern of the sensing electrodes 62 is a metal grid formed by connecting a plurality of metal wires extending in different directions, and the two adjacent sensing electrodes 62 in the row direction and the column direction are independent from each other, that is, they are not in contact with each other and are not electrically connected. .
  • the touch display device 100 has a display area 101 and a peripheral area 102 located on at least one side of the display area 101 .
  • the areas of the display area 101 and the touch sensing area roughly overlap.
  • the touch sensing area can completely overlap with the display area 101; for another example, the area range of the touch sensing area can be larger than the display area 101, that is, the edges of the display area 101 are all located within the area range of the touch sensing area, thereby ensuring The boundary position of the display area 101 can also achieve a better touch effect.
  • FIG. 1 illustrates an example in which the peripheral area 102 surrounds the display area 101 . Referring to FIG. 2 , a plurality of sub-pixels 101 a defined by the pixel defining region 101 b are disposed in the display region 101 .
  • the plurality of sub-pixels 101 a includes, for example, red sub-pixels, green sub-pixels and blue sub-pixels.
  • the shape of the sub-pixel 101a may be, for example, a rectangle or a hexagon as shown in FIG. 13 .
  • the touch display device 100 may be a liquid crystal display (LCD for short); the touch display device 100 may also be a self-luminous display device.
  • the self-luminous display device may be, for example, an organic light-emitting diode (OLED for short) or a quantum dot light emitting diode (QLED for short).
  • the liquid crystal display device 100 When the touch display device 100 is a liquid crystal display device, the liquid crystal display device includes a cover glass, a touch layer set, a liquid crystal display panel, and a backlight assembly.
  • the backlight assembly is used to provide backlight for the liquid crystal display panel.
  • the main structure of the liquid crystal display panel 1 includes an array substrate 11 , a cell substrate 12 and a liquid crystal layer 13 disposed between the array substrate 11 and the cell substrate 12 .
  • each sub-pixel 101 a of the array substrate 11 is provided with a thin film transistor 111 and a pixel electrode 112 on the first substrate 110 .
  • the array substrate 11 further includes a common electrode 113 disposed on the first substrate 110 .
  • the pixel electrode 112 and the common electrode 113 may be disposed on the same layer, or may be disposed on different layers.
  • a first insulating layer 114 is disposed between the pixel electrode 112 and the common electrode 113 .
  • the common electrode 113 is disposed between the transistor 111 and the pixel electrode 112 , as shown in FIG. 3A , a second insulating layer 115 is further disposed between the common electrode 113 and the transistor 111 .
  • the cell substrate 12 includes a common electrode 113 disposed on the second substrate 120 .
  • the box substrate 12 includes a second substrate 120 and a color filter layer 121 disposed on the second substrate 120.
  • the box substrate 12 can also be called It is a color filter substrate (color filter, referred to as CF).
  • the color filter layer 121 at least includes a red photoresist unit located in the red sub-pixel, a green photoresist unit located in the green sub-pixel, and a blue photoresist unit located in the blue sub-pixel.
  • the cell substrate 12 further includes a black matrix pattern 122 disposed on the second substrate 120 , and the black matrix pattern 122 is used to separate the red photoresist unit, the green photoresist unit and the blue photoresist unit.
  • the liquid crystal display panel 1 also includes an upper polarizer 14 arranged on the side of the cell-facing substrate 12 away from the liquid crystal layer 13 and a lower polarizer arranged on the side of the array substrate 11 away from the liquid crystal layer 13. slice 15.
  • the touch layer group 6 is arranged outside the liquid crystal display panel 1, that is, arranged between the cover glass 2 and the upper polarizer 14.
  • the touch display device It is called an external touch display device.
  • the upper polarizer 14 is reused as the base layer of the touch layer group 6 .
  • the touch layer group 6 is disposed in the liquid crystal display panel 1 , and in this case, the touch display device is called an in-cell touch display device. In the case that the touch layer group 6 is arranged in the liquid crystal display panel 1, as shown in FIG. 3B, the touch layer group 6 is arranged between the upper polarizer 14 and the box substrate 12.
  • the control display device is called an external (on cell) touch display device.
  • the box substrate 12 is reused as the base layer of the touch layer group 6.
  • the touch layer group 6 is disposed between the first substrate 110 and the second substrate 120, for example, disposed on the first substrate 110.
  • the touch display device is called It is an in-cell touch display device, at this time, the array substrate 11 is reused as the base layer of the touch layer group 6 .
  • the main structure of the self-luminous display device includes a self-luminous display panel 3, a touch layer group 6, and a polarizer 4 arranged in sequence. , the first optical clear adhesive (OCA for short) 5 and cover glass 2.
  • the self-luminous display panel 3 includes a display substrate 31 and an encapsulation layer 32 for encapsulating the display substrate 31 .
  • the encapsulation layer 32 may be an encapsulation film, or an encapsulation substrate.
  • the above-mentioned display substrate 31 includes a light emitting device and a pixel driving circuit disposed on a third substrate 310 in each sub-pixel 101 a, and the pixel driving circuit includes a plurality of transistors 111 .
  • the light emitting device includes a first electrode 311 , a light emitting functional layer 312 and a second electrode 313 , and the first electrode 311 is electrically connected to the drain of the transistor 111 as a driving transistor.
  • the display substrate 31 further includes a pixel definition layer (PDL for short) 314.
  • the pixel definition layer 314 includes a plurality of opening areas, and one light emitting device is disposed in one opening area.
  • the light-emitting functional layer 312 includes a light-emitting layer.
  • the above-mentioned light-emitting functional layer 312 includes, in addition to the light-emitting layer, an electron transport layer (election transporting layer, ETL for short), an electron injection layer (election injection layer, EIL for short), a hole transport layer (hole One or more layers in the transporting layer (HTL for short) and the hole injection layer (HIL for short).
  • the display substrate 31 further includes a flat layer 315 disposed between the transistor 111 and the first electrode 311 .
  • the touch display device 100 is a self-luminous display device, it is easier to make the touch display device 100 into a flexible display device.
  • the third substrate 310 is a flexible substrate.
  • the touch display device 100 is a self-luminous display device
  • the encapsulation layer 32 is reused as the base layer of the touch layer group 6 .
  • the touch layer group 6 is disposed on the substrate 7 , the substrate 7 is attached to the encapsulation layer 32 through the second optical glue 8 , and the substrate 7 is reused as the touch layer group 6 the basal layer.
  • the thickness of the touch display device 100 is relatively small, which is beneficial to realize light and thin.
  • Embodiments of the present disclosure also provide a touch control layer group, which can be applied to the above touch display device 100 .
  • the touch layer set can also be applied to other touch devices.
  • the touch layer group 6 further includes a plurality of effective touch wires 63 disposed on the base layer 61 . At least part (or all) of the plurality of effective touch lines 63 described above, at least one (for example, each) effective touch lines 63 extend in a direction parallel to the first direction, and the plurality of effective touch lines 63 The wires 63 are arranged along a second direction, and the second direction crosses the first direction.
  • the effective touch wires 63 are configured to transmit sensing signals, and each effective touch wire 63 is coupled to a sensing electrode 62 . Specifically, as shown in FIG.
  • the first direction is the Y direction
  • the second direction is the X direction
  • the first direction is perpendicular to the second direction.
  • the shape of the effective touch trace 63 is not restricted too much.
  • the effective touch trace 63 can be a straight line parallel to the Y direction, or a bend line including multiple bend points, and the extension direction of the bend line is parallel to The Y direction, that is, the line connecting the start point and the end point of the bending line is parallel to the Y direction.
  • At least one (eg, each) sensing electrode 62 is coupled to at least one active touch trace 63 .
  • each sensing electrode 62 may be coupled to only one effective touch trace 63, or may be coupled to multiple effective touch traces. 63 coupling, without too many restrictions.
  • the multiple effective touch traces 63 are connected in parallel, the equivalent resistance value is small, and the influence on the potential of the sensing signal is also small. It is beneficial to improve the accuracy of the sensing result.
  • each sensing electrode 62 is coupled with one effective touch trace 63 as an example for illustration.
  • each sensing electrode 62 includes a plurality of sensing main lines 621 arranged along the second direction, and at least one (for example, each) of the sensing main lines 621 extends in parallel In the first direction, and formed by alternate connection of a plurality of first sensing line segments 621a and a plurality of second sensing line segments 621b, at least one (for example, each) first sensing line segment 621a is parallel to the first direction, At least one (eg, each) second sensing line segment 621b is inclined to the first direction.
  • the alternate connection may be a first sensing line segment 621a and a plurality of second sensing line segments 621b connected to one end thereof are distributed repeatedly along the first direction, or may be a first sensing line segment 621a connected to two ends of the first sensing line segment 621a respectively. At least two (for example, multiple) second sensing line segments 621b are distributed repeatedly along the first direction, and the second sensing line segments 621b located at both ends of the first sensing line segment 621a are arranged in different ways. For example, referring to FIG.
  • the extension direction of the main sensing line 621 is parallel to the Y direction
  • the first sensing line segment 621a is a straight line segment extending along the Y direction
  • the second sensing line segment 621b is an oblique line segment not extending along the Y direction.
  • the included angle is an obtuse angle.
  • the included angle may also be an acute angle, which is not limited.
  • the main sensing line 621 formed by alternately connecting a plurality of first sensing line segments 621 a and a plurality of second sensing line segments 621 b can be connected in various ways.
  • each sensing main line 621 includes a plurality of first sensing line segments 621a and a plurality of second sensing line segments 621b connected alternately, except at the line ends of the sensing main line 621, Both ends of each first sensing line segment 621a are respectively coupled to a second sensing line segment 621b, and at the same time, both ends of each second sensing line segment 621b are respectively coupled to a first sensing line segment 621a.
  • each first sensing line segment 621a is respectively coupled with two second sensing line segments 621b, and each Two ends of the second sensing line segment 621b are respectively coupled to a first sensing line segment 621a.
  • each Two ends of the second sensing line segment 621b are respectively coupled to a first sensing line segment 621a.
  • each first sensing line segment 621a is respectively coupled with a second sensing line segment 621b, and the sensing main line 621
  • One end of the second sensing line segment 621b in the middle part is coupled to a first sensing line segment 621a while the other end is coupled to a second sensing line segment 621b to sense the two ends of the other second sensing line segment 621b in the main line 621 are respectively coupled to the two second sensing line segments 621b.
  • each first sensing line segment 621a is respectively coupled to a second sensing line segment 621b, and each second sensing line segment 621b is coupled to each other.
  • One end of the sensing line segment 621b is coupled to a first sensing line segment 621a, and the other end is coupled to a second sensing line segment 621b.
  • the sensing main line 621 can also be arranged in other ways, and there is no excessive limitation on this.
  • each sensing electrode 62 also includes a plurality of third sensing line segments 622 connected to at least one (for example, each) sensing main line 621, at least one (for example, each) third The line segment 622 is inclined to the first direction.
  • the third sensing line segment 622 is an oblique line segment not extending along the Y direction, and there is an included angle between the extending direction of the third sensing line segment 622 and the Y direction, and the included angle is an obtuse angle.
  • the included angle may also be an acute angle, which is not limited.
  • one end of the first sensing line segment 621a in each sensing main line 621 is not only connected to the second sensing line segment 621b, but also connected to at least one (for example, one or two) bar, there is no limit to this) the third sensing line segment 622 is connected, and the second sensing line segment 621b and the third sensing line segment 622 connected to one end of the same first sensing line segment 621a are located at the end of the first sensing line segment 621a different sides.
  • the connection arrangement of the plurality of third sensing line segments 622 and the main sensing line 621 can enlarge the sensing area inside the sensing electrode 62 and have higher touch sensing capacity, which is beneficial to improve the touch sensing effect.
  • one end of part of the first sensing line segment 621a in the main sensing line 621 is connected to a second sensing line segment 621b, and is also connected to two third sensing line segments 622, and the second sensing line segment 621b is located at the first sensing line segment.
  • the two third sensing line segments 622 are located on the other side of the first sensing line segment 621a.
  • the other end of the first sensing line segment 621a is also connected to a second sensing line segment 621b and two third sensing line segments 622, and the third sensing line segments 622 connected to different ends of the first sensing line segment 621a are respectively located at the second Two sides of a sensing line segment 621a.
  • one end of part of the first sensing line segment 621a in the main sensing line 621 is connected to two second sensing line segments 621b, and is also connected to a third sensing line segment 622, and the two second sensing line segments
  • the measuring line segment 621b is located on one side of the first sensing line segment 621a
  • the third sensing line segment 622 is located on the other side of the first sensing line segment 621a.
  • the other end of the first sensing line segment 621a is also connected to two second sensing line segments 621b and a third sensing line segment 622, and the third sensing line segments 622 connected to different ends of the first sensing line segment 621a are respectively located at the first sensing line segment 621a. Two sides of a sensing line segment 621a.
  • At least one (for example, multiple) of the plurality of third sensing line segments 622 has a free line end.
  • a free line end is a line end that does not touch other line ends.
  • one end of part of the third sensing line segment 622 is connected to a main sensing line 621 , and the other end is independent from other line ends.
  • the plurality of sensing electrodes 62 includes a first sensing electrode 62A and a second sensing electrode 62B adjacent along a first direction.
  • first sensing electrode 62A and the second sensing electrode 62B the same extension direction
  • the breakpoint between the two main sensing lines 621 on the upper line is located on the second sensing line segment 621b at one end of one of the main sensing lines 621 .
  • any two adjacent sensing electrodes 62 in the Y direction are the first sensing electrode 62A and the second sensing electrode 62B in turn, and each sensing main line 621 included in the first sensing electrode 62A is Each of the second sensing electrodes 62B has a corresponding main sensing line 621 and its extending direction is the same as the extending direction.
  • multiple sensing main lines 621 extending in the same extending direction can be provided with multiple breakpoints on a metal line whose extending direction is parallel to the Y direction and passes through multiple sensing electrodes 62 arranged along the Y direction.
  • the plurality of metal lines passing through the first sensing electrode 62A and the second sensing electrode 62B are divided into a plurality of sensing main lines 621 respectively belonging to two adjacent sensing electrodes 62 by a plurality of breakpoints.
  • the above breakpoint can be located on the second sensing line segment 621b of the first sensing electrode 62A near the end of the sensing main line 621 close to the second sensing electrode 62B, or located in the second sensing electrode 62B close to the first sensing line 621.
  • On the second sensing line segment 621b at one end of the measuring electrode 62A as long as it is located at the line end of the inclined second sensing line segment 621b.
  • the range defined by the plurality of sensing main lines 621 and the plurality of third sensing line segments 622 connected to the plurality of sensing main lines 621 is the sensing range of the sensing electrode 62, and each sensing main line 621 provided with a breakpoint has Two wire ends, the multiple sensing main lines 621 have multiple wire ends, the positions defined by the multiple third sensing line segments 622 near the wire ends of the sensing main lines 621 and the multiple wire ends are the boundary positions of the sensing electrodes 62 .
  • the sensing electrode 62 also has a plurality of free line ends at its boundary position, and each free line end is one end of a second sensing line segment 621b.
  • the side surfaces of the formed metal wires are slope surfaces, and the side surfaces of multiple metal line segments obtained by setting breakpoints on the metal wires are also slope surfaces.
  • the side of the metal line segment will reflect the light, and the reflection intensity is related to the side length of the metal line segment.
  • the side length of the metal line segment with a breakpoint is smaller than that of the metal line segment without a breakpoint, and the corresponding reflection intensity is also weaker than that of the side surface of the metal line segment without a breakpoint.
  • the difference in the side length of the metal line segment results in a difference in the reflective intensity.
  • the difference in reflective intensity can be visually felt by the user, manifested as display mura, which affects the display effect of the touch display device.
  • the angle at which the side reflection of the metal line can be observed and is perpendicular to the side reflection of the metal line segment is called the viewing angle.
  • the plurality of third sensing line segments 622 with free line ends can be regarded as obtained by setting a break point at one end of the third sensing line segments 622 so that the third sensing line segments 622 are independent from other line ends.
  • the breakpoints are all set on the oblique metal line segment inclined to the first direction, and no breakpoint is set on the first sensing line segment 621a parallel to the first direction.
  • At least one (eg, each) third sensing line segment 622 is parallel to one second sensing line segment 621b.
  • each line end of part of the first sensing line segment 621a is connected to a second sensing line segment 621b and a third sensing line segment 622, and a second sensing line segment connected to the same line end 621b and a third sensing line segment 622 are located on both sides of the first sensing line segment 621a, and a third sensing line segment 622 connected to one line end and a second sensing line segment 621b connected to the other line end parallel.
  • one (for example, each) effective touch trace 63 includes at least one (for example, one or more) coupling parts 631, and at least one (for example, each) coupling part 631 is connected to One sensing electrode 62 is electrically connected. Except for at least one coupling portion 631 , the orthographic projection of the effective touch trace 63 on the base layer 61 has no overlapping area with the orthographic projection of each sensing electrode 62 on the base layer 61 .
  • FIG. 7 one (for example, each) effective touch trace 63 includes at least one (for example, one or more) coupling parts 631, and at least one (for example, each) coupling part 631 is connected to One sensing electrode 62 is electrically connected. Except for at least one coupling portion 631 , the orthographic projection of the effective touch trace 63 on the base layer 61 has no overlapping area with the orthographic projection of each sensing electrode 62 on the base layer 61 .
  • FIG. 7 one (for example, each) effective touch trace 63 includes at least one (for
  • an effective touch trace 63 passes through a plurality of sensing electrodes 62 in sequence (for example, a row of sensing electrodes 62, taking a row of four sensing electrodes 62 as an example), four sensing electrodes 62 Only one sensing electrode 62 is coupled to the effective touch trace 63 , and the other sensing electrodes 62 are not electrically connected to the effective touch trace 63 . Since one effective touch trace 63 is electrically connected to only one sensing electrode 62, at least one (for example, one or more) coupling parts 631 included in the effective touch trace 63 are on the base layer 61.
  • the orthographic projection is located within the orthographic projection on the base layer 61 defined by the sensing electrodes 62 coupled to the effective touch traces 63 . There is no overlapping area between the plurality of sensing electrodes 62 passing through but not coupled to the effective touch trace 63 and the orthographic projection of the effective touch trace 63 on the base layer 61 .
  • the coupling part 631 is a part of the effective touch trace 63, and the shape of the coupling part 631 is not limited too much. Orthographic projections of at least part of any one of the line segments 622 (for example, only the end portion of the line, or the entire third sensing line segment) on the base layer 61 overlap. Specifically, referring to FIG. 7 , the orthographic projection of the coupling portion 631 on the base layer 61 overlaps with the orthographic projection of a third sensing line segment 622 on the base layer 61 .
  • each of the overlapping areas Coupling capacitance, that is, parasitic capacitance, is generated between metal line segments.
  • the existence of parasitic capacitance will increase the capacitive load of the sensing electrode 62 , which is not conducive to the improvement of touch reporting rate and signal-to-noise ratio.
  • the orthographic projection of the sensing electrodes 62 that are not coupled to the effective touch trace 63 on the base layer 61 has no overlapping area with the orthographic projection of the effective touch trace 63 on the base layer 61 , which can The capacitive load of the sensing electrode 62 is reduced, so that the above-mentioned problems can be avoided.
  • each effective touch trace 63 is coupled to one sensing electrode 62 , even if the coupling portion 631 of the effective touch trace 63 and the sensing electrode 62 coupled thereto are on the base layer 61 There is an overlapping area in the projection, and no coupling capacitance will be generated between the effective touch trace 63 and the sensing electrode 62 .
  • the extending direction of the effective touch trace 63 is the same as that of the main sensing line 621 , the extending direction of the effective touch trace 63 is different from that of the third sensing line segment 622 .
  • the third sensing line segment 622 should be reserved as much as possible in consideration of the process tolerance (overlay), that is, the third sensing line segment 622 with a free line end.
  • the end point of the line segment 622 has an avoidance design, which can make the distance between the end point of the third sensing line segment 622 and the effective touch line 63 as small as possible, and at the same time avoid the contact between the effective touch line 63 and the third sensing line segment 622.
  • the orthographic projections on the base layer 61 have overlapping regions.
  • the third sensing line segment 622 extending in the same direction includes a first-type third sensing line segment 622a whose end is a free line end and a second-type third sensing line segment 622b whose two ends are not free line ends.
  • the length of the first-type third sensing line segment 622a is d1
  • the length of the second-type third sensing line segment 622b is d2.
  • one end of the first-type third sensing line segment 622a is a free line end, that is, one end of the first-type third sensing line segment 622a avoids overlapping with the orthographic projection of the effective touch trace 63 on the base layer 61 Therefore, the length d1 of the first-type third sensing line segment 622a is smaller than the length d2 of the second-type third sensing line segment 622b.
  • first-type third sensing line segments 622a should be set as possible, so the number of first-type third sensing line segments 622a is far more than the second-type third-type sensing line segments 622a. The number of line segments 622b is sensed.
  • the avoidance design should keep the first type of third sensing line segment 622a as much as possible, and the setting of the breakpoint needs to ensure that the sensing main lines 621 of the two adjacent sensing electrodes 62 are completely independent of each other, so the length of the breakpoint pair is reduced
  • the range is greater than the reduction range of the avoidance design to the length, that is, s1>s2.
  • the two sensing main lines 621 in the same extending direction If the breakpoint between them is located on the first sensing line segment 621a at one end of one of the main sensing lines 621, then the length difference between the first sensing line segment 621a without a breakpoint and the first sensing line segment 621a with a breakpoint is s1.
  • each third sensing line segment 622 is parallel to a second sensing line segment 621b, the visible angle of reflection from the side of the third sensing line segment 622 is the same as that of the side surface of the second sensing line segment 621b.
  • the reflection viewing angles are the same, which is the first viewing angle; the viewing angle of the first sensing line segment 621a side reflection is different from the viewing angles of the second sensing line segment 621b and the third sensing line segment 622, the first sensing line segment 621a
  • the viewing angle of the side reflection of the line segment 621a is the second viewing angle.
  • the length difference between the second sensing line segment 621b with a breakpoint and the multiple second sensing line segments 621b without a breakpoint under the first viewing angle is s1, because the first The number of the third-like sensing line segment 622a is far greater than the number of the second-type third sensing line segment 622b, so the second sensing line segment 621b with a break point and the plurality of second sensing line segments 621b parallel to it at the first viewing angle
  • the length difference of the three sensing line segments 622 can be regarded as the length difference between the second sensing line segment 621b with a break point and the multiple first-type third sensing line segments 622a parallel to it at the first viewing angle, which is s1 -s2.
  • the length difference is s1, obviously, s1>s1-s2. It can be seen that in the sensing electrode 62, the difference in the total length at the first viewing angle is smaller, that is, the difference in the total length of the side of the metal line segment is smaller, and the difference in the reflection intensity caused by the difference in the side length of the metal line segment is also smaller. Small, so that the existence of display mura can be avoided, so that the touch display device can achieve a better display effect.
  • the plurality of second sensing line segments 621b includes a plurality of first oblique line segments L1 and a plurality of second oblique line segments L2, and the first direction goes clockwise to a first oblique direction
  • the angle in the extending direction of the line segment L1 is an acute angle
  • the angle in the extending direction from the first direction clockwise to a second oblique line segment L2 is an obtuse angle.
  • the second sensing line segment 621b inclined to the first direction can be divided into a first oblique line segment L1 and a second oblique line segment L2, and the inclination of the first oblique line segment L1 and the second oblique line segment L2
  • the direction is different, that is, the extension direction is different.
  • a first oblique line segment L1 and a second oblique line segment L2 connected to a first sensing line segment 621a are both located on the same side of the first sensing line segment 621a, and are respectively located on the first sensing line segment 621a. Both ends of the line segment 621a are sensed.
  • the extension directions of the multiple first oblique line segments L1 may be the same or different, and the extension directions of the multiple second oblique line segments L2
  • the directions can be the same or different, and there are no too many restrictions on this.
  • each first sensing line segment 621a is connected to at least one (for example, may be one) first oblique line segment L1, and the other end is connected to at least one first oblique line segment L1.
  • a (for example, may be one) second oblique line segment L2 is connected.
  • first oblique line segment L1 and the second oblique line segment L2 are different, and their viewing angles are also different, multiple breakpoints between the first sensing electrode 62A and the second sensing electrode 62B are scattered Set on the first oblique line segment L1 and the second oblique line segment L2, only some of the breakpoints will cause visualization risks under a viewing angle, and the rest of the breakpoints will not affect the display effect under the viewing angle , which is equivalent to reducing the difference in total length, thereby reducing the visualization risk caused by the difference in reflective intensity, which is beneficial to the improvement of the display effect.
  • a plurality of breakpoints between the first sensing electrode 62A and the second sensing electrode 62B are alternately distributed on the first oblique line segment L1 and the second oblique line segment L2 .
  • a plurality of breakpoints between the first sensing electrode 62A and the second sensing electrode 62B are alternately distributed on the first oblique line segment L1 and the second oblique line segment L2 .
  • the breakpoints on the two adjacent sensing main lines 621 along the second direction are alternately distributed on the first oblique line segment L1 and the second oblique line segment L2 that are different in the extension direction, that is, in the X direction Among any two adjacent sensing main lines 621 above, the break point of one sensing main line 621 is set on the first oblique line segment L1, and the break point of the other sensing main line 621 is set on the second oblique line segment L2.
  • the total number of sensing main lines 621 is n, and n is an even number
  • the total number of breakpoints at the boundary positions of a row of sensing electrodes 62 is also n, and n/2 breakpoints are distributed on the first diagonal extending along an extending direction.
  • the remaining n/2 breakpoints are distributed on the second oblique line segment L2 extending along another extending direction.
  • the breakpoints on the second sensing line segment 621b extending in different directions, there are only n/2 breakpoints with visualization risks at a viewing angle, the density of breakpoints is reduced, and the distribution of multiple breakpoints It is more dispersed, which can further reduce the risk of visualization and is conducive to the improvement of display effect.
  • (n-1)/2 or (n+1) /2 breakpoints also have the above-mentioned beneficial effects, which will not be repeated here.
  • the above-mentioned touch layer group further includes a third sensing electrode 62C adjacent to the first sensing electrode 62A along the second direction.
  • At least one breakpoint is set on the edge sensing main line in the first sensing electrode 62A, and at least one breakpoint divides the edge sensing main line into multiple broken lines, and the multiple broken lines are not connected to the first sensing electrode 62A.
  • At least one broken wire of is connected to the third sensing electrode 62C.
  • the edge sensing main line 621 is a sensing main line 621 closest to the third sensing electrode 62C from the first sensing electrode 62A, and at least one break point (for example, may be three) is located in the first sensing electrode 62A on the second sensing line segment 621b of the edge sensing main line.
  • at least one break point (for example, may be three) is located in the first sensing electrode 62A on the second sensing line segment 621b of the edge sensing main line.
  • any two adjacent sensing electrodes 62 in the X direction are the first sensing electrode 62A and the third sensing electrode 62C in sequence.
  • One of the multiple sensing main lines 621 of the first sensing electrode 62A, which is closest to the third sensing electrode 62C, is an edge sensing main line, on which at least one (for example, two) The break point divides the complete edge sensing main line 621 into three broken lines, two of which are coupled to the first sensing electrode 62A, and the other is coupled to the third sensing electrode 62C, so that the first sensing The boundary of the sensing electrode 62A and the third sensing electrode 62C is engaged.
  • the touch position can be sensed by the first sensing electrode 62A and the third sensing electrode 62C, with a larger touch Control the amount of sensing, which can improve the sensing effect.
  • the breakpoint is located on the second sensing line segment 621b, which can avoid adding a new viewing angle, thereby avoiding increasing the risk of visualization while improving the sensing effect.
  • the orthographic projection of the upper edge TL of the section of the second sensing line segment 621b with the first breakpoint on the base layer 61 and the second sensing line segment 621b corresponding to the first breakpoint are at The orthographic projection on the base layer 61 is vertical, and the upper edge TL is the edge away from the base layer among the edges of the section.
  • the sum of the orthographic projection of the upper edge TL of the section of the second sensing line segment 621b provided with the first breakpoint on the base layer 61 and the first breakpoint should be made as far as possible under the condition that the technological level can be realized.
  • the orthographic projections of the corresponding second sensing line segment 621b on the base layer 61 are perpendicular to each other, and due to technical limitations, when the angle between the two is within the range of 85°-95°, the two can be regarded as vertical.
  • the upper edge TL of the section of the second sensing line segment 621b is parallel to the lower edge BL, and the orthographic projection of the lower edge BL and the second sensing line segment 621b on the base layer 61 is also perpendicular.
  • the sharp angle at the end of the sharp-angled line (the angle between the orthographic projection of the cross-sectional edge of the metal line on the base layer 61 and the extending direction of the metal line is an acute angle) will form
  • the rounded corners (the orthographic projection of the cross-sectional edge of the metal wire on the base layer 61 is an arc) lead to a large difference between the actually formed wire end shape and the designed wire end shape.
  • the right-angle line end (the angle between the orthographic projection of the cross-sectional edge of the metal line on the base layer 61 and the extending direction of the metal line is a right angle) at the right angle is the line end shape formed by the actual etching process and the designed line end shape.
  • each sensing electrode 62 and at least one effective touch wiring 63 coupled to the sensing electrode 62 are arranged in different layers, and the touch layer group also includes the sensing electrodes 62 and the effective touch wiring.
  • 63 between the insulating layer 65 , and each coupling portion 631 is coupled to the sensing electrode 62 through at least one via hole h on the insulating layer 65 .
  • each sensing electrode 62 is provided with an effective touch trace 63 coupled thereto, and the coupling portion 631 of the effective touch trace 63 is connected to the two ends of the sensing electrode 62 through two via holes h.
  • a sensing main line 621 is coupled.
  • the relative positions of the sensing electrodes 62 and the effective touch traces 63 are not restricted too much.
  • the effective touch trace 63 is closer to the base layer 61 than the sensing electrode 62, so that the sensing electrode 62 is far away from the driving circuit for controlling image display in the display panel, thereby preventing the sensing electrode 62 from being affected.
  • the interference of other electrical signals will affect the sensing effect.
  • the sensing electrodes 62 and the effective touch traces 63 are arranged in different layers, and an insulating layer 65 is arranged between the sensing electrodes 62 and the effective touch traces 63, which can prevent the sensing electrodes 62 from being damaged during the manufacturing process.
  • the plurality of third sensing line segments 622 are connected to the active touch traces 63 that are not coupled to the sensing electrodes 62 .
  • the material of the insulating layer 65 may be, for example, at least one of silicon nitride, silicon oxide, or silicon oxynitride, which is not limited thereto.
  • each coupling portion 631 is coupled to the sensing electrode 62 through a plurality of via holes h on the insulating layer 65 . Due to the large resistance at the via hole, when the sensing electrode 62 and the effective touch trace 63 are coupled through multiple via holes h on the insulating layer 65, the connection relationship of the multiple via holes is parallel connection, so when the over When the number of holes increases, the total resistance at the via holes will decrease. Coupling through multiple via holes can ensure better continuity between the sensing electrodes 62 and the effective touch traces 63, and improve connection reliability. .
  • each sensing electrode 62 and at least one effective touch trace 63 coupled to the sensing electrode 62 are arranged on the same layer, and each coupling portion 631 is connected to the sensing electrode by bridging. 62 is coupled, and an insulating layer 65 is provided between the bridge and the sensing electrode 62 . That is, both the effective touch traces 63 and the sensing electrodes 62 are disposed on the base layer 61 and carried by the base layer 61 .
  • the effective touch traces 63 and the sensing electrodes 62 can be made of the same material and formed in the same process step.
  • the effective touch traces 63 and the sensing electrodes 62 may be closer to the base layer 61 relative to the bridge, or the bridge may be closer to the base layer 61 relative to the effective touch traces 63 and the sensing electrodes 62 .
  • Arranging the effective touch traces 63 and the sensing electrodes 62 on the same layer can reduce the visualization of the sensing electrodes 62 and the effective touch traces 63 caused by different reflective intensities caused by height differences in different layers.
  • each sensing electrode 62 in at least one (for example, each) sensing electrode 62, two adjacent sensing main lines 621 are connected through at least one connecting portion 64, and each connecting portion 64 is composed of at least two The third sensing line segment 622 is connected to form.
  • the plurality of sensing main lines 621 in the sensing electrodes 62 are independent of each other, and the plurality of third sensing line segments 622 connected to the sensing electrodes 62 with free line ends can only increase the sensing area of a single sensing main line 621, while the sensing area of a single sensing main line 621 can only be increased.
  • the sensing area of the sensing electrode 62 is determined by the multiple sensing main lines 621 coupled with the effective touch lines 63, and the sensing main lines 621 of the sensing electrodes 62 that are not coupled with the effective touch lines 63 cannot function to the role of touch sensing. Therefore, to increase the sensing area of the sensing electrode 62, it is necessary to couple a plurality of sensing main lines 621 in the sensing electrode 62, so that as long as there is one sensing main line 621 or one connected to the sensing main line 621
  • the third sensing line segment 622 is coupled to the effective touch trace 63 , and the plurality of sensing main lines 621 connected to the sensing electrode 62 can be used to realize touch sensing.
  • connection of a plurality of independent sensing main lines 621 in the sensing electrode 62 can be realized through a plurality of third sensing line segments 622, and a plurality of third sensing line segments 622 connecting two adjacent sensing main lines 621 form a connection.
  • a plurality of connection portions 64 can be provided between two adjacent sensing main lines 621 , so that the plurality of sensing main lines 621 inside the sensing electrode 62 have better conductivity and improve connection reliability.
  • the two sensing main lines 621 are connected by three or four third sensing line segments 622 arranged between adjacent two sensing main lines 621 , and between two adjacent sensing main lines 621 Two connection portions 64 are provided.
  • the positions of at least one connecting portion 64 in two adjacent rows are staggered in the second direction, and the direction of the rows is parallel to the first direction.
  • the extension direction of the sensing main line 621 is parallel to the first direction.
  • a plurality of connecting parts 64 for coupling one sensing main line 621 to other sensing main lines 621 are also arranged along the first direction.
  • a row of connecting parts 64 is To provide multiple connecting portions 64 between two sensing main lines 621 , similarly, a row of connecting portions 64 is a plurality of connecting portions 64 arranged along the second direction.
  • the connecting parts 64 In order to avoid the visualization risk increase caused by the concentrated distribution of the connecting parts 64, it is necessary to distribute the connecting parts 64 as evenly as possible within the range defined by the sensing electrodes 62, so that they are arranged along the first direction and coupled with the same main sensing line 621 And there is at least one first sensing line segment 621a between the two connecting parts 64 located on both sides of the main sensing line 621. At the same time, the positions of at least one connecting part 64 in two adjacent columns in the second direction are staggered, that is, the same Among the plurality of connecting portions 64 in a row, at least two sensing main lines 621 are spaced between two adjacent connecting portions 64 .
  • At least two connecting parts 64 are arranged between the two sensing main lines 621 adjacently arranged along the second direction, and the at least two connecting parts 64 are equally spaced along the first direction, and the adjacent two connecting parts 64 There are at least four first sensing line segments 621a disposed therebetween.
  • first sensing line segments 621a disposed therebetween.
  • four connecting portions 64 are arranged between two sensing main lines 621 adjacently arranged along the X direction, and the four connecting portions 64 are distributed at equal intervals along the Y direction. Between two adjacent connecting portions 64 There are four first sensing line segments 621a.
  • At least one first sensing line segment 621a is arranged between two connecting parts 64 arranged along the Y direction, coupled with the same main sensing line 621 and located on both sides of the main sensing line 621, and two adjacent connecting parts in the same row There are two sensing main lines 621 spaced between 64 .
  • the above settings can ensure that the multiple sensing main lines 621 in the sensing electrodes 62 are electrically connected reliably, have the largest sensing area and touch sensitivity, and can ensure that the connecting parts 64 are evenly distributed within the range defined by the sensing electrodes 62 , so as to minimize the risk of visualization of the connecting portion 64 and ensure the display effect to the greatest extent.
  • the touch layer group further includes at least one dummy touch wire 66 arranged on the same layer as the plurality of effective touch wires 63 shown, and at least one () extension of the dummy touch wire 66
  • the direction is parallel to the first direction, and at least one dummy touch wire 66 is arranged along the second direction.
  • the shapes of the dummy touch traces 66 and the effective touch traces 63 are approximately the same, and each effective touch trace 63 and each dummy touch trace corresponding to at least one (for example, each) sensing electrode 62 66 are equally spaced along the second direction.
  • the distance between any two adjacent metal lines along the second direction is equal, and one of the two adjacent metal lines can be an effective touch line 63 and the other can be a virtual touch line 66 ; It can also be two effective touch traces 63 , and can also be two dummy touch traces 66 .
  • Multiple effective touch traces 63 are arranged within the range defined by each sensing electrode 62, and the multiple effective touch traces 63 can be arranged collectively or scattered within the range defined by the sensing electrodes 62.
  • the distribution range of the effective touch wires 63 is smaller than the range defined by the sensing electrodes 62 .
  • the dummy touch wires 66 are not used for transmitting sensing signals, so in some examples, the dummy touch wires 66 are not coupled to any sensing electrodes 62 .
  • the shape of each virtual touch wiring 66 is roughly the same as that of the effective touch wiring 63, that is, the shape of the virtual touch wiring 66 is similar to that of the effective touch wiring 63, which can ensure that the virtual touch wiring 66 is consistent with the effective touch wiring 63.
  • the viewing angles of the touch traces 63 are the same, and the addition of the virtual touch traces 66 will not cause additional viewing angles, which avoids the risk of increased visualization.
  • Multiple virtual touch lines 66 and multiple effective touch lines 63 are set on the same layer, and the multiple virtual touch lines 66 and multiple effective touch lines 63 are equally spaced, that is, any effective touch line
  • those adjacent to it along the second direction can increase the number of metal wires (that is, a plurality of dummy touch wires 66 and a plurality of effective touch wires 63 ) within the range defined by the sensing electrodes 62 , the density increases, and the spacing between metal lines decreases, thereby reducing the display mura caused by excessive spacing or concentrated arrangement of metal lines, and improving the display effect.
  • At least one (for example, each) sensing electrode 62 has a first area 601, and each effective touch line 63 located in the first area 601 Alternately arranged with the plurality of main sensing lines 621 located in the first region 601 . That is, in the first region 601 , the number of sensing main lines 621 arranged between any two adjacent valid touch lines 63 is equal. For example, referring to FIG. 16 , in the touch layer group, at least one (for example, each) sensing electrode 62 has a first area 601, and each effective touch line 63 located in the first area 601 Alternately arranged with the plurality of main sensing lines 621 located in the first region 601 . That is, in the first region 601 , the number of sensing main lines 621 arranged between any two adjacent valid touch lines 63 is equal. For example, referring to FIG.
  • the first area 601 is the area defined by the sensing electrodes 62, that is, the effective touch traces 63 passing through the sensing electrodes 62 are distributed on the entire sensing electrodes 62, and the effective touch traces
  • the first area 601 is a part of the area defined by the sensing electrodes 62 .
  • at least one (for example, each) sensing electrode 62 also has two second regions 602, at least one virtual touch wire 66 located in the second region 602 and multiple virtual touch wires 66 located in the first region 601.
  • the main sensing lines 621 are arranged alternately. That is, in the second region 602 , the number of sensing main lines 621 arranged between any two adjacent virtual touch lines 66 is equal, and the number of sensing main lines 621 is equal to that between any adjacent two effective touch lines 63 .
  • the number of the set sensing main lines 621 is the same.
  • the two second regions 602 are respectively located on two sides of the first region 601 along the second direction.
  • the effective touch wires 63 are only arranged in the first area 601, and are not arranged in the second area 602.
  • the virtual touch wires 66 are only arranged in the second area 602, and are not arranged in the first area 601 It is set that the number of sensing main lines 621 spaced between any two adjacent metal lines in the X direction (that is, the dummy touch line 66 and/or the effective touch line 63 ) is equal to one.
  • Multiple effective touch traces 63 are arranged as centrally as possible in the area defined by the sensing electrodes 62, so that the capacitance variation at the borders of the sensing electrodes 62 farther away from the effective touch traces 63 is larger, thereby achieving a more accurate Good sensing effect.
  • At least one (for example, may be each) virtual touch wire 66 includes at least one (for example, may be multiple) virtual touch wire segments 661, each virtual touch wire segment 661 is connected to a sensing Electrode 62 is coupled.
  • the virtual touch wire 66 that passes through multiple sensing electrodes 62 is divided into multiple virtual touch wire segments 661 by multiple breakpoints, and each virtual touch wire segment 661 is connected with the sense wires it passes through.
  • the measuring electrode 62 is coupled.
  • the specific coupling manner of the virtual touch trace segment 661 and the sensing electrode 62 is not limited too much, it may be coupled through at least one (for example, may be multiple) via holes, and of course other manners may also be used.
  • the virtual touch trace segment 661 is equivalent to a part of the sensing electrode 62 .
  • the dummy touch line segment 661 is coupled to the sensing electrode 62 , which can increase the area of the sensing electrode 62 and improve the sensitivity during touch.
  • each dummy touch wire segment 661 is coupled to a sensing electrode 62 , even if the orthographic projection of the dummy touch wire segment 661 and the sensing electrode 62 coupled thereto on the base layer 61 overlaps, No coupling capacitance will be generated between the virtual touch trace segment 661 and the sensing electrode 62 .
  • the lengths of the multiple effective touch traces 63 may be approximately the same or different.
  • each effective touch trace 63 passes through a column of sensing electrodes 62 arranged in the Y direction in the display area.
  • the lengths of the multiple effective touch traces 63 are roughly the same, and their equivalent resistance values are also the same. are approximately equal, and the influence on the potential of the sensing signal is also basically the same, which can be equivalent to eliminating the adverse effect of the length of the trace on the sensing signal, which is beneficial to improving the accuracy of the sensing result.
  • the number of effective touch traces 63 set within the range defined by each sensing electrode 62 is not less than the number of sensing electrodes 62 in the row, so as to ensure that each sensing electrode 62 can be connected to at least one effective touch trace.
  • Line 63 is coupled.
  • at least one (for example, one) dummy touch wiring 66 may be arranged on the same layer as the effective touch wiring 63, so as to reduce the Visualize risk.
  • Each dummy touch wire 66 is divided into a plurality of dummy touch wires 66 coupled to the sensing electrodes 62 , so as to increase the area of the sensing electrodes 62 .
  • the lengths of the multiple effective touch traces 63 are different, and the number of sensing electrodes 62 that the multiple effective touch traces 63 arranged along the X direction pass through along the Y direction is different.
  • One end of the touch wire 63 is located at the edge of the display area, and the other end is disposed within the range defined by the sensing electrode 62 coupled thereto.
  • it may also include setting at least one (for example, multiple) virtual touch wiring 66 on the same layer as the effective touch wiring 63.
  • the lengths of the multiple virtual touch wiring 66 are different, and each virtual touch wiring
  • the line 66 is divided into a plurality of dummy touch lines 66 coupled to the sensing electrodes 62 , which can increase the area of the sensing electrodes 62 .
  • the sum of the number of effective touch wires 63 and the number of dummy touch wires 66 within the range defined by each sensing electrode 62 is not less than the number of sensing electrodes 62 in the column, thereby reducing the number of metal layers in this layer. Line visualization risk.
  • At least one (for example, each) virtual touch line 66 is formed by alternately connecting a plurality of first touch line segments 661a and a plurality of second touch line segments 661b, at least one (for example, each may be One) the first touch line segment 661a is parallel to the first direction, and at least one (for example, each) second touch line segment 661b is inclined to the first direction.
  • the first touch line segment 661a is a straight line segment extending along the Y direction
  • the second touch line segment 661b is an oblique line segment not extending along the Y direction
  • the extension direction of the second touch line segment 661b is the same as the first touch line segment.
  • There is an included angle between the extending directions of the touch line segment 661a and the included angle is an obtuse angle.
  • the included angle may also be an acute angle, which is not limited.
  • the plurality of second touch line segments 661b includes a plurality of third oblique line segments L3 and a plurality of fourth oblique line segments L4, and a plurality of third oblique line segments L3 and a plurality of fourth oblique line segments
  • the four oblique line segments L4 are alternately arranged along the first direction.
  • the third oblique line segment L3 is parallel to the first oblique line segment L1
  • the fourth oblique line segment L4 is parallel to the second oblique line segment L2, in the first sensing electrode 62A and the second sensing electrode 62B, the same extension direction Among the multiple breakpoints between the two virtual touch trace segments 661 , some of the breakpoints are located on the third oblique line segment L3 , and the other part of the breakpoints are located on the fourth oblique line segment L4 . Specifically, referring to FIG.
  • the second touch line segment 661b inclined to the first direction can be divided into a third oblique line segment L3 and a fourth oblique line segment L4, the third oblique line segment L3 and the fourth oblique line segment L4
  • the inclination direction that is, the extension direction is different
  • the third oblique line segment L3 is parallel to the first oblique line segment L1
  • the fourth oblique line segment L4 is parallel to the second oblique line segment L2.
  • each first touch line segment 661a is connected to at least one (for example, may be one) third oblique line segment L3, and the other end is connected to at least one (for example, may be) is one) the fourth oblique line segment L4 is connected.
  • the virtual touch trace segment 661 is obtained by dividing the virtual touch trace 66 by multiple breakpoints. Since the third oblique line segment L3 is parallel to the first oblique line segment L1, the fourth oblique line segment L4 is parallel to the second oblique line segment L2.
  • the breakpoints are set scatteredly on the third oblique line segment L3 and the fourth oblique line segment L4. Only some of the breakpoints are at risk of visualization at a viewing angle, and the rest of the breakpoints will not display the effect at that viewing angle. make an impact.
  • the above setting can increase the area of the sensing electrode 62 and improve the touch sensitivity, while avoiding the visualization risk caused by the difference in reflection intensity, which is beneficial to the improvement of the display effect.
  • multiple breakpoints between the multiple virtual touch trace segments 661 are alternately located on the third oblique line segment L3 and the fourth oblique line segment L4.
  • this setting can also reduce the number of breakpoints with visualization risks at a viewing angle, and at the same time, multiple breakpoints are evenly dispersed, which can further reduce the visualization risk. It is beneficial to improve the display effect.
  • the upper edge of the cross-section of the second touch line segment 661b provided with a break point is perpendicular to the extending direction of the second touch line segment 661b.
  • This setting is similar to the setting method of the breakpoint of the sensing main line 621 , and also has the above-mentioned effect, and will not be repeated here.
  • both the effective touch traces 63 and the sensing electrodes 62 are located in the pixel defining area. That is, each effective touch trace 63, as well as multiple first sensing line segments 621a, multiple second sensing line segments 621b, and multiple third sensing line segments 622 that form the sensing electrodes 62 are arranged on adjacent two The pixels between the sub-pixel regions 101a define the region 101b.
  • the orthographic projections of the sensing electrodes 62 in the touch layer group and the effective touch traces 63 passing through the sensing electrodes 62 on the base layer 61 form a plurality of meshes, one sub-pixel area and one Mesh correspondence.
  • the above arrangement can avoid multiple opaque metal lines from blocking the light output from the sub-pixel region 101 a under the premise of improving the sensing effect and avoiding the display mura generated by the sensing electrodes 62 and the effective touch traces 63 .
  • sub-pixels with lower luminous efficiency can be made larger, and sub-pixels with higher luminous efficiency can be made smaller to balance the luminous conditions of sub-pixels of different colors, so as to complete normal display.
  • sub-pixels with lower luminous efficiency can be made larger, and sub-pixels with higher luminous efficiency can be made smaller to balance the luminous conditions of sub-pixels of different colors, so as to complete normal display.
  • the shape of the sub-pixel region 101a can also be as shown in FIG. 22, partly hexagonal, partly pentagonal, and the red sub-pixel R and the blue sub-pixel B are arranged in the hexagonal sub-pixel region 101a , the green sub-pixel G is arranged in the pentagonal sub-pixel region 101a.
  • one red sub-pixel R, one green sub-pixel G and one blue sub-pixel B constitute a pixel 103 , and two pixels 103 share one red sub-pixel R.
  • the above-mentioned touch layer group may further include at least one (for example, multiple) fourth sensing line segments 623, and each fourth sensing line segment 623 is perpendicular to a first sensing line segment connected to it.
  • Line segment 621a For example, referring to FIG. 20 and FIG. 21 , in one sensing electrode 62 , the plurality of sensing main lines 621 can be divided into a first sensing main line 621A and a second sensing main line 621B.
  • each first sensing line segment 621a of the first sensing main line 621A is connected to a fourth sensing line segment 623, and multiple fourth sensing line segments 623 connected to a first sensing main line 621A are connected along the first The direction is alternately arranged on both sides of the first main sensing line 621A; only part of the first sensing line segments 621a of the second main sensing line 621B is connected to the fourth sensing line segment 623, and is connected with one second main sensing line.
  • the plurality of fourth sensing line segments 623 connected by 621B are all located on the same side of the second main sensing line 621B.
  • the sensing electrodes 62 including multiple fourth sensing line segments 623 and the orthographic projections of the effective touch traces 63 passing through the sensing electrodes 62 on the base layer 61 form multiple meshes, and one sub-pixel area corresponds to one mesh. .
  • the above arrangement can further increase the area of the sensing electrode 62 without blocking the light output from the sub-pixel region 101a, thereby improving the touch sensitivity.
  • the effective touch traces 63 and the main sensing lines 621 are arranged alternately along the X direction.
  • the sensing main line 621 can only include a plurality of mutually independent first Second, the sensing metal line segment, to realize the coupling between the sensing electrode 62 and the effective touch trace 63 needs to set a large number of via holes, which increases the difficulty of the process, and at the same time the connection effect is difficult to guarantee, so m ⁇ 1; on the other hand, m When ⁇ 1, combined with the avoidance design of the third sensing line, the overlapping area of the sensing electrode 62 and the effective touch trace 63 on the base layer 61 can be minimized, so that the sensing area is as large as possible, and at the same time

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Position Input By Displaying (AREA)

Abstract

一种触控层组,触控层组包括:基底层、设置于基底层上的多条有效触控走线和多个感测电极。一感测电极与至少一条有效触控走线耦接;其中,感测电极包括多条感测主线,至少一条感测主线由多条第一感测线段和多条第二感测线段交替连接形成,至少一条第一感测线段平行于第一方向,至少一条第二感测线段倾斜于第一方向;至少一个感测电极还包括与感测主线连接的多条第三感测线段,至少一条第三感测线段倾斜于第一方向,至少一条第三感测线段具有自由线端;多个感测电极包括:沿第一方向相邻的第一感测电极和第二感测电极,第一感测电极和第二感测电极中,同一延伸方向上的两条感测主线之间的断点位于其中一条感测主线一端的第二感测线段上。

Description

触控层组及触控显示装置 技术领域
本公开涉及显示技术领域,尤其涉及一种触控层组及触控显示装置。
背景技术
自触控技术兴起以来,由于其具有简单、快捷、人性化等特点,普及度越来越高,市面上具有触控功能的产品也越来越多,例如手机、平板电脑以及笔记本电脑等。
目前,触控技术包括互容式触控技术和自容式触控技术。随着显示尺寸的增大,采用互容式触控技术的产品中触控电极电容负载较高、触控电极接收到的噪音(noise)较严重、远端信号衰减程度较大等劣势逐渐显现。相比于互容式触控技术,采用自容式触控技术的产品电容负载、触控报点率、信噪比等性能有着明显的优势,因而自容式触控技术受到了越来越多的关注。
发明内容
一方面,提供一种触控层组。所述触控层组包括:基底层、设置于所述基底层上的多条有效触控走线和设置于所述基底层上的多个感测电极。至少一条所述有效触控走线的延伸方向平行于第一方向,且所述多条有效触控走线沿第二方向排列,所述第二方向与所述第一方向交叉;一感测电极与至少一条所述有效触控走线耦接;其中,所述感测电极包括沿所述第二方向排列的多条感测主线,至少一条所述感测主线的延伸方向平行于所述第一方向,且由多条第一感测线段和多条第二感测线段交替连接形成,至少一条所述第一感测线段平行于所述第一方向,至少一条所述第二感测线段倾斜于所述第一方向;所述感测电极还包括与一感测主线连接的多条第三感测线段,至少一条所述第三感测线段倾斜于所述第一方向,至少一条所述第三感测线段具有自由线端;所述多个感测电极包括:沿所述第一方向相邻的第一感测电极和第二感测电极,所述第一感测电极和所述第二感测电极中,同一延伸方向上的两条所述感测主线之间的断点位于其中一条所述感测主线一端的所述第二感测线段上。
在一些实施例中,至少一条所述第三感测线段平行于一条所述第二感测线段;至少一条所述有效触控走线包括至少一个耦接部,所述耦接部与一个所述感测电极电连接;除所述多个耦接部外,至少一条所述有效触控走线在所述基底层上的正投影与所述感测电极在所述基底层上的正投影无重叠区域。
在一些实施例中,所述多条第二感测线段包括多条第一斜向线段和多条第二斜向线段,所述第一方向沿顺时针到一条所述第一斜向线段的延伸方向的角度为锐角,所述第一方向沿顺时针到一条所述第二斜向线段的延伸方向的角度为钝角;所述第一感测电极和所述第二感测电极之间的多个断点中,一部分断点位于所述第一斜向线段上,另一部分断点位于所述第二斜向线段上。
在一些实施例中,所述第一感测电极和所述第二感测电极之间的多个断点,相间分布于所述第一斜向线段和所述第二斜向线段上。
在一些实施例中,所述多个感测电极还包括:沿所述第二方向与所述第一感测电极相邻的第三感测电极;所述第一感测电极中的边缘感测主线上设置有至少一个断点,所述至少一个断点将所述边缘感测主线分割成多条断线;所述多条断线中与所述第一感测电极不连接的至少一条断线与所述第三感测电极连接;其中,所述边缘感测主线为所述第一感测电极最靠近所述第三感测电极的感测主线。
在一些实施例中,所述至少一个断点均位于所述第一感测电极中的边缘感测主线的所述第二感测线段上。
在一些实施例中,设置有所述断点的所述第二感测线段的断面的上边沿和所述第二感测线段的延伸方向垂直,所述上边沿为断面边沿中远离所述衬底层的边沿。
在一些实施例中,所述感测电极和与所述感测电极耦接的至少一条所述有效触控走线异层设置;所述触控层组还包括设置于所述感测电极和所述有效触控走线之间的绝缘层;所述耦接部通过所述绝缘层上的至少一个过孔与所述感测电极耦接。
在一些实施例中,所述感测电极和与所述感测电极耦接的至少一条所述有效触控走线同层设置;所述耦接部通过架桥与所述感测电极耦接,所述架桥与所述感测电极之间设置有绝缘层。
在一些实施例中,至少一个所述感测电极中,相邻两条感测主线之间通过至少一个连接部连接,所述连接部由至少两条所述第三感测线段连接形成。
在一些实施例中,相邻两列的多个所述连接部在所述第二方向上的位置错开,所述列的方向平行于所述第一方向。
在一些实施例中,沿所述第二方向相邻排列的两条所述感测主线之间设置有至少两个所述连接部;至少两个所述连接部中,相邻的两个所述连接部之间设置有至少四条所述第一感测线段。
在一些实施例中,所述的触控层组还包括:与多条所述有效触控走线同层设置的多条虚拟触控走线,至少一条所述虚拟触控走线的延伸方向平行于所述第一方向,且所述至少一条虚拟触控走线沿第二方向排列,所述虚拟触控走线与所述有效触控走线的形状大致相同;一感测电极对应的各条有效触控走线和各条虚拟触控走线沿所述第二方向等间距分布。
在一些实施例中,至少一个所述感测电极具有一个第一区域,位于所述第一区域的各条所述有效触控走线与位于所述第一区域的多条所述感测主线交替排布;至少一个所述感测电极还具有两个第二区域,位于所述第二区域的至少一条所述虚拟触控走线与位于所述第一区域的多条所述感测主线交替排布;所述两个第二区域分别位于所述第一区域沿所述第二方向上的两侧。
在一些实施例中,一虚拟触控走线包括至少一条虚拟触控走线段;所述虚拟触控走线段与一个所述感测电极耦接。
在一些实施例中,至少一条所述虚拟触控走线段由多条第一触控线段和多条第二触控线段交替连接形成,至少一条所述第一触控线段平行于所述第一方向,至少一条所述第二触控线段倾斜于所述第一方向;所述多条第二触控线段包括多条第三斜向线段和多条第四斜向线段,多条第三斜向线段和多条第四斜向线段沿所述第一方向交替排列;所述第三斜向线段平行于所述第一斜向线段;所述第四斜向线段平行于所述第二斜向线段;所述第一感测电极和所述第二感测电极中,同一延伸方向上的两条所述虚拟触控走线段之间的多个断点中,一部分断点位于所述第三斜向线段上,另一部分断点位于所述第四斜向线段上。
在一些实施例中,所述多条虚拟触控走线段之间的多个断点交替位于所述第三斜向线段和所述第四斜向线段上。
在一些实施例中,设置有所述断点的所述第二触控线段的断面的上边沿和所述第二触控线段的延伸方向垂直,所述上边沿为断面边沿中远离所述衬底层的边沿。
在一些实施例中,所述的触控层组还包括:至少一条第四感测线段,所述第四感测线段垂直于与其连接的一条所述第一感测线段。
另一方面,提供一种触控显示装置,包括如前述任一实施例中所述的触控层组。
在一些实施例中,所述触控显示装置具有显示区;所述显示区包括多个亚像素区和用于界定所述多个亚像素区的像素界定区域;有效触控走线和感测电极均位于所述像素界定区域。
在一些实施例中,所述触控层组中的所述感测电极和穿过该所述感测电极的有效触控走线在所述基底层上的正投影构成多个网眼,一个亚像素区与一个所述网眼对应。
在一些实施例中,其中,沿所述第二方向相邻的两条感测主线之间间隔m个亚像素区;m≥1,m为正整数。
在一些实施例中,m=2。
在一些实施例中,所述触控显示装置为自发光显示装置;所述自发光显示装置包括显示用基板和用于封装所述显示用基板的封装层;所述封装层复用为所述触控层组的基底层。
附图说明
为了更清楚地说明本公开中的技术方案,下面将对本公开一些实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例的附图,对于本领域普通技术人员来讲,还可以根据这些附图获得其他的附图。此外,以下描述中的附图可以视作示意图,并非对本公开实施例所涉及的产品的实际尺寸、方法的实际流程、信号的实际时序等的限制。
图1为根据本公开的一些实施例的触控显示装置的结构图;
图2为根据本公开的一些实施例的触控显示装置的区域划分图;
图3A为根据本公开的一些实施例的触控显示装置的结构图;
图3B为根据本公开的另一些实施例的触控显示装置的结构图;
图3C为根据本公开的又一些实施例的触控显示装置的结构图;
图4A为根据本公开的再一些实施例的触控显示装置的结构图;
图4B为根据本公开的又一些实施例的触控显示装置的结构图;
图5为根据本公开的一些实施例的感测电极的结构图;
图6为根据本公开的一些实施例的感测主线的结构图;
图7为根据本公开的一些实施例的第一感测电极和第二感测电极结构图;
图8为根据本公开的又一些实施例的第一感测电极和第二感测电极结构图;
图9为根据本公开的一些实施例的第一感测电极和第三感测电极结构图;
图10为根据本公开的一些实施例的断点设置结构图;
图11为根据本公开的一些实施例的有效触控走线和感测电极耦接结构图;
图12为根据本公开的又一些实施例的有效触控走线和感测电极耦接结构 图;
图13为根据本公开的又一些实施例的有效触控走线和感测电极耦接结构图;
图14为根据本公开的一些实施例的连接部结构图;
图15为根据本公开的一些实施例的感测电极结构图;
图16为根据本公开的一些实施例的感测电极结构图;
图17为根据本公开的一些实施例的感测电极结构图;
图18为根据本公开的一些实施例的触控层组结构图;
图19为根据本公开的又一些实施例的触控层组结构图;
图20为根据本公开的一些实施例的感测电极结构图;
图21为根据本公开的一些实施例的触控显示装置结构图;
图22为根据本公开的一些实施例的像素结构图。
具体实施方式
下面将结合附图,对本公开一些实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开所提供的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本公开保护的范围。
除非上下文另有要求,否则,在整个说明书和权利要求书中,术语“包括(comprise)”及其其他形式例如第三人称单数形式“包括(comprises)”和现在分词形式“包括(comprising)”被解释为开放、包含的意思,即为“包含,但不限于”。在说明书的描述中,术语“一个实施例(one embodiment)”、“一些实施例(some embodiments)”、“示例性实施例(exemplary embodiments)”、“示例(example)”、“特定示例(specific example)”或“一些示例(some examples)”等旨在表明与该实施例或示例相关的特定特征、结构、材料或特性包括在本公开的至少一个实施例或示例中。上述术语的示意性表示不一定是指同一实施例或示例。此外,所述的特定特征、结构、材料或特点可以以任何适当方式包括在任何一个或多个实施例或示例中。
以下,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本公开实施例的描述中,除非另有说明,“多个”的含义是两个或两个以上。
在描述一些实施例时,可能使用了“耦接”和“连接”及其衍伸的表达。例如,描述一些实施例时可能使用了术语“连接”以表明两个或两个以上部 件彼此间有直接物理接触或电接触。又如,描述一些实施例时可能使用了术语“耦接”以表明两个或两个以上部件有直接物理接触或电接触。然而,术语“耦接”或“通信耦合(communicatively coupled)”也可能指两个或两个以上部件彼此间并无直接接触,但仍彼此协作或相互作用。这里所公开的实施例并不必然限制于本文内容。
“A、B和C中的至少一个”与“A、B或C中的至少一个”具有相同含义,均包括以下A、B和C的组合:仅A,仅B,仅C,A和B的组合,A和C的组合,B和C的组合,及A、B和C的组合。
“A和/或B”,包括以下三种组合:仅A,仅B,及A和B的组合。
如本文中所使用,根据上下文,术语“如果”任选地被解释为意思是“当……时”或“在……时”或“响应于确定”或“响应于检测到”。类似地,根据上下文,短语“如果确定……”或“如果检测到[所陈述的条件或事件]”任选地被解释为是指“在确定……时”或“响应于确定……”或“在检测到[所陈述的条件或事件]时”或“响应于检测到[所陈述的条件或事件]”。
本文中“适用于”或“被配置为”的使用意味着开放和包容性的语言,其不排除适用于或被配置为执行额外任务或步骤的设备。
另外,“基于”的使用意味着开放和包容性,因为“基于”一个或多个所述条件或值的过程、步骤、计算或其他动作在实践中可以基于额外条件或超出所述的值。
如本文所使用的如“约”、“大致”或“近似”等描述包括所阐述的值以及处于特定值的可接受偏差范围内的平均值,其中所述可接受偏差范围如由本领域普通技术人员考虑到正在讨论的测量以及与特定量的测量相关的误差(即,测量系统的局限性)所确定。
本文参照作为理想化示例性附图的剖视图和/或平面图描述了示例性实施方式。在附图中,为了清楚,放大了层和区域的厚度。因此,可设想到由于例如制造技术和/或公差引起的相对于附图的形状的变动。因此,示例性实施方式不应解释为局限于本文示出的区域的形状,而是包括因例如制造而引起的形状偏差。例如,示为矩形的蚀刻区域通常将具有弯曲的特征。因此,附图中所示的区域本质上是示意性的,且它们的形状并非旨在示出设备的区域的实际形状,并且并非旨在限制示例性实施方式的范围。
本公开的一些实施例提供了一种触控功能和图像显示功能兼具的触控显示装置,该触控显示装置可以包括但不限于手机、平板电脑、个人数字助理(personal digital assistant,PDA)、车载电脑等,本公开实施例对 触控显示装置的用途不作限制。
上述触控显示装置包括触控层组和显示面板。
在自容式触控技术的应用中,可以将用于实现触摸感测的多个膜层结构层叠设置形成触控层组,集成有触控层组的触控显示装置可实现触摸感测功能。参见图1,触控显示装置100具有触控感应区104,在触控感应区104内用户手指对触控显示装置100的触摸能够被感应到。触控层组包括基底层61和设置于基底层61上的多个感测电极62,基底层61用于承载多个感测电极62,感测电极62与地构成电容,即自电容。当手指触摸触控显示装置100的触控感应区104时,手指的电容将会叠加到感测电极62上,使感测电极62与地构成的电容发生变化。根据触摸前后多个感测电极62与地构成的电容值的变化量,便可以确定触摸点的坐标,实现触摸感测。感测电极62的图案为多条延伸方向不同的金属线连接形成的金属网格,行方向和列方向上相邻的两个感测电极62之间相互独立,即互不接触且不电连接。
如图1所示,触控显示装置100具有显示区101和位于显示区101至少一侧的周边区102,在触控显示装置中,显示区101与触控感应区的区域范围大致重合。例如,触控感应区可以与显示区101完全重合;又例如,触控感应区的区域范围可以大于显示区101,即显示区101的边沿均位于触控感应区的区域范围内,从而保证在显示区101的边界位置也能实现较好的触控效果。图1以周边区102包围显示区101为例进行示意。参见图2,由像素界定区域101b界定的多个亚像素101a设置于显示区101中。
其中,多个亚像素101a例如包括红色亚像素、绿色亚像素以及蓝色亚像素。亚像素101a的形状例如可以为矩形或如图13所示的六边形。
对于触控显示装置100的类型举例如下。触控显示装置100可以为液晶显示装置(liquid crystal display,简称LCD);触控显示装置100也可以为自发光显示装置。其中,自发光显示装置例如可以为有机电致发光显示装置(organic light-emitting diode,简称OLED)或量子点电致发光显示装置(quantum dot light emitting diodes,简称QLED)。
在触控显示装置100为液晶显示装置的情况下,液晶显示装置包括盖板玻璃、触控层组、液晶显示面板以及背光组件。背光组件用于为液晶显示面板提供背光。如图3A、图3B以及图3C所示,液晶显示面板1的主要结构包括阵列基板11、对盒基板12以及设置在阵列基板11和对盒基板12之间的液晶层13。
如图3A、图3B以及图3C所示,阵列基板11的每个亚像素101a均设置有位于第一衬底110上的薄膜晶体管111和像素电极112。如图3A所示,阵列基板11还包括设置在第一衬底110上的公共电极113。像素电极112和公共电极113可以设置在同一层,也可以设置在不同层。当像素电极112和公共电极113设置在同一层时,如图3A所示,像素电极112和公共电极113之间设置有第一绝缘层114。在公共电极113设置在晶体管111和像素电极112之间的情况下,如图3A所示,公共电极113与晶体管111之间还设置有第二绝缘层115。在另一些实施例中,对盒基板12包括设置在第二衬底120上的公共电极113。
如图3A、图3B以及图3C所示,对盒基板12包括第二衬底120以及设置在第二衬底120上的彩色滤光层121,在此情况下,对盒基板12也可以称为彩膜基板(color filter,简称CF)。其中,彩色滤光层121至少包括位于红色亚像素的红色光阻单元、位于绿色亚像素的绿色光阻单元以及位于蓝色亚像素的蓝色光阻单元。对盒基板12还包括设置在第二衬底120上的黑矩阵图案122,黑矩阵图案122用于将红色光阻单元、绿色光阻单元以及蓝色光阻单元间隔开。
如图3A、图3B以及图3C所示,液晶显示面板1还包括设置在对盒基板12远离液晶层13一侧的上偏光片14以及设置在阵列基板11远离液晶层13一侧的下偏光片15。
在一些实施例中,如图3A所示,触控层组6设置在液晶显示面板1外,即,设置在盖板玻璃2和上偏光片14之间,在此情况下,触控显示装置称为外挂式触控显示装置,此时,上偏光片14复用做触控层组6的基底层。在另一些实施例中,如图3B和图3C所示,触控层组6设置在液晶显示面板1内,在此情况下,触控显示装置称为内嵌式触控显示装置。在触控层组6设置在液晶显示面板1内的情况下,可以是如图3B所示,触控层组6设置在上偏光片14和对盒基板12之间,在此情况下,触控显示装置称为外置式(on cell)触控显示装置,此时,对盒基板12复用做触控层组6的基底层。也可以是如图3C所示,触控层组6设置在第一衬底110和第二衬底120之间,例如设置在第一衬底110上,在此情况下,触控显示装置称为嵌入式(in cell)触控显示装置,此时,阵列基板11复用做触控层组6的基底层。
在触控显示装置100为自发光显示装置的情况下,如图4A和图4B 所示,自发光显示装置的主要结构包括依次设置的自发光显示面板3、触控层组6、偏光片4、第一光学胶(optically clear adhesive,简称OCA)5和盖板玻璃2。
其中,自发光显示面板3包括显示用基板31和用于封装显示用基板31的封装层32。此处,封装层32可以为封装薄膜,也可以为封装基板。
如图4A和图4B所示,上述的显示用基板31在每个亚像素101a包括设置在第三衬底310上的发光器件和像素驱动电路,像素驱动电路包括多个晶体管111。发光器件包括第一电极311、发光功能层312以及第二电极313,第一电极311和作为驱动晶体管的晶体管111的漏极电连接。显示用基板31还包括像素界定层(pixel definition layer,简称PDL)314,像素界定层314包括多个开口区,一个发光器件设置在一个开口区中。
在一些实施例中,上述发光功能层312包括发光层。在另一些实施例中,上述发光功能层312除包括发光层外,还包括电子传输层(election transporting layer,简称ETL)、电子注入层(election injection layer,简称EIL)、空穴传输层(hole transporting layer,简称HTL)以及空穴注入层(hole injection layer,简称HIL)中的一层或多层。
如图4A所示,显示用基板31还包括设置在晶体管111和第一电极311之间的平坦层315。
本领域技术人员应该明白,在触控显示装置100为自发光显示装置的情况下,触控显示装置100更容易制作成柔性显示装置,此时,第三衬底310为柔性衬底。
在触控显示装置100为自发光显示装置的情况下,在一些实施例中,如图4A所示,触控层组6直接设置在封装层32上,即,触控层组6和封装层32之间不设置其它膜层,封装层32复用为触控层组6的基底层。在另一些实施例中,如图4B所示,触控层组6设置在基板7上,基板7通过第二光学胶8贴附在封装层32上,基板7复用做触控层组6的基底层。此处,如图4A所示,在触控层组6直接设置在封装层32上的情况下,触控显示装置100的厚度较小,有利于实现轻薄化。
本公开实施例还提供一种触控层组,可以应用于上述的触控显示装置100中。当然,该触控层组也可以应用于其它的触控装置中。
示例性地,参见图1,触控层组6还包括设置于基底层61上的多条有效触控走线63。至少部分(也可以是全部)上述多条有效触控走线63中,至少 一条(例如,可以是每条)有效触控走线63的延伸方向平行于第一方向,且多条有效触控走线63沿第二方向排列,第二方向与第一方向交叉。有效触控走线63被配置为传输感测信号,每条有效触控走线63与一个感测电极62耦接。具体的,如图5所示,第一方向为Y方向,第二方向为X方向,第一方向与第二方向垂直。对有效触控走线63的形状不做过多限制,有效触控走线63可以为平行于Y方向的直线,也可以为包括多个弯折点的弯折线,弯折线的延伸方向平行于Y方向,即弯折线的起点和终点的连线平行于Y方向。
至少一个(例如,可以是每个)感测电极62与至少一条有效触控走线63耦接。示例性地,至少部分(也可以是全部)上述多个感测电极62中,每个感测电极62可以仅与一条有效触控走线63耦接,也可以与多条有效触控走线63耦接,对此不做过多限制。当每个感测电极62与多条有效触控走线63耦接时,多条有效触控走线63并联,等效电阻值较小,对感测信号的电位产生的影响也较小,有利于提高感测结果的准确性。在本公开的记载中,为了表述的清晰简明,以每个感测电极62与一条有效触控走线63耦接为例进行说明。
在触控层组6中,参见图5,每个感测电极62包括沿第二方向排列的多条感测主线621,至少一条(例如,可以是每条)感测主线621的延伸方向平行于第一方向,且由多条第一感测线段621a和多条第二感测线段621b交替连接形成,至少一条(例如,可以是每条)第一感测线段621a平行于第一方向,至少一条(例如,可以是每条)第二感测线段621b倾斜于第一方向。具体的,交替连接可以是一条第一感测线段621a和与其一端连接的多条第二感测线段621b沿第一方向重复分布,也可以是一条第一感测线段621a和与其两端分别连接的至少两条(例如,可以是多条)第二感测线段621b沿第一方向重复分布,位于第一感测线段621a两端的第二感测线段621b排布方式不同。示例性地,参见图5,感测主线621的延伸方向平行于Y方向,第一感测线段621a为沿Y方向延伸的直线段,第二感测线段621b为不沿Y方向延伸的斜向线段,第二感测线段621b的延伸方向与第一感测线段621a的延伸方向之间存在夹角,该夹角为钝角。当然,该夹角也可以为锐角,对此不做限制。由多条第一感测线段621a和多条第二感测线段621b交替连接形成的感测主线621有多种连接方式。
感测主线有多种设置方式。例如,参见图6中的(a),每条感测主线621包括交替连接的多条第一感测线段621a和多条第二感测线段621b,除感测主线621的线端处外,每条第一感测线段621a的两端分别与一条第二感测线段 621b耦接,同时每条第二感测线段621b的两端分别与一条第一感测线段621a耦接。又例如,参见图6中的(b),除感测主线621的线端处外,每条第一感测线段621a的两端分别与两条第二感测线段621b耦接,同时每条第二感测线段621b的两端分别与一条第一感测线段621a耦接。再例如,参见图6中的(c),除感测主线621的线端处外,每条第一感测线段621a的两端分别与一条第二感测线段621b耦接,感测主线621中部分第二感测线段621b的一端与一条第一感测线段621a耦接同时另一端与一条第二感测线段621b耦接,感测主线621中的其他第二感测线段621b的两端分别与两条第二感测线段621b耦接。还例如,参见图6中的(d),除感测主线621的线端处外,每条第一感测线段621a的两端分别与一条第二感测线段621b耦接,每条第二感测线段621b的一端与一条第一感测线段621a耦接,另一端与一条第二感测线段621b耦接。感测主线621还可以为其他设置方式,对此不做过多限制。
参见图5,每个感测电极62还包括与至少一条(例如,可以是每条)感测主线621连接的多条第三感测线段622,至少一条(例如,可以是每条)第三线段622倾斜于所述第一方向。示例性地,第三感测线段622为不沿Y方向延伸的斜向线段,第三感测线段622的延伸方向与Y方向之间存在夹角,该夹角为钝角。当然,该夹角也可以为锐角,对此不做限制。
示例性地,参见图5,每条感测主线621中的第一感测线段621a的一端除了与第二感测线段621b连接外,还与至少一条(例如,可以是一条,也可以是两条,对此不做限制)第三感测线段622连接,与同一条第一感测线段621a的一端连接的第二感测线段621b和第三感测线段622位于第一感测线段621a的不同侧。多条第三感测线段622与感测主线621的连接设置能够使感测电极62内部的感测面积扩大,具有更高的触控感应量,有利于提升触控感应效果。例如,感测主线621中的部分第一感测线段621a的一端与一条第二感测线段621b连接,还与两条第三感测线段622连接,且第二感测线段621b位于第一感测线段621a的一侧,两条第三感测线段622位于第一感测线段621a的另一侧。第一感测线段621a的另一端同样与一条第二感测线段621b和两条第三感测线段622连接,与第一感测线段621a的不同端连接的第三感测线段622分别位于第一感测线段621a的两侧。又例如,继续参见图5,感测主线621中的部分第一感测线段621a的一端与两条第二感测线段621b连接,还与一条第三感测线段622连接,两条第二感测线段621b位于第一感测线段621a的一侧,第三感测线段622位于第一感测线段621a的另一侧。第一 感测线段621a的另一端同样与两条第二感测线段621b和一条第三感测线段622连接,与第一感测线段621a的不同端连接的第三感测线段622分别位于第一感测线段621a的两侧。
参见图5,上述的感测电极62中,其中,多条第三感测线段622中的至少一条(例如,可以是多条)具有自由线端。自由线端即为与其他线端互不接触的线端。例如,部分第三感测线段622的一端与一条感测主线621连接,另一端与其他线端保持相互独立。
参见图7,多个感测电极62包括沿第一方向相邻的第一感测电极62A和第二感测电极62B,第一感测电极62A和第二感测电极62B中,同一延伸方向上的两条感测主线621之间的断点位于其中一条感测主线621一端的第二感测线段621b上。示例性地,在Y方向上任意相邻的两个感测电极62依次为第一感测电极62A和第二感测电极62B,第一感测电极62A所包括的每条感测主线621在第二感测电极62B中均有一条对应的感测主线621与其延伸方向为同一延伸方向。参见前述内容,延伸方向为同一延伸方向的多条感测主线621可以在一条延伸方向与Y方向平行且穿过沿Y方向排布的多个感测电极62的金属线上设置多个断点得到,同理,穿过第一感测电极62A和第二感测电极62B的多条金属线被多个断点划分为分别属于相邻两个感测电极62的多条感测主线621。上述断点可以位于第一感测电极62A中感测主线621靠近第二感测电极62B一端的第二感测线段621b上,或者位于第二感测电极62B中感测主线621靠近第一感测电极62A一端的第二感测线段621b上,只要位于倾斜的第二感测线段621b的线端处即可。
多条感测主线621及与多条感测主线621连接的多条第三感测线段622所限定的范围为感测电极62的感测范围,每条设置有断点的感测主线621具有两个线端,多条感测主线621具有多个线端,靠近感测主线621线端的多条第三感测线段622和多个线端所限定的位置为感测电极62的边界位置。感测电极62在其边界位置处也具有多个自由线端,每个自由线端为一个第二感测线段621b的一端。
由于金属线具有一定的厚度,同时受制于现有工艺水平,所形成金属线的侧面为坡面,金属线设置断点得到的多条金属线段的侧面也为坡面。当处于亮度较高的环境中时,金属线段的侧面会对光线进行反射,反光强度与金属线段的侧面长度有关,金属线段的侧面长度越长,反光面积越大,反光强度越强,反之则越弱。设置有断点的金属线段的侧面长度小于未设置断点的金属线段的侧面长度,相应的反光强度也比未设置断点的金属线段的侧面弱。 当设置有断点的金属线段和未设置断点的金属线段同时存在时,其金属线段的侧面长度差异导致出现反光强度差异,当从垂直于该金属线段侧面的方向看向触控显示装置时,该反光强度差异可被用户视觉上感受到,表现为显示mura,影响触控显示装置的显示效果。将能够观察到金属线侧面反光、垂直于金属线段反光侧面的角度称为可视角度。
参见图7,具有自由线端的多条第三感测线段622可以看做是在第三感测线段622的一端设置了断点使得第三感测线段622与其他线端相互独立得到的。结合上述,参见图7,在本公开的实施例中,断点均设置于倾斜于第一方向的斜向金属线段上,而平行于第一方向的第一感测线段621a上不设置断点,这样只存在垂直于斜向金属线段(也即倾斜于第一方向)的可视角度,不会新增因断点设置在第一感测线段621a上而出现的垂直于第一方向的可视角度,从而能在通过第三感测线段622实现感测面积增大的前提下,尽可能避免新增反光强度差异的可视角度,以降低可视化风险。
示例性地,至少一条(例如,可以是每条)第三感测线段622平行于一条第二感测线段621b。例如,参见图7,部分第一感测线段621a的每个线端均与一条第二感测线段621b和一条第三感测线段622连接,与同一个线端连接的一条第二感测线段621b和一条第三感测线段622位于该第一感测线段621a的两侧,且与一个线端连接的一条第三感测线段622和与另一个线端连接的一条第二感测线段621b相平行。
示例性地,参见图7,一条(例如每条)有效触控走线63包括至少一个(例如,可以是一个或多个)耦接部631,至少一个(例如每个)耦接部631与一个感测电极62电连接。除至少一个耦接部631外,该有效触控走线63在基底层61上的正投影与各个感测电极62在基底层61上的正投影无重叠区域。例如,参见图1,一条有效触控走线63依次穿过多个感测电极62(例如,一列感测电极62,以一列设置四个感测电极62为例),四个感测电极62中仅有一个感测电极62与该有效触控走线63耦接,其他感测电极62并不与该有效触控走线63电连接。由于一条有效触控走线63仅与一个感测电极62电连接,因而有效触控走线63所包括的至少一个(例如,可以是一个或多个)耦接部631在基底层61上的正投影位于与该有效触控走线63耦接的感测电极62所限定范围在基底层61上的正投影内。被该有效触控走线63穿过但不与其耦接的多个感测电极62与该有效触控走线63在基底层61上的正投影不存在重叠区域。
耦接部631为有效触控走线63的一部分,对耦接部631的形状不做过多 限定,例如,耦接部631在基底层61上的正投影可以仅与多条第三感测线段622中的任意一条的至少部分(例如可以仅为线端部分,也可以为整条第三感测线段)在基底层61上的正投影重叠。具体的,参见图7,耦接部631在基底层61上的正投影与一条第三感测线段622在基底层61上的正投影重叠。
当不与有效触控走线63电连接的感测电极62在基底层61上的正投影与该有效触控走线63在基底层61上的正投影存在重叠区域时,具有重叠区域的各个金属线段之间会产生耦合电容,即寄生电容。寄生电容的存在会增大感测电极62的电容负载,不利于触控报点率和信噪比的提升。而本公开实施例中,不与有效触控走线63耦接的感测电极62在基底层61上的正投影与有效触控走线63在基底层61上的正投影无重叠区域,能够降低感测电极62的电容负载,从而能够避免出现上述问题。同时,由于每条有效触控走线63与一个感测电极62耦接,因此即使该有效触控走线63的耦接部631和与其耦接的感测电极62在基底层61上的正投影有重叠区域,有效触控走线63和该感测电极62之间也不会产生耦合电容。
参见图7,可以理解的是,由于有效触控走线63的延伸方向与感测主线621的延伸方向相同,有效触控走线63的延伸方向与第三感测线段622的延伸方向不同,为了保证感测电极62的感测面积以及布线的合理性,需要使有效触控走线63与感测主线621的位置在第二方向上错开,从而使得感测主线621在感测电极62中的分布区域尽可能大的同时,避免有效触控走线63与感测主线621在基底层61上的正投影存在重叠区域。进一步的,为了使感测电极62的感测面积尽可能大,在考虑工艺允许误差(overlay)的情况下,应尽可能保留第三感测线段622,也即具有自由线端的第三感测线段622的端点处具有避让设计,该避让设计可使第三感测线段622的端点距离有效触控走线63尽可能小,同时又能避免有效触控走线63与第三感测线段622在基底层61上的正投影存在重叠区域。
具体的,参见图7,延伸方向相同的第三感测线段622包括一端为自由线端的第一类第三感测线段622a和两端均不为自由线端的第二类第三感测线段622b,第一类第三感测线段622a的长度为d1,第二类第三感测线段622b的长度为d2。具体的,第一类第三感测线段622a的一端为自由线端,即第一类第三感测线段622a的一端为了避免与有效触控走线63在基底层61上的正投影存在重叠区域而存在避让设计,因此第一类第三感测线段622a的长度为d1小于第二类第三感测线段622b的长度d2。继续参见图7,为了使感测面积尽可能大,应尽可能多地设置第一类第三感测线段622a,因此第一类第三感测 线段622a的数量远多于第二类第三感测线段622b的数量。
参见图7,相邻的两个感测电极62的金属线间的断点均设置在感测电极62感测主线621的第二感测线段621b端部。由于断点的存在,设置有断点的第二感测线段621b相比于未设置断点的第二感测线段621b长度会减小,减小的长度为s1。存在避让设计的第一类第三感测线段622a第三感测线段622相比于不存在避让设计的第二类第三感测线段622b第三感测线段622长度也会减小,减小的长度为s2,s2=d2-d1。
由于避让设计要尽可能保留第一类第三感测线段622a,而断点的设置需要保证相邻的两个感测电极62的感测主线621完全相互独立,因此断点对长度的减小幅度大于避让设计对长度的减小幅度,也即s1>s2。同理,对第一感测线段621a而言,若在第一感测电极62A感测电极62和第二感测电极62B感测电极62中,同一延伸方向上的两条感测主线621之间的断点位于其中一条感测主线621一端的第一感测线段621a上,那么未设置断点的第一感测线段621a与设置有断点的第一感测线段621a的长度之差为s1。
继续参见图7,结合前述内容,由于每条第三感测线段622与一条第二感测线段621b相平行,因此第三感测线段622侧面反光的可视角度与第二感测线段621b侧面反光的可视角度相同,为第一可视角度;第一感测线段621a侧面反光的可视角度与第二感测线段621b和第三感测线段622的可视角度不同,第一感测线段621a侧面反光的可视角度为第二可视角度。在第一可视角度下,设置有断点的第二感测线段621b和第一可视角度下多条未设置断点的第二感测线段621b之间的长度差异为s1,由于第一类第三感测线段622a的数量远多于第二类第三感测线段622b的数量,因此设置有断点的第二感测线段621b和在第一可视角度下与其平行的多条第三感测线段622的长度差异可以视作设置有断点的第二感测线段621b和在第一可视角度下与其平行的多条第一类第三感测线段622a的长度差异,为s1-s2。而在第二可视角度下,长度差异为s1,显然,s1>s1-s2。可见在感测电极62中,第一可视角度下的总长度差异更小,也即金属线段的侧面总长度差异更小,相应的由于金属线段的侧面长度差异导致的反光强度差异也就更小,从而能够避免显示mura的存在,使得触控显示装置实现更好的显示效果。
示例性地,在触控层组中,多条第二感测线段621b包括多条第一斜向线段L1和多条第二斜向线段L2,第一方向沿顺时针到一条第一斜向线段L1的延伸方向的角度为锐角,第一方向沿顺时针到一条第二斜向线段L2的延伸方向的角度为钝角。例如,参见图7,倾斜于第一方向的第二感测线段621b可 划分为第一斜向线段L1和第二斜向线段L2,第一斜向线段L1和第二斜向线段L2的倾斜方向即延伸方向不同,与一条第一感测线段621a连接的一条第一斜向线段L1和一条第二斜向线段L2均位于该第一感测线段621a的同一侧,且分别位于该第一感测线段621a的两端。在符合上述对第一斜向线段L1和第二斜向线段L2限制的情况下,多条第一斜向线段L1的延伸方向可以相同,也可以不同,多条第二斜向线段L2的延伸方向可以相同,也可以不同,对此不作过多限制。
第一感测电极62A和第二感测电极62B之间的多个断点中,一部分断点位于第一斜向线段L1上,另一部分断点位于第二斜向线段L2上。具体的,参见图7,除感测主线621的线端处以外,每条第一感测线段621a的一端与至少一条(例如,可以是一条)第一斜向线段L1连接,另一端与至少一条(例如,可以是一条)第二斜向线段L2连接。由于第一斜向线段L1和第二斜向线段L2的延伸方向不同,其可视角度也不相同,将第一感测电极62A和第二感测电极62B之间的多个断点分散地设置在第一斜向线段L1和第二斜向线段L2上,在一个可视角度下只有部分断点会导致产生可视化风险,其余断点并不会对该可视角度下的显示效果造成影响,相当于减小了总长度差异,从而能够降低反光强度差异所导致的可视化风险,有利于显示效果的提升。
示例性地,在触控层组中,第一感测电极62A和第二感测电极62B之间的多个断点,相间分布于第一斜向线段L1和第二斜向线段L2上。例如,参见图8,沿第二方向相邻的两条感测主线621上的断点相间分布在在延伸方向不同的第一斜向线段L1和第二斜向线段L2上,即在X方向上任意相邻的两条感测主线621中,一条感测主线621的断点设置在第一斜向线段L1上,另一条感测主线621的断点设置在第二斜向线段L2上。当感测主线621的总数为n、n为偶数时,在一行感测电极62的边界位置处断点的总数也为n,n/2个断点分布在沿一个延伸方向延伸的第一斜向线段L1上,其余n/2个断点分布在沿另一个延伸方向延伸的第二斜向线段L2上。将断点交替设置在沿不同方向延伸的第二感测线段621b上,在一个可视角度下只有n/2个存在可视化风险的断点,断点的密度减小,多个断点的分布更加分散,从而能够进一步降低可视化风险,有利于显示效果的提升。如上所述,当感测主线621的总数为n、n为奇数时,在沿其中一个延伸方向延伸的第二感测线段621b上均匀分布有(n-1)/2或(n+1)/2个断点,同样存在上述的有益效果,在此不再赘述。
示例性地,参见图9,上述的触控层组还包括沿第二方向与第一感测电极 62A相邻的第三感测电极62C。第一感测电极62A中的边缘感测主线上设置有至少一个断点,至少一个断点将边缘感测主线分割成多条断线,多条断线中与第一感测电极62A不连接的至少一条断线与第三感测电极62C连接。其中,边缘感测主线621为第一感测电极62A最靠近第三感测电极62C的一条感测主线621,至少一个断点(例如,可以是三个)均位于第一感测电极62A中的边缘感测主线的第二感测线段621b上。例如,在X方向上任意相邻的两个感测电极62依次为第一感测电极62A和第三感测电极62C。第一感测电极62A的多条感测主线621中最靠近的第三感测电极62C的一条为边缘感测主线,该边缘感测主线621上设置有至少一个(例如,可以是两个)断点,将完整的边缘感测主线621划分为三条断线,其中两条断线与第一感测电极62A耦接,另一条断线与第三感测电极62C耦接,使得第一感测电极62A和第三感测电极62C的边界相啮合,当边界区域存在触摸位置时,该触摸位置可被第一感测电极62A和第三感测电极62C感测到,具有较大的触控感应量,能够提升感测效果。断点位于第二感测线段621b上,能够避免新增可视角度,从而能够在提升感测效果的同时,避免增大可视化风险。
示例性地,参见图10,设置有第一断点的第二感测线段621b的断面的上边沿TL在基底层61上的正投影和与第一断点对应的第二感测线段621b在基底层61上的正投影垂直,上边沿TL即为断面边沿中远离基底层的边沿。具体的,应该在工艺水平能够实现的情况下,尽可能地使设置有第一断点的第二感测线段621b的断面的上边沿TL在基底层61上的正投影和与第一断点对应的第二感测线段621b在基底层61上的正投影相垂直,而由于工艺水平限制,两者之间的夹角在85°~95°的数值区间内时,即可视为二者垂直。第二感测线段621b的断面的上边沿TL与下边沿BL平行,下边沿BL和第二感测线段621b在基底层61上的正投影也垂直。受制于现有的工艺水平,在形成断点时,尖角线端(金属线的断面边沿在基底层61上的正投影与金属线的延伸方向的夹角为锐角)处的尖角会形成圆角(金属线的断面边沿在基底层61上的正投影为弧线),导致实际形成的线端形状与设计的线端形状存在较大差异。而直角线端(金属线的断面边沿在基底层61上的正投影与金属线的延伸方向的夹角为直角)处的直角经过实际的刻蚀工艺形成的线端形状与设计的线端形状差异较小,更符合工艺要求。同时,尖角线端处容易出现尖端放电,而将线段设置为直角线端能够防止尖端放电的发生,避免对触控显示装置造成损坏,保证触控显示装置的使用寿命。
示例性地,每个感测电极62和与该感测电极62耦接的至少一条有效触 控走线63异层设置,触控层组还包括设置于感测电极62和有效触控走线63之间的绝缘层65,每个耦接部631通过绝缘层65上的至少一个过孔h与感测电极62耦接。参见图11,每个感测电极62上设置有一条与其耦接的有效触控走线63,该有效触控走线63的耦接部631通过两个过孔h与感测电极62的两条感测主线621耦接。具体的,不对感测电极62和有效触控走线63的相对位置做过多限制,例如,参见图11,可以是感测电极62相对于有效触控走线63更靠近基底层61,又例如,参见图12,也可以是有效触控走线63相对于感测电极62更靠近基底层61,使得感测电极62远离显示面板中控制图像显示的驱动电路,从而避免感测电极62受到其他电信号的干扰,影响感测效果。感测电极62和有效触控走线63不同层设置,同时在感测电极62和有效触控走线63之间设置有绝缘层65,能够防止在制备工艺过程中感测电极62所包括的多条第三感测线段622和不与该感测电极62耦接的有效触控走线63相连接。
示例性地,绝缘层65的材料例如可以是氮化硅、氧化硅或氮氧化硅中的至少一种,对此不做限制。
以感测电极62相对于有效触控走线63更靠近基底层61为例,继续参见图11,每个耦接部631通过绝缘层65上的多个过孔h与感测电极62耦接。由于过孔处电阻较大,在感测电极62和有效触控走线63通过绝缘层65上的多个过孔h实现耦接情况下,多个过孔的连接关系为并联,因而当过孔数量增加时,过孔处的总电阻会减小,通过多个过孔进行耦接能够保证感测电极62和有效触控走线63有更好的导通性,且提高了连接可靠性。
又示例地,参见图13,每个感测电极62和与感测电极62耦接的至少一条有效触控走线63同层设置,每个耦接部631通过架桥的方式与感测电极62耦接,架桥与感测电极62之间设置有绝缘层65。即有效触控走线63和感测电极62均设置在基底层61上,由基底层61承载。有效触控走线63和感测电极62可以采用同种材料,在同一工艺步骤中形成。此处,可以是有效触控走线63和感测电极62相对于架桥靠近基底层61,也可以是架桥相对于有效触控走线63和感测电极62靠近基底层61。将有效触控走线63和感测电极62设置在同一层,可以减少感测电极62和有效触控走线63因位于不同层存在高度差引起的反光强度不同而导致的可视化。
为了便于描述,以下以有效触控走线63和感测电极62不同层设置为例,继续对本公开的内容进行说明。
示例性地,参见图14,至少一个(例如,可以是每个)感测电极62中, 相邻两条感测主线621之间通过至少一个连接部64连接,每个连接部64由至少两条第三感测线段622连接形成。感测电极62中的多条感测主线621相互独立,与感测电极62连接的具有自由线端的多条第三感测线段622只能增大单条感测主线621的感测面积,而感测电极62的感测面积由与有效触控走线63耦接的多条感测主线621所决定,感测电极62中不与有效触控走线63耦接的感测主线621并不能起到触摸感测的作用。因而要增大感测电极62的感测面积,需要使感测电极62中的多条感测主线621耦接,这样,只要有一条感测主线621或者与该感测主线621相连接的一条第三感测线段622和有效触控走线63耦接,感测电极62中相连接的多条感测主线621均可用于实现触摸感测。因此可通过多条第三感测线段622实现感测电极62中相互独立的多条感测主线621的连接,连接相邻两条感测主线621的多条第三感测线段622形成一个连接部64,相邻两条感测主线621之间可以设置多个连接部64,从而使感测电极62内部的多条感测主线621有更好的导通性,且可以提高连接可靠性。例如,参见图14,通过设置在相邻两条感测主线621之间的三条或四条第三感测线段622将这两条感测主线621连接起来,相邻两条感测主线621之间设置有两个连接部64。
示例性地,参见图14,相邻两列的至少一个连接部64在第二方向上的位置错开,列的方向平行于第一方向。感测主线621的延伸方向平行于第一方向,相应的,用于实现一条感测主线621与其他感测主线621耦接的多个连接部64也沿第一方向排列,一列连接部64即为设置两条感测主线621之间的多个连接部64,类似的,一行连接部64即为沿第二方向排列的多个连接部64。为了避免连接部64集中分布导致的可视化风险提升,需要使连接部64尽可能地均匀分布在感测电极62所限定的范围内,因而沿第一方向排列、与同一条感测主线621耦接且位于感测主线621两侧的两个连接部64之间间隔有至少一条第一感测线段621a,同时,相邻两列的至少一个连接部64在第二方向上的位置错开,即同一行的多个连接部64中,相邻两个连接部64之间间隔有至少两条感测主线621。具体的,沿第二方向相邻排列的两条感测主线621之间设置有至少两个连接部64,至少两个连接部64沿第一方向等间距分布,相邻的两个连接部64之间设置有至少四条第一感测线段621a。例如,参见图14,沿X方向相邻排列的两条感测主线621之间设置四个连接部64,四个连接部64沿Y方向等间距分布,相邻的两个连接部64之间设置有四条第一感测线段621a。沿Y方向排列、与同一条感测主线621耦接且位于感测主线621两侧的两个连接部64之间设置有至少一条第一感测线段621a,同一行 中相邻两个连接部64之间间隔有两条感测主线621。上述设置能够保证感测电极62中的多条感测主线621实现可靠电连接,具有最大的感测面积及触控感应量,同时能够保证连接部64在感测电极62所限定范围内均匀分布,从而将连接部64的可视化风险降到最低,最大程度地保障显示效果。
示例性地,参见图15,触控层组还包括与多条所示有效触控走线63同层设置的至少一条虚拟触控走线66,至少一条()虚拟触控走线66的延伸方向平行于第一方向,且至少一条虚拟触控走线66沿第二方向排列。虚拟触控走线66与有效触控走线63的形状大致相同,至少一个(例如,可以是每个)感测电极62对应的各条有效触控走线63和各条虚拟触控走线66沿第二方向等间距分布。即在该层中,沿第二方向相邻的任意两条金属线之间的间距均相等,相邻的两条金属线可以一条为有效触控走线63,一条为虚拟触控走线66;也可以为两条有效触控走线63,还可以为两条虚拟触控走线66。在每个感测电极62所限定的范围内设置有多条有效触控走线63,多条有效触控走线63可以集中设置,也可以分散设置在感测电极62所限定的范围内,有效触控走线63的分布范围小于感测电极62所限定的范围。当多条有效触控走线63集中设置时,设置有效触控走线63的区域会对光线进行反射,而同一层中未设置有效触控走线63的区域不会对光线进行反射,从而产生显示mura,对触控显示装置的显示效果造成不良影响。而当多条有效触控走线63分散设置时,有效触控走线63之间的间距较大,也存在较大的反光强度差异,具有较高的可视化风险。因此参见图15,可与多条有效触控走线63同层设置多条虚拟触控走线66,每条虚拟触控走线66穿过沿Y方向排布的多个感测电极62。虚拟触控走线66不用于传输感测信号,因而在一些示例中,虚拟触控走线66不与任何感测电极62耦接。每条虚拟触控走线66的形状与有效触控走线63大致相同,也即虚拟触控走线66的形状与有效触控走线63相似,这样能够保证虚拟触控走线66与有效触控走线63的可视角度相同,增设虚拟触控走线66不会出现新增可视角度,避免提升可视化风险。多条虚拟触控走线66和多条有效触控走线63同层设置,多条虚拟触控走线66和多条有效触控走线63等间距分布,即对任意一条有效触控走线63而言,沿第二方向与其相邻的能够使得在感测电极62所限定的范围内金属线(即多条虚拟触控走线66和多条有效触控走线63)的数量增多,密度增大,金属线间的间距减小,从而降低因间距过大或金属线集中设置而导致的显示mura,提升显示效果。
示例性地,参见图16,在触控层组中,至少一个(例如,可以是每个)感测电极62具有一个第一区域601,位于第一区域601的各条有效触控走线 63与位于第一区域601的多条感测主线621交替排布。即在第一区域601中,任意相邻的两条有效触控走线63之间设置的感测主线621的条数相等。例如,参见图16,第一区域601为感测电极62所限定的区域,即穿过该感测电极62的有效触控走线63在整个感测电极62上都分布,且有效触控走线63在X方向上任意相邻的两条有效触控走线63之间间隔的感测主线621的数量相等,均为x条,x≥1,具体的,x=1。
又例如,参见图17,第一区域601为感测电极62所限定的区域中的部分区域。在此情况下,至少一个(例如,可以是每个)感测电极62还具有两个第二区域602,位于第二区域602的至少一条虚拟触控走线66与位于第一区域601的多条感测主线621交替排布。即在第二区域602中,任意相邻的两条虚拟触控走线66之间设置的感测主线621的条数均相等,且与任意相邻的两条有效触控走线63之间设置的感测主线621的条数一致。两个第二区域602分别位于第一区域601沿第二方向上的两侧。此时,有效触控走线63仅在第一区域601排布,在第二区域602不设置,同样的,虚拟触控走线66仅在第二区域602排布,在第一区域601不设置,在X方向上相邻的任意两条金属线(即虚拟触控走线66和/或有效触控走线63)之间间隔的感测主线621的数量相等,均为一条。多条有效触控走线63在感测电极62所限定的区域内尽可能居中设置,使得距有效触控走线63较远的感测电极62边界处的电容变化量更大,从而实现更好的感测效果。
示例性地,至少一条(例如,可以是每条)虚拟触控走线66包括至少一条(例如,可以是多条)虚拟触控走线段661,每条虚拟触控走线段661与一个感测电极62耦接。例如,参见图18,穿过多个感测电极62的虚拟触控走线66被多个断点划分为多条虚拟触控走线段661,每条虚拟触控走线段661与其穿过的感测电极62耦接。对虚拟触控走线段661与感测电极62的具体耦接方式不做过多限制,可以通过至少一个(例如,可以是多个)过孔耦接,当然也可以是其他方式。在此情况下,虚拟触控走线段661相当于感测电极62的一部分。虚拟触控走线段661与感测电极62耦接,可以增加感测电极62的面积,提升触控时的感应量。同时,由于每条虚拟触控走线段661与一个感测电极62耦接,因此即使该虚拟触控走线段661和与其耦接的感测电极62在基底层61上的正投影有重叠区域,该虚拟触控走线段661和感测电极62之间也不会产生耦合电容。
示例性地,多条有效触控走线63的长度可以大致相同,也可以不同。例如,参见图4,每条有效触控走线63均穿过显示区中沿Y方向排列的一列感 测电极62,多条有效触控走线63的长度大致相同,其等效电阻值也大致相等,对感测信号的电位产生的影响也基本一致,从而能够等效为消除了走线长度会对感测信号的产生不良影响,有利于提高感测结果的准确性。在每个感测电极62限定的范围内设置的有效触控走线63的条数不小于该列感测电极62的个数,从而保证每个感测电极62能与至少一条有效触控走线63耦接。此外,在每个感测电极62限定的范围内还可以包括与有效触控走线63同层设置至少一条(例如,可以是一条)虚拟触控走线66,用于降低该层金属线的可视化风险。每条虚拟触控走线66划分为多条与感测电极62耦接的虚拟触控走线66段,增加感测电极62的面积。
又例如,参见图19,多条有效触控走线63的长度不同,沿X方向排列的多条有效触控走线63沿Y方向穿过的感测电极62的个数不同,每条有效触控走线63的一端位于显示区的边缘区域,另一端设置在与其耦接的感测电极62限定的范围内。同时,还可以包括与有效触控走线63同层设置至少一条(例如,可以是多条)虚拟触控走线66,多条虚拟触控走线66的长度不同,每条虚拟触控走线66划分为多条与感测电极62耦接的虚拟触控走线66段,能够增加感测电极62的面积。在每个感测电极62限定的范围内有效触控走线63的条数与虚拟触控走线66段的条数之和不小于该列感测电极62的个数,从而降低该层金属线的可视化风险。
示例性地,至少一条(例如,可以是每条)虚拟触控走线66由多条第一触控线段661a和多条第二触控线段661b交替连接形成,至少一条(例如,可以是每条)第一触控线段661a平行于第一方向,至少一条(例如,可以是每条)第二触控线段661b倾斜于第一方向。例如,参见图20,第一触控线段661a为沿Y方向延伸的直线段,第二触控线段661b为不沿Y方向延伸的斜向线段,第二触控线段661b的延伸方向与第一触控线段661a的延伸方向之间存在夹角,该夹角为钝角。当然,该夹角也可以为锐角,对此不做限制。
示例性地,在触控层组中,多条第二触控线段661b包括多条第三斜向线段L3和多条第四斜向线段L4,多条第三斜向线段L3和多条第四斜向线段L4沿第一方向交替排列。第三斜向线段L3平行于第一斜向线段L1,第四斜向线段L4平行于第二斜向线段L2,第一感测电极62A和第二感测电极62B中,同一延伸方向上的两条虚拟触控走线段661之间的多个断点中,一部分断点位于第三斜向线段L3上,另一部分断点位于第四斜向线段L4上。具体的,参见图20,倾斜于第一方向的第二触控线段661b可划分为第三斜向线段L3和第四斜向线段L4,第三斜向线段L3和第四斜向线段L4的倾斜方向即 延伸方向不同,第三斜向线段L3平行于第一斜向线段L1,第四斜向线段L4平行于第二斜向线段L2。除虚拟触控走线段661的线端处以外,每条第一触控线段661a的一端与至少一条(例如,可以是一条)第三斜向线段L3连接,另一端与至少一条(例如,可以是一条)第四斜向线段L4连接。虚拟触控走线段661由多个断点划分虚拟触控走线66得到,由于第三斜向线段L3平行于第一斜向线段L1,第四斜向线段L4平行于第二斜向线段L2,因而第三斜向线段L3和第一斜向线段L1的可视角度相同,第四斜向线段L4和第二斜向线段L2的可视角度相同将划分虚拟触控走线66的多个断点分散地设置在第三斜向线段L3和第四斜向线段L4上,在一个可视角度下只有部分断点存在可视化风险,其余断点并不会对该可视角度下的显示效果造成影响。上述设置能够在增大感测电极62的面积,提升触控感应量的同时,避免提高反光强度差异所导致的可视化风险,有利于显示效果的提升。
示例性地,在触控层组中,多条虚拟触控走线段661之间的多个断点交替位于第三斜向线段L3和第四斜向线段L4上。参见图20,与感测主线621断点设置方式类似,该设置也能够使得在一个可视角度下存在可视化风险的断点数量较少,同时多个断点均匀分散,能够进一步降低可视化风险,有利于显示效果的提升。
示例性地,设置有断点的第二触控线段661b的断面的上边沿和第二触控线段661b的延伸方向垂直。该设置与感测主线621断点的设置方式类似,同样具有上述效果,在此不再赘述。
基于上述,在触控层组应用于触控显示装置中的情况下,有效触控走线63和感测电极62均位于像素界定区域。即每条有效触控走线63、以及形成感测电极62的多条第一感测线段621a、多条第二感测线段621b和多条第三感测线段622均设置在相邻两个亚像素区101a之间的像素界定区域101b内。例如,参见图21,触控层组中的感测电极62和穿过该感测电极62的有效触控走线63在基底层61上的正投影构成多个网眼,一个亚像素区与一个网眼对应。上述设置能够在提升感测效果、避免感测电极62及有效触控走线63产生显示mura的前提下,避免不透光的多条金属线对亚像素区101a的出光造成遮挡。
不同颜色亚像素的发光效率和使用寿命等均存在差异,因此不同颜色亚像素的形状和大小也会存在差异。例如,可以将发光效率较低的亚像素做得大一些,将发光效率较高的亚像素做得小一些,以平衡不同颜色亚像素的发光情况,从而完成正常显示。示例性地,参见图21,多个亚像素101a包括 红色亚像素R、绿色亚像素G以及蓝色亚像素B时,由于绿色亚像素G的发光效率较高,蓝色亚像素B的发光效率较低,红色亚像素R的发光效率居中,因此亚像素的大小为蓝色亚像素B>红色亚像素R>绿色亚像素G。相应的,亚像素区101a的形状也可以如图22所示,部分为六边形,部分为五边形,红色亚像素R和蓝色亚像素B设置在六边形的亚像素区101a中,绿色亚像素G设置在五边形的亚像素区101a中。参见图22,一个红色亚像素R、一个绿色亚像素G以及一个蓝色亚像素B构成一个像素103,并且两个像素103共用一个红色亚像素R。
在此情况下,上述的触控层组中还可以包括至少一条(例如,可以是多条)第四感测线段623,每条第四感测线段623垂直于与其连接的一条第一感测线段621a。示例性地,参见图20和图21,在一个感测电极62中,多条感测主线621可分为第一感测主线621A和第二感测主线621B。其中,第一感测主线621A的每条第一感测线段621a均与一条第四感测线段623连接,且与一条第一感测主线621A连接的多条第四感测线段623沿第一方向交替设置于第一感测主线621A的两侧;第二感测主线621B的多条第一感测线段621a中仅有部分连接有第四感测线段623,且与一条第二感测主线621B连接的多条第四感测线段623均位于该第二感测主线621B的同一侧。包括多条第四感测线段623的感测电极62和穿过该感测电极62的有效触控走线63在基底层61上的正投影构成多个网眼,一个亚像素区与一个网眼对应。上述设置能够在不对亚像素区101a的出光造成遮挡的前提下,进一步增大感测电极62的面积,提升触控感应量。
示例性地,在触控显示装置中,沿第二方向相邻的两条感测主线621之间间隔m个亚像素区;m≥1,m为正整数。例如,参见图21,m=2。有效触控走线63和感测主线621沿X方向交替设置,当两条感测主线621之间间隔m个亚像素区时,一方面,若两条感测主线621之间间隔的亚像素区过少,例如仅间隔一个亚像素区时,为了避免感测电极62与有效触控走线63在基底层61上正投影重叠过多,感测主线621只能包括多条相互独立的第二感测金属线段,要实现感测电极62与有效触控走线63的耦接需要设置大量过孔,增大了工艺难度,同时连接效果难以保证,因此m≥1;另一方面,m≥1时,结合第三感测线的避让设计,能够最大程度减小感测电极62与有效触控走线63在基底层61上正投影的重叠面积,使得感测面积尽可能大,同时能够使得有效触控走线63和感测主线621均匀分布,在优化布线方式的前提下,降低出现显示mura的风险。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以所述权利要求的保护范围为准。

Claims (25)

  1. 一种触控层组,包括:
    基底层;
    设置于所述基底层上的多条有效触控走线,至少一条所述有效触控走线的延伸方向平行于第一方向,且所述多条有效触控走线沿第二方向排列,所述第二方向与所述第一方向交叉;
    设置于所述基底层上的多个感测电极,一感测电极与至少一条所述有效触控走线耦接;
    其中,所述感测电极包括沿所述第二方向排列的多条感测主线,至少一条所述感测主线的延伸方向平行于所述第一方向,且由多条第一感测线段和多条第二感测线段交替连接形成,至少一条所述第一感测线段平行于所述第一方向,至少一条所述第二感测线段倾斜于所述第一方向;
    所述感测电极还包括与一感测主线连接的多条第三感测线段,至少一条所述第三感测线段倾斜于所述第一方向,至少一条所述第三感测线段具有自由线端;
    所述多个感测电极包括:沿所述第一方向相邻的第一感测电极和第二感测电极,所述第一感测电极和所述第二感测电极中,同一延伸方向上的两条所述感测主线之间的断点位于其中一条所述感测主线一端的所述第二感测线段上。
  2. 根据权利要求1所述的触控层组,其中,
    至少一条所述第三感测线段平行于一条所述第二感测线段;
    至少一条所述有效触控走线包括至少一个耦接部,所述耦接部与一个所述感测电极电连接;除所述多个耦接部外,至少一条所述有效触控走线在所述基底层上的正投影与所述感测电极在所述基底层上的正投影无重叠区域。
  3. 根据权利要求2所述的触控层组,其中,
    所述多条第二感测线段包括多条第一斜向线段和多条第二斜向线段,所述第一方向沿顺时针到一条所述第一斜向线段的延伸方向的角度为锐角,所述第一方向沿顺时针到一条所述第二斜向线段的延伸方向的角度为钝角;
    所述第一感测电极和所述第二感测电极之间的多个断点中,一部分断点位于所述第一斜向线段上,另一部分断点位于所述第二斜向线段上。
  4. 根据权利要求3所述的触控层组,其中,所述第一感测电极和所述第二感测电极之间的多个断点,相间分布于所述第一斜向线段和所述第二斜向线段上。
  5. 根据权利要求1~4中任一项所述的触控层组,其中,
    所述多个感测电极还包括:沿所述第二方向与所述第一感测电极相邻的第三感测电极;
    所述第一感测电极中的边缘感测主线上设置有至少一个断点,所述至少一个断点将所述边缘感测主线分割成多条断线;所述多条断线中与所述第一感测电极不连接的至少一条断线与所述第三感测电极连接;其中,所述边缘感测主线为所述第一感测电极最靠近所述第三感测电极的感测主线。
  6. 根据权利要求5所述的触控层组,其中,
    所述至少一个断点均位于所述第一感测电极中的边缘感测主线的所述第二感测线段上。
  7. 根据权利要求1~6中任一项所述的触控层组,其中,设置有所述断点的所述第二感测线段的断面的上边沿和所述第二感测线段的延伸方向垂直,所述上边沿为断面边沿中远离所述衬底层的边沿。
  8. 根据权利要求1~7中任一项所述的触控层组,其中,所述感测电极和与所述感测电极耦接的至少一条所述有效触控走线异层设置;
    所述触控层组还包括设置于所述感测电极和所述有效触控走线之间的绝缘层;所述耦接部通过所述绝缘层上的至少一个过孔与所述感测电极耦接。
  9. 根据权利要求1~7中任一项所述的触控层组,其中,所述感测电极和与所述感测电极耦接的至少一条所述有效触控走线同层设置;
    所述耦接部通过架桥与所述感测电极耦接,所述架桥与所述感测电极之间设置有绝缘层。
  10. 根据权利要求1~9中任一项所述的触控层组,其中,至少一个所述感测电极中,相邻两条感测主线之间通过至少一个连接部连接,所述连接部由至少两条所述第三感测线段连接形成。
  11. 根据权利要求10所述的触控层组,其中,相邻两列的多个所述连接部在所述第二方向上的位置错开,所述列的方向平行于所述第一方向。
  12. 根据权利要求11所述的触控层组,其中,沿所述第二方向相邻排列的两条所述感测主线之间设置有至少两个所述连接部;
    至少两个所述连接部中,相邻的两个所述连接部之间设置有至少四条所述第一感测线段。
  13. 根据权利要求1~12中任一项所述的触控层组,还包括:
    与多条所述有效触控走线同层设置的多条虚拟触控走线,至少一条所述虚拟触控走线的延伸方向平行于所述第一方向,且所述至少一条虚拟触控走线沿第二方向排列,所述虚拟触控走线与所述有效触控走线的形状大致相同;
    一感测电极对应的各条有效触控走线和各条虚拟触控走线沿所述第二方向等间距分布。
  14. 根据权利要求13所述的触控层组,其中,至少一个所述感测电极具有一个第一区域,位于所述第一区域的各条所述有效触控走线与位于所述第一区域的多条所述感测主线交替排布;
    至少一个所述感测电极还具有两个第二区域,位于所述第二区域的至少一条所述虚拟触控走线与位于所述第一区域的多条所述感测主线交替排布;
    所述两个第二区域分别位于所述第一区域沿所述第二方向上的两侧。
  15. 根据权利要求13~14中任一项所述的触控层组,其中,一虚拟触控走线包括至少一条虚拟触控走线段;
    所述虚拟触控走线段与一个所述感测电极耦接。
  16. 根据权利要求15所述的触控层组,其中,
    至少一条所述虚拟触控走线段由多条第一触控线段和多条第二触控线段交替连接形成,至少一条所述第一触控线段平行于所述第一方向,至少一条所述第二触控线段倾斜于所述第一方向;
    所述多条第二触控线段包括多条第三斜向线段和多条第四斜向线段,多条第三斜向线段和多条第四斜向线段沿所述第一方向交替排列;
    所述第三斜向线段平行于所述第一斜向线段;
    所述第四斜向线段平行于所述第二斜向线段;
    所述第一感测电极和所述第二感测电极中,同一延伸方向上的两条所述虚拟触控走线段之间的多个断点中,一部分断点位于所述第三斜向线段上,另一部分断点位于所述第四斜向线段上。
  17. 根据权利要求16所述的触控层组,其中,所述多条虚拟触控走线段之间的多个断点交替位于所述第三斜向线段和所述第四斜向线段上。
  18. 根据权利要求16~17中任一项所述的触控层组,其中,设置有所述断点的所述第二触控线段的断面的上边沿和所述第二触控线段的延伸方向垂直,所述上边沿为断面边沿中远离所述衬底层的边沿。
  19. 根据权利要求1~18中任一项所述的触控层组,还包括:至少一条第四感测线段,所述第四感测线段垂直于与其连接的一条所述第一感测线段。
  20. 一种触控显示装置,包括如权利要求1~19中任一项所述的触控层组。
  21. 根据权利要求20所述的触控显示装置,其中,所述触控显示装置具有显示区;所述显示区包括多个亚像素区和用于界定所述多个亚像素区的像素界定区域;
    有效触控走线和感测电极均位于所述像素界定区域。
  22. 根据权利要求21所述的触控显示装置,其中,所述触控层组中的所述感测电极和穿过该所述感测电极的有效触控走线在所述基底层上的正投影构成多个网眼,一个亚像素区与一个所述网眼对应。
  23. 根据权利要求22所述的触控显示装置,其中,沿所述第二方向相邻的两条感测主线之间间隔m个亚像素区;m≥1,m为正整数。
  24. 根据权利要求23所述的触控显示装置,其中,m=2。
  25. 根据权利要求20~24中任一项所述的触控显示装置,其中,所述触控显示装置为自发光显示装置;所述自发光显示装置包括显示用基板和用于封装所述显示用基板的封装层;
    所述封装层复用为所述触控层组的基底层。
PCT/CN2021/098333 2021-06-04 2021-06-04 触控层组及触控显示装置 WO2022252215A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180001450.0A CN115917482A (zh) 2021-06-04 2021-06-04 触控层组及触控显示装置
PCT/CN2021/098333 WO2022252215A1 (zh) 2021-06-04 2021-06-04 触控层组及触控显示装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/098333 WO2022252215A1 (zh) 2021-06-04 2021-06-04 触控层组及触控显示装置

Publications (1)

Publication Number Publication Date
WO2022252215A1 true WO2022252215A1 (zh) 2022-12-08

Family

ID=84323715

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/098333 WO2022252215A1 (zh) 2021-06-04 2021-06-04 触控层组及触控显示装置

Country Status (2)

Country Link
CN (1) CN115917482A (zh)
WO (1) WO2022252215A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107301001A (zh) * 2017-07-31 2017-10-27 上海中航光电子有限公司 基板、显示面板和显示装置
CN109445646A (zh) * 2018-12-29 2019-03-08 上海中航光电子有限公司 一种触控显示面板及触控显示装置
US20190204953A1 (en) * 2017-12-28 2019-07-04 Lg Display Co., Ltd. Touch display device and method for manufacturing touch display device
US20190294274A1 (en) * 2018-03-21 2019-09-26 Samsung Electronics Co., Ltd. Touch screen panel and touch sensing system including the same
CN111427475A (zh) * 2020-03-26 2020-07-17 京东方科技集团股份有限公司 触控模组、触控显示屏及触控显示屏的制造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107301001A (zh) * 2017-07-31 2017-10-27 上海中航光电子有限公司 基板、显示面板和显示装置
US20190204953A1 (en) * 2017-12-28 2019-07-04 Lg Display Co., Ltd. Touch display device and method for manufacturing touch display device
US20190294274A1 (en) * 2018-03-21 2019-09-26 Samsung Electronics Co., Ltd. Touch screen panel and touch sensing system including the same
CN109445646A (zh) * 2018-12-29 2019-03-08 上海中航光电子有限公司 一种触控显示面板及触控显示装置
CN111427475A (zh) * 2020-03-26 2020-07-17 京东方科技集团股份有限公司 触控模组、触控显示屏及触控显示屏的制造方法

Also Published As

Publication number Publication date
CN115917482A (zh) 2023-04-04

Similar Documents

Publication Publication Date Title
US11132079B2 (en) Sensor device and sensor-equipped display device including detection electrode
US10452201B1 (en) Touch sensor for display with shield
US10156950B2 (en) Sensor-equipped display device
US20220300113A1 (en) Touch electrode layer and touch display device
KR102399820B1 (ko) 터치 디스플레이 장치 및 터치 디스플레이 패널
JP7005566B2 (ja) タッチパネル及びタッチディスプレイ装置
TWI717787B (zh) 觸控顯示面板、觸控顯示裝置及其驅動方法
US9952736B2 (en) OLED array substrate, display panel and display device
US11307705B2 (en) Touch display device
WO2022227439A1 (zh) 触控显示面板和显示装置
KR20200009804A (ko) 터치 디스플레이 패널, 터치 디스플레이 장치
CN112286406B (zh) 触摸显示装置
US11314349B2 (en) Touch display device
KR20210050099A (ko) 터치 구동 회로 및 터치 디스플레이 장치
KR20210054390A (ko) 터치표시장치
KR20210081701A (ko) 터치 스크린 일체형 발광 표시 장치
US11513650B2 (en) Transparent touch display device
KR20210026451A (ko) 터치 디스플레이 장치
KR20220073296A (ko) 터치 디스플레이 장치
WO2022252215A1 (zh) 触控层组及触控显示装置
US11605679B2 (en) Display device
KR20220076845A (ko) 터치 디스플레이 장치
CN112286405B (zh) 触摸显示装置
WO2023201727A1 (zh) 触控层组及触控显示装置
KR20200076312A (ko) 터치 패널 액정표시장치

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 17778470

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21943576

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE