WO2022249708A1 - 信号注入装置およびインピーダンス測定装置 - Google Patents

信号注入装置およびインピーダンス測定装置 Download PDF

Info

Publication number
WO2022249708A1
WO2022249708A1 PCT/JP2022/014238 JP2022014238W WO2022249708A1 WO 2022249708 A1 WO2022249708 A1 WO 2022249708A1 JP 2022014238 W JP2022014238 W JP 2022014238W WO 2022249708 A1 WO2022249708 A1 WO 2022249708A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
magnetic flux
current
winding
voltage
Prior art date
Application number
PCT/JP2022/014238
Other languages
English (en)
French (fr)
Inventor
昭純 堀田
博之 戸谷
大桂 池田
真 笠井
智春 坂井
靖幸 月岡
浩一 柳沢
Original Assignee
日置電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2022038790A external-priority patent/JP2022180295A/ja
Application filed by 日置電機株式会社 filed Critical 日置電機株式会社
Publication of WO2022249708A1 publication Critical patent/WO2022249708A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/18Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using inductive devices, e.g. transformers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/20Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using galvano-magnetic devices, e.g. Hall-effect devices, i.e. measuring a magnetic field via the interaction between a current and a magnetic field, e.g. magneto resistive or Hall effect devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/389Measuring internal impedance, internal conductance or related variables

Definitions

  • the present invention relates to a signal injection device capable of contactlessly injecting an AC signal into a line to be injected made of a conductor, and more particularly to a signal injection device for injecting an AC signal into a line to be injected for power supply in which a large DC current is flowing. It relates to a signal injection device suitable for The present invention also relates to an impedance measuring apparatus that includes such a signal injection device and measures the impedance of an object to be measured in a state in which an AC signal is applied to the object to be measured.
  • a ferromagnetic material (magnetic core) is arranged on the outer circumference of a conductor (injection target line) through which a current of a first frequency flows, and a second magnetic core is arranged on the ferromagnetic material and is different from the first frequency.
  • a first winding for injecting a signal current (AC signal) of a frequency into a conductor
  • a second winding (cancellation winding) arranged on a ferromagnetic body and through which a current of the first frequency flows
  • an amplifier circuit connected to the second winding.
  • the amplifier circuit includes a filter section that passes a current of a first frequency and blocks a signal current of a second frequency, an amplifier section that is arranged in series with the filter section, a filter section, and a and an impedance element arranged in parallel with the amplifier.
  • a commercial alternating current which is a large current of 50 Hz or 60 Hz as the first frequency
  • a large magnetic flux due to the commercial alternating current is generated in the ferromagnetic material, and the ferromagnetic material is magnetically saturated. In that case, it becomes difficult to inject the signal current.
  • both the magnetic flux due to the supply of the signal current and the magnetic flux due to the flowing of the canceling current are Occurs in ferromagnetic materials. Therefore, in this signal injection/extraction device, the second winding detects the induced current based on both magnetic fluxes, and the filter unit detects the induced current caused by the signal current among the induced currents output from the second winding. Induced current caused by commercial alternating current is allowed to pass while blocking.
  • the amplifier circuit amplifies the induced current caused by the commercial alternating current output from the filter unit, and supplies a cancellation current to the second winding through the impedance element in a direction to cancel the magnetic field generated by the commercial current.
  • the magnetic flux due to the commercial alternating current of the first frequency applied to the conductor is efficiently canceled, while the magnetic flux due to the signal current of the second frequency is hardly canceled or not canceled at all. Therefore, in this signal injection/extraction device, it is possible to more reliably inject the signal current of the second frequency into the conductor through which the commercial alternating current of the first frequency flows.
  • the above signal injection/extraction device has the following problems. Specifically, for example, in a fuel cell vehicle (FCV: Fuel Cell Vehicle), a battery (battery ) is connected, and a large DC current from the battery flows through this power line. In such a state, there is a demand to measure the impedance of the battery as a whole and the impedance of each battery cell. When measuring the impedance, it is necessary to supply an AC signal (for example, 100 Hz to 10 MHz, particularly 1 KHz to 10 KHz) for impedance measurement to the battery.
  • FCV Fuel Cell Vehicle
  • an AC signal for example, 100 Hz to 10 MHz, particularly 1 KHz to 10 KHz
  • the signal injection/extraction device can cancel the magnetic flux caused by the commercial alternating current flowing through the ferromagnetic material, it cannot cancel the magnetic flux generated in the ferromagnetic material caused by the direct current flowing. .
  • the ferromagnetic body becomes magnetically saturated due to the magnetic flux caused by the flow of a large DC current, making it impossible to inject an AC signal into the power line. There is a problem.
  • the present invention has been made in view of such problems, and provides a signal injection device capable of reliably injecting an AC signal into an injection target line in which a DC current is flowing, and a measurement target provided with such a signal injection device.
  • the main object is to provide an impedance measuring device capable of measuring the impedance of
  • a signal injection apparatus includes an annular magnetic core through which an injection target line in which a direct current is flowing is inserted, and an AC signal to be injected into the injection target line. and a signal injection unit for injecting into a target line, the first signal generated in the magnetic core due to the flow of the DC current in the target line inserted through the magnetic core. a magnetic flux canceling unit that supplies a canceling current for generating a second magnetic flux for canceling the magnetic flux of the magnetic core to the first winding wound around the magnetic core.
  • the magnetic flux cancellation unit supplies a cancellation current for generating a second magnetic flux in the magnetic core to the first winding wound around the magnetic core. It cancels the first magnetic flux generated in the magnetic core due to the direct current flowing through the target line. Therefore, according to this signal injection device, it is possible to avoid magnetic saturation of the magnetic core caused by the flow of a large DC current in the line to be injected, and as a result, it is possible to supply an AC signal to the second winding. Therefore, it is possible to reliably generate a magnetic flux based on the AC signal in the magnetic core, and to reliably and efficiently inject the AC signal into the injection target line in which the DC current is flowing.
  • the magnetic flux canceling section includes a first winding wound around the magnetic core and for canceling the first magnetic flux generated in the magnetic core;
  • a magnetic flux detection circuit that is provided in a magnetic core and outputs a voltage signal corresponding to the magnetic flux generated in the magnetic core, an amplifier circuit that amplifies the voltage signal output from the magnetic flux detection circuit, and a signal amplified by the amplifier circuit
  • the canceling current is applied to the first magnetic flux in a direction to block the output of the voltage signal based on the AC signal contained in the voltage signal and to allow the voltage signal based on the DC current to pass through to cancel the first magnetic flux.
  • the signal injection unit is configured to include the magnetic
  • a second winding wound on a core is provided for supplying the AC signal to the second winding for injecting the AC signal into the line to be injected.
  • the filter circuit of the magnetic flux canceling unit is a voltage signal based on the AC signal included in the voltage signal amplified by the amplifier circuit. and supply a canceling current to the first winding in a direction to cancel the first magnetic flux by passing a voltage signal based on the DC current, and generate in the first winding based on the AC signal block the input of the voltage signal to the amplifier circuit. Therefore, according to this signal injection device, it is possible to avoid magnetic saturation of the magnetic core caused by the flow of a large DC current in the line to be injected, and as a result, it is possible to supply an AC signal to the second winding. As a result, magnetic flux based on the AC signal can be reliably generated in the magnetic core, and the AC signal can be reliably and efficiently injected into the injection target line.
  • the magnetic flux canceling section includes a first winding wound around the magnetic core and for canceling the first magnetic flux generated in the magnetic core;
  • a magnetic flux detection circuit that is provided in a magnetic core and outputs a voltage signal corresponding to the magnetic flux generated in the magnetic core, and a voltage signal based on the AC signal included in the voltage signal output from the magnetic flux detection circuit.
  • a filter circuit for blocking an output and for passing a voltage signal based on the DC current; an addition circuit for adding the voltage signal and the AC signal that have passed through the filter circuit and outputting an addition signal;
  • the output addition signal is amplified and supplied to the first winding, and the cancellation current is supplied to the first winding in a direction to cancel the first magnetic flux, and the AC signal is supplied to the first winding.
  • an amplifier circuit that supplies the AC signal to one winding and injects the AC signal into the injection target line.
  • the amplifier circuit amplifies the addition signal obtained by adding the voltage signal and the AC signal by the addition circuit, and supplies the signal to the first winding, whereby the cancellation current and the AC current based on the AC signal are amplified. are added in the first winding, causing the magnetic core to generate a second magnetic flux and a magnetic flux based on the AC signal. Therefore, according to this signal injection device, it is possible to avoid magnetic saturation of the magnetic core due to the flow of a large DC current in the line to be injected. By supplying , a magnetic flux based on an AC signal can be reliably generated in the magnetic core, and the AC signal can be reliably and efficiently injected into the injection target line. Further, according to this signal injection device, the function of the canceling winding and the function of the signal injection winding can be realized using one first winding, so that the signal injection device can be manufactured at a low cost. Can be configured.
  • the magnetic flux canceling section includes a first winding wound around the magnetic core and for canceling the first magnetic flux generated in the magnetic core;
  • a magnetic flux detection circuit that is provided in a magnetic core and outputs a voltage signal corresponding to the magnetic flux generated in the magnetic core, and a voltage signal based on the AC signal included in the voltage signal output from the magnetic flux detection circuit.
  • a filter circuit that blocks an output and passes a voltage signal based on the direct current; amplifies the voltage signal that has passed through the filter circuit and transfers the cancel current to the first magnetic flux in a direction that cancels the first magnetic flux; and an amplifier circuit that supplies the AC signal to one end of the winding, and the signal injection unit amplifies the AC signal and supplies the amplified AC signal to the other end of the first winding to transmit the AC signal to the It has an amplifier circuit that injects into the injection target line.
  • the amplifier circuit supplies a canceling current to one end of the first winding, and the AC signal amplified by the amplifier circuit of the signal injection unit is supplied to the other end of the first winding to cancel the current. While the current and the alternating current based on the alternating signal are added in the first winding, the magnetic core generates the second magnetic flux and the magnetic flux based on the alternating signal. Therefore, according to this signal injection device, it is possible to avoid magnetic saturation of the magnetic core caused by the flow of a large DC current in the line to be injected, and as a result, it is possible to supply an AC signal to the first winding.
  • the function of the canceling winding and the function of the signal injection winding can be realized using one first winding, so that the signal injection device can be manufactured at a low cost. Can be configured.
  • the magnetic flux canceling section includes a first winding wound around the magnetic core and for canceling the first magnetic flux generated in the magnetic core;
  • a magnetic flux detection circuit that is provided in a magnetic core and outputs a voltage signal corresponding to the magnetic flux generated in the magnetic core, and a voltage signal based on the AC signal included in the voltage signal output from the magnetic flux detection circuit.
  • a filter circuit that blocks an output and passes a voltage signal based on the direct current; amplifies the voltage signal that has passed through the filter circuit and transfers the cancel current to the first magnetic flux in a direction that cancels the first magnetic flux; a current driver for supplying a winding, wherein the signal injection section comprises a second winding wound around the magnetic core, and supplying the AC signal to the second winding to is injected into the injection target line.
  • the current driver supplies a cancellation current to the first winding while the output impedance is high.
  • the signal injection unit supplies an AC signal to the second winding, thereby generating a magnetic flux based on the AC signal in the magnetic core.
  • an alternating current based on the generated magnetic flux tries to flow through the first winding, but since the output impedance of the current driver is high, the alternating current based on the magnetic flux flows from the first winding to the current driver. It does not flow in the direction towards the output. Therefore, the current driver does not apply a cancel current to cancel the magnetic flux based on the AC signal generated in the magnetic core, and the magnitude of the first magnetic flux detected by the magnetic flux detection circuit becomes zero.
  • a canceling current is generated and supplied to the first winding. Therefore, according to this signal injection device, it is possible to avoid magnetic saturation of the magnetic core caused by the flow of a large DC current in the line to be injected, and as a result, it is possible to supply an AC signal to the second winding. As a result, magnetic flux based on the AC signal can be reliably generated in the magnetic core, and the AC signal can be reliably and efficiently injected into the injection target line.
  • the magnetic flux detection circuit is configured by arranging any one of a Hall element, a fluxgate sensor, and a GMR element on the magnetic core.
  • any one of the Hall element, the fluxgate sensor, and the GMR element is arranged in the magnetic core to configure the magnetic flux detection circuit. can be detected.
  • the filter circuit is composed of a low-pass filter including an inductor formed of a reactor.
  • the filter circuit by configuring the filter circuit with a low-pass filter including an inductor formed of a reactor with a large inductance, the cutoff frequency can be made as close to 0 Hz as possible. It can pass only voltage signals and can be constructed at low cost.
  • the signal injection device having a filter circuit having a function of blocking the input of the voltage signal generated in the first winding based on the AC signal to the amplifier circuit, the AC signal can be applied to the second winding. input to the amplifier circuit of the voltage signal generated in the first winding based on the magnetic flux generated in the magnetic core by the supply of the magnetic core is blocked by the filter circuit.
  • the AC signal can be reliably and efficiently injected into the injection target line.
  • the magnetic flux canceling unit reduces the signal level of the voltage signal corresponding to the magnetic flux generated in the magnetic core at twice the frequency of the alternating current signal. It feeds the first winding.
  • the magnetic flux cancellation unit supplies the first winding with a cancellation current that lowers the signal level of the voltage signal corresponding to the magnetic flux based on the frequency double that of the AC signal generated in the magnetic core.
  • the magnetic saturation of the magnetic core can be directly detected.
  • the magnetic flux based on the AC signal can be generated more reliably without causing magnetic saturation in the magnetic core, and the AC signal can be more reliably applied to the line to be injected. In addition, it can be injected efficiently.
  • the signal injection unit generates the AC signal to be injected into the injection target line and a reference signal for synchronous detection having a frequency double that of the AC signal
  • the magnetic flux canceling unit includes: a first winding wound around the magnetic core and for canceling the first magnetic flux generated in the magnetic core; a synchronous detection circuit for synchronously detecting a voltage signal having a double frequency with the reference signal; a filter circuit for extracting a DC signal included in the output signal of the synchronous detection circuit; and the DC output from the filter circuit.
  • an adder circuit for adding the signal and the AC signal; and an output signal of the adder circuit that is amplified and supplied to the first winding so that the cancellation current is applied to the first winding in a direction to cancel the first magnetic flux.
  • an amplifier circuit that supplies the AC signal to one winding and supplies the AC signal to the first winding to inject the AC signal into the injection target line.
  • the synchronous detection circuit synchronously detects the voltage signal of twice the frequency of the AC signal generated in the first winding with the reference signal, and the adder circuit is included in the output signal of the synchronous detection circuit.
  • the amplifier circuit amplifies the added signal output from the adding circuit and supplies it to the first winding to generate a cancellation current in a direction to cancel the first magnetic flux.
  • the magnitude of a harmonic signal having a frequency twice the frequency of an AC signal which is a distorted signal of an AC signal generated in a magnetic core in a magnetically saturated state
  • the magnetic flux canceling section as a whole is feedback-controlled. Therefore, according to this signal injection device, the magnetic saturation of the magnetic core can be detected directly. As a result, the magnetic flux based on the AC signal can be generated more reliably without causing magnetic saturation in the magnetic core. , the AC signal can be more reliably and efficiently injected into the injection target line.
  • the function of the canceling winding and the function of the signal injection winding can be realized using one first winding, so that the signal injection device can be manufactured at a low cost. Can be configured.
  • the signal generator sweeps the frequency of the AC signal.
  • the signal injection unit sweeps the frequency of the AC signal.
  • the AC signal which is a sine wave signal
  • the object to be measured since it can be configured as an FRA that can measure the frequency response, highly accurate impedance measurements can be made.
  • an impedance measuring apparatus is an impedance measuring apparatus that includes any one of the signal injection apparatuses described above and measures the impedance of a measurement target connected in series with the injection target line, a processing unit that, when the AC signal is injected into the line to be injected, measures the impedance of the object to be measured based on the current value of the AC signal flowing through the line to be injected and the voltage value generated in the object to be measured; ing.
  • the processing unit when measuring the impedance of the object to be measured which is connected in series with the line to be injected, the processing unit injects an AC signal into the line to be injected, the AC signal flowing through the line to be injected
  • the processing unit injects an AC signal into the line to be injected, the AC signal flowing through the line to be injected
  • the impedance of the measurement target By measuring the impedance of the measurement target based on the current value and the voltage value generated in the measurement target, magnetic flux based on the AC signal is generated more reliably in the magnetic core, and the AC signal is more reliably applied to the line to be injected.
  • the impedance of the object to be measured can be measured with high accuracy.
  • the impedance measuring device is a non-contact current sensor that detects the current of the AC signal flowing through the injection target line without contacting the injection target line and outputs a detection signal to the processing unit. and a voltage detection unit for detecting the voltage across the object to be measured, wherein the voltage detection unit includes a voltage detection circuit for contacting both ends of the object to be measured to detect a voltage signal across the object, and the detected voltage signal across the object. to the processing unit in a state insulated from the measurement object, and the processing unit receives the detection signal as the current value of the AC signal and transmits the voltage signal across the measurement object to the measurement object The impedance of the object to be measured is measured by inputting the resulting voltage value.
  • the non-contact current sensor detects an alternating current flowing through the injection target line without contacting the injection target line and outputs a detection signal to the processing unit, and the voltage detection unit measures By outputting the voltage signal detected by contacting both ends of the object to the processing unit in a state insulated from the object to be measured, even if a very high voltage is generated in the object to be measured, the load or the impedance measurement device will not be affected. Even when noise such as switching noise exists in the surroundings, a current based on the injection of the AC signal flows through the measurement object, and a minute AC voltage generated in the measurement object can be detected with high accuracy. Therefore, according to this impedance measuring device, it is possible to accurately measure the impedance of the object to be measured. Moreover, according to this impedance measuring device, by using the non-contact current sensor, the impedance of the object to be measured can be measured in a non-contact manner without cutting the line to be injected.
  • the processing unit includes a first quadrature detection circuit that receives the AC signal and quadrature-detects the detection signal to generate an in-phase component and a quadrature component of the AC current; a second quadrature detection circuit that receives the AC signal and quadrature-detects the voltage signal across both ends to generate an in-phase component and a quadrature component of the AC voltage; and an in-phase component of the AC current that is output from the first quadrature detection circuit. and an arithmetic circuit for calculating the impedance of the object to be measured based on the quadrature component and the in-phase component and quadrature component of the AC voltage output from the second quadrature detection circuit.
  • the arithmetic circuit of the processing unit is configured to detect the in-phase component and quadrature component of the alternating current output from the first quadrature detection circuit and the in-phase component and quadrature component of the ac voltage output from the second quadrature detection circuit.
  • the ratio (S /N) can be increased to measure the impedance with high accuracy.
  • the magnetic flux canceling unit supplies the canceling current for generating the second magnetic flux in the magnetic core to the first winding wound around the magnetic core, thereby causing the magnetic core to pass through the magnetic core. cancels the first magnetic flux generated in the magnetic core due to the direct current flowing in the line to be injected. Therefore, according to this signal injection device, it is possible to avoid magnetic saturation of the magnetic core caused by the flow of a large DC current in the line to be injected, and as a result, it is possible to supply an AC signal to the second winding. Therefore, it is possible to reliably generate a magnetic flux based on the AC signal in the magnetic core, and to reliably and efficiently inject the AC signal into the injection target line in which the DC current is flowing.
  • FIG. 1 is a configuration diagram showing the configuration of an impedance measuring device 1;
  • FIG. 4 is a characteristic diagram showing frequency characteristics of the LPF 43 (characteristic diagram showing the ability of the magnetic flux cancellation unit 4 to cancel the magnetic flux Mb generated in the magnetic core 2).
  • FIG. 4 is a configuration diagram showing the configuration of a magnetic flux cancellation unit 4A;
  • FIG. 4 is a configuration diagram showing the configuration of a magnetic flux cancellation unit 4B;
  • FIG. 4 is a configuration diagram showing the configuration of a magnetic flux cancellation unit 4C;
  • FIG. 4 is a configuration diagram showing configurations of a signal injection unit 3 and a magnetic flux cancellation unit 4D;
  • FIG. FIG. 11 is a configuration diagram showing another configuration of the LPF 43;
  • the impedance measuring device 1 shown in FIG. 1 is an example of an “impedance measuring device”, and is configured to be able to measure, for example, the internal impedance Zb of a battery (battery) Bat as a measurement object in a state where a load Load is connected. It is In addition, the impedance measuring device 1 is configured as an FRA (Frequency Response Analyzer) capable of measuring the frequency response of an AC signal S1, which is a sine wave signal, which will be described later, to the battery Bat, and is capable of highly accurate impedance measurement. It has become.
  • FRA Frequency Response Analyzer
  • a load such as a motor that consumes a large amount of current
  • a battery Bat configured by connecting a plurality of battery cells in series (one battery is shown as a whole in FIG. 1).
  • a power line hereinafter also referred to as "injection target line L" formed of conductors such as an insulation coated cable in which the core wire, which is a conductor, is coated with insulation, an enameled wire, and an electric wire that is not coated with insulation.
  • injection target line L formed of conductors such as an insulation coated cable in which the core wire, which is a conductor, is coated with insulation, an enameled wire, and an electric wire that is not coated with insulation.
  • a large DC current flows from the battery Bat to the load Load in the injection target line L.
  • the impedance measuring device 1 In order to measure the internal impedance Zb of the battery Bat in such a connection state, it is necessary to supply the battery Bat with an AC signal S1 (for example, 100 Hz to 10 MHz, particularly 1 KHz to 10 KHz) for impedance measurement. At this time, the impedance measuring device 1 is configured to be able to inject an AC signal S1 into the injection target line L through which a large DC current flows from the battery Bat to the load Load, using an injection extraction device 10, which will be described later. .
  • an AC signal S1 for example, 100 Hz to 10 MHz, particularly 1 KHz to 10 KHz
  • the impedance measuring device 1 includes a magnetic core 2, a signal injection section 3, a magnetic flux cancellation section 4, a non-contact current sensor 5, a voltage detection section 6, a processing section 7, and an output section 8.
  • the "signal injection device 10" is configured by the magnetic core 2, the signal injection section 3, and the magnetic flux cancellation section 4.
  • the magnetic core 2 is made of materials such as ferrite, permalloy, permendur, silicon steel plate, and pure iron, and has a circular, elliptical, rectangular, or It is formed in an annular shape such as a polygonal shape.
  • the magnetic core 2 includes a magnetic flux canceling winding W1 as a first winding for supplying a negative feedback DC current (hereinafter also referred to as “cancelling current Ic”) as a canceling current for magnetic flux cancellation.
  • a signal injection winding W2 as a second winding for injecting an AC signal S1 are wound thereon, and a Hall element 41 is arranged in the gap G between them. In this case, providing the gap G makes it difficult for the magnetic core 2 to be magnetically saturated.
  • the magnetic core 2 may employ a separable clamp type configuration.
  • a signal is injected into one end of the magnetic flux cancellation winding W1 and the signal injection winding W2, and the other end is connected to a reference potential (floating ground) described later.
  • the signal injection unit 3 is configured to generate an AC signal S1 for measurement and to inject the AC signal S1 into the injection target line L (to the core wire (conductor) of the injection target line L) in a non-contact manner.
  • the signal injection unit 3 generates an AC signal S1, which is a sine wave signal for measuring the internal impedance Zb of the battery Bat, and converts the AC signal S1 into a D class amplifier circuit arranged in the output stage. It comprises a signal generating circuit 31 capable of class-amplifying and outputting the signal, and the above-described signal injection winding W2.
  • the signal generation circuit 31 controls the signal level and frequency of the AC signal S1 to be injected into the injection target line L by the control signal Sc1 output from the processing unit 7 to sweep the frequency (for example, 1 KHz). 10 KHz), the generated AC signal S1 is output to the processing unit 7, and is amplified in class D and supplied to the signal injection winding W2.
  • the AC signal S1 is supplied to the signal injection winding W2 by a transformer method (the signal injection winding W2 is a primary winding with a plurality of turns and the injection target line L is a secondary winding with a single turn).
  • the AC current Iac based on the AC signal S1 flows through the signal injection winding W2, and the magnetic flux Mc based on the AC signal S1 is oriented as shown in FIG. is generated in the magnetic core 2 and is supplied (injected) to the line L to be injected as a normal mode signal.
  • the sweep of the frequency by the signal generation circuit 31 is not essential, and if the sweep is unnecessary, the signal generation circuit 31 may be configured to generate the AC signal S1 of the fixed frequency.
  • the magnetic flux cancellation unit 4 converts the magnetic flux Mb as the first magnetic flux generated in the magnetic core 2 in the direction shown in FIG. is configured to generate a magnetic flux Md as a second magnetic flux in the opposite direction in the magnetic core 2 so that it can be canceled.
  • the magnetic flux cancellation unit 4 includes a Hall element 41 as an example of a magnetic flux detection circuit disposed in the gap G, a voltage driver 42, a low-pass filter 43 (hereinafter also referred to as "LPF 43"), and a signal injection circuit. and a winding W2.
  • the Hall element 41 is an example of a "magnetic flux detection circuit” and is provided in the magnetic core 2 to output a voltage signal S2 corresponding to the magnetic flux generated in the magnetic core 2.
  • a current signal may be output as the detection signal from the Hall element 41, and a signal converted into a voltage signal by such a current signal is also included in the "voltage signal S2".
  • the "magnetic flux detection circuit” is not limited to the Hall element, and can be configured by arranging a fluxgate sensor, a magnetoresistive element (MR: Magneto Resistive), or the like on the magnetic core 2 .
  • GMR element Gaant Magneto Resistive
  • SMR semiconductor magnetoresistive element
  • AMR anisotropic magnetoresistive element
  • GMR Giant Magneto Resistive
  • TMR Tunnel Magneto Resistive
  • the voltage driver 42 is an example of an amplifier circuit that functions as a negative feedback amplifier circuit as a whole, and amplifies the voltage signal S2 and outputs it to the LPF 43 at low impedance.
  • the LPF 43 is an example of a filter circuit, blocks the output of the voltage signal S2 based on the AC signal S1 contained in the voltage signal S2 amplified by the voltage driver 42, and passes the voltage signal S2 based on the DC current Ib.
  • the magnetic flux is generated based on the magnetic flux Mc generated in the magnetic core 2 by supplying the magnetic flux canceling winding W1 with the canceling current Ic in the direction of canceling the magnetic flux Mb, and supplying the AC signal S1 to the signal injection winding W2.
  • the LPF 43 has, for example, a capacitor C1 connected between the input terminal Ti on the voltage driver 42 side and the reference potential, and a capacitor C1 connected between the input terminal Ti and the magnetic flux canceling winding W1 side.
  • its cutoff frequency is the frequency of the AC signal S1 (when the frequency is swept, the AC It has a frequency characteristic of a frequency lower than the lowest frequency of the signal S1, blocks the output of the voltage signal S2 based on the AC signal S1, and allows the voltage signal S2 based on the DC current Ib to pass.
  • the cutoff frequency is preferably as close to 0 Hz as possible. Therefore, in this magnetic flux cancellation unit 4, for example, a filter circuit is configured by the LPF 43 including an inductor formed of a reactor having a large inductance. For this reason, the LPF 43 has a cutoff frequency as close to 0 Hz as possible, blocks the output of the voltage signal S2 based on the AC signal S1, and allows only the voltage signal S2 based on the DC current Ib to pass through to reduce the magnetic flux Mb.
  • the canceling current Ic can be supplied to the magnetic flux canceling winding W1 in a canceling direction, and is constructed at a low cost.
  • the LPF 43 can employ low-pass filters of various configurations other than the L-type LC filter shown in FIG. For example, as shown in FIG.
  • the inductor L1 and the inductor L2 having a small inductance are connected in series between the input terminal Ti and the output terminal To, and the connection point of the inductors L2 and L1 and the reference potential are connected in series.
  • a T-type LC filter with the capacitor C1 connected therebetween may be used.
  • a ⁇ -type LC filter may be used.
  • the LPF 43 in each of the magnetic flux cancellers 4A, 4B, and 4C and the LPF 48 in the magnetic flux canceller 4D do not require the function of avoiding a decrease in the level of the injected current Ii, the internal inductor L1 is An inductor with a small inductance can be used instead of a reactor with a large .
  • the configuration of the LPF 43 in each of the magnetic flux canceling units 4, 4A, 4B, and 4C and the LPF 48 in the magnetic flux canceling unit 4D is not limited to LC-type low-pass filters such as L-type, T-type, and ⁇ -type, and resistors instead of inductors.
  • Various low-pass filters can be employed, such as RC-type low-pass filters such as L-type, T-type, and ⁇ -type using . Also, the frequency characteristics of the LPF 43 match the frequency characteristics indicating the ability of the magnetic flux canceling section 4 to cancel the magnetic flux generated in the magnetic core 2 .
  • the direction in which the canceling current Ic flows and the winding direction of the magnetic flux canceling winding W1 are such that the magnetic flux Mb generated in the magnetic core 2 due to the flow of the DC current Ib supplied from the battery Bat to the load Load is reduced. It is set in advance so that the magnetic flux Md is generated. Therefore, the voltage driver 42 of the magnetic flux canceling unit 4 generates a voltage signal S2 (cancelling current Ic) such that the magnitude of the magnetic flux Mb detected by the Hall element 41 becomes zero, and the voltage signal S2 (cancelling current Ic) is wound around the magnetic core 2.
  • the magnetic flux canceling winding W1 the magnetic saturation of the magnetic core 2 caused by the flow of the large DC current Ib in the line L to be injected is avoided.
  • the AC signal S1 to the signal injection winding W2 the magnetic flux Mc is reliably generated in the magnetic core 2, and the AC signal S1 is reliably injected into the line L to be injected.
  • the non-contact current sensor 5 is a so-called clamp-type current sensor that applies an injection current Ii, which is an alternating current flowing through the injection target line L (the core wire (conductor) of the injection target line L), to the injection target line L.
  • a detection signal S3 indicating the current value of the injected current Ii is output to the processing unit 7 by non-contact detection.
  • the voltage detection unit 6 includes a pair of contact-type probes P1 and P2, a buffer circuit 61 and an insulation circuit 62, detects the voltage across the battery Bat, and outputs a voltage signal S4 across the battery Bat to the processing unit 7.
  • the buffer circuit 61 is an example of a voltage detection circuit, and has a pair of input portions each provided with a coupling capacitor that blocks the input of a DC voltage and allows the input of an AC voltage. A voltage difference between the AC voltages detected by P2 is generated to output a voltage signal S4 as the voltage across the battery Bat.
  • the isolation circuit 62 insulates the reference potential (ground) of the circuit including the load Load, the battery Bat, and the buffer circuit 61 from the reference potential (floating ground) of the impedance measuring device 1 excluding the buffer circuit 61.
  • the both-ends voltage signal S ⁇ b>4 in this state is output to the processing unit 7 .
  • the processing unit 7 is composed of, for example, a CPU, and includes A/D conversion circuits 71 to 73, a phase shift circuit 74, quadrature detection circuits 75 and 76, an arithmetic circuit 77, and an internal memory 78.
  • the detection signal S3 and the voltage signal S4 between both terminals are inputted, and the internal impedance Zb of the battery Bat to be measured is measured based on the detection signal S3 and the voltage signal S4 between both terminals.
  • the A/D conversion circuit 71 receives the AC signal S1 output from the signal generation circuit 31 and performs A/D conversion (analog/digital conversion) to convert the voltage value, frequency and frequency of the sinusoidal AC signal S1 into Signal data D11 (sin ⁇ t) indicating the phase is output to phase shift circuit 74 and quadrature detection circuits 75 and 76.
  • the A/D conversion circuit 72 receives the detection signal S3 output from the non-contact current sensor 5 and A/D-converts the detection signal S3 (injection current Ii) into signal data indicating the current value, frequency and phase of the detection signal S3.
  • D12 is output to the quadrature detection circuit 75.
  • the A/D conversion circuit 73 receives the voltage signal S4 output from the isolation circuit 62 and A/D-converts the signal data D13 indicating the voltage value, frequency and phase of the voltage signal S4. output to
  • the phase shift circuit 74 receives the signal data D11 (sin ⁇ t) output from the A/D conversion circuit 71, and shifts the phase of the AC signal S1, which is a sinusoidal signal indicated by the signal data D11, by 90° to obtain a cosine signal.
  • a wave signal is generated, and signal data D11 (cos ⁇ t ) indicating the current value, frequency and phase of the cosine wave signal is generated and output to quadrature detection circuits 75 and 76 .
  • the quadrature detection circuit 75 receives the signal data D12 indicating the detection signal S3 (the alternating current value of the injected current Ii) output from the A/D conversion circuit 72, and detects the sine wave output from the A/D conversion circuit 71.
  • the signal data D12 is quadrature-detected with the signal data D11 (sin ⁇ t) indicating the AC signal S1 of the phase shift circuit 74 and the signal data D11 (cos ⁇ t) indicating the AC signal S1 of the cosine wave output from the phase shift circuit 74, and the current of the injection current Ii Current data Di indicating the in-phase component (I component: In-phse component) and the quadrature component (Q component: Quadrature component) of the value with a complex number is generated and output to the arithmetic circuit 77 .
  • the quadrature detection circuit 76 generates signal data D13 indicating the voltage signal S4 output from the A/D conversion circuit 73 (the voltage value of the AC voltage generated across the battery Bat due to the flow of the injected current Ii). Also, signal data D11 (sin ⁇ t) indicating the sinusoidal AC signal S1 output from the A/D conversion circuit 71 and signal data D11 (cos ⁇ t) indicating the cosine wave AC signal S1 output from the phase shift circuit 74 are input. ) to perform quadrature detection on the signal data D13 to generate the voltage data Dv indicating the in-phase component (I component: In-phase component) and the quadrature component (Q component: Quadrature component) of the voltage value of the voltage signal S4 at both ends with a complex number. is output to the arithmetic circuit 77.
  • the arithmetic circuit 77 receives the current data Di output from the quadrature detection circuit 75 and the voltage data Dv output from the quadrature detection circuit 76, and calculates the internal voltage of the battery Bat based on the current data Di and the voltage data Dv. Calculate the impedance Zb. Further, the arithmetic circuit 77 outputs the impedance data Dz indicating the internal impedance Zb of the battery Bat as the arithmetic result to the internal memory 78 for storage and to the output unit 8 .
  • the arithmetic circuit 77 is configured so that the current value of the injected current Ii detected by the non-contact current sensor 5 is within a target current value range (for example, 1 mA ⁇ 0.1 mA) required for impedance measurement.
  • the control signal Sc1 is output to the signal injection unit 3 to control the signal level of the AC signal S1 output from the signal injection unit 3 (signal generation circuit 31).
  • the arithmetic circuit 77 calculates the current value of the injection current Ii injected into the injection target line L based on the input current data Di (which may be the signal data D12 output from the A/D conversion circuit 72).
  • the internal memory 78 is composed of a semiconductor memory, a hard disk device, or the like, and stores impedance data Dz and the like.
  • the output unit 8 is composed of, for example, a display device (display) such as a liquid crystal panel or an organic EL panel, and inputs the impedance data Dz output from the processing unit 7 to display the internal impedance Zb of the battery Bat on the screen. indicate. It should be noted that the output unit 8 may be configured by an interface device that performs data communication with an external device instead of the display device, and may employ a configuration that outputs the impedance data Dz to this external device.
  • a display device such as a liquid crystal panel or an organic EL panel
  • the battery Bat and the load Load are connected by the injection target line L.
  • a large DC current Ib flows from the battery Bat through the injection target line L to the load Load.
  • the non-contact current sensor 5 is clamped to the line L to be injected, and the probes P1 and P2 are brought into contact with both ends of the battery Bat.
  • the processing unit 7 controls the signal generation circuit 31 to generate the AC signal S1.
  • the signal generation circuit 31 sweeps the frequency to generate the AC signal S1, outputs the generated AC signal S1 to the processing unit 7, and class D-amplifies the AC signal S1 to the signal injection winding W2. supply to In this case, by supplying the AC signal S1 to the signal injection winding W2, the AC current Iac flows through the signal injection winding W2, and the magnetic flux Mc based on the AC signal S1 flows through the magnetic core 2 in the direction shown in FIG.
  • An injection current Ii which is an AC signal generated and having a current value corresponding to the magnitude of the magnetic flux Mc, is injected into the line L to be injected. Therefore, the AC signal S1 is injected through the signal injection winding W2 into the core wire of the injection target line L in a non-contact state.
  • the magnetic flux canceling unit 4 cancels the magnetic flux Mb as the first magnetic flux generated in the magnetic core 2 in the direction shown in FIG.
  • a magnetic flux Md as a second magnetic flux is generated in the magnetic core 2 by the zero-flux method and canceled.
  • the Hall element 41 outputs a voltage signal S2 corresponding to the magnetic flux generated in the magnetic core 2 to the voltage driver 42 .
  • the voltage driver 42 amplifies the voltage signal S2 and outputs it to the LPF 43 at low impedance.
  • the LPF 43 blocks the output of the voltage signal S2 based on the AC signal S1 (the voltage signal S2 based on the magnetic flux Mc) included in the voltage signal S2 amplified by the voltage driver 42, and blocks the output of the voltage signal S2 based on the DC current Ib.
  • the canceling current Ic is supplied to the magnetic flux canceling winding W1 in a direction to pass through S2 to cancel the magnetic flux Mb, and the AC signal S1 is supplied to the signal injection winding W2. Blocks the input of the voltage signal appearing on line W1 to voltage driver 42 .
  • the voltage driver 42 does not apply a cancel current to cancel the magnetic flux Mc based on the AC signal S1 generated in the magnetic core 2, and the magnitude of the magnetic flux Mb detected by the Hall element 41 becomes zero. is generated and supplied to the magnetic flux canceling winding W1.
  • the LPF 43 prevents the voltage signal generated in the magnetic flux canceling winding W1 from being input to the voltage driver 42 based on the magnetic flux Mc generated in the magnetic core 2 by the supply of the AC signal S1 to the signal injection winding W2.
  • the non-contact current sensor 5 detects the injection current Ii flowing through the injection target line L to the injection target line L. In contrast, the current is detected in a non-contact manner, and a detection signal S3 indicating the current value is output to the processing unit 7 .
  • the buffer circuit 61 of the voltage detection unit 6 inputs the voltage across the battery Bat through the pair of probes P1 and P2 and outputs a voltage signal S4 between both ends of the AC voltage to the isolation circuit 62.
  • the buffer circuit 61 since the buffer circuit 61 has coupling capacitors in a pair of input parts, it generates only the differential voltage of the AC voltages detected by the probes P1 and P2 and obtains the voltage across the battery Bat as the voltage across the battery Bat. A signal S4 is output.
  • the isolation circuit 62 outputs the both-ends voltage signal S ⁇ b>4 to the processing section 7 .
  • the isolation circuit 62 outputs the voltage signal S4 to the processing unit 7 while isolating the reference potential (ground) of the load Load or the battery Bat from the reference potential (floating ground) of the impedance measuring device 1. do.
  • the voltage signal S4 is output to the impedance measuring device 1 through the insulating circuit 62, so that the AC signal S1 does not flow through the battery Bat even if the output voltage of the battery Bat is extremely high. It is possible to accurately detect a minute AC voltage generated in the battery Bat.
  • the A/D conversion circuit 71 receives the AC signal S1 and A/D-converts it to generate signal data D11 (sin ⁇ t) indicating the voltage value, frequency and phase of the sinusoidal AC signal S1. Output to phase shift circuit 74 and quadrature detection circuits 75 and 76 . Further, the A/D conversion circuit 72 receives the detection signal S3 and A/D-converts it to output signal data D12 indicating the current value, frequency and phase of the detection signal S3 to the quadrature detection circuit 75 .
  • the A/D conversion circuit 73 receives the voltage signal S4 across both ends and outputs signal data D12 indicating the voltage value, frequency and phase of the voltage signal S4 across the quadrature detection circuit 76 by A/D conversion.
  • the phase shift circuit 74 receives the signal data D11 and shifts the phase of the AC signal S1, which is a sine wave signal indicated by the signal data D11, by 90° to generate a cosine wave signal.
  • Signal data D11 (cos ⁇ t ) indicating the current value, frequency and phase is generated and output to the quadrature detection circuits 75 and 76 .
  • the quadrature detection circuit 75 receives signal data D12 representing the detection signal S3, as well as signal data D11 (sin ⁇ t) representing the sine wave AC signal S1 and signal data D11 (cos ⁇ t) representing the cosine wave AC signal S1. , quadrature detection is performed on the signal data D12 to generate current data Di indicating the in-phase component and the quadrature component of the current value of the injected current Ii by a complex number, and output to the arithmetic circuit 77 .
  • the quadrature detection circuit 76 inputs the signal data D13 indicating the both-ends voltage signal S4, and quadrature-detects the signal data D13 with the signal data D11 (sin ⁇ t) and the signal data D11 (cos ⁇ t) to obtain the two-ends voltage signal S4. It generates voltage data Dv that indicates the in-phase component and the quadrature component of the voltage value by a complex number and outputs it to the arithmetic circuit 77 .
  • the arithmetic circuit 77 inputs the current data Di and the voltage data Dv, calculates the internal impedance Zb of the battery Bat based on the current data Di and the voltage data Dv, and outputs the impedance data Dz to the internal memory 78. It is stored and output to the output section 8 .
  • the output unit 8 receives the impedance data Dz and displays the internal impedance Zb of the battery Bat on the screen of the display device.
  • the arithmetic circuit 77 can display the frequency characteristic of the internal impedance Zb of the battery Bat with respect to the frequency of the AC signal S1 on the screen of the display device by including the frequency information of the AC signal S1 in the impedance data Dz.
  • the arithmetic circuit 77 generates current value information of the DC current Ib flowing through the injection target line L based on the input current data Di (which may be the signal data D12 output from the A/D conversion circuit 72), By including the current value information in the impedance data Dz, it is possible to display the characteristics of the internal impedance Zb of the battery Bat with respect to the current value of the direct current Ib on the screen of the display device.
  • Di which may be the signal data D12 output from the A/D conversion circuit 72
  • the arithmetic circuit 77 monitors the current value of the injection current Ii injected into the injection target line L based on the input current data Di (which may be the signal data D12 output from the A/D conversion circuit 72).
  • the control signal Sc1 is output from the signal injection unit 3 so that the current value of the injected current Ii detected by the non-contact current sensor 5 is included in the target current value range required for impedance measurement. It controls the signal level of the AC signal S1 to be applied.
  • the ratio (S/N) of the signal level (S) to the noise level (N) of the detection signal S3 and the voltage signal S4 can be increased.
  • the internal impedance Zb can be accurately measured in the arithmetic processing (measurement processing) of the internal impedance Zb performed by the arithmetic circuit 77 .
  • the measurement of the internal impedance Zb of the battery Bat by the impedance measuring device 1 is completed.
  • the magnetic flux canceling unit 4 supplies the canceling current Ic for generating the magnetic flux Md in the magnetic core 2 to the magnetic flux canceling winding W1 wound around the magnetic core 2,
  • the magnetic flux Mb generated in the magnetic core 2 due to the DC current Ib flowing through the injection target line L inserted through the magnetic core 2 is canceled. Therefore, according to the signal injection device 10, it is possible to avoid magnetic saturation of the magnetic core 2 caused by the flow of a large DC current Ib in the injection target line L, and as a result, the signal injection winding W2 is provided with an AC current.
  • the magnetic flux Mc can be reliably generated in the magnetic core 2, and the AC signal S1 can be reliably and efficiently injected into the injection target line L in which the DC current Ib is flowing.
  • the signal injection device 10 includes a magnetic flux canceling winding W1 and a signal injection winding W2 which are independent of each other, and the LPF 43 of the magnetic flux canceling section 4 is included in the voltage signal S2 amplified by the voltage driver 42.
  • the canceling current Ic is supplied to the magnetic flux canceling winding W1 in a direction to block the output of the voltage signal S2 based on the alternating current signal S1 and to allow the voltage signal S2 based on the direct current Ib to pass through to cancel the magnetic flux Mb.
  • the input of the voltage signal generated in the magnetic flux canceling winding W1 to the voltage driver 42 is blocked based on the signal S1.
  • the signal injection device 10 it is possible to avoid magnetic saturation of the magnetic core 2 caused by the flow of a large DC current Ib in the injection target line L, and as a result, the signal injection winding W2 is provided with an AC current.
  • the magnetic flux Mc can be reliably generated in the magnetic core 2, and the AC signal S1 can be reliably and efficiently injected into the line L to be injected.
  • the configuration of the "signal injection device” and the configuration of the “impedance measurement device” are not limited to the example of the impedance measurement device 1 described above.
  • the configuration shown in FIG. 3 can be adopted for the magnetic flux canceller 4 .
  • constituent elements having the same functions as those of the constituent elements in the impedance measuring apparatus 1 described above are denoted by the same reference numerals, and overlapping explanations are omitted.
  • one magnetic flux canceling winding W1 has a function of a canceling winding and a function of a signal injection winding.
  • the LPF 43 is an example of a filter circuit and has frequency characteristics similar to those of the LPF 43 of the magnetic flux canceling unit 4.
  • Based on the AC signal S1 contained in the voltage signal S2 output from the Hall element 41 Blocks the output of the voltage signal S2 and allows the voltage signal S2 based on the DC current Ib to pass.
  • the addition circuit 44 adds the voltage signal S2 that has passed through the LPF 43 and the AC signal S1 to generate and output an addition signal Sa.
  • the voltage driver 42 amplifies the addition signal Sa output from the adder circuit 44, supplies it to the magnetic flux canceling winding W1, and supplies the canceling current Ic to the magnetic flux canceling winding W1 in a direction to cancel the magnetic flux Mb.
  • an AC signal S1 AC current Iac is supplied to the magnetic flux canceling winding W1 to inject the AC signal S1 into the line L to be injected.
  • the voltage driver 42 amplifies the addition signal Sa obtained by adding the voltage signal S2 and the AC signal S1 by the addition circuit 44, and supplies the cancellation current Ic to the magnetic flux cancellation winding W1. and the alternating current Iac are added in the magnetic flux canceling winding W1 to generate magnetic fluxes Md and Mc in the magnetic core 2 . Therefore, according to the signal injection device 10, it is possible to avoid magnetic saturation of the magnetic core 2 caused by the flow of a large DC current Ib in the injection target line L, and as a result, the magnetic flux canceling winding W1 is provided with an AC current.
  • the magnetic flux Mc can be reliably generated in the magnetic core 2, and the AC signal S1 can be reliably and efficiently injected into the line L to be injected. Further, according to the signal injection device 10, it is possible to realize the function of the canceling winding and the function of the signal injection winding using one magnetic flux cancellation winding W1. can be constructed at low cost.
  • the signal injection section 3A includes a voltage driver 32 in addition to the configuration of the signal injection section 3 described above.
  • one magnetic flux canceling winding W1 has a function of a canceling winding and a function of a signal injection winding.
  • the LPF 43 is an example of a filter circuit and has frequency characteristics similar to those of the LPF 43 of the magnetic flux canceling unit 4. Based on the AC signal S1 contained in the voltage signal S2 output from the Hall element 41 Blocks the output of the voltage signal S2 and allows the voltage signal S2 based on the DC current Ib to pass.
  • the voltage driver 42 amplifies the voltage signal S2 that has passed through the LPF 43 and supplies a canceling current Ic to one end T1 of the magnetic flux canceling winding W1 in a direction to cancel the magnetic flux Mb. Further, the voltage driver 32 amplifies the AC signal S1 and supplies the amplified AC signal S1 (AC current Iac) to the other end T2 of the magnetic flux canceling winding W1 to inject the AC signal S1 into the line L to be injected. .
  • the voltage driver 42 supplies the voltage signal S2 (cancelling current Ic) from one end T1 of the magnetic flux canceling winding W1 toward the output portion of the voltage driver 32 via the magnetic flux canceling winding W1. Then, the voltage driver 32 supplies an AC signal S1 (AC current Iac) from the other end T2 side of the magnetic flux canceling winding W1 toward the output part of the voltage driver 42 via the magnetic flux canceling winding W1, Magnetic fluxes Md and Mc are generated in the magnetic core 2 while the canceling current Ic and the alternating current Iac are added in the magnetic flux canceling winding W1.
  • the signal injection device 10 it is possible to avoid magnetic saturation of the magnetic core 2 caused by the flow of a large DC current Ib in the injection target line L, and as a result, the magnetic flux canceling winding W1 is provided with an AC current.
  • the magnetic flux Mc can be reliably generated in the magnetic core 2, and the AC signal S1 can be reliably and efficiently injected into the line L to be injected.
  • the signal injection device 10 it is possible to realize the function of the canceling winding and the function of the signal injection winding using one magnetic flux cancellation winding W1. can be constructed at low cost.
  • the LPF 43 is an example of a filter circuit, and has frequency characteristics similar to those of the LPF 43 of the magnetic flux cancellation unit 4. While blocking the output of the voltage signal S2 based on the DC current Ib, the voltage signal S2 based on the DC current Ib is allowed to pass.
  • the current driver 45 amplifies the voltage signal S2 that has passed through the LPF 43, outputs a cancellation current Ic with a high output impedance in a direction to cancel the magnetic flux Mb, and supplies it to the magnetic flux cancellation winding W1.
  • the signal injection unit 3 includes a signal injection winding W2 wound around the magnetic core 2, and the signal injection winding W2 is supplied with an AC signal S1 ( The AC signal S1 is injected into the line L to be injected by supplying the AC current Iac).
  • the current driver 45 supplies the voltage signal S2 (cancelling current Ic) to the magnetic flux canceling winding W1 in a state of high output impedance.
  • the magnetic flux Mc is generated in the magnetic core 2 by the signal injection unit 3 supplying the AC signal S1 to the signal injection winding W2.
  • an alternating current based on the generated magnetic flux Mc tends to flow through the magnetic flux canceling winding W1, but since the output impedance of the current driver 45 is high, the alternating current based on the magnetic flux Mc will flow through the magnetic flux canceling winding W1. to the output of the current driver 45.
  • the current driver 45 does not apply a cancel current to cancel the magnetic flux Mc based on the AC signal S1 generated in the magnetic core 2, and the magnitude of the magnetic flux Mb detected by the Hall element 41 is zero. is generated and supplied to the magnetic flux canceling winding W1. Therefore, according to the signal injection device 10, it is possible to avoid magnetic saturation of the magnetic core 2 caused by the flow of a large DC current Ib in the injection target line L, and as a result, the signal injection winding W2 is provided with an AC current. By supplying the signal S1 (alternating current Iac), the magnetic flux Mc can be reliably generated in the magnetic core 2, and the alternating signal S1 can be reliably and efficiently injected into the line L to be injected.
  • any one of the Hall element 41, the fluxgate sensor, and the GMR element is arranged in the magnetic core 2 to configure the magnetic flux detection circuit, so that although the configuration is simple, Magnetic flux Mb can be reliably detected.
  • the filter circuit by configuring the filter circuit with the LPF 43 including an inductor formed of a reactor with a large inductance, the cutoff frequency can be made as close to 0 Hz as possible, and as a result, only the voltage signal S2 based on the DC current Ib is passed. and can be constructed at low cost.
  • the magnetic flux Mc is generated in the magnetic flux canceling winding W1 based on the magnetic flux Mc generated in the magnetic core 2 by supplying the AC signal S1 to the signal injecting winding W2.
  • the magnetic flux canceling unit 4D shown in FIG. 6 applies a canceling current Ic that lowers the signal level of the voltage signal S2 according to the magnetic flux based on the double frequency of the AC signal S1 generated in the magnetic core 2 to the magnetic flux canceling winding. W1 to avoid magnetic saturation of the magnetic core 2 caused by a large DC current Ib flowing through the line L to be injected. Since the signal injection device 10 using the magnetic flux canceller 4D does not use a magnetic flux detection circuit such as the Hall element 41, an annular core with no gap is used as the magnetic core 2. FIG. However, an annular core with a gap can also be used as the magnetic core 2 .
  • the signal generation circuit 31 of the signal injection unit 3 includes a 2f signal generation circuit 31a and a 1/2 frequency division circuit 31b.
  • the 2f signal generation circuit 31a generates a reference signal Sr for synchronous detection having a frequency twice that of the AC signal S1.
  • the 1/2 frequency dividing circuit 31b generates an AC signal S1 to be injected into the injection target line L by dividing the frequency of the reference signal Sr output from the 2f signal generating circuit 31a by 1/2.
  • the magnetic flux canceling section 4D includes a magnetic flux canceling winding W1, an adding circuit 44, voltage drivers 42, 46, 49, a synchronous detection circuit 47 and an LPF 48.
  • the synchronous detection circuit 47 is based on the voltage signal S2 having a frequency twice that of the AC signal S1 contained in the voltage signal S2 generated in the magnetic flux canceling winding W1 (that is, a distorted signal of the AC signal S1). Synchronous detection is performed with the signal Sr to output an output signal Sd.
  • the LPF 48 which is an example of a filter circuit, is a DC signal contained in the output signal Sd of the synchronous detection circuit 47, that is, a harmonic signal of twice the frequency that is a distorted signal of the AC signal S1 (frequency reference signal Sr and It extracts (passes) the DC signal Sdc generated based on the same frequency component) and blocks the passage of AC signals such as frequency components twice or more than the reference signal Sr.
  • the voltage driver 49 amplifies and outputs the DC signal Sdc output from the LPF 48 .
  • the adder circuit 44 adds the DC signal Sdc output from the amplifier circuit 49 and the AC signal S1 output from the signal generation circuit 31 (1/2 frequency divider circuit 31b) to output an addition signal Sa.
  • the voltage driver 42 amplifies the addition signal Sa output from the addition circuit 44 and supplies it to the magnetic flux canceling winding W1.
  • the 2f signal generation circuit 31a in the signal generation circuit 31 of the signal injection unit 3 generates the reference signal Sr for synchronous detection and outputs it to the 1/2 frequency dividing circuit 31b and the synchronous detection circuit 47.
  • the 1/2 frequency dividing circuit 31b inputs the reference signal Sr and divides the frequency by 1/2 to generate the AC signal S1, and outputs it to the adding circuit 44 and the A/D conversion circuit 71 of the processing unit 7. do.
  • the voltage driver 46 amplifies the input addition signal Sa and outputs it to the synchronous detection circuit 47.
  • the synchronous detection circuit 47 performs synchronous detection using the reference signal Sr, which is a voltage signal having a frequency twice that of the AC signal S1 generated in the magnetic flux canceling winding W1, and outputs the voltage signal generated by the synchronous detection. Output as signal Sd.
  • the LPF 48 extracts (passes) the DC signal Sdc contained in the output signal Sd of the synchronous detection circuit 47 (that is, the DC signal based on the harmonic signal of double the frequency, which is the distortion signal of the AC signal S1). At the same time, it blocks the passage of AC signals.
  • the voltage driver 49 amplifies the DC signal Sdc output from the LPF 48 and outputs it to the adding circuit 44 .
  • the addition circuit 44 adds the DC signal Sdc output from the amplifier circuit 49 and the AC signal S1 output from the signal generation circuit 31 (1/2 frequency dividing circuit 31b) to generate the addition signal Sa. Output. Further, the voltage driver 42 amplifies the addition signal Sa output from the addition circuit 44 and supplies it to the magnetic flux canceling winding W1. In this case, the voltage driver 42 outputs the addition signal Sa, so that the cancellation current Ic based on the DC signal Sdc is supplied to the magnetic flux cancellation winding W1 in a direction to cancel the magnetic flux Mb, and the magnetic saturation of the magnetic core 2 is caused.
  • the AC signal S1 (AC current Iac) is supplied to the magnetic flux canceling winding W1, and the AC signal S1 is injected into the line L to be injected. That is, the magnetic flux canceling section 4D is feedback-controlled as a whole without using a magnetic flux detecting circuit such as the Hall element 41, so that the magnetic flux canceling section is configured as a flux gate sensor as a whole.
  • the signal injection device 10 it is possible to avoid magnetic saturation of the magnetic core 2 caused by the flow of a large DC current Ib in the injection target line L, and as a result, the magnetic flux canceling winding W1 is provided with an AC current.
  • the signal S1 alternating current Iac
  • the magnetic flux Mc can be reliably generated in the magnetic core 2, and the alternating signal S1 can be reliably and efficiently injected into the line L to be injected.
  • the signal injection device 10 detects the magnitude of a harmonic signal having a frequency twice the frequency of the AC signal S1, which is a distortion signal of the AC signal S1 generated in the magnetic core 2 in the magnetic saturation state, and detects the distortion.
  • the magnetic flux canceller 4D as a whole is feedback-controlled so as to reduce the signal. Therefore, according to the signal injection device 10, the magnetic saturation of the magnetic core 2 can be detected directly. , the AC signal S1 can be injected into the injection target line L more reliably and efficiently. Further, according to the signal injection device 10, it is possible to realize the function of the canceling winding and the function of the signal injection winding using one magnetic flux cancellation winding W1. can be constructed at low cost.
  • the magnetic flux cancellation unit 4D if the necessary gain is ensured in each circuit, at least one of the voltage driver 46 and the voltage driver 49 can be omitted.
  • the frequency of the AC signal S1 is swept by the signal generation circuit 31 in the signal injection section 3, thereby incorporating the signal injection device 10 into an impedance measurement device, for example.
  • the AC signal S1 which is a sine wave signal
  • the frequency response can be measured. Therefore, highly accurate impedance measurement can be performed.
  • the signal injection device 10 is provided, and when the processing unit 7 measures the internal impedance Zb of the battery Bat to be measured which is connected in series to the injection target line,
  • the processing unit 7 measures the internal impedance Zb of the battery Bat to be measured which is connected in series to the injection target line
  • the current value of the AC signal S1 flowing through the injection target line L current value of the injected current Ii: voltage signal S2
  • the voltage value generated across the battery Bat By measuring the internal impedance Zb of the battery Bat based on the voltage signal S4) between both ends, the magnetic flux Mc is more reliably generated in the magnetic core 2, and the AC signal S1 is more reliably and efficiently supplied to the line L to be injected.
  • the internal impedance Zb of the battery Bat (measurement object) can be measured with high accuracy.
  • the non-contact current sensor 5 detects the injection current Ii (current of alternating current) flowing through the injection target line L without contacting the injection target line L, and detects the voltage signal.
  • S2 is output to the processing unit 7, and the voltage detection unit 6 outputs the both-ends voltage signal S4 detected by contacting both ends of the battery Bat to be measured to the processing unit 7 in a state insulated from the battery Bat, Even if the output voltage of the battery Bat is extremely high, or if noise such as switching noise exists around the load Load or the impedance measuring device 1, the injected current Ii flows to the battery Bat. Therefore, it is possible to accurately detect a minute AC voltage generated in the battery Bat.
  • the internal impedance Zb of the battery Bat can be measured with high accuracy. Further, according to the impedance measuring device 1, the internal impedance Zb of the battery Bat can be measured in a non-contact manner without cutting the injection target line L by using the non-contact current sensor 5. FIG.
  • the arithmetic circuit 77 of the processing unit 7 outputs the in-phase component and the quadrature component of the injected current Ii (detection signal S3) as an alternating current output from the quadrature detection circuit 75, and the quadrature detection
  • the internal impedance Zb of the battery Bat to be measured is calculated based on the in-phase component and the quadrature component of the voltage signal S4 as an AC voltage output from the circuit 76, thereby obtaining the AC signal injected into the line L to be injected. Even when the signal level of S1 is small, the ratio (S/N) of the signal level (S) to the noise level (N) can be increased to accurately measure the internal impedance Zb.
  • the signal injection device 10 can be applied not only to the impedance measurement device, but also to various measuring instruments that inject the AC signal S1 into the injection target line L for measurement.
  • the impedance measuring device can measure not only the internal impedance Zb of the battery Bat but also the impedance of various measurement targets. For example, in a closed loop in which a water electrolysis cell that produces hydrogen by electrolyzing water is used as a measurement target, and a power source for the water electrolysis cell instead of the load Load is connected by an injection target line L, water electrolysis is performed.
  • the internal impedance of the water electrolysis cell can also be measured by connecting probes P1 and P2 to the anode and cathode of the cell.
  • a magnetic core through which the injection target line L is inserted can be provided separately from the magnetic core 2, and the winding W2 can be wound around the separate magnetic core 2.
  • the impedance measuring device 1 using the non-contact type current sensor 5 as a current sensor for detecting the current value of the injection current Ii has been described, it is not limited to the non-contact type, and a current transformer or A configuration in which a current detection resistor or the like is provided to detect the current value of the injected current Ii can be adopted.
  • the isolation circuit 62 is omitted, and the reference potential (ground) and the reference potential (floating ground) of the impedance measuring device 1 are separated from each other. ground) can be at the same potential.
  • the A/D conversion circuits 71, 72, and 73 can be provided in the signal generation circuit 31, the non-contact current sensor 5, and the voltage detection section 6, respectively.
  • the 2f signal generation circuit 31a and the 1/2 frequency division circuit 31b are configured separately from the signal generation circuit 31. A configuration in which they are provided independently can also be adopted.
  • the impedance measuring device 1 when measuring the internal impedance Zb of one or more battery cells in the battery Bat configured by connecting a plurality of battery cells in series, is the internal impedance Zb of one battery cell to be measured, or the series connection A series internal impedance Zb of a plurality of battery cells can be measured.
  • the impedance measuring device 1 an example in which the impedance such as the internal impedance Zb of the battery Bat is calculated by digital processing has been described. It is also possible to employ a configuration in which the impedance is obtained by computation.
  • the present invention it is possible to avoid magnetic saturation of the magnetic core due to the flow of a large direct current in the line to be injected.
  • the AC signal can be reliably and efficiently injected into the injection target line in which the DC current is flowing. Accordingly, the present invention can be widely applied to such signal injection devices and impedance measurement devices.
  • Impedance measuring device 10 Signal injection device 2 Magnetic core 3, 3A Signal injection part 4, 4A to 4D Magnetic flux cancellation part 41 Hall element 42 Voltage driver 43, 48 LPF 44 addition circuit 45 current driver 47 synchronous detection circuit 5 non-contact current sensor 6 voltage detection unit 61 buffer circuit 62 isolation circuit 7 processing unit 74 phase shift circuit 75, 76 quadrature detection circuit 77 arithmetic circuit Bat battery Ii injection current Load load S1 AC signal S2 Voltage signal S3 Detection signal S4 Both-end voltage signal Sd Output signal Sdc DC signal Sr Reference signal W1 Magnetic flux cancellation winding W2 Signal injection winding

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Measuring Magnetic Variables (AREA)

Abstract

直流電流が流れている注入対象ラインに交流信号を確実に注入可能な信号注入装置を提供する。 直流電流Ibが流れている注入対象ラインLが挿通される環状の磁性コア2と、注入対象ラインLに注入する交流信号S1を生成して注入対象ラインLに注入する信号注入部3とを備えた信号注入装置10であって、磁性コア2に挿通されている注入対象ラインLに直流電流Ibが流れることに起因して磁性コア2に発生する磁束Mbをキャンセルするための磁束Mdを発生させるキャンセル電流Icを磁性コア2に巻回された磁束キャンセル用巻線W1に供給する磁束キャンセル部4を備えている。

Description

信号注入装置およびインピーダンス測定装置
 本発明は、導体で形成されている注入対象ラインに交流信号を非接触で注入可能な信号注入装置に関し、特に直流大電流が流れている電力供給用の注入対象ラインに交流信号を注入するのに適した信号注入装置に関するものである。また、そのような信号注入装置を備えて、測定対象に交流信号を流した状態において、その測定対象のインピーダンスを測定するインピーダンス測定装置に関するものである。
 この種の信号注入装置として、下記の特許文献に開示された信号注入抽出装置が知られている。この信号注入抽出装置では、第1周波数の電流が流れる導体(注入対象ライン)の外周に配置される強磁性体(磁気コア)と、強磁性体に配置されて、第1周波数と異なる第2周波数の信号電流(交流信号)を導体に注入する第1巻線(信号注入巻線)と、強磁性体に配置されて第1周波数の電流が流れる第2巻線(キャンセル巻線)と、第2巻線に接続される増幅回路とを備えて構成されている。また、この信号注入抽出装置では、増幅回路は、第1周波数の電流を通過させ、第2周波数の信号電流を遮断させるフィルタ部と、フィルタ部に直列に配置される増幅部と、フィルタ部および増幅部に並列に配置されるインピーダンス素子とを備えて構成されている。
 この信号注入抽出装置では、第2周波数としての1.7MHz以上50MHz以下、特に、1.7MHz以上30MHz以下の信号電流を強磁性体に巻回されている第1巻線に供給する。この際に、第1周波数としての50Hzや60Hzの大電流である商用交流が導体に流れている状態では、商用交流に起因する大きな磁束が強磁性体に発生して強磁性体が磁気飽和を起こすことがあり、その際には、信号電流を注入することが困難になる。このため、この磁化飽和を抑制するために、この信号注入抽出装置では、強磁性体に巻回されている第2巻線にキャンセル電流を流すことで、商用交流によって強磁性体に生じる磁束を打ち消している。
 この場合、第1巻線に信号電流を注入しつつ第2巻線にキャンセル電流を流している状態では、信号電流の供給に起因する磁束と、キャンセル電流が流れることに起因する磁束の双方が強磁性体に発生する。このため、この信号注入抽出装置では、第2巻線が両磁束に基づく誘導電流を検出し、フィルタ部が、第2巻線から出力された誘導電流のうちの信号電流に起因する誘導電流を遮断しつつ、商用交流に起因する誘導電流を通過させる。
 そして、増幅回路が、フィルタ部から出力された商用交流に起因する誘導電流を増幅して、商用電流により生じる磁界を打ち消す方向にキャンセル電流をインピーダンス素子を介して第2巻線に供給する。これにより、導体に印加される第1周波数の商用交流による磁束を効率よく打ち消す反面、第2周波数の信号電流による磁束をほとんど打ち消さない、或いは全く打ち消さない。そのため、この信号注入抽出装置では、第1周波数の商用交流が流れる導体に対して、第2周波数の信号電流をより確実に注入することができることが可能となっている。
特許第4114615号公報(第3-7頁、第1図)
 ところが、上記の信号注入抽出装置には、以下のような問題点が存在する。具体的には、例えば、燃料電池車(FCV:Fuel Cell Vehicle)などにおいては、直流大電流が流れるパワーライン(注入対象ライン)に、複数の電池セルを直列接続して構成される電池(バッテリー)が接続されており、このパワーラインには、電池からの直流大電流が流れている。このような状態において、電池全体としてのインピーダンスや、各電池セルのインピーダンスを測定したいとの要望が存在する。そして、そのインピーダンスを測定する場合、インピーダンス測定用の交流信号(例えば、100Hz~10MHz、特に1KHz~10KHz)を電池に供給する必要がある。この際に、電池に負荷が接続された状態で電池から負荷に直流大電流が流れている場合、上記の信号注入抽出装置を用いて測定用の交流信号をパワーラインに注入しようとしても、この信号注入抽出装置では、商用交流が強磁性体に流れることに起因する磁束を打ち消すことができるものの、直流電流が流れることに起因して強磁性体に発生している磁束をキャンセルすることはできない。このため、強磁性体にパワーラインを挿通させた場合には、直流大電流が流れることに起因した磁束で強磁性体が磁気飽和してしまい、交流信号をパワーラインに注入することができないという問題点がある。
 本発明は、かかる問題点に鑑みてなされたものであり、直流電流が流れている注入対象ラインに交流信号を確実に注入可能な信号注入装置、およびそのような信号注入装置を備えて測定対象のインピーダンスを測定可能なインピーダンス測定装置を提供することを主目的とする。
 上記目的を達成すべく、本発明に係る信号注入装置は、直流電流が流れている注入対象ラインが挿通される環状の磁性コアと、前記注入対象ラインに注入する交流信号を生成して前記注入対象ラインに注入する信号注入部とを備えた信号注入装置であって、前記磁性コアに挿通されている前記注入対象ラインに前記直流電流が流れることに起因して当該磁性コアに発生する第1の磁束をキャンセルするための第2の磁束を発生させるキャンセル電流を当該磁性コアに巻回された第1の巻線に供給する磁束キャンセル部を備えている。
 この信号注入装置では、磁束キャンセル部が、第2の磁束を磁性コアに発生させるキャンセル電流を磁性コアに巻回された第1の巻線に供給することで、磁性コアに挿通されている注入対象ラインに直流電流が流れることに起因して磁性コアに発生する第1の磁束をキャンセルする。したがって、この信号注入装置によれば、大電流の直流電流が注入対象ラインに流れることに起因する磁性コアの磁気飽和を回避することができる結果、第2の巻線に交流信号を供給することで、磁性コアにおいて交流信号に基づく磁束を確実に発生させて、直流電流が流れている注入対象ラインに交流信号を確実にしかも効率良く注入することができる。
 また、本発明に係る信号注入装置は、前記磁束キャンセル部は、前記磁気コアに巻回されると共に当該磁気コアに発生する前記第1の磁束をキャンセルするための第1の巻線と、前記磁気コアに設けられて当該磁気コアに発生する磁束に応じた電圧信号を出力する磁束検出回路と、前記磁束検出回路から出力された前記電圧信号を増幅する増幅回路と、前記増幅回路で増幅された前記電圧信号に含まれている前記交流信号に基づく電圧信号の出力を阻止すると共に前記直流電流に基づく電圧信号を通過させて前記第1の磁束をキャンセルする向きで前記キャンセル電流を前記第1の巻線に供給し、かつ前記交流信号に基づいて前記キャンセル巻線に発生する電圧信号の前記増幅回路への入力を阻止するフィルタ回路とを備えて構成され、前記信号注入部は、前記磁性コアに巻回された第2の巻線を備え、前記第2の巻線に前記交流信号を供給して当該交流信号を前記注入対象ラインに注入する。
 この信号注入装置では、別個独立した第1の巻線および第2の巻線を備え、磁束キャンセル部のフィルタ回路が、増幅回路によって増幅された電圧信号に含まれている交流信号に基づく電圧信号の出力を阻止すると共に直流電流に基づく電圧信号を通過させて第1の磁束をキャンセルする向きでキャンセル電流を第1の巻線に供給し、かつ交流信号に基づいて第1の巻線に発生する電圧信号の増幅回路への入力を阻止する。したがって、この信号注入装置によれば、大電流の直流電流が注入対象ラインに流れることに起因する磁性コアの磁気飽和を回避することができる結果、第2の巻線に交流信号を供給することにより、磁性コアにおいて交流信号に基づく磁束を確実に発生させて、注入対象ラインに交流信号を確実にしかも効率良く注入することができる。
 また、本発明に係る信号注入装置は、前記磁束キャンセル部は、前記磁気コアに巻回されると共に当該磁気コアに発生する前記第1の磁束をキャンセルするための第1の巻線と、前記磁気コアに設けられて当該磁気コアに発生する磁束に応じた電圧信号を出力する磁束検出回路と、前記磁束検出回路から出力された前記電圧信号に含まれている前記交流信号に基づく電圧信号の出力を阻止すると共に前記直流電流に基づく電圧信号を通過させるフィルタ回路と、前記フィルタ回路を通過した前記電圧信号と前記交流信号とを加算して加算信号を出力する加算回路と、前記加算回路から出力された加算信号を増幅すると共に前記第1の巻線に供給して、前記第1の磁束をキャンセルする向きで前記キャンセル電流を当該第1の巻線に供給すると共に前記交流信号を当該第1の巻線に供給して当該交流信号を前記注入対象ラインに注入する増幅回路とを備えている。
 この信号注入装置では、増幅回路が、電圧信号と交流信号とが加算回路によって加算された加算信号を増幅して第1の巻線に供給することにより、キャンセル電流と交流信号に基づく交流電流とが第1の巻線において加算されつつ、磁性コアに第2の磁束および交流信号に基づく磁束を発生させる。したがって、この信号注入装置によれば、大電流の直流電流が注入対象ラインに流れることに起因する磁性コアの磁気飽和を回避することができる結果、第1の巻線に交流信号(加算信号)を供給することにより、磁性コアにおいて交流信号に基づく磁束を確実に発生させて、注入対象ラインに交流信号を確実にしかも効率良く注入することができる。また、この信号注入装置によれば、1つの第1の巻線を用いて、キャンセル用巻線の機能と信号注入用巻線の機能とを実現させることができるため、信号注入装置を安価に構成することができる。
 また、本発明に係る信号注入装置は、前記磁束キャンセル部は、前記磁気コアに巻回されると共に当該磁気コアに発生する前記第1の磁束をキャンセルするための第1の巻線と、前記磁気コアに設けられて当該磁気コアに発生する磁束に応じた電圧信号を出力する磁束検出回路と、前記磁束検出回路から出力された前記電圧信号に含まれている前記交流信号に基づく電圧信号の出力を阻止すると共に前記直流電流に基づく電圧信号を通過させるフィルタ回路と、前記フィルタ回路を通過した前記電圧信号を増幅すると共に前記第1の磁束をキャンセルする向きで前記キャンセル電流を前記第1の巻線の一端に供給する増幅回路とを備え、前記信号注入部は、前記交流信号を増幅すると共に当該増幅した交流信号を前記第1の巻線の他端に供給して当該交流信号を前記注入対象ラインに注入する増幅回路を備えている。
 この信号注入装置では、増幅回路が第1の巻線の一端にキャンセル電流を供給し、信号注入部の増幅回路が増幅した交流信号を第1の巻線の他端に供給することにより、キャンセル電流と交流信号に基づく交流電流とが第1の巻線において加算されつつ、磁性コアに第2の磁束および交流信号に基づく磁束を発生させる。したがって、この信号注入装置によれば、大電流の直流電流が注入対象ラインに流れることに起因する磁性コアの磁気飽和を回避することができる結果、第1の巻線に交流信号を供給することにより、磁性コアにおいて交流信号に基づく磁束を確実に発生させて、注入対象ラインに交流信号を確実にしかも効率良く注入することができる。また、この信号注入装置によれば、1つの第1の巻線を用いて、キャンセル用巻線の機能と信号注入用巻線の機能とを実現させることができるため、信号注入装置を安価に構成することができる。
 また、本発明に係る信号注入装置は、前記磁束キャンセル部は、前記磁気コアに巻回されると共に当該磁気コアに発生する前記第1の磁束をキャンセルするための第1の巻線と、前記磁気コアに設けられて当該磁気コアに発生する磁束に応じた電圧信号を出力する磁束検出回路と、前記磁束検出回路から出力された前記電圧信号に含まれている前記交流信号に基づく電圧信号の出力を阻止すると共に前記直流電流に基づく電圧信号を通過させるフィルタ回路と、前記フィルタ回路を通過した前記電圧信号を増幅すると共に前記第1の磁束をキャンセルする向きで前記キャンセル電流を前記第1の巻線に供給する電流ドライバとを備え、前記信号注入部は、前記磁性コアに巻回された第2の巻線を備え、前記第2の巻線に前記交流信号を供給して当該交流信号を前記注入対象ラインに注入する。
 この信号注入装置では、電流ドライバが高い出力インピーダンスの状態で第1の巻線にキャンセル電流を供給する。この場合、信号注入部が第2の巻線に交流信号を供給することで磁性コアに交流信号に基づく磁束が発生する。この際に、発生した磁束に基づく交流電流が第1の巻線に流れようとするが、電流ドライバの出力インピーダンスが高いため、その磁束に基づく交流電流は、第1の巻線から電流ドライバの出力部に向かう向きでは流れない。このため、電流ドライバは、磁性コアに発生している交流信号に基づく磁束をキャンセルさせるようとするキャンセル電流を流すことなく、磁束検出回路によって検出される第1の磁束の大きさがゼロになるようなキャンセル電流を生成して第1の巻線に供給する。したがって、この信号注入装置によれば、大電流の直流電流が注入対象ラインに流れることに起因する磁性コアの磁気飽和を回避することができる結果、第2の巻線に交流信号を供給することにより、磁性コアにおいて交流信号に基づく磁束を確実に発生させて、注入対象ラインに交流信号を確実にしかも効率良く注入することができる。
 また、本発明に係る信号注入装置は、前記磁束検出回路は、ホール素子、フラックスゲートセンサ、およびGMR素子のいずれかを前記磁性コアに配設して構成されている。
 この信号注入装置によれば、ホール素子、フラックスゲートセンサ、およびGMR素子のいずれかを磁性コアに配設して磁束検出回路を構成したことにより、簡易な構成でありながら第1の磁束を確実に検出することができる。
 また、本発明に係る信号注入装置は、前記フィルタ回路は、リアクトルで形成されたインダクターを含んだローパスフィルタで構成されている。
 この信号注入装置によれば、インダクタンスの大きいリアクトルで形成されたインダクターを含んだローパスフィルタでフィルタ回路を構成したことにより、カットオフ周波数をできる限り周波数0Hzに近づけることができる結果、直流電流に基づく電圧信号だけを通過させることができると共に安価に構成することができる。特に、交流信号に基づいて第1の巻線に発生する電圧信号の増幅回路への入力を阻止する機能を有するフィルタ回路を備えた信号注入装置によれば、交流信号の第2の巻線への供給によって磁性コアに発生した磁束に基づいて第1の巻線に発生する電圧信号の増幅回路への入力がフィルタ回路によって阻止されるため、磁性コア発生させた磁束に基づいて注入対象ラインに注入する交流信号のレベル低下を回避することができる結果、注入対象ラインに交流信号を確実かつ効率良く注入することができる。
 また、本発明に係る信号注入装置は、前記磁束キャンセル部は、前記磁性コアに発生する前記交流信号の2倍の周波数に基づく磁束に応じた電圧信号の信号レベルを低下させる前記キャンセル電流を前記第1の巻線に供給する。
 この信号注入装置では、磁束キャンセル部が、磁性コアに発生する交流信号の2倍の周波数に基づく磁束に応じた電圧信号の信号レベルを低下させるキャンセル電流を第1の巻線に供給することにより、磁性コアの磁気飽和を直接的に検出することができる結果、磁性コアにおいて磁気飽和を発生させることなく、交流信号に基づく磁束をより確実に発生させて、注入対象ラインに交流信号をより確実にしかも効率良く注入することができる。
 また、本発明に係る信号注入装置は、前記信号注入部は、前記注入対象ラインに注入する前記交流信号と、当該交流信号の2倍の周波数の同期検波用の基準信号とを生成し、前記磁束キャンセル部は、前記磁気コアに巻回されると共に当該磁気コアに発生する前記第1の磁束をキャンセルするための第1の巻線と、前記第1の巻線に発生する前記交流信号の2倍の周波数の電圧信号を前記基準信号で同期検波する同期検波回路と、前記同期検波回路の出力信号に含まれている直流信号を抽出するフィルタ回路と、前記フィルタ回路から出力された前記直流信号と前記交流信号とを加算する加算回路と、前記加算回路の出力信号を増幅すると共に前記第1の巻線に供給して、前記第1の磁束をキャンセルする向きで前記キャンセル電流を前記第1の巻線に供給すると共に前記交流信号を当該第1の巻線に供給して当該交流信号を前記注入対象ラインに注入する増幅回路とを備えている。
 この信号注入装置では、同期検波回路が、第1の巻線に発生する交流信号の2倍の周波数の電圧信号を基準信号で同期検波し、加算回路が、同期検波回路の出力信号に含まれている直流信号と交流信号とを加算し、増幅回路が、加算回路から出力された加算信号を増幅すると共に第1の巻線に供給して、第1の磁束をキャンセルする向きでキャンセル電流を第1の巻線に供給することにより、注入対象ラインに注入する大電流の直流電流が注入対象ラインに流れることに起因する磁性コアの磁気飽和を回避することができる結果、第1の巻線に交流信号を供給することにより、磁性コアにおいて交流信号に基づく磁束を確実に発生させて、注入対象ラインに交流信号を確実にしかも効率良く注入することができる。また、この信号注入装置では、磁気飽和状態の磁性コアに発生する交流信号の歪信号である交流信号の周波数の2倍の周波数の高調波信号の大きさを検出してその歪信号を低減させるように、磁束キャンセル部が全体としてフィードバック制御される。このため、この信号注入装置によれば、磁性コアの磁気飽和を直接的に検出することができる結果、磁性コアにおいて磁気飽和を発生させることなく、交流信号に基づく磁束をより確実に発生させて、注入対象ラインに交流信号をより確実にしかも効率良く注入することができる。また、この信号注入装置によれば、1つの第1の巻線を用いて、キャンセル用巻線の機能と信号注入用巻線の機能とを実現させることができるため、信号注入装置を安価に構成することができる。
 また、本発明に係る信号注入装置は、前記信号生成部は、前記交流信号の周波数をスイープさせる。
 この信号注入装置では、信号注入部が交流信号の周波数をスイープさせることにより、例えば、信号注入装置をインピーダンス測定装置に組み込んだ場合に、測定対象に正弦波信号である交流信号を供給してその周波数応答を測定可能なFRA として構成することができるため、高精度なインピーダンス測定を行うことができる。
 また、本発明に係るインピーダンス測定装置は、上記のいずれかに記載の信号注入装置を備えて、前記注入対象ラインに直列接続されている測定対象のインピーダンスを測定するインピーダンス測定装置であって、前記注入対象ラインに前記交流信号を注入したときに、当該注入対象ラインを流れる前記交流信号の電流値と、前記測定対象に生じる電圧値とに基づいて当該測定対象のインピーダンスを測定する処理部を備えている。
 このインピーダンス測定装置では、処理部が、注入対象ラインに直列接続されている測定対象のインピーダンスを測定する際に、注入対象ラインに交流信号を注入したときに、その注入対象ラインを流れる交流信号の電流値と、測定対象に生じる電圧値とに基づいて測定対象のインピーダンスを測定することにより、磁性コアにおいて交流信号に基づく磁束をより確実に発生させて、注入対象ラインに交流信号をより確実にしかも効率良く注入することができる結果、高い精度で測定対象のインピーダンスを測定することができる。
 また、本発明に係るインピーダンス測定装置は、前記注入対象ラインを流れる前記交流信号の電流を当該注入対象ラインに対して非接触で検出して検出信号を前記処理部に出力する非接触型電流センサと、前記測定対象の両端電圧を検出する電圧検出部とを備え、電圧検出部は、前記測定対象の両端に接触して両端電圧信号を検出する電圧検出回路と、当該検出された両端電圧信号を前記測定対象から絶縁した状態で前記処理部に出力する絶縁回路とを備え、前記処理部は、前記検出信号を前記交流信号の前記電流値として入力すると共に前記両端電圧信号を前記測定対象に生じる前記電圧値として入力して前記測定対象の前記インピーダンスを測定する。
 このインピーダンス測定装置では、非接触型電流センサが、注入対象ラインを流れる交流電流の電流を注入対象ラインに対して非接触で検出して検出信号を処理部に出力し、電圧検出部が、測定対象の両端に接触して検出した両端電圧信号を測定対象から絶縁した状態で処理部に出力することにより、測定対象に非常に高い電圧が生じていたとしても、また、負荷やインピーダンス測定装置の周囲にスイッチングノイズなどのノイズが存在する場合であっても、測定対象に交流信号の注入に基づく電流が流れて測定対象内に発生する微小の交流電圧を精度良く検出することができる。したがって、このインピーダンス測定装置によれば、測定対象のインピーダンスを精度良く測定することができる。また、このインピーダンス測定装置によれば、非接触型電流センサを用いたことにより、注入対象ラインを切断することなく、非接触で測定対象のインピーダンスを測定することができる。
 また、本発明に係るインピーダンス測定装置は、前記処理部は、前記交流信号を入力すると共に前記検出信号を直交検波して当該交流電流の同相成分および直交成分を生成する第1直交検波回路と、前記交流信号を入力すると共に前記両端電圧信号を直交検波して交流電圧の同相成分および直交成分を生成する第2直交検波回路と、前記第1直交検波回路から出力される前記交流電流の同相成分および直交成分と、前記第2直交検波回路から出力される前記交流電圧の同相成分および直交成分とに基づいて前記測定対象の前記インピーダンスを演算する演算回路とを備えている。
 このインピーダンス測定装置では、処理部の演算回路が、第1の直交検波回路から出力される交流電流の同相成分および直交成分と、第2の直交検波回路から出力される交流電圧の同相成分および直交成分とに基づいて測定対象のインピーダンスを演算することにより、注入対象ラインに注入された交流信号の信号レベルが小さいときであっても、雑音レベル(N)に対する信号レベル(S)の比率(S/N)を高めて精度良くインピーダンスを測定することができる。
 本発明に係る信号注入装置では、磁束キャンセル部が、第2の磁束を磁性コアに発生させるキャンセル電流を磁性コアに巻回された第1の巻線に供給することで、磁性コアに挿通されている注入対象ラインに直流電流が流れることに起因して磁性コアに発生する第1の磁束をキャンセルする。したがって、この信号注入装置によれば、大電流の直流電流が注入対象ラインに流れることに起因する磁性コアの磁気飽和を回避することができる結果、第2の巻線に交流信号を供給することで、磁性コアにおいて交流信号に基づく磁束を確実に発生させて、直流電流が流れている注入対象ラインに交流信号を確実にしかも効率良く注入することができる。
インピーダンス測定装置1の構成を示す構成図である。 LPF43の周波数特性を示す特性図(磁束キャンセル部4による磁性コア2に発生する磁束Mbをキャンセルする能力を示す特性図)である。 磁束キャンセル部4Aの構成を示す構成図である。 磁束キャンセル部4Bの構成を示す構成図である。 磁束キャンセル部4Cの構成を示す構成図である。 信号注入部3および磁束キャンセル部4Dの構成を示す構成図である。 LPF43の他の構成を示す構成図である。
 以下、信号注入装置およびインピーダンス測定装置の実施の形態について、添付図面を参照して説明する。
 図1に示すインピーダンス測定装置1は、「インピーダンス測定装置」の一例であって、例えば、負荷Loadが接続されている状態の測定対象としての電池(バッテリー)Batの内部インピーダンスZbを測定可能に構成されている。また、インピーダンス測定装置1は、電池Batに正弦波信号である後述の交流信号S1を供給してその周波数応答を測定可能なFRA (Frequency Response Analyzer)として構成されて、高精度なインピーダンス測定が可能となっている。
 例えば、燃料電池車において、モータなどの大電流を消費する負荷Loadと、複数の電池セルを直列接続して構成される電池Bat(同図では、全体として1つの電池で図示している)とが、例えば導体である芯線が絶縁被覆された絶縁被覆ケーブル、エナメル線および絶縁被覆されていない電線などの導体で形成されたパワーライン(以下、「注入対象ラインL」ともいう)で接続されており、この注入対象ラインLには、電池Batから負荷Loadに直流大電流が流れている。このような接続状態において電池Batの内部インピーダンスZbを測定するためには、インピーダンス測定用の交流信号S1(例えば、100Hz~10MHz、特に1KHz~10KHz)を電池Batに供給する必要がある。この際に、このインピーダンス測定装置1では、電池Batから負荷Loadに直流大電流が流れている注入対象ラインLに、後述する注入抽出装置10を用いて交流信号S1を注入可能に構成されている。
 具体的には、インピーダンス測定装置1は、磁性コア2、信号注入部3、磁束キャンセル部4、非接触型電流センサ5、電圧検出部6、処理部7および出力部8を備えて構成されている。この場合、磁性コア2、信号注入部3および磁束キャンセル部4によって「信号注入装置10」が構成される。
 磁性コア2は、例えば、フェライト、パーマロイ、パーメンジュール、ケイ素鋼板および純鉄などの材料を用いて、直流電流Ibが流れる注入対象ラインLが挿通可能に、円形状、楕円形状、矩形状および多角形状状などの環状に形成されている。また、磁性コア2は、磁束キャンセル用のキャンセル電流としての負帰還の直流電流(以下、「キャンセル電流Ic」ともいう)を供給するための第1の巻線としての磁束キャンセル用巻線W1と、交流信号S1を注入するための第2の巻線としての信号注入用巻線W2とが巻回されると共にそのギャップG内にホール素子41が配設されて構成されている。この場合、ギャップGを設けることで、磁性コア2の磁気飽和がし難くなっている。なお、磁性コア2については、分割可能なクランプ型の構成を採用することもできる。また、磁束キャンセル用巻線W1および信号注入用巻線W2の一端に信号が注入されると共に他端が後述する基準電位(フローティンググランド)に接続されている。
 信号注入部3は、測定用の交流信号S1を生成すると共に注入対象ラインLに対して(注入対象ラインLの芯線(導線)に対して)交流信号S1を非接触で注入可能に構成されている。具体的には、信号注入部3は、電池Batの内部インピーダンスZbを測定するための正弦波信号である交流信号S1を生成すると共に出力段に配置されたD級増幅回路で交流信号S1をD級増幅して出力可能に構成された信号生成回路31と、上記した信号注入用巻線W2とを備えて構成されている。この信号注入部3では、信号生成回路31が、注入対象ラインLに注入する交流信号S1の信号レベルおよび周波数を処理部7から出力される制御信号Sc1によって制御されて周波数をスイープ(例えば、1KHz~10KHz)させつつ、生成した交流信号S1を処理部7に出力すると共にD級増幅して信号注入用巻線W2に供給する。この場合、信号注入用巻線W2に交流信号S1をトランス方式(信号注入用巻線W2が複数ターンの一次巻線で注入対象ラインLが1ターンの二次巻線)で供給する(つまり、信号注入用巻線W2の両端に交流信号S1を印加する)ことで交流信号S1に基づく交流電流Iacが信号注入用巻線W2を流れて、交流信号S1に基づく磁束Mcが図1に示す向きで磁性コア2に発生すると共にその磁束Mcの大きさに応じた電流値の交流信号である注入電流Iiがノーマルモード信号として注入対象ラインLに供給される(注入される)。なお、信号生成回路31による周波数のスイープは必須ではなく、スイープが不要の場合には、固定周波数の交流信号S1を生成する構成を信号生成回路31に適用することもできる。
 磁束キャンセル部4は、注入対象ラインLに直流電流Ibが流れた際に、磁性コア2に図1に示す向きで発生する第1の磁束としての磁束Mbを、ゼロフラックス法により、磁束Mbとは逆向きの第2の磁束としての磁束Mdを磁性コア2に発生させてキャンセル(相殺)可能に構成されている。具体的には、磁束キャンセル部4は、上記したギャップGに配設された磁束検出回路の一例としてのホール素子41、電圧ドライバ42、ローパスフィルタ43(以下、「LPF43」ともいう)および信号注入用巻線W2を備えて構成されている。
 ホール素子41は、「磁束検出回路」の一例であって、磁性コア2に設けられて磁気コア2に発生する磁束に応じた電圧信号S2を出力する。この場合、ホール素子41から検出信号として電流信号が出力される構成であってもよく、そのような電流信号によって電圧信号に変換された信号も「電圧信号S2」に含まれる。なお、「磁束検出回路」は、ホール素子に限らず、フラックスゲートセンサや磁気抵抗素子(MR:Magneto Resistive)などを磁性コア2に配設して構成することもできる。また、磁気抵抗素子として、GMR素子(Giant Magneto Resistive )、半導体磁気抵抗素子(SMR )、強磁性体薄膜材料を用いた異方性磁気抵抗素子(AMR:Anisotropic Magneto Resistive)、巨大磁気抵抗素子(GMR:Giant Magneto Resistive)およびトンネル磁気抵抗素子(TMR:Tunnel Magneto Resistive )を用いることができる。
 電圧ドライバ42は、全体として負帰還増幅回路として機能する増幅回路の一例であって、電圧信号S2を増幅して低インピーダンスでLPF43に出力する。LPF43は、フィルタ回路の一例であって、電圧ドライバ42で増幅された電圧信号S2に含まれている交流信号S1に基づく電圧信号S2の出力を阻止すると共に直流電流Ibに基づく電圧信号S2を通過させて磁束Mbをキャンセルする向きでキャンセル電流Icを磁束キャンセル用巻線W1に供給し、かつ交流信号S1の信号注入用巻線W2への供給によって磁性コア2に発生した磁束Mcに基づいて磁束キャンセル用巻線W1に発生する電圧信号(交流信号に基づいてキャンセル巻線に発生する電圧信号)の電圧ドライバ42への入力を阻止する。具体的には、LPF43は、図1に示すように、例えば、電圧ドライバ42側の入力端Tiと基準電位との間にコンデンサC1が接続されると共に入力端Tiと磁束キャンセル用巻線W1側の出力端Toとの間にインダクターL1が接続されたL型のLCフィルタで構成されて、図2に示すように、そのカットオフ周波数が交流信号S1の周波数(周波数スイープさせているときには、交流信号S1の最低周波数)よりも低い周波数となる周波数特性を有しており、交流信号S1に基づく電圧信号S2の出力を阻止すると共に直流電流Ibに基づく電圧信号S2を通過させる。
 この場合、直流電流Ibに基づく電圧信号S2だけを通過させるためには、カットオフ周波数はできる限り周波数0Hzに近いのが好ましい。したがって、この磁束キャンセル部4では、例えば、インダクタンスの大きいリアクトルで形成されたインダクターを含んだLPF43でフィルタ回路が構成されている。このため、LPF43は、カットオフ周波数ができる限り周波数0Hzに近づけられており、交流信号S1に基づく電圧信号S2の出力を阻止すると共に直流電流Ibに基づく電圧信号S2だけを通過させて磁束Mbをキャンセルする向きでキャンセル電流Icを磁束キャンセル用巻線W1に供給することができ、しかも安価に構成されている。また、交流信号S1の信号注入用巻線W2への供給によって磁性コア2に発生した磁束Mcに基づいて磁束キャンセル用巻線W1に発生する電圧信号の電圧ドライバ42への入力が阻止されるため、磁性コア2に発生させた磁束Mcに基づいて注入対象ラインLに注入する注入電流Ii(交流信号S1)のレベル低下が回避される。なお、LPF43は、図1に示すL型のLCフィルタ以外に各種構成のローパスフィルタを採用することができる。例えば、図7に示すように、入力端Tiと出力端Toとの間に、上記のインダクターL1と、インダクタンスの小さいインダクターL2を直列接続し、かつインダクターL2,L1の接続点と基準電位との間に上記のコンデンサC1を接続したT型のLCフィルタで構成してもよい。また、図示はしないが、π型のLCフィルタで構成してもよい。さらに、後述する各磁束キャンセル部4A,4B,4CにおけるLPF43や、磁束キャンセル部4DにおけるLPF48については、注入電流Iiのレベル低下の回避という機能を必要としないため、内部のインダクターL1については、インダクタンスの大きいリアクトルではなく、インダクタンスの小さなインダクターを用いることができる。また、各磁束キャンセル部4,4A,4B,4CにおけるLPF43や磁束キャンセル部4DにおけるLPF48の構成は、L型、T型およびπ型などのLC型のローパスフィルタに限らず、インダクターに代えて抵抗を用いたL型、T型およびπ型などのRC型のローパスフィルタなど、各種のローパスフィルタを採用することができる。また、LPF43の周波数特性は、磁束キャンセル部4による磁性コア2に発生する磁束をキャンセルする能力を示す周波数特性と一致している。
 また、キャンセル電流Icの流れる向きおよび磁束キャンセル用巻線W1の巻回方向は、電池Batから負荷Loadに供給される直流電流Ibが流れることによって磁性コア2内に生じる磁束Mbを低減させる向きの磁束Mdが生じるように予め設定されている。したがって、磁束キャンセル部4の電圧ドライバ42が、ホール素子41によって検出される磁束Mbの大きさがゼロになるような電圧信号S2(キャンセル電流Ic)を生成して磁性コア2に巻回された磁束キャンセル用巻線W1に供給することにより、大電流の直流電流Ibが注入対象ラインLに流れることに起因する磁性コア2の磁気飽和が回避される。この結果、信号注入用巻線W2に交流信号S1を供給することにより、磁性コア2において磁束Mcが確実に発生して、注入対象ラインLに交流信号S1が確実に注入される。
 非接触型電流センサ5は、いわゆるクランプ型の電流センサであって、注入対象ラインL(注入対象ラインLの芯線(導線))を流れる交流電流である注入電流Iiを注入対象ラインLに対して非接触で検出して、注入電流Iiの電流値を示す検出信号S3を処理部7に出力する。
 電圧検出部6は、接触型の一対のプローブP1,P2、バッファ回路61および絶縁回路62を備えて、電池Batの両端電圧を検出して両端電圧信号S4を処理部7に出力する。この場合、バッファ回路61は、電圧検出回路の一例であって、直流電圧の入力を阻止すると共に交流電圧の入力を可能とするカップリングコンデンサを一対の入力部にそれぞれ備えており、プローブP1,P2によって検出された交流電圧の差分電圧を生成して電池Batの両端電圧としての両端電圧信号S4を出力する。また、絶縁回路62は、負荷Load、電池Batおよびバッファ回路61を含む回路の基準電位(グランド)と、バッファ回路61を除くインピーダンス測定装置1の基準電位(フローティンググランド)とを絶縁すると共に、絶縁した状態の両端電圧信号S4を処理部7に出力する。
 処理部7は、例えば、CPUで構成されて、A/D変換回路71~73、移相回路74、直交検波回路75,76、演算回路77および内部メモリ78を備えて構成され、検出信号S3および両端電圧信号S4を入力すると共に検出信号S3および両端電圧信号S4に基づいて測定対象である電池Batの内部インピーダンスZbを測定する。この場合、A/D変換回路71は、信号生成回路31から出力された交流信号S1を入力すると共にA/D変換(アナログ/デジタル変換)して正弦波の交流信号S1の電圧値、周波数および位相を示す信号データD11(sinωt )を移相回路74および直交検波回路75,76に出力する。A/D変換回路72は、非接触型電流センサ5から出力された検出信号S3を入力すると共にA/D変換して検出信号S3(注入電流Ii)の電流値、周波数および位相を示す信号データD12を直交検波回路75に出力する。A/D変換回路73は、絶縁回路62から出力された両端電圧信号S4を入力すると共にA/D変換して両端電圧信号S4の電圧値、周波数および位相を示す信号データD13を直交検波回路76に出力する。
 移相回路74は、A/D変換回路71から出力された信号データD11(sinωt )を入力すると共に信号データD11で示される正弦波信号である交流信号S1の位相を90°移相させて余弦波信号を生成すると共にその余弦波信号の電流値、周波数および位相を示す信号データD11(cosωt )を生成して直交検波回路75,76に出力する。直交検波回路75は、A/D変換回路72から出力された検出信号S3(注入電流Iiの交流電流値)を示す信号データD12を入力すると共に、A/D変換回路71から出力された正弦波の交流信号S1を示す信号データD11(sinωt )および移相回路74から出力された余弦波の交流信号S1を示す信号データD11(cosωt )で信号データD12を直交検波して、注入電流Iiの電流値の同相成分(I成分:In-phse 成分)および直交成分(Q成分:Quadrature 成分 )を複素数で示す電流データDiを生成して演算回路77に出力する。直交検波回路76は、A/D変換回路73から出力された両端電圧信号S4(注入電流Iiが流れることに起因して電池Batの両端に発生する交流電圧の電圧値)を示す信号データD13を入力すると共に、A/D変換回路71から出力された正弦波の交流信号S1を示す信号データD11(sinωt )および移相回路74から出力された余弦波の交流信号S1を示す信号データD11(cosωt )で信号データD13を直交検波して、両端電圧信号S4の電圧値の同相成分(I成分:In-phse 成分)および直交成分(Q成分:Quadrature 成分 )を複素数で示す電圧データDvを生成して演算回路77に出力する。
 演算回路77は、直交検波回路75から出力された電流データDiを入力すると共に直交検波回路76から出力された電圧データDvを入力して、電流データDiおよび電圧データDvに基づいて電池Batの内部インピーダンスZbを演算する。また、演算回路77は、演算結果としての電池Batの内部インピーダンスZbを示すインピーダンスデータDzを内部メモリ78に出力して記憶させると共に出力部8に出力する。また、演算回路77は、非接触型電流センサ5によって検出された注入電流Iiの電流値がインピーダンス測定の際に必要な目標電流値範囲(例えば、1mA±0.1mA)内に含まれるように、制御信号Sc1を信号注入部3に出力して、信号注入部3(信号生成回路31)から出力される交流信号S1の信号レベルを制御する。具体的には、演算回路77は、入力した電流データDi(A/D変換回路72から出力される信号データD12でもよい)に基づき、注入対象ラインLに注入されている注入電流Iiの電流値(交流信号S1の信号レベル)を監視しつつ、信号注入部3から出力される交流信号S1の信号レベルを制御信号Sc1を出力して制御する。また、内部メモリ78は、半導体メモリやハードディスク装置などで構成されて、インピーダンスデータDzなどを記憶する。
 出力部8は、一例として、液晶パネルや有機ELパネルなどの表示装置(ディスプレイ)で構成されて、処理部7から出力されたインピーダンスデータDzを入力して電池Batの内部インピーダンスZbを画面上に表示する。なお、出力部8は、表示装置に代えて、外部装置とデータ通信を行うインターフェース装置で構成して、この外部装置にインピーダンスデータDzを出力する構成を採用することもできる。
 次に、インピーダンス測定装置1による測定対象としての電池Batの内部インピーダンスZbを測定する測定方法について添付図面を参照して説明する。
 最初に、電池Batと負荷Loadとを注入対象ラインLで接続する。この状態で負荷Loadが作動したときには、電池Batから注入対象ラインLを介して負荷Loadに大電流の直流電流Ibが流れる。この状態において、注入対象ラインLに非接触型電流センサ5をクランプさせると共に電池Batの両端にプローブP1,P2を接触させる。
 次いで、図外の測定開始スイッチを操作する。これにより、処理部7が、信号生成回路31を制御して交流信号S1を生成させる。この際には、信号生成回路31が、周波数をスイープさせつつ交流信号S1を生成し、生成した交流信号S1を処理部7に出力すると共にD級増幅した交流信号S1を信号注入用巻線W2に供給する。この場合、信号注入用巻線W2に交流信号S1を供給することで交流電流Iacが信号注入用巻線W2を流れて、交流信号S1に基づく磁束Mcが図1に示す向きで磁性コア2に発生すると共にその磁束Mcの大きさに応じた電流値の交流信号である注入電流Iiが注入対象ラインLに注入される。したがって、交流信号S1は、信号注入用巻線W2を介して注入対象ラインLの芯線に対して非接触の状態で注入される。
 また、磁束キャンセル部4は、磁性コア2に直流電流Ibが流れた際に、磁性コア2に図1に示す向きで発生する第1の磁束としての磁束Mbを、磁束Mbとは逆向きの第2の磁束としての磁束Mdをゼロフラックス法により磁性コア2に発生させてキャンセルする。具体的には、ホール素子41が、磁気コア2に発生する磁束に応じた電圧信号S2を電圧ドライバ42に出力する。次いで、電圧ドライバ42が、電圧信号S2を増幅して低インピーダンスでLPF43に出力する。また、LPF43は、電圧ドライバ42で増幅された電圧信号S2に含まれている交流信号S1に基づく電圧信号S2(磁束Mcに基づく電圧信号S2)の出力を阻止すると共に直流電流Ibに基づく電圧信号S2を通過させて磁束Mbをキャンセルする向きでキャンセル電流Icを磁束キャンセル用巻線W1に供給し、かつ交流信号S1が信号注入用巻線W2に供給されることに起因して磁束キャンセル用巻線W1に発生する電圧信号の電圧ドライバ42への入力を阻止する。したがって、電圧ドライバ42は、磁性コア2に発生している交流信号S1に基づく磁束Mcをキャンセルさせるようとするキャンセル電流を流すことなく、ホール素子41によって検出される磁束Mbの大きさがゼロになるようなキャンセル電流Icを生成して磁束キャンセル用巻線W1に供給する。これにより、大電流の直流電流Ibが注入対象ラインLに流れることに起因する磁性コア2の磁気飽和が回避される。また、交流信号S1の信号注入用巻線W2への供給によって磁性コア2に発生した磁束Mcに基づいて磁束キャンセル用巻線W1に発生する電圧信号の電圧ドライバ42への入力がLPF43によって阻止されるため、磁性コア2に発生させた磁束Mcに基づいて注入対象ラインLに注入する注入電流Ii(交流信号S1)のレベル低下が回避される。この結果、信号注入用巻線W2に交流信号S1が供給されることにより、磁性コア2において磁束Mcが確実に発生して、注入対象ラインLに交流信号S1が確実かつ効率良く注入される。
 一方、注入対象ラインLに交流信号S1が注入されると共に直流電流Ibが流れている状態では、非接触型電流センサ5が、注入対象ラインLを流れている注入電流Iiを注入対象ラインLに対して非接触で検出して、その電流値を示す検出信号S3を処理部7に出力する。
 また、電圧検出部6のバッファ回路61が、一対のプローブP1,P2を介して、電池Batの両端における電圧を入力して交流電圧の差分電圧である両端電圧信号S4を絶縁回路62に出力する、この場合、バッファ回路61は、一対の入力部にカップリングコンデンサを備えているため、プローブP1,P2によって検出された交流電圧の差分電圧のみを生成して電池Batの両端電圧としての両端電圧信号S4を出力する。次いで、絶縁回路62が両端電圧信号S4を処理部7に出力する。この際に、絶縁回路62は、負荷Loadや電池Bat側の基準電位(グランド)と、インピーダンス測定装置1の基準電位(フローティンググランド)とを絶縁した状態で両端電圧信号S4を処理部7に出力する。この結果、絶縁回路62を介してインピーダンス測定装置1に両端電圧信号S4が出力されることにより、電池Batの出力電圧が非常に高い電圧であったとしても、電池Batに交流信号S1が流れて電池Bat内に発生する微小の交流電圧を精度良く検出することが可能となっている。
 一方、処理部7では、A/D変換回路71が、交流信号S1を入力すると共にA/D変換して正弦波の交流信号S1の電圧値、周波数および位相を示す信号データD11(sinωt )を移相回路74および直交検波回路75,76に出力する。また、A/D変換回路72が、検出信号S3を入力すると共にA/D変換して検出信号S3の電流値、周波数および位相を示す信号データD12を直交検波回路75に出力する。また、A/D変換回路73が、両端電圧信号S4を入力すると共にA/D変換して両端電圧信号S4の電圧値、周波数および位相を示す信号データD12を直交検波回路76に出力する。また、移相回路74が、信号データD11を入力すると共に信号データD11で示される正弦波信号である交流信号S1の位相を90°移相させて余弦波信号を生成すると共にその余弦波信号の電流値、周波数および位相を示す信号データD11(cosωt )を生成して直交検波回路75,76に出力する。
 また、直交検波回路75は、検出信号S3を示す信号データD12を入力すると共に、正弦波の交流信号S1を示す信号データD11(sinωt )および余弦波の交流信号S1を示す信号データD11(cosωt )で信号データD12直交検波して、注入電流Iiの電流値の同相成分および直交成分を複素数で示す電流データDiを生成して演算回路77に出力する。また、直交検波回路76は、両端電圧信号S4を示す信号データD13を入力すると共に、信号データD11(sinωt )および信号データD11(cosωt )で信号データD13を直交検波して、両端電圧信号S4の電圧値の同相成分および直交成分を複素数で示す電圧データDvを生成して演算回路77に出力する。次いで、演算回路77が、電流データDiおよび電圧データDvを入力して、電流データDiおよび電圧データDvに基づいて電池Batの内部インピーダンスZbを演算してインピーダンスデータDzを内部メモリ78に出力して記憶させると共に出力部8に出力する。この際に、出力部8は、インピーダンスデータDzを入力して電池Batの内部インピーダンスZbを表示装置の画面上に表示する。なお、演算回路77は、交流信号S1の周波数情報をインピーダンスデータDzに含めることにより、交流信号S1の周波数に対する電池Batの内部インピーダンスZbの周波数特性を表示装置の画面上に表示させることもできる。また、演算回路77は、入力した電流データDi(A/D変換回路72から出力される信号データD12でもよい)に基づいて、注入対象ラインLを流れる直流電流Ibの電流値情報を生成し、その電流値情報をインピーダンスデータDzに含めることにより、直流電流Ibの電流値に対する電池Batの内部インピーダンスZbの特性を表示装置の画面上に表示させることもできる。
 また、演算回路77は、入力した電流データDi(A/D変換回路72から出力される信号データD12でもよい)に基づき、注入対象ラインLに注入されている注入電流Iiの電流値を監視しつつ、非接触型電流センサ5によって検出された注入電流Iiの電流値がインピーダンス測定の際に必要な目標電流値範囲内に含まれるように、制御信号Sc1を出力して信号注入部3から出力される交流信号S1の信号レベルを制御する。これにより、注入電流Iiが目標電流値範囲内に含まれるため、検出信号S3や両端電圧信号S4の雑音レベル(N)に対する信号レベル(S)の比率(S/N)を高めることができる結果、演算回路77によって行われる内部インピーダンスZbの演算処理(測定処理)において、精度良く内部インピーダンスZbを測定することができる。以上により、インピーダンス測定装置1による電池Batの内部インピーダンスZbの測定が終了する。
 このように、この信号注入装置10では、磁束キャンセル部4が、磁束Mdを磁性コア2に発生させるキャンセル電流Icを磁性コア2に巻回された磁束キャンセル用巻線W1に供給することで、磁性コア2に挿通されている注入対象ラインLに直流電流Ibが流れることに起因して磁性コア2に発生する磁束Mbをキャンセルする。したがって、この信号注入装置10によれば、大電流の直流電流Ibが注入対象ラインLに流れることに起因する磁性コア2の磁気飽和を回避することができる結果、信号注入用巻線W2に交流信号S1を供給することで、磁性コア2において磁束Mcを確実に発生させて、直流電流Ibが流れている注入対象ラインLに交流信号S1を確実にしかも効率良く注入することができる。
 また、この信号注入装置10では、別個独立した磁束キャンセル用巻線W1および信号注入用巻線W2を備え、磁束キャンセル部4のLPF43が、電圧ドライバ42によって増幅された電圧信号S2に含まれている交流信号S1に基づく電圧信号S2の出力を阻止すると共に直流電流Ibに基づく電圧信号S2を通過させて磁束Mbをキャンセルする向きでキャンセル電流Icを磁束キャンセル用巻線W1に供給し、かつ交流信号S1に基づいて磁束キャンセル用巻線W1に発生する電圧信号の電圧ドライバ42への入力を阻止する。したがって、この信号注入装置10によれば、大電流の直流電流Ibが注入対象ラインLに流れることに起因する磁性コア2の磁気飽和を回避することができる結果、信号注入用巻線W2に交流信号S1を供給することにより、磁性コア2において磁束Mcを確実に発生させて、注入対象ラインLに交流信号S1を確実にしかも効率良く注入することができる。
 なお、「信号注入装置」の構成、および「インピーダンス測定装置」の構成については、上記のインピーダンス測定装置1の例に限定されない。例えば、磁束キャンセル部4については、図3に示す構成を採用することができる。なお、以下に説明する構成において、上記したインピーダンス測定装置1における各構成要素と同じ機能を有する構成要素については、同一の符号を付して、重複する説明を省略する。
 図3に示す磁束キャンセル部4Aは、ホール素子41、磁束キャンセル用巻線W1、LPF43、加算回路44および電圧ドライバ42を備えて構成されている。この場合、1つの磁束キャンセル用巻線W1が、キャンセル用巻線の機能と信号注入用巻線の機能とを有している。また、LPF43は、フィルタ回路の一例であって、磁束キャンセル部4のLPF43と同様の周波数特性を有しており、ホール素子41から出力された電圧信号S2に含まれている交流信号S1に基づく電圧信号S2の出力を阻止すると共に直流電流Ibに基づく電圧信号S2を通過させる。加算回路44は、LPF43を通過した電圧信号S2と交流信号S1とを加算して加算信号Saを生成して出力する。電圧ドライバ42は、加算回路44から出力された加算信号Saを増幅すると共に磁束キャンセル用巻線W1に供給して、磁束Mbをキャンセルする向きでキャンセル電流Icを磁束キャンセル用巻線W1に供給すると共に交流信号S1(交流電流Iac)を磁束キャンセル用巻線W1に供給して交流信号S1を注入対象ラインLに注入する。
 この信号注入装置10では、電圧ドライバ42が、電圧信号S2と交流信号S1とが加算回路44によって加算された加算信号Saを増幅して磁束キャンセル用巻線W1に供給することにより、キャンセル電流Icと交流電流Iacとが磁束キャンセル用巻線W1において加算されつつ、磁性コア2に磁束Md,Mcを発生させる。したがって、この信号注入装置10によれば、大電流の直流電流Ibが注入対象ラインLに流れることに起因する磁性コア2の磁気飽和を回避することができる結果、磁束キャンセル用巻線W1に交流信号S1(加算信号Sa)を供給することにより、磁性コア2において磁束Mcを確実に発生させて、注入対象ラインLに交流信号S1を確実にしかも効率良く注入することができる。また、この信号注入装置10によれば、1つの磁束キャンセル用巻線W1を用いて、キャンセル用巻線の機能と信号注入用巻線の機能とを実現させることができるため、信号注入装置10を安価に構成することができる。
 また、図4に示す磁束キャンセル部4Bは、ホール素子41、磁束キャンセル用巻線W1、LPF43、および電圧ドライバ42を備えて構成されている。また、信号注入部3Aは、上記の信号注入部3の構成に加えて電圧ドライバ32を備えている。この場合、1つの磁束キャンセル用巻線W1が、キャンセル用巻線の機能と信号注入用巻線の機能とを有している。また、LPF43は、フィルタ回路の一例であって、磁束キャンセル部4のLPF43と同様の周波数特性を有しており、ホール素子41から出力された電圧信号S2に含まれている交流信号S1に基づく電圧信号S2の出力を阻止すると共に直流電流Ibに基づく電圧信号S2を通過させる。電圧ドライバ42は、LPF43を通過した電圧信号S2を増幅すると共に磁束Mbをキャンセルする向きでキャンセル電流Icを磁束キャンセル用巻線W1の一端T1に供給する。また、電圧ドライバ32は、交流信号S1を増幅すると共に増幅した交流信号S1(交流電流Iac)を磁束キャンセル用巻線W1の他端T2に供給して交流信号S1を注入対象ラインLに注入する。
 この信号注入装置10では、電圧ドライバ42が磁束キャンセル用巻線W1の一端T1側から磁束キャンセル用巻線W1を介して電圧ドライバ32の出力部に向けて電圧信号S2(キャンセル電流Ic)を供給し、電圧ドライバ32が磁束キャンセル用巻線W1の他端T2側から磁束キャンセル用巻線W1を介して電圧ドライバ42の出力部に向けて交流信号S1(交流電流Iac)を供給することにより、キャンセル電流Icと交流電流Iacとが磁束キャンセル用巻線W1において加算されつつ、磁性コア2に磁束Md,Mcを発生させる。したがって、この信号注入装置10によれば、大電流の直流電流Ibが注入対象ラインLに流れることに起因する磁性コア2の磁気飽和を回避することができる結果、磁束キャンセル用巻線W1に交流信号S1を供給することにより、磁性コア2において磁束Mcを確実に発生させて、注入対象ラインLに交流信号S1を確実にしかも効率良く注入することができる。また、この信号注入装置10によれば、1つの磁束キャンセル用巻線W1を用いて、キャンセル用巻線の機能と信号注入用巻線の機能とを実現させることができるため、信号注入装置10を安価に構成することができる。
 また、図5に示す磁束キャンセル部4Cは、ホール素子41、磁束キャンセル用巻線W1、LPF43、および電流ドライバ45を備えて構成されている。この場合、LPF43は、フィルタ回路の一例であって、磁束キャンセル部4のLPF43と同様の周波数特性を有しており、ホール素子41から出力された電圧信号S2に含まれている交流信号S1に基づく電圧信号S2の出力を阻止すると共に直流電流Ibに基づく電圧信号S2を通過させる。電流ドライバ45は、LPF43を通過した電圧信号S2を増幅すると共に磁束Mbをキャンセルする向きでキャンセル電流Icを高い出力インピーダンスで出力して磁束キャンセル用巻線W1に供給する。また、信号注入部3は、図1に示した信号注入部3と同様にして、磁性コア2に巻回された信号注入用巻線W2を備え、信号注入用巻線W2に交流信号S1(交流電流Iac)を供給して交流信号S1を注入対象ラインLに注入する。
 この信号注入装置10では、電流ドライバ45が高い出力インピーダンスの状態で磁束キャンセル用巻線W1に電圧信号S2(キャンセル電流Ic)を供給する。この場合、信号注入部3が信号注入用巻線W2に交流信号S1を供給することで磁性コア2に磁束Mcが発生する。この際に、発生した磁束Mcに基づく交流電流が磁束キャンセル用巻線W1に流れようとするが、電流ドライバ45の出力インピーダンスが高いため、磁束Mcに基づく交流電流は、磁束キャンセル用巻線W1から電流ドライバ45の出力部に向かう向きでは流れない。このため、電流ドライバ45は、磁性コア2に発生している交流信号S1に基づく磁束Mcをキャンセルさせるようとするキャンセル電流を流すことなく、ホール素子41によって検出される磁束Mbの大きさがゼロになるようなキャンセル電流Icを生成して磁束キャンセル用巻線W1に供給する。したがって、この信号注入装置10によれば、大電流の直流電流Ibが注入対象ラインLに流れることに起因する磁性コア2の磁気飽和を回避することができる結果、信号注入用巻線W2に交流信号S1(交流電流Iac)を供給することにより、磁性コア2において磁束Mcを確実に発生させて、注入対象ラインLに交流信号S1を確実にしかも効率良く注入することができる。
 また、以上の信号注入装置10によれば、ホール素子41、フラックスゲートセンサ、およびGMR素子のいずれかを磁性コア2に配設して磁束検出回路を構成したことにより、簡易な構成でありながら磁束Mbを確実に検出することができる。
 また、インダクタンスの大きいリアクトルで形成されたインダクターを含んだLPF43でフィルタ回路を構成したことにより、カットオフ周波数をできる限り周波数0Hzに近づけることができる結果、直流電流Ibに基づく電圧信号S2だけを通過させることができると共に安価に構成することができる。また、磁束キャンセル部4を有する信号注入装置10によれば、交流信号S1の信号注入用巻線W2への供給によって磁性コア2に発生した磁束Mcに基づいて磁束キャンセル用巻線W1に発生する電圧信号の電圧ドライバ42への入力がLPF43によって阻止されるため、磁性コア2に発生させた磁束Mcに基づいて注入対象ラインLに注入する注入電流Ii(交流信号S1)のレベル低下を回避することができる結果、注入対象ラインLに交流信号S1を確実かつ効率良く注入することができる。
 また、図6に示す磁束キャンセル部4Dは、磁性コア2に発生する交流信号S1の2倍の周波数に基づく磁束に応じた電圧信号S2の信号レベルを低下させるキャンセル電流Icを磁束キャンセル用巻線W1に供給して、大電流の直流電流Ibが注入対象ラインLに流れることに起因する磁性コア2の磁気飽和を回避することが可能に構成されている。なお、この磁束キャンセル部4Dを用いる信号注入装置10では、ホール素子41などの磁束検出回路を使用しないため、磁性コア2としてギャップが設けられていない環状のコアが用いられている。ただし、ギャップを設けた環状のコアを磁性コア2として用いることもできる。
 具体的には、図6に示す信号注入装置10は、信号注入部3の信号生成回路31が、2f信号生成回路31aおよび1/2分周回路31bを備えて構成されている。この場合、2f信号生成回路31aは、交流信号S1の2倍の周波数の同期検波用の基準信号Srを生成する。また、1/2分周回路31bは、2f信号生成回路31aから出力された基準信号Srを1/2分周することにより、注入対象ラインLに注入する交流信号S1を生成する。
 一方、磁束キャンセル部4Dは、磁束キャンセル用巻線W1、加算回路44、電圧ドライバ42,46,49、同期検波回路47およびLPF48を備えて構成されている。この場合、同期検波回路47は、磁束キャンセル用巻線W1に発生する電圧信号S2に含まれている交流信号S1の2倍の周波数(つまり、交流信号S1の歪信号)の電圧信号S2を基準信号Srで同期検波して出力信号Sdを出力する。LPF48は、フィルタ回路の一例であって、同期検波回路47の出力信号Sdに含まれている直流信号、つまり交流信号S1の歪信号である2倍の周波数の高調波信号(周波数基準信号Srと同じ周波数成分)に基づいて生成された直流信号Sdcを抽出(通過させる)すると共に基準信号Srの2倍以上の周波数成分などの交流信号の通過を阻止する。電圧ドライバ49は、LPF48から出力された直流信号Sdcを増幅して出力する。加算回路44は、増幅回路49から出力された直流信号Sdcと、信号生成回路31(1/2分周回路31b)から出力された交流信号S1とを加算して加算信号Saを出力する。電圧ドライバ42は、加算回路44から出力された加算信号Saを増幅すると共に磁束キャンセル用巻線W1に供給する。
 この信号注入装置10では、信号注入部3の信号生成回路31内の2f信号生成回路31aが同期検波用の基準信号Srを生成して1/2分周回路31bおよび同期検波回路47に出力する。また、1/2分周回路31bは、基準信号Srを入力して1/2分周することで交流信号S1を生成して、加算回路44および処理部7のA/D変換回路71に出力する。一方、磁束キャンセル部4Dでは、電圧ドライバ46が、入力した加算信号Saを増幅して同期検波回路47に出力する。この際に、同期検波回路47は、磁束キャンセル用巻線W1に発生する交流信号S1の2倍の周波数の電圧信号を入力した基準信号Srで同期検波すると共に同期検波で生成した電圧信号を出力信号Sdとして出力する。また、LPF48が、同期検波回路47の出力信号Sdに含まれている直流信号Sdc(つまり交流信号S1の歪信号である2倍の周波数の高調波信号に基づく直流信号)を抽出(通過させる)すると共に交流信号の通過を阻止する。次いで、電圧ドライバ49が、LPF48から出力された直流信号Sdcを増幅して加算回路44に出力する。この際に、加算回路44は、増幅回路49から出力された直流信号Sdcと、信号生成回路31(1/2分周回路31b)から出力された交流信号S1とを加算して加算信号Saを出力する。また、電圧ドライバ42が、加算回路44から出力された加算信号Saを増幅すると共に磁束キャンセル用巻線W1に供給する。この場合、電圧ドライバ42が、加算信号Saを出力することにより、磁束Mbをキャンセルする向きで直流信号Sdcに基づくキャンセル電流Icが磁束キャンセル用巻線W1に供給されて磁性コア2の磁気飽和が回避されると共に交流信号S1(交流電流Iac)が磁束キャンセル用巻線W1に供給されて交流信号S1が注入対象ラインLに注入される。つまり、この磁束キャンセル部4Dでは、ホール素子41などの磁束検出回路を用いることなく、全体としてフィードバック制御されることで、全体してフラックスゲートセンサ化されて磁束キャンセル部が構成されている。
 したがって、この信号注入装置10によれば、大電流の直流電流Ibが注入対象ラインLに流れることに起因する磁性コア2の磁気飽和を回避することができる結果、磁束キャンセル用巻線W1に交流信号S1(交流電流Iac)を供給することにより、磁性コア2において磁束Mcを確実に発生させて、注入対象ラインLに交流信号S1を確実にしかも効率良く注入することができる。また、この信号注入装置10では、磁気飽和状態の磁性コア2に発生する交流信号S1の歪信号である交流信号S1の周波数の2倍の周波数の高調波信号の大きさを検出してその歪信号を低減させるように、磁束キャンセル部4Dが全体としてフィードバック制御される。このため、この信号注入装置10によれば、磁性コア2の磁気飽和を直接的に検出することができる結果、磁性コア2において磁気飽和を発生させることなく、磁束Mcをより確実に発生させて、注入対象ラインLに交流信号S1をより確実にしかも効率良く注入することができる。また、この信号注入装置10によれば、1つの磁束キャンセル用巻線W1を用いて、キャンセル用巻線の機能と信号注入用巻線の機能とを実現させることができるため、信号注入装置10を安価に構成することができる。
 なお、磁束キャンセル部4Dにおいて、各回路での必要な利得が確保されている場合には、電圧ドライバ46および電圧ドライバ49のうちの少なくとも一方の配設を省くことができる。
 また、この信号注入装置10によれば、上記の信号注入部3における信号生成回路31に対して、交流信号S1の周波数をスイープさせることにより、例えば、信号注入装置10をインピーダンス測定装置に組み込んだ場合に、電池Batなどに正弦波信号である交流信号S1を供給してその周波数応答を測定可能なFRA として構成することができるため、高精度なインピーダンス測定を行うことができる。
 また、このインピーダンス測定装置1によれば、上記の信号注入装置10を備え、処理部7が、注入対象ラインに直列接続されている測定対象である電池Batの内部インピーダンスZbを測定する際に、注入対象ラインLに交流信号S1を注入したときに、その注入対象ラインLを流れる交流信号S1の電流値(注入電流Iiの電流値:電圧信号S2)と、電池Batの両端に生じる電圧値(両端電圧信号S4)とに基づいて電池Batの内部インピーダンスZbを測定することにより、磁性コア2において磁束Mcをより確実に発生させて、注入対象ラインLに交流信号S1をより確実にしかも効率良く注入することができる結果、高い精度で電池Bat(測定対象)の内部インピーダンスZbを測定することができる。
 また、このインピーダンス測定装置1によれば、非接触型電流センサ5が、注入対象ラインLを流れる注入電流Ii(交流電流の電流)を注入対象ラインLに対して非接触で検出して電圧信号S2を処理部7に出力し、電圧検出部6が、測定対象である電池Batの両端に接触して検出した両端電圧信号S4を電池Batから絶縁した状態で処理部7に出力することにより、電池Batの出力電圧が非常に高い電圧であったとしても、また、負荷Loadやインピーダンス測定装置1の周囲にスイッチングノイズなどのノイズが存在する場合であっても、電池Batに注入電流Iiが流れて電池Bat内に発生する微小の交流電圧を精度良く検出することができる。したがって、このインピーダンス測定装置1によれば、電池Batの内部インピーダンスZbを精度良く測定することができる。また、このインピーダンス測定装置1によれば、非接触型電流センサ5を用いたことにより、注入対象ラインLを切断することなく、非接触で電池Batの内部インピーダンスZbを測定することができる。
 また、このインピーダンス測定装置1によれば、処理部7の演算回路77が、直交検波回路75から出力される交流電流としての注入電流Ii(検出信号S3)の同相成分および直交成分と、直交検波回路76から出力される交流電圧としての両端電圧信号S4の同相成分および直交成分とに基づいて測定対象としての電池Batの内部インピーダンスZbを演算することにより、注入対象ラインLに注入された交流信号S1の信号レベルが小さいときであっても、雑音レベル(N)に対する信号レベル(S)の比率(S/N)を高めて精度良く内部インピーダンスZbを測定することができる。
 また、信号注入装置10は、インピーダンス測定装置への適用に限らず、交流信号S1を注入対象ラインLに注入して測定する各種の計測器に適用が可能である。また、インピーダンス測定装置は、電池Batの内部インピーダンスZbの測定に限らず、各種測定対象のインピーダンスを測定することができる。例えば、水を電気分解して水素を製造する水電解セルを測定対象として、水電解セルと、負荷Loadに代えて水電解セル用の電源とを注入対象ラインLで接続した閉ループにおいて、水電解セルの陽極と陰極とにプローブP1,P2を接続して水電解セルの内部インピーダンスを測定することもできる。
 また、インピーダンス測定装置1において、磁性コア2とは別個に注入対象ラインLを挿通させた磁性コアを設けて、その別個の磁性コア2に巻線W2を巻回することもできる。
 また、注入電流Iiの電流値を検出する電流センサとして非接触型電流センサ5を用いたインピーダンス測定装置1の例について説明したが、非接触型に限らず、注入対象ラインL中にカレントトランスや電流検出用抵抗などを配設して注入電流Iiの電流値を検出する構成を採用することができる。
 さらに、インピーダンス測定装置1の基準電位(フローティンググランド)を絶縁する必要のない場合には、絶縁回路62の配設を省略して、基準電位(グランド)と、インピーダンス測定装置1の基準電位(フローティンググランド)とを同じ電位にすることもできる。また、A/D変換回路71,72,73については、信号生成回路31内、非接触型電流センサ5内および電圧検出部6内にそれぞれ設けることができる。また、2f信号生成回路31aおよび1/2分周回路31bを信号生成回路31として構成した例について説明したが、2f信号生成回路31aおよび1/2分周回路31bを信号生成回路31とは別個独立して設ける構成を採用することもできる。
 また、上記のインピーダンス測定装置1による電池Batの内部インピーダンスZbの測定に関して、複数の電池セルを直列接続して構成される電池Batにおける1つまたは複数の電池セルの内部インピーダンスZbを測定する際には、測定対象となる電池セルの両端にプローブP1,P2を接触させて、上記した測定方法と同様にして測定することで、測定対象となる1つの電池セルの内部インピーダンスZb、または直列接続した複数の電池セルの直列の内部インピーダンスZbを測定することができる。
 また、インピーダンス測定装置1において、電池Batの内部インピーダンスZbなどのインピーダンスの演算をデジタル処理で行う例について説明したが、交流信号S1、検出信号S3および両端電圧信号S4に基づいて、アナログ回路によるアナログ演算でインピーダンスを求める構成を採用することもできる。
 本発明によれば、大電流の直流電流が注入対象ラインに流れることに起因する磁性コアの磁気飽和を回避することができる結果、第2の巻線に交流信号を供給することで、磁性コアにおいて交流信号に基づく磁束を確実に発生させて、直流電流が流れている注入対象ラインに交流信号を確実にしかも効率良く注入することができる。これにより、本願発明は、このような信号注入装置やインピーダンス測定装置に広く適用することができる。
   1 インピーダンス測定装置
  10 信号注入装置
   2 磁性コア
   3,3A 信号注入部
   4,4A~4D 磁束キャンセル部
  41 ホール素子
  42 電圧ドライバ
  43,48 LPF
  44 加算回路
  45 電流ドライバ
  47 同期検波回路
   5 非接触型電流センサ
   6 電圧検出部
  61 バッファ回路
  62 絶縁回路
   7 処理部
  74 移相回路
  75,76 直交検波回路
  77 演算回路
 Bat 電池
  Ii 注入電流
Load 負荷
  S1 交流信号
  S2 電圧信号
  S3 検出信号
  S4 両端電圧信号
  Sd 出力信号
 Sdc 直流信号
  Sr 基準信号
  W1 磁束キャンセル用巻線
  W2 信号注入用巻線

Claims (13)

  1.  直流電流が流れている注入対象ラインが挿通される環状の磁性コアと、
     前記注入対象ラインに注入する交流信号を生成して前記注入対象ラインに注入する信号注入部とを備えた信号注入装置であって、
     前記磁性コアに挿通されている前記注入対象ラインに前記直流電流が流れることに起因して当該磁性コアに発生する第1の磁束をキャンセルするための第2の磁束を発生させるキャンセル電流を当該磁性コアに巻回された第1の巻線に供給する磁束キャンセル部を備えている信号注入装置。
  2.  前記磁束キャンセル部は、前記磁気コアに巻回されると共に当該磁気コアに発生する前記第1の磁束をキャンセルするための第1の巻線と、前記磁気コアに設けられて当該磁気コアに発生する磁束に応じた電圧信号を出力する磁束検出回路と、前記磁束検出回路から出力された前記電圧信号を増幅する増幅回路と、前記増幅回路で増幅された前記電圧信号に含まれている前記交流信号に基づく電圧信号の出力を阻止すると共に前記直流電流に基づく電圧信号を通過させて前記第1の磁束をキャンセルする向きで前記キャンセル電流を前記第1の巻線に供給し、かつ前記交流信号に基づいて前記キャンセル巻線に発生する電圧信号の前記増幅回路への入力を阻止するフィルタ回路とを備えて構成され、
     前記信号注入部は、前記磁性コアに巻回された第2の巻線を備え、前記第2の巻線に前記交流信号を供給して当該交流信号を前記注入対象ラインに注入する請求項1記載の信号注入装置。
  3.  前記磁束キャンセル部は、前記磁気コアに巻回されると共に当該磁気コアに発生する前記第1の磁束をキャンセルするための第1の巻線と、前記磁気コアに設けられて当該磁気コアに発生する磁束に応じた電圧信号を出力する磁束検出回路と、前記磁束検出回路から出力された前記電圧信号に含まれている前記交流信号に基づく電圧信号の出力を阻止すると共に前記直流電流に基づく電圧信号を通過させるフィルタ回路と、前記フィルタ回路を通過した前記電圧信号と前記交流信号とを加算して加算信号を出力する加算回路と、前記加算回路から出力された加算信号を増幅すると共に前記第1の巻線に供給して、前記第1の磁束をキャンセルする向きで前記キャンセル電流を当該第1の巻線に供給すると共に前記交流信号を当該第1の巻線に供給して当該交流信号を前記注入対象ラインに注入する増幅回路とを備えている請求項1記載の信号注入装置。
  4.  前記磁束キャンセル部は、前記磁気コアに巻回されると共に当該磁気コアに発生する前記第1の磁束をキャンセルするための第1の巻線と、前記磁気コアに設けられて当該磁気コアに発生する磁束に応じた電圧信号を出力する磁束検出回路と、前記磁束検出回路から出力された前記電圧信号に含まれている前記交流信号に基づく電圧信号の出力を阻止すると共に前記直流電流に基づく電圧信号を通過させるフィルタ回路と、前記フィルタ回路を通過した前記電圧信号を増幅すると共に前記第1の磁束をキャンセルする向きで前記キャンセル電流を前記第1の巻線の一端に供給する増幅回路とを備え、
     前記信号注入部は、前記交流信号を増幅すると共に当該増幅した交流信号を前記第1の巻線の他端に供給して当該交流信号を前記注入対象ラインに注入する増幅回路を備えている請求項1記載の信号注入装置。
  5.  前記磁束キャンセル部は、前記磁気コアに巻回されると共に当該磁気コアに発生する前記第1の磁束をキャンセルするための第1の巻線と、前記磁気コアに設けられて当該磁気コアに発生する磁束に応じた電圧信号を出力する磁束検出回路と、前記磁束検出回路から出力された前記電圧信号に含まれている前記交流信号に基づく電圧信号の出力を阻止すると共に前記直流電流に基づく電圧信号を通過させるフィルタ回路と、前記フィルタ回路を通過した前記電圧信号を増幅すると共に前記第1の磁束をキャンセルする向きで前記キャンセル電流を前記第1の巻線に供給する電流ドライバとを備え、
     前記信号注入部は、前記磁性コアに巻回された第2の巻線を備え、前記第2の巻線に前記交流信号を供給して当該交流信号を前記注入対象ラインに注入する請求項1記載の信号注入装置。
  6.  前記磁束検出回路は、ホール素子、フラックスゲートセンサ、およびGMR素子のいずれかを前記磁性コアに配設して構成されている請求項2から5のいずれかに記載の信号注入装置。
  7.  前記フィルタ回路は、リアクトルで形成されたインダクターを含んだローパスフィルタで構成されている請求項2~6のいずれかに記載の信号注入装置。
  8.  前記磁束キャンセル部は、前記磁性コアに発生する前記交流信号の2倍の周波数に基づく磁束に応じた電圧信号の信号レベルを低下させる前記キャンセル電流を前記第1の巻線に供給する請求項1記載の信号注入装置。
  9.  前記信号注入部は、前記注入対象ラインに注入する前記交流信号と、当該交流信号の2倍の周波数の同期検波用の基準信号とを生成し、
     前記磁束キャンセル部は、前記磁気コアに巻回されると共に当該磁気コアに発生する前記第1の磁束をキャンセルするための第1の巻線と、前記第1の巻線に発生する前記交流信号の2倍の周波数の電圧信号を前記基準信号で同期検波する同期検波回路と、前記同期検波回路の出力信号に含まれている直流信号を抽出するフィルタ回路と、前記フィルタ回路から出力された前記直流信号と前記交流信号とを加算する加算回路と、前記加算回路の出力信号を増幅すると共に前記第1の巻線に供給して、前記第1の磁束をキャンセルする向きで前記キャンセル電流を前記第1の巻線に供給すると共に前記交流信号を当該第1の巻線に供給して当該交流信号を前記注入対象ラインに注入する増幅回路とを備えている請求項1または8記載の信号注入装置。
  10.  前記信号生成部は、前記交流信号の周波数をスイープさせる請求項1から9のいずれかに記載の信号注入装置。
  11.  請求項1から10のいずれかに記載の信号注入装置を備えて、前記注入対象ラインに直列接続されている測定対象のインピーダンスを測定するインピーダンス測定装置であって、
     前記注入対象ラインに前記交流信号を注入したときに、当該注入対象ラインを流れる前記交流信号の電流値と、前記測定対象に生じる電圧値とに基づいて当該測定対象のインピーダンスを測定する処理部を備えているインピーダンス測定装置。
  12.  前記注入対象ラインを流れる前記交流信号の電流を当該注入対象ラインに対して非接触で検出して検出信号を前記処理部に出力する非接触型電流センサと、
     前記測定対象の両端電圧を検出する電圧検出部とを備え、
     電圧検出部は、前記測定対象の両端に接触して両端電圧信号を検出する電圧検出回路と、当該検出された両端電圧信号を前記測定対象から絶縁した状態で前記処理部に出力する絶縁回路とを備え、
     前記処理部は、前記検出信号を前記交流信号の前記電流値として入力すると共に前記両端電圧信号を前記測定対象に生じる前記電圧値として入力して前記測定対象の前記インピーダンスを測定する請求項11記載のインピーダンス測定装置。
  13.  前記処理部は、前記交流信号を入力すると共に前記検出信号を直交検波して当該交流電流の同相成分および直交成分を生成する第1直交検波回路と、前記交流信号を入力すると共に前記両端電圧信号を直交検波して交流電圧の同相成分および直交成分を生成する第2直交検波回路と、
     前記第1直交検波回路から出力される前記交流電流の同相成分および直交成分と、前記第2直交検波回路から出力される前記交流電圧の同相成分および直交成分とに基づいて前記測定対象の前記インピーダンスを演算する演算回路とを備えている請求項12記載のインピーダンス測定装置。
PCT/JP2022/014238 2021-05-24 2022-03-25 信号注入装置およびインピーダンス測定装置 WO2022249708A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2021-086778 2021-05-24
JP2021086778 2021-05-24
JP2022-038790 2022-03-14
JP2022038790A JP2022180295A (ja) 2021-05-24 2022-03-14 信号注入装置およびインピーダンス測定装置

Publications (1)

Publication Number Publication Date
WO2022249708A1 true WO2022249708A1 (ja) 2022-12-01

Family

ID=84228657

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/014238 WO2022249708A1 (ja) 2021-05-24 2022-03-25 信号注入装置およびインピーダンス測定装置

Country Status (1)

Country Link
WO (1) WO2022249708A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116930615A (zh) * 2023-07-27 2023-10-24 阿维塔科技(重庆)有限公司 绝缘检测装置、方法和存储介质

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07110345A (ja) * 1993-10-08 1995-04-25 Hioki Ee Corp 零磁束制御型電流センサの消磁方法
JP2012108007A (ja) * 2010-11-18 2012-06-07 Hioki Ee Corp 測定装置
JP2012113884A (ja) * 2010-11-22 2012-06-14 Denso Corp 電流測定装置
WO2014010187A1 (ja) * 2012-07-09 2014-01-16 パナソニック株式会社 電流検出装置
WO2014104188A1 (ja) * 2012-12-27 2014-07-03 学校法人早稲田大学 電気化学解析装置および電気化学システム
JP2016188790A (ja) * 2015-03-30 2016-11-04 株式会社タムラ製作所 電流検出器
JP2018126006A (ja) * 2017-02-02 2018-08-09 宮崎県 電流センサおよび電流測定装置並びに太陽電池ストリング用電流測定システム
JP2019204158A (ja) * 2018-05-21 2019-11-28 横河電機株式会社 可搬型端末装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07110345A (ja) * 1993-10-08 1995-04-25 Hioki Ee Corp 零磁束制御型電流センサの消磁方法
JP2012108007A (ja) * 2010-11-18 2012-06-07 Hioki Ee Corp 測定装置
JP2012113884A (ja) * 2010-11-22 2012-06-14 Denso Corp 電流測定装置
WO2014010187A1 (ja) * 2012-07-09 2014-01-16 パナソニック株式会社 電流検出装置
WO2014104188A1 (ja) * 2012-12-27 2014-07-03 学校法人早稲田大学 電気化学解析装置および電気化学システム
JP2016188790A (ja) * 2015-03-30 2016-11-04 株式会社タムラ製作所 電流検出器
JP2018126006A (ja) * 2017-02-02 2018-08-09 宮崎県 電流センサおよび電流測定装置並びに太陽電池ストリング用電流測定システム
JP2019204158A (ja) * 2018-05-21 2019-11-28 横河電機株式会社 可搬型端末装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116930615A (zh) * 2023-07-27 2023-10-24 阿维塔科技(重庆)有限公司 绝缘检测装置、方法和存储介质

Similar Documents

Publication Publication Date Title
US9341686B2 (en) Single-package power meter
KR101329240B1 (ko) 플럭스 게이트 방식의 비접촉 전류 계측기
JP4245236B2 (ja) 電流検出回路
Ripka et al. Measurement of DC currents in the power grid by current transformer
JP2018146314A (ja) 磁気センサ、磁気センサ装置
JP2007163415A (ja) 可変容量回路、電圧測定装置および電力測定装置
Ouyang et al. Current sensors based on GMR effect for smart grid applications
JP6457026B2 (ja) 電流測定装置および電流測定方法
JP2009210406A (ja) 電流センサ及び電力量計
Ripka Contactless measurement of electric current using magnetic sensors
WO2022249709A1 (ja) インピーダンス測定装置
Schrittwieser et al. Novel principle for flux sensing in the application of a DC+ AC current sensor
WO2022249708A1 (ja) 信号注入装置およびインピーダンス測定装置
US11946988B2 (en) Vehicle battery current sensing system
CN116930589A (zh) 交直流多气隙磁阻电流传感器及电流测量方法
JP2022180295A (ja) 信号注入装置およびインピーダンス測定装置
KR20210091268A (ko) 저 노이즈 및 고 대역폭을 갖는 자기 센서
JP2004257904A (ja) 電流プローブ
US20240230780A1 (en) Impedance measurement device
US20230042257A1 (en) Capacitive detection device comprising a module for polarization by induction
WO2023013713A1 (ja) 電流キャンセル装置およびインピーダンス測定装置
CN109030906A (zh) 一种电流探头
JP2022180277A (ja) インピーダンス測定装置
KR20040001535A (ko) 직류 및 교류의 측정이 가능한 클램프형 전류측정기
CN117355756A (zh) 阻抗测定装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22810984

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22810984

Country of ref document: EP

Kind code of ref document: A1