JP2022180277A - インピーダンス測定装置 - Google Patents

インピーダンス測定装置 Download PDF

Info

Publication number
JP2022180277A
JP2022180277A JP2021177590A JP2021177590A JP2022180277A JP 2022180277 A JP2022180277 A JP 2022180277A JP 2021177590 A JP2021177590 A JP 2021177590A JP 2021177590 A JP2021177590 A JP 2021177590A JP 2022180277 A JP2022180277 A JP 2022180277A
Authority
JP
Japan
Prior art keywords
signal
circuit
injection
measuring device
impedance measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021177590A
Other languages
English (en)
Inventor
昭純 堀田
Akizumi Hotta
博之 戸谷
Hiroyuki Toya
大桂 池田
Taikei Ikeda
真 笠井
Makoto Kasai
智春 坂井
Tomoharu Sakai
靖幸 月岡
Yasuyuki Tsukioka
浩一 柳沢
Koichi Yanagisawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hioki EE Corp
Original Assignee
Hioki EE Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hioki EE Corp filed Critical Hioki EE Corp
Priority to CN202280037292.9A priority Critical patent/CN117355756A/zh
Priority to PCT/JP2022/014242 priority patent/WO2022249709A1/ja
Publication of JP2022180277A publication Critical patent/JP2022180277A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Resistance Or Impedance (AREA)

Abstract

【課題】低耐圧仕様の信号注入部を用いることで製造コストを十分に低減する。【解決手段】電池Batが直列に接続されている注入対象ラインに交流信号S1を注入する信号注入部3と、注入対象ラインLを流れる交流信号S1の電流値を注入対象ラインLに対して非接触で検出して検出信号S3を出力する非接触型電流センサ5と、電池Batの両端に生じている交流電圧の電圧値をその両端に接触して検出して両端電圧信号S4を出力する電圧検出部6と、検出信号S3および両端電圧信号S4に基づいて電池Batの内部インピーダンスZbを測定する処理部7とを備え、信号注入部3は、注入対象ラインLに対して非接触で交流信号S1を注入可能に構成されている。【選択図】図1

Description

本発明は、導体で形成されている注入対象ラインに測定用の交流信号が信号注入部によって注入されている状態において、注入対象ラインに直列接続されている測定対象のインピーダンスを測定するインピーダンス測定装置に関するものである。
この種のインピーダンス測定装置として、下記の特許文献に開示された電池用内部インピーダンス測定装置(以下、「測定装置」ともいう)が知られている。この測定装置は、交流電源供給部、交流電圧検出部、交流電流検出部および演算制御部を備え、一対の電源ラインを介して接続された負荷に直流電流を供給している状態における二次電池の内部インピーダンスを測定可能に構成されている。
この測定装置では、交流電流供給部が、信号注入部として機能して二次電池に対して測定用の交流電流を供給する。この際に、交流電圧検出部が、交流電流の供給時における二次電池の端子間に発生する交流電圧を検出し、交流電流検出部が、交流電流の供給時における二次電池に流れる交流電流を検出する。次いで、演算制御部が、交流電圧検出部によって検出された交流電圧と交流電流検出部によって検出された交流電流とに基づいて二次電池の内部インピーダンスを算出する。したがって、この測定装置では、導体で形成されている一対の電源ラインに測定用の交流信号が注入されている状態において、一対の電源ラインに直列接続されている測定対象としての二次電池のインピーダンスを測定することが可能となっている。
特開2004-251625号公報(第3-7頁、第1図)
ところが、上記の測定装置には、以下のような課題が存在する。具体的には、この測定装置では、インピーダンスの測定時において、交流電源供給部(信号注入部)が、二次電池の両端に直接接続されて、その両端を介して二次電池に交流電流を供給する必要がある。この場合、例えば、燃料電池車(FCV:Fuel Cell Vehicle)などに用いられる二次電池の両端の電圧は、DC650V程度の高い電圧となる。このため、この二次電池の両端に直接接続される交流電源供給部の内部部品としては、その二次電池の出力電圧以上の耐圧を有する高価な部品を採用しなければならない。したがって、交流電源供給部を高耐圧仕様で構成しなければならず、測定装置全体としての製造コストが非常に高くなり、これを改善すべきとの要請が存在する。
本発明は、かかる課題に鑑みてなされたものであり、測定対象が直列接続されると共に測定用の交流信号が注入される注入対象ラインに高電圧が存在するときにおいても、低耐圧仕様の信号注入部を用いることでインピーダンス測定装置全体としての製造コストを十分に低減すると共に測定対象のインピーダンスを確実に測定可能なインピーダンス測定装置を提供することを主目的とする。
上記目的を達成すべく、本発明に係るインピーダンス測定装置は、測定用の交流信号を生成すると共に測定対象が直列に接続されている注入対象ラインに前記交流信号を注入する信号注入部と、前記注入対象ラインを流れる前記交流信号の電流値を当該注入対象ラインに対して非接触で検出して電流検出信号を出力する非接触型の電流検出部と、前記測定対象の両端に生じている前記交流電圧の電圧値を当該両端に接触して検出して電圧検出信号を出力する電圧検出部と、前記電流検出信号および前記電圧検出信号を入力すると共に当該電流検出信号および当該電圧検出信号に基づいて前記測定対象のインピーダンスを測定する処理部とを備えているインピーダンス測定装置であって、前記信号注入部は、前記注入対象ラインに対して非接触で前記交流信号を注入可能に構成されている。
このインピーダンス測定装置では、信号注入部が、注入対象ラインに対して非接触で交流信号を注入し、非接触型の電流検出部が注入対象ラインを流れる交流信号の電流値を注入対象ラインに対して非接触で検出して電流検出信号を出力し、電圧検出部が測定対象の両端に生じている交流信号の電圧値をその両端に接触して検出して電圧検出信号を出力し、処理部が、電流検出信号および電圧検出信号を入力すると共に電流検出信号および電圧検出信号に基づいて測定対象のインピーダンスを測定する。
したがって、このインピーダンス測定装置によれば、測定対象が直列接続されると共に測定用の交流信号が注入される注入対象ラインに高電圧が存在するときにおいても、注入対象ラインに対して信号注入部が非接触で交流信号を注入するため、信号注入部を構成する部品として低耐圧仕様の部品を使用できる結果、信号注入部の製造コストの低減、ひいてはインピーダンス測定装置全体としての製造コストを十分に低減することができると共に測定対象のインピーダンスを確実に測定することができる。
また、本発明に係るインピーダンス測定装置は、前記電圧検出部は、前記検出した電圧検出信号を前記測定対象から絶縁した状態で前記処理部に出力する絶縁回路を備えている。
このインピーダンス測定装置では、非接触型電流センサが、注入対象ラインを流れる交流電流の電流を注入対象ラインに対して非接触で検出して電流検出信号を処理部に出力し、電圧検出部が、測定対象の両端に接触して検出した両端電圧信号を測定対象から絶縁した状態で処理部に出力することにより、測定対象に非常に高い電圧が生じていたとしても、また、負荷やインピーダンス測定装置の周囲にスイッチングノイズなどのノイズが存在する場合であっても、測定対象に交流信号の注入に基づく電流が流れて測定対象内に発生する微小の交流電圧を精度良く検出することができる。したがって、このインピーダンス測定装置によれば、測定対象のインピーダンスを精度良く測定することができる。また、このインピーダンス測定装置によれば、非接触型電流センサを用いたことにより、注入対象ラインを切断することなく、非接触で測定対象のインピーダンスを測定することができる。
また、本発明に係るインピーダンス測定装置は、前記処理部は、前記交流信号を入力すると共に前記電流検出信号を直交検波して交流電流の同相成分および直交成分を生成する第1直交検波回路と、前記交流信号を入力すると共に前記電圧検出信号を直交検波して交流電圧の同相成分および直交成分を生成する第2直交検波回路と、前記第1直交検波回路から出力される前記交流電流の同相成分および直交成分と、前記第2直交検波回路から出力される前記交流電圧の同相成分および直交成分とに基づいて前記測定対象のインピーダンスを演算する演算回路とを備えている。
このインピーダンス測定装置によれば、処理部の演算回路が、第1の直交検波回路から出力される交流電流の同相成分および直交成分と、第2の直交検波回路から出力される交流電圧の同相成分および直交成分とに基づいて測定対象のインピーダンスを演算することにより、注入対象ラインに注入された交流信号の信号レベルが小さいときであっても、雑音レベル(N)に対する信号レベル(S)の比率(S/N)を高めて精度良くインピーダンスを測定することができる。
また、本発明に係るインピーダンス測定装置は、前記信号注入部は、二次巻線としての前記注入対象ラインに磁気結合する一次巻線を構成する一次巻線構成部品を備えると共に当該一次巻線構成部品に前記交流信号を印加することにより当該注入対象ラインに当該交流信号を注入する。
また、本発明に係るインピーダンス測定装置は、前記一次巻線構成部品は、前記注入対象ラインが挿通される環状の第1の磁気コアに巻回された絶縁被覆電線を備えて構成されている。
これらのインピーダンス測定装置によれば、一次巻線構成部品を簡易に構成することができると共に交流信号を注入対象ラインに確実に注入することができる。
また、本発明に係るインピーダンス測定装置は、前記第1の磁気コアは、ギャップが設けられている。このインピーダンス測定装置によれば、磁性コアにギャップを設けたことにより、磁性コアの磁気飽和を回避することができる。
また、本発明に係るインピーダンス測定装置は、前記第1の磁気コアは、複数のC型の単位磁気コアで構成され、複数の前記単位磁気コアは、重ねた状態の上面視において、前記第1の磁気コアの外周に沿って互いに隣り合う2つの前記ギャップの離間距離が均等となるように重ねられている。
このインピーダンス測定装置によれば、磁性コアに挿通された注入対象ラインがギャップに近い箇所に位置していたとしても、その位置に拘わらず、交流信号の注入対象ラインへの注入を減少させることなく、注入対象ラインに対して交流信号を安定して注入することができる。
また、本発明に係るインピーダンス測定装置は、前記一次巻線構成部品は、前記第1の磁気コアに巻回された前記絶縁被覆電線で構成されると共に全体として直列接続される第1巻線から第Na巻線(Naは2以上の整数)までのNa個の巻線と、前記第1巻線から前記第Na巻線にそれぞれ並列接続された第1並列スイッチから第Na並列スイッチまでのNa個のスイッチとを備えて構成され、前記処理部は、前記Na個の並列スイッチをオンオフ制御して、前記一次巻線構成部品全体としての巻数を変更する。
このインピーダンス測定装置によれば、一次巻線構成部品全体としての巻数を変更することにより、負荷が測定対象に接続されて閉ループ状態になっているときの信号注入用巻線から見た負荷インピーダンスの大小に拘わらず、交流信号を精度良く注入対象ラインに注入することができる。
また、本発明に係るインピーダンス測定装置は、前記第1巻線から前記第Na巻線は、互いの巻数が相違するようにそれぞれ巻回されている。このインピーダンス測定装置によれば、同じ巻数で構成した一次巻線構成部品と比較して巻数の増減を大きくすることができる。
また、本発明に係るインピーダンス測定装置は、前記第1巻線から前記第Na巻線は、それぞれ2Ma(Maは0から(Na-1)までのNa個の整数)に1以上の整数であるLaを乗じた数で巻回されている。このインピーダンス測定装置によれば、一次巻線構成部品全体としての巻数をきめ細やかに制御することができる。
また、本発明に係るインピーダンス測定装置は、前記第1巻線から前記第Na巻線は、巻数が多い前記巻線の前記絶縁被覆電線における芯線の線径が巻数が少ない前記巻線の前記絶縁被覆電線における芯線の線径よりも細く形成されている。このインピーダンス測定装置によれば、巻数が多い巻線に細い絶縁被覆電線(またはエナメル線)を用いることができる結果、信号注入用巻線の生産性を十分に向上させることができる。
また、本発明に係るインピーダンス測定装置は、前記信号注入部は、前記交流信号の周波数または当該周波数の近傍の周波数において共振点を有するLC共振回路を前記一次巻線と共に構成するコンデンサ回路を備えている。このインピーダンス測定装置によれば、信号注入部は、交流信号の周波数またはその周波数の近傍の周波数において共振点を有するLC共振回路を一次巻線と共に構成するコンデンサ回路を備えているため、交流信号が一次巻線を流れ易くなる結果、LC共振回路での交流信号の損失を十分に低減することができる。
また、本発明に係るインピーダンス測定装置は、前記信号注入部は、前記LC共振回路のQ値を低下させるダンピング抵抗を備えている。このインピーダンス測定装置によれば、信号注入部によって生成される交流信号の周波数とLC共振回路の共振周波数とが多少相違していたとしても、LC共振回路での交流信号の損失を十分に低減することができる。
また、本発明に係るインピーダンス測定装置は、前記信号注入部は、前記交流信号を増幅する増幅回路を備え、前記LC共振回路は、前記増幅回路の負荷回路として配置されている。このインピーダンス測定装置によれば、増幅回路に対して正弦波の交流信号をリニアに増幅させることができる。
また、本発明に係るインピーダンス測定装置は、前記LC共振回路は、当該LC共振回路の一端が高電位に接続されると共にLC並列共振回路で構成され、前記増幅回路は、NチャンネルMOSFETで構成され、ドレイン端子に前記LC共振回路の他端側が接続され、ソース端子が低電位に接続され、かつゲート端子に前記交流信号としてのパルス信号が入力されて当該交流信号をD級増幅する。このインピーダンス測定装置によれば、増幅回路を簡易に構成することができる。
また、本発明に係るインピーダンス測定装置は、前記高電位の電圧が可変可能に構成されている。このインピーダンス測定装置によれば、FETのドレイン電圧が変化する結果、FETから出力される交流信号の電圧(電力でもある)を自在に変更することができる。
また、本発明に係るインピーダンス測定装置は、前記LC共振回路は、当該LC共振回路の一端が基準電位に接続されると共にLC直列共振回路で構成され、前記増幅回路は、NチャンネルMOSFETおよびPチャンネルMOSFETによってプッシュプル回路に構成され、前記NチャンネルMOSFETのドレイン端子が前記基準電位よりも高電位に接続され、前記PチャンネルMOSFETのドレイン端子が前記基準電位よりも低電位に接続され、前記NチャンネルMOSFETおよび前記PチャンネルMOSFETの各ソース端子に前記LC直列共振回路の他端側が接続され、かつ前記NチャンネルMOSFETのゲート端子に前記交流信号としての正のパルス信号が入力されると共に前記PチャンネルMOSFETのゲート端子に前記交流信号としての負のパルス信号が入力されて当該交流信号をD級増幅する。このインピーダンス測定装置によれば、プッシュプル回路で構成された増幅回路によって、交流信号を確実にD級増幅することができる。
また、本発明に係るインピーダンス測定装置は、前記高電位の電圧および前記低電位の電圧がそれぞれ可変可能に構成されている。このインピーダンス測定装置によれば、2つのFETのドレイン電圧が変化する結果、2つのFETから出力される交流信号の電圧(電力でもある)を自在に変更することができる。
また、本発明に係るインピーダンス測定装置は、前記LC共振回路に直列に接続されて前記交流信号の通過を許容するLPFおよびBPFのいずれかを備えている。このインピーダンス測定装置によれば、増幅回路に対して正弦波の交流信号を確実にリニアに増幅させることができる。
また、本発明に係るインピーダンス測定装置は、前記コンデンサ回路は、全体として並列接続される第1コンデンサから第Nbコンデンサ(Nbは2以上の整数)までのNb個のコンデンサと、前記第1コンデンサから前記第Nbコンデンサにそれぞれ直列接続された第1直列スイッチから第Nb直列スイッチまでのNb個のスイッチとを備えて構成され、前記処理部は、前記交流信号の周波数に応じて前記Nb個の直列スイッチをオンオフ制御して、前記コンデンサ回路全体としての容量を変更する。このインピーダンス測定装置によれば、処理部は、交流信号の周波数に応じてNb個のスイッチをオンオフ制御して、コンデンサ回路CSとしての容量を変更することにより、LC共振回路の共振周波数をきめ細やかに制御することができる。
また、本発明に係るインピーダンス測定装置は、前記第1コンデンサから前記第Nbコンデンサは、互いの容量が相違する。このインピーダンス測定装置によれば、同じ容量のコンデンサで構成したコンデンサ回路と比較して容量の増減を大きくすることができる。
また、本発明に係るインピーダンス測定装置は、前記第1コンデンサから前記第Nbコンデンサは、それぞれ2Mb(Mbは0から(Nb-1)までのNb個の整数)に特定の容量を乗じた容量を有している。このインピーダンス測定装置によれば、コンデンサ回路全体としての容量を変更することができるため、LC共振回路の共振周波数をきめ細やかに制御することができる。この場合、コンデンサ回路におけるコンデンサの数を多くすることにより、共振周波数を線形的に変更することができる。
また、本発明に係るインピーダンス測定装置は、前記注入対象ラインを流れる前記交流信号の電流値を検出する信号検出部を備え、前記処理部は、前記信号検出部によって検出された前記交流信号の電流値が目標電流値範囲内に含まれるように、前記信号注入部から出力される前記交流信号の信号レベルを制御する。
また、本発明に係るインピーダンス測定装置は、前記注入対象ラインを流れる前記交流信号の電流値を検出する信号検出部を備え、前記処理部は、前記信号検出部によって検出された前記交流信号の電流値が前記目標電流値範囲内に含まれるように、前記第1並列スイッチから前記第Na並列スイッチのオンオフを制御する。
また、本発明に係るインピーダンス測定装置は、前記注入対象ラインを流れる前記交流信号の電流値を検出する信号検出部を備え、前記処理部は、前記信号注入部が前記注入対象ラインに注入している前記交流信号の電流値と、前記信号検出部によって検出された前記交流信号の電流値とに基づいて前記注入対象ラインの負荷インピーダンスを判別すると共に前記第1並列スイッチから前記第Na並列スイッチのオンオフを制御することにより、前記判別した負荷インピーダンスが小さいときには前記一次巻線構成部品全体としての巻数を増加させ、当該判別した負荷インピーダンスが大きいときには当該一次巻線構成部品全体としての巻数を減少させる。
これらのインピーダンス測定装置によれば、電流検出信号や電圧検出信号の雑音レベル(N)に対する信号レベル(S)の比率(S/N)を高めることができる結果、処理部によって行われるインピーダンスの演算処理(測定処理)において、精度良くインピーダンスを測定することができる。
また、本発明に係るインピーダンス測定装置は、前記信号検出部は、前記信号注入部とは別体に形成されると共に二次巻線としての前記注入対象ラインに磁気結合する一次巻線を形成する二次巻線構成部品を備えて構成されている。
このインピーダンス測定装置によれば、信号検出部としての非接触型の電流検出部が、信号注入部とは別体に形成されると共に二次巻線構成部品を備えて構成されているため、信号注入部の信号注入用巻線によって注入された交流信号に応じた漏れ磁束がノイズとなって二次巻線構成部品に漏れ出すことを回避できるため、精度良くインピーダンスを測定することができる。
また、本発明に係るインピーダンス測定装置は、前記信号検出部は、前記電流検出部として機能する。このインピーダンス測定装置によれば、非接触型の電流検出部が、電流検出部の構成と信号検出部の構成とを兼ねることで、インピーダンス測定装置の小型化を図ることができると共に製造コストを十分に低減することができる。
また、本発明に係るインピーダンス測定装置は、前記信号注入部は、生成する前記交流信号の周波数帯域を複数にグループ分けした周波数帯域グループにそれぞれ対応させた複数の前記一次巻線構成部品を備えると共に、1つの前記周波数帯域グループに属する周波数の前記交流信号を注入するときには、当該1つの周波数帯域グループに対応する前記一次巻線構成部品の両端に当該交流信号を印加し、前記周波数帯域は2つの前記周波数帯域グループにグループ分けされると共に当該2つの周波数帯域グループのうちの低域周波数帯域側の周波数帯域グループに対応させられた前記一次巻線構成部品における前記第1の磁気コアは金属系の磁気コアで構成され、かつ当該2つの前記周波数帯域グループのうちの高域周波数帯域側の周波数帯域グループに対応させられた前記一次巻線構成部品における前記第1の磁気コアはフェライト系の磁気コアで構成されている。
また、本発明に係るインピーダンス測定装置は、前記信号注入部は、生成する前記交流信号の周波数帯域を複数にグループ分けした周波数帯域グループにそれぞれ対応させた複数の前記一次巻線構成部品を備えると共に、1つの前記周波数帯域グループに属する周波数の前記交流信号を注入するときには、当該1つの周波数帯域グループに対応する前記一次巻線構成部品の両端に当該交流信号を印加し、前記周波数帯域は3つの前記周波数帯域グループにグループ分けされると共に当該3つの周波数帯域グループのうちの低域周波数帯域側の周波数帯域グループに対応させられた前記一次巻線構成部品における前記第1の磁気コアは金属系の磁気コアで構成され、当該3つの周波数帯域グループのうちの中域周波数帯域側の周波数帯域グループに対応させられた前記一次巻線構成部品における前記第1の磁気コアはフェライト系の磁気コアで構成され、かつ当該3つの周波数帯域グループのうちの高域周波数帯域側の周波数帯域グループに対応させられた前記一次巻線構成部品は空芯コイルで構成されている。
これらのインピーダンス測定装置によれば、注入対象ラインに交流信号をトランス方式で注入する際に、交流信号の周波数に応じて注入対象ラインとの結合が最も適した素材の磁性コアまたは空芯コイルを用いることができるため、注入対象ラインに交流信号を広い周波数帯域に亘って十分に効率良く注入することができる。
また、本発明に係るインピーダンス測定装置は、前記信号注入部は、前記交流信号の周波数を変更可能に構成されると共に、当該交流信号の周波数帯域が互いに隣接する2つの前記周波数帯域グループの境界部において一方の当該周波数帯域グループから他方の当該周波数帯域グループに向けて当該交流信号の周波数を変更する際に、当該隣接する2つの周波数帯域グループに対応する2つの前記一次巻線構成部品に前記交流信号を印加する。
このインピーダンス測定装置によれば、境界部において、交流信号の周波数に応じて注入対象ラインとの結合が適した2種類の素材の一次巻線構成部品が用いられるため、注入対象ラインに交流信号を十分に効率良く注入することができる。また、このインピーダンス測定装置によれば、境界部において一方の周波数帯域グループから他方の周波数帯域グループに向けて交流信号の周波数を変更する際に、交流信号を印加する一次巻線構成部品が切り替わることに起因する交流信号の信号レベルの変動を緩やかにすることができる。
また、本発明に係るインピーダンス測定装置は、前記一次巻線構成部品は、空芯コイルで構成されている。このインピーダンス測定装置によれば、簡易な構成でありながら、高周波帯域の交流信号を注入対象ラインに確実に注入することができる。
また、本発明に係るインピーダンス測定装置は、前記信号注入部は、同一仕様の前記一次巻線構成部品を複数備え、同一周波数でかつ同位相の前記交流信号を前記同一仕様の複数の一次巻線構成部品に同時に印加する。このインピーダンス測定装置によれば、1つの一次巻線構成部品を用いるのと比較して、十分に大きい電流値の交流信号を注入対象ラインに注入することができる。
また、本発明に係るインピーダンス測定装置は、前記電圧検出部を複数備え、前記複数の電圧検出部は、前記注入対象ラインに直列接続されている複数の前記測定対象の各両端に生じている前記交流電圧の電圧値を当該各両端に接触して検出して前記電圧検出信号を前記処理部にそれぞれ出力し、前記処理部は、前記電流検出信号および前記複数の電圧検出部からそれぞれ出力された複数の前記電圧検出信号に基づいて前記複数の測定対象の各インピーダンスを測定する。このインピーダンス測定装置によれば、複数の測定対象のインピーダンスを同時に測定することができる。
また、本発明に係るインピーダンス測定装置は、前記測定対象と非測定対象とが前記注入対象ラインで接続されて環状の閉ループを形成する被測定系における当該非測定対象の両端に並列接続されるコンデンサを備えている。このインピーダンス測定装置によれば、非測定対象のインピーダンスが大きいであっても、信号注入部による注入対象ラインへの交流信号の注入時における電流値を大きくすることができる。
また、本発明に係るインピーダンス測定装置は、前記信号注入部は、終段としてのD級増幅部を備え、当該D級増幅部によって増幅した前記交流信号を前記注入対象ラインに注入する。このインピーダンス測定装置によれば、信号注入部が負荷変動に対しても交流信号の出力レベルを制御された一定のレベルに維持することができる。
また、本発明に係るインピーダンス測定装置は、前記信号注入部は、前記交流信号の周波数をスイープする。このインピーダンス測定装置によれば、測定対象に正弦波信号である交流信号を供給してその周波数応答を測定可能なFRAとして構成することができるため、高精度なインピーダンス測定を行うことができる。
また、本発明に係るインピーダンス測定装置は、前記金属系の磁気コアは、パーマロイコア、センダストコア、アモルファスコア、圧粉磁芯コア、純鉄、珪素鋼鈑、パーメンジュール、ニッケル、コバルト、Fe-Si-Alおよび電磁ステンレスのいずれかであり、前記フェライト系の磁気コアは、Mn-Zn系フェライトおよびNi-Zn系フェライトのいずれかである。このインピーダンス測定装置によれば、金属系の磁気コアとして、上記種類のいずれかを用いたことにより、直流電流に対して磁気飽和し難い磁性コアを構成することができ、フェライト系の磁気コアとして、上記種類のいずれかを用いたことにより、磁性コアにおける渦電流の発生を回避することができる。
本発明に係るインピーダンス測定装置によれば、測定対象が直列接続されると共に測定用の交流信号が注入される注入対象ラインに高電圧が存在するときにおいても、注入対象ラインの芯線に対して信号注入部が非接触で交流信号を注入するため、信号注入部を構成する部品として低耐圧仕様の部品を使用できる結果、信号注入部の製造コストの低減、ひいてはインピーダンス測定装置全体としての製造コストを十分に低減することができると共に測定対象のインピーダンスを確実に測定することができる。
インピーダンス測定装置1の構成を示す構成図である。 LPF43の周波数特性を示す特性図(磁束キャンセル部4による磁性コア2に発生する磁束Mbをキャンセルする能力を示す特性図)である。 磁束キャンセル部4Aの構成を示す構成図である。 磁束キャンセル部4Bの構成を示す構成図である。 磁束キャンセル部4Cの構成を示す構成図である。 信号注入部3および磁束キャンセル部4Dの構成を示す構成図である。 LPF43の他の構成を示す構成図である。 非接触型電流センサ5の構成を示す構成図である。 インピーダンス測定装置1Aの構成を示す構成図である。 磁性コア2Aの構成を示す構成図である。 磁性コア2Aの平面図である。 磁性コア2Aの側面図である。 一次巻線構成部品CP1Aの構成を示す構成図である。 一次巻線構成部品CP1Aの機能を説明するための構成図である。 一次巻線構成部品CP1Aの機能を説明するための他の構成図である。 空芯コイルACの構成を示す構成図である。 インピーダンス測定装置1Bの構成を示す構成図である。 3つの周波数帯域グループFL,FM,FHを説明するための説明図である。 インピーダンス測定装置1Cの構成を示す構成図である。 インピーダンス測定装置1Dの構成を示す構成図である。 コンデンサ回路CSの構成を示す構成図である。 コンデンサ回路CSの構成を示す他の構成図である。 インピーダンス測定装置1Eの構成を示す構成図である。
以下、インピーダンス測定装置の実施の形態について、添付図面を参照して説明する。
図1に示すインピーダンス測定装置1は、「インピーダンス測定装置」の一例であって、例えば、負荷Load(非測定対象)が測定対象に接続されて閉ループの状態となっているときの測定対象としての電池(バッテリー)Batのインピーダンス(本例では、内部インピーダンスZb)を測定可能に構成されている。また、インピーダンス測定装置1は、電池Batに正弦波信号である後述の交流信号S1を供給してその周波数応答を測定可能なFRA(Frequency Response Analyzer)として構成されて、高精度なインピーダンス測定が可能となっている。
例えば、燃料電池車において、モータなどの大電流を消費する負荷Loadと、複数の電池セルを直列接続して構成される電池Bat(同図では、全体として1つの電池で図示している)とが、例えば導体である芯線が絶縁被覆された絶縁被覆ケーブル、エナメル線および絶縁被覆されていない電線などの導体で形成されたパワーライン(以下、「注入対象ラインL」ともいう)で接続されており、この注入対象ラインLには、電池Batから負荷Loadに直流大電流が流れている。このような接続状態において電池Batの内部インピーダンスZbを測定するためには、インピーダンス測定用の交流信号S1(例えば、1Hz~10MHz)を電池Batに供給する必要がある。この際に、このインピーダンス測定装置1では、電池Batから負荷Loadに直流大電流が流れている注入対象ラインLに、後述する注入抽出装置10を用いて交流信号S1を注入可能に構成されている。
具体的には、インピーダンス測定装置1は、磁性コア2、信号注入部3、磁束キャンセル部4、非接触型電流センサ5、電圧検出部6、処理部7および出力部8を備えて構成されている。この場合、磁性コア2、信号注入部3および磁束キャンセル部4によって信号注入装置10が構成される。
磁性コア2は、信号注入部3および磁束キャンセル部4を構成する要素であって、例えば、フェライト、パーマロイ、パーメンジュール、ケイ素鋼板および純鉄などの材料を用いて、直流電流Ibが流れる注入対象ラインLが挿通可能に、円形状、楕円形状、矩形状および多角形状状などの環状に形成されている。また、磁性コア2は、磁束キャンセル用のキャンセル電流としての負帰還の直流電流(以下、「キャンセル電流Ic」ともいう)を供給するための第1の巻線としての磁束キャンセル用巻線W1と、交流信号S1を注入するための第2の巻線としての信号注入用巻線W2とが巻回されると共にそのギャップG内にホール素子41が配設されて構成されている。この場合、ギャップGを設けることで、磁性コア2の磁気飽和がし難くなっている。なお、磁性コア2については、分割可能なクランプ型の構成を採用することもできる。また、磁束キャンセル用巻線W1および信号注入用巻線W2の一端に信号が注入されると共に他端が後述する基準電位(フローティンググランド)に接続されている。
信号注入部3は、測定用の交流信号S1を生成すると共に注入対象ラインLに対して(注入対象ラインLの芯線(導線)に対して)非接触で注入可能に構成されている。具体的には、信号注入部3は、交流信号S1を生成すると共に出力段に配置されたD級増幅回路で交流信号S1をD級増幅して出力可能に構成された信号生成回路31と、上記した磁性コア2と、上記した信号注入用巻線W2とを備えて構成されている。この場合、信号注入部3は、注入対象ラインLの芯線に対して非接触で交流信号S1を注入するため、各構成部品としては、電池Batの出力電圧と比較して極めて低耐圧仕様の部品が用いられている。この信号注入部3では、信号生成回路31が、注入対象ラインLに注入する交流信号S1の信号レベルおよび周波数を処理部7から出力される制御信号Sc1によって制御されて周波数をスイープ(例えば、1Hz~10MHz)させつつ、生成した交流信号S1を処理部7に出力すると共にD級増幅して信号注入用巻線W2に供給する。この場合、信号注入用巻線W2は、磁性コア2(第1の磁気コア)に巻回した絶縁被覆電線(またはエナメル線など)で構成されると共に二次巻線としての注入対象ラインLに磁気結合する一次巻線を構成する一次巻線構成部品CP1として機能する。このため、信号注入用巻線W2に交流信号S1をトランス方式(信号注入用巻線W2が複数ターンの一次巻線で注入対象ラインLが1ターンの二次巻線)で供給する(つまり、信号注入用巻線W2の両端に交流信号S1を印加する)ことで交流信号S1に基づく交流電流Iacが信号注入用巻線W2を流れて、交流信号S1に基づく磁束Mcが図1に示す向きで磁性コア2に発生すると共にその磁束Mcの大きさに応じた電流値の交流信号である注入電流Iiがノーマルモード信号として注入対象ラインLに供給される(注入される)。なお、信号生成回路31による周波数のスイープは必須ではなく、スイープが不要の場合には、固定周波数の交流信号S1を生成する構成を信号生成回路31に適用することもできる。
磁束キャンセル部4は、注入対象ラインLに直流電流Ibが流れた際に、磁性コア2に図1に示す向きで発生する第1の磁束としての磁束Mbを、ゼロフラックス法により、磁束Mbとは逆向きの第2の磁束としての磁束Mdを磁性コア2に発生させてキャンセル(相殺)可能に構成されている。具体的には、磁束キャンセル部4は、上記したギャップGに配設された磁束検出回路の一例としてのホール素子41、電圧ドライバ42、ローパスフィルタ43(以下、「LPF43」ともいう)、上記した磁性コア2、および信号注入用巻線W2を備えて構成されている。なお、例えば、負荷Loadのインピーダンスが大きいときや、電池Batの出力電圧が低いときなどにおいては、直流電流Ibの電流値が僅かとなったり、直流電流Ibが殆ど流れないことがある。このような状況でのインピーダンス測定装置1の使用を想定する場合には、磁性コア2の磁気飽和が生じないため、磁束キャンセル部4の機能を用いないこともできるし、磁束キャンセル部4の配設自体を省くこともできる。磁束キャンセル部4の配設を省いた構成のインピーダンス測定装置1A~1Cについては後述する。
ホール素子41は、「磁束検出回路」の一例であって、磁性コア2に設けられて磁気コア2に発生する磁束に応じた電圧信号S2を出力する。この場合、ホール素子41から検出信号として電流信号が出力される構成であってもよく、そのような電流信号によって電圧信号に変換された信号も「電圧信号S2」に含まれる。なお、「磁束検出回路」は、ホール素子に限らず、フラックスゲートセンサや磁気抵抗素子(MR:Magneto Resistive)などを磁性コア2に配設して構成することもできる。また、磁気抵抗素子として、GMR素子(Giant Magneto Resistive)、半導体磁気抵抗素子(SMR)、強磁性体薄膜材料を用いた異方性磁気抵抗素子(AMR:Anisotropic Magneto Resistive)、巨大磁気抵抗素子(GMR:Giant Magneto Resistive)およびトンネル磁気抵抗素子(TMR:Tunnel Magneto Resistive)を用いることができる。
電圧ドライバ42は、全体として負帰還増幅回路として機能する増幅回路の一例であって、電圧信号S2を増幅して低インピーダンスでLPF43に出力する。LPF43は、フィルタ回路の一例であって、電圧ドライバ42で増幅された電圧信号S2に含まれている交流信号S1に基づく電圧信号S2の出力を阻止すると共に直流電流Ibに基づく電圧信号S2を通過させて磁束Mbをキャンセルする向きでキャンセル電流Icを磁束キャンセル用巻線W1に供給し、かつ交流信号S1の信号注入用巻線W2への供給によって磁性コア2に発生した磁束Mcに基づいて磁束キャンセル用巻線W1に発生する電圧信号(交流信号に基づいてキャンセル巻線に発生する電圧信号)の電圧ドライバ42への入力を阻止する。具体的には、LPF43は、図1に示すように、例えば、電圧ドライバ42側の入力端Tiと基準電位との間にコンデンサC1が接続されると共に入力端Tiと磁束キャンセル用巻線W1側の出力端Toとの間にインダクターL1が接続されたL型のLCフィルタで構成されて、図2に示すように、そのカットオフ周波数が交流信号S1の周波数(周波数スイープさせているときには、交流信号S1の最低周波数)よりも低い周波数となる周波数特性を有しており、交流信号S1に基づく電圧信号S2の出力を阻止すると共に直流電流Ibに基づく電圧信号S2を通過させる。
この場合、直流電流Ibに基づく電圧信号S2だけを通過させるためには、カットオフ周波数はできる限り周波数0Hzに近いのが好ましい。したがって、この磁束キャンセル部4では、例えば、インダクタンスの大きいリアクトルで形成されたインダクターL1を含んだLPF43でフィルタ回路が構成されている。このため、LPF43は、カットオフ周波数ができる限り周波数0Hzに近づけられており、交流信号S1に基づく電圧信号S2の出力を阻止すると共に直流電流Ibに基づく電圧信号S2だけを通過させて磁束Mbをキャンセルする向きでキャンセル電流Icを磁束キャンセル用巻線W1に供給することができ、しかも安価に構成されている。また、交流信号S1の信号注入用巻線W2への供給によって磁性コア2に発生した磁束Mcに基づいて磁束キャンセル用巻線W1に発生する電圧信号の電圧ドライバ42への入力が阻止されるため、磁性コア2に発生させた磁束Mcに基づいて注入対象ラインLに注入する注入電流Ii(交流信号S1)のレベル低下が回避される。なお、LPF43は、図1に示すL型のLCフィルタ以外に各種構成のローパスフィルタを採用することができる。例えば、図7に示すように、入力端Tiと出力端Toとの間に、上記のインダクターL1と、インダクタンスの小さいインダクターL2を直列接続し、かつインダクターL2,L1の接続点と基準電位との間に上記のコンデンサC1を接続したT型のLCフィルタで構成してもよい。また、図示はしないが、π型のLCフィルタで構成してもよい。さらに、後述する各磁束キャンセル部4A,4B,4CにおけるLPF43や、磁束キャンセル部4DにおけるLPF48については、注入電流Iiのレベル低下の回避という機能を必要としないため、内部のインダクターL1については、インダクタンスの大きいリアクトルではなく、インダクタンスの小さなインダクターを用いることができる。また、各磁束キャンセル部4,4A,4B,4CにおけるLPF43や磁束キャンセル部4DにおけるLPF48の構成は、L型、T型およびπ型などのLC型のローパスフィルタに限らず、インダクターに代えて抵抗を用いたL型、T型およびπ型などのRC型のローパスフィルタなど、各種のローパスフィルタを採用することができる。また、LPF43の周波数特性は、磁束キャンセル部4による磁性コア2に発生する磁束をキャンセルする能力を示す周波数特性と一致している。
また、キャンセル電流Icの流れる向きおよび磁束キャンセル用巻線W1の巻回方向は、電池Batから負荷Loadに供給される直流電流Ibが流れることによって磁性コア2内に生じる磁束Mbを低減させる向きの磁束Mdが生じるように予め設定されている。したがって、磁束キャンセル部4の電圧ドライバ42が、ホール素子41によって検出される磁束Mbの大きさがゼロになるような電圧信号S2(キャンセル電流Ic)を生成して磁性コア2に巻回された磁束キャンセル用巻線W1に供給することにより、大電流の直流電流Ibが注入対象ラインLに流れることに起因する磁性コア2の磁気飽和が回避される。この結果、信号注入用巻線W2に交流信号S1を供給することにより、磁性コア2において磁束Mcが確実に発生して、注入対象ラインLに交流信号S1が確実に注入される。
非接触型電流センサ5は、いわゆるクランプ型の電流センサであって、非接触型の電流検出部および信号検出部として機能する。この非接触型電流センサ5は、注入対象ラインLを流れる交流電流である注入電流Iiを注入対象ラインL(注入対象ラインLの芯線(導線))に対して非接触で検出して、注入電流Iiの電流値を示す電流検出信号としての検出信号S3を処理部7に出力する。この非接触型電流センサ5は、図8に示すように、半環状の一対の磁気コア5a,5a、磁気コア5a,5aに巻回されて絶縁被覆電線で構成される1本の巻線5b、および電流検出回路5cを備えて構成されている。この非接触型電流センサ5では、一対の磁気コア5a,5aが開閉可能に構成されており、注入対象ラインLをクランプする際には、図外の操作スイッチを操作することで開状態にした磁気コア5a,5aの開口部位から注入対象ラインLを進入させ、その後に、操作スイッチを操作して磁気コア5a,5aを閉状態(円環状)にすることで、磁気コア5a,5aによって注入対象ラインLがクランプされる。注入対象ラインLをクランプした状態では、注入対象ラインLを流れる電流の大きさに応じて大きさが変化する磁束が磁気コア5a,5aに発生し、その磁束の大きさに応じて大きさが変化する電流が巻線5bから出力される。電流検出回路5cは、巻線5bから出力された電流を電圧に変換することによって検出信号S3を生成して処理部7に出力する。なお、磁気コア5a,5a、および一次巻線としての注入対象ラインLに磁気結合する二次巻線を形成する巻線5bが、「信号注入部とは別体に形成される信号検出部における二次巻線構成部品」に相当する二次巻線構成部品CP2を構成する。また、二次巻線構成部品CP2は、空芯コイルだけで構成することもできる。
電圧検出部6は、接触型の一対のプローブP1,P2、バッファ回路61および絶縁回路62を備えて、電池Batの両端電圧を検出して電圧検出信号としての両端電圧信号S4を処理部7に出力する。この場合、バッファ回路61は、電圧検出回路の一例であって、直流電圧の入力を阻止すると共に交流電圧の入力を可能とするカップリングコンデンサを一対の入力部にそれぞれ備えており、プローブP1,P2によって検出された交流電圧の差分電圧を生成して電池Batの両端電圧としての両端電圧信号S4を出力する。また、絶縁回路62は、負荷Load、電池Batおよびバッファ回路61を含む回路の基準電位(グランド)と、バッファ回路61を除くインピーダンス測定装置1の基準電位(フローティンググランド)とを絶縁すると共に、絶縁した状態の両端電圧信号S4を処理部7に出力する。
処理部7は、例えば、CPUで構成されて、A/D変換回路71~73、移相回路74、直交検波回路75,76、演算回路77および内部メモリ78を備えて構成され、検出信号S3(電流検出信号)および両端電圧信号S4(電圧検出信号)を入力すると共に検出信号S3および両端電圧信号S4に基づいて測定対象である電池Batの内部インピーダンスZbを測定する。この場合、A/D変換回路71は、信号生成回路31から出力された交流信号S1を入力すると共にA/D変換(アナログ/デジタル変換)して正弦波の交流信号S1の電圧値、周波数および位相を示す信号データD11(sinωt)を移相回路74および直交検波回路75,76に出力する。A/D変換回路72は、非接触型電流センサ5から出力された検出信号S3を入力すると共にA/D変換して検出信号S3(注入電流Ii)の電流値、周波数および位相を示す信号データD12を直交検波回路75に出力する。A/D変換回路73は、絶縁回路62から出力された両端電圧信号S4を入力すると共にA/D変換して両端電圧信号S4の電圧値、周波数および位相を示す信号データD13を直交検波回路76に出力する。
移相回路74は、A/D変換回路71から出力された信号データD11(sinωt)を入力すると共に信号データD11で示される正弦波信号である交流信号S1の位相を90°移相させて余弦波信号を生成すると共にその余弦波信号の電流値、周波数および位相を示す信号データD11(cosωt)を生成して直交検波回路75,76に出力する。直交検波回路75は、A/D変換回路72から出力された検出信号S3(注入電流Iiの交流電流値)を示す信号データD12を入力すると共に、A/D変換回路71から出力された正弦波の交流信号S1を示す信号データD11(sinωt)および移相回路74から出力された余弦波の交流信号S1を示す信号データD11(cosωt)で信号データD12を直交検波して、注入電流Iiの電流値の同相成分(I成分:In-phse 成分)および直交成分(Q成分:Quadrature 成分)を複素数で示す電流データDiを生成して演算回路77に出力する。直交検波回路76は、A/D変換回路73から出力された両端電圧信号S4(注入電流Iiが流れることに起因して電池Batの両端に発生する交流電圧の電圧値)を示す信号データD13を入力すると共に、A/D変換回路71から出力された正弦波の交流信号S1を示す信号データD11(sinωt)および移相回路74から出力された余弦波の交流信号S1を示す信号データD11(cosωt)で信号データD13を直交検波して、両端電圧信号S4の電圧値の同相成分(I成分:In-phse 成分)および直交成分(Q成分:Quadrature 成分)を複素数で示す電圧データDvを生成して演算回路77に出力する。
演算回路77は、直交検波回路75から出力された電流データDiを入力すると共に直交検波回路76から出力された電圧データDvを入力して、電流データDiおよび電圧データDvに基づいて電池Batの内部インピーダンスZbを演算する。また、演算回路77は、演算結果としての電池Batの内部インピーダンスZbを示すインピーダンスデータDzを内部メモリ78に出力して記憶させると共に出力部8に出力する。また、演算回路77は、非接触型電流センサ5によって検出された注入電流Iiの電流値がインピーダンス測定の際に必要な目標電流値範囲(例えば、1mA±0.1mA)内に含まれるように、制御信号Sc1を信号注入部3に出力して、信号注入部3(信号生成回路31)から出力される交流信号S1の信号レベルを制御する。具体的には、演算回路77は、入力した電流データDi(A/D変換回路72から出力される信号データD12でもよい)に基づき、注入対象ラインLに注入されている注入電流Iiの電流値(交流信号S1の信号レベル)を監視しつつ、信号注入部3から出力される交流信号S1の信号レベルを制御信号Sc1を出力して制御する。また、内部メモリ78は、半導体メモリやハードディスク装置などで構成されて、インピーダンスデータDzなどを記憶する。
出力部8は、一例として、液晶パネルや有機ELパネルなどの表示装置(ディスプレイ)で構成されて、処理部7から出力されたインピーダンスデータDzを入力して電池Batの内部インピーダンスZbを画面上に表示する。なお、出力部8は、表示装置に代えて、外部装置とデータ通信を行うインターフェース装置で構成して、この外部装置にインピーダンスデータDzを出力する構成を採用することもできる。
次に、インピーダンス測定装置1による測定対象としての電池Batの内部インピーダンスZbを測定する測定処理について添付図面を参照して説明する。
最初に、電池Batと負荷Loadとを注入対象ラインLで接続する。この状態で負荷Loadが作動したときには、電池Batから注入対象ラインLを介して負荷Loadに大電流の直流電流Ibが流れる。この状態において、注入対象ラインLに非接触型電流センサ5をクランプさせると共に電池Batの両端にプローブP1,P2を接触させる。
次いで、図外の測定開始スイッチを操作する。これにより、処理部7が、信号生成回路31を制御して交流信号S1を生成させる。この際には、信号生成回路31が、周波数をスイープさせつつ交流信号S1を生成し、生成した交流信号S1を処理部7に出力すると共にD級増幅した交流信号S1を信号注入用巻線W2に供給する。この場合、信号注入用巻線W2に交流信号S1を供給することで交流電流Iacが信号注入用巻線W2を流れて、交流信号S1に基づく磁束Mcが図1に示す向きで磁性コア2に発生すると共にその磁束Mcの大きさに応じた電流値の交流信号である注入電流Iiが注入対象ラインLに注入される。したがって、交流信号S1は、信号注入用巻線W2を介して注入対象ラインLの芯線に対して非接触の状態で注入される。
また、磁束キャンセル部4は、磁性コア2に直流電流Ibが流れた際に、磁性コア2に図1に示す向きで発生する第1の磁束としての磁束Mbを、磁束Mbとは逆向きの第2の磁束としての磁束Mdをゼロフラックス法により磁性コア2に発生させてキャンセルする。具体的には、ホール素子41が、磁気コア2に発生する磁束に応じた電圧信号S2を電圧ドライバ42に出力する。次いで、電圧ドライバ42が、電圧信号S2を増幅して低インピーダンスでLPF43に出力する。また、LPF43は、電圧ドライバ42で増幅された電圧信号S2に含まれている交流信号S1に基づく電圧信号S2(磁束Mcに基づく電圧信号S2)の出力を阻止すると共に直流電流Ibに基づく電圧信号S2を通過させて磁束Mbをキャンセルする向きでキャンセル電流Icを磁束キャンセル用巻線W1に供給し、かつ交流信号S1が信号注入用巻線W2に供給されることに起因して磁束キャンセル用巻線W1に発生する電圧信号の電圧ドライバ42への入力を阻止する。したがって、電圧ドライバ42は、磁性コア2に発生している交流信号S1に基づく磁束Mcをキャンセルさせるようとするキャンセル電流を流すことなく、ホール素子41によって検出される磁束Mbの大きさがゼロになるようなキャンセル電流Icを生成して磁束キャンセル用巻線W1に供給する。これにより、大電流の直流電流Ibが注入対象ラインLに流れることに起因する磁性コア2の磁気飽和が回避される。また、交流信号S1の信号注入用巻線W2への供給によって磁性コア2に発生した磁束Mcに基づいて磁束キャンセル用巻線W1に発生する電圧信号の電圧ドライバ42への入力がLPF43によって阻止されるため、磁性コア2に発生させた磁束Mcに基づいて注入対象ラインLに注入する注入電流Ii(交流信号S1)のレベル低下が回避される。この結果、信号注入用巻線W2に交流信号S1が供給されることにより、磁性コア2において磁束Mcが確実に発生して、注入対象ラインLに交流信号S1が確実かつ効率良く注入される。
一方、注入対象ラインLに交流信号S1が注入されると共に直流電流Ibが流れている状態では、非接触型電流センサ5が、注入対象ラインLを流れている注入電流Iiを注入対象ラインLに対して非接触で検出して、その電流値を示す検出信号S3を処理部7に出力する。
また、電圧検出部6のバッファ回路61が、一対のプローブP1,P2を介して、電池Batの両端における電圧を入力して交流電圧の差分電圧である両端電圧信号S4を絶縁回路62に出力する、この場合、バッファ回路61は、一対の入力部にカップリングコンデンサを備えているため、プローブP1,P2によって検出された交流電圧の差分電圧のみを生成して電池Batの両端電圧としての両端電圧信号S4を出力する。次いで、絶縁回路62が両端電圧信号S4を処理部7に出力する。この際に、絶縁回路62は、負荷Loadや電池Bat側の基準電位(グランド)と、インピーダンス測定装置1の基準電位(フローティンググランド)とを絶縁した状態で両端電圧信号S4を処理部7に出力する。この結果、絶縁回路62を介してインピーダンス測定装置1に両端電圧信号S4が出力されることにより、電池Batの出力電圧が非常に高い電圧であったとしても、電池Batに交流信号S1が流れて電池Bat内に発生する微小の交流電圧を精度良く検出することが可能となっている。
一方、処理部7では、A/D変換回路71が、交流信号S1を入力すると共にA/D変換して正弦波の交流信号S1の電圧値、周波数および位相を示す信号データD11(sinωt)を移相回路74および直交検波回路75,76に出力する。また、A/D変換回路72が、検出信号S3を入力すると共にA/D変換して検出信号S3の電流値、周波数および位相を示す信号データD12を直交検波回路75に出力する。また、A/D変換回路73が、両端電圧信号S4を入力すると共にA/D変換して両端電圧信号S4の電圧値、周波数および位相を示す信号データD12を直交検波回路76に出力する。また、移相回路74が、信号データD11を入力すると共に信号データD11で示される正弦波信号である交流信号S1の位相を90°移相させて余弦波信号を生成すると共にその余弦波信号の電流値、周波数および位相を示す信号データD11(cosωt)を生成して直交検波回路75,76に出力する。
また、直交検波回路75は、検出信号S3を示す信号データD12を入力すると共に、正弦波の交流信号S1を示す信号データD11(sinωt)および余弦波の交流信号S1を示す信号データD11(cosωt)で信号データD12直交検波して、注入電流Iiの電流値の同相成分および直交成分を複素数で示す電流データDiを生成して演算回路77に出力する。また、直交検波回路76は、両端電圧信号S4を示す信号データD13を入力すると共に、信号データD11(sinωt)および信号データD11(cosωt)で信号データD13を直交検波して、両端電圧信号S4の電圧値の同相成分および直交成分を複素数で示す電圧データDvを生成して演算回路77に出力する。次いで、演算回路77が、電流データDiおよび電圧データDvを入力して、電流データDiおよび電圧データDvに基づいて電池Batの内部インピーダンスZbを演算してインピーダンスデータDzを内部メモリ78に出力して記憶させると共に出力部8に出力する。この際に、出力部8は、インピーダンスデータDzを入力して電池Batの内部インピーダンスZbを表示装置の画面上に表示する。なお、演算回路77は、交流信号S1の周波数情報をインピーダンスデータDzに含めることにより、交流信号S1の周波数に対する電池Batの内部インピーダンスZbの周波数特性を表示装置の画面上に表示させることもできる。また、演算回路77は、入力した電流データDi(A/D変換回路72から出力される信号データD12でもよい)に基づいて、注入対象ラインLを流れる直流電流Ibの電流値情報を生成し、その電流値情報をインピーダンスデータDzに含めることにより、直流電流Ibの電流値に対する電池Batの内部インピーダンスZbの特性を表示装置の画面上に表示させることもできる。
また、演算回路77は、入力した電流データDi(A/D変換回路72から出力される信号データD12でもよい)に基づき、注入対象ラインLに注入されている注入電流Iiの電流値を監視しつつ、非接触型電流センサ5によって検出された注入電流Iiの電流値がインピーダンス測定の際に必要な目標電流値範囲内に含まれるように、制御信号Sc1を出力して信号注入部3から出力される交流信号S1の信号レベルを制御する。これにより、注入電流Iiが目標電流値範囲内に含まれるため、検出信号S3や両端電圧信号S4の雑音レベル(N)に対する信号レベル(S)の比率(S/N)を高めることができる結果、演算回路77によって行われる内部インピーダンスZbの演算処理(測定処理)において、精度良く内部インピーダンスZbを測定することができる。これにより、インピーダンス測定装置1による電池Batの内部インピーダンスZbの測定が終了する。
なお、「インピーダンス測定装置」の構成については、上記のインピーダンス測定装置1の例に限定されない。例えば、磁束キャンセル部4については、図3に示す構成を採用することができる。なお、以下に説明する構成において、上記したインピーダンス測定装置1における各構成要素と同じ機能を有する構成要素については、同一の符号を付して、重複する説明を省略する。
図3に示す磁束キャンセル部4Aは、ホール素子41、磁束キャンセル用巻線W1、LPF43、加算回路44および電圧ドライバ42を備えて構成されている。この場合、1つの磁束キャンセル用巻線W1が、キャンセル用巻線の機能と信号注入用巻線の機能とを有している。また、LPF43は、フィルタ回路の一例であって、磁束キャンセル部4のLPF43と同様の周波数特性を有しており、ホール素子41から出力された電圧信号S2に含まれている交流信号S1に基づく電圧信号S2の出力を阻止すると共に直流電流Ibに基づく電圧信号S2を通過させる。加算回路44は、LPF43を通過した電圧信号S2と交流信号S1とを加算して加算信号Saを生成して出力する。電圧ドライバ42は、加算回路44から出力された加算信号Saを増幅すると共に磁束キャンセル用巻線W1に供給して、磁束Mbをキャンセルする向きでキャンセル電流Icを磁束キャンセル用巻線W1に供給すると共に交流信号S1(交流電流Iac)を磁束キャンセル用巻線W1に供給して交流信号S1を注入対象ラインLに注入する。
この信号注入装置10では、電圧ドライバ42が、電圧信号S2と交流信号S1とが加算回路44によって加算された加算信号Saを増幅して磁束キャンセル用巻線W1に供給することにより、キャンセル電流Icと交流電流Iacとが磁束キャンセル用巻線W1において加算されつつ、磁性コア2に磁束Md,Mcを発生させる。したがって、この信号注入装置10によれば、大電流の直流電流Ibが注入対象ラインLに流れることに起因する磁性コア2の磁気飽和を回避することができる結果、磁束キャンセル用巻線W1に交流信号S1(加算信号Sa)を供給することにより、磁性コア2において磁束Mcを確実に発生させて、注入対象ラインLに交流信号S1を確実にしかも効率良く注入することができる。また、この信号注入装置10によれば、1つの磁束キャンセル用巻線W1を用いて、キャンセル用巻線の機能と信号注入用巻線の機能とを実現させることができるため、信号注入装置10を安価に構成することができる。
また、図4に示す磁束キャンセル部4Bは、ホール素子41、磁束キャンセル用巻線W1、LPF43、および電圧ドライバ42を備えて構成されている。また、信号注入部3Aは、上記の信号注入部3の構成に加えて電圧ドライバ32を備えている。この場合、1つの磁束キャンセル用巻線W1が、キャンセル用巻線の機能と信号注入用巻線の機能とを有している。また、LPF43は、フィルタ回路の一例であって、磁束キャンセル部4のLPF43と同様の周波数特性を有しており、ホール素子41から出力された電圧信号S2に含まれている交流信号S1に基づく電圧信号S2の出力を阻止すると共に直流電流Ibに基づく電圧信号S2を通過させる。電圧ドライバ42は、LPF43を通過した電圧信号S2を増幅すると共に磁束Mbをキャンセルする向きでキャンセル電流Icを磁束キャンセル用巻線W1の一端T1に供給する。また、電圧ドライバ32は、交流信号S1を増幅すると共に増幅した交流信号S1(交流電流Iac)を磁束キャンセル用巻線W1の他端T2に供給して交流信号S1を注入対象ラインLに注入する。
この信号注入装置10では、電圧ドライバ42が磁束キャンセル用巻線W1の一端T1側から磁束キャンセル用巻線W1を介して電圧ドライバ32の出力部に向けて電圧信号S2(キャンセル電流Ic)を供給し、電圧ドライバ32が磁束キャンセル用巻線W1の他端T2側から磁束キャンセル用巻線W1を介して電圧ドライバ42の出力部に向けて交流信号S1(交流電流Iac)を供給することにより、キャンセル電流Icと交流電流Iacとが磁束キャンセル用巻線W1において加算されつつ、磁性コア2に磁束Md,Mcを発生させる。したがって、この信号注入装置10によれば、大電流の直流電流Ibが注入対象ラインLに流れることに起因する磁性コア2の磁気飽和を回避することができる結果、磁束キャンセル用巻線W1に交流信号S1を供給することにより、磁性コア2において磁束Mcを確実に発生させて、注入対象ラインLに交流信号S1を確実にしかも効率良く注入することができる。また、この信号注入装置10によれば、1つの磁束キャンセル用巻線W1を用いて、キャンセル用巻線の機能と信号注入用巻線の機能とを実現させることができるため、信号注入装置10を安価に構成することができる。
また、図5に示す磁束キャンセル部4Cは、ホール素子41、磁束キャンセル用巻線W1、LPF43、および電流ドライバ45を備えて構成されている。この場合、LPF43は、フィルタ回路の一例であって、磁束キャンセル部4のLPF43と同様の周波数特性を有しており、ホール素子41から出力された電圧信号S2に含まれている交流信号S1に基づく電圧信号S2の出力を阻止すると共に直流電流Ibに基づく電圧信号S2を通過させる。電流ドライバ45は、LPF43を通過した電圧信号S2を増幅すると共に磁束Mbをキャンセルする向きでキャンセル電流Icを高い出力インピーダンスで出力して磁束キャンセル用巻線W1に供給する。また、信号注入部3は、図1に示した信号注入部3と同様にして、磁性コア2に巻回された信号注入用巻線W2を備え、信号注入用巻線W2に交流信号S1(交流電流Iac)を供給して交流信号S1を注入対象ラインLに注入する。
この信号注入装置10では、電流ドライバ45が高い出力インピーダンスの状態で磁束キャンセル用巻線W1に電圧信号S2(キャンセル電流Ic)を供給する。この場合、信号注入部3が信号注入用巻線W2に交流信号S1を供給することで磁性コア2に磁束Mcが発生する。この際に、発生した磁束Mcに基づく交流電流が磁束キャンセル用巻線W1に流れようとするが、電流ドライバ45の出力インピーダンスが高いため、磁束Mcに基づく交流電流は、磁束キャンセル用巻線W1から電流ドライバ45の出力部に向かう向きでは流れない。このため、電流ドライバ45は、磁性コア2に発生している交流信号S1に基づく磁束Mcをキャンセルさせるようとするキャンセル電流を流すことなく、ホール素子41によって検出される磁束Mbの大きさがゼロになるようなキャンセル電流Icを生成して磁束キャンセル用巻線W1に供給する。したがって、この信号注入装置10によれば、大電流の直流電流Ibが注入対象ラインLに流れることに起因する磁性コア2の磁気飽和を回避することができる結果、信号注入用巻線W2に交流信号S1(交流電流Iac)を供給することにより、磁性コア2において磁束Mcを確実に発生させて、注入対象ラインLに交流信号S1を確実にしかも効率良く注入することができる。
また、以上の信号注入装置10によれば、ホール素子41、フラックスゲートセンサ、およびGMR素子のいずれかを磁性コア2に配設して磁束検出回路を構成したことにより、簡易な構成でありながら磁束Mbを確実に検出することができる。
また、インダクタンスの大きいリアクトルで形成されたインダクターを含んだLPF43でフィルタ回路を構成したことにより、カットオフ周波数をできる限り周波数0Hzに近づけることができる結果、直流電流Ibに基づく電圧信号S2だけを通過させることができると共に安価に構成することができる。また、磁束キャンセル部4を有する信号注入装置10によれば、交流信号S1の信号注入用巻線W2への供給によって磁性コア2に発生した磁束Mcに基づいて磁束キャンセル用巻線W1に発生する電圧信号の電圧ドライバ42への入力がLPF43によって阻止されるため、磁性コア2に発生させた磁束Mcに基づいて注入対象ラインLに注入する注入電流Ii(交流信号S1)のレベル低下を回避することができる結果、注入対象ラインLに交流信号S1を確実かつ効率良く注入することができる。
また、図6に示す磁束キャンセル部4Dは、磁性コア2に発生する交流信号S1の2倍の周波数に基づく磁束に応じた電圧信号S2の信号レベルを低下させるキャンセル電流Icを磁束キャンセル用巻線W1に供給して、大電流の直流電流Ibが注入対象ラインLに流れることに起因する磁性コア2の磁気飽和を回避することが可能に構成されている。なお、この磁束キャンセル部4Dを用いる信号注入装置10では、ホール素子41などの磁束検出回路を使用しないため、磁性コア2としてギャップが設けられていない環状のコアが用いられている。ただし、ギャップを設けた環状のコアを磁性コア2として用いることもできる。
具体的には、図6に示す信号注入装置10は、信号注入部3の信号生成回路31が、2f信号生成回路31aおよび1/2分周回路31bを備えて構成されている。この場合、2f信号生成回路31aは、交流信号S1の2倍の周波数の同期検波用の基準信号Srを生成する。また、1/2分周回路31bは、2f信号生成回路31aから出力された基準信号Srを1/2分周することにより、注入対象ラインLに注入する交流信号S1を生成する。
一方、磁束キャンセル部4Dは、磁束キャンセル用巻線W1、加算回路44、電圧ドライバ42,46,49、同期検波回路47およびLPF48を備えて構成されている。この場合、同期検波回路47は、磁束キャンセル用巻線W1に発生する電圧信号S2に含まれている交流信号S1の2倍の周波数(つまり、交流信号S1の歪信号)の電圧信号S2を基準信号Srで同期検波して出力信号Sdを出力する。LPF48は、フィルタ回路の一例であって、同期検波回路47の出力信号Sdに含まれている直流信号、つまり交流信号S1の歪信号である2倍の周波数の高調波信号(周波数基準信号Srと同じ周波数成分)に基づいて生成された直流信号Sdcを抽出(通過させる)すると共に基準信号Srの2倍以上の周波数成分などの交流信号の通過を阻止する。電圧ドライバ49は、LPF48から出力された直流信号Sdcを増幅して出力する。加算回路44は、増幅回路49から出力された直流信号Sdcと、信号生成回路31(1/2分周回路31b)から出力された交流信号S1とを加算して加算信号Saを出力する。電圧ドライバ42は、加算回路44から出力された加算信号Saを増幅すると共に磁束キャンセル用巻線W1に供給する。
この信号注入装置10では、信号注入部3の信号生成回路31内の2f信号生成回路31aが同期検波用の基準信号Srを生成して1/2分周回路31bおよび同期検波回路47に出力する。また、1/2分周回路31bは、基準信号Srを入力して1/2分周することで交流信号S1を生成して、加算回路44および処理部7のA/D変換回路71に出力する。一方、磁束キャンセル部4Dでは、電圧ドライバ46が、入力した加算信号Saを増幅して同期検波回路47に出力する。この際に、同期検波回路47は、磁束キャンセル用巻線W1に発生する交流信号S1の2倍の周波数の電圧信号を入力した基準信号Srで同期検波すると共に同期検波で生成した電圧信号を出力信号Sdとして出力する。また、LPF48が、同期検波回路47の出力信号Sdに含まれている直流信号Sdc(つまり交流信号S1の歪信号である2倍の周波数の高調波信号に基づく直流信号)を抽出(通過させる)すると共に交流信号の通過を阻止する。次いで、電圧ドライバ49が、LPF48から出力された直流信号Sdcを増幅して加算回路44に出力する。この際に、加算回路44は、増幅回路49から出力された直流信号Sdcと、信号生成回路31(1/2分周回路31b)から出力された交流信号S1とを加算して加算信号Saを出力する。また、電圧ドライバ42が、加算回路44から出力された加算信号Saを増幅すると共に磁束キャンセル用巻線W1に供給する。この場合、電圧ドライバ42が、加算信号Saを出力することにより、磁束Mbをキャンセルする向きで直流信号Sdcに基づくキャンセル電流Icが磁束キャンセル用巻線W1に供給されて磁性コア2の磁気飽和が回避されると共に交流信号S1(交流電流Iac)が磁束キャンセル用巻線W1に供給されて交流信号S1が注入対象ラインLに注入される。つまり、この磁束キャンセル部4Dでは、ホール素子41などの磁束検出回路を用いることなく、全体としてフィードバック制御されることで、全体してフラックスゲートセンサ化されて磁束キャンセル部が構成されている。
したがって、この信号注入装置10によれば、大電流の直流電流Ibが注入対象ラインLに流れることに起因する磁性コア2の磁気飽和を回避することができる結果、磁束キャンセル用巻線W1に交流信号S1(交流電流Iac)を供給することにより、磁性コア2において磁束Mcを確実に発生させて、注入対象ラインLに交流信号S1を確実にしかも効率良く注入することができる。また、この信号注入装置10では、磁気飽和状態の磁性コア2に発生する交流信号S1の歪信号である交流信号S1の周波数の2倍の周波数の高調波信号の大きさを検出してその歪信号を低減させるように、磁束キャンセル部4Dが全体としてフィードバック制御される。このため、この信号注入装置10によれば、磁性コア2の磁気飽和を直接的に検出することができる結果、磁性コア2において磁気飽和を発生させることなく、磁束Mcをより確実に発生させて、注入対象ラインLに交流信号S1をより確実にしかも効率良く注入することができる。また、この信号注入装置10によれば、1つの磁束キャンセル用巻線W1を用いて、キャンセル用巻線の機能と信号注入用巻線の機能とを実現させることができるため、信号注入装置10を安価に構成することができる。
なお、磁束キャンセル部4Dにおいて、各回路での必要な利得が確保されている場合には、電圧ドライバ46および電圧ドライバ49のうちの少なくとも一方の配設を省くことができる。
次に、磁束キャンセル部4の配設を省いた構成のインピーダンス測定装置1Aについて説明する。なお、このインピーダンス測定装置1Aについては、上記したインピーダンス測定装置1における各構成要素と同じ機能を有する構成要素については、同一の符号を付して、重複する説明を省略する。
インピーダンス測定装置1Aは、図9に示すように、上記したインピーダンス測定装置1における磁性コア2、信号注入部3、非接触型電流センサ5、電圧検出部6、処理部7、出力部8、コンデンサCLおよびスイッチSLを備えて構成されて、インピーダンス測定装置1と同様にして、検出信号S3および両端電圧信号S4に基づいて電池Batの内部インピーダンスZbを測定する。
なお、このインピーダンス測定装置1では、上記のインピーダンス測定装置1におけるホール素子41や磁束キャンセル用巻線W1の配設を省いた磁性コア2を用いることもできるし、磁性コア2に代えて、図10~12に示す磁性コア2Aを用いることもできる。
この場合、磁性コア2Aは、第1の磁気コアであって、図10~12に示すように、ギャップGを有する複数のC型(つまりC字状)の単位磁気コアUCで構成されている。本例では、例えば2個の単位磁気コアUCが用いられており、2個の単位磁気コアUCは、重ねた状態の上面視(図11参照)において、磁性コア2Aの外周に沿って互いに隣り合う2つのギャップG(上側に位置する単位磁気コアUCのギャップGと下側に位置する単位磁気コアUCのギャップG)の離間距離が均等となるように重ねられている。この例では、2個の単位磁気コアUCを用いているため、2つのギャップGの離間距離は磁性コア2Aの外周の1/2の長さであるが、3個の単位磁気コアUCを用いたときには、3つのギャップGの離間距離は磁性コア2Aの外周の1/3の長さとなり、4個の単位磁気コアUCを用いたときには、4つのギャップGの離間距離は磁性コア2Aの外周の1/4の長さとなる。
また、インピーダンス測定装置1における一次巻線構成部品CP1としての信号注入用巻線W2に代えて、図13に示す一次巻線構成部品CP1A(以下、後述する各種一次巻線構成部品を区別しないときには、「一次巻線構成部品CP」ともいう)を用いることもできる。この一次巻線構成部品CP1Aは、磁性コア2(または磁性コア2A)に巻回された絶縁被覆電線(またはエナメル線)で構成される信号注入用巻線W3を備えて構成されている。この場合、信号注入用巻線W3は、巻始めWbから巻き終わりWeまでの間において、全体として直列接続されると共に互いの巻数が相違する第1巻線から第Na巻線(Naは2以上の整数)までのNa個の巻線と、第1巻線から第Na巻線にそれぞれ並列接続された第1並列スイッチから第Na並列スイッチまでのNa個のスイッチとを備えて構成されている。また、第1巻線から第Na巻線は、それぞれ2Ma(Maは0から(Na-1)までのNa個の整数)にLa(Laは1以上の整数)を乗じた巻数で巻回されている。この場合、信号注入用巻線W3の巻始めWbが基準電位に接続され、巻き終わりWeが信号生成回路31の出力部に接続されている。
具体的には、同図に示す一次巻線構成部品CP1Aは、例えば整数Naとして4を、整数Laとして10を採用して構成されている。したがって、一次巻線構成部品CP1Aは、第1巻線Wd1から第4巻線Wd4(以下、区別しないときには「巻線Wd」ともいう)までの4つの巻線と、第1巻線Wd1から第4巻線Wd4にそれぞれ並列接続された第1並列スイッチSW1から第4並列スイッチSW4(以下、区別しないときには「並列スイッチSWa」ともいう)までの4個のスイッチとを備えて構成されている。この場合、並列スイッチSWaは、トランジスタやFETなどの半導体スイッチで構成しても良いし、リレーなどの機械式スイッチで構成しても良い。また、第1巻線Wd1から第1巻線Wd4は、それぞれ10ターン、20ターン、40ターンおよび80ターンで磁性コア2(または磁性コア2A)に巻回されている。
また、第1巻線Wd1から第1巻線Wd4は、巻数が多い巻線Wdの絶縁被覆電線における芯線の線径が巻数が少ない巻線Wdの絶縁被覆電線における芯線の線径よりも細く形成されている。この場合、巻数が多い巻線Wdのインピーダンスが大きくなって注入対象ラインLを流れる交流電流Iacの電流値が小さくなるため、細い絶縁被覆電線(またはエナメル線)を用いることができるため、信号注入用巻線W3の生産性が十分に向上する。
一方、このインピーダンス測定装置1Aでは、処理部7が、2進数的なポート制御によって4個の並列スイッチSW1~SW4をオンオフ制御して、一次巻線構成部品CP1A(信号注入用巻線W3)全体としての巻数を変更する。具体的には、各巻線Wdは、対応して並列接続されている並列スイッチSWaがオン状態に制御されたときには、両端部が短絡されて0ターンの巻数となり、並列スイッチSWaがオフ状態に制御されたときには、両端部が開放されて本来のターン数(巻数)となる。したがって、処理部7(演算回路77)が、4個の並列スイッチSW1~SW4に制御信号Sc2を出力して個別にオンオフ制御することにより、一次巻線構成部品CP1A全体としての巻数が、0ターンから150ターン(実質的には、10ターンから150ターン)までの間において、10ターン刻みで変更させられる。例えば、図14に示すように、並列スイッチSW3がオン状態に制御され、かつ並列スイッチSW1,SW2,SW4がオフ状態に制御されたときには、巻線Wd3が短絡されるため、信号注入用巻線W3は、全体として110ターンの巻数に制御される。また、図15に示すように、並列スイッチSW1,SW3,SW4がオン状態に制御され、かつ並列スイッチSW3がオフ状態に制御されたときには、巻線Wd1,Wd3,Wd4が短絡されるため、信号注入用巻線W3は、全体として20ターンの巻数に制御される。
一方、処理部7(演算回路77)は、非接触型電流センサ5から出力される検出信号S3で示される注入電流Iiの電流値を目標電流値範囲内に含めるために、信号注入部3から出力される交流信号S1の信号レベルを上記した制御信号Sc1を出力して制御する処理に代えて、または、加えて、制御信号Sc2を出力して注入電流Iiの電流値を制御する。具体的には、処理部7(演算回路77)は、入力した電流データDi(A/D変換回路72から出力される信号データD12でもよい)に基づき、注入対象ラインLに注入されている注入電流Iiの電流値(交流信号S1の信号レベル)を監視しつつ、制御信号Sc2を出力して信号注入用巻線W3の巻数を変えることにより、注入電流Iiの電流値を制御する。より具体的には、処理部7(演算回路77)は、信号生成回路31から出力されている交流電流Iacの電流値と、非接触型電流センサ5によって検出される注入電流Iiの電流値(電流データDiまたは信号データD12で示される電流値)とに基づいて、負荷Loadが電池Batに接続されて閉ループ状態になっているときの信号注入用巻線W3から見た負荷インピーダンス(電池Batの内部インピーダンスZbおよび負荷Loadのインピーダンス)を求める。また、処理部7(演算回路77)は、負荷インピーダンスが小さいときには、制御信号Sc2を出力して各並列スイッチSWaを制御することにより、信号注入用巻線W3の全体としての巻数を増加させてより多くの注入電流Iiが注入されやすいように制御する。一方、処理部7(演算回路77)は、負荷インピーダンスが大きいときには、制御信号Sc2を出力して各並列スイッチSWaを制御することにより、信号注入用巻線W3の全体としての巻数を減少させて信号注入用巻線W3における交流信号S1の起電力を大きくして注入電流Iiが注入されやすいように制御する。これにより、処理部7(演算回路77)は、信号注入用巻線W3の巻数を最適な巻数に制御することで、注入対象ラインLに注入される注入電流Iiの大きさを上記した目標電流値範囲内に含める。
コンデンサCLは、測定対象として電池Batと非測定対象としての負荷Loadが注入対象ラインLで直列接続されて環状の閉ループを形成する被測定系における負荷Loadの両端に並列接続されるコンデンサであって、負荷Loadのインピーダンスが大きいときに負荷Loadを短絡する機能を備え、例えば、100μFの積層コンデンサが用いられている。また、スイッチSLは、コンデンサCLに直列接続されており、処理部7によってオンオフ制御される。そして、コンデンサCLおよびスイッチSLの直列回路は、負荷Loadの両端に並列接続される。したがって、スイッチSLがオン状態に制御されたときには、コンデンサCLおよびスイッチSLの直列回路が負荷Loadの両端を短絡する。負荷Loadのインピーダンスが大きいときには、電池Bat、注入対象ラインLおよび負荷Loadからなる閉ループ全体のインピーダンスも大きくなる。このようなときには、信号注入部3による注入対象ラインLへの交流信号S1の注入時に、注入電流Iiの電流値(注入量)を大きくするのが困難となる。このため、負荷Loadの両端をコンデンサCLで短絡することで、閉ループ全体としての交流信号S1に対するインピーダンスが低下して、信号注入部3による注入対象ラインLへの交流信号S1の注入時における注入電流Iiの電流値を大きくすることができる。なお、このコンデンサCLについては、スイッチSLを用いることなく、負荷Loadのインピーダンスが大きいときに、コンデンサCLの両端に設けたプローブを負荷Loadの両端に直接取り付ける構成を採用することもできるし、負荷Loadの両端にコンデンサCLの両リード線を直接取り付ける構成を採用することもできる。
次に、インピーダンス測定装置1Aの動作について図9を参照して説明する。なお、測定対象としての電池Batの内部インピーダンスZbを測定する測定処理自体はインピーダンス測定装置1と同様のため、重複した説明を省略して異なる処理について説明する。
このインピーダンス測定装置1Aでは、インピーダンスの演算処理において、処理部7(演算回路77)が、非接触型電流センサ5から出力される検出信号S3で示される注入電流Iiの電流値を目標電流値範囲内に含めるために、信号注入部3から出力される交流信号S1の信号レベルを上記した制御信号Sc1を出力して制御する処理に代えて、または、加えて、交流電流Iacの電流値を制御信号Sc2を出力して制御する。具体的には、演算回路77は、入力した電流データDi(A/D変換回路72から出力される信号データD12でもよい)に基づき、注入対象ラインLに注入されている注入電流Iiの電流値(交流信号S1の信号レベル)を監視しつつ、制御信号Sc2を出力して信号注入用巻線W3の巻数を変えることにより、注入電流Iiの電流値を制御する。
より具体的には、演算回路77は、信号生成回路31から出力されている交流電流Iacの電流値と、非接触型電流センサ5によって検出される注入電流Iiの電流値(電流データDiまたは信号データD12で示される電流値)とに基づいて、負荷Loadが電池Batに接続されて閉ループ状態になっているときの信号注入用巻線W3から見た負荷インピーダンス(電池Batの内部インピーダンスZbおよび負荷Loadのインピーダンス)を求める。次いで、演算回路77は、負荷インピーダンスが小さいときには、制御信号Sc2を出力して各並列スイッチSWaを制御することにより、信号注入用巻線W3の全体としての巻数を増加させてより多くの注入電流Iiが注入されやすいように制御する。一方、演算回路77は、負荷インピーダンスが大きいときには、制御信号Sc2を出力して各並列スイッチSWaを制御することにより、信号注入用巻線W3の全体としての巻数を減少させて信号注入用巻線W3における交流信号S1の起電力を大きくして注入電流Iiが注入されやすいように制御する。これにより、演算回路77は、信号注入用巻線W3の巻数を最適な巻数に制御することで、注入対象ラインLに注入される注入電流Iiの大きさを上記した目標電流値範囲内に含める。この場合、信号注入用巻線W3の巻数を変更するとき(切り替えるとき)には、信号生成回路31の負荷変動が大きくなるが、信号生成回路31の終段がD級増幅部で構成されているため、信号生成回路31は、負荷変動に対しても、交流信号S1の出力レベルを制御された一定のレベルに維持することができる。
また、処理部7(演算回路77)は、負荷インピーダンスが大きいときには、制御信号Sc2の出力に代えて、または、加えて、スイッチSLをオン状態に制御することにより、コンデンサCLで負荷Loadの両端を短絡させる。これにより、負荷Loadの交流インピーダンスが低下するため負荷インピーダンスが低下する結果、注入対象ラインLに注入される交流電流Iacの電流値が大きくなる。
なお、信号注入用巻線W3の構成において、上記した整数Naは4に限らず、2つ、3つまたは5以上でもよく、整数Laについても、10に限らず、1以上の任意の整数を採用して一次巻線構成部品CP1Aを構成することができる。また、第1巻線から第Na巻線は同じ巻数で巻回して構成することもできる。
また、一次巻線構成部品CPについては、一次巻線構成部品CP1や一次巻線構成部品CP1Aの磁性コア2や磁性コア2Aに代えて、図16に示すように、注入対象ラインLを挿通可能に構成された空芯コイルACを用いた一次巻線構成部品CP1Bを採用することもできる。また、図示はしないが、一次巻線構成部品CPとして、環状の芯材に絶縁被覆電線を巻きつけて構成されるロゴスキーコイルを用いることもできる。これらの一次巻線構成部品CPを用いることにより、注入対象ラインLの芯線に非接触で交流信号S1を注入することができると共に一次巻線構成部品CPを安価に構成することができる。また、一次巻線構成部品CPの小型化も可能なため、狭い測定箇所に配置されている注入対象ラインLに対しても一次巻線構成部品CPを確実かつ容易に取り付けることができる。
次に、インピーダンス測定装置1Bについて説明する。このインピーダンス測定装置1Bは、信号注入部3が生成して注入対象ラインLに注入する交流信号S1の周波数帯域を複数にグループ分けした周波数帯域グループにそれぞれ対応させた複数の一次巻線構成部品CP(この例では、4つの一次巻線構成部品CP1と2つの一次巻線構成部品CP1B)を備えて構成されている。なお、一次巻線構成部品CP1に代えて、一次巻線構成部品CP1Aを用いることもできる。また、インピーダンス測定装置1Bは、インピーダンスの測定処理自体はインピーダンス測定装置1,1Aと同様のため、以下、上記したインピーダンス測定装置1,1Aにおける各構成要素と同じ機能を有する構成要素については、同一の符号を付して、重複する説明を省略するものとし、主として、インピーダンス測定装置1,1Aと相違する構成および動作について説明する。
インピーダンス測定装置1Bでは、図17に示すように、信号注入部3が、交流信号S1を出力する6つの出力部Op1~Op6(以下、区別しないときには「出力部Op」ともいう)を有する信号生成回路31を備えて構成されている。この場合、交流信号S1の周波数帯域は3つの周波数帯域グループFL,FM,FH(以下、区別しないときには「周波数帯域グループF」ともいう)にグループ分けされている。ここで、図18に示すように、例えば、低域周波数帯域側の周波数帯域グループFLは、下限の周波数f1=1Hzから上限の周波数f2=50KHzまでの範囲に規定され、中域周波数帯域側の周波数帯域グループFMは、下限の周波数f2=50KHzから上限の周波数f3=500KHzまでの範囲に規定され、高域周波数帯域側の周波数帯域グループFHは、下限の周波数f3=500KHzから上限の周波数f4=10MHzまでの範囲に規定されている。
また、周波数帯域グループFLにそれぞれ対応させられた複数(本例では、2つの例を示すが、3つ以上でもよい)の一次巻線構成部品CP1は、第1の磁気コアとしての磁性コア2(または磁性コア2A)が金属系の磁気コアで構成されると共に、磁性コア2(または磁性コア2A)に信号注入用巻線W2(または信号注入用巻線W3)が巻回されて同一仕様に構成されている。また、周波数帯域グループFMにそれぞれ対応させられた複数(本例では、2つの例を示すが、3つ以上でもよい)の一次巻線構成部品CP1は、第1の磁気コアとしての磁性コア2(または磁性コア2A)がフェライト系の磁気コアで構成されると共に、磁性コア2(または磁性コア2A)に信号注入用巻線W2(または信号注入用巻線W3)が巻回されて同一仕様に構成されている。また、周波数帯域グループFHにそれぞれ対応させられた複数(本例では、2つの例を示すが、3つ以上でもよい)の一次巻線構成部品CP1Bは、絶縁被覆電線で形成された同一仕様の空芯コイルACで構成されている。この場合、金属系の磁気コアとしては、パーマロイコア、センダストコア、アモルファスコア、圧粉磁芯コア、純鉄、珪素鋼鈑、パーメンジュール、ニッケル、コバルト、Fe-Si-Alおよび電磁ステンレスのいずれかが用いられており、フェライト系の磁気コアとしては、Mn-Zn系フェライトおよびNi-Zn系フェライトのいずれかが用いられている。また、金属系材料やフェライト系材料を粉にしてオイルや樹脂に混ぜた磁性流体や磁性樹脂も用いることができる。
また、信号注入部3は、交流信号S1の周波数を変更可能に構成されており、処理部7(演算回路77)から出力される制御信号Sc1に従い、1つの周波数帯域グループFに属する周波数の交流信号S1を注入するときには、その1つの周波数帯域グループFに対応する2つの出力部Opから交流信号S1を出力して2つの一次巻線構成部品CPの各両端に交流信号S1をそれぞれ同時に印加する。
次に、インピーダンス測定装置1Bの動作について添付図面を参照して説明する。なお、測定対象としての電池Batの内部インピーダンスZbを測定する測定処理自体はインピーダンス測定装置1,1Aと同様のため、重複した説明を省略して異なる処理について説明する。
このインピーダンス測定装置1Bでは、インピーダンスの演算処理において、処理部7(演算回路77)が、交流信号S1の周波数を変更またはスイープする際には、信号注入部3に制御信号Sc1を出力して信号生成回路31に対して生成させる交流信号S1の周波数を指定する。この際に、信号生成回路31は、指定された周波数が属する周波数帯域グループFに対応する2つの出力部Opに同一周波数および同じ位相で同じ信号レベルの交流信号S1を出力する。具体的には、信号生成回路31は、周波数帯域グループFLに属する周波数の交流信号S1を出力する際には、2つの出力部Op1,Op2に交流信号S1を出力する。また、信号生成回路31は、周波数帯域グループFMに属する周波数の交流信号S1を出力する際には、2つの出力部Op3,Op4に交流信号S1を出力する。また、信号生成回路31は、周波数帯域グループFHに属する周波数の交流信号S1を出力する際には、2つの出力部Op5,Op6に交流信号S1を出力する。これにより、2つの一次巻線構成部品CPを介して、注入対象ラインLに交流信号S1が注入される。
なお、信号生成回路31が、一つの一次巻線構成部品CPから他の一次巻線構成部品CPに切り替えて交流信号S1を出力するときには、信号生成回路31の負荷変動が大きくなるが、信号生成回路31の終段がD級増幅部で構成されているため、信号生成回路31は、負荷変動に対しても、交流信号S1の出力レベルを制御された一定のレベルに維持することができる。
また、処理部7(演算回路77)は、交流信号S1の周波数帯域が互いに隣接する2つの周波数帯域グループFの境界部において一方の周波数帯域グループFから他方の周波数帯域グループFに向けて交流信号S1の周波数を信号生成回路31に変更(またはスイープ)させる際に、その隣接する2つの周波数帯域グループFに対応する2つの一次巻線構成部品CPに交流信号S1を印加させる。
具体的には、処理部7(演算回路77)は、図18に示すように、交流信号S1の周波数を周波数帯域グループFLから周波数帯域グループFMに向けて変更(またはスイープ)させる際、および交流信号S1の周波数を周波数帯域グループFMから周波数帯域グループFLに向けて変更(またはスイープ)させる際には、制御信号Sc1を信号生成回路31に出力することにより、周波数f2に対して周波数α1(例えば、周波数f2に対して-10%)だけ低い周波数から周波数f2に対して周波数α2(例えば、周波数f2に対して+10%)だけ高い周波数の範囲の境界部FLMにおいて、隣接する2つの周波数帯域グループFに対応する2つの一次巻線構成部品CPに交流信号S1を出力させる。これにより、信号生成回路31は、4つの出力部Op1,Op2,Op3,Op4から同一周波数および同じ位相で同じ信号レベル(境界部FLM以外の周波数における信号レベルの1/2に制御してもよい)の交流信号S1を出力する。この結果、その境界部FLMにおいて、交流信号S1の周波数に応じて注入対象ラインLとの結合が適した2種類の素材の磁性コア2(または磁性コア2A)が用いられるため、注入対象ラインLに交流信号S1が十分に効率良く注入される。
同様にして、処理部7(演算回路77)は、図18に示すように、交流信号S1の周波数を周波数帯域グループFMから周波数帯域グループFHに向けて変更(またはスイープ)させる際、および交流信号S1の周波数を周波数帯域グループFHから周波数帯域グループFMに向けて変更(またはスイープ)させる際には、制御信号Sc1を信号生成回路31に出力することにより、周波数f3に対して周波数α3(例えば、周波数f3に対して-10%)だけ低い周波数から周波数f3に対して周波数α4(例えば、周波数f3に対して+10%)だけ高い周波数の範囲の境界部FMHにおいて、隣接する2つの周波数帯域グループFに対応する2つの一次巻線構成部品CPに交流信号S1を出力させる。これにより、信号生成回路31は、4つの出力部Op3,Op4,Op5,Op6から同一周波数および同じ位相で同じ信号レベル(境界部FMH以外の周波数における信号レベルの1/2に制御してもよい)の交流信号S1を出力する。この結果、その境界部FLMにおいて、交流信号S1の周波数に応じて注入対象ラインLとの結合が適した磁性コア2(または磁性コア2A)および空芯コイルACが用いられるため、注入対象ラインLに交流信号S1が十分に効率良く注入される。
なお、周波数帯域のグループ分けについては、3つに限らず、2つの周波数帯域グループにグループ分けしてもよい。その場合には、一例として、2つの周波数帯域グループのうちの低域周波数帯域側の周波数帯域グループFLに対応させられた一次巻線構成部品CP1における磁性コア2(または磁性コア2A)を金属系の磁気コアで構成し、かつ2つの周波数帯域グループのうちの高域周波数帯域側の周波数帯域グループFMに対応させられた一次巻線構成部品CP1における磁性コア2(または磁性コア2A)をフェライト系の磁気コアで構成する。
さらに、他の一例として、2つの周波数帯域グループのうちの低域周波数帯域側の周波数帯域グループFMに対応させられた一次巻線構成部品CP1における磁性コア2(または磁性コア2A)を金属系の磁気コアまたはフェライト系の磁気コアで構成し、かつ2つの周波数帯域グループのうちの高域周波数帯域側の周波数帯域グループFHに対応させられた一次巻線構成部品を空芯コイルACの一次巻線構成部品CP1Bで構成してもよい。
次に、電圧検出部6を複数備えた構成のインピーダンス測定装置1Cについて説明する。なお、このインピーダンス測定装置1Cは、電圧検出部6を複数備えている点、および処理部7Aが複数の測定対象のインピーダンスを同時に測定可能に構成されている点が上記したインピーダンス測定装置1,1A,1Bとは異なり、他の構成および機能についてはインピーダンス測定装置1,1A,1Bと同様に備えている。したがって、以下、主として、インピーダンス測定装置1,1A,1Bと相違する構成および動作について説明する。
インピーダンス測定装置1Cは、図19に示すように、上記した電圧検出部6と同じ構成および同じ機能を有する電圧検出部6を複数(同図では、電圧検出部6-1、電圧検出部6-2および電圧検出部6-3の3つ)備えている。以下、3つの電圧検出部6-1,6-2,6-3を区別しないときには、「電圧検出部6」ともいう。この場合、3つの電圧検出部6は、注入対象ラインLに直列接続されている測定対象としての電池Batにおける多数の電池セルのうちの複数(同図では、3つの電池セルCel1~Cel3:以下、区別しないときには、「電池セルCel」ともいう)の各両端に生じている交流信号S1の電圧値を検出して両端電圧信号S4を処理部7Aにそれぞれ出力する。また、各電圧検出部6は、接触型の一対のプローブP1,P2、バッファ回路61および絶縁回路62を備えている。なお、バッファ回路61および絶縁回路62については図示を省略する。また、以下、3組のプローブP1,P2を区別するときには、「プローブP1-1、プローブP1-2、プローブP1-3、プローブP2-1、プローブP2-2およびプローブP2-3」といい、区別しないときには、「プローブP1,P2」ともいう。
また、処理部7Aは、例えば、CPUで構成されて、A/D変換回路71,72、上記したA/D変換回路73と同じ構成および同じ機能を有する3つのA/D変換回路73-1,73-2,73-3(以下、区別しないときには、「A/D変換回路73」ともいう)、移相回路74、直交検波回路75、上記した直交検波回路76と同じ構成および同じ機能を有する3つの直交検波回路76-1,76-2,76-3(以下、区別しないときには、「直交検波回路76」ともいう)、演算回路77および内部メモリ78を備えて構成され、検出信号S3(電流検出信号)および複数(この例では、3つ)の両端電圧信号S4(電圧検出信号)を入力すると共に検出信号S3および3つの両端電圧信号S4に基づいて測定対象である3つの電池セルCel1~Cel3の各内部インピーダンスZc1,Zc2,Zc3(以下、区別しないときには、「内部インピーダンスZc」ともいう)を同時に測定する。
次に、インピーダンス測定装置1Cによる測定対象としての電池Batにおける各電池セルCelの内部インピーダンスZcを測定する測定処理について説明する。
最初に、注入対象ラインLに非接触型電流センサ5をクランプさせると共にプローブP1-1,P2-1を電池セルCel1の両端にそれぞれ接続(接続)し、プローブP1-2,P2-2を電池セルCel2の両端にそれぞれ接続(接続)し、かつプローブP1-3,P2-3を電池セルCel3の両端にそれぞれ接触(接続)させる。
インピーダンス測定処理時には、各電圧検出部6が、一対のプローブP1,P2を介して、各電池セルCelの両端における電圧を入力して交流電圧の差分電圧である両端電圧信号S4を処理部7にそれぞれ出力する。
一方、処理部7では、A/D変換回路71が、交流信号S1を入力すると共にA/D変換して信号データD11(sinωt)を移相回路74、直交検波回路75および各直交検波回路76に出力する。また、A/D変換回路72が、検出信号S3を入力すると共にA/D変換して信号データD12を直交検波回路75に出力する。また、各A/D変換回路73-1,73-2,73-3が、両端電圧信号S4を入力すると共にA/D変換して信号データD13-1,D13-2,D13-3(以下、区別しないときには「信号データD13」ともいう)を、対応する各直交検波回路76-1,76-2,76-3にそれぞれ出力する。また、移相回路74が、信号データD11を入力すると共に信号データD11(cosωt)を生成して直交検波回路75および各直交検波回路76に出力する。
また、直交検波回路75は、信号データD12を入力すると共に電流データDiを生成して演算回路77に出力する。また、各直交検波回路76-1,76-2,76-3は、信号データD13を入力すると共に、電圧データDv-1,Dv-2,Dv-3(以下、区別しないときには「電圧データDv」ともいう)を生成して演算回路77にそれぞれ出力する。次いで、演算回路77が、電流データDiおよび各電圧データDvを入力して、電流データDiおよび電圧データDv-1に基づいて電池セルCel1の内部インピーダンスZc1を演算し、電流データDiおよび電圧データDv-2に基づいて電池セルCel2の内部インピーダンスZc2を演算し、かつ電流データDiおよび電圧データDv-3に基づいて電池セルCel3の内部インピーダンスZc3を演算してインピーダンスデータDzを内部メモリ78に出力して記憶させると共に出力部8に出力する。この際に、出力部8は、インピーダンスデータDzを入力して各電池セルCel1,Cel2,Cel3の内部インピーダンスZc1,ZC2,Zc3を表示装置の画面上に表示する。
次に、インピーダンス測定装置1Dについて説明する。このインピーダンス測定装置1Dは、図20に示すように、信号注入部3が、磁性コア2(または磁性コア2A)、磁性コア2(または磁性コア2A)に巻回した信号注入用巻線W2(または信号注入用巻線W3)、コンデンサ回路CSおよびダンピング抵抗R1を有して構成された一次巻線構成部品CP1Cを備えている。また、信号注入部3は、信号生成回路31Aを備えて構成されている。なお、このインピーダンス測定装置1Dは、このコンデンサ回路CSおよびダンピング抵抗R1を有する一次巻線構成部品CP1Cを備えている点、および上記の信号生成回路31に代えて信号生成回路31Aを備えている点が上記したインピーダンス測定装置1,1A,1B,1Cとは異なり、他の構成および機能についてはインピーダンス測定装置1,1A,1B,1Cと同様に備えている。したがって、以下、上記したインピーダンス測定装置1,1A,1B,1Cにおける各構成要素と同じ機能を有する構成要素については、同一の符号を付して、重複する説明を省略するものとし、主として、インピーダンス測定装置1,1A,1B,1Cと相違する構成および動作について説明する。
一次巻線構成部品CP1Cは、一次巻線としての信号注入用巻線W2(または信号注入用巻線W3)と共にLC並列共振回路(LC共振回路の一例)RC1を構成するコンデンサ回路CSを備えている。この場合、LC並列共振回路RC1は、後述するFET1の負荷回路として配置されている。また、LC並列共振回路RC1は、交流信号S1の周波数または近傍の周波数(つまり、例えば、交流信号S1周波数が10kHzのときには、9.5kHzから10,5kHzまでの間の周波数(交流信号S1の周波数に対して約±5%の範囲の周波数))において共振点を有するように、信号注入用巻線W2(または信号注入用巻線W3)のインダクタンスと、コンデンサ回路CSの容量とが決められている。この場合、LC並列共振回路RC1は、二次巻線としての注入対象ラインLに対する一次巻線として機能するため、LC並列共振回路RC1の共振周波数と同じか近傍の周波数の信号である交流信号S1の基本波だけを並列共振により注入対象ラインLに伝達する。したがって、後述するようにパルス信号の交流信号S1がFET1によってD級増幅される際に、注入対象ラインLに対して、交流信号S1の高調波を伝達させることなく、正弦波の交流信号S1だけを伝達させる。つまり、LC並列共振回路RC1は、FET1に対して、正弦波の交流信号S1をリニアに増幅させる機能を有している。
また、一次巻線構成部品CP1Cは、LC並列共振回路RC1における共振のQ値を低下させるダンピング抵抗R1も備えている。この場合、コンデンサ回路CSおよびダンピング抵抗R1は、それぞれ信号注入用巻線W2(または信号注入用巻線W3)と並列に接続されている。また、ダンピング抵抗R1の抵抗値は、例えば、10KΩに規定されている。ただし、このダンピング抵抗R1については、抵抗値が固定の固定抵抗に代えて、共振のQ値を任意に可変可能に抵抗値を可変可能な可変抵抗器を採用することもできる。また、LC並列共振回路RC1における共振のQ値を高くしておく必要のある場合には、ダンピング抵抗R1の配設を省略することもできる。
コンデンサ回路CSは、全体として並列接続されると共に互いの容量が相違する第1コンデンサから第Nbコンデンサ(Nbは2以上の整数)までのNb個のコンデンサと、第1コンデンサから第Nbコンデンサにそれぞれ直列接続された第1直列スイッチから第Nb直列スイッチまでのNb個のスイッチとを備えて構成されている。また、第1コンデンサから第Nbコンデンサは、それぞれ2Mb(Mbは0から(Nb-1)までのNb個の整数)に特定の容量(例えば、「0,025μF」)を乗じた容量に規定されている。この場合、コンデンサ回路CSの一端T11(LC並列共振回路RC1の一端)が高電位である後述するLPF33の出力端に接続されて、コンデンサ回路CSの他端T12(LC並列共振回路RC1の他端)がFET1のドレインに接続されている。
具体的には、一次巻線構成部品CP1Cは、例えば整数Nbとして4を採用して構成されている。したがって、一次巻線構成部品CP1Cは、図21に示すように、コンデンサC11からコンデンサC14(以下、区別しないときには「コンデンサCb」ともいう)までの4つのコンデンサと、コンデンサC11からコンデンサC14にそれぞれ直列接続された直列スイッチSW11から直列スイッチSW14(以下、区別しないときには「直列スイッチSWb」ともいう)までの4個のスイッチとを備えて構成されている。この場合、直列スイッチSWbは、トランジスタやFETなどの半導体スイッチで構成しても良いし、リレーなどの機械式スイッチで構成しても良い。また、コンデンサC11からコンデンサC14は、一例として、それぞれ0,025μpF、0,050μpF、0,100μFおよび0,200μFの容量を有している。また、整数Nbは、4に限らず、2、3および5以上の数を採用することができる。
このインピーダンス測定装置1Dでは、処理部7が、2進数的なポート制御によって4個の直列スイッチSW11~SW14をオンオフ制御して、コンデンサ回路CS全体としての容量を変更する。具体的には、コンデンサ回路CSの容量は、各コンデンサCbに対応して直列接続されている直列スイッチSWbがオン状態に制御されたときには、そのコンデンサCbの容量分が増加させられ、直列スイッチSWbがオフ状態に制御されたときには、そのコンデンサCbの容量分が減少させられる。したがって、処理部7(演算回路77)が、4個の直列スイッチSW11~SW14に制御信号Sc3を出力して個別にオンオフ制御することにより、コンデンサ回路CS全体としての容量が、0μfから0.375μF(実質的には、0.025μFから0.375μF)までの間において、0.025μF刻みで変更させられる。例えば、図22に示すように、直列スイッチSW12,SW14がオン状態に制御され、かつ直列スイッチSW11,SW13がオフ状態に制御されたときには、コンデンサ回路CSは、コンデンサC12,14の容量が増加するため、全体として0.25μFの容量に制御される。このように、処理部7は、交流信号S1の周波数をスイープさせるときに、ポート制御することにより、コンデンサ回路CS全体の容量を変更させて、LC並列共振回路RC1の共振周波数を、交流信号S1の周波数と同じか、または近傍の周波数となるように変化させる。
信号生成回路31Aは、図20に示すように、FET1、抵抗R2,R3、ローパスフィルタ33(以下、「LPF33」ともいう)および電源回路34を備えて構成されている。FET1は、交流信号S1を増幅する増幅回路であって、NチャンネルMOSFETで構成されている。また、FET1は、ドレイン端子がLC並列共振回路RC1の他端側に接続され、ソース端子が低電位である基準電位に接続され、かつゲート端子が交流信号S1を生成する図外の信号発振器に接続されている。このFET1は、ゲート端子に抵抗R2,R3で分圧されたパルス信号の交流信号S1が入力されて、交流信号S1をD級増幅する。なお、FETに代えて、バイポーラトランジスタを用いることもできる。また、本例のFET1の構成に代えて、図示はしないが、FETやバイポーラトランジスタを用いてプッシュプル構成の増幅回路を構成することもできる。
LPF33は、交流信号S1(LC並列共振回路RC1の共振周波数と同じ周波数の信号でもある)の通過を許容し、かつ交流信号S1よりも高い周波数(特に交流信号S1の高調波信号)の通過を阻止するように、そのカットオフ周波数が規定されると共に、LC並列共振回路RC1に直列に接続されている。このLPF33は、入力端が電源回路34の出力部に接続され、出力端がLC並列共振回路RC1に接続されている。このため、LPF33は、FET1がパルス信号の交流信号S1をD級増幅する際に、交流信号S1の高調波の周波数に対して電源回路34側への通過および電源回路34側からの通過を阻止することにより、実質的には、LC並列共振回路RC1と共にFET1に対して正弦波の交流信号S1をリニアに(直線的に)増幅させる機能を有している。
電源回路34は、高電位としての電圧Vが可変可能な出力電圧可変型の電源装置であって、処理部7から出力される制御信号Sc1による指示に従った電圧Vを生成して出力する。この場合、電源回路34が制御信号Sc1による指示に従った電圧Vを出力することにより、FET1のドレイン電圧が変化する結果、FET1から出力される交流信号S1の電圧(電力でもある)が自在に変更させられる。
次に、インピーダンス測定装置1Dの動作について説明する。なお、測定対象としての電池Batの内部インピーダンスZbを測定する測定処理自体はインピーダンス測定装置1,1A,1B,1Cと同様のため、重複した説明を省略して異なる処理について説明する。
このインピーダンス測定装置1Dでは、インピーダンスの演算処理において、処理部7(演算回路77)が、制御信号Sc1を信号注入部3の信号生成回路31Aに出力して交流信号S1の信号レベルおよび周波数を制御する。この際に、信号生成回路31Aは、制御信号Sc1によって指示された周波数を基本波とするパルス信号の交流信号S1を生成してFET1に出力する。また、FET1は、抵抗R2,R3で分圧された交流信号S1をゲート端子に入力して、交流信号S1をD級増幅する。また、電源回路34は、交流信号S1の信号レベルが制御信号Sc1によって指示された信号レベルとなるように、FET1のドレインに印加する電圧Vの電圧値を制御する。これにより、信号生成回路31AのFET1は、制御信号Sc1によって指示された信号レベルおよび周波数の交流信号S1を生成して出力する。
この場合、LC並列共振回路RC1を設けない構成では、交流信号S1の周波数が高いときに、信号注入用巻線W2(または信号注入用巻線W3)のインダクタンス成分に起因して、交流信号S1が信号注入用巻線W2(または信号注入用巻線W3)を流れ難くなる。また、信号注入用巻線W2(または信号注入用巻線W3)と信号生成回路31Aとの間の距離が長いときには、引き回し線の抵抗値やインダクタンス成分に起因して、交流信号S1の損失が大きくなると共に発熱が大きくなる。さらに、交流信号S1を引き回し線に流すことに起因して、引き回し線からの交流信号S1の高調波の電波放射が大きくなり、EMC規格(ノイズ規格)に反する可能性が生じる。
これに対して、このインピーダンス測定装置1Dでは、LC並列共振回路RC1を備えているため、処理部7(演算回路77)が、制御信号Sc3をコンデンサ回路CSに出力することにより、信号生成回路31Aによって生成される交流信号S1の周波数に応じて4個の直列スイッチSW11~SW14をオンオフ制御して、コンデンサ回路CS全体としての容量を変更する。つまり、処理部7(演算回路77)は、LC並列共振回路RC1の共振周波数を交流信号S1の周波数または近傍の周波数となるように変更する。この場合、交流信号S1の周波数をスイープするときには、スイープする交流信号S1の周波数またはその近傍の共振周波数となるように、制御信号Sc3をコンデンサ回路CSに順次出力する。
したがって、交流信号S1の周波数におけるLC並列共振回路RC1のインピーダンスが大きくなり、かつ交流信号S1の高調波の周波数におけるLC並列共振回路RC1のインピーダンスが小さくなるため、FET1のドレインからLC並列共振回路RC1を含む電流経路内での交流信号S1の高調波歪の発生が抑えられる。同時に、交流信号S1の高調波の周波数においてLPF33のインピーダンスが大きくなるため、交流信号S1の高調波歪の発生がより抑えられる。この結果、FET1は正弦波の交流信号S1を出力する。また、交流信号S1の周波数が高いときであっても、信号注入用巻線W2(または信号注入用巻線W3)のインダクタンス成分が極めて小さいため、交流信号S1が信号注入用巻線W2(または信号注入用巻線W3)を流れ易くなる結果、LC並列共振回路RC1での交流信号S1の損失が十分に低減する。また、信号注入用巻線W2(または信号注入用巻線W3)と信号生成回路31Aとの間の距離が長いときであっても、LC並列共振回路RC1のインピーダンスが大きいため、引き回し線の抵抗値やインダクタンス成分に起因する交流信号S1の損失や発熱が小さくなる。したがって、FET1を含む増幅回路の構成が簡略化される。さらに、LC並列共振回路RC1のインピーダンスが大きいため、引き回し線を流れる交流信号S1の電流値が小さくなると共に、交流信号S1の高調波成分が殆ど発生しない。この結果、引き回し線からの交流信号S1の高調波の電波放射が十分に小さく抑えられて、EMC規格(ノイズ規格)が容易に満たされる。また、ダンピング抵抗R1がLC並列共振回路RC1における共振のQ値を低下させるため、LC並列共振回路RC1の周波数特性がブロードとなる結果、信号生成回路31Aによって生成される交流信号S1の周波数とLC並列共振回路RC1の共振周波数とが多少相違していたとしても、上記の効果が十分に発揮される。したがって、一次巻線としての信号注入用巻線W2(または信号注入用巻線W3)を介して二次巻線としての注入対象ラインLに正弦波の交流信号S1が効率良く注入される。
なお、本例では、一例として、コンデンサC11~C14が、それぞれ2Mb(Mbは0から4までの整数)に特定の容量として0,025μFを乗じた容量に規定したため、コンデンサ回路CS全体としての容量をきめ細やかに制御することができる。一方、4個のコンデンサC11~C14を備えてコンデンサ回路CSを構成したため、スイープ可能な交流信号S1の周波数帯域幅が小さい。このため、数多くのコンデンサCbと、コンデンサの数と同数の直列スイッチSWbを設けることで、スイープ可能な交流信号S1の周波数帯域幅を十分に大きくすることができる。また、磁性コア2(または磁性コア2A)に信号注入用巻線W3を巻回して、処理部7(演算回路77)が制御信号Sc2を出力して並列スイッチSW1~SW4を制御することもできる。この構成では、交流信号S1の周波数に応じてLC並列共振回路RC1のコンデンサC11~C14の容量および信号注入用巻線W3のインダクタンスの双方を変更できるため、スイープ可能な交流信号S1の周波数帯域幅をより広くすることができる。
ただし、LC並列共振回路RC1の共振周波数を変更するために、コンデンサ回路CSの容量のみを変更しても良いし、コンデンサ回路CSを用いることなく一定容量のコンデンサを用いて信号注入用巻線W3のインダクタンスだけを変更しても良いし、コンデンサ回路CSの容量および信号注入用巻線W3のインダクタンスの双方を変更して良い。また、磁性コア2(または磁性コア2A)に巻回する巻線の数(Na個)および直列スイッチSWaの数(Na個)を増やすことにより、スイープ可能な交流信号S1の周波数帯域幅をさらに大きくすることができる。この場合、コンデンサ回路CSの容量および信号注入用巻線W3のインダクタンスの双方を変更したり、磁性コア2(または磁性コア2A)に巻回する巻線の数(Na個)および直列スイッチSWaの数(Na個)を増やしたりすることにより、共振周波数を線形的に変更することができる。また、LPF33に代えてBPF(バンドパスフィルタ)を採用することもできる。この構成では、処理部7(演算回路77)は、交流信号S1の通過を許容できる周波数帯域となるようにBPFの低域および高域のカットオフ周波数を調整する。さらに、LPF33の配設を省くこともできる。また、一次巻線構成部品CP1Cに代えて一次巻線構成部品CP1Bを用いることもできる。また、交流信号S1の信号レベルの制御が不要の場合には、電源回路34を電圧固定の電源装置で構成することもできる。
次に、インピーダンス測定装置1Eについて説明する。このインピーダンス測定装置1Dは、図23に示すように、信号注入部3が、磁性コア2(または磁性コア2A)、磁性コア2(または磁性コア2A)に巻回した信号注入用巻線W2(または信号注入用巻線W3)、コンデンサ回路CSおよびダンピング抵抗R4を有して構成された一次巻線構成部品CP1Dを備えている。また、信号注入部3は、信号生成回路31Bを備えて構成されている。なお、このインピーダンス測定装置1Eは、一次巻線構成部品CP1Cに代えて、一次巻線構成部品CP1Dを備えている点、および上記の信号生成回路31Aに代えて信号生成回路31Bを備えている点が上記したインピーダンス測定装置1Dとは異なり、他の構成および機能についてはインピーダンス測定装置1,1A,1B,1C,1Dと同様に備えている。したがって、以下、上記したインピーダンス測定装置1,1A,1B,1C,1Dにおける各構成要素と同じ機能を有する構成要素については、同一の符号を付して、重複する説明を省略するものとし、主として、インピーダンス測定装置1,1A,1B,1C,1Dと相違する構成および動作について説明する。
一次巻線構成部品CP1Dは、一次巻線としての信号注入用巻線W2(または信号注入用巻線W3)と共にLC直列共振回路(LC共振回路の一例)RC2を構成する上記したコンデンサ回路CSを備えている。この場合、LC直列共振回路RC2は、後述するFET2,FET3の負荷回路として配置されている。また、LC直列共振回路RC2は、交流信号S1の周波数または近傍の周波数(つまり、例えば、交流信号S1周波数が10kHzのときには、9.5kHzから10,5kHzまでの間の周波数(交流信号S1の周波数に対して約±5%の範囲の周波数))において共振点を有するように、信号注入用巻線W2(または信号注入用巻線W3)のインダクタンスと、コンデンサ回路CSの容量とが決められている。この場合、LC直列共振回路RC2は、二次巻線としての注入対象ラインLに対する一次巻線として機能するため、LC直列共振回路RC2の共振周波数と同じか近傍の周波数の信号である交流信号S1の基本波だけを直列共振により注入対象ラインLに伝達する。したがって、後述するようにパルス信号の交流信号S1がFET2,3によってD級増幅される際に、注入対象ラインLに対して、交流信号S1の高調波を伝達させることなく、正弦波の交流信号S1だけを伝達させる。つまり、LC直列共振回路RC2は、FET2,3に対して、正弦波の交流信号S1をリニアに増幅させる機能を有している。
また、一次巻線構成部品CP1Dは、LC直列共振回路RC2における共振のQ値を低下させるダンピング抵抗R4も備えている。この場合、コンデンサ回路CSおよびダンピング抵抗R4は、信号注入用巻線W2(または信号注入用巻線W3)と直列に接続されて直列回路を構成し、この直列回路のコンデンサ回路CS側の一端は、LPF33の出力端に接続されて、直列回路のダンピング抵抗R4側の他端(LC直列共振回路RC2の一端:LC共振回路の一端)は、後述する高電位の電圧Vと低電位の電圧Vとの中点電位V(基準電位)に接続されている。また、LPF33の入力端はFET2,3のソースに接続されている。なお、ダンピング抵抗R4の抵抗値は、例えば、1Ωに規定されている。ただし、このダンピング抵抗R4については、抵抗値が固定の固定抵抗に代えて、共振のQ値を任意に可変可能に抵抗値を可変可能な可変抵抗器を採用することもできる。また、LC直列共振回路RC2における共振のQ値を高くしておく必要のある場合には、ダンピング抵抗R4の配設を省略することもできる。
このインピーダンス測定装置1Eでも、インピーダンス測定装置1Dと同様にして、処理部7が、2進数的なポート制御によって4個の直列スイッチSW11~SW14をオンオフ制御して、コンデンサ回路CS全体としての容量を変更させて、LC直列共振回路RC2の共振周波数を、交流信号S1の周波数と同じか、または近傍の周波数となるように変化させる。
信号生成回路31Aは、FET2,3、抵抗R5,R6、LPF33および電源回路35,36を備えて構成されている。FET2,3は、交流信号S1を増幅するプッシュプル構成の増幅回路であって、FET2は、NチャンネルMOSFETで構成され、FET3は、PチャンネルMOSFETで構成されている。また、FET2は、ドレイン端子が電源回路35の出力部に接続され、ソース端子がFET3のソース端子とLPF33の入力端(LC直列共振回路の他端側)に接続され、かつゲート端子が交流信号S1を生成する図外の信号発振器に接続されている。また、FET3は、ドレイン端子が電源回路36の出力部に接続され、ソース端子がFET2のソース端子とLPF33の入力端に接続され、かつゲート端子が交流信号S1を生成する図外の信号発振器に接続されている。これらのFET2,3は、FET2のゲート端子に抵抗R5を介して中点電位Vに対して正のパルス信号の交流信号S1が入力され、かつFET3のゲート端子に抵抗R6を介して中点電位Vに対して負のパルス信号の交流信号S1が入力されて、交流信号S1をD級増幅する。なお、FETに代えて、バイポーラトランジスタを用いることもできる。
LPF33は、インピーダンス測定装置1DのLPF33と同じ構成を有しており、入力端がFET2,3のソース端子に接続されると共に、出力端がコンデンサ回路CSの一端T11(LC並列共振回路RC1の一端)に接続されることによりLC直列共振回路RC2に直列に接続されている。このため、LPF33は、FET2,3がパルス信号の交流信号S1をD級増幅する際に、交流信号S1の高調波の周波数に対して電源回路35,36側への通過および電源回路35,36側からの通過を阻止することにより、実質的には、LC直列共振回路RC2と共にFET2,3に対して正弦波の交流信号S1をリニアに(直線的に)増幅させる機能を有している。
電源回路35は、中点電位Vよりも高電位としての電圧Vが可変可能な出力電圧可変型の電源装置であって、処理部7から出力される制御信号Sc1による指示に従った電圧Vを生成して出力する。また、電源回路36は、中点電位Vよりも低電位としての電圧Vが可変可能な出力電圧可変型の電源装置であって、処理部7から出力される制御信号Sc1による指示に従った電圧Vを生成して出力する。この場合、電源回路35,36は、電圧Vから中点電位Vを差し引いた差分電圧と、中点電位Vから電圧Vを差し引いた差分電圧とが同じ電圧になるように、処理部7(演算回路77)から出力される制御信号Sc1によって制御される。また、電源回路35,36が制御信号Sc1による指示に従った電圧V,Vを出力することにより、FET2,3のドレイン電圧が変化する結果、FET2,3から出力される交流信号S1の電圧(電力でもある)が自在に変更させられる。
次に、インピーダンス測定装置1Eの動作について添付図面を参照して説明する。なお、測定対象としての電池Batの内部インピーダンスZbを測定する測定処理自体はインピーダンス測定装置1,1A,1B,1C,1Dと同様のため、重複した説明を省略して異なる処理について説明する。
このインピーダンス測定装置1Eでは、インピーダンスの演算処理において、処理部7(演算回路77)が、制御信号Sc1を信号注入部3の信号生成回路31Bに出力して交流信号S1の信号レベルおよび周波数を制御する。この際に、信号生成回路31Bは、制御信号Sc1によって指示された周波数を基本波とするパルス信号の交流信号S1を生成してFET2,3に出力する。また、FET2,3は、抵抗R5,R6をそれぞれ介して交流信号S1をゲート端子に入力して、交流信号S1をD級でプッシュプル増幅する。また、電源回路35は、交流信号S1の信号レベルが制御信号Sc1によって指示された信号レベルとなるように、FET2のドレインに印加する電圧Vの電圧値を制御する。同時に、電源回路36は、交流信号S1の信号レベルが制御信号Sc1によって指示された信号レベルとなるように、FET3のドレインに印加する電圧Vの電圧値を制御する。これにより、信号生成回路31BのFET2,3は、制御信号Sc1によって指示された信号レベルおよび周波数の交流信号S1を生成して出力する。
この場合、LC直列共振回路RC2を設けない構成では、交流信号S1の周波数が高いときに、信号注入用巻線W2(または信号注入用巻線W3)のインダクタンス成分に起因して、交流信号S1が信号注入用巻線W2(または信号注入用巻線W3)を流れ難くなる。
これに対して、このインピーダンス測定装置1Eでは、LC直列共振回路RC2を備えているため、処理部7(演算回路77)が、制御信号Sc3をコンデンサ回路CSに出力することにより、信号生成回路31Bによって生成される交流信号S1の周波数に応じて4個の直列スイッチSW11~SW14をオンオフ制御して、コンデンサ回路CS全体としての容量を変更する。つまり、処理部7(演算回路77)は、LC直列共振回路RC2の共振周波数を交流信号S1の周波数または近傍の周波数となるように変更する。この場合、交流信号S1の周波数をスイープするときには、スイープする交流信号S1の周波数またはその近傍の共振周波数となるように、制御信号Sc3をコンデンサ回路CSに順次出力する。
したがって、交流信号S1の周波数におけるLC直列共振回路RC2のインピーダンスが小さくなり、かつ交流信号S1の高調波の周波数におけるLC直列共振回路RC2のインピーダンスが大きくなるため、FET2,3のソースからLC直列共振回路RC2を含む電流経路内での交流信号S1の高調波歪の発生が抑えられる。同時に、交流信号S1の高調波の周波数においてLPF33のインピーダンスが大きくなるため、交流信号S1の高調波歪の発生がより抑えられる。この結果、FET2,3は正弦波の交流信号S1を出力する。また、交流信号S1の周波数が高いときであっても、信号注入用巻線W2(または信号注入用巻線W3)のインダクタンス成分が極めて小さいため、交流信号S1が信号注入用巻線W2(または信号注入用巻線W3)を流れ易くなる結果、LC直列共振回路RC2での交流信号S1の損失が十分に低減する。また、ダンピング抵抗R4がLC直列共振回路RC2における共振のQ値を低下させるため、LC直列共振回路RC2の周波数特性がブロードとなる結果、信号生成回路31Bによって生成される交流信号S1の周波数とLC直列共振回路RC2の共振周波数とが多少相違していたとしても、上記の効果が十分に発揮される。したがって、一次巻線としての信号注入用巻線W2(または信号注入用巻線W3)を介して二次巻線としての注入対象ラインLに正弦波の交流信号S1が効率良く注入される。
なお、本例では、一例として、コンデンサC11~C14が、それぞれ2Mb(Mbは0から4までの整数)に特定の容量として0,025μFを乗じた容量に規定したため、コンデンサ回路CS全体としての容量をきめ細やかに制御することができる。一方、4個のコンデンサC11~C14を備えてコンデンサ回路CSを構成したため、スイープ可能な交流信号S1の周波数帯域幅が小さい。このため、数多くのコンデンサCbと、コンデンサの数と同数の直列スイッチSWbを設けることで、スイープ可能な交流信号S1の周波数帯域幅を十分に大きくすることができる。また、磁性コア2(または磁性コア2A)に信号注入用巻線W3を巻回して、処理部7(演算回路77)が制御信号Sc2を出力して並列スイッチSW1~SW4を制御することもできる。この構成では、交流信号S1の周波数に応じてLC直列共振回路RC2のコンデンサC11~C14の容量および信号注入用巻線W3のインダクタンスの双方を変更できるため、スイープ可能な交流信号S1の周波数帯域幅をより広くすることができる。
ただし、LC直列共振回路RC2の共振周波数を変更するために、コンデンサ回路CSの容量のみを変更しても良いし、コンデンサ回路CSを用いることなく一定容量のコンデンサを用いて信号注入用巻線W3のインダクタンスだけを変更しても良いし、コンデンサ回路CSの容量および信号注入用巻線W3のインダクタンスの双方を変更して良い。ご確認をお願い致します。また、磁性コア2(または磁性コア2A)に巻回する巻線の数(Na個)および直列スイッチSWaの数(Na個)を増やすことにより、スイープ可能な交流信号S1の周波数帯域幅をさらに大きくすることができる。この場合、コンデンサ回路CSの容量および信号注入用巻線W3のインダクタンスの双方を変更したり、磁性コア2(または磁性コア2A)に巻回する巻線の数(Na個)および直列スイッチSWaの数(Na個)を増やしたりすることにより、共振周波数を線形的に変更することができる。また、LPF33に代えてBPF(バンドパスフィルタ)を採用することもできる。この構成では、処理部7(演算回路77)は、交流信号S1の通過を許容できる周波数帯域となるようにBPFの低域および高域のカットオフ周波数を調整する。さらに、LPF33の配設を省くこともできる。また、一次巻線構成部品CP1Dに代えて一次巻線構成部品CP1Bを用いることもできる。また、交流信号S1の信号レベルの制御が不要の場合には、電源回路35,36を電圧固定の電源装置で構成することもできる。
このように、インピーダンス測定装置1,1A,1B,1C,1D,1Eでは、信号注入部3が、注入対象ラインLの芯線に対して非接触で交流信号S1を注入し、非接触型電流センサ5が注入対象ラインLを流れる注入電流Iiの電流値を注入対象ラインLの芯線に対して非接触で検出して検出信号S3を処理部7に出力し、電圧検出部6が電池Batの両端に生じている交流信号S1の電圧値をその両端に接触して検出して両端電圧信号S4を処理部7に出力し、処理部7(演算回路77)が、検出信号S3および両端電圧信号S4を入力すると共に検出信号S3および両端電圧信号S4に基づいて電池Bat(または電池セルCel)の内部インピーダンスZb(または内部インピーダンスZc)を測定する。
このため、インピーダンス測定装置1,1A,1B,1C,1D,1Eによれば、電池Batが直列接続されると共に測定用の交流信号S1が注入される注入対象ラインLに高電圧が存在するときにおいても、注入対象ラインLの芯線に対して信号注入部3が非接触で交流信号S1を注入するため、信号注入部3を構成する部品として低耐圧仕様の部品を使用できる結果、信号注入部3の製造コストの低減、ひいてはインピーダンス測定装置1,1A,1B,1C,1D,1E全体としての製造コストを十分に低減することができると共に測定対象としての電池Bat(または電池セルCel)の内部インピーダンスZb(または内部インピーダンスZc)を確実に測定することができる。
また、インピーダンス測定装置1,1A,1B,1C,1D,1Eによれば、上記の信号注入装置10を備え、処理部7が、注入対象ラインに直列接続されている測定対象である電池Bat(または電池セルCel)の内部インピーダンスZb(または内部インピーダンスZc)を測定する際に、注入対象ラインLに交流信号S1を注入したときに、その注入対象ラインLを流れる交流信号S1の電流値(注入電流Iiの電流値:検出信号S3)と、電池Batの両端に生じる電圧値(両端電圧信号S4)とに基づいて電池Bat(または電池セルCel)の内部インピーダンスZb(または内部インピーダンスZc)を測定することにより、磁性コア2において磁束Mcをより確実に発生させて、注入対象ラインLに交流信号S1をより確実にしかも効率良く注入することができる結果、高い精度で電池Bat(または電池セルCel)の内部インピーダンスZb(または内部インピーダンスZc)を測定することができる。
また、インピーダンス測定装置1,1A,1B,1C,1D,1Eによれば、非接触型電流センサ5が、注入対象ラインLを流れる注入電流Ii(交流電流の電流)を注入対象ラインLに対して非接触で検出して検出信号S3を処理部7に出力し、電圧検出部6が、測定対象である電池Batの両端に接触して検出した両端電圧信号S4を電池Batから絶縁した状態で処理部7に出力することにより、電池Batの出力電圧が非常に高い電圧であったとしても、また、負荷Loadやインピーダンス測定装置1,1A,1B,1C,1D,1Eの周囲にスイッチングノイズなどのノイズが存在する場合であっても、電池Batに注入電流Iiが流れて電池Bat内に発生する微小の交流電圧を精度良く検出することができる。したがって、このインピーダンス測定装置1,1A,1B,1C,1D,1Eによれば、電池Bat(または電池セルCel)の内部インピーダンスZb(または内部インピーダンスZc)を精度良く測定することができる。また、このインピーダンス測定装置1,1A,1B,1C,1D,1Eによれば、非接触型電流センサ5を用いたことにより、注入対象ラインLを切断することなく、非接触で電池Bat(または電池セルCel)の内部インピーダンスZb(または内部インピーダンスZc)を測定することができる。
また、インピーダンス測定装置1,1A,1B,1C,1D,1Eによれば、処理部7(または7A)の演算回路77が、直交検波回路75から出力される交流電流としての注入電流Ii(検出信号S3)の同相成分および直交成分と、直交検波回路76から出力される交流電圧としての両端電圧信号S4の同相成分および直交成分とに基づいて測定対象としての電池Bat(または電池セルCel)の内部インピーダンスZb(または内部インピーダンスZc)を演算することにより、注入対象ラインLに注入された交流信号S1の信号レベルが小さいときであっても、雑音レベル(N)に対する信号レベル(S)の比率(S/N)を高めて精度良く内部インピーダンスZb(または内部インピーダンスZc)を測定することができる。
また、インピーダンス測定装置1,1A,1B,1C,1D,1Eでは、信号注入部3が、二次巻線としての注入対象ラインLに磁気結合する一次巻線を構成する一次巻線構成部品CPを備えると共に一次巻線構成部品CPの両端に交流信号S1を印加することにより注入対象ラインLに交流信号S1を注入する。また、インピーダンス測定装置1,1A,1B,1C,1D,1Eでは、一次巻線構成部品CPが、注入対象ラインLが挿通される環状の磁性コア2に絶縁被覆電線を巻回して構成されている。したがって、インピーダンス測定装置1,1A,1B,1C,1D,1Eによれば、一次巻線構成部品CPを簡易に構成することができると共に交流信号S1を注入対象ラインLに確実に注入することができる。
また、インピーダンス測定装置1,1A,1B,1C,1D,1Eによれば、磁性コア2,2AにギャップGを設けたことにより、磁性コア2の磁気飽和を回避することができる。
また、インピーダンス測定装置1,1A,1B,1C,1D,1Eでは、磁性コア2(または磁性コア2A)は、複数のC型の単位磁気コアUCで構成され、複数の単位磁気コアUCは、重ねた状態の上面視において、磁性コア2(または磁性コア2A)の外周に沿って互いに隣り合う2つのギャップGの離間距離が均等となるように重ねられている。したがって、インピーダンス測定装置1,1A,1B,1C,1D,1Eによれば、磁性コア2(または磁性コア2A)に挿通された注入対象ラインLがギャップGに近い箇所に位置していたとしても、その位置に拘わらず、交流信号S1の注入対象ラインLへの注入を減少させることなく、注入対象ラインLに対して交流信号S1を安定して注入することができる。
また、インピーダンス測定装置1,1A,1B,1C,1D,1Eでは、一次巻線構成部品CPは、第1巻線Wd1から第4巻線Wd4までの4つ(4はNaの一例)の巻線と、第1巻線Wd1から第4巻線Wd4にそれぞれ並列接続された第1並列スイッチSW1から第4並列スイッチSW4までの4(4はNaの一例)個の並列スイッチとを備えて構成され、第1巻線Wd1から第1巻線Wd4は、それぞれ巻数が相違するように巻回されている。したがって、インピーダンス測定装置1,1A,1B,1C,1D,1Eによれば、一次巻線構成部品CP全体としての巻数を変更することにより、負荷Loadが電池Batに接続されて閉ループ状態になっているときの信号注入用巻線W3から見た負荷インピーダンスの大小に拘わらず、交流信号S1を精度良く注入対象ラインLに注入することができる。また、インピーダンス測定装置1A,1B,1C,1D,1Eによれば、同じ巻数で構成した一次巻線構成部品CP(信号注入用巻線W2)と比較して巻数の増減を大きくすることができる。
さらに、インピーダンス測定装置1,1A,1B,1C,1D,1Eによれば、第1巻線Wd1から第4巻線Wd4(Naが4の例)が、それぞれ1、2、4および8(2MaのMaが0から3までの各整数の例)に10(Laが10の例)を乗じた巻数で巻回されているため、一次巻線構成部品CP全体としての巻数をきめ細やかに制御することができる。
また、インピーダンス測定装置1,1A,1B,1C,1D,1Eによれば、第1巻線Wd1から第1巻線Wd4は、巻数が多い巻線Wdの絶縁被覆電線における芯線の線径が巻数が少ない巻線Wdの絶縁被覆電線における芯線の線径よりも細く形成されているため、巻数が多い巻線Wdに細い絶縁被覆電線(またはエナメル線)を用いることができる結果、信号注入用巻線W3の生産性を十分に向上させることができる。
また、インピーダンス測定装置1D,1Eによれば、信号注入部3は、交流信号S1の周波数またはその周波数の近傍の周波数において共振点を有するLC共振回路(LC並列共振回路RC1またはLC直列共振回路RC2)を信号注入用巻線W2(または信号注入用巻線W3)と共に構成するコンデンサ回路CSを備えているため、交流信号S1が信号注入用巻線W2(または信号注入用巻線W3)を流れ易くなる結果、LC共振回路(LC並列共振回路RC1またはLC直列共振回路RC2)での交流信号S1の損失を十分に低減することができる。
また、インピーダンス測定装置1D,1Eによれば、信号注入部3は、LC共振回路(LC並列共振回路RC1またはLC直列共振回路RC2)のQ値を低下させるダンピング抵抗R1(またはダンピング抵抗R4)を備えているため、信号生成回路31Aによって生成される交流信号S1の周波数とLC共振回路(LC並列共振回路RC1またはLC直列共振回路RC2)の共振周波数とが多少相違していたとしても、LC共振回路(LC並列共振回路RC1またはLC直列共振回路RC2)での交流信号S1の損失を十分に低減することができる。
また、インピーダンス測定装置1D,1Eによれば、信号注入部3は、交流信号S1を増幅する増幅回路(FET1またはFET2,3)を備え、LC共振回路(LC並列共振回路RC1またはLC直列共振回路RC2)は増幅回路(FET1またはFET2,3)の負荷回路として配置されているため、増幅回路(FET1またはFET2,3)に対して正弦波の交流信号S1をリニアに増幅させることができる。
また、インピーダンス測定装置1Dによれば、LC並列共振回路RC1の一端が高電位の電圧Vに接続され、増幅回路は、NチャンネルMOSFET(FET1)で構成され、ドレイン端子にLC並列共振回路RC1の他端側が接続され、ソース端子が基準電位に接続され、かつゲート端子に交流信号S1としてのパルス信号が入力されて交流信号S1をD級増幅することにより、増幅回路(FET1)を簡易に構成することができる。
また、インピーダンス測定装置1Dによれば、高電位の電圧Vが可変可能に構成されているため、FET1のドレイン電圧が変化する結果、FET1から出力される交流信号S1の電圧(電力でもある)を自在に変更することができる。
また、インピーダンス測定装置1Eによれば、LC直列共振回路RC2の一端が基準電位に接続され、増幅回路は、NチャンネルMOSFET(FET2)およびPチャンネルMOSFET(FET3)によってプッシュプル回路に構成され、FET2のドレイン端子が中点電位V(基準電位)よりも高電位の電圧Vに接続され、FET3のドレイン端子が中点電位V(基準電位)よりも低電位の電圧Vに接続され、FET2,3の各ソース端子にLC直列共振回路RC2の他端側(LPF33側)が接続され、かつFET2のゲート端子に交流信号S1としての正のパルス信号が入力されると共にFET3のゲート端子に交流信号S1としての負のパルス信号が入力されて交流信号S1をD級増幅することにより、プッシュプル回路で構成された増幅回路(FET2,3)によって、交流信号S1を確実にD級増幅することができる。
また、インピーダンス測定装置1Eによれば、高電位の電圧Vおよび低電位の電圧Vがそれぞれ可変可能に構成されているため、FET2,3のドレイン電圧が変化する結果、FET2.3から出力される交流信号S1の電圧(電力でもある)を自在に変更することができる。
また、インピーダンス測定装置1D,1Eによれば、LC共振回路(LC並列共振回路RC1またはLC直列共振回路RC2)に直列に接続されて交流信号S1の通過を許容するLPF33およびBPFのいずれかを備えたことにより、増幅回路(FET1またはFET2,3)に対して正弦波の交流信号S1を確実にリニアに増幅させることができる。
また、インピーダンス測定装置1D,1Eによれば、コンデンサ回路CSは、全体として並列接続される第1コンデンサ(コンデンサC11)から第4コンデンサ(コンデンサ14:Nbが4の例)までの4個のコンデンサと、第1コンデンサ(コンデンサC11)から第4コンデンサにそれぞれ直列接続された第1直列スイッチ(スイッチSW1)から第4直列スイッチ(スイッチSW4)までの4個のスイッチとを備えて構成され、処理部7(演算回路77)は、交流信号S1の周波数に応じて4個の直列スイッチSWbをオンオフ制御して、コンデンサ回路CS全体としての容量を変更することにより、LC共振回路(LC並列共振回路RC1またはLC直列共振回路RC2)の共振周波数をきめ細やかに制御することができる。
また、インピーダンス測定装置1D,1Eによれば、第1コンデンサ(コンデンサC11)から第4コンデンサは、互いの容量が相違するため、同じ容量のコンデンサで構成したコンデンサ回路CSと比較して容量の増減を大きくすることができる。
また、インピーダンス測定装置1D,1Eによれば、第1コンデンサ(コンデンサC11)から第4コンデンサ(コンデンサ14:Nbが4の例)は、それぞれ2Mb(Mbは0から(Nb-1:3)までの4個の整数)に特定の容量(本例では、「0,025μF」)を乗じた容量を有しているため、コンデンサ回路CS全体としての容量を変更することができるため、LC共振回路(LC並列共振回路RC1またはLC直列共振回路RC2)の共振周波数をきめ細やかに制御することができる。
また、インピーダンス測定装置1,1A,1B,1C,1D,1Eでは、処理部7(演算回路77)が、非接触型電流センサ5によって検出された注入電流Ii(交流信号S1)の電流値が目標電流値範囲内に含まれるように、信号注入部3から出力される交流信号S1の信号レベルを制御する。また、インピーダンス測定装置1,1A,1B,1C,1D,1Eでは、処理部7(演算回路77)が、非接触型電流センサ5によって検出された注入電流Ii(交流信号S1)の電流値が目標電流値範囲内に含まれるように、第1並列スイッチSW1から第4並列スイッチSW4のオンオフを制御する。また、インピーダンス測定装置1,1A,1B,1C,1D,1Eでは、処理部7(演算回路77)は、信号注入部3が注入対象ラインLに注入している交流信号S1の電流値(交流電流Iac)と、非接触型電流センサ5によって検出された交流信号S1の電流値(注入電流Ii)とに基づいて注入対象ラインLの負荷インピーダンスを判別すると共に第1並列スイッチSW1から第4並列スイッチSW4のオンオフを制御することにより、判別した負荷インピーダンスが小さいときには一次巻線構成部品CP全体としての巻数を増加させ、判別した負荷インピーダンスが大きいときには一次巻線構成部品CP全体としての巻数を減少させる。したがって、インピーダンス測定装置1,1A,1B,1C,1D,1Eによれば、検出信号S3や両端電圧信号S4の雑音レベル(N)に対する信号レベル(S)の比率(S/N)を高めることができる結果、処理部7(演算回路77)によって行われる内部インピーダンスZb(または内部インピーダンスZc)の演算処理(測定処理)において、精度良く内部インピーダンスZb(または内部インピーダンスZc)を測定することができる。
また、インピーダンス測定装置1,1A,1B,1C,1D,1Eによれば、信号検出部としての非接触型電流センサ5が、信号注入部3とは別体に形成されると共に二次巻線構成部品CP2を備えて構成されているため、信号注入部3の信号注入用巻線W2によって注入された交流信号S1に応じた漏れ磁束がノイズとなって二次巻線構成部品CP2に漏れ出すことを回避できるため、精度良く内部インピーダンスZb(または内部インピーダンスZc)を測定することができる。この場合、信号検出部として、非接触型電流センサ5とは別個独立して、二次巻線としての注入対象ラインLに磁気結合する一次巻線を形成する二次巻線構成部品を磁性コア2(2A)に巻回した構成を採用することもできる。ただし、この構成では、信号注入部3の信号注入用巻線W2によって注入された交流信号S1に応じた漏れ磁束がノイズとなって二次巻線構成部品に漏れ出すため、信号検出部を信号注入部3とは別体に構成するのが好ましい。
また、インピーダンス測定装置1,1A,1B,1C,1D,1Eによれば、非接触型電流センサ5(信号検出部)が、内部インピーダンスZb測定のための交流電流Iacの検出機能(電流検出部の構成)と交流電流Iacの電流値に対する制御機能(信号検出部の構成)とを兼ねることで、インピーダンス測定装置1,1A,1B,1C,1D,1Eの小型化を図ることができると共に製造コストを十分に低減することができる。
また、インピーダンス測定装置1B,1Cによれば、交流信号S1の周波数帯域をグループ分けし、各周波数帯域グループFに応じて一次巻線構成部品CPとして磁性コア2(または磁性コア2A)または空芯コイルACを用いることにより、注入対象ラインLに交流信号S1をトランス方式で注入する際に、交流信号S1の周波数に応じて注入対象ラインLとの結合が最も適した素材の磁性コア2(または磁性コア2A)または空芯コイルACを用いることができるため、注入対象ラインLに交流信号S1を広い周波数帯域に亘って十分に効率良く注入することができる。
また、インピーダンス測定装置1B,1Cによれば、信号注入部3が、交流信号S1の周波数帯域が互いに隣接する2つの周波数帯域グループFの境界部FLM(または境界部FMH)において一方の周波数帯域グループFから他方の周波数帯域グループFに向けて交流信号S1の周波数を変更する際に、その隣接する2つの周波数帯域グループFに対応する2つの一次巻線構成部品CPに交流信号S1を印加することにより、その境界部FLM(または境界部FMH)において、交流信号S1の周波数に応じて注入対象ラインLとの結合が適した2種類の素材の磁性コア2(または磁性コア2A)が用いられるため、注入対象ラインLに交流信号S1を十分に効率良く注入することができる。また、インピーダンス測定装置1B,1Cによれば、交流信号S1の周波数帯域が互いに隣接する2つの周波数帯域グループFの境界部FLM(または境界部FMH)において一方の周波数帯域グループFから他方の周波数帯域グループFに向けて交流信号S1の周波数を変更する際に、交流信号S1を印加する一次巻線構成部品CPが切り替わることに起因する交流信号S1の信号レベルの変動を緩やかにすることができる。
また、インピーダンス測定装置1,1A,1B,1C,1D,1Eによれば、空芯コイルACで一次巻線構成部品CP1Bを構成したことにより、簡易な構成でありながら、高周波帯域の交流信号S1を注入対象ラインLに確実に注入することができる。
また、インピーダンス測定装置1B,1Cによれば、信号注入部3(信号生成回路31)が、同一仕様の一次巻線構成部品CPを複数(上記の例では2つ)備え、同一周波数でかつ同位相の交流信号S1を複数(上記の例では2つ)の一次巻線構成部品CPに同時に印加することにより、1つの一次巻線構成部品CPを用いるのと比較して、十分に大きい電流値の注入電流Iiを注入対象ラインLに注入することができる。
また、インピーダンス測定装置1Cによれば、電圧検出部6を複数備え、複数の電圧検出部6が、注入対象ラインLに直列接続されている複数の測定対象としての各電池セルCelの各両端に生じている交流信号S1の電圧値を検出して両端電圧信号S4を処理部7にそれぞれ出力し、処理部7(演算回路77)が、検出信号S3および複数の両端電圧信号S4に基づいて各電池セルCelの内部インピーダンスZcを測定することにより、複数の測定対象(電池BatおよびCel)の内部インピーダンスZbや内部インピーダンスZcを同時に測定することができる。
また、インピーダンス測定装置1A,1B,1C,1D,1Eによれば、測定対象として電池Batと非測定対象としての負荷Loadが注入対象ラインLで接続されて環状の閉ループを形成する被測定系における負荷Loadの両端に並列接続されるコンデンサを備えたことにより、負荷Loadのインピーダンスが大きいであっても、信号注入部3による注入対象ラインLへの交流信号S1の注入時における交流電流Iacの電流値を大きくすることができる。
また、インピーダンス測定装置1A,1B,1Cによれば、終段としてのD級増幅部を備えて信号注入部3を構成したことにより、信号注入部3が負荷変動に対しても交流信号S1の出力レベルを制御された一定のレベルに維持することができる。
また、インピーダンス測定装置1,1A,1B,1C,1D,1Eによれば、上記の信号注入部3における信号生成回路31に対して、交流信号S1の周波数をスイープさせることにより、電池Batなどに正弦波信号である交流信号S1を供給してその周波数応答を測定可能なFRAとして構成することができるため、高精度なインピーダンス測定を行うことができる。
また、インピーダンス測定装置1,1A,1B,1C,1D,1Eによれば、金属系の磁気コアとして、パーマロイコア、センダストコア、アモルファスコア、圧粉磁芯コア、純鉄、珪素鋼鈑、パーメンジュール、ニッケル、コバルト、Fe-Si-Alおよび電磁ステンレスのいずれかを用いたことにより、直流電流に対して磁気飽和し難い磁性コア2(磁性コア2A)を構成することができ、フェライト系の磁気コアとして、Mn-Zn系フェライトおよびNi-Zn系フェライトのいずれかを用いたことにより、磁性コア2(磁性コア2A)における渦電流の発生を回避することができる。
なお、信号注入装置10は、インピーダンス測定装置への適用に限らず、交流信号S1を注入対象ラインLに注入して測定する各種の計測器に適用が可能である。また、インピーダンス測定装置は、電池Batの内部インピーダンスZbや電池セルCelの内部インピーダンスZcの測定に限らず、各種測定対象のインピーダンスを測定することができる。例えば、水を電気分解して水素を製造する水電解セルを測定対象として、水電解セルと、負荷Loadに代えて水電解セル用の電源とを注入対象ラインLで接続した閉ループにおいて、水電解セルの陽極と陰極とにプローブP1,P2を接続して水電解セルの内部インピーダンスを測定することもできる。この場合、複数の水電解セルを直列に接続した状態における各水電解セルの各内部インピーダンスをインピーダンス測定装置1Cを用いて同時に測定することもできる。
また、インピーダンス測定装置1において、巻線W1および巻線W2を別個の磁性コア2に巻回することもできる。
また、インピーダンス測定装置1Dにおける信号生成回路31Aの構成やインピーダンス測定装置1Eにおける信号生成回路31Bの構成をインピーダンス測定装置1,1A,1B,1Cの信号生成回路31の構成に適用することもできる。
また、注入電流Iiの電流値を検出する電流センサとして非接触型電流センサ5を用いたインピーダンス測定装置1,1A,1B,1Cの例について説明したが、非接触型に限らず、注入対象ラインL中にカレントトランスや電流検出用抵抗などを配設して注入電流Iiの電流値を検出する構成を採用することができる。
さらに、インピーダンス測定装置1,1A,1B,1C,1D,1Eの基準電位(フローティンググランド)を絶縁する必要のない場合には、絶縁回路62の配設を省略して、基準電位(グランド)と、インピーダンス測定装置1,1A,1B,1C,1D,1Eの基準電位(フローティンググランド)とを同じ電位にすることもできる。また、A/D変換回路71,72,73については、信号生成回路31内、非接触型電流センサ5内および電圧検出部6内にそれぞれ設けることができる。また、2f信号生成回路31aおよび1/2分周回路31bを信号生成回路31として構成した例について説明したが、2f信号生成回路31aおよび1/2分周回路31bを信号生成回路31とは別個独立して設ける構成を採用することもできる。
また、インピーダンス測定装置1,1A,1B,1C,1D,1Eにおいて、電池Batの内部インピーダンスZb(または内部インピーダンスZc)などのインピーダンスの演算をデジタル処理で行う例について説明したが、交流信号S1、検出信号S3および両端電圧信号S4に基づいて、アナログ回路によるアナログ演算でインピーダンスを求める構成を採用することもできる。
本願発明によれば、信号注入部を構成する部品として低耐圧仕様の部品を使用できる結果、信号注入部の製造コストの低減、ひいてはインピーダンス測定装置全体としての製造コストを十分に低減することができると共に測定対象のインピーダンスを確実に測定することができる。これにより、本願発明は、このようなインピーダンス測定のインピーダンス測定装置に広く適用することができる。
1,1A~1E インピーダンス測定装置
2,2A 磁性コア
3,3A 信号注入部
31,31A,31B 信号生成回路
33 ローパスフィルタ
34~36 電源回路
4,4A~4D 磁束キャンセル部
41 ホール素子
42 電圧ドライバ
43,48 LPF
44 加算回路
45 電流ドライバ
47 同期検波回路
5 非接触型電流センサ
6,6-1,6-2,6-3 電圧検出部
61 バッファ回路
62 絶縁回路
7,7A 処理部
74 移相回路
75,76,76-1,76-2,76-3 直交検波回路
77 演算回路
10 信号注入装置
AC 空芯コイル
Bat 電池
C11~C14 コンデンサ
Cel1~Cel3 電池セル
CP1,CP1A,CP1B,CP1C,CP1D 一次巻線構成部品
CP2 二次巻線構成部品
CS コンデンサ回路
FL,FM,FH 周波数帯域グループ
FLM,FMH 境界部
G ギャップ
Ii 注入電流
Load 負荷
R1,R4 ダンピング抵抗
RC1 LC並列共振回路
RC2 LC直列共振回路
S1 交流信号
S2 電圧信号
S3 検出信号
S4 両端電圧信号
Sd 出力信号
Sdc 直流信号
Sr 基準信号
SW1~SW4 並列スイッチ
SW11~SW14 直列スイッチ
UC 単位磁気コア
W1 磁束キャンセル用巻線
W2,W3 信号注入用巻線
Wd1~Wd4 巻線
Zb 内部インピーダンス
Zc 内部インピーダンス

Claims (37)

  1. 測定用の交流信号を生成すると共に測定対象が直列に接続されている注入対象ラインに前記交流信号を注入する信号注入部と、
    前記注入対象ラインを流れる前記交流信号の電流値を当該注入対象ラインに対して非接触で検出して電流検出信号を出力する非接触型の電流検出部と、
    前記測定対象の両端に生じている前記交流電圧の電圧値を当該両端に接触して検出して電圧検出信号を出力する電圧検出部と、
    前記電流検出信号および前記電圧検出信号を入力すると共に当該電流検出信号および当該電圧検出信号に基づいて前記測定対象のインピーダンスを測定する処理部とを備えているインピーダンス測定装置であって、
    前記信号注入部は、前記注入対象ラインに対して非接触で前記交流信号を注入可能に構成されているインピーダンス測定装置。
  2. 前記電圧検出部は、前記検出した電圧検出信号を前記測定対象から絶縁した状態で前記処理部に出力する絶縁回路を備えている請求項1記載のインピーダンス測定装置。
  3. 前記処理部は、前記交流信号を入力すると共に前記電流検出信号を直交検波して交流電流の同相成分および直交成分を生成する第1直交検波回路と、前記交流信号を入力すると共に前記電圧検出信号を直交検波して交流電圧の同相成分および直交成分を生成する第2直交検波回路と、
    前記第1直交検波回路から出力される前記交流電流の同相成分および直交成分と、前記第2直交検波回路から出力される前記交流電圧の同相成分および直交成分とに基づいて前記測定対象のインピーダンスを演算する演算回路とを備えている請求項1または2記載のインピーダンス測定装置。
  4. 前記信号注入部は、二次巻線としての前記注入対象ラインに磁気結合する一次巻線を構成する一次巻線構成部品を備えると共に当該一次巻線構成部品に前記交流信号を印加することにより当該注入対象ラインに当該交流信号を注入する請求項1から3のいずれかに記載のインピーダンス測定装置。
  5. 前記一次巻線構成部品は、前記注入対象ラインが挿通される環状の第1の磁気コアに巻回された絶縁被覆電線を備えて構成されている請求項4記載のインピーダンス測定装置。
  6. 前記第1の磁気コアは、ギャップが設けられている請求項5記載のインピーダンス測定装置。
  7. 前記第1の磁気コアは、複数のC型の単位磁気コアで構成され、
    複数の前記単位磁気コアは、重ねた状態の上面視において、前記第1の磁気コアの外周に沿って互いに隣り合う2つの前記ギャップの離間距離が均等となるように重ねられている請求項6記載のインピーダンス測定装置。
  8. 前記一次巻線構成部品は、前記第1の磁気コアに巻回された前記絶縁被覆電線で構成されると共に全体として直列接続される第1巻線から第Na巻線(Naは2以上の整数)までのNa個の巻線と、前記第1巻線から前記第Na巻線にそれぞれ並列接続された第1並列スイッチから第Na並列スイッチまでのNa個のスイッチとを備えて構成され、
    前記処理部は、前記Na個の並列スイッチをオンオフ制御して、前記一次巻線構成部品全体としての巻数を変更する請求項5から7のいずれかに記載のインピーダンス測定装置。
  9. 前記第1巻線から前記第Na巻線は、互いの巻数が相違するようにそれぞれ巻回されている請求項8記載のインピーダンス測定装置。
  10. 前記第1巻線から前記第Na巻線は、それぞれ2Ma(Maは0から(Na-1)までのNa個の整数)に1以上の整数であるLaを乗じた数で巻回されている請求項9記載のインピーダンス測定装置。
  11. 前記第1巻線から前記第Na巻線は、巻数が多い前記巻線の前記絶縁被覆電線における芯線の線径が巻数が少ない前記巻線の前記絶縁被覆電線における芯線の線径よりも細く形成されている請求項9または10記載のインピーダンス測定装置。
  12. 前記信号注入部は、前記交流信号の周波数または当該周波数の近傍の周波数において共振点を有するLC共振回路を前記一次巻線と共に構成するコンデンサ回路を備えている請求項4から11のいずれかに記載のインピーダンス測定装置。
  13. 前記信号注入部は、前記LC共振回路のQ値を低下させるダンピング抵抗を備えている請求項12記載のインピーダンス測定装置。
  14. 前記信号注入部は、前記交流信号を増幅する増幅回路を備え、
    前記LC共振回路は、前記増幅回路の負荷回路として配置されている請求項12または13記載のインピーダンス測定装置。
  15. 前記LC共振回路は、当該LC共振回路の一端が高電位に接続されると共にLC並列共振回路で構成され、
    前記増幅回路は、NチャンネルMOSFETで構成され、ドレイン端子に前記LC共振回路の他端側が接続され、ソース端子が低電位に接続され、かつゲート端子に前記交流信号としてのパルス信号が入力されて当該交流信号をD級増幅する請求項14記載のインピーダンス測定装置。
  16. 前記高電位の電圧が可変可能に構成されている請求項15記載のインピーダンス測定装置。
  17. 前記LC共振回路は、当該LC共振回路の一端が基準電位に接続されると共にLC直列共振回路で構成され、
    前記増幅回路は、NチャンネルMOSFETおよびPチャンネルMOSFETによってプッシュプル回路に構成され、前記NチャンネルMOSFETのドレイン端子が前記基準電位よりも高電位に接続され、前記PチャンネルMOSFETのドレイン端子が前記基準電位よりも低電位に接続され、前記NチャンネルMOSFETおよび前記PチャンネルMOSFETの各ソース端子に前記LC直列共振回路の他端側が接続され、かつ前記NチャンネルMOSFETのゲート端子に前記交流信号としての正のパルス信号が入力されると共に前記PチャンネルMOSFETのゲート端子に前記交流信号としての負のパルス信号が入力されて当該交流信号をD級増幅する請求項14記載のインピーダンス測定装置。
  18. 前記高電位の電圧および前記低電位の電圧がそれぞれ可変可能に構成されている請求項17記載のインピーダンス測定装置。
  19. 前記LC共振回路に直列に接続されて前記交流信号の通過を許容するLPFおよびBPFのいずれかを備えている請求項12から18のいずれかに記載のインピーダンス測定装置。
  20. 前記コンデンサ回路は、全体として並列接続される第1コンデンサから第Nbコンデンサ(Nbは2以上の整数)までのNb個のコンデンサと、前記第1コンデンサから前記第Nbコンデンサにそれぞれ直列接続された第1直列スイッチから第Nb直列スイッチまでのNb個のスイッチとを備えて構成され、
    前記処理部は、前記交流信号の周波数に応じて前記Nb個の直列スイッチをオンオフ制御して、前記コンデンサ回路全体としての容量を変更する請求項12から19のいずれかに記載のインピーダンス測定装置。
  21. 前記第1コンデンサから前記第Nbコンデンサは、互いの容量が相違する請求項20記載のインピーダンス測定装置。
  22. 前記第1コンデンサから前記第Nbコンデンサは、それぞれ2Mb(Mbは0から(Nb-1)までのNb個の整数)に特定の容量を乗じた容量を有している請求項21記載のインピーダンス測定装置。
  23. 前記注入対象ラインを流れる前記交流信号の電流値を検出する信号検出部を備え、
    前記処理部は、前記信号検出部によって検出された前記交流信号の電流値が目標電流値範囲内に含まれるように、前記信号注入部から出力される前記交流信号の信号レベルを制御する請求項1から22のいずれかに記載のインピーダンス測定装置。
  24. 前記注入対象ラインを流れる前記交流信号の電流値を検出する信号検出部を備え、
    前記処理部は、前記信号検出部によって検出された前記交流信号の電流値が前記目標電流値範囲内に含まれるように、前記第1並列スイッチから前記第Na並列スイッチのオンオフを制御する請求項8から11のいずれかに記載のインピーダンス測定装置。
  25. 前記注入対象ラインを流れる前記交流信号の電流値を検出する信号検出部を備え、
    前記処理部は、前記信号注入部が前記注入対象ラインに注入している前記交流信号の電流値と、前記信号検出部によって検出された前記交流信号の電流値とに基づいて前記注入対象ラインの負荷インピーダンスを判別すると共に前記第1並列スイッチから前記第Na並列スイッチのオンオフを制御することにより、前記判別した負荷インピーダンスが小さいときには前記一次巻線構成部品全体としての巻数を増加させ、当該判別した負荷インピーダンスが大きいときには当該一次巻線構成部品全体としての巻数を減少させる請求項8から11のいずれかに記載のインピーダンス測定装置。
  26. 前記信号検出部は、前記信号注入部とは別体に形成されると共に一次巻線としての前記注入対象ラインに磁気結合する二次巻線を形成する二次巻線構成部品を備えて構成されている請求項23から25のいずれかに記載のインピーダンス測定装置。
  27. 前記信号検出部は、前記電流検出部として機能する請求項23から26のいずれかに記載のインピーダンス測定装置。
  28. 前記信号注入部は、生成する前記交流信号の周波数帯域を複数にグループ分けした周波数帯域グループにそれぞれ対応させた複数の前記一次巻線構成部品を備えると共に、1つの前記周波数帯域グループに属する周波数の前記交流信号を注入するときには、当該1つの周波数帯域グループに対応する前記一次巻線構成部品の両端に当該交流信号を印加し、
    前記周波数帯域は2つの前記周波数帯域グループにグループ分けされると共に当該2つの周波数帯域グループのうちの低域周波数帯域側の周波数帯域グループに対応させられた前記一次巻線構成部品における前記第1の磁気コアは金属系の磁気コアで構成され、かつ当該2つの前記周波数帯域グループのうちの高域周波数帯域側の周波数帯域グループに対応させられた前記一次巻線構成部品における前記第1の磁気コアはフェライト系の磁気コアで構成されている請求項5から27のいずれかに記載のインピーダンス測定装置。
  29. 前記信号注入部は、生成する前記交流信号の周波数帯域を複数にグループ分けした周波数帯域グループにそれぞれ対応させた複数の前記一次巻線構成部品を備えると共に、1つの前記周波数帯域グループに属する周波数の前記交流信号を注入するときには、当該1つの周波数帯域グループに対応する前記一次巻線構成部品の両端に当該交流信号を印加し、
    前記周波数帯域は3つの前記周波数帯域グループにグループ分けされると共に当該3つの周波数帯域グループのうちの低域周波数帯域側の周波数帯域グループに対応させられた前記一次巻線構成部品における前記第1の磁気コアは金属系の磁気コアで構成され、当該3つの周波数帯域グループのうちの中域周波数帯域側の周波数帯域グループに対応させられた前記一次巻線構成部品における前記第1の磁気コアはフェライト系の磁気コアで構成され、かつ当該3つの周波数帯域グループのうちの高域周波数帯域側の周波数帯域グループに対応させられた前記一次巻線構成部品は空芯コイルで構成されている請求項5から27のいずれかに記載のインピーダンス測定装置。
  30. 前記信号注入部は、前記交流信号の周波数を変更可能に構成されると共に、当該交流信号の周波数帯域が互いに隣接する2つの前記周波数帯域グループの境界部において一方の当該周波数帯域グループから他方の当該周波数帯域グループに向けて当該交流信号の周波数を変更する際に、当該隣接する2つの周波数帯域グループに対応する2つの前記一次巻線構成部品に前記交流信号を印加する請求項28または29記載のインピーダンス測定装置。
  31. 前記一次巻線構成部品は、空芯コイルで構成されている請求項4記載のインピーダンス測定装置。
  32. 前記信号注入部は、同一仕様の前記一次巻線構成部品を複数備え、同一周波数でかつ同位相の前記交流信号を前記同一仕様の複数の一次巻線構成部品に同時に印加する請求項4から31のいずれかに記載のインピーダンス測定装置。
  33. 前記電圧検出部を複数備え、
    前記複数の電圧検出部は、前記注入対象ラインに直列接続されている複数の前記測定対象の各両端に生じている前記交流電圧の電圧値を当該各両端に接触して検出して前記電圧検出信号を前記処理部にそれぞれ出力し、
    前記処理部は、前記電流検出信号および前記複数の電圧検出部からそれぞれ出力された複数の前記電圧検出信号に基づいて前記複数の測定対象の各インピーダンスを測定する請求項1から32のいずれかに記載のインピーダンス測定装置。
  34. 前記測定対象と非測定対象とが前記注入対象ラインで接続されて環状の閉ループを形成する被測定系における当該非測定対象の両端に並列接続されるコンデンサを備えている請求項1から33のいずれかに記載のインピーダンス測定装置。
  35. 前記信号注入部は、終段としてのD級増幅部を備え、当該D級増幅部によって増幅した前記交流信号を前記注入対象ラインに注入する請求項1から11および23から34のいずれかに記載のインピーダンス測定装置。
  36. 前記信号注入部は、前記交流信号の周波数をスイープする請求項1から35のいずれかに記載のインピーダンス測定装置。
  37. 前記金属系の磁気コアは、パーマロイコア、センダストコア、アモルファスコア、圧粉磁芯コア、純鉄、珪素鋼鈑、パーメンジュール、ニッケル、コバルト、Fe-Si-Alおよび電磁ステンレスのいずれかであり、前記フェライト系の磁気コアは、Mn-Zn系フェライトおよびNi-Zn系フェライトのいずれかである請求項28または29記載のインピーダンス測定装置。
JP2021177590A 2021-05-24 2021-10-29 インピーダンス測定装置 Pending JP2022180277A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280037292.9A CN117355756A (zh) 2021-05-24 2022-03-25 阻抗测定装置
PCT/JP2022/014242 WO2022249709A1 (ja) 2021-05-24 2022-03-25 インピーダンス測定装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2021086778 2021-05-24
JP2021086778 2021-05-24
JP2021101505 2021-06-18
JP2021101505 2021-06-18

Publications (1)

Publication Number Publication Date
JP2022180277A true JP2022180277A (ja) 2022-12-06

Family

ID=84327403

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021177590A Pending JP2022180277A (ja) 2021-05-24 2021-10-29 インピーダンス測定装置

Country Status (1)

Country Link
JP (1) JP2022180277A (ja)

Similar Documents

Publication Publication Date Title
US8421444B2 (en) Compact, two stage, zero flux electronically compensated current or voltage transducer employing dual magnetic cores having substantially dissimilar magnetic characteristics
Patel et al. Current sensing for automotive electronics—A survey
US8907664B2 (en) Non-intrusive monitoring of power and other parameters
JP2957206B2 (ja) 電流センサ
Metwally Performance improvement of slow-wave Rogowski coils for high impulse current measurement
Ouyang et al. Current sensors based on GMR effect for smart grid applications
Niklaus et al. High-bandwidth high-cmrr current measurement for a 4.8 mhz multi-level gan inverter ac power source
WO2022249709A1 (ja) インピーダンス測定装置
Ripka Contactless measurement of electric current using magnetic sensors
Niklaus et al. Beyond 50 MHz bandwidth extension of commercial DC-current measurement sensors with ultra-compact PCB-integrated pickup coils
Costa et al. Wide bandwidth, large AC current probe for power electronics and EMI measurements
US8102629B2 (en) Leakage current compensation for high voltage transformers
WO2022249708A1 (ja) 信号注入装置およびインピーダンス測定装置
Schrittwieser et al. Novel principle for flux sensing in the application of a DC+ AC current sensor
Baguley et al. A new technique for measuring ferrite core loss under DC bias conditions
JP2022180277A (ja) インピーダンス測定装置
US4897561A (en) Apparatus for and method of discriminating signals
CN116930589A (zh) 交直流多气隙磁阻电流传感器及电流测量方法
CN101872006B (zh) 带升压器的电子式周期性非正弦波基准电压互感器
Ghislanzoni et al. A DC current transformer for large bandwidth and high common-mode rejection
KR100724101B1 (ko) 공심코어를 사용한 교류전류 센서
KR20210091268A (ko) 저 노이즈 및 고 대역폭을 갖는 자기 센서
CN117355756A (zh) 阻抗测定装置
JP2022180295A (ja) 信号注入装置およびインピーダンス測定装置
Tsukamoto et al. Origins of errors in AC transport current loss measurements of HTS tapes and methods to suppress errors