WO2022249552A1 - Information processing device and information processing method - Google Patents

Information processing device and information processing method Download PDF

Info

Publication number
WO2022249552A1
WO2022249552A1 PCT/JP2022/004216 JP2022004216W WO2022249552A1 WO 2022249552 A1 WO2022249552 A1 WO 2022249552A1 JP 2022004216 W JP2022004216 W JP 2022004216W WO 2022249552 A1 WO2022249552 A1 WO 2022249552A1
Authority
WO
WIPO (PCT)
Prior art keywords
spectrum
reliability
angle
information processing
unit
Prior art date
Application number
PCT/JP2022/004216
Other languages
French (fr)
Japanese (ja)
Inventor
亮佑 山田
Original Assignee
ソニーセミコンダクタソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーセミコンダクタソリューションズ株式会社 filed Critical ソニーセミコンダクタソリューションズ株式会社
Publication of WO2022249552A1 publication Critical patent/WO2022249552A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S3/00Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
    • G01S3/02Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using radio waves
    • G01S3/14Systems for determining direction or deviation from predetermined direction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00

Definitions

  • the present technology relates to an information processing device and an information processing method, and more particularly to an information processing device and an information processing method that enable object recognition with high resolution and high robustness.
  • Patent Documents 1 and 2 disclose radar devices that detect a target with high resolution using a high resolution algorithm.
  • This technology was created in view of this situation, and enables object recognition with high resolution and high robustness.
  • An information processing apparatus includes a first spectrum processing unit that performs Fourier transform processing on a signal received from an antenna to calculate a first angle spectrum, and a high-resolution algorithm for the received signal. and an output unit configured to output the first angle spectrum and the second angle spectrum.
  • the first spectrum processing unit of an information processing device having a first spectrum processing unit, a second spectrum processing unit, and an output unit performs the following on a signal received from an antenna: , performing Fourier transform processing to calculate a first angle spectrum, the second spectrum processing unit performing a high-resolution algorithm on the received signal to calculate a second angle spectrum,
  • an output unit outputs the first angle spectrum and the second angle spectrum, respectively.
  • Fourier transform processing is performed on a signal received from an antenna to calculate a first angle spectrum, and a high resolution algorithm is performed on the received signal. Then, a second angular spectrum is calculated, and the first angular spectrum and the second angular spectrum are respectively output.
  • FIG. 1 is a diagram illustrating a configuration of a first embodiment of a radar device to which the present technology is applied;
  • FIG. It is a figure showing the flow of the processing which the radar processing part of the radar installation of a 1st embodiment performs. It is the figure which illustrated the flow of the process of the 1st form of a reliability setting part. It is the figure which illustrated the flow of the process of the 2nd form of a reliability setting part.
  • FIG. 3 is a diagram illustrating a configuration of a second embodiment of a radar device to which the present technology is applied; It is a figure showing the flow of the process which the radar processing part of the radar apparatus of 2nd Embodiment implements.
  • FIG. 1 is a diagram illustrating the configuration of a first embodiment of a radar device to which the present technology is applied.
  • the radar device 1 in FIG. 1 is a device that detects the distance, direction, etc. of an object (target) existing in space by emitting radio waves and capturing the reflected waves.
  • the radar device 1 is, for example, an FMCW (Frequency Modulated Continuous Wave) radar device that uses millimeter waves (30 GHz to 300 GHz in frequency) as radio waves.
  • FMCW Frequency Modulated Continuous Wave
  • the present technology can also be applied to radar devices other than the FMCW system.
  • the radar device 1 has a transmitting antenna 11 , a receiving antenna 12 , an RF (Radio Frequency) front end section 13 , a radar processing section 14 , and a detection processing/tracking recognition section 15 .
  • RF Radio Frequency
  • the transmission antenna 11 radiates the transmission signal supplied from the RF front end section 13 into the air as radio waves (transmission waves).
  • the receiving antenna 12 receives radio waves (also referred to as received waves, reflected waves, or incoming waves) that arrive after being radiated from the transmitting antenna 11 and reflected by an object (target).
  • a received wave received by the receiving antenna 12 is supplied to the RF front end section 13 as a received signal.
  • the receiving antenna 12 is composed of, for example, a plurality of receiving antennas (array antennas) arranged linearly, and the plurality of receiving antennas are shown as one receiving antenna 12 in FIG. When specifying a plurality of receive antennas, they are represented as receive antennas 12-1 to 12-N (N is the number of receive antennas).
  • the receiving antennas 12 are not limited to linear array antennas, and may be planar (two-dimensional) array antennas.
  • the RF front end unit 13 generates a transmission signal and supplies it to the transmission antenna 11 and supplies an IF (Intermediate Frequency) signal corresponding to the signal received from the reception antenna 12 to the radar processing unit 14 .
  • IF Intermediate Frequency
  • the radar processing unit 14 calculates distance spectrum, angle spectrum, speed spectrum, etc. based on the IF signal from the RF front end unit 13 .
  • the distance spectrum is the distance ( object distance).
  • the angle spectrum is information specifying the direction of the position where the object exists (the direction of the object) in the scanning range of the radar device 1 .
  • the direction of the object for example, when the position of the radar device 1 (receiving antenna 12) is set as a reference position and a predetermined direction viewed from the reference position is set as a reference direction (for example, the center direction of the scanning range of the radar device 1), It is expressed by the angle of the direction from the reference position to the position where the object exists with respect to the reference direction.
  • the direction of an object is also called the angle of the object.
  • directions or angles refer to directions or angles with respect to a predetermined reference direction viewed from a predetermined reference position.
  • a velocity spectrum is information specifying the speed of movement of a moving object.
  • Information such as the distance spectrum and angle spectrum obtained by the radar processing unit 14 is supplied to the detection processing/tracking recognition unit 15 .
  • the detection processing/tracking recognition unit 15 detects an object of interest (target: target) based on the information from the radar processing unit 14, and detects while specifying the distance and direction of the target with respect to the radar device 1. track the target.
  • target may be a moving object, a predetermined type of object, or the like.
  • Target information such as the distance and direction of the tracked target and tracking information (moving trajectory, etc.) are supplied to a processing unit (not shown) that performs processing such as imaging.
  • the detection processing/tracking recognition unit 15 may be an arbitrary processing unit according to the application of the radar device 1, and detailed description thereof will be omitted. However, processing related to the present technology will be described later.
  • the RF front end section 13 has a chirp signal generation section 31 , amplification sections 32 and 33 , a mixing section 34 , an LPF (low pass filter) section 35 and an A/D conversion section 36 .
  • the chirp signal generation unit 31 generates a chirp signal by frequency-modulating the sine wave signal, and supplies the chirp signal to the amplification unit 32 and the mixing unit 34 .
  • a chirp signal is, for example, a signal whose frequency is continuously (linearly) changed (swept) from a predetermined minimum frequency to a predetermined maximum frequency at predetermined intervals.
  • the amplifier 32 amplifies the chirp signal from the chirp signal generator 31 and supplies it to the transmission antenna 11 .
  • the amplification section 33 amplifies the received signal from the receiving antenna 12 and supplies it to the mixing section 34 .
  • the mixing unit 34 generates an IF signal by mixing the chirp signal from the chirp signal generation unit 31 and the received signal from the amplification unit 33 .
  • the IF signal is a beat signal having a difference frequency (beat frequency) that is the difference between the frequency of the received signal and the frequency of the chirp signal.
  • the IF signal generated by the mixing section 34 is supplied to the LPF section 35 .
  • the LPF section 35 removes high-frequency components such as noise from the IF signal from the mixing section 34 and supplies it to the A/D conversion section 36 .
  • the A/D conversion section 36 samples the value of the IF signal from the LPF section 35 at a predetermined sampling period, and converts the sampled value from an analog value to a digital value. This converts the IF signal from an analog signal to a digital signal.
  • the IF signal converted into a digital signal is supplied to the radar processing section 14 .
  • the RF front end unit 13 has an amplifier unit 33, a mixing unit 34, an LPF unit 35, and an A/D conversion unit 36 corresponding to each of the receiving antennas 12-1 to 12-N for N channels.
  • any one or more of these processing units 33 to 36 perform processing for a plurality of channels by time division processing, so that the RF front end unit 13 can process the processing units 33 to 36 for N channels. You may not have it.
  • the radar processing unit 14 is a processing unit configured by a DSP (Digital Signal Processor), and by executing a program, an FFT (Fast Fourier Transform) unit 51, an FFT unit 52, a high resolution algorithm processing unit 53, and a reliability A setting unit 54 is constructed.
  • DSP Digital Signal Processor
  • the FFT unit 51 performs distance FFT and speed FFT processing on the IF signal from the A/D conversion unit 36 of the RF front end unit 13 .
  • Distance FFT converts the IF signal from the A/D converter 36 from time domain expression (expression with a function with time t as a variable) to frequency domain expression (expression with a function with frequency as a variable). FFT (Fast Fourier Transform) for frequency conversion. Distance FFT is performed on the IF signals of each channel corresponding to each of the receiving antennas 12-1 through 12-N. As a result, a spectrum (spectrum signal) showing high intensity at a frequency corresponding to the distance of the object (target) present in the entire scanning range of the radar device 1 is obtained.
  • FFT Fast Fourier Transform
  • the spectrum for the frequency (frequency spectrum) obtained by the distance FFT is the distance of the object corresponding to the frequency (the distance from the radar device 1 where the object can exist). , hereinafter simply referred to as distance).
  • distance spectrum means the spectrum for distance.
  • the velocity FFT is an FFT that performs frequency conversion from the time domain representation to the frequency domain representation for the component signal in which the data for the same distance are arranged in chronological order in the distance spectrum data obtained by the distance FFT. For example, M cycles ( The IF signal for chirp frame) is regarded as one set of IF signal. Since the distance FFT is performed for each IF signal of one chirp frame, if the distance FFT is performed for one set of IF signal, the data of the distance spectrum for M chirp frames is one set of distance spectrum. obtained as data for In the velocity FFT, frequency conversion is performed by FFT on the component signal (temporal component signal of the distance spectrum) in which M pieces of data for the same distance are arranged in chronological order in one set of distance spectrum data.
  • the velocity FFT is repeatedly performed each time one set of IF signals is supplied from the A/D conversion section 36 to the FFT section 51 .
  • the velocity FFT may be performed only on the temporal component signal of the range spectrum for distances where the range spectrum determines that an object exists, or it may be performed on the temporal component signal of the range spectrum for distances over the entire range of the range spectrum. It may be performed on the component signals.
  • the spectrum for the frequency obtained by the velocity FFT is the moving speed of the object corresponding to the frequency (velocity at which an object can move, hereinafter simply referred to as velocity).
  • velocity spectrum means a spectrum with respect to velocity.
  • the moving speed of the object is not limited to the case where it is detected by the speed FFT, and may be the case where the speed FFT is not performed.
  • the FFT unit 51 converts information about the distance and moving speed of an object existing in the scanning range, such as the distance spectrum obtained by the distance FFT and the speed spectrum obtained by the speed FFT, into the FFT unit 52 as needed, and the high resolution It is supplied to the algorithm processing unit 53 , the reliability setting unit 54 , and the detection processing/tracking recognition unit 15 .
  • the FFT unit 52 acquires distance spectrum and speed spectrum data calculated by the distance FFT and speed FFT (distance/speed FFT) of the FFT unit 51, and performs angle FFT processing (angular direction estimation process).
  • the distance spectrum and velocity spectrum data obtained by the distance/velocity FFT are referred to as distance/velocity spectrum data.
  • the FFT unit 52 (and the high-resolution algorithm processing unit 53) may not consider velocity, and in that case the distance/velocity spectrum corresponds to the distance spectrum.
  • the angle FFT is an FFT using the distance/velocity spectrum data of each channel obtained by the distance/velocity FFT for the IF signal of each channel corresponding to the plurality of receiving antennas 12-1 to 12-N. Specifically, in the angle FFT, in the distance/velocity spectrum data of each channel, N pieces (N channels) of data for the same distance and the same speed are obtained from the corresponding receiving antennas 12-1 to 12- The component signals (spatial component signals of the range spectrum) spatially arranged as values at the positions of N are subjected to frequency conversion from the spatial domain representation to the frequency domain representation by FFT.
  • the angle FFT may be performed only on the spatial component signal of the range-velocity spectrum for the distances and velocities at which the range-velocity spectrum determines that an object is present, or it may be performed over the entire range of the range-velocity spectrum. may be performed on the spatial component signals of the distance-velocity spectrum for the distances and velocities of .
  • the spectrum for the frequency in the frequency domain when the frequency is converted by the angle FFT (frequency spectrum) It can be regarded as a spectrum with respect to the angle of the corresponding object (the angle (direction) with respect to the radar device 1 (receiving antenna 12) at the position where the object may exist, hereinafter simply referred to as the angle).
  • angle spectrum means a spectrum with respect to an angle.
  • the FFT unit 52 supplies information about the angles of objects existing in the scanning range, such as the angle spectrum obtained by the angle FFT, to the reliability setting unit 54 and the detection processing/tracking recognition unit 15 as necessary.
  • the high-resolution algorithm processing unit 53 (second spectrum processing unit) performs high-resolution processing based on the IF signal data of each channel from the A/D conversion unit 36 or the distance/velocity spectrum data from the FFT unit 51. Using an algorithm, angle estimation processing (direction-of-arrival estimation) with higher resolution than the FFT unit 52 is performed.
  • the angular spectrum obtained by the FFT unit 52 is the result of estimating the direction of arrival of the incoming wave (received wave) received by the receiving antenna 12 using a beamformer method based on Fourier transform as a method of estimating the direction of arrival.
  • the beamformer method has a lower resolution than the direction-of-arrival estimation method using a high-resolution algorithm, but the amount of computation is small, so the load and time required for computation processing are small. Therefore, the calculation of the angle spectrum by the FFT unit 52 is performed in a short time.
  • the high-resolution algorithm used in the high-resolution algorithm processing unit 53 has a larger amount of calculation than the beamformer method, so the load and time required for calculation processing are large, but the resolution is high.
  • a high-resolution algorithm refers to any direction-of-arrival estimation method that has higher resolution than the beamformer method.
  • High-resolution algorithms include Capon method, CS method (compressed sensing), linear prediction method (LP: Linear Prediction), Pisarenko method, MUSIC method (MUltiple SIgnal Classication), ESPRIT method (Estimation of Signal Parameters via Rotational Invariance Techniques), Deterministic Maximum Likelihood, Weighted Subspace Fitting, Root-MUSIC, etc. are well known.
  • the high-resolution algorithm processing unit 53 may use any direction-of-arrival estimation method among these well-known high-resolution algorithms having higher resolution than the beamformer method.
  • the high-resolution algorithm processing unit 53 calculates the MUSIC spectrum (evaluation function) using the IF signal data of each channel and the steering matrix.
  • the MUSIC spectrum (also referred to as MUSIC spectrum) corresponds to the angle spectrum generated by the angle FFT of the FFT unit 52, and exhibits high intensity for angles at which objects exist.
  • the MUSIC spectrum has higher resolution than the angle spectrum obtained by angle FFT.
  • the component values in the column direction of the steering matrix are the amplitudes caused by the phase differences between the reception signals received by the reception antennas 12-1 to 12-N according to the arrival angles of the radio waves (received waves). represents vibration.
  • component values are arranged when the arrival angle of the received radio wave is changed by a predetermined angle.
  • the high-resolution algorithm processing unit 53 outputs the results of the angle estimation processing using the high-resolution algorithm (angle spectra for each distance and speed at predetermined intervals) to the reliability setting unit 54 or detection processing/tracking recognition as necessary. 15.
  • the reliability setting unit 54 Based on the angle spectrum obtained by the FFT unit 52, the reliability setting unit 54 sets the reliability of the result of the angle estimation processing using the angle FFT of the FFT unit 52 and the high resolution algorithm of the high resolution algorithm processing unit 53. The reliability of the result of the angle estimation process used is calculated. The processing of the reliability setting unit 54 will be described later.
  • the reliability setting unit 54 supplies the reliability of the result of the angle estimation processing using the angle FFT and the reliability of the result of the angle estimation processing using the high resolution algorithm to the detection processing/tracking recognition unit 15 .
  • FIG. 2 is a diagram showing the flow of processing performed by the radar processing unit 14 of the radar device 1. As shown in FIG.
  • step S11 the FFT unit 51 of the radar processing unit 14, via the receiving antennas 12 (12-1 to 12-N) and the RF front end unit 13, corresponds to each of the receiving antennas 12-1 to 12-N.
  • the digital value of the received signal (IF signal) of the channel is acquired at a predetermined sampling period.
  • step S12 the FFT unit 51 performs distance FFT and velocity FFT using the IF signal data acquired in step S11. Thereby, the distance spectrum and velocity spectrum (distance/velocity spectrum) in each channel are calculated.
  • step S13 the FFT unit 52 uses the distance/velocity spectrum data of each channel calculated in step S12 to calculate the angle spectrum by angle FFT, and performs angle estimation processing.
  • the angle spectrum is calculated for each distance and speed at predetermined intervals within the distance range and (velocity range) of the distance/velocity spectrum.
  • a result D1 in FIG. 2 is a diagram exemplifying the result of angle estimation processing performed by the FFT unit 52 using the angle FFT.
  • the intensity of the angle spectrum calculated using the angle FFT for each distance from the radar device 1 at predetermined intervals within the scanning range of the radar device 1 is compared with the corresponding distance and angle position. It is shown in image density. According to this, a region with a higher image density (a region with a higher angular spectrum intensity) is represented as a region with a higher possibility that an object exists.
  • step S14 the high-resolution algorithm processing unit 53 performs high-resolution angle estimation processing using the high-resolution algorithm.
  • Result D2 in FIG. 2 is a diagram exemplifying the result of angle estimation processing performed by the high-resolution algorithm processing unit 53 using the high-resolution algorithm.
  • the result D2 within the scanning range of the radar device 1, for each distance from the radar device 1 at predetermined intervals, the position corresponding to the angle (the angle at which the object exists) estimated using the high-resolution algorithm. A cross is indicated.
  • step S15 the detection processing/tracking recognition unit 15 combines the result D1 obtained by the angle estimation processing using the angle FFT in step S13 and the result D2 obtained by the angle estimation processing using the high-resolution algorithm in step S14.
  • Recognition of an object including recognition of existence, size, distance, direction, etc. of the object) existing in the scanning range of the radar device 1 is performed based on the reliability (described later) for each of the results D1 and D2.
  • FIG. 3 is a diagram exemplifying the flow of the first mode of processing by the reliability setting unit 54. As shown in FIG. In FIG. 3, steps S31 to S33 are performed by the FFT unit 52 in step S13 of FIG. 2, where the FFT unit 52 performs angle estimation processing using the angle FFT. 15 is performed before performing object recognition.
  • step S31 the reliability setting unit 54 detects the noise level (noise floor) of an area where there are no objects and only noise, based on the result D1 in step S31. In result D1, for example, no object exists in region R1.
  • the reliability setting unit 54 determines the intensity (power ) is detected (calculated) as the noise floor.
  • the value corresponding to the magnitude of the amplitude value (complex number) at each angle of the angle spectrum is referred to as the intensity (or power) of the angle spectrum.
  • the absolute value of the amplitude value at each angle of the angle spectrum, the square of the absolute value of the amplitude value (power spectrum), and the value obtained by dividing the square of the absolute value of the amplitude value by the angular resolution (angular interval) of the angle spectrum ( power spectral density) can be used as the intensity (or power) of the angular spectrum.
  • step S32 the reliability setting unit 54 increases the reliability of the result D1 of the angle estimation processing performed by the FFT unit 52 using the angle FFT in step S13 of FIG. 2 as the noise floor detected in step S31 increases. set to a value.
  • the reliability setting unit 54 sets the reliability of the result D1 to a lower value as the noise floor detected in step S31 is smaller.
  • step S33 the reliability setting unit 54 determines that the higher the noise floor detected in step S31, the higher is the angle estimation processing result D2 performed by the high-resolution algorithm processing unit 53 using the high-resolution algorithm in step S14 of FIG. Set confidence to a low value.
  • the reliability setting unit 54 sets the reliability of the result D2 to a higher value as the noise floor detected in step S31 is smaller.
  • step S15 the detection processing/tracking recognition unit 15 generates the result D1 of the angle estimation processing using the angle FFT in step S13, the result D2 of the angle estimation processing using the high-resolution algorithm in step S14, steps S32 and Based on the reliability of each of the results D1 and D2 set in step S33, the distance, direction (angle), etc. of an object existing within the scanning range of the radar device 1 are recognized.
  • the detection processing/tracking recognition unit 15 uses the result D1 and the result D2, whichever has the higher reliability value, to recognize an object existing in the scanning range (existence, size, distance, direction, etc.). recognition).
  • the detection processing/tracking recognition unit 15 weights the result D1 and the result D2 with respective reliability, and combines the results of both the result D1 and the result D2 to recognize the object existing in the scanning range. It may be the case.
  • the reliability of the result D1 is set to a value higher than the reliability of the result D2.
  • the noise is large and the result D2 of angle estimation processing using a low-robustness high-resolution algorithm is used for object recognition or the like, object recognition may be erroneous or impossible. Therefore, when the noise floor is larger than a predetermined level, the result D1 of angle estimation processing using a highly robust angle FFT (beamformer method) is used for object recognition, etc., thereby increasing the recognition accuracy. decrease in
  • the reliability of result D2 can be set to a higher value than the reliability of result D1.
  • object recognition can be performed appropriately using the result D2 of angle estimation processing using a low-robustness high-resolution algorithm. be done.
  • FIG. 4 is a diagram exemplifying the flow of the second mode of processing by the reliability setting unit 54. As shown in FIG. In FIG. 4, steps S51 to S53 are performed by the FFT unit 52 in step S13 of FIG. 2, where the FFT unit 52 performs angle estimation processing using the angle FFT, and after obtaining the result D1, in step S15, the detection processing/tracking recognition unit 15 is performed before performing object recognition.
  • step S51 the reliability setting unit 54 detects the noise floor and the level of the peak region where the object is most likely to exist, based on the result D1 in step S31.
  • result D1 shown in FIG. 4 there is no object in region R1, for example.
  • the reliability setting unit 54 determines the intensity (power ) is detected (calculated) as the noise floor.
  • the region R2 has the peak of the image density corresponding to the intensity of the angular spectrum, and is most likely to contain an object.
  • the reliability setting unit 54 detects the maximum value of the intensity of the angle spectrum of the distance range and the angle range of the area R2 as the level of the peak area based on the angle spectrum corresponding to the distance range and the angle range of the area R2.
  • the reliability setting unit 54 calculates the level of the peak area with respect to the noise floor as a power ratio (intensity ratio) based on the detected noise floor and the level of the peak area.
  • the power ratio corresponds to the S/N ratio.
  • step S52 the reliability setting unit 54 increases the reliability of the result D1 of the angle estimation processing performed by the FFT unit 52 using the angle FFT in step S13 of FIG. 2 as the power ratio calculated in step S51 decreases. set to a value.
  • the reliability setting unit 54 sets the reliability of the result D1 to a lower value as the power ratio calculated in step S51 increases.
  • step S53 the smaller the power ratio calculated in step S51, the higher the reliability setting unit 54 is. Set confidence to a low value.
  • the reliability setting unit 54 sets the reliability of the result D2 to a higher value as the power cost calculated in step S31 increases.
  • step S15 the detection processing/tracking recognition unit 15 generates the result D1 of the angle estimation processing using the angle FFT in step S13, the result D2 of the angle estimation processing using the high resolution algorithm in step S14, and the result D2 of the angle estimation processing using the high resolution algorithm in step S14. And based on the reliability of each of the results D1 and D2 set in step S33, the distance and direction (angle) of the object existing in the scanning range of the radar device 1 are recognized. For example, the detection processing/tracking recognition unit 15 uses the result D1 and the result D2, whichever has the higher reliability value, to recognize an object existing in the scanning range (existence, size, distance, direction, etc.). recognition). The detection processing/tracking recognition unit 15 weights the result D1 and the result D2 with respective reliability, and combines the results of both the result D1 and the result D2 to recognize the object existing in the scanning range. It may be the case.
  • the reliability of the result D1 is set to a value higher than the reliability of the result D2.
  • the noise is large and the power ratio is small, and the result D2 of angle estimation processing using a low-robustness high-resolution algorithm is used for object recognition or the like, object recognition may be erroneous or impossible. Therefore, when the power ratio is smaller than a predetermined level, the result D1 of angle estimation processing using a highly robust angle FFT (beamformer method) is used for object recognition, etc., thereby increasing the recognition accuracy. decrease in
  • the reliability of result D2 can be set to a value higher than the reliability of result D1.
  • object recognition can be performed appropriately using the result D2 of angle estimation processing using a low-robustness high-resolution algorithm. be done.
  • the reliability setting unit 54 may set the reliability based on the distance of the target object (target). For example, when the distance to the target is less than or equal to a predetermined threshold, the reliability setting unit 54 determines that the result of the angle estimation process using the high-resolution algorithm is higher than the reliability of the result D1 of the angle estimation process using the angle FFT. Set the confidence of D2 to a high value. When the distance of the target is equal to or greater than a predetermined threshold, the reliability setting unit 54 selects the angle estimation using the angle FFT (beamformer method) rather than the reliability of the result D2 of the angle estimation processing using the high resolution algorithm. The reliability of the processing result D1 may be set to a high value.
  • Angle estimation processing using FFT is characterized by high robustness but low resolution.
  • resolution is high, but robustness is low compared to FFT, and the amount of computation is enormous.
  • the present technology combines these different methods of angle estimation processing, and depending on the situation, uses the result of the appropriate method of angle estimation processing for processing such as object recognition. Therefore, it is possible to perform processing such as object recognition that makes the most of the advantages of each method.
  • FIG. 5 is a diagram illustrating the configuration of a radar device according to a second embodiment to which the present technology is applied.
  • symbol is attached
  • the radar device 101 in FIG. 5 is common with the radar device 1 in FIG. .
  • the radar processing unit 14 of the radar device 101 of FIG. 5 is common to the radar processing unit 14 of the radar device 101 of FIG.
  • the radar processing unit 14 of the radar device 101 in FIG. 5 does not have the reliability setting unit 54 in FIG. 1, the FFT unit 121 is provided instead of the FFT unit 52 in FIG. 1 in that a high-resolution algorithm processing unit 122 is provided in place of the high-resolution algorithm processing unit 53 of FIG.
  • the FFT unit 121 acquires distance spectrum data calculated by the distance FFT of the FFT unit 51, and performs angle FFT processing (angular direction estimation processing).
  • Angular direction estimation processing using angle FFT is the same as that of the FFT unit 52 in the radar processing unit 14 of the radar device 1 in FIG. 1, so description thereof will be omitted.
  • the FFT unit 121 determines a high-resolution scanning range for angular direction estimation processing using a high-resolution algorithm, out of the scanning range of the radar device 1, as a result of the angular direction estimation processing using the angle FFT.
  • the high-resolution scan range may be the range of objects present near the center of the scan range or the range of moving objects, and the area of interest is determined as the high-resolution scan range.
  • the FFT unit 121 supplies information indicating the determined high resolution scanning range (information indicating distance range and angle range) to the high resolution algorithm processing unit 122 .
  • the high-resolution algorithm processing unit 122 based on the data of the IF signal of each channel from the A/D conversion unit 36 or the data of the distance/velocity spectrum from the FFT unit 51, the scanning range of the radar device 1 High-resolution angle estimation processing is performed using a high-resolution algorithm only for the high-resolution scanning range indicated by the information supplied from the FFT unit 52 .
  • the high-resolution algorithm processing unit 122 supplies the detection processing/tracking recognition unit 15 with the results of the angle estimation processing performed using the high-resolution algorithm for each distance and speed in the high-resolution scanning range.
  • FIG. 6 is a diagram showing the flow of processing performed by the radar processing unit 14 of the radar device 101. As shown in FIG. 6
  • step S81 is performed after the FFT unit 51 uses the data of the IF signal to calculate the distance spectrum and velocity spectrum in each channel by distance FFT and velocity FFT.
  • step S81 the FFT unit 121 uses the distance/velocity spectrum data of each channel calculated by the FFT unit 51 to calculate the angle spectrum by angle FFT, and performs angle estimation processing.
  • the angle spectrum is calculated for each distance and speed at predetermined intervals within the distance range and speed range of the distance/speed spectrum.
  • a result D1 in FIG. 6 is a diagram exemplifying the result of angle estimation processing performed by the FFT unit 121 using the angle FFT.
  • the intensity of the angle spectrum calculated using the angle FFT for each distance from the radar device 1 at predetermined intervals within the scanning range of the radar device 1 is compared with the corresponding distance and angle position. It is shown in image density. According to this, a region with a higher image density (a region with a higher angular spectrum intensity) is represented as a region with a higher possibility that an object exists.
  • the FFT unit 121 determines a range that meets predetermined conditions among the scanning range of the radar device 101 as a high-resolution scanning range. Assume, for example, that the FFT unit 121 determines the high-resolution scanning range P1 for the result D1 in FIG.
  • step S82 the high-resolution algorithm processing unit 53 performs high-resolution angle estimation processing using the high-resolution algorithm only on the high-resolution scanning range P1 determined in step S81.
  • Result D2 in FIG. 6 is a diagram exemplifying the result of angle estimation processing performed by the high-resolution algorithm processing unit 53 using the high-resolution algorithm. In the result D2, only the position (distance and angle) of the object existing in the high-resolution scanning range P1 determined in step S81 within the scanning range of the radar device 1 is detected.
  • step S83 the detection processing/tracking recognition unit 15 combines the result D1 obtained by the angle estimation processing using the angle FFT (beamformer method) in step S81 and the angle estimation processing using the high-resolution algorithm in step S82. Based on the obtained result D2, an object existing in the scanning range is recognized (including recognition of existence, size, distance, direction, etc. of the object). At this time, the detection processing/tracking recognition unit 15 appropriately acquires the information of the high resolution scanning range P1 in the result D1 from the information of the high resolution scanning range P2 in the result D2.
  • the detection processing/tracking recognition unit 15 appropriately acquires the information of the high resolution scanning range P1 in the result D1 from the information of the high resolution scanning range P2 in the result D2.
  • the resolution of only an important range within the scanning range of the radar device 101 can be increased.
  • Low resolution FFT beamformer method
  • the efficiency of arithmetic processing can be improved, and the load and time required for arithmetic processing can be reduced.
  • the present technology can also take the following configurations.
  • a first spectrum processing unit that performs Fourier transform processing on a signal received from an antenna to calculate a first angle spectrum
  • a second spectrum processing unit that executes a high-resolution algorithm on the received signal to calculate a second angular spectrum
  • An information processing apparatus comprising: an output unit that outputs the first angle spectrum and the second angle spectrum, respectively.
  • a reliability calculation unit that calculates a first reliability regarding the first angle spectrum and a second reliability regarding the second angle spectrum;
  • the above-described (1) further comprising: a recognition unit that performs object recognition by combining the first angle spectrum and the second angle spectrum based on the first reliability and the second reliability. information processing equipment.
  • the reliability calculation unit sets the first reliability to a higher value as the ratio of the maximum value of the intensity of the first angle spectrum to the noise level of the first angle spectrum decreases. Or the information processing device according to (6).
  • the reliability calculation unit sets the second reliability to a lower value as the ratio of the maximum value of the intensity of the first angle spectrum to the noise level of the first angle spectrum decreases. , (6), or the information processing apparatus according to (7).
  • (9) The information processing apparatus according to any one of (2) to (8), wherein the reliability calculation unit calculates the first reliability and the second reliability based on a distance of an object.
  • the antenna comprises a plurality of antennas
  • the information processing apparatus according to any one of (1) to (12), wherein the received signal is composed of received signals of a plurality of channels received by each of the plurality of antennas.
  • the first spectrum processing unit calculating the frequency spectrum of the plurality of channels for each of the received signals of the plurality of channels by performing the Fourier transform processing on each of the received signals of the plurality of channels;
  • the information processing apparatus according to (13), wherein the first angle spectrum is calculated by performing the Fourier transform process on a component signal composed of component values.
  • the first spectrum processing unit and the second spectrum processing unit calculate the first angle spectrum and the second angle spectrum for each distance and speed at predetermined intervals from the antenna, respectively. ) to (14).
  • the spectrum processing unit of 1 The information processing device according to any one of (1) to (15), wherein the first angle spectrum is calculated using a beamformer method.
  • the second spectrum processing unit As the high-resolution algorithm, the Capon method, the CS method, the linear prediction method, the Pisarenko method, the MUSIC method, and any one of the ESPRIT method for estimating the direction of arrival to calculate the second angle spectrum.
  • the information processing apparatus according to any one of 1) to (16).
  • a first spectrum processing unit a second spectral processing unit;
  • the first spectrum processing unit of the information processing apparatus having an output unit performs Fourier transform processing on a signal received from an antenna to calculate a first angle spectrum,
  • the second spectrum processing unit calculates a second angle spectrum by executing a high-resolution algorithm on the received signal, The information processing method, wherein the output unit outputs the first angle spectrum and the second angle spectrum, respectively.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

This feature relates to an information processing device and an information processing method that enables highly robust object recognition to be performed with high resolution. In the present invention, a Fourier transform process is executed on a reception signal from an antenna to calculate a first angle spectrum, a high-resolution algorithm is executed on the reception signal to calculate a second angle spectrum, and each of the first and second angle spectra is outputted.

Description

情報処理装置、及び、情報処理方法Information processing device and information processing method
 本技術は、情報処理装置、及び、情報処理方法に関し、特に、高分解能で、かつ、ロバスト性が高い物体認識を行えるようにした情報処理装置、及び、情報処理方法に関する。 The present technology relates to an information processing device and an information processing method, and more particularly to an information processing device and an information processing method that enable object recognition with high resolution and high robustness.
 特許文献1、2には、高分解能アルゴリズムを用いて高分解能で物標(ターゲット)を検出するレーダ装置が開示されている。 Patent Documents 1 and 2 disclose radar devices that detect a target with high resolution using a high resolution algorithm.
特許第5114217号公報Japanese Patent No. 5114217 特許第6687289号公報Japanese Patent No. 6687289
 高分解能アルゴリズムを用いて物標を高分解能で検出するレーダ装置では、高分解能アルゴリズムのロバスト性が低いので、ノイズが大きい場合には、物体認識の精度が低下しやすい。 In a radar device that uses a high-resolution algorithm to detect targets with high resolution, the robustness of the high-resolution algorithm is low, so the accuracy of object recognition tends to decrease when noise is large.
 本技術はこのような状況に鑑みてなされたものであり、高分解能で、かつ、ロバスト性が高い物体認識を行えるようにする。 This technology was created in view of this situation, and enables object recognition with high resolution and high robustness.
 本技術の情報処理装置は、アンテナからの受信信号に対して、フーリエ変換処理を実行して第1の角度スペクトルを算出する第1のスペクトル処理部と、前記受信信号に対して、高分解能アルゴリズムを実行して第2の角度スペクトルを算出する第2のスペクトル処理部と、前記第1の角度スペクトルと前記第2の角度スペクトルとをそれぞれ出力する出力部とを備える情報処理装置である。 An information processing apparatus according to the present technology includes a first spectrum processing unit that performs Fourier transform processing on a signal received from an antenna to calculate a first angle spectrum, and a high-resolution algorithm for the received signal. and an output unit configured to output the first angle spectrum and the second angle spectrum.
 本技術の情報処理方法は、第1のスペクトル処理部と、第2のスペクトル処理部と、出力部とを有する情報処理装置の前記第1のスペクトル処理部が、アンテナからの受信信号に対して、フーリエ変換処理を実行して第1の角度スペクトルを算出し、前記第2のスペクトル処理部が、前記受信信号に対して、高分解能アルゴリズムを実行して第2の角度スペクトルを算出し、前記出力部が、前記第1の角度スペクトルと前記第2の角度スペクトルとをそれぞれ出力する情報処理方法である。 In the information processing method of the present technology, the first spectrum processing unit of an information processing device having a first spectrum processing unit, a second spectrum processing unit, and an output unit performs the following on a signal received from an antenna: , performing Fourier transform processing to calculate a first angle spectrum, the second spectrum processing unit performing a high-resolution algorithm on the received signal to calculate a second angle spectrum, In the information processing method, an output unit outputs the first angle spectrum and the second angle spectrum, respectively.
 本技術の情報処理装置及び情報処理方法においては、アンテナからの受信信号に対して、フーリエ変換処理が実行されて第1の角度スペクトルが算出され、前記受信信号に対して、高分解能アルゴリズムが実行されて第2の角度スペクトルが算出され、前記第1の角度スペクトルと前記第2の角度スペクトルとがそれぞれ出力される。 In the information processing device and information processing method of the present technology, Fourier transform processing is performed on a signal received from an antenna to calculate a first angle spectrum, and a high resolution algorithm is performed on the received signal. Then, a second angular spectrum is calculated, and the first angular spectrum and the second angular spectrum are respectively output.
本技術が適用されたレーダ装置の第1の実施の形態の構成を例示した図である。1 is a diagram illustrating a configuration of a first embodiment of a radar device to which the present technology is applied; FIG. 第1の実施の形態のレーダ装置のレーダ処理部が実施する処理の流れを表した図である。It is a figure showing the flow of the processing which the radar processing part of the radar installation of a 1st embodiment performs. 信頼度設定部の第1形態の処理の流れを例示した図である。It is the figure which illustrated the flow of the process of the 1st form of a reliability setting part. 信頼度設定部の第2形態の処理の流れを例示した図である。It is the figure which illustrated the flow of the process of the 2nd form of a reliability setting part. 本技術が適用されたレーダ装置の第2の実施の形態の構成を例示した図である。FIG. 3 is a diagram illustrating a configuration of a second embodiment of a radar device to which the present technology is applied; 第2の実施の形態のレーダ装置のレーダ処理部が実施する処理の流れを表した図である。It is a figure showing the flow of the process which the radar processing part of the radar apparatus of 2nd Embodiment implements.
 以下、図面を参照しながら本技術の実施の形態について説明する。 Embodiments of the present technology will be described below with reference to the drawings.
<レーダ装置の第1の実施の形態>
 図1は、本技術が適用されたレーダ装置の第1の実施の形態の構成を例示した図である。
<First Embodiment of Radar Device>
FIG. 1 is a diagram illustrating the configuration of a first embodiment of a radar device to which the present technology is applied.
 図1のレーダ装置1は、電波を発射し、その反射波をとらえることにより、空間に存在する物体(物標)の距離及び方向等を検出する装置である。レーダ装置1は、例えば、電波としてミリ波(周波数にして30GHz乃至300GHz)を用いたFMCW(Frequency Modulated Continuous Wave:周波数連続変調)方式のレーダ装置である。ただし、本技術は、FMCW方式以外のレーダ装置であっても適用され得る。 The radar device 1 in FIG. 1 is a device that detects the distance, direction, etc. of an object (target) existing in space by emitting radio waves and capturing the reflected waves. The radar device 1 is, for example, an FMCW (Frequency Modulated Continuous Wave) radar device that uses millimeter waves (30 GHz to 300 GHz in frequency) as radio waves. However, the present technology can also be applied to radar devices other than the FMCW system.
 レーダ装置1は、送信アンテナ11、受信アンテナ12、RF(Radio Frequency:高周波)フロントエンド部13、レーダ処理部14、及び、検出処理・トラッキング認識部15を有する。 The radar device 1 has a transmitting antenna 11 , a receiving antenna 12 , an RF (Radio Frequency) front end section 13 , a radar processing section 14 , and a detection processing/tracking recognition section 15 .
 送信アンテナ11は、RFフロントエンド部13から供給される送信信号を電波(送信波)として空中に放射する。 The transmission antenna 11 radiates the transmission signal supplied from the RF front end section 13 into the air as radio waves (transmission waves).
 受信アンテナ12は、送信アンテナ11から放射された後、物体(物標)で反射して到来する電波(受信波、反射波、又は、到来波ともいう)を受信する。受信アンテナ12が受信した受信波は、受信信号としてRFフロントエンド部13に供給される。 The receiving antenna 12 receives radio waves (also referred to as received waves, reflected waves, or incoming waves) that arrive after being radiated from the transmitting antenna 11 and reflected by an object (target). A received wave received by the receiving antenna 12 is supplied to the RF front end section 13 as a received signal.
 受信アンテナ12は、例えば直線状に配列された複数の受信アンテナ(アレイアンテナ)からなり、図1上では、それらの複数の受信アンテナが1つの受信アンテナ12として示されている。複数の受信アンテナを明示する場合には、それらを受信アンテナ12-1乃至12-N(Nは受信アンテナの個数)として表すこととする。なお、受信アンテナ12は、直線状に配列されたアレイアンテナに限らず、平面状(2次元状)等に配列されたアレイアンテナであってもよい。 The receiving antenna 12 is composed of, for example, a plurality of receiving antennas (array antennas) arranged linearly, and the plurality of receiving antennas are shown as one receiving antenna 12 in FIG. When specifying a plurality of receive antennas, they are represented as receive antennas 12-1 to 12-N (N is the number of receive antennas). The receiving antennas 12 are not limited to linear array antennas, and may be planar (two-dimensional) array antennas.
 RFフロントエンド部13は、送信信号を生成して送信アンテナ11に供給し、受信アンテナ12からの受信信号に応じたIF(Intermediate Frequency:中間周波数)信号をレーダ処理部14に供給する。 The RF front end unit 13 generates a transmission signal and supplies it to the transmission antenna 11 and supplies an IF (Intermediate Frequency) signal corresponding to the signal received from the reception antenna 12 to the radar processing unit 14 .
 レーダ処理部14は、RFフロントエンド部13からのIF信号に基づいて、距離スペクトル、角度スペクトル、及び、速度スペクトル等を算出する。距離スペクトルは、レーダ装置1により物体の検出が可能な空間範囲の全体であるレーダ装置1の走査範囲(測定範囲)において、レーダ装置1(受信アンテナ12)から物体が存在する位置までの距離(物体の距離)を特定する情報である。角度スペクトルは、レーダ装置1の走査範囲において、物体が存在する位置の方向(物体の方向)を特定する情報である。物体の方向は、例えば、レーダ装置1(受信アンテナ12)の位置を基準位置とし、基準位置から見て所定の方向を基準方向(例えばレーダ装置1の走査範囲の中心方向)とした場合に、基準方向に対して、基準位置から物体の存在する位置に向かう方向の角度で表される。物体の方向を物体の角度ともいう。以下において、方向又は角度という場合には、同様に所定の基準位置から見た所定の基準方向に対する方向又は角度を表す。速度スペクトルは、移動している物体の移動速度を特定する情報である。レーダ処理部14により得られた距離スペクトルや角度スペクトル等の情報は、検出処理・トラッキング認識部15に供給される。 The radar processing unit 14 calculates distance spectrum, angle spectrum, speed spectrum, etc. based on the IF signal from the RF front end unit 13 . The distance spectrum is the distance ( object distance). The angle spectrum is information specifying the direction of the position where the object exists (the direction of the object) in the scanning range of the radar device 1 . Regarding the direction of the object, for example, when the position of the radar device 1 (receiving antenna 12) is set as a reference position and a predetermined direction viewed from the reference position is set as a reference direction (for example, the center direction of the scanning range of the radar device 1), It is expressed by the angle of the direction from the reference position to the position where the object exists with respect to the reference direction. The direction of an object is also called the angle of the object. In the following description, directions or angles refer to directions or angles with respect to a predetermined reference direction viewed from a predetermined reference position. A velocity spectrum is information specifying the speed of movement of a moving object. Information such as the distance spectrum and angle spectrum obtained by the radar processing unit 14 is supplied to the detection processing/tracking recognition unit 15 .
 検出処理・トラッキング認識部15は、レーダ処理部14からの情報に基づいて、注目する物体(物標:ターゲット)を検出し、レーダ装置1に対する物標の距離や方向等を特定しながら、検出した物標を追跡する。なお、物標は、移動物体である場合や、予め決められた種類の物体である場合等であってよい。追跡した物標の距離及び方向等の物標情報やトラッキング情報(移動軌跡等)は、映像化等の処理を行う不図示の処理部に供給される。 The detection processing/tracking recognition unit 15 detects an object of interest (target: target) based on the information from the radar processing unit 14, and detects while specifying the distance and direction of the target with respect to the radar device 1. track the target. Note that the target may be a moving object, a predetermined type of object, or the like. Target information such as the distance and direction of the tracked target and tracking information (moving trajectory, etc.) are supplied to a processing unit (not shown) that performs processing such as imaging.
 なお、検出処理・トラッキング認識部15は、レーダ装置1の用途に応じた任意の処理部であってよく、詳細な説明は省略する。ただし、本技術に関係する処理については後述する。 Note that the detection processing/tracking recognition unit 15 may be an arbitrary processing unit according to the application of the radar device 1, and detailed description thereof will be omitted. However, processing related to the present technology will be described later.
(RFフロントエンド部13の構成及び処理)
 RFフロントエンド部13は、チャープ信号生成部31、増幅部32、33、ミキシング部34、LPF(ローパスフィルタ)部35、及び、A/D変換部36を有する。
(Configuration and processing of RF front end unit 13)
The RF front end section 13 has a chirp signal generation section 31 , amplification sections 32 and 33 , a mixing section 34 , an LPF (low pass filter) section 35 and an A/D conversion section 36 .
 チャープ信号生成部31は、正弦波信号を周波数変調したチャープ信号を生成し、増幅部32、及び、ミキシング部34に供給する。チャープ信号は、例えば、所定周期で、周波数が所定の最小周波数から所定の最大周波数まで連続的(直線的)に変更(掃引)される信号である。 The chirp signal generation unit 31 generates a chirp signal by frequency-modulating the sine wave signal, and supplies the chirp signal to the amplification unit 32 and the mixing unit 34 . A chirp signal is, for example, a signal whose frequency is continuously (linearly) changed (swept) from a predetermined minimum frequency to a predetermined maximum frequency at predetermined intervals.
 増幅部32は、チャープ信号生成部31からのチャープ信号を増幅し、送信アンテナ11に供給する。 The amplifier 32 amplifies the chirp signal from the chirp signal generator 31 and supplies it to the transmission antenna 11 .
 増幅部33は、受信アンテナ12からの受信信号を増幅し、ミキシング部34に供給する。 The amplification section 33 amplifies the received signal from the receiving antenna 12 and supplies it to the mixing section 34 .
 ミキシング部34は、チャープ信号生成部31からのチャープ信号と、増幅部33からの受信信号とをミキシング(混合)することにより、IF信号を生成する。IF信号は、受信信号の周波数とチャープ信号の周波数との差分である差周波数(ビート周波数)を有するビート信号である。ミキシング部34で生成されたIF信号は、LPF部35に供給される。 The mixing unit 34 generates an IF signal by mixing the chirp signal from the chirp signal generation unit 31 and the received signal from the amplification unit 33 . The IF signal is a beat signal having a difference frequency (beat frequency) that is the difference between the frequency of the received signal and the frequency of the chirp signal. The IF signal generated by the mixing section 34 is supplied to the LPF section 35 .
 LPF部35は、ミキシング部34からのIF信号からノイズ等の高周波成分を除去し、A/D変換部36に供給する。 The LPF section 35 removes high-frequency components such as noise from the IF signal from the mixing section 34 and supplies it to the A/D conversion section 36 .
 A/D変換部36は、LPF部35からのIF信号の値を所定のサンプリング周期でサンプリングし、サンプリングした値をアナログ値からデジタル値に変換する。これにより、IF信号がアナログ信号からデジタル信号に変換される。デジタル信号に変換されたIF信号は、レーダ処理部14に供給される。 The A/D conversion section 36 samples the value of the IF signal from the LPF section 35 at a predetermined sampling period, and converts the sampled value from an analog value to a digital value. This converts the IF signal from an analog signal to a digital signal. The IF signal converted into a digital signal is supplied to the radar processing section 14 .
 なお、RFフロントエンド部13からレーダ処理部14には、受信アンテナ12における複数の受信アンテナ12-1乃至12-Nのそれぞれに対応するNチャネル分のIF信号が供給される。RFフロントエンド部13は、受信アンテナ12-1乃至12-Nのそれぞれに対応してNチャネル分の増幅部33、ミキシング部34、LPF部35、及び、A/D変換部36を有する。但し、これらの処理部33乃至36のいずれか1つ又は複数が、時分割処理により、複数チャネル分の処理を行うことで、RFフロントエンド部13が、Nチャネル分の処理部33乃至36を有していない場合であってもよい。 Note that IF signals for N channels corresponding to the plurality of receiving antennas 12-1 to 12-N in the receiving antenna 12 are supplied from the RF front end unit 13 to the radar processing unit 14. FIG. The RF front end unit 13 has an amplifier unit 33, a mixing unit 34, an LPF unit 35, and an A/D conversion unit 36 corresponding to each of the receiving antennas 12-1 to 12-N for N channels. However, any one or more of these processing units 33 to 36 perform processing for a plurality of channels by time division processing, so that the RF front end unit 13 can process the processing units 33 to 36 for N channels. You may not have it.
(レーダ処理部14の構成及び処理)
 レーダ処理部14は、DSP(Digital Signal Processor)により構成される処理部であり、プログラムの実行により、FFT(Fast Fourier Transform)部51、FFT部52、高分解能アルゴリズム処理部53、及び、信頼度設定部54を構築する。
(Configuration and processing of radar processing unit 14)
The radar processing unit 14 is a processing unit configured by a DSP (Digital Signal Processor), and by executing a program, an FFT (Fast Fourier Transform) unit 51, an FFT unit 52, a high resolution algorithm processing unit 53, and a reliability A setting unit 54 is constructed.
 FFT部51は、RFフロントエンド部13のA/D変換部36からのIF信号に対して距離FFT、及び、速度FFTの処理を行う。 The FFT unit 51 performs distance FFT and speed FFT processing on the IF signal from the A/D conversion unit 36 of the RF front end unit 13 .
 距離FFTは、A/D変換部36からのIF信号に対して、時間領域表現(時間tを変数とする関数での表現)から周波数領域表現(周波数を変数とする関数での表現)への周波数変換を行うFFT(高速フーリエ変換)である。距離FFTは、各受信アンテナ12-1乃至12-Nに対応した各チャネルのIF信号に対して実施される。これにより、レーダ装置1の全走査範囲に存在する物体(物標)の距離に対応した周波数で高い強度を示すスペクトル(スペクトル信号)が得られる。なお、周波数と物体の距離とは一定の関係を有するので、距離FFTにより得られる周波数に対するスペクトル(周波数スペクトル)を周波数に対応する物体の距離(物体が存在し得る位置のレーダ装置1からの距離、以下、単に距離という)に対するスペクトルとみなすことができる。以下において、距離スペクトルという場合には、距離に対するスペクトルを表しているものとする。 Distance FFT converts the IF signal from the A/D converter 36 from time domain expression (expression with a function with time t as a variable) to frequency domain expression (expression with a function with frequency as a variable). FFT (Fast Fourier Transform) for frequency conversion. Distance FFT is performed on the IF signals of each channel corresponding to each of the receiving antennas 12-1 through 12-N. As a result, a spectrum (spectrum signal) showing high intensity at a frequency corresponding to the distance of the object (target) present in the entire scanning range of the radar device 1 is obtained. Since the frequency and the distance of an object have a certain relationship, the spectrum for the frequency (frequency spectrum) obtained by the distance FFT is the distance of the object corresponding to the frequency (the distance from the radar device 1 where the object can exist). , hereinafter simply referred to as distance). In the following description, the term "distance spectrum" means the spectrum for distance.
 速度FFTは、距離FFTにより得られた距離スペクトルのデータにおいて、同一距離に対するデータを時系列順に並べた成分信号に対して、時間領域表現から周波数領域表現への周波数変換を行うFFTである。例えば、RFフロントエンド部13のチャープ信号生成部31から出力される所定周期分(M周期分)のチャープ信号に対応してA/D変換部36からFFT部51に供給されるM周期分(チャープ・フレーム分)のIF信号を1セット分のIF信号とする。距離FFTは1チャープ・フレーム分のIF信号ごとに行われるので、1セット分のIF信号に対して距離FFTが行われると、Mチャープ・フレーム分の距離スペクトルのデータが1セット分の距離スペクトルのデータとして得られる。速度FFTでは、それらの1セット分の距離スペクトルのデータにおいて、同一距離に対するM個分のデータを時系列順に並べた成分信号(距離スペクトルの時間的成分信号)に対してFFTによる周波数変換が行われる。これにより、物体の移動速度(レーダ装置1と物体との相対速度)に対応する周波数で高い強度を示すスペクトルが得られる。速度FFTは、1セット分のIF信号がA/D変換部36からFFT部51に供給されるごとに繰り返し行われる。速度FFTは、距離スペクトルにより物体が存在すると判定される距離に対する距離スペクトルの時間的成分信号に対してのみ行われる場合であってもよいし、距離スペクトルの全範囲の距離に対する距離スペクトルの時間的成分信号に対して行われる場合であってもよい。なお、速度FFTにより周波数変換されたときの周波数領域における周波数と物体の移動速度とは一定の関係を有するので、速度FFTにより得られる周波数に対するスペクトル(周波数スペクトル)を周波数に対応する物体の移動速度(物体が移動し得る速度、以下、単に速度という)に対するスペクトルとみなすことができる。以下において、速度スペクトルという場合には、速度に対するスペクトルを表しているものとする。物体の移動速度は速度FFTにより検出される場合に限らず、速度FFTが行われない場合であってもよい。 The velocity FFT is an FFT that performs frequency conversion from the time domain representation to the frequency domain representation for the component signal in which the data for the same distance are arranged in chronological order in the distance spectrum data obtained by the distance FFT. For example, M cycles ( The IF signal for chirp frame) is regarded as one set of IF signal. Since the distance FFT is performed for each IF signal of one chirp frame, if the distance FFT is performed for one set of IF signal, the data of the distance spectrum for M chirp frames is one set of distance spectrum. obtained as data for In the velocity FFT, frequency conversion is performed by FFT on the component signal (temporal component signal of the distance spectrum) in which M pieces of data for the same distance are arranged in chronological order in one set of distance spectrum data. will be As a result, a spectrum showing high intensity at frequencies corresponding to the moving speed of the object (relative speed between the radar device 1 and the object) is obtained. The velocity FFT is repeatedly performed each time one set of IF signals is supplied from the A/D conversion section 36 to the FFT section 51 . The velocity FFT may be performed only on the temporal component signal of the range spectrum for distances where the range spectrum determines that an object exists, or it may be performed on the temporal component signal of the range spectrum for distances over the entire range of the range spectrum. It may be performed on the component signals. In addition, since the frequency in the frequency domain when the frequency is converted by the velocity FFT and the moving speed of the object have a certain relationship, the spectrum for the frequency obtained by the velocity FFT (frequency spectrum) is the moving speed of the object corresponding to the frequency (velocity at which an object can move, hereinafter simply referred to as velocity). In the following description, the term "velocity spectrum" means a spectrum with respect to velocity. The moving speed of the object is not limited to the case where it is detected by the speed FFT, and may be the case where the speed FFT is not performed.
 FFT部51は、距離FFTにより得られた距離スペクトル、及び、速度FFTにより得られた速度スペクトル等の走査範囲に存在する物体の距離及び移動速度に関する情報を必要に応じてFFT部52、高分解能アルゴリズム処理部53、信頼度設定部54、及び、検出処理・トラッキング認識部15に供給する。 The FFT unit 51 converts information about the distance and moving speed of an object existing in the scanning range, such as the distance spectrum obtained by the distance FFT and the speed spectrum obtained by the speed FFT, into the FFT unit 52 as needed, and the high resolution It is supplied to the algorithm processing unit 53 , the reliability setting unit 54 , and the detection processing/tracking recognition unit 15 .
 FFT部52(第1のスペクトル処理部)は、FFT部51の距離FFT及び速度FFT(距離・速度FFT)により算出された距離スペクトル及び速度スペクトルのデータを取得し、角度FFTの処理(角度方向推定処理)を行う。なお、距離・速度FFTにより得られた距離スペクトル及び速度スペクトルのデータを距離・速度スペクトルのデータということとする。FFT部52(及び高分解能アルゴリズム処理部53)は、速度に関して考慮しない場合であってもよく、その場合には距離・速度スペクトルは距離スペクトルに相当する。 The FFT unit 52 (first spectrum processing unit) acquires distance spectrum and speed spectrum data calculated by the distance FFT and speed FFT (distance/speed FFT) of the FFT unit 51, and performs angle FFT processing (angular direction estimation process). The distance spectrum and velocity spectrum data obtained by the distance/velocity FFT are referred to as distance/velocity spectrum data. The FFT unit 52 (and the high-resolution algorithm processing unit 53) may not consider velocity, and in that case the distance/velocity spectrum corresponds to the distance spectrum.
 角度FFTは、複数の受信アンテナ12-1乃至12-Nに対応する各チャネルのIF信号に対する距離・速度FFTにより得られた各チャネルの距離・速度スペクトルのデータを用いたFFTである。具体的には、角度FFTでは、各チャネルの距離・速度スペクトルのデータにおいて、同一距離かつ同一速度に対するN個分(Nチャネル分)のデータを、それぞれに対応する受信アンテナ12-1乃至12-Nの位置での値として空間的に並べた成分信号(距離スペクトルの空間的成分信号)に対して、FFTによる空間領域表現から周波数領域表現への周波数変換が行われる。これにより、物体が存在する角度(レーダ装置1の走査範囲の中心方向と物体の方向とのなす角)に対応する周波数で高い強度を示すスペクトルが得られる。角度FFTは、距離・速度スペクトルにより物体が存在すると判定される距離及び速度に対する距離・速度スペクトルの空間的成分信号に対してのみ行われる場合であってもよいし、距離・速度スペクトルの全範囲の距離及び速度に対する距離・速度スペクトルの空間的成分信号に対して行われる場合であってもよい。なお、角度FFTにより周波数変換されたときの周波数領域における周波数と物体の角度とは一定の関係を有するので、角度FFTにより周波数変換されたときの周波数領域における周波数に対するスペクトル(周波数スペクトル)を周波数に対応する物体の角度(物体が存在し得る位置のレーダ装置1(受信アンテナ12)に対する角度(方向)、以下、単に角度という)に対するスペクトルとみなすことができる。以下において、角度スペクトルという場合には、角度に対するスペクトルを表しているものとする。 The angle FFT is an FFT using the distance/velocity spectrum data of each channel obtained by the distance/velocity FFT for the IF signal of each channel corresponding to the plurality of receiving antennas 12-1 to 12-N. Specifically, in the angle FFT, in the distance/velocity spectrum data of each channel, N pieces (N channels) of data for the same distance and the same speed are obtained from the corresponding receiving antennas 12-1 to 12- The component signals (spatial component signals of the range spectrum) spatially arranged as values at the positions of N are subjected to frequency conversion from the spatial domain representation to the frequency domain representation by FFT. As a result, a spectrum showing high intensity at a frequency corresponding to the angle at which the object exists (the angle formed by the direction of the center of the scanning range of the radar device 1 and the direction of the object) is obtained. The angle FFT may be performed only on the spatial component signal of the range-velocity spectrum for the distances and velocities at which the range-velocity spectrum determines that an object is present, or it may be performed over the entire range of the range-velocity spectrum. may be performed on the spatial component signals of the distance-velocity spectrum for the distances and velocities of . Since the frequency in the frequency domain when the frequency is converted by the angle FFT and the angle of the object have a certain relationship, the spectrum for the frequency in the frequency domain when the frequency is converted by the angle FFT (frequency spectrum) It can be regarded as a spectrum with respect to the angle of the corresponding object (the angle (direction) with respect to the radar device 1 (receiving antenna 12) at the position where the object may exist, hereinafter simply referred to as the angle). In the following description, the term "angle spectrum" means a spectrum with respect to an angle.
 FFT部52は、角度FFTにより得られた角度スペクトル等の走査範囲に存在する物体の角度に関する情報を必要に応じて信頼度設定部54、及び、検出処理・トラッキング認識部15に供給する。 The FFT unit 52 supplies information about the angles of objects existing in the scanning range, such as the angle spectrum obtained by the angle FFT, to the reliability setting unit 54 and the detection processing/tracking recognition unit 15 as necessary.
 高分解能アルゴリズム処理部53(第2のスペクトル処理部)は、A/D変換部36からの各チャネルのIF信号のデータ、又は、FFT部51からの距離・速度スペクトルのデータに基づいて高分解能アルゴリズムを用いてFFT部52よりも高分解能の角度推定処理(到来方向推定)を行う。 The high-resolution algorithm processing unit 53 (second spectrum processing unit) performs high-resolution processing based on the IF signal data of each channel from the A/D conversion unit 36 or the distance/velocity spectrum data from the FFT unit 51. Using an algorithm, angle estimation processing (direction-of-arrival estimation) with higher resolution than the FFT unit 52 is performed.
 ここで、FFT部52で得られた角度スペクトルは、到来方向推定法として、フーリエ変換に基づくビームフォーマ法を用いて受信アンテナ12が受信した到来波(受信波)の到来方向を推定した結果である。ビームフォーマ法は、高分解能アルゴリズムを用いた到来方向推定法と比較して分解能が低いが、演算量が少ないので、演算処理に要する負荷及び時間が小さい。したがって、FFT部52による角度スペクトルの算出は、短時間で行われる。 Here, the angular spectrum obtained by the FFT unit 52 is the result of estimating the direction of arrival of the incoming wave (received wave) received by the receiving antenna 12 using a beamformer method based on Fourier transform as a method of estimating the direction of arrival. be. The beamformer method has a lower resolution than the direction-of-arrival estimation method using a high-resolution algorithm, but the amount of computation is small, so the load and time required for computation processing are small. Therefore, the calculation of the angle spectrum by the FFT unit 52 is performed in a short time.
 高分解能アルゴリズム処理部53で用いられる高分解能アルゴリズムは、ビームフォーマ法よりも演算量が多いので、演算処理に要する負荷及び時間が大きいが、分解能が高い。本実施の形態においては、高分解能アルゴリズムは、ビームフォーマ法よりも分解能が高い任意の到来方向推定法を表す。高分解能アルゴリズムとしては、Capon法、CS法(圧縮センシング)、線形予測法(LP:Linear Prediction)、Pisarenko法、MUSIC法(MUltiple SIgnal Classication)、ESPRIT法(Estimation of Signal Parameters via Rotational Invariance Techniques)、Deterministic Maximum Likelihood、Weighted Subspace Fitting、Root-MUSIC等が周知である。高分解能アルゴリズム処理部53は、ビームフォーマ法よりも分解能が高いこれらの周知の高分解能アルゴリズムのうちのいずれの到来方向推定方法を用いる場合であってもよい。 The high-resolution algorithm used in the high-resolution algorithm processing unit 53 has a larger amount of calculation than the beamformer method, so the load and time required for calculation processing are large, but the resolution is high. In this embodiment, a high-resolution algorithm refers to any direction-of-arrival estimation method that has higher resolution than the beamformer method. High-resolution algorithms include Capon method, CS method (compressed sensing), linear prediction method (LP: Linear Prediction), Pisarenko method, MUSIC method (MUltiple SIgnal Classication), ESPRIT method (Estimation of Signal Parameters via Rotational Invariance Techniques), Deterministic Maximum Likelihood, Weighted Subspace Fitting, Root-MUSIC, etc. are well known. The high-resolution algorithm processing unit 53 may use any direction-of-arrival estimation method among these well-known high-resolution algorithms having higher resolution than the beamformer method.
 例えば、高分解能アルゴリズム処理部53は、高分解能アルゴリズムとしてMUSIC法を用いる場合、各チャネルのIF信号のデータと、ステアリング行列とを用いてMUSICスペクトル(評価関数)を算出する。MUSICスペクトル(MUSICスペクトラムともいう)は、FFT部52の角度FFTにより生成される角度スペクトルに対応し、物体が存在する角度に対して高い強度を示す。MUSICスペクトルは、角度FFTにより得られる角度スペクトルよりも分解能が高い。なお、ステアリング行列の列方向の成分値は、電波(受信波)の到来角度に応じて各受信アンテナ12-1乃至12-Nで受信された受信信号の間で生じる位相差に起因する振幅の振動を表す。ステアリング行列の各列には、受信電波の到来角度を所定角度ずつへ変更したときの成分値が配置される。 For example, when using the MUSIC method as the high-resolution algorithm, the high-resolution algorithm processing unit 53 calculates the MUSIC spectrum (evaluation function) using the IF signal data of each channel and the steering matrix. The MUSIC spectrum (also referred to as MUSIC spectrum) corresponds to the angle spectrum generated by the angle FFT of the FFT unit 52, and exhibits high intensity for angles at which objects exist. The MUSIC spectrum has higher resolution than the angle spectrum obtained by angle FFT. Note that the component values in the column direction of the steering matrix are the amplitudes caused by the phase differences between the reception signals received by the reception antennas 12-1 to 12-N according to the arrival angles of the radio waves (received waves). represents vibration. In each column of the steering matrix, component values are arranged when the arrival angle of the received radio wave is changed by a predetermined angle.
 高分解能アルゴリズム処理部53は、高分解能アルゴリズムを用いた角度推定処理の結果(所定間隔おきの距離ごと及び速度ごとの角度スペクトル)を、必要に応じて信頼度設定部54又は検出処理・トラッキング認識部15に供給する。 The high-resolution algorithm processing unit 53 outputs the results of the angle estimation processing using the high-resolution algorithm (angle spectra for each distance and speed at predetermined intervals) to the reliability setting unit 54 or detection processing/tracking recognition as necessary. 15.
 信頼度設定部54は、FFT部52により得られた角度スペクトルに基づいて、FFT部52の角度FFTを用いた角度推定処理の結果の信頼度と、高分解能アルゴリズム処理部53の高分解能アルゴリズムを用いた角度推定処理の結果の信頼度とを算出する。なお、信頼度設定部54の処理については後述する。信頼度設定部54は、角度FFTを用いた角度推定処理の結果の信頼度と、高分解能アルゴリズムを用いた角度推定処理の結果の信頼度とを検出処理・トラッキング認識部15に供給する。 Based on the angle spectrum obtained by the FFT unit 52, the reliability setting unit 54 sets the reliability of the result of the angle estimation processing using the angle FFT of the FFT unit 52 and the high resolution algorithm of the high resolution algorithm processing unit 53. The reliability of the result of the angle estimation process used is calculated. The processing of the reliability setting unit 54 will be described later. The reliability setting unit 54 supplies the reliability of the result of the angle estimation processing using the angle FFT and the reliability of the result of the angle estimation processing using the high resolution algorithm to the detection processing/tracking recognition unit 15 .
<レーダ装置1のレーダ処理部14の処理の流れ>
 図2は、レーダ装置1のレーダ処理部14が実施する処理の流れを表した図である。
<Processing Flow of Radar Processing Unit 14 of Radar Device 1>
FIG. 2 is a diagram showing the flow of processing performed by the radar processing unit 14 of the radar device 1. As shown in FIG.
 ステップS11では、レーダ処理部14のFFT部51は、受信アンテナ12(12-1乃至12-N)及びRFフロントエンド部13を介して、受信アンテナ12-1乃至12-Nのそれぞれに対応したチャネルの受信信号(IF信号)のデジタル値を所定のサンプリング周期で取得する。 In step S11, the FFT unit 51 of the radar processing unit 14, via the receiving antennas 12 (12-1 to 12-N) and the RF front end unit 13, corresponds to each of the receiving antennas 12-1 to 12-N. The digital value of the received signal (IF signal) of the channel is acquired at a predetermined sampling period.
 ステップS12では、FFT部51は、ステップS11で取得したIF信号のデータを用いて、距離FFT、及び、速度FFTを行う。これにより、各チャネルにおける距離スペクトル及び速度スペクトル(距離・速度スペクトル)が算出される。 In step S12, the FFT unit 51 performs distance FFT and velocity FFT using the IF signal data acquired in step S11. Thereby, the distance spectrum and velocity spectrum (distance/velocity spectrum) in each channel are calculated.
 ステップS13では、FFT部52は、ステップS12で算出された各チャネルの距離・速度スペクトルのデータを用いて、角度FFTにより角度スペクトルを算出し、角度推定処理を行う。角度スペクトルは、距離・速度スペクトルの距離範囲及び(速度範囲)内における所定値おきの距離ごと及び速度ごとに算出される。図2中の結果D1は、FFT部52が角度FFTを用いて角度推定処理を行った結果を例示した図である。結果D1では、レーダ装置1の走査範囲内において、レーダ装置1からの所定間隔おきの各距離に対して、角度FFTを用いて算出された角度スペクトルの強度が、対応する距離及び角度の位置の画像濃度で示されている。これによれば、画像濃度の高い領域(角度スペクトルの強度が高い領域)ほど、物体が存在する可能性が高い領域として表される。 In step S13, the FFT unit 52 uses the distance/velocity spectrum data of each channel calculated in step S12 to calculate the angle spectrum by angle FFT, and performs angle estimation processing. The angle spectrum is calculated for each distance and speed at predetermined intervals within the distance range and (velocity range) of the distance/velocity spectrum. A result D1 in FIG. 2 is a diagram exemplifying the result of angle estimation processing performed by the FFT unit 52 using the angle FFT. In the result D1, the intensity of the angle spectrum calculated using the angle FFT for each distance from the radar device 1 at predetermined intervals within the scanning range of the radar device 1 is compared with the corresponding distance and angle position. It is shown in image density. According to this, a region with a higher image density (a region with a higher angular spectrum intensity) is represented as a region with a higher possibility that an object exists.
 ステップS14では、高分解能アルゴリズム処理部53は、高分解能アルゴリズムを用いた高分解能の角度推定処理を行う。図2中の結果D2は、高分解能アルゴリズム処理部53が高分解能アルゴリズムを用いて角度推定処理を行った結果を例示した図である。結果D2では、レーダ装置1の走査範囲内において、レーダ装置1からの所定間隔おきの各距離に対して、高分解能アルゴリズムを用いて推定された角度(物体が存在する角度)に対応する位置に×印が示されている。 In step S14, the high-resolution algorithm processing unit 53 performs high-resolution angle estimation processing using the high-resolution algorithm. Result D2 in FIG. 2 is a diagram exemplifying the result of angle estimation processing performed by the high-resolution algorithm processing unit 53 using the high-resolution algorithm. In the result D2, within the scanning range of the radar device 1, for each distance from the radar device 1 at predetermined intervals, the position corresponding to the angle (the angle at which the object exists) estimated using the high-resolution algorithm. A cross is indicated.
 ステップS15では、検出処理・トラッキング認識部15は、ステップS13で角度FFTを用いた角度推定処理により得られた結果D1とステップS14で高分解能アルゴリズムを用いた角度推定処理により得られた結果D2と、結果D1及びD2のそれぞれに対する信頼度(後述)に基づいて、レーダ装置1の走査範囲に存在する物体の認識(物体の存在、大きさ、距離、方向等の認識を含む)を行う。 In step S15, the detection processing/tracking recognition unit 15 combines the result D1 obtained by the angle estimation processing using the angle FFT in step S13 and the result D2 obtained by the angle estimation processing using the high-resolution algorithm in step S14. , Recognition of an object (including recognition of existence, size, distance, direction, etc. of the object) existing in the scanning range of the radar device 1 is performed based on the reliability (described later) for each of the results D1 and D2.
<信頼度設定部54の第1形態の処理>
 図3は、信頼度設定部54の第1形態の処理の流れを例示した図である。図3において、ステップS31乃至ステップS33は、図2のステップS13でFFT部52が角度FFTを用いて角度推定処理を行い、その結果D1を得た後、ステップS15で、検出処理・トラッキング認識部15が物体の認識を行う前に実施される。
<Processing of the first form of the reliability setting unit 54>
FIG. 3 is a diagram exemplifying the flow of the first mode of processing by the reliability setting unit 54. As shown in FIG. In FIG. 3, steps S31 to S33 are performed by the FFT unit 52 in step S13 of FIG. 2, where the FFT unit 52 performs angle estimation processing using the angle FFT. 15 is performed before performing object recognition.
 ステップS31では、信頼度設定部54は、ステップS31での結果D1に基づいて、物体が存在せず、ノイズのみとなる領域のノイズレベル(ノイズフロア)を検出する。結果D1において、例えば領域R1には物体が存在しない。信頼度設定部54は、領域R1の距離範囲及び角度範囲に対応する角度スペクトル(FFT部52により得られた角度スペクトル)に基づいて、領域R1の距離範囲及び角度範囲の角度スペクトルの強度(電力)の最小値、最大値、又は、平均値をノイズフロアとして検出(算出)する。なお、本明細書では、角度スペクトルの各角度における振幅値(複素数)の大きさに対応した値を、角度スペクトルの強度(又は電力)ということとする。例えば、角度スペクトルの各角度における振幅値の絶対値、振幅値の絶対値の二乗(パワースペクトル)、及び、振幅値の絶対値の二乗を角度スペクトルの角度分解能(角度間隔)で割った値(パワースペクトル密度)などは、いずれも角度スペクトルの強度(又は電力)として用いることができる。 In step S31, the reliability setting unit 54 detects the noise level (noise floor) of an area where there are no objects and only noise, based on the result D1 in step S31. In result D1, for example, no object exists in region R1. The reliability setting unit 54 determines the intensity (power ) is detected (calculated) as the noise floor. In this specification, the value corresponding to the magnitude of the amplitude value (complex number) at each angle of the angle spectrum is referred to as the intensity (or power) of the angle spectrum. For example, the absolute value of the amplitude value at each angle of the angle spectrum, the square of the absolute value of the amplitude value (power spectrum), and the value obtained by dividing the square of the absolute value of the amplitude value by the angular resolution (angular interval) of the angle spectrum ( power spectral density) can be used as the intensity (or power) of the angular spectrum.
 ステップS32では、信頼度設定部54は、ステップS31で検知したノイズフロアが大きいほど、FFT部52が図2のステップS13で角度FFTを用いて行った角度推定処理の結果D1に対する信頼度を高い値に設置する。信頼度設定部54は、ステップS31で検知したノイズフロアが小さいほど、結果D1の信頼度を低い値に設置する。 In step S32, the reliability setting unit 54 increases the reliability of the result D1 of the angle estimation processing performed by the FFT unit 52 using the angle FFT in step S13 of FIG. 2 as the noise floor detected in step S31 increases. set to a value. The reliability setting unit 54 sets the reliability of the result D1 to a lower value as the noise floor detected in step S31 is smaller.
 ステップS33では、信頼度設定部54は、ステップS31で検知したノイズフロアが大きいほど、高分解能アルゴリズム処理部53が図2のステップS14で高分解能アルゴリズムを用いて行った角度推定処理の結果D2に対する信頼度を低い値に設定する。信頼度設定部54は、ステップS31で検知したノイズフロアが小さいほど、結果D2に対する信頼度を高い値に設定する。 In step S33, the reliability setting unit 54 determines that the higher the noise floor detected in step S31, the higher is the angle estimation processing result D2 performed by the high-resolution algorithm processing unit 53 using the high-resolution algorithm in step S14 of FIG. Set confidence to a low value. The reliability setting unit 54 sets the reliability of the result D2 to a higher value as the noise floor detected in step S31 is smaller.
 ステップS15では、検出処理・トラッキング認識部15は、ステップS13での角度FFTを用いた角度推定処理の結果D1と、ステップS14で高分解能アルゴリズムを用いた角度推定処理の結果D2と、ステップS32及びステップS33で設定された結果D1及びD2のそれぞれに対する信頼度に基づいて、レーダ装置1の走査範囲に存在する物体の距離や方向(角度)等を認識する。例えば、検出処理・トラッキング認識部15は、結果D1と結果D2とのうち、信頼度の値が高い方の結果を用いて走査範囲に存在する物体の認識(存在、大きさ、距離、方向等の認識)を行う。検出処理・トラッキング認識部15は、結果D1と結果D2とに対してそれぞれの信頼度で重み付けをして、結果D1と結果D2との両方の結果を組み合わせて走査範囲に存在する物体の認識を行う場合であってもよい。 In step S15, the detection processing/tracking recognition unit 15 generates the result D1 of the angle estimation processing using the angle FFT in step S13, the result D2 of the angle estimation processing using the high-resolution algorithm in step S14, steps S32 and Based on the reliability of each of the results D1 and D2 set in step S33, the distance, direction (angle), etc. of an object existing within the scanning range of the radar device 1 are recognized. For example, the detection processing/tracking recognition unit 15 uses the result D1 and the result D2, whichever has the higher reliability value, to recognize an object existing in the scanning range (existence, size, distance, direction, etc.). recognition). The detection processing/tracking recognition unit 15 weights the result D1 and the result D2 with respective reliability, and combines the results of both the result D1 and the result D2 to recognize the object existing in the scanning range. It may be the case.
 これによれば、ステップS31で信頼度設定部54が検知したノイズフロアが所定レベルよりも大きい場合に、結果D1の信頼度が結果D2の信頼度よりも高い値に設定されるようにすることができる。仮にノイズが大きい場合に、ロバスト性の低い高分解能アルゴリズムを用いた角度推定処理の結果D2が物体の認識等に用いられると、物体の認識が誤り又は不能となるおそれがある。したがって、ノイズフロアが所定レベルよりも大きい場合に、ロバスト性の高い角度FFT(ビームフォーマ法)を用いた角度推定処理の結果D1が、物体の認識等に用いられるようにすることで、認識精度の低下が抑止される。 According to this, when the noise floor detected by the reliability setting unit 54 in step S31 is larger than a predetermined level, the reliability of the result D1 is set to a value higher than the reliability of the result D2. can be done. If the noise is large and the result D2 of angle estimation processing using a low-robustness high-resolution algorithm is used for object recognition or the like, object recognition may be erroneous or impossible. Therefore, when the noise floor is larger than a predetermined level, the result D1 of angle estimation processing using a highly robust angle FFT (beamformer method) is used for object recognition, etc., thereby increasing the recognition accuracy. decrease in
 反対に、ノイズフロアが所定レベルよりも小さい場合に、結果D2の信頼度が結果D1の信頼度よりも高い値に設定されるようにすることができる。ノイズフロアが所定レベルよりも小さい場合には、ロバスト性の低い高分解能アルゴリズムを用いた角度推定処理の結果D2を用いて適切に物体の認識等を行うことができるので、認識精度の向上が図られる。 Conversely, if the noise floor is below a predetermined level, the reliability of result D2 can be set to a higher value than the reliability of result D1. When the noise floor is lower than a predetermined level, object recognition can be performed appropriately using the result D2 of angle estimation processing using a low-robustness high-resolution algorithm. be done.
<信頼度設定部54の第2形態の処理>
 図4は、信頼度設定部54の第2形態の処理の流れを例示した図である。図4において、ステップS51乃至ステップS53は、図2のステップS13でFFT部52が角度FFTを用いて角度推定処理を行い、その結果D1を得た後、ステップS15で、検出処理・トラッキング認識部15が物体の認識を行う前に実施される。
<Second Mode Processing of Reliability Setting Unit 54>
FIG. 4 is a diagram exemplifying the flow of the second mode of processing by the reliability setting unit 54. As shown in FIG. In FIG. 4, steps S51 to S53 are performed by the FFT unit 52 in step S13 of FIG. 2, where the FFT unit 52 performs angle estimation processing using the angle FFT, and after obtaining the result D1, in step S15, the detection processing/tracking recognition unit 15 is performed before performing object recognition.
 ステップS51では、信頼度設定部54は、ステップS31での結果D1に基づいて、ノイズフロアと、物体が存在する可能性が最も高いピーク領域のレベルとを検出する。図4に示す結果D1において、例えば領域R1には物体が存在しない。信頼度設定部54は、領域R1の距離範囲及び角度範囲に対応する角度スペクトル(FFT部52により得られた角度スペクトル)に基づいて、領域R1の距離範囲及び角度範囲の角度スペクトルの強度(電力)の最小値、最大値、又は、平均値をノイズフロアとして検出(算出)する。図4に示す結果D1において、例えば領域R2は、角度スペクトルの強度に対応した画像濃度がピークであり、物体が存在する可能性が最も高い。信頼度設定部54は、領域R2の距離範囲及び角度範囲に対応する角度スペクトルに基づいて、領域R2の距離範囲及び角度範囲の角度スペクトルの強度の最大値をピーク領域のレベルとして検出する。なお、領域R2の距離範囲及び角度範囲の角度スペクトルの強度の最小値又は平均値をピーク領域のレベルとして検出してもよい。信頼度設定部54は、検出したノイズフロアとピーク領域のレベルとに基づいて、ノイズフロアに対するピーク領域のレベルを電力比(強度比)として算出する。角度スペクトルの強度として、角度スペクトルの各角度における振幅値の絶対値を用いた場合には、電力比はS/N比に相当する。 In step S51, the reliability setting unit 54 detects the noise floor and the level of the peak region where the object is most likely to exist, based on the result D1 in step S31. In result D1 shown in FIG. 4, there is no object in region R1, for example. The reliability setting unit 54 determines the intensity (power ) is detected (calculated) as the noise floor. In the result D1 shown in FIG. 4, for example, the region R2 has the peak of the image density corresponding to the intensity of the angular spectrum, and is most likely to contain an object. The reliability setting unit 54 detects the maximum value of the intensity of the angle spectrum of the distance range and the angle range of the area R2 as the level of the peak area based on the angle spectrum corresponding to the distance range and the angle range of the area R2. Note that the minimum value or average value of the intensity of the angle spectrum in the distance range and the angle range of the region R2 may be detected as the level of the peak region. The reliability setting unit 54 calculates the level of the peak area with respect to the noise floor as a power ratio (intensity ratio) based on the detected noise floor and the level of the peak area. When the absolute value of the amplitude value at each angle of the angle spectrum is used as the intensity of the angle spectrum, the power ratio corresponds to the S/N ratio.
 ステップS52では、信頼度設定部54は、ステップS51で算出した電力比が小さいほど、FFT部52が図2のステップS13で角度FFTを用いて行った角度推定処理の結果D1に対する信頼度を高い値に設置する。信頼度設定部54は、ステップS51で算出した電力比が大きいほど、結果D1の信頼度を低い値に設置する。 In step S52, the reliability setting unit 54 increases the reliability of the result D1 of the angle estimation processing performed by the FFT unit 52 using the angle FFT in step S13 of FIG. 2 as the power ratio calculated in step S51 decreases. set to a value. The reliability setting unit 54 sets the reliability of the result D1 to a lower value as the power ratio calculated in step S51 increases.
 ステップS53では、信頼度設定部54は、ステップS51で算出した電力比が小さいほど、高分解能アルゴリズム処理部53が図2のステップS14で高分解能アルゴリズムを用いて行った角度推定処理の結果D2に対する信頼度を低い値に設定する。信頼度設定部54は、ステップS31で算出した電力費が大きいほど、結果D2に対する信頼度を高い値に設定する。 In step S53, the smaller the power ratio calculated in step S51, the higher the reliability setting unit 54 is. Set confidence to a low value. The reliability setting unit 54 sets the reliability of the result D2 to a higher value as the power cost calculated in step S31 increases.
 ステップS15では、検出処理・トラッキング認識部15は、ステップS13での角度FFTを用いた角度推定処理の結果D1と、ステップS14での高分解能アルゴリズムを用いた角度推定処理の結果D2と、ステップS32及びステップS33で設定された結果D1及びD2のそれぞれに対する信頼度に基づいて、レーダ装置1の走査範囲に存在する物体の距離や方向(角度)等を認識する。例えば、検出処理・トラッキング認識部15は、結果D1と結果D2とのうち、信頼度の値が高い方の結果を用いて走査範囲に存在する物体の認識(存在、大きさ、距離、方向等の認識)を行う。検出処理・トラッキング認識部15は、結果D1と結果D2とに対してそれぞれの信頼度で重み付けをして、結果D1と結果D2との両方の結果を組み合わせて走査範囲に存在する物体の認識を行う場合であってもよい。 In step S15, the detection processing/tracking recognition unit 15 generates the result D1 of the angle estimation processing using the angle FFT in step S13, the result D2 of the angle estimation processing using the high resolution algorithm in step S14, and the result D2 of the angle estimation processing using the high resolution algorithm in step S14. And based on the reliability of each of the results D1 and D2 set in step S33, the distance and direction (angle) of the object existing in the scanning range of the radar device 1 are recognized. For example, the detection processing/tracking recognition unit 15 uses the result D1 and the result D2, whichever has the higher reliability value, to recognize an object existing in the scanning range (existence, size, distance, direction, etc.). recognition). The detection processing/tracking recognition unit 15 weights the result D1 and the result D2 with respective reliability, and combines the results of both the result D1 and the result D2 to recognize the object existing in the scanning range. It may be the case.
 これによれば、ステップS51で信頼度設定部54が算出した電力比が所定レベルよりも小さい場合に、結果D1の信頼度が結果D2の信頼度よりも高い値に設定されるようにすることができる。仮にノイズが大きく電力比が小さい場合に、ロバスト性の低い高分解能アルゴリズムを用いた角度推定処理の結果D2が物体の認識等に用いられると、物体の認識が誤り又は不能となるおそれがある。したがって、電力比が所定レベルよりも小さい場合に、ロバスト性の高い角度FFT(ビームフォーマ法)を用いた角度推定処理の結果D1が、物体の認識等に用いられるようにすることで、認識精度の低下が抑止される。 According to this, when the power ratio calculated by the reliability setting unit 54 in step S51 is smaller than a predetermined level, the reliability of the result D1 is set to a value higher than the reliability of the result D2. can be done. If the noise is large and the power ratio is small, and the result D2 of angle estimation processing using a low-robustness high-resolution algorithm is used for object recognition or the like, object recognition may be erroneous or impossible. Therefore, when the power ratio is smaller than a predetermined level, the result D1 of angle estimation processing using a highly robust angle FFT (beamformer method) is used for object recognition, etc., thereby increasing the recognition accuracy. decrease in
 反対に、電力比が所定レベルよりも大きい場合に、結果D2の信頼度が結果D1の信頼度よりも高い値に設定されるようにすることができる。電力比が所定レベルよりも大きい場合には、ロバスト性の低い高分解能アルゴリズムを用いた角度推定処理の結果D2を用いて適切に物体の認識等を行うことができるので、認識精度の向上が図られる。 Conversely, if the power ratio is greater than a predetermined level, the reliability of result D2 can be set to a value higher than the reliability of result D1. When the power ratio is greater than a predetermined level, object recognition can be performed appropriately using the result D2 of angle estimation processing using a low-robustness high-resolution algorithm. be done.
 なお、信頼度設定部54は、注目する物体(物標)の距離に基づいて信頼度を設定してもよい。例えば、信頼度設定部54は、物標の距離が所定の閾値以下の場合には、角度FFTを用いた角度推定処理の結果D1の信頼度よりも高分解能アルゴリズムを用いた角度推定処理の結果D2の信頼度を高い値に設定する。信頼度設定部54は、物標の距離が所定の閾値以上の場合には、高分解能アルゴリズムを用いた角度推定処理の結果D2の信頼度よりも角度FFT(ビームフォーマ法)を用いた角度推定処理の結果D1の信頼度を高い値に設定するようにしてもよい。 Note that the reliability setting unit 54 may set the reliability based on the distance of the target object (target). For example, when the distance to the target is less than or equal to a predetermined threshold, the reliability setting unit 54 determines that the result of the angle estimation process using the high-resolution algorithm is higher than the reliability of the result D1 of the angle estimation process using the angle FFT. Set the confidence of D2 to a high value. When the distance of the target is equal to or greater than a predetermined threshold, the reliability setting unit 54 selects the angle estimation using the angle FFT (beamformer method) rather than the reliability of the result D2 of the angle estimation processing using the high resolution algorithm. The reliability of the processing result D1 may be set to a high value.
 従来において、レーダ装置における角度推定処理は、FFT又は高分解能アルゴリズムのいずれかが用いられている。FFTを用いた角度推定処理の場合には、ロバスト性が高いが分解能が低いという特徴がある。高分解能アルゴリズムを用いた角度推定処理の場合には、分解能が高いが、FFTと比べてロバスト性が低く、演算量も膨大となる。 Conventionally, either FFT or high-resolution algorithms are used for angle estimation processing in radar equipment. Angle estimation processing using FFT is characterized by high robustness but low resolution. In the case of angle estimation processing using a high-resolution algorithm, resolution is high, but robustness is low compared to FFT, and the amount of computation is enormous.
 本技術は、これらの異なる方式の角度推定処理を組み合わせて、状況に応じて、適切な方式の角度推定処理の結果を物体の認識等の処理に用いるようにしている。したがって、各方式の利点を活かした物体の認識等の処理を行うことができる。 The present technology combines these different methods of angle estimation processing, and depending on the situation, uses the result of the appropriate method of angle estimation processing for processing such as object recognition. Therefore, it is possible to perform processing such as object recognition that makes the most of the advantages of each method.
<レーダ装置の第2の実施の形態>
 図5は、本技術が適用されたレーダ装置の第2の実施の形態の構成を例示した図である。なお、図1の第1の実施の形態のレーダ装置1と共通する部分には同一の符号を付してあり、その詳細な説明は適宜省略する。
<Second Embodiment of Radar Device>
FIG. 5 is a diagram illustrating the configuration of a radar device according to a second embodiment to which the present technology is applied. In addition, the same code|symbol is attached|subjected to the part which is common in the radar apparatus 1 of 1st Embodiment of FIG. 1, and the detailed description is abbreviate|omitted suitably.
 図5のレーダ装置101は、送信アンテナ11、受信アンテナ12、RFフロントエンド部13、レーダ処理部14、及び、検出処理・トラッキング認識部15を有する点で、図1のレーダ装置1と共通する。 The radar device 101 in FIG. 5 is common with the radar device 1 in FIG. .
 図5のレーダ装置101のレーダ処理部14は、FFT部51を有する点で、図1のレーダ装置101のレーダ処理部14と共通する。 The radar processing unit 14 of the radar device 101 of FIG. 5 is common to the radar processing unit 14 of the radar device 101 of FIG.
 ただし、図5のレーダ装置101のレーダ処理部14は、図1の信頼度設定部54を有していない点、図1のFFT部52の代わりにFFT部121が設けられている点、及び、図1の高分解能アルゴリズム処理部53の代わりに高分解能アルゴリズム処理部122が設けられている点で、図1のレーダ装置101のレーダ処理部14と相違する。 However, the radar processing unit 14 of the radar device 101 in FIG. 5 does not have the reliability setting unit 54 in FIG. 1, the FFT unit 121 is provided instead of the FFT unit 52 in FIG. 1 in that a high-resolution algorithm processing unit 122 is provided in place of the high-resolution algorithm processing unit 53 of FIG.
 図5のレーダ装置101のレーダ処理部14において、FFT部121は、FFT部51の距離FFTにより算出された距離スペクトルのデータを取得し、角度FFTの処理(角度方向推定処理)を行う。角度FFTを用いた角度方向推定処理(ビームフォーマ法を用いた到来方向推定)については、図1のレーダ装置1のレーダ処理部14におけるFFT部52と同じであるので説明を省略する。 In the radar processing unit 14 of the radar device 101 in FIG. 5, the FFT unit 121 acquires distance spectrum data calculated by the distance FFT of the FFT unit 51, and performs angle FFT processing (angular direction estimation processing). Angular direction estimation processing using angle FFT (direction-of-arrival estimation using the beamformer method) is the same as that of the FFT unit 52 in the radar processing unit 14 of the radar device 1 in FIG. 1, so description thereof will be omitted.
 FFT部121は、角度FFTを用いた角度方向推定処理の結果、レーダ装置1の走査範囲のうち、高分解能アルゴリズムを用いて角度方向推定処理を行う高分解能走査範囲を決定する。例えば、高分解能走査範囲は、走査範囲の中央付近に存在する物体の範囲であってもよいし、移動物体の範囲であってもよく、重要な範囲を高分解能走査範囲として決定する。FFT部121は、決定した高分解能走査範囲を示す情報(距離範囲及び角度範囲を示す情報)を高分解能アルゴリズム処理部122に供給する。 The FFT unit 121 determines a high-resolution scanning range for angular direction estimation processing using a high-resolution algorithm, out of the scanning range of the radar device 1, as a result of the angular direction estimation processing using the angle FFT. For example, the high-resolution scan range may be the range of objects present near the center of the scan range or the range of moving objects, and the area of interest is determined as the high-resolution scan range. The FFT unit 121 supplies information indicating the determined high resolution scanning range (information indicating distance range and angle range) to the high resolution algorithm processing unit 122 .
 高分解能アルゴリズム処理部122は、A/D変換部36からの各チャネルのIF信号のデータ、又は、FFT部51からの距離・速度スペクトルのデータに基づいて、レーダ装置1の走査範囲のうちのFFT部52から供給された情報が示す高分解能走査範囲に対してのみ高分解能アルゴリズムを用いて高分解能の角度推定処理を行う。高分解能アルゴリズム処理部122は、高分解能走査範囲に対して距離・速度ごとに高分解能アルゴリズムを用いて行った角度推定処理の結果を検出処理・トラッキング認識部15に供給する。 The high-resolution algorithm processing unit 122, based on the data of the IF signal of each channel from the A/D conversion unit 36 or the data of the distance/velocity spectrum from the FFT unit 51, the scanning range of the radar device 1 High-resolution angle estimation processing is performed using a high-resolution algorithm only for the high-resolution scanning range indicated by the information supplied from the FFT unit 52 . The high-resolution algorithm processing unit 122 supplies the detection processing/tracking recognition unit 15 with the results of the angle estimation processing performed using the high-resolution algorithm for each distance and speed in the high-resolution scanning range.
<レーダ装置101のレーダ処理部14の処理の流れ>
 図6は、レーダ装置101のレーダ処理部14が実施する処理の流れを表した図である。
<Processing Flow of Radar Processing Unit 14 of Radar Device 101>
FIG. 6 is a diagram showing the flow of processing performed by the radar processing unit 14 of the radar device 101. As shown in FIG.
 図6において、ステップS81は、FFT部51がIF信号のデータを用いて、距離FFT、及び、速度FFTにより、各チャネルにおける距離スペクトル及び速度スペクトルを算出した後に行われる。 In FIG. 6, step S81 is performed after the FFT unit 51 uses the data of the IF signal to calculate the distance spectrum and velocity spectrum in each channel by distance FFT and velocity FFT.
 ステップS81では、FFT部121は、FFT部51で算出された各チャネルの距離・速度スペクトルのデータを用いて、角度FFTにより角度スペクトルを算出し、角度推定処理を行う。角度スペクトルは、距離・速度スペクトルの距離範囲及び速度範囲内における所定値おきの距離ごと及び速度ごとに算出される。図6中の結果D1は、FFT部121が角度FFTを用いて角度推定処理を行った結果を例示した図である。結果D1では、レーダ装置1の走査範囲内において、レーダ装置1からの所定間隔おきの各距離に対して、角度FFTを用いて算出された角度スペクトルの強度が、対応する距離及び角度の位置の画像濃度で示されている。これによれば、画像濃度の高い領域(角度スペクトルの強度が高い領域)ほど、物体が存在する可能性が高い領域として表される。 In step S81, the FFT unit 121 uses the distance/velocity spectrum data of each channel calculated by the FFT unit 51 to calculate the angle spectrum by angle FFT, and performs angle estimation processing. The angle spectrum is calculated for each distance and speed at predetermined intervals within the distance range and speed range of the distance/speed spectrum. A result D1 in FIG. 6 is a diagram exemplifying the result of angle estimation processing performed by the FFT unit 121 using the angle FFT. In the result D1, the intensity of the angle spectrum calculated using the angle FFT for each distance from the radar device 1 at predetermined intervals within the scanning range of the radar device 1 is compared with the corresponding distance and angle position. It is shown in image density. According to this, a region with a higher image density (a region with a higher angular spectrum intensity) is represented as a region with a higher possibility that an object exists.
 FFT部121は、結果D1に基づいて、レーダ装置101の走査範囲のうち、予め決められた条件に適合する範囲を高分解能走査範囲として決定する。図6中の結果D1に対して、例えば、高分解能走査範囲P1がFFT部121により決定されたとする。 Based on the result D1, the FFT unit 121 determines a range that meets predetermined conditions among the scanning range of the radar device 101 as a high-resolution scanning range. Assume, for example, that the FFT unit 121 determines the high-resolution scanning range P1 for the result D1 in FIG.
 ステップS82では、高分解能アルゴリズム処理部53は、高分解能アルゴリズムを用いた高分解能の角度推定処理を、ステップS81で決められた高分解能走査範囲P1に対してのみ行う。図6中の結果D2は、高分解能アルゴリズム処理部53が高分解能アルゴリズムを用いて角度推定処理を行った結果を例示した図である。結果D2では、レーダ装置1の走査範囲内のうちステップS81で決められた高分解能走査範囲P1に存在する物体の位置(距離及び角度)のみが検出される。 In step S82, the high-resolution algorithm processing unit 53 performs high-resolution angle estimation processing using the high-resolution algorithm only on the high-resolution scanning range P1 determined in step S81. Result D2 in FIG. 6 is a diagram exemplifying the result of angle estimation processing performed by the high-resolution algorithm processing unit 53 using the high-resolution algorithm. In the result D2, only the position (distance and angle) of the object existing in the high-resolution scanning range P1 determined in step S81 within the scanning range of the radar device 1 is detected.
 ステップS83では、検出処理・トラッキング認識部15は、ステップS81で角度FFT(ビームフォーマ法)を用いた角度推定処理により得られた結果D1とステップS82で高分解能アルゴリズムを用いた角度推定処理により得られた結果D2とに基づいて、走査範囲に存在する物体の認識(物体の存在、大きさ、距離、方向等の認識を含む)を行う。このとき、検出処理・トラッキング認識部15は、結果D1における高分解能走査範囲P1の情報を、結果D2における高分解能走査範囲P2の情報から適宜取得する。 In step S83, the detection processing/tracking recognition unit 15 combines the result D1 obtained by the angle estimation processing using the angle FFT (beamformer method) in step S81 and the angle estimation processing using the high-resolution algorithm in step S82. Based on the obtained result D2, an object existing in the scanning range is recognized (including recognition of existence, size, distance, direction, etc. of the object). At this time, the detection processing/tracking recognition unit 15 appropriately acquires the information of the high resolution scanning range P1 in the result D1 from the information of the high resolution scanning range P2 in the result D2.
 本技術が適用されたレーダ装置の第2の実施の形態であるレーダ装置101によれば、レーダ装置101の走査範囲のうち、重要な範囲のみの分解能を高めることができる。重要でない範囲についても分解能が低いFFT(ビームフォーマ法)により情報が得られる。これにより、演算処理の効率化が図られ、演算処理に要する負荷及び時間の低減が図られる。 According to the radar device 101, which is the second embodiment of the radar device to which the present technology is applied, the resolution of only an important range within the scanning range of the radar device 101 can be increased. Low resolution FFT (beamformer method) provides information even for unimportant ranges. As a result, the efficiency of arithmetic processing can be improved, and the load and time required for arithmetic processing can be reduced.
 本技術は以下のような構成も取ることができる。
(1)
 アンテナからの受信信号に対して、フーリエ変換処理を実行して第1の角度スペクトルを算出する第1のスペクトル処理部と、
 前記受信信号に対して、高分解能アルゴリズムを実行して第2の角度スペクトルを算出する第2のスペクトル処理部と、
 前記第1の角度スペクトルと前記第2の角度スペクトルとをそれぞれ出力する出力部と
 を備える情報処理装置。
(2)
 前記第1の角度スペクトルに関する第1の信頼度と前記第2の角度スペクトルに関する第2の信頼度とを算出する信頼度算出部と、
 前記第1の信頼度及び前記第2の信頼度に基づいて、前記第1の角度スペクトルと前記第2の角度スペクトルとを組み合わせて物体認識を行う認識部と
 を更に備える
 前記(1)に記載の情報処理装置。
(3)
 前記信頼度算出部は、前記第1の角度スペクトルのノイズが所定レベルより大きい場合に、前記第1の信頼度を前記第2の信頼度よりも高い値とする
 前記(2)に記載の情報処理装置。
(4)
 前記信頼度算出部は、前記第1の角度スペクトルのノイズが大きいほど、前記第1の信頼度を高い値とする
 前記(2)又は(3)に記載の情報処理装置。
(5)
 前記信頼度算出部は、前記第1の角度スペクトルのノイズが大きいほど、前記第2の信頼度を低い値とする
 前記(2)乃至(4)のいずれかに記載の情報処理装置。
(6)
 前記信頼度算出部は、前記第1の角度スペクトルのノイズのレベルに対する前記第1の角度スペクトルの強度の最大値の比が所定レベルよりも小さい場合に、前記第1の信頼度を前記第2の信頼度よりも高い値とする
 前記(2)に記載の情報処理装置。
(7)
 前記信頼度算出部は、前記第1の角度スペクトルのノイズのレベルに対する前記第1の角度スペクトルの強度の最大値の比が小さいほど、前記第1の信頼度を高い値とする
 前記(2)又は(6)に記載の情報処理装置。
(8)
 前記信頼度算出部は、前記第1の角度スペクトルのノイズのレベルに対する前記第1の角度スペクトルの強度の最大値の比が小さいほど、前記第2の信頼度を低い値とする
 前記(2)、(6)、又は、(7)に記載の情報処理装置。
(9)
 前記信頼度算出部は、物体の距離に基づいて前記第1の信頼度と前記第2の信頼度とを算出する
 前記(2)乃至(8)のいずれかに記載の情報処理装置。
(10)
 前記信頼度算出部は、物体の距離が所定の閾値以下の場合に、前記第1の信頼度よりも前記第2の信頼度を高い値とする
 前記(9)に記載の情報処理装置。
(11)
 前記信頼度算出部は、物体の距離が所定の閾値以上の場合に、前記第2の信頼度よりも前記第1の信頼度を高い値とする
 前記(9)又は(10)に記載の情報処理装置。
(12)
 前記第2のスペクトル処理部は、前記第1のスペクトル処理部が前記第1の角度スペクトルを算出する角度範囲に対して一部の範囲の前記第1の角度スペクトルを算出する
 前記(1)に記載の情報処理装置。
(13)
 前記アンテナは、複数のアンテナからなり、
 前記受信信号は、前記複数のアンテナのそれぞれが受信した複数チャネルの受信信号からなる
 前記(1)乃至(12)のいずかに記載の情報処理装置。
(14)
 前記第1のスペクトル処理部は、
 前記複数チャネルの受信信号のそれぞれに対して前記フーリエ変換処理を実行することにより、前記複数チャネルの受信信号のそれぞれに対する前記複数チャネルの周波数スペクトルを算出し、前記複数チャネルの周波数スペクトルの同一周波数に対する成分値からなる成分信号を前記フーリエ変換処理することにより、前記第1の角度スペクトルを算出する
 前記(13)に記載の情報処理装置。
(15)
 前記1のスペクトル処理部及び前記第2のスペクトル処理部は、それぞれ前記アンテナからの所定間隔おきの距離ごと及び速度ごとに前記第1の角度スペクトル及び前記第2の角度スペクトルを算出する
 前記(1)乃至(14)のいずれかに記載の情報処理装置。
(16)
 前記1のスペクトル処理部は、
 ビームフォーマ法を用いて前記第1の角度スペクトルを算出する
 前記(1)乃至(15)のいずれかに記載の情報処理装置。
(17)
 前記第2のスペクトル処理部は、
 前記高分解能アルゴリズムとして、Capon法、CS法、線形予測法、Pisarenko法、MUSIC法、及び、ESPRIT法のうちのいずれかの到来方向推定法を用いて前記第2の角度スペクトルを算出する
 前記(1)乃至(16)のいずれかに記載の情報処理装置。
(18)
 第1のスペクトル処理部と、
 第2のスペクトル処理部と、
 出力部と
 を有する情報処理装置の
 前記第1のスペクトル処理部が、アンテナからの受信信号に対して、フーリエ変換処理を実行して第1の角度スペクトルを算出し、
 前記第2のスペクトル処理部が、前記受信信号に対して、高分解能アルゴリズムを実行して第2の角度スペクトルを算出し、
 前記出力部が、前記第1の角度スペクトルと前記第2の角度スペクトルとをそれぞれ出力する
 情報処理方法。
The present technology can also take the following configurations.
(1)
a first spectrum processing unit that performs Fourier transform processing on a signal received from an antenna to calculate a first angle spectrum;
a second spectrum processing unit that executes a high-resolution algorithm on the received signal to calculate a second angular spectrum;
An information processing apparatus comprising: an output unit that outputs the first angle spectrum and the second angle spectrum, respectively.
(2)
a reliability calculation unit that calculates a first reliability regarding the first angle spectrum and a second reliability regarding the second angle spectrum;
The above-described (1), further comprising: a recognition unit that performs object recognition by combining the first angle spectrum and the second angle spectrum based on the first reliability and the second reliability. information processing equipment.
(3)
The information according to (2), wherein the reliability calculation unit sets the first reliability to a higher value than the second reliability when noise in the first angular spectrum is greater than a predetermined level. processing equipment.
(4)
The information processing apparatus according to (2) or (3), wherein the reliability calculation unit sets the first reliability to a higher value as the noise of the first angle spectrum increases.
(5)
The information processing apparatus according to any one of (2) to (4), wherein the reliability calculation unit sets the second reliability to a lower value as the noise of the first angular spectrum increases.
(6)
The reliability calculation unit calculates the first reliability from the second The information processing apparatus according to (2) above, wherein the value is higher than the reliability of .
(7)
The reliability calculation unit sets the first reliability to a higher value as the ratio of the maximum value of the intensity of the first angle spectrum to the noise level of the first angle spectrum decreases. Or the information processing device according to (6).
(8)
The reliability calculation unit sets the second reliability to a lower value as the ratio of the maximum value of the intensity of the first angle spectrum to the noise level of the first angle spectrum decreases. , (6), or the information processing apparatus according to (7).
(9)
The information processing apparatus according to any one of (2) to (8), wherein the reliability calculation unit calculates the first reliability and the second reliability based on a distance of an object.
(10)
The information processing apparatus according to (9), wherein the reliability calculation unit sets the second reliability to a higher value than the first reliability when the distance of the object is equal to or less than a predetermined threshold.
(11)
The information according to (9) or (10), wherein the reliability calculation unit sets the first reliability to a higher value than the second reliability when the distance of the object is equal to or greater than a predetermined threshold. processing equipment.
(12)
The second spectrum processing unit calculates the first angle spectrum in a partial range with respect to the angle range for which the first spectrum processing unit calculates the first angle spectrum. The information processing device described.
(13)
the antenna comprises a plurality of antennas,
The information processing apparatus according to any one of (1) to (12), wherein the received signal is composed of received signals of a plurality of channels received by each of the plurality of antennas.
(14)
The first spectrum processing unit,
calculating the frequency spectrum of the plurality of channels for each of the received signals of the plurality of channels by performing the Fourier transform processing on each of the received signals of the plurality of channels; The information processing apparatus according to (13), wherein the first angle spectrum is calculated by performing the Fourier transform process on a component signal composed of component values.
(15)
The first spectrum processing unit and the second spectrum processing unit calculate the first angle spectrum and the second angle spectrum for each distance and speed at predetermined intervals from the antenna, respectively. ) to (14).
(16)
The spectrum processing unit of 1,
The information processing device according to any one of (1) to (15), wherein the first angle spectrum is calculated using a beamformer method.
(17)
The second spectrum processing unit,
As the high-resolution algorithm, the Capon method, the CS method, the linear prediction method, the Pisarenko method, the MUSIC method, and any one of the ESPRIT method for estimating the direction of arrival to calculate the second angle spectrum. The information processing apparatus according to any one of 1) to (16).
(18)
a first spectrum processing unit;
a second spectral processing unit;
The first spectrum processing unit of the information processing apparatus having an output unit performs Fourier transform processing on a signal received from an antenna to calculate a first angle spectrum,
The second spectrum processing unit calculates a second angle spectrum by executing a high-resolution algorithm on the received signal,
The information processing method, wherein the output unit outputs the first angle spectrum and the second angle spectrum, respectively.
 1,101 レーダ装置, 11 送信アンテナ, 12 受信アンテナ, 13 RFフロントエンド部, 14 レーダ処理部, 15 検出処理・トラッキング認識部, 51,52,121 FFT部, 53,122 高分解能アルゴリズム処理部, 54 信頼度設定部 1, 101 radar device, 11 transmitting antenna, 12 receiving antenna, 13 RF front end unit, 14 radar processing unit, 15 detection processing/tracking recognition unit, 51, 52, 121 FFT unit, 53, 122 high resolution algorithm processing unit, 54 Reliability setting part

Claims (18)

  1.  アンテナからの受信信号に対して、フーリエ変換処理を実行して第1の角度スペクトルを算出する第1のスペクトル処理部と、
     前記受信信号に対して、高分解能アルゴリズムを実行して第2の角度スペクトルを算出する第2のスペクトル処理部と、
     前記第1の角度スペクトルと前記第2の角度スペクトルとをそれぞれ出力する出力部と
     を備える情報処理装置。
    a first spectrum processing unit that performs Fourier transform processing on a signal received from an antenna to calculate a first angle spectrum;
    a second spectrum processing unit that executes a high-resolution algorithm on the received signal to calculate a second angular spectrum;
    An information processing apparatus comprising: an output unit that outputs the first angle spectrum and the second angle spectrum, respectively.
  2.  前記第1の角度スペクトルに関する第1の信頼度と前記第2の角度スペクトルに関する第2の信頼度とを算出する信頼度算出部と、
     前記第1の信頼度及び前記第2の信頼度に基づいて、前記第1の角度スペクトルと前記第2の角度スペクトルとを組み合わせて物体認識を行う認識部と
     を更に備える
     請求項1に記載の情報処理装置。
    a reliability calculation unit that calculates a first reliability regarding the first angle spectrum and a second reliability regarding the second angle spectrum;
    The recognition unit according to claim 1, further comprising a recognition unit that performs object recognition by combining the first angle spectrum and the second angle spectrum based on the first reliability and the second reliability. Information processing equipment.
  3.  前記信頼度算出部は、前記第1の角度スペクトルのノイズが所定レベルより大きい場合に、前記第1の信頼度を前記第2の信頼度よりも高い値とする
     請求項2に記載の情報処理装置。
    The information processing according to claim 2, wherein the reliability calculation unit sets the first reliability to a higher value than the second reliability when noise in the first angular spectrum is greater than a predetermined level. Device.
  4.  前記信頼度算出部は、前記第1の角度スペクトルのノイズが大きいほど、前記第1の信頼度を高い値とする
     請求項2に記載の情報処理装置。
    The information processing apparatus according to claim 2, wherein the reliability calculation unit sets the first reliability to a higher value as the noise of the first angle spectrum increases.
  5.  前記信頼度算出部は、前記第1の角度スペクトルのノイズが大きいほど、前記第2の信頼度を低い値とする
     請求項2に記載の情報処理装置。
    The information processing apparatus according to claim 2, wherein the reliability calculation unit sets the second reliability to a lower value as the noise of the first angle spectrum increases.
  6.  前記信頼度算出部は、前記第1の角度スペクトルのノイズのレベルに対する前記第1の角度スペクトルの強度の最大値の比が所定レベルよりも小さい場合に、前記第1の信頼度を前記第2の信頼度よりも高い値とする
     請求項2に記載の情報処理装置。
    The reliability calculation unit calculates the first reliability from the second The information processing apparatus according to claim 2, wherein the value is higher than the reliability of .
  7.  前記信頼度算出部は、前記第1の角度スペクトルのノイズのレベルに対する前記第1の角度スペクトルの強度の最大値の比が小さいほど、前記第1の信頼度を高い値とする
     請求項2に記載の情報処理装置。
    3. The reliability calculation unit sets the first reliability to a higher value as the ratio of the maximum value of the intensity of the first angle spectrum to the noise level of the first angle spectrum is smaller. The information processing device described.
  8.  前記信頼度算出部は、前記第1の角度スペクトルのノイズのレベルに対する前記第1の角度スペクトルの強度の最大値の比が小さいほど、前記第2の信頼度を低い値とする
     請求項2に記載の情報処理装置。
    3. The reliability calculation unit sets the second reliability to a lower value as the ratio of the maximum value of the intensity of the first angle spectrum to the noise level of the first angle spectrum decreases. The information processing device described.
  9.  前記信頼度算出部は、物体の距離に基づいて前記第1の信頼度と前記第2の信頼度とを算出する
     請求項2に記載の情報処理装置。
    The information processing apparatus according to claim 2, wherein the reliability calculation unit calculates the first reliability and the second reliability based on a distance of an object.
  10.  前記信頼度算出部は、物体の距離が所定の閾値以下の場合に、前記第1の信頼度よりも前記第2の信頼度を高い値とする
     請求項9に記載の情報処理装置。
    The information processing apparatus according to claim 9, wherein the reliability calculation unit sets the second reliability to a higher value than the first reliability when the distance of the object is equal to or less than a predetermined threshold.
  11.  前記信頼度算出部は、物体の距離が所定の閾値以上の場合に、前記第2の信頼度よりも前記第1の信頼度を高い値とする
     請求項9に記載の情報処理装置。
    The information processing apparatus according to claim 9, wherein the reliability calculation unit sets the first reliability to a higher value than the second reliability when the distance of the object is equal to or greater than a predetermined threshold.
  12.  前記第2のスペクトル処理部は、前記第1のスペクトル処理部が前記第1の角度スペクトルを算出する角度範囲に対して一部の範囲の前記第1の角度スペクトルを算出する
     請求項1に記載の情報処理装置。
    2. The second spectrum processing section according to claim 1, wherein the first spectrum processing section calculates the first angle spectrum within a partial range of the angle range for which the first spectrum processing section calculates the first angle spectrum. information processing equipment.
  13.  前記アンテナは、複数のアンテナからなり、
     前記受信信号は、前記複数のアンテナのそれぞれが受信した複数チャネルの受信信号からなる
     請求項1に記載の情報処理装置。
    the antenna comprises a plurality of antennas,
    The information processing apparatus according to claim 1, wherein the received signal comprises received signals of a plurality of channels received by each of the plurality of antennas.
  14.  前記第1のスペクトル処理部は、
     前記複数チャネルの受信信号のそれぞれに対して前記フーリエ変換処理を実行することにより、前記複数チャネルの受信信号のそれぞれに対する前記複数チャネルの周波数スペクトルを算出し、前記複数チャネルの周波数スペクトルの同一周波数に対する成分値からなる成分信号を前記フーリエ変換処理することにより、前記第1の角度スペクトルを算出する
     請求項13に記載の情報処理装置。
    The first spectrum processing unit,
    calculating the frequency spectrum of the plurality of channels for each of the received signals of the plurality of channels by performing the Fourier transform processing on each of the received signals of the plurality of channels; The information processing apparatus according to claim 13, wherein the first angle spectrum is calculated by subjecting a component signal composed of component values to the Fourier transform process.
  15.  前記1のスペクトル処理部及び前記第2のスペクトル処理部は、それぞれ前記アンテナからの所定間隔おきの距離ごと及び速度ごとに前記第1の角度スペクトル及び前記第2の角度スペクトルを算出する
     請求項1に記載の情報処理装置。
    2. The first spectrum processing unit and the second spectrum processing unit calculate the first angle spectrum and the second angle spectrum for each distance and speed at predetermined intervals from the antenna, respectively. The information processing device according to .
  16.  前記1のスペクトル処理部は、
     ビームフォーマ法を用いて前記第1の角度スペクトルを算出する
     請求項1に記載の情報処理装置。
    The spectrum processing unit of 1,
    The information processing apparatus according to claim 1, wherein the first angular spectrum is calculated using a beamformer method.
  17.  前記第2のスペクトル処理部は、
     前記高分解能アルゴリズムとして、Capon法、CS法、線形予測法、Pisarenko法、MUSIC法、及び、ESPRIT法のうちのいずれかの到来方向推定法を用いて前記第2の角度スペクトルを算出する
     請求項1に記載の情報処理装置。
    The second spectrum processing unit,
    The second angular spectrum is calculated using any direction-of-arrival estimation method among the Capon method, CS method, linear prediction method, Pisarenko method, MUSIC method, and ESPRIT method as the high-resolution algorithm. 1. The information processing device according to 1.
  18.  第1のスペクトル処理部と、
     第2のスペクトル処理部と、
     出力部と
     を有する情報処理装置の
     前記第1のスペクトル処理部が、アンテナからの受信信号に対して、フーリエ変換処理を実行して第1の角度スペクトルを算出し、
     前記第2のスペクトル処理部が、前記受信信号に対して、高分解能アルゴリズムを実行して第2の角度スペクトルを算出し、
     前記出力部が、前記第1の角度スペクトルと前記第2の角度スペクトルとをそれぞれ出力する
     情報処理方法。
    a first spectrum processing unit;
    a second spectral processing unit;
    The first spectrum processing unit of the information processing apparatus having an output unit performs Fourier transform processing on a signal received from an antenna to calculate a first angle spectrum,
    The second spectrum processing unit calculates a second angle spectrum by executing a high-resolution algorithm on the received signal,
    The information processing method, wherein the output unit outputs the first angle spectrum and the second angle spectrum, respectively.
PCT/JP2022/004216 2021-05-24 2022-02-03 Information processing device and information processing method WO2022249552A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021087032A JP2022180111A (en) 2021-05-24 2021-05-24 Information processing device and information processing method
JP2021-087032 2021-05-24

Publications (1)

Publication Number Publication Date
WO2022249552A1 true WO2022249552A1 (en) 2022-12-01

Family

ID=84229717

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/004216 WO2022249552A1 (en) 2021-05-24 2022-02-03 Information processing device and information processing method

Country Status (2)

Country Link
JP (1) JP2022180111A (en)
WO (1) WO2022249552A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001091617A (en) * 1999-09-24 2001-04-06 Toyota Central Res & Dev Lab Inc Target azimuth detecting device
JP2003014843A (en) * 2001-07-02 2003-01-15 Mitsubishi Electric Corp Radar apparatus
JP2006226723A (en) * 2005-02-15 2006-08-31 Toshiba Corp Incoming direction estimation device and incoming direction estimation method
JP2011013018A (en) * 2009-06-30 2011-01-20 Mitsubishi Electric Corp High-resolution signal processing apparatus and high-resolution signal processing method
JP2016080640A (en) * 2014-10-22 2016-05-16 株式会社東芝 Autonomous position identification system
JP2017166998A (en) * 2016-03-16 2017-09-21 株式会社デンソー Target detection device
JP2020003334A (en) * 2018-06-28 2020-01-09 日立オートモティブシステムズ株式会社 Radar device and radar system
JP2020067455A (en) * 2018-10-19 2020-04-30 インフィニオン テクノロジーズ アクチエンゲゼルシャフトInfineon Technologies AG Fmcw radar for suppressing disturbing signal

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001091617A (en) * 1999-09-24 2001-04-06 Toyota Central Res & Dev Lab Inc Target azimuth detecting device
JP2003014843A (en) * 2001-07-02 2003-01-15 Mitsubishi Electric Corp Radar apparatus
JP2006226723A (en) * 2005-02-15 2006-08-31 Toshiba Corp Incoming direction estimation device and incoming direction estimation method
JP2011013018A (en) * 2009-06-30 2011-01-20 Mitsubishi Electric Corp High-resolution signal processing apparatus and high-resolution signal processing method
JP2016080640A (en) * 2014-10-22 2016-05-16 株式会社東芝 Autonomous position identification system
JP2017166998A (en) * 2016-03-16 2017-09-21 株式会社デンソー Target detection device
JP2020003334A (en) * 2018-06-28 2020-01-09 日立オートモティブシステムズ株式会社 Radar device and radar system
JP2020067455A (en) * 2018-10-19 2020-04-30 インフィニオン テクノロジーズ アクチエンゲゼルシャフトInfineon Technologies AG Fmcw radar for suppressing disturbing signal

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
IJAZ TOOBA; BHATTI AAMER IQBAL: "Comparison of Monopulse and MUSIC Estimator for Angular Parameters Estimation", 2019 INTERNATIONAL CONFERENCE ON ELECTRICAL, COMMUNICATION, AND COMPUTER ENGINEERING (ICECCE), IEEE, 24 July 2019 (2019-07-24) - 25 July 2019 (2019-07-25), pages 1 - 6, XP033678299, DOI: 10.1109/ICECCE47252.2019.8940709 *

Also Published As

Publication number Publication date
JP2022180111A (en) 2022-12-06

Similar Documents

Publication Publication Date Title
US11874395B2 (en) Radar processing chain for frequency-modulated continuous wave radar systems
CN108885254B (en) Object detection device
WO2010134381A1 (en) Radar device
JP3821688B2 (en) Radar equipment
JP2009162688A (en) Electronic scanning radar device, and received wave direction estimation method and program
JP2009156582A (en) Electronic scanning type radar system, and method, and program for estimating direction of received wave
JP2006284181A (en) On-vehicle radar device
US10663561B2 (en) Radar signal processing device
JP5114217B2 (en) Electronic scanning radar apparatus, received wave direction estimation method, and received wave direction estimation program
US10761205B2 (en) Systems for determining target direction and methods therefor
JP2009025159A (en) Radar device
JP2009257884A (en) Radar device
JP2016151424A (en) Radar system
JP2019168255A (en) Pulse compression radar device and radar signal processing method therefor
JP2013152239A (en) Electronic scanning radar device, control method of the same and program
Kim et al. Extrapolation-RELAX estimator based on spectrum partitioning for DOA estimation of FMCW radar
JP2012194051A (en) Electronic scanning radar device, received wave direction estimation method, and program
JP3865761B2 (en) Radar equipment
KR102158740B1 (en) SYSTEM AND METHOD FOR ESTIMATING RADAR DoA
WO2022249552A1 (en) Information processing device and information processing method
US11960023B2 (en) Radar device
JP2010237087A (en) Radar apparatus and method for measuring radio wave arrival direction using the same
JP2019200082A (en) Azimuth calculation device and azimuth calculation method
Dixit et al. Detection and localization of targets using millimeter wave radars: An experimental study
KR20140088683A (en) Apparatus, method and computer readable recording medium for detecting an object using an automotive radar

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22810838

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22810838

Country of ref document: EP

Kind code of ref document: A1