WO2022249400A1 - Soil microorganism observation device - Google Patents

Soil microorganism observation device Download PDF

Info

Publication number
WO2022249400A1
WO2022249400A1 PCT/JP2021/020233 JP2021020233W WO2022249400A1 WO 2022249400 A1 WO2022249400 A1 WO 2022249400A1 JP 2021020233 W JP2021020233 W JP 2021020233W WO 2022249400 A1 WO2022249400 A1 WO 2022249400A1
Authority
WO
WIPO (PCT)
Prior art keywords
nutrient solution
air
isolation
chamber
channel
Prior art date
Application number
PCT/JP2021/020233
Other languages
French (fr)
Japanese (ja)
Inventor
真奈美 伊藤
和宏 高谷
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to PCT/JP2021/020233 priority Critical patent/WO2022249400A1/en
Publication of WO2022249400A1 publication Critical patent/WO2022249400A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • C12M1/34Measuring or testing with condition measuring or sensing means, e.g. colony counters
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/02Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms

Abstract

This soil microorganism observation device has: a chamber part for culturing soil microorganisms; a nutrient liquid flow channel part through which a nutrient liquid flows; a separation part that communicates the chamber part and the nutrient liquid flow channel part; an optically transparent culturing plate having an air flow channel that allows air to flow in and out of the separation part; and an air pressure control unit that forms air bubbles by feeding air through the air flow channel into a fluid inside of the separation part, and that, by controlling the air pressure, changes the size of the air bubbles to change the effective flow channel area of the separation part.

Description

土壌微生物観察デバイスSoil microorganism observation device
 本発明は、土壌微生物のコロニー(細胞集団)を観察するための土壌微生物観察デバイスに関する。 The present invention relates to a soil microorganism observation device for observing colonies (cell populations) of soil microorganisms.
 土壌は不透明であるため、直接的な観察が難しく、その生態系についての研究は未解明の部分が多い。 Because the soil is opaque, it is difficult to directly observe it, and many aspects of its ecosystem remain unexplained.
 土壌研究のアプローチのひとつとして、マイクロ流体デバイス的アプローチが知られている。マイクロ流体デバイス的アプローチは、土壌の物理的性質などを再現したマイクロデバイスを構築し、その中における微生物を観察することで、土壌エコシステムを解明するアプローチである。 A microfluidic device approach is known as one of the approaches to soil research. The microfluidic device approach is an approach to elucidate the soil ecosystem by constructing a microdevice that reproduces the physical properties of soil and observing microorganisms in it.
 非特許文献1と非特許文献2は、マイクロ流体デバイス的アプローチに使用される観察デバイスを開示している。非特許文献1は、脂質膜を利用した流路を有する培養プレートを用いた観察デバイスを開示している。非特許文献2は、網目状流路を利用した流路を有する培養プレートを用いた観察デバイスを開示している。 Non-Patent Document 1 and Non-Patent Document 2 disclose an observation device used in a microfluidic device approach. Non-Patent Document 1 discloses an observation device using a culture plate having a channel using a lipid membrane. Non-Patent Document 2 discloses an observation device using a culture plate having channels using mesh-like channels.
 本発明の目的は、土壌微生物を培養するチャンバ部と栄養液を流す栄養液流路部との間の隔離度を制御しながら、土壌微生物のコロニーを観察可能にする土壌微生物観察デバイスを提供することである。 SUMMARY OF THE INVENTION An object of the present invention is to provide a soil microorganism observation device that enables observation of colonies of soil microorganisms while controlling the degree of isolation between a chamber portion for culturing soil microorganisms and a nutrient solution channel portion for flowing nutrient solution. That is.
 実施形態に係る土壌微生物観察デバイスは、土壌微生物を培養するチャンバ部と、栄養液を流す栄養液流路部と、前記チャンバ部と前記栄養液流路部を連通する隔離部と、前記隔離部に空気を出入りさせる空気流路とを有する光学的に透明な培養プレートを備える。土壌微生物観察デバイスはさらに、前記空気流路を介して前記隔離部内の液体中に空気を送り込むことで気泡を形成するとともに、前記空気の圧力を制御することにより、前記気泡の大きさを変化させて前記隔離部の実効流路面積を変化させる空気圧制御部を備える。 A soil microorganism observation device according to an embodiment includes a chamber portion for culturing soil microorganisms, a nutrient fluid flow path portion for flowing a nutrient fluid, an isolation portion for communicating between the chamber portion and the nutrient fluid flow path portion, and the isolation portion. and an optically transparent culture plate with air channels for letting air in and out of the chamber. The device for observing soil microorganisms further forms air bubbles by sending air into the liquid in the isolation section through the air flow path, and changes the size of the air bubbles by controlling the pressure of the air. and an air pressure control section for changing the effective flow area of the isolation section.
 土壌微生物を培養するチャンバ部と栄養液を流す栄養液流路部との間の隔離度を制御しながら、土壌微生物のコロニーを観察可能にする土壌微生物観察デバイスが提供される。 A soil microorganism observation device is provided that enables observation of colonies of soil microorganisms while controlling the degree of isolation between a chamber portion for culturing soil microorganisms and a nutrient solution channel portion for flowing nutrient solution.
図1は、実施形態に係る土壌微生物観察デバイスを模式的に示す上面図である。FIG. 1 is a top view schematically showing a soil microorganism observation device according to an embodiment. 図2は、図1の土壌微生物観察デバイスのA-A断面を示す概略図である。FIG. 2 is a schematic diagram showing the AA cross section of the device for observing soil microorganisms in FIG. 図3は、図2の培養プレートのB-B断面を示す概略図である。FIG. 3 is a schematic diagram showing a BB section of the culture plate of FIG. 図4は、図1の土壌微生物観察デバイスのC-C断面を示す概略図である。FIG. 4 is a schematic diagram showing a CC cross section of the device for observing soil microorganisms in FIG. 図5は、図1の土壌微生物観察デバイスのD-D断面を示す概略図である。FIG. 5 is a schematic diagram showing a DD section of the device for observing soil microorganisms in FIG.
 以下、図1ないし図5を参照して、実施形態に係る土壌微生物観察デバイス40について説明する。 A soil microorganism observation device 40 according to an embodiment will be described below with reference to FIGS.
 図1は、土壌微生物観察デバイス40を模式的に示す上面図である。図1に示すように、土壌微生物観察デバイス40は、光学的に透明な培養プレート10を有する。 FIG. 1 is a top view schematically showing the soil microorganism observation device 40. FIG. As shown in FIG. 1, the soil microorganism observation device 40 has an optically transparent culture plate 10. As shown in FIG.
 培養プレート10は、土壌微生物を培養する4つのチャンバ部21と、栄養液を流す栄養液流路部22と、チャンバ部21のそれぞれと栄養液流路部22を連通する4つの隔離部23と、隔離部23のそれぞれに空気を出入りさせる4つの空気流路24とを有する。 The culture plate 10 includes four chamber portions 21 for culturing soil microorganisms, a nutrient fluid channel portion 22 for flowing a nutrient fluid, and four isolation portions 23 for communicating the chamber portions 21 with the nutrient fluid channel portion 22 respectively. , and four air passages 24 for allowing air to flow in and out of each of the isolation portions 23 .
 培養プレート10はまた、栄養液流路部22に栄養液を供給する栄養液供給口25と、栄養液流路部22から栄養液を排出する栄養液排出口26と、土壌微生物を含む培養液61をチャンバ部21のそれぞれに流し込むための4つの培養液設置部27とを有する。 The culture plate 10 also includes a nutrient supply port 25 for supplying the nutrient solution to the nutrient solution channel portion 22, a nutrient solution discharge port 26 for discharging the nutrient solution from the nutrient solution channel portion 22, and a culture solution containing soil microorganisms. 61 into each of the chamber sections 21.
 図2は、図1の土壌微生物観察デバイス40のA-A断面図である。図2は、便宜上、チャンバ部21と培養液設置部27は培養液61で満たされ、栄養液流路部22は栄養液62で満たされ、隔離部23は培養液61と栄養液62の混合液で満たされものとして描かれている。 FIG. 2 is an AA cross-sectional view of the soil microorganism observation device 40 of FIG. 2, for the sake of convenience, the chamber part 21 and the culture solution setting part 27 are filled with the culture solution 61, the nutrient solution channel part 22 is filled with the nutrient solution 62, and the isolation part 23 is the mixture of the culture solution 61 and the nutrient solution 62. It is depicted as being filled with liquid.
 図1と図2から分かるように、チャンバ部21は円柱形状の空間であり、栄養液流路部22は、上側から視て、直方体の両端面が円弧状の曲面に丸められた略直方体状の空間である。栄養液供給口25は、栄養液流路部22の一方の端部から上方に延びており、培養プレート10の上面に開口している。栄養液排出口26は、栄養液流路部22の他方の端部から上方に延びており、培養プレート10の上面に開口している。 As can be seen from FIGS. 1 and 2, the chamber part 21 is a cylindrical space, and the nutrient solution channel part 22 has a substantially rectangular parallelepiped shape in which both end faces of the rectangular parallelepiped are rounded into arcuate curved surfaces when viewed from above. is the space of The nutrient solution supply port 25 extends upward from one end of the nutrient solution channel portion 22 and opens to the upper surface of the culture plate 10 . The nutrient solution outlet 26 extends upward from the other end of the nutrient solution channel portion 22 and opens to the upper surface of the culture plate 10 .
 隔離部23は、チャンバ部21に比べて、幅寸法も高さ寸法も小さい空間である。空気流路24は、チャンバ部21に対する連絡部と栄養液流路部22に対する連絡部と間における隔離部23のほぼ中央から上方に延びており、培養プレート10の上面に開口している。培養液設置部27は、隔離部23の反対方向にチャンバ部21から延びており、そのチャンバ部21とは反対側の端部において、上方に延びており、培養プレート10の上面に開口している。培養液設置部27は、高さ寸法はチャンバ部21と同じであるが、幅寸法は隔離部23よりもさらに小さい。 The isolation section 23 is a space that is smaller in width and height than the chamber section 21 . The air channel 24 extends upward from approximately the center of the isolation part 23 between the communicating part for the chamber part 21 and the communicating part for the nutrient solution channel part 22 and opens to the upper surface of the culture plate 10 . The culture solution setting portion 27 extends from the chamber portion 21 in the direction opposite to the isolation portion 23, extends upward at the end portion opposite to the chamber portion 21, and opens to the upper surface of the culture plate 10. there is The culture medium setting portion 27 has the same height dimension as the chamber portion 21 , but is smaller in width dimension than the isolation portion 23 .
 図2に示すように、培養プレート10は、加工された上部ガラス板11の下面に、平板状の下部ガラス板12を貼り合わせて作製される。上部ガラス板11には、チャンバ部21と栄養液流路部22と隔離部23と培養液設置部27に対応する溝が下面側に形成される。さらに、上部ガラス板11には、空気流路24と栄養液供給口25と栄養液排出口26に対応する孔と、培養液設置部27のチャンバ部21とは反対側の端部に連通する孔が形成される。 As shown in FIG. 2, the culture plate 10 is produced by bonding a flat lower glass plate 12 to the lower surface of the processed upper glass plate 11 . The upper glass plate 11 has grooves corresponding to the chamber portion 21 , the nutrient solution flow path portion 22 , the separation portion 23 and the culture solution setting portion 27 formed on the lower surface side. Furthermore, in the upper glass plate 11, holes corresponding to the air flow path 24, the nutrient solution supply port 25, and the nutrient solution outlet 26 are communicated with the end portion of the culture solution setting portion 27 opposite to the chamber portion 21. A hole is formed.
 上部ガラス板11の溝や孔は、マイクロ加工技術を利用して形成される。溝や孔は、マイクロ加工により形成されるが、それらのサイズは問わない。たとえば、栄養液流路部22は、流路幅が20μm程度である。 The grooves and holes of the upper glass plate 11 are formed using microfabrication technology. The grooves and holes are formed by micromachining, but their size does not matter. For example, the nutrient solution channel portion 22 has a channel width of about 20 μm.
 必要な溝や孔を形成した上部ガラス板11の下面に、平板状の下部ガラス板12が貼り合わせることによって、培養プレート10が完成する。 The culture plate 10 is completed by attaching the flat lower glass plate 12 to the lower surface of the upper glass plate 11 in which necessary grooves and holes are formed.
 図1と図2に示すように、土壌微生物観察デバイス40はまた、隔離部23に空気を供給するとともに、空気の圧力を制御する空気圧制御部41を備える。空気圧制御部41は、たとえば、ポンプやコンプレッサーで構成される。空気圧制御部41は、空気チューブ42によって、空気流路24に流体的に接続されている。 As shown in FIGS. 1 and 2, the soil microorganism observation device 40 also includes an air pressure control section 41 that supplies air to the isolation section 23 and controls the pressure of the air. The air pressure control unit 41 is composed of, for example, a pump and a compressor. The air pressure controller 41 is fluidly connected to the air flow path 24 by an air tube 42 .
 空気圧制御部41は、空気チューブ42と空気流路24を介して隔離部23内の液体(培養液61と栄養液62の混合液)中に空気を送り込むことで気泡(空気層)を形成する。空気圧制御部41はまた、空気の圧力を制御することにより、気泡の大きさを変化させて隔離部23の実効流路面積を変化させることができる。ここで、隔離部23の実効流路面積とは、隔離部23の壁面と気泡の間の面積を意味する。これにより、空気圧制御部41は、チャンバ部21と栄養液流路部22の間の隔離度を調整することができる。 The air pressure control unit 41 forms air bubbles (air layer) by feeding air into the liquid (mixture of the culture solution 61 and the nutrient solution 62) in the isolation unit 23 through the air tube 42 and the air flow path 24. . The air pressure control unit 41 can also change the effective flow area of the isolation unit 23 by changing the size of the air bubbles by controlling the air pressure. Here, the effective channel area of the isolation portion 23 means the area between the wall surface of the isolation portion 23 and the air bubbles. Thereby, the air pressure control section 41 can adjust the degree of isolation between the chamber section 21 and the nutrient solution channel section 22 .
 図3は、図2の培養プレートのB-B断面図であり、隔離部23内の液体(培養液61と栄養液62の混合液)中に気泡が形成された様子を示している。図3の最も上側の隔離部23には気泡が形成されていないが、図3の上から2番目の隔離部23内の液体中には気泡71が形成され、図3の上から3番目の隔離部23内の液体中には気泡72が形成され、図3の最も下側の隔離部23内の液体中には気泡73が形成されている。 FIG. 3 is a BB cross-sectional view of the culture plate in FIG. 2, showing how bubbles are formed in the liquid (mixed liquid of the culture solution 61 and the nutrient solution 62) in the isolation part 23. FIG. Although no bubbles are formed in the uppermost isolation portion 23 in FIG. 3, bubbles 71 are formed in the liquid in the second isolation portion 23 from the top in FIG. Air bubbles 72 are formed in the liquid in the isolation part 23, and air bubbles 73 are formed in the liquid in the lowermost isolation part 23 in FIG.
 気泡が形成されていない図3の最も上側の隔離部23の実効流路面積は最大である。この場合、チャンバ部21と栄養液流路部22の間の隔離度は0%である。 The uppermost isolation part 23 in FIG. 3, in which bubbles are not formed, has the largest effective channel area. In this case, the degree of isolation between the chamber portion 21 and the nutrient solution channel portion 22 is 0%.
 気泡72の大きさは気泡71の大きさよりも大きい。したがって、図3の上から3番目の隔離部23の実効流路面積は、図3の上から2番目の隔離部23の実効流路面積よりも小さい。すなわち、図3の上から3番目の隔離部23の隔離度は、図3の上から2番目の隔離部23の隔離度よりも高い。これにより、図3の上から2番目のチャンバ部21内の培養液と比較して、図3の上から3番目のチャンバ部21内の培養液の方が、栄養液流路部22内の栄養液との間のインタラクションが小さく制御される。 The size of the bubble 72 is larger than the size of the bubble 71. Therefore, the effective channel area of the third separating portion 23 from the top in FIG. 3 is smaller than the effective channel area of the second separating portion 23 from the top in FIG. That is, the isolation degree of the third isolation portion 23 from the top in FIG. 3 is higher than the isolation degree of the second isolation portion 23 from the top in FIG. As a result, the culture solution in the third chamber portion 21 from the top in FIG. The interaction with the nutrient solution is small and controlled.
 気泡73の大きさは気泡72の大きさよりも大きく、さらに、気泡73は隔離部23の全体の空間を占有している。このため、図3の最も下側の隔離部23の実効流路面積はゼロである。この場合、チャンバ部21と栄養液流路部22の間の隔離度は100%である。これにより、図3の最も下側のチャンバ部21内の培養液と栄養液流路部22内の栄養液との流通はなく、両者間のインタラクションがゼロに制御される。 The size of the bubble 73 is larger than the size of the bubble 72, and the bubble 73 occupies the entire space of the isolation part 23. Therefore, the effective flow area of the lowermost isolation portion 23 in FIG. 3 is zero. In this case, the degree of isolation between the chamber portion 21 and the nutrient solution channel portion 22 is 100%. As a result, there is no circulation between the culture solution in the lowermost chamber portion 21 and the nutrient solution in the nutrient solution channel portion 22 in FIG. 3, and the interaction between them is controlled to be zero.
 図1と図4に示すように、土壌微生物観察デバイス40はさらに、栄養液供給口25を介して栄養液流路部22に栄養液を供給する栄養液供給部45を備える。栄養液供給部45は、供給チューブ46によって、栄養液供給口25に流体的に接続されている。たとえば、栄養液供給部45は、シリンジで構成される。また、たとえば、栄養液供給部45は、栄養液を常に送り出す。 As shown in FIGS. 1 and 4 , the soil microorganism observation device 40 further includes a nutrient solution supply section 45 that supplies nutrient solution to the nutrient solution channel portion 22 via the nutrient solution supply port 25 . The nutrient solution supply part 45 is fluidly connected to the nutrient solution supply port 25 by a supply tube 46 . For example, the nutrient solution supply part 45 is configured by a syringe. Also, for example, the nutrient solution supply unit 45 always delivers the nutrient solution.
 栄養液供給部45から供給される栄養液は栄養液流路部22内を栄養液排出口26に向かって流れる。図5に示すように、栄養液排出口26には排出チューブ47が流体的に接続されており、余分な液体は排出チューブ47から排出される。 The nutrient solution supplied from the nutrient solution supply portion 45 flows through the nutrient solution flow path portion 22 toward the nutrient solution discharge port 26 . As shown in FIG. 5, a drain tube 47 is fluidly connected to the nutrient solution outlet 26 and excess liquid is drained from the drain tube 47 .
 以下、土壌微生物観察デバイス40を用いた観察処理について説明する。 Observation processing using the soil microorganism observation device 40 will be described below.
 まず、準備段階として、培養液設置部27から土壌微生物を含む培養液を流し込む。ここでは、流し込む培養液の量は10μLである。培養液は、一例では、10μLの培養液に含まれる土壌微生物が1個体程度になるように、土壌を水で希釈した溶液である。別の例では、培養液は、10μLの培養液に含まれる土壌微生物が1個体程度になるように、土壌から分離した微生物を水に混ぜた溶液である。 First, as a preparatory stage, a culture solution containing soil microorganisms is poured from the culture solution installing portion 27 . Here, the amount of the culture medium to be poured is 10 μL. The culture solution is, for example, a solution obtained by diluting soil with water so that 10 μL of the culture solution contains about one individual soil microorganism. In another example, the culture solution is a solution in which microorganisms separated from soil are mixed with water so that 10 μL of the culture solution contains about 1 individual soil microorganism.
 この準備段階では、1つのチャンバ部21に連通する培養液設置部27以外の培養液設置部27をセロハンテープなどで塞ぎ、かつ栄養液流路部22の圧力を低めに設定し、培養液設置部27に培養液を流し込みながらチャンバ部21に存在している空気を押し出す。これにより、チャンバ部21と培養液設置部27が培養液で満たされる。隔離部23は細く形成されているため、多くの培養液が栄養液流路部22に流れ出ることが防がれる。培養液の流し込みの終了後は、図2に示すように、培養液設置部27の開口は蓋29で塞がれる。 In this preparatory stage, the culture solution setting portions 27 other than the culture solution setting portion 27 communicating with one chamber portion 21 are closed with cellophane tape or the like, and the pressure of the nutrient solution flow path portion 22 is set to be low, and the culture solution is set. Air existing in the chamber part 21 is pushed out while the culture solution is poured into the part 27 . As a result, the chamber part 21 and the culture solution installing part 27 are filled with the culture solution. Since the separating portion 23 is formed thin, a large amount of the culture solution is prevented from flowing out to the nutrient solution channel portion 22 . After the pouring of the culture solution is completed, the opening of the culture solution installing portion 27 is closed with the lid 29 as shown in FIG.
 次に、空気圧制御部41により、隔離部23内の培養液中に空気を送り込むことで気泡(空気層)を形成する。さらに、空気圧制御部41により、送り込む空気の圧力を制御することにより、気泡の大きさを制御する。これにより、隔離部23の実効流路面積を変化させ、栄養液流路部22に対するチャンバ部21の隔離度を調整する。栄養液流路部22に対するチャンバ部21の隔離度は、一定に保ってよいし、時間の経過とともに変更してもよい。 Next, the air pressure control unit 41 sends air into the culture solution in the isolation unit 23 to form air bubbles (air layers). Further, the size of the air bubbles is controlled by controlling the pressure of the air to be sent by the air pressure control section 41 . Thereby, the effective channel area of the isolation part 23 is changed, and the degree of isolation of the chamber part 21 from the nutrient solution channel part 22 is adjusted. The degree of isolation of the chamber section 21 from the nutrient solution flow path section 22 may be kept constant or may be changed over time.
 続いて、栄養液供給部45により、栄養液流路部22に栄養液を供給する。栄養液は、土壌微生物を育成するための栄養素を含む液体栄養剤であり、たとえば、LB培地である。 Subsequently, the nutrient solution supply unit 45 supplies the nutrient solution to the nutrient solution channel unit 22 . A nutrient solution is a liquid nutrient containing nutrients for growing soil microorganisms, and is, for example, an LB medium.
 観察対象のチャンバ部21は、たとえば図2に示すように、カメラ50によって光学的に観察される。 The chamber part 21 to be observed is optically observed by a camera 50, for example, as shown in FIG.
 ここで、準備段階における培養液の流し込みは、観察目的に応じて、任意の個数のチャンバ部21に対しておこなってよい。たとえば、1つのチャンバ部21内の土壌微生物のコロニーと栄養液との間のインタラクションの観察が目的であれば、ただ1つのチャンバ部21だけに培養液を流し込めばよい。あるいは、2つのチャンバ部21内の土壌微生物のコロニーの間のインタラクションの観察が目的であれば、2つのチャンバ部21に培養液を流し込めばよい。同様の考えから、3つまたは4つのチャンバ部21内の土壌微生物のコロニーの間のインタラクションの観察が目的であれば、それぞれ、3つまたは4つのチャンバ部21に培養液を流し込めばよい。 Here, the pouring of the culture medium in the preparation stage may be performed into any number of chamber parts 21 according to the purpose of observation. For example, if the purpose is to observe the interaction between the colony of soil microorganisms and the nutrient solution in one chamber portion 21 , the culture solution may be poured into only one chamber portion 21 . Alternatively, if the purpose is to observe the interaction between the colonies of soil microorganisms in the two chambers 21 , the two chambers 21 may be filled with the culture solution. Based on the same idea, if the purpose is to observe the interaction between the colonies of soil microorganisms in the three or four chambers 21, the three or four chambers 21 may be filled with the culture solution, respectively.
 そのほか、4つのチャンバ部21に培養液を流し込んだ状態においても、上記の観察をおこうことも可能である。たとえば、観察対象の1つのチャンバ部21に対応する隔離部23を除く他の隔離部23中の気泡を大きくして、観察対象以外のチャンバ部21と栄養液流路部22の間の隔離度を100%にすることにより、1つのチャンバ部21内の土壌微生物のコロニーと栄養液との間のインタラクションを観察することが可能である。あるいは、観察対象の2つまたは3つのチャンバ部21に対応する隔離部23を除く他の隔離部23中の気泡を大きくして、観察対象以外のチャンバ部21と栄養液流路部22の間の隔離度を100%にすることにより、2つまたは3つのチャンバ部21内の土壌微生物のコロニーの間のインタラクションを観察することが可能である。また、4つのチャンバ部21のすべてが観察対象であれば、4つのチャンバ部21と栄養液流路部22の間の隔離度を制御すればよい。 In addition, the above observation can be made even when the culture solution is poured into the four chambers 21 . For example, by increasing the size of air bubbles in the isolation portions 23 other than the isolation portion 23 corresponding to one chamber portion 21 to be observed, the degree of isolation between the chamber portions 21 other than the observation object and the nutrient solution flow path portion 22 is 100%, it is possible to observe the interaction between the colonies of soil microorganisms and the nutrient solution in one chamber portion 21 . Alternatively, by enlarging the air bubbles in the isolation portions 23 other than the isolation portions 23 corresponding to the two or three chamber portions 21 to be observed, the air bubbles are 100%, it is possible to observe the interaction between the colonies of soil microorganisms in two or three chambers 21 . Moreover, if all the four chambers 21 are to be observed, the degree of isolation between the four chambers 21 and the nutrient fluid channel 22 may be controlled.
 このように、実施形態の土壌微生物観察デバイス40によれば、土壌微生物を培養するチャンバ部21と栄養液を流す栄養液流路部22との間の隔離度を制御しながら、土壌微生物のコロニーを観察することが可能となる。 As described above, according to the soil microorganism observation device 40 of the embodiment, while controlling the degree of isolation between the chamber portion 21 for cultivating soil microorganisms and the nutrient fluid flow channel portion 22 for flowing the nutrient fluid, colonies of soil microorganisms can be detected. can be observed.
 また、複数のチャンバ部21のそれぞれと栄養液流路部22との間の隔離度を制御しながら、複数のチャンバ部21内の土壌微生物のコロニー間のインタラクションを観察することが可能となる。 In addition, while controlling the degree of isolation between each of the plurality of chambers 21 and the nutrient solution flow path 22, it is possible to observe the interaction between colonies of soil microorganisms in the plurality of chambers 21.
 実施形態では、培養プレート10のチャンバ部21と隔離部23と空気流路24と培養液設置部27の個数が4つの例を説明したが、これら要素の個数は、これに限定されるものでなく、任意に変更されてよい。土壌微生物のコロニーと栄養液の間のインタラクションの観察する目的に対しては、培養プレート10のチャンバ部21と隔離部23と空気流路24と培養液設置部27の個数は1つであってもよい。 In the embodiment, an example in which the number of chamber portions 21, isolation portions 23, air channels 24, and culture medium setting portions 27 of the culture plate 10 is four has been described, but the number of these elements is limited to four. can be changed arbitrarily. For the purpose of observing the interaction between the colony of soil microorganisms and the nutrient solution, the number of the chamber portion 21, isolation portion 23, air flow path 24, and culture solution setting portion 27 of the culture plate 10 is one. good too.
 なお、本発明は、上記実施形態に限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で種々に変形することが可能である。また、各実施形態は適宜組み合わせて実施してもよく、その場合組み合わせた効果が得られる。更に、上記実施形態には種々の発明が含まれており、開示される複数の構成要件から選択された組み合わせにより種々の発明が抽出され得る。例えば、実施形態に示される全構成要件からいくつかの構成要件が削除されても、課題が解決でき、効果が得られる場合には、この構成要件が削除された構成が発明として抽出され得る。 It should be noted that the present invention is not limited to the above-described embodiments, and can be variously modified in the implementation stage without departing from the gist of the present invention. Further, each embodiment may be implemented in combination as appropriate, in which case the combined effect can be obtained. Furthermore, various inventions are included in the above embodiments, and various inventions can be extracted by combinations selected from a plurality of disclosed constituent elements. For example, even if some constituent elements are deleted from all the constituent elements shown in the embodiments, if the problem can be solved and effects can be obtained, the configuration with the constituent elements deleted can be extracted as an invention.
  10…培養プレート
  11…上部ガラス板
  12…下部ガラス板
  21…チャンバ部
  22…栄養液流路部
  23…隔離部
  24…空気流路
  25…栄養液供給口
  26…栄養液排出口
  27…培養液設置部
  29…蓋
  40…土壌微生物観察デバイス
  41…空気圧制御部
  42…空気チューブ
  45…栄養液供給部
  46…供給チューブ
  47…排出チューブ
  50…カメラ
  61…培養液
  62…栄養液
  71,72,73…気泡
 
DESCRIPTION OF SYMBOLS 10... Culture plate 11... Upper glass plate 12... Lower glass plate 21... Chamber part 22... Nutrient solution channel part 23... Separation part 24... Air channel 25... Nutrient solution supply port 26... Nutrient solution outlet 27... Culture solution Installation part 29 Lid 40 Soil microorganism observation device 41 Air pressure control part 42 Air tube 45 Nutrient solution supply part 46 Supply tube 47 Discharge tube 50 Camera 61 Culture solution 62 Nutrient solution 71, 72, 73 … bubbles

Claims (4)

  1.   土壌微生物を培養するチャンバ部と、
      栄養液を流す栄養液流路部と、
      前記チャンバ部と前記栄養液流路部を連通する隔離部と、
      前記隔離部に空気を出入りさせる空気流路と、
     を有する光学的に透明な培養プレートと、
     前記空気流路を介して前記隔離部内の液体中に空気を送り込むことで気泡を形成するとともに、前記空気の圧力を制御することにより、前記気泡の大きさを変化させて前記隔離部の実効流路面積を変化させる空気圧制御部と、
     を備える土壌微生物観察デバイス。
    a chamber for cultivating soil microorganisms;
    a nutrient solution channel portion for flowing the nutrient solution;
    an isolation part that communicates the chamber part and the nutrient solution channel part;
    an air flow path that allows air to flow in and out of the isolation section;
    an optically transparent culture plate having
    Air is sent into the liquid in the isolation section through the air flow path to form air bubbles, and by controlling the pressure of the air, the size of the air bubbles is changed to change the effective flow in the isolation section. a pneumatic control unit that changes the road area;
    A device for observing soil microorganisms.
  2.  前記培養プレートは、前記チャンバ部を複数備えるとともに、前記隔離部を1つの前記チャンバ部ごとに1つずつ備え、
     複数の前記隔離部のそれぞれは、複数の前記チャンバ部の対応する1つを前記栄養液流路部に連通する、
     請求項1に記載の土壌微生物観察デバイス。
    The culture plate includes a plurality of the chambers, and includes one separation unit for each chamber,
    each of the plurality of isolation portions communicates a corresponding one of the plurality of chamber portions with the nutrient fluid channel portion;
    The soil microorganism observation device according to claim 1.
  3.  前記培養プレートは、
     マイクロ加工された第1のガラス板と、
     前記第1のガラス板に貼り付けられた平板状の第2のガラス板と、
     を有する、
     請求項1または2に記載の土壌微生物観察デバイス。
    The culture plate is
    a micromachined first glass plate;
    A flat second glass plate attached to the first glass plate;
    having
    The soil microorganism observation device according to claim 1 or 2.
  4.  前記培養プレートは、
     前記栄養液流路部に栄養液を供給する栄養液供給口と、
     前記栄養液流路部から栄養液を排出する栄養液排出口と、
     を有し、
     前記栄養液供給口を介して前記栄養液流路部に栄養液を供給する栄養液供給部をさらに備える、
     請求項1から3までのいずれかひとつに記載の土壌微生物観察デバイス。
     
    The culture plate is
    a nutrient solution supply port for supplying the nutrient solution to the nutrient solution channel;
    a nutrient solution outlet for discharging the nutrient solution from the nutrient solution channel;
    has
    further comprising a nutrient solution supply unit that supplies nutrient solution to the nutrient solution flow channel through the nutrient solution supply port;
    A device for observing soil microorganisms according to any one of claims 1 to 3.
PCT/JP2021/020233 2021-05-27 2021-05-27 Soil microorganism observation device WO2022249400A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/020233 WO2022249400A1 (en) 2021-05-27 2021-05-27 Soil microorganism observation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/020233 WO2022249400A1 (en) 2021-05-27 2021-05-27 Soil microorganism observation device

Publications (1)

Publication Number Publication Date
WO2022249400A1 true WO2022249400A1 (en) 2022-12-01

Family

ID=84229625

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/020233 WO2022249400A1 (en) 2021-05-27 2021-05-27 Soil microorganism observation device

Country Status (1)

Country Link
WO (1) WO2022249400A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112481077A (en) * 2020-12-01 2021-03-12 北京理工大学 Microfluidic perfusion culture device and perfusion method thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112481077A (en) * 2020-12-01 2021-03-12 北京理工大学 Microfluidic perfusion culture device and perfusion method thereof

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
BORER BENEDICT, TECON ROBIN, OR DANI: "Spatial organization of bacterial populations in response to oxygen and carbon counter-gradients in pore networks", NATURE COMMUNICATIONS, vol. 9, no. 1, 1 December 2018 (2018-12-01), XP093008780, DOI: 10.1038/s41467-018-03187-y *
KHOSHMANESH KHASHAYAR, ALMANSOURI ABDULLAH, ALBLOUSHI HAMAD, YI PYSHAR, SOFFE REBECCA, KALANTAR-ZADEH KOUROSH: "A multi-functional bubble-based microfluidic system", SCIENTIFIC REPORTS, vol. 5, no. 1, 22 September 2015 (2015-09-22), XP093008777, DOI: 10.1038/srep09942 *
TÄUBER SARAH, LIERES ERIC, GRÜNBERGER ALEXANDER: "Dynamic Environmental Control in Microfluidic Single‐Cell Cultivations: From Concepts to Applications", SMALL, WILEY, vol. 16, no. 16, 1 April 2020 (2020-04-01), pages 1906670, XP093008776, ISSN: 1613-6810, DOI: 10.1002/smll.201906670 *
VAN STEIJN VOLKERT, KLEIJN CHRIS R., KREUTZER MICHIEL T.: "Predictive model for the size of bubbles and droplets created in microfluidic T-junctions", LAB ON A CHIP, ROYAL SOCIETY OF CHEMISTRY, UK, vol. 10, no. 19, 1 January 2010 (2010-01-01), UK , pages 2513, XP093008779, ISSN: 1473-0197, DOI: 10.1039/c002625e *

Similar Documents

Publication Publication Date Title
EP2148922B1 (en) Cell expansion system and methods of use
CN100434503C (en) Culture chamber, culture apparatus and liquid supplying method for cell or tissue cultivation
EP2710118B1 (en) Systems and methods for expanding high density non-adherent cells
US8389294B2 (en) Microfluidic device and method for coupling discrete microchannels and for co-culture
US20120064583A1 (en) High throughput bioprocess apparatus
US20170145361A1 (en) Bioreactor with separate co2 supply
JP2009072133A (en) Bioreactor, cell culture method, and substance production method
Yamashita et al. Generation of monodisperse cell-sized microdroplets using a centrifuge-based axisymmetric co-flowing microfluidic device
US7867761B2 (en) Tray stack adapted for active gassing
WO2022249400A1 (en) Soil microorganism observation device
JP6366226B2 (en) Microchip reactor
US20070178583A1 (en) Multi-Chamber Cell Culture Assembly
RU2587628C1 (en) Device and method for automated maintenance of concentration of dissolved gases in culture medium in microfluid system
US9102910B2 (en) Bioreactor
AU778141B2 (en) Method for cultivating cells, a membrane module, utilization of a membrane module and reaction system for cultivation of said cells
CN106676004A (en) Micro-fluidic culture device and method for culturing cells or microorganisms by applying micro-fluidic culture device
CN110734858A (en) multi-mode three-dimensional perfusion type cell culture instrument
WO2019157826A1 (en) Biological sheet culture device and biological sheet culture equipment
US20090220935A1 (en) Apparatus and method for dissolved oxygen control in parallel integrated bioreactor array
JP2023543546A (en) Cell culture bags, bioreactors, cell filtration equipment
JP2013111083A (en) Plant pot
JP6057214B2 (en) Culture container, culture system and culture apparatus
WO2019198126A1 (en) Device for maintaining culture of tubular cell structure and auxiliary tool for maintaining tubular cell structure
WO2023042685A1 (en) Flow channel device
CN216972485U (en) Biological culture device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21943047

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE