WO2022249383A1 - Car position detection device and elevator safety device using same - Google Patents

Car position detection device and elevator safety device using same Download PDF

Info

Publication number
WO2022249383A1
WO2022249383A1 PCT/JP2021/020151 JP2021020151W WO2022249383A1 WO 2022249383 A1 WO2022249383 A1 WO 2022249383A1 JP 2021020151 W JP2021020151 W JP 2021020151W WO 2022249383 A1 WO2022249383 A1 WO 2022249383A1
Authority
WO
WIPO (PCT)
Prior art keywords
car
image
marks
floor
safety controller
Prior art date
Application number
PCT/JP2021/020151
Other languages
French (fr)
Japanese (ja)
Inventor
勇来 齊藤
晃 岩本
義人 大西
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2021/020151 priority Critical patent/WO2022249383A1/en
Publication of WO2022249383A1 publication Critical patent/WO2022249383A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B3/00Applications of devices for indicating or signalling operating conditions of elevators
    • B66B3/02Position or depth indicators

Definitions

  • the present invention relates to a car position detection device that detects the position of an elevator car based on an image inside a hoistway, and an elevator safety device that uses this car position detection device.
  • the governor when the governor detects an overspeed condition, the power supply is cut off or the emergency stop device is activated to bring the car to an emergency stop. Since the governor is equipped with a governor rope that is long, a space for laying the governor rope is required in the hoistway.
  • Patent Document 1 does not consider the terminal floor deceleration stop function of the safety device, so it is difficult to apply it to a safety device that has an integrated safety function including the terminal floor deceleration stop function.
  • the car position detection device detects the position of the car of an elevator based on the image in the hoistway, and detects the surface of the guide rail provided in the car and guiding the car. a plurality of marks juxtaposed along the longitudinal direction of the guide rail on the surface of the guide rail adjacent to the end floor; a safety controller that calculates the position of the car, the plurality of marks having a plurality of types of pattern shapes, and arranged side by side so that adjacent marks have different pattern shapes.
  • the car can be decelerated or stopped near the end floor based on the image inside the hoistway.
  • FIG. 1 is a configuration diagram showing the overall configuration of an elevator that is Embodiment 1 of the present invention.
  • Example 1 As shown in FIG. 1, in Example 1, the car 1 and the counterweight 2 are mechanically connected to one end and the other end of the main rope 3, respectively.
  • the main rope 3 is wound around a sheave provided in the hoisting machine 4 .
  • the car 1 and the counterweight 2 are suspended in the hoistway 101 provided in the building. That is, Example 1 is a so-called barrel-type elevator.
  • the hoist 4 is installed in a machine room provided on the hoistway.
  • the car 1 is movably engaged with the guide rails 5 via guide devices 20 (eg, guide shoes). Therefore, the car 1 is guided by the guide rails 5 and moves between arbitrary floors of the lowest floor FL1 and other floors (FL2, etc.).
  • guide devices 20 eg, guide shoes
  • the car 1 is guided by the guide rails 5 and moves between arbitrary floors of the lowest floor FL1 and other floors (FL2, etc.).
  • a general T-shaped guide rail is applied as the guide rail 5 .
  • the counterweight 2 moves while being guided by a guide rail for the counterweight (not shown).
  • a safety controller 8 is installed on the top of the car 1.
  • the safety controller 8 is electrically connected to an image sensor 9 installed on top of the car 1 .
  • the image sensor 9 acquires a surface image of the guide rail 5 which is a stationary object in the hoistway.
  • the surface image of the guide rail 5 the surface image of the tip of the T-shaped foot is acquired.
  • the safety controller 8 measures the position and speed of the car 1 based on the surface image of the guide rail 5 acquired by the image sensor 9 .
  • a floor-to-floor mark 10 is provided on the surface of the guide rail 5 to indicate positional information in the hoistway, for example, the height of the lowest floor from the floor surface.
  • the safety controller 8 detects the position of the car 1 (hereinafter referred to as “car position”) based on the position information corresponding to the floor-to-floor mark 10 . ) is corrected.
  • the safety controller 8 stores in advance inter-floor mark position data that indicates the correspondence between the inter-floor mark 10 and position information in the height direction in the hoistway.
  • This position information indicates the height from the reference position in the hoistway to the position where the floor-to-floor mark 10 is provided.
  • the reference position is the floor surface of the lowest floor FL1, which is the reference floor.
  • the car position is the height from the reference position, that is, the floor surface of the lowest floor FL1 to the floor plate surface of the car 1.
  • the safety controller 8 determines the installation height of the image sensor 9 in the car 1, that is, the height of the image sensor 9 from the floor plate surface of the car 1, from the position information of the detected floor-to-floor mark 10. By subtracting, the car position is calculated.
  • the safety controller 8 normally sets a measured value based on the surface image of the guide rail 5, but when the floor-to-floor mark 10 is detected, sets a calculated value based on the position information of the floor-to-floor mark 10. do. As a result, the car position in which errors have been accumulated is corrected.
  • At least one floor-to-floor mark 10 is preferably provided between each floor in the hoistway. As a result, the position of the car is corrected each time the car 1 travels, so that the accuracy of measuring the position of the car is improved.
  • the floor-to-floor mark 10 for example, a barcode or the like is applied. Note that different inter-floor marks 10 correspond to different position information.
  • end floor marks 11 and 12 are formed along the longitudinal direction of the guide rail 5. arranged side by side.
  • the safety controller 8 detects the The end floor mark 11 is detected based on the image.
  • the safety controller 8 sends a deceleration control command to the elevator control device 6 via the tail cord 7 to decelerate and stop the car 1 so that the car 1 does not overrun the end floor. Send out.
  • the safety controller 8 determines that the car 1 has gone too far over the end floor from the car position measured based on the images of the end floor marks 11 and 12, the safety controller 8 shuts off the power source of the hoisting machine 4 to ensure the car 1 is in place. to stop.
  • the end story marks 11 and 12 have English character patterns "A” and "B", respectively.
  • a plurality of (three in FIG. 1) end floor marks 11 (English character pattern “A”) and a plurality (three in FIG. 1) end floor marks 12 (English character pattern “B”) are adjacent to each other. Character patterns are juxtaposed differently.
  • the English character pattern "A” and the English character pattern "B” are arranged side by side repeatedly in this order from the top. As will be described later, it is possible to accurately measure the amount of movement of the car 1 in the vicinity of the end story by using a small number of pattern shapes (two types in FIG. 1).
  • the end floor mark 11 positioned at the top in FIG.
  • the safety controller will continue to determine that car 1 is overtraveled until the buffers 100 are compressed by car 1 .
  • pattern shape of the end story mark is not limited to English characters, and other types of characters, numbers, graphic patterns, etc. may be used.
  • FIG. 2 is a functional block diagram showing the configuration of the safety controller according to the first embodiment.
  • the safety controller 8 includes a computer system such as a microcomputer, and operates as each section by executing a predetermined program with the computer system.
  • the image detection unit 8a Based on the signal from the image sensor 9, the image detection unit 8a detects an image of the surface of the guide rail 5 (FIG. 1) at predetermined time intervals.
  • the image memory 8b stores the image detected by the image detection unit 8a.
  • the image comparison unit 8c compares the current image detected by the image detection unit 8a with the previous image stored in the image memory 8b, and measures the deviation between the two images.
  • a comparison means for example, an image correlation method is applied.
  • the shift between both images corresponds to the amount of movement of the car 1 (FIG. 1).
  • the car position calculation unit 8d calculates the car position based on the image shift calculated by the image comparison unit 8c. As described above, the calculated image shift corresponds to the amount of movement of the car 1. Therefore, the current position of the car can be calculated by sequentially accumulating the image shifts measured at predetermined time intervals. be.
  • the car position memory 8e stores the car position calculated by the car position calculation unit 8d.
  • the cage position calculation unit 8d reads out the cage position calculated at the previous time and stored in the cage position memory 8e from the cage position memory 8e, and stores the calculated shift of the image at the current time in the read cage position at the previous time. That is, by adding or subtracting the amount of movement of the car 1, the current position of the car is calculated. By repeatedly executing such calculations while the elevator is in operation, the amount of movement of the car 1 is successively integrated.
  • the floor-to-floor mark detection unit 8f detects the floor-to-floor mark 10 (FIG. 1) based on the current image detected by the image detection unit 8a.
  • the floor-to-floor mark detection unit 8f identifies the floor-to-floor mark 10 by pattern recognition or the like.
  • the floor-to-floor mark detection unit 8f stores the basic image data of the floor-to-floor mark 10 in advance, and compares the detected image with the basic image data to detect the floor-to-floor mark 10 (FIG. 1). to detect
  • the comparison means for example, an image correlation method is applied.
  • the car position correction unit 8g acquires the position information indicated by the detected floor-to-floor mark 10 from the mark position memory 8h, and corrects the car position calculated by the car position calculation unit 8d to the acquired position information. As a result, the car position error accumulated along with the integration of the movement amount of the car 1 is corrected, and the accuracy of the measured value of the car position is improved.
  • the end floor mark detection unit 8i detects end floor marks 11 and 12 (FIG. 1) based on the current image detected by the image detection unit 8a.
  • the end floor mark detection unit 8i identifies the end floor marks 11 and 12 by, for example, pattern recognition.
  • the floor-to-floor mark detection unit 8f stores the basic image data of the end floor marks 11 and 12, and detects the end floor marks 11 and 12 by comparing the detected image with the basic image data. .
  • the comparison means for example, an image correlation method is applied.
  • the end floor deceleration stop control unit 8j detects the end floor marks 11 and 12 by the end floor mark detection unit 8i, it sends a deceleration control command to decelerate and stop the car 1 to the elevator control device 6.
  • the elevator control device 6 decelerates and stops the motor 41 of the hoisting machine 4 .
  • the end floor deceleration stop control unit 8j detects the end floor marks 11 and 12 by the end floor mark detection unit 8i, and based on the measured value of the car position calculated by the car position calculation unit 8d, 1 sends a car restraining control signal to the contactor 50 when it determines that it has gone too far over an end floor.
  • the contactor 50 cuts off the power supply when receiving the car restraint control signal. As a result, the motor 41 of the hoisting machine 4 is stopped and the brake 42 of the hoisting machine 4 is brought into a braking state. As a result, the car 1 is reliably stopped.
  • FIG. 3 is a flow chart showing the operation of the safety controller 8 (FIGS. 1 and 2) in the first embodiment. In addition, it demonstrates, referring FIG. 2 suitably hereafter.
  • step S1 after starting operation, the safety controller 8 acquires a current image of the guide rail surface based on the image signal from the image sensor 9 using the image detection unit 8a (step S1). After executing step S1, the safety controller 8 next executes step S2.
  • step S2 the safety controller 8 uses the end story mark detection unit 8i to determine whether or not the end story mark is detected based on the acquired current image (current image) (step S2).
  • step S2 determines that the end story mark has been detected (YES in step S2)
  • step S3 executes step S3.
  • step S4 executes step S4.
  • step S3 the safety controller 8 uses the end floor deceleration stop control unit 8j to issue a deceleration control command to decelerate and stop the car, or a car stop command to forcibly stop the car by cutting off the power supply. Send a control signal.
  • these control commands are collectively described as "end floor deceleration stop command”.
  • step S4 the safety controller 8 uses the image comparison unit 8c to compare the current image acquired in step S1 with the previous image stored in the image memory 8b. is different from the previous image.
  • the safety controller 8 determines that the current image is different from the previous image (YES in step S4), it then executes step S5. If the safety controller 8 determines that the current image does not differ from the previous image (NO in step S4), it skips steps S5 and S6 and then executes step S7.
  • step S5 the safety controller 8 uses the image comparison unit 8c to measure the deviation between the current image and the previous image, and furthermore, uses the car position calculation unit 8d to calculate the previous image based on the deviation of the images. Calculate the amount of movement of the car from the point in time.
  • step S6 the safety controller 8 next executes step S6.
  • step S6 the safety controller 8 uses the car position calculator 8d to calculate the car position based on the car movement amount calculated in step S5. After executing step S6, the safety controller 8 next executes step S7.
  • the position of the car is measured not only when the car travels normally, but also when the car passes over an end floor.
  • step S7 the safety controller uses the floor-to-floor mark detection unit 8f to determine whether or not the floor-to-floor mark is detected based on the current image acquired in step S1.
  • the safety controller 8 determines that the floor-to-floor mark has been detected (YES in step S7), it then executes step S8.
  • the safety controller 8 determines that no end story mark has been detected (NO in step S7), it skips step S8 and then executes step S9.
  • step S8 the safety controller 8 uses the car position correction unit 8g to correct the car position to a position within the hoistway corresponding to the floor-to-floor mark detected in step S7.
  • the measured value of the car position at the present time is replaced with the position in the hoistway corresponding to the detected floor-to-floor mark regardless of the magnitude of the error.
  • step S9 the safety controller 8 next executes step S9.
  • step S9 the safety controller 8 records data of the current image in the image memory 8b. After executing step S9, the safety controller 8 next executes step S10.
  • step S10 the safety controller 8 records the current car position data in the car position memory 8e.
  • step S10 the safety controller 8 terminates the current series of processes. Note that the safety controller 8 repeatedly executes steps S1 to S10 at predetermined time intervals while the elevator is in operation.
  • FIG. 4 is a schematic diagram showing an example of an image of the exposed surface of the guide rail 5 (FIG. 1).
  • FIG. 4 shows an image I(t) at time t and an image I(t+ ⁇ t) at time t+ ⁇ t ( ⁇ t: frame period) acquired by the image sensor 9 (FIGS. 1 and 2). Both images are images of the exposed surface of the steel material that constitutes the guide rail 5, and show the pattern of the luminance distribution indicating the unevenness distribution on the exposed surface of the steel material. Note that the car 1 (FIG. 1) is lowered from time t to time t+ ⁇ t.
  • an image shift d occurs between the image I(t) and the image I(t+ ⁇ t), as shown in FIG.
  • This image shift d is calculated by comparing the image I(t) and the image I(t+ ⁇ t) using the image correlation method in the first embodiment.
  • the image I(t) or a portion thereof is moved in the image frame by a predetermined amount along the longitudinal direction of the guide rail 5.
  • a correlation function value between I(t) and the image I(t+ ⁇ t) is calculated. The total amount of movement of the image I(t) when the correlation function value is the maximum value is taken as the image shift d.
  • the image shift d corresponds to the amount of movement (the amount of descent in FIG. 4) of the car 1 at the time ⁇ t.
  • the direction in which the image shifts in the image frame indicates the moving direction (upward or downward) of the car 1 . Therefore, if the positive or negative image shift is set according to the direction of image shift, for example, if the downward direction (upward direction) is positive and the upward direction (downward direction) is negative, the image shift d is calculated for each ⁇ t. Then, by accumulating the car position at the time of startup, the car position at the present time can be measured.
  • the guide rail 5 is preferably finished by polishing or the like in order to make the surface uneven.
  • the image sensor 9 preferably has a light source for illuminating the surface of the guide rail 5 . As a result, the car position measurement accuracy is improved.
  • FIG. 5 is a schematic diagram showing an example of images of the end floor marks 11 and 12 (FIG. 1) provided on the surface of the guide rail 5 (FIG. 1).
  • FIG. 5 shows an image I(t) at time t and an image I(t+ ⁇ t) at time t+ ⁇ t ( ⁇ t: frame period) acquired by the image sensor 9 (FIGS. 1 and 2). Both images are partial images of a plurality of end floor marks juxtaposed on the surface of the guide rail 5 . From time t to time t+ ⁇ t, car 1 (FIG. 1) is lowered near the lowest floor.
  • an image shift d occurs between the image I(t) and the image I(t+ ⁇ t), as shown in FIG.
  • the position P in the image I(t) is shifted upward by d in the image I(t+ ⁇ t) in the image frame.
  • This image shift d is calculated by comparing the image I(t) and the image I(t+ ⁇ t), for example, using the image correlation method as in the case of FIG.
  • the image shift d corresponds to the amount of movement (the amount of descent in FIG. 5) of the car 1 at time ⁇ t.
  • the direction in which the image shifts in the image frame indicates the moving direction (upward or downward) of the car 1 . Therefore, if the sign of the image shift is set according to the direction of image shift, for example, if the downward direction (upward direction) is positive and the upward direction (downward direction) is negative, the image shift d is calculated every ⁇ t. By calculating and adding to the measured value of the car position at the point before ⁇ t, the car position at the present time can be measured.
  • the car position near the end floor is measured, including the case where the car 1 goes over the end floor.
  • Example 1 the end story marks 11 having the English character pattern A and the end story marks 12 having the English character pattern B are alternately arranged side by side along the longitudinal direction of the guide rail. That is, the pattern shapes of two adjacent end story marks are different from each other. Therefore, as shown in FIG. 5, in the image I(t+ ⁇ t), only the pattern portion near the position shifted upward by d corresponds to the pattern portion near the position P in the image I(t). Therefore, by comparing the image I(t) and the image I(t+ ⁇ t), it is uniquely determined that the amount of movement of the car in the downward direction is d.
  • FIG. 6 is a schematic diagram showing an example of an image of an edge floor mark when two adjacent edge floor marks have the same pattern shape, as a comparative example with respect to the first embodiment described above. As in the first embodiment, the car is lowered.
  • the pattern portion near the position shifted upward by d corresponds to the pattern portion near the position P in the image I(t). Furthermore, in the image I(t+ ⁇ t), the pattern portion near the position shifted downward by d′ also corresponds to the pattern portion near the position P in the image I(t). Therefore, the moving amount of the car, including the direction, cannot be uniquely determined by simply comparing the image I(t) and the image I(t+ ⁇ t).
  • a plurality of (six in FIG. 1) end floor marks (11, 12) are provided on the surface of the guide rail 5 adjacent to the end floor (lowest floor in FIG. 1). They are juxtaposed along the longitudinal direction of rail 5 . Furthermore, the plurality of end floor marks have a plurality of types of pattern shapes (two types of alphabetic character patterns A and B in FIG. 1), and are arranged side by side so that adjacent end floor marks have different pattern shapes. Further, the plurality of end story marks are arranged in parallel so that the plurality of pattern shapes are repeatedly arranged in a predetermined order (the order of A and B from the top in FIG. 1). Based on the image of the end floor mark, the car 1 can be controlled to decelerate and stop at the end floor, and the position of the car near the end floor can be measured including the case where the car 1 goes over the end floor.
  • the types of pattern shape of the end story mark are not limited to two types, and may be multiple types.
  • the end floor mark may also be provided on the surface of the guide rail near the top floor.
  • FIG. 7 is a configuration diagram showing the overall configuration of an elevator that is Embodiment 2 of the present invention.
  • the safety controller 8 (Fig. 1) has a system of car position measurement systems including the image sensor 9 (Fig. 1).
  • the safety controller 8 has two car position measurement systems.
  • the safety controller 8 is electrically connected to two image sensors 9 installed on the top of the car 1.
  • One of the two image sensors 9 acquires a surface image of one of the pair of guide rails 5 (left side in FIG. 7).
  • the other of the two image sensors 9 acquires a surface image of the other of the pair of guide rails 5 (the right side in FIG. 7).
  • a floor-to-floor mark 10 indicating position information in the hoistway for example, the height from the floor surface of the lowest floor is provided.
  • a plurality of (six in FIG. 7) end floor marks 11 are provided along the longitudinal direction of the guide rails 5 on each surface of the pair of guide rails 5 adjacent to the end floor (lowest floor FL1 in FIG. 1). , 12 are arranged in parallel.
  • car position measuring means and end floor deceleration stop control means using end floor marks in each measurement system are the same as those in the first embodiment.
  • the safety controller 8 can have the following functions by having two car position measurement systems.
  • the safety controller 8 normally executes safety control by one measurement system, and if one measurement system is abnormal, continues safety control by the other measurement system.
  • the safety controller 8 also compares the measured values of both measurement systems to determine whether the car 1 is displaced in the lateral direction. When the safety controller 8 determines that there is lateral displacement, it corrects the car position measurement value used for safety control.
  • the safety controller 8 compares the measured values of both measurement systems to determine whether there is an abnormality in the measurement system. When the safety controller 8 determines that there is an abnormality, it decelerates and stops the car 1 or forces it to stop.
  • the reliability of safety control based on the image of the surface of the guide rail 5 is improved.
  • the present invention is not limited to the above-described embodiments, and includes various modifications.
  • the above-described embodiments have been described in detail in order to explain the present invention in an easy-to-understand manner, and are not necessarily limited to those having all the described configurations.
  • the elevator may be a so-called machine room-less elevator in which the hoist and elevator control device are installed in the hoistway.

Abstract

Disclosed is a car position detection device that detects a car position on the basis of images in a hoistway and that can be applied to a safety device having a terminal floor deceleration stop function. This car position detection device comprises: an image sensor (9) that detects the position of a car (1) of an elevator on the basis of images in a hoistway, is installed on the car, and acquires images of the surface of a guide rail (5) that guides the car; a plurality of marks (11, 12) that are aligned along the longitudinal direction of the guide rail on the surface of the guide rail adjacent to an end floor; and a safety controller (8) that calculates the position of the car on the basis of images of the plurality of marks acquired by the image sensor. The plurality of marks have a plurality of types of pattern shapes, and are arranged so that adjacent marks have different pattern shapes.

Description

かご位置検出装置、並びにそれを用いるエレベータの安全装置Car position detector and elevator safety device using same
 本発明は、昇降路内の画像に基づいてエレベータの乗りかごの位置を検出するかご位置検出装置、並びにこのかご位置検出装置を用いるエレベータの安全装置に関する。 The present invention relates to a car position detection device that detects the position of an elevator car based on an image inside a hoistway, and an elevator safety device that uses this car position detection device.
 エレベータの安全装置においては、ガバナにより過速度状態を検知すると、動力電源を遮断したり、非常止め装置を動作させたりして、乗りかごを非常停止する。ガバナは、長尺物であるガバナロープを備えているため、昇降路内において、ガバナロープを敷設するスペースを要する。 In the elevator safety device, when the governor detects an overspeed condition, the power supply is cut off or the emergency stop device is activated to bring the car to an emergency stop. Since the governor is equipped with a governor rope that is long, a space for laying the governor rope is required in the hoistway.
 このようなガバナに代えて、昇降路内の画像を用いて乗りかごの速度や位置を検出する技術が知られている(特許文献1参照)。 Instead of using such a governor, there is a known technique for detecting the speed and position of the car using an image inside the hoistway (see Patent Document 1).
 例えば、特許文献1に記載の技術では、乗りかごに設けられる計測装置が、ガイドレールの凹凸表面の画像を取り込む。計測装置は、取り込んだタイミングが異なる第1のフレームと第2のフレームとの間の画像のずれと、第1のフレームおよび第2のフレームにおける取り込み時間の時間差とから、乗りかごの位置および移動速度を算出する。 For example, in the technique described in Patent Literature 1, a measuring device provided in the car captures an image of the uneven surface of the guide rail. The measurement device determines the position and movement of the car based on the image shift between the first frame and the second frame captured at different timings and the time difference between the capture times of the first frame and the second frame. Calculate speed.
国際公開第2021/038984号WO2021/038984
 特許文献1に記載の技術は、安全装置の終端階減速停止機能については考慮されていないため、終端階減速停止機能を含めた統合的な安全機能を有する安全装置に適用することが難しい。 The technology described in Patent Document 1 does not consider the terminal floor deceleration stop function of the safety device, so it is difficult to apply it to a safety device that has an integrated safety function including the terminal floor deceleration stop function.
 本発明は、昇降路内の画像に基づきかご位置を検出し、かつ終端階減速停止機能を有する安全装置に適用可能なかご位置検出装置、並びに、このかご位置検出装置を用いるエレベータの安全装置を提供する。 The present invention provides a car position detection device that detects a car position based on an image in a hoistway and is applicable to a safety device having a terminal floor deceleration stop function, and an elevator safety device that uses this car position detection device. offer.
 上記課題を解決するために、本発明によるかご位置検出装置は、昇降路内の画像に基づいてエレベータの乗りかごの位置を検出し、乗りかごに設けられ、乗りかごを案内するガイドレールの表面の画像を取得する画像センサと、端階に隣接するガイドレール表面に、ガイドレールの長手方向に沿って並置される複数のマークと、画像センサが取得する複数のマークの画像に基づいて、乗りかごの位置を算出する安全コントローラと、を備え、複数のマークは、複数種のパターン形状を有し、隣り合うマークのパターン形状が異なるように並置される。 In order to solve the above problems, the car position detection device according to the present invention detects the position of the car of an elevator based on the image in the hoistway, and detects the surface of the guide rail provided in the car and guiding the car. a plurality of marks juxtaposed along the longitudinal direction of the guide rail on the surface of the guide rail adjacent to the end floor; a safety controller that calculates the position of the car, the plurality of marks having a plurality of types of pattern shapes, and arranged side by side so that adjacent marks have different pattern shapes.
 上記課題を解決するために、本発明によるかごエレベータの安全装置は、昇降路内の画像に基づいて、乗りかごを減速または停止させる安全コントローラを備え、乗りかごに設けられ、乗りかごを案内するガイドレールの表面の画像を取得する画像センサと、端階に隣接するガイドレール表面に、ガイドレールの長手方向に沿って並置される複数のマークと、を備え、複数のマークは、複数種のパターン形状を有し、隣り合うマークのパターン形状が異なるように並置され、安全コントローラは、画像センサがマークの画像を取得すると、乗りかごを減速または停止させるとともに、画像センサが取得する複数のマークの画像に基づいて、乗りかごの位置を算出する。 In order to solve the above problems, the safety device for car elevator according to the present invention comprises a safety controller for decelerating or stopping the car based on the image in the hoistway, which is installed in the car and guides the car. An image sensor that acquires an image of the surface of the guide rail, and a plurality of marks arranged side by side along the longitudinal direction of the guide rail on the surface of the guide rail adjacent to the end floor, and the plurality of marks are of a plurality of types. The safety controller decelerates or stops the car when the image sensor acquires the image of the mark, and the plurality of marks acquired by the image sensor. The position of the car is calculated based on the image of .
 本発明によれば、昇降路内の画像に基づき、端階の付近で乗りかごを減速または停止することができる。 According to the present invention, the car can be decelerated or stopped near the end floor based on the image inside the hoistway.
 上記した以外の課題、構成および効果は、以下の実施形態の説明により明らかにされる。 Problems, configurations, and effects other than those described above will be clarified by the following description of the embodiments.
実施例1であるエレベータの全体構成を示す構成図である。1 is a configuration diagram showing the overall configuration of an elevator that is Embodiment 1. FIG. 実施例1における安全コントローラの構成を示す機能ブロック図である。3 is a functional block diagram showing the configuration of a safety controller in Embodiment 1; FIG. 実施例1における安全コントローラの動作を示すフローチャートである。4 is a flow chart showing the operation of the safety controller in Embodiment 1. FIG. ガイドレールの露出表面の画像の一例を示す模式図である。It is a schematic diagram which shows an example of the image of the exposed surface of a guide rail. ガイドレールの表面に設けられる端階マークの画像の一例を示す模式図である。FIG. 4 is a schematic diagram showing an example of an image of an end story mark provided on the surface of the guide rail; 比較例として、隣り合う二つの端階マークのパターン形状が同一である場合における端階マークの画像の一例を示す模式図である。As a comparative example, it is a schematic diagram showing an example of an image of an end story mark when two adjacent end story marks have the same pattern shape. 実施例2であるエレベータの全体構成を示す構成図である。FIG. 10 is a configuration diagram showing the overall configuration of an elevator that is Embodiment 2;
 以下、本発明による一実施形態であるエレベータについて、実施例1および実施例2により、図面を用いながら説明する。各図において、参照番号が同一のものは同一の構成要件あるいは類似の機能を備えた構成要件を示している。 An elevator that is one embodiment according to the present invention will be described below with reference to the drawings in Example 1 and Example 2. In each figure, the same reference numbers denote the same components or components with similar functions.
 図1は、本発明の実施例1であるエレベータの全体構成を示す構成図である。 FIG. 1 is a configuration diagram showing the overall configuration of an elevator that is Embodiment 1 of the present invention.
 図1に示すように、実施例1においては、乗りかご1および釣合おもり2が、それぞれ主ロープ3の一端および他端に機械的に接続される。主ロープ3は、巻上機4が備えるシーブに巻き掛けられる。これにより、乗りかご1および釣合おもり2が、建築物に設けられる昇降路101内に吊られる。すなわち、実施例1は、いわゆる、つるべ式のエレベータである。なお、実施例1において、巻上機4は、昇降路上に設けられる機械室内に設置される。 As shown in FIG. 1, in Example 1, the car 1 and the counterweight 2 are mechanically connected to one end and the other end of the main rope 3, respectively. The main rope 3 is wound around a sheave provided in the hoisting machine 4 . Thereby, the car 1 and the counterweight 2 are suspended in the hoistway 101 provided in the building. That is, Example 1 is a so-called barrel-type elevator. In addition, in Example 1, the hoist 4 is installed in a machine room provided on the hoistway.
 巻上機4が備えるモータが回転して、シーブが回転駆動されると、主ロープ3が、シーブと主ロープ3との間の摩擦力によって直線的に駆動される。これにより、乗りかご1および釣合おもり2は、昇降路内を、互いに上下反対方向に移動する。 When the motor of the hoisting machine 4 rotates and drives the sheave to rotate, the main rope 3 is linearly driven by the frictional force between the sheave and the main rope 3 . As a result, the car 1 and the counterweight 2 move in opposite directions in the hoistway.
 乗りかご1は、案内装置20(例えば、ガイドシュー)を介して、ガイドレール5に、移動可能に係合する。このため、乗りかご1は、ガイドレール5に案内されながら、最下階FL1および他の階床(FL2など)の任意の階床間で移動する。なお、実施例1では、ガイドレール5として、一般的なT型ガイドレールが適用される。また、釣合おもり2は、図示されない釣合おもり用のガイドレールに案内されながら移動する。 The car 1 is movably engaged with the guide rails 5 via guide devices 20 (eg, guide shoes). Therefore, the car 1 is guided by the guide rails 5 and moves between arbitrary floors of the lowest floor FL1 and other floors (FL2, etc.). In addition, in Example 1, a general T-shaped guide rail is applied as the guide rail 5 . The counterweight 2 moves while being guided by a guide rail for the counterweight (not shown).
 乗りかご1の上部には、安全コントローラ8が設置されている。安全コントローラ8は、乗りかご1の上部に設置される画像センサ9と電気的に接続されている。画像センサ9は、昇降路内における静止物であるガイドレール5の表面画像を取得する。実施例1では、ガイドレール5の表面画像として、T字の足部の先端部の表面画像が取得される。安全コントローラ8は、画像センサ9によって取得されるガイドレール5の表面画像に基づいて、乗りかご1の位置および速度を計測する。 A safety controller 8 is installed on the top of the car 1. The safety controller 8 is electrically connected to an image sensor 9 installed on top of the car 1 . The image sensor 9 acquires a surface image of the guide rail 5 which is a stationary object in the hoistway. In Example 1, as the surface image of the guide rail 5, the surface image of the tip of the T-shaped foot is acquired. The safety controller 8 measures the position and speed of the car 1 based on the surface image of the guide rail 5 acquired by the image sensor 9 .
 なお、画像センサ9としては、CCDやCMOSセンサなどが適用される。 As the image sensor 9, a CCD, CMOS sensor, or the like is applied.
 ガイドレール5の表面には、昇降路内における位置情報、例えば、最下階の床面からの高さを示す、階床間マーク10が設けられる。安全コントローラ8は、乗りかご1が走行中に、画像センサ9によって階床間マーク10を検出すると、階床間マーク10に対応する位置情報により、乗りかご1の位置(以下、「かご位置」と記す)の計測値を補正する。 A floor-to-floor mark 10 is provided on the surface of the guide rail 5 to indicate positional information in the hoistway, for example, the height of the lowest floor from the floor surface. When the image sensor 9 detects the floor-to-floor mark 10 while the car 1 is running, the safety controller 8 detects the position of the car 1 (hereinafter referred to as “car position”) based on the position information corresponding to the floor-to-floor mark 10 . ) is corrected.
 安全コントローラ8は、階床間マーク10と、昇降路内における高さ方向における位置情報との対応を示す、階床間マーク位置データを、予め記憶している。この位置情報は、昇降路内の基準位置から階床間マーク10が設けられている位置までの高さを示す。実施例1では、基準位置を、基準階である最下階FL1の床面としている。 The safety controller 8 stores in advance inter-floor mark position data that indicates the correspondence between the inter-floor mark 10 and position information in the height direction in the hoistway. This position information indicates the height from the reference position in the hoistway to the position where the floor-to-floor mark 10 is provided. In Example 1, the reference position is the floor surface of the lowest floor FL1, which is the reference floor.
 実施例1では、かご位置を、基準位置、すなわち最下階FL1の床面から、乗りかご1の床板面までの高さとしている。この場合、安全コントローラ8は、検出された階床間マーク10の位置情報から、乗りかご1における画像センサ9の設置高さ、すなわち、乗りかご1の床板面からの画像センサ9の高さを減算することにより、かご位置を算出する。安全コントローラ8は、かご位置として、通常は、ガイドレール5の表面画像に基づく計測値を設定するが、階床間マーク10を検出すると、階床間マーク10の位置情報に基づく算出値を設定する。これにより、誤差が蓄積されたかご位置が補正される。 In the first embodiment, the car position is the height from the reference position, that is, the floor surface of the lowest floor FL1 to the floor plate surface of the car 1. In this case, the safety controller 8 determines the installation height of the image sensor 9 in the car 1, that is, the height of the image sensor 9 from the floor plate surface of the car 1, from the position information of the detected floor-to-floor mark 10. By subtracting, the car position is calculated. As the car position, the safety controller 8 normally sets a measured value based on the surface image of the guide rail 5, but when the floor-to-floor mark 10 is detected, sets a calculated value based on the position information of the floor-to-floor mark 10. do. As a result, the car position in which errors have been accumulated is corrected.
 階床間マーク10は、好ましくは、昇降路内における各階床間で少なとも一つ設けられる。これにより、乗りかご1の走行ごとに、かご位置が補正されるので、かご位置の計測精度が向上する。階床間マーク10としては、例えば、バーコードなどが適用される。なお、異なる位置情報には、異なる階床間マーク10が対応する。 At least one floor-to-floor mark 10 is preferably provided between each floor in the hoistway. As a result, the position of the car is corrected each time the car 1 travels, so that the accuracy of measuring the position of the car is improved. As the floor-to-floor mark 10, for example, a barcode or the like is applied. Note that different inter-floor marks 10 correspond to different position information.
 端階(図1では、最下階FL1)に隣接するガイドレール5の表面には、ガイドレール5の長手方向に沿って、複数(図1では、6個)の端階マーク11,12が並設される。安全コントローラ8は、乗りかご1が走行中に、画像センサ9によって取得される画像が、ガイドレール5を構成する鋼材の露出表面の画像から、端階マーク11の画像に変わると、取得された画像に基づいて端階マーク11を検出する。安全コントローラ8は、端階マーク11を検出すると、乗りかご1が端階を行き過ぎないように、乗りかご1を減速させて停止させる減速制御指令を、テールコード7を介してエレベータ制御装置6へ送出する。安全コントローラ8は、端階マーク11,12の画像に基づいて計測するかご位置から、乗りかご1が端階を行き過ぎたと判定すると、巻上機4の動力電源を遮断して乗りかご1を確実に停止させる。 On the surface of the guide rail 5 adjacent to the end floor (lowest floor FL1 in FIG. 1), a plurality of (six in FIG. 1) end floor marks 11 and 12 are formed along the longitudinal direction of the guide rail 5. arranged side by side. When the image acquired by the image sensor 9 changes from the image of the exposed surface of the steel material forming the guide rail 5 to the image of the end floor mark 11 while the car 1 is running, the safety controller 8 detects the The end floor mark 11 is detected based on the image. When the safety controller 8 detects the end floor mark 11, the safety controller 8 sends a deceleration control command to the elevator control device 6 via the tail cord 7 to decelerate and stop the car 1 so that the car 1 does not overrun the end floor. Send out. When the safety controller 8 determines that the car 1 has gone too far over the end floor from the car position measured based on the images of the end floor marks 11 and 12, the safety controller 8 shuts off the power source of the hoisting machine 4 to ensure the car 1 is in place. to stop.
 本実施形態では、端階マーク11,12は、それぞれ、英文字パターン「A」および「B」を有している。複数(図1では、3個)の端階マーク11(英文字パターン「A」)と複数(図1では、3個)の端階マーク12(英文字パターン「B」)が、隣り合う英文字パターンが異なるように並置される。実施例1では、英文字パターン「A」および英文字パターン「B」が、上から、この順に、繰り返して並ぶように並置される。後述するように、少ない種類のパターン形状(図1では、2種類)によって、端階付近における乗りかご1の移動量を正確に計測することができる。 In this embodiment, the end story marks 11 and 12 have English character patterns "A" and "B", respectively. A plurality of (three in FIG. 1) end floor marks 11 (English character pattern “A”) and a plurality (three in FIG. 1) end floor marks 12 (English character pattern “B”) are adjacent to each other. Character patterns are juxtaposed differently. In Example 1, the English character pattern "A" and the English character pattern "B" are arranged side by side repeatedly in this order from the top. As will be described later, it is possible to accurately measure the amount of movement of the car 1 in the vicinity of the end story by using a small number of pattern shapes (two types in FIG. 1).
 複数(図1では、6個)の端階マーク11,12の内、図1中で最上部に位置し、最初に検出される端階マーク11は、この端階マーク11を検出して乗りかご1を減速する時、最下階(FL1)を行き過ぎることなく、減速して最下階に停止することができる位置に設けられる。また、図1中で最下部に位置する端階マーク12は、緩衝器100が乗りかご1によって圧縮された場合に、この端階マーク12が画像センサによって検出される位置に設けられる。したがって、安全コントローラは、緩衝器100が乗りかご1によって圧縮されるまで、乗りかご1が行き過ぎ状態であると判定し続ける。 Of the plurality of (six in FIG. 1) end floor marks 11 and 12, the end floor mark 11 positioned at the top in FIG. When decelerating the car 1, it is provided at a position where it can decelerate and stop at the lowest floor (FL1) without overshooting. Further, the end floor mark 12 positioned at the bottom in FIG. Thus, the safety controller will continue to determine that car 1 is overtraveled until the buffers 100 are compressed by car 1 .
 なお、端階マークのパターン形状は、英文字に限らず、他の文字種、数字、図形パターンなどでもよい。 It should be noted that the pattern shape of the end story mark is not limited to English characters, and other types of characters, numbers, graphic patterns, etc. may be used.
 図2は、実施例1における安全コントローラの構成を示す機能ブロック図である。 FIG. 2 is a functional block diagram showing the configuration of the safety controller according to the first embodiment.
 実施例1において、安全コントローラ8は、マイクロコンピュータなどのコンピュータシステムを備え、コンピュータシステムによって所定のプログラムを実行することにより、各部として動作する。 In Embodiment 1, the safety controller 8 includes a computer system such as a microcomputer, and operates as each section by executing a predetermined program with the computer system.
 画像検出部8aは、画像センサ9からの信号に基づいて、ガイドレール5(図1)の表面の画像を、所定時間間隔で検出する。 Based on the signal from the image sensor 9, the image detection unit 8a detects an image of the surface of the guide rail 5 (FIG. 1) at predetermined time intervals.
 画像メモリ8bは、画像検出部8aが検出した画像を記憶する。 The image memory 8b stores the image detected by the image detection unit 8a.
 画像比較部8cは、画像検出部8aによって検出される現時点の画像と、画像メモリ8bが記憶する前時点の画像とを比較して、両画像のずれを計測する。なお、比較手段として、例えば、画像相関法が適用される。なお、実施例1では、両画像のずれは乗りかご1(図1)の移動量に相当する。 The image comparison unit 8c compares the current image detected by the image detection unit 8a with the previous image stored in the image memory 8b, and measures the deviation between the two images. As a comparison means, for example, an image correlation method is applied. In addition, in Example 1, the shift between both images corresponds to the amount of movement of the car 1 (FIG. 1).
 かご位置演算部8dは、画像比較部8cによって算出された画像のずれに基づいて、かご位置を演算する。前述のように、算出された画像のずれは乗りかご1の移動量に相当するので、所定時間間隔で計測される画像のずれを、逐次、積算することにより、現時点でのかご位置が算出される。 The car position calculation unit 8d calculates the car position based on the image shift calculated by the image comparison unit 8c. As described above, the calculated image shift corresponds to the amount of movement of the car 1. Therefore, the current position of the car can be calculated by sequentially accumulating the image shifts measured at predetermined time intervals. be.
 かご位置メモリ8eは、かご位置演算部8dによって演算されたかご位置を記憶する。 The car position memory 8e stores the car position calculated by the car position calculation unit 8d.
 なお、かご位置演算部8dは、前時点に演算されて、かご位置メモリ8eに記憶されたかご位置をかご位置メモリ8eから読み出し、読み出した前時点のかご位置に、現時点で算出した画像のずれすなわち乗りかご1の移動量を加算もしくは減算することにより、現時点におけるかご位置を算出する。このような演算が、エレベータの稼働中に繰り返し実行されることにより、乗りかご1の移動量が、逐次、積算される。 The cage position calculation unit 8d reads out the cage position calculated at the previous time and stored in the cage position memory 8e from the cage position memory 8e, and stores the calculated shift of the image at the current time in the read cage position at the previous time. That is, by adding or subtracting the amount of movement of the car 1, the current position of the car is calculated. By repeatedly executing such calculations while the elevator is in operation, the amount of movement of the car 1 is successively integrated.
 階床間マーク検出部8fは、画像検出部8aによって検出される現時点の画像に基づいて、階床間マーク10(図1)を検出する。階床間マーク検出部8fは、パターン認識などにより、階床間マーク10を識別する。この場合、階床間マーク検出部8fは、予め階床間マーク10の基本画像データを記憶し、検出された画像と基本画像データとを比較することにより、階床間マーク10(図1)を検出する。なお、比較手段としては、例えば、画像相関法が適用される。 The floor-to-floor mark detection unit 8f detects the floor-to-floor mark 10 (FIG. 1) based on the current image detected by the image detection unit 8a. The floor-to-floor mark detection unit 8f identifies the floor-to-floor mark 10 by pattern recognition or the like. In this case, the floor-to-floor mark detection unit 8f stores the basic image data of the floor-to-floor mark 10 in advance, and compares the detected image with the basic image data to detect the floor-to-floor mark 10 (FIG. 1). to detect As the comparison means, for example, an image correlation method is applied.
 かご位置補正部8gは、検出された階床間マーク10が示す位置情報をマーク位置メモリ8hから取得し、かご位置演算部8dで演算されるかご位置を、取得した位置情報に補正する。これにより、乗りかご1の移動量の積算に伴い蓄積されたかご位置の誤差が補正され、かご位置の計測値の精度が向上する。 The car position correction unit 8g acquires the position information indicated by the detected floor-to-floor mark 10 from the mark position memory 8h, and corrects the car position calculated by the car position calculation unit 8d to the acquired position information. As a result, the car position error accumulated along with the integration of the movement amount of the car 1 is corrected, and the accuracy of the measured value of the car position is improved.
 マーク位置メモリ8hは、階床間マーク10と、階床間マーク10が示す位置情報との対応データを、予め記憶している。 The mark position memory 8h preliminarily stores correspondence data between the floor-to-floor marks 10 and the position information indicated by the floor-to-floor marks 10 .
 端階マーク検出部8iは、画像検出部8aによって検出される現時点の画像に基づいて、端階マーク11,12(図1)を検出する。端階マーク検出部8iは、例えば、パターン認識により、端階マーク11,12を識別する。この場合、階床間マーク検出部8fは、端階マーク11,12の基本画像データを記憶し、検出された画像と基本画像データとを比較することにより、端階マーク11,12を検出する。なお、比較手段としては、例えば、画像相関法が適用される。 The end floor mark detection unit 8i detects end floor marks 11 and 12 (FIG. 1) based on the current image detected by the image detection unit 8a. The end floor mark detection unit 8i identifies the end floor marks 11 and 12 by, for example, pattern recognition. In this case, the floor-to-floor mark detection unit 8f stores the basic image data of the end floor marks 11 and 12, and detects the end floor marks 11 and 12 by comparing the detected image with the basic image data. . As the comparison means, for example, an image correlation method is applied.
 端階減速停止制御部8jは、端階マーク検出部8iによって端階マーク11,12が検出されると、乗りかご1を減速させて停止させる減速制御指令を、エレベータ制御装置6へ送出する。エレベータ制御装置6は、減速制御指令を受けると、巻上機4のモータ41を減速して、停止させる。 When the end floor deceleration stop control unit 8j detects the end floor marks 11 and 12 by the end floor mark detection unit 8i, it sends a deceleration control command to decelerate and stop the car 1 to the elevator control device 6. When receiving the deceleration control command, the elevator control device 6 decelerates and stops the motor 41 of the hoisting machine 4 .
 また、端階減速停止制御部8jは、端階マーク検出部8iによって端階マーク11,12が検出され、かつ、かご位置演算部8dによって算出されるかご位置の計測値に基づいて、乗りかご1が端階を行き過ぎたと判定すると、コンタクタ50へ、かご制止制御信号を送出する。コンタクタ50は、かご制止制御信号を受けると、動力電源を遮断する。このため、巻上機4のモータ41が停止するとともに、巻上機4のブレーキ42が制動状態となる。これにより、乗りかご1が確実に停止される。 Further, the end floor deceleration stop control unit 8j detects the end floor marks 11 and 12 by the end floor mark detection unit 8i, and based on the measured value of the car position calculated by the car position calculation unit 8d, 1 sends a car restraining control signal to the contactor 50 when it determines that it has gone too far over an end floor. The contactor 50 cuts off the power supply when receiving the car restraint control signal. As a result, the motor 41 of the hoisting machine 4 is stopped and the brake 42 of the hoisting machine 4 is brought into a braking state. As a result, the car 1 is reliably stopped.
 図3は、実施例1における安全コントローラ8(図1,2)の動作を示すフローチャートである。なお、以下、図2を適宜参照しながら、説明する。 FIG. 3 is a flow chart showing the operation of the safety controller 8 (FIGS. 1 and 2) in the first embodiment. In addition, it demonstrates, referring FIG. 2 suitably hereafter.
 ステップS1では、安全コントローラ8は、動作開始後、画像検出部8aを用いて、画像センサ9からの画像信号に基づいて、ガイドレール表面の現画像を取得する(ステップS1)。安全コントローラ8は、ステップS1を実行すると、次に、ステップS2を実行する。 In step S1, after starting operation, the safety controller 8 acquires a current image of the guide rail surface based on the image signal from the image sensor 9 using the image detection unit 8a (step S1). After executing step S1, the safety controller 8 next executes step S2.
 ステップS2では、安全コントローラ8は、端階マーク検出部8iを用いて、取得した現時点の画像(現画像)に基づいて、端階マークが検出されたか否かを判定する(ステップS2)。安全コントローラ8は、端階マークが検出されたと判定すると(ステップS2のYES)、次に、ステップS3を実行する。また、安全コントローラ8は、端階マークが検出されていないと判定すると(ステップS2のNO)、ステップS3をスキップして、次に、ステップS4を実行する。 In step S2, the safety controller 8 uses the end story mark detection unit 8i to determine whether or not the end story mark is detected based on the acquired current image (current image) (step S2). When the safety controller 8 determines that the end story mark has been detected (YES in step S2), it then executes step S3. When the safety controller 8 determines that no end story mark has been detected (NO in step S2), it skips step S3 and then executes step S4.
 ステップS3では、安全コントローラ8は、端階減速停止制御部8jを用いて、乗りかごを減速させて停止させる減速制御指令、もしくは、動力電源を遮断して乗りかごを強制的に停止させるかご制止制御信号を送出する。なお、図3中では、これら制御指令を、まとめて、「端階減速停止指令」と記している。 In step S3, the safety controller 8 uses the end floor deceleration stop control unit 8j to issue a deceleration control command to decelerate and stop the car, or a car stop command to forcibly stop the car by cutting off the power supply. Send a control signal. In addition, in FIG. 3, these control commands are collectively described as "end floor deceleration stop command".
 ステップS4では、安全コントローラ8は、画像比較部8cを用いて、ステップS1で取得した現画像と、画像メモリ8bを用いて記憶している前時点(前回)の画像とを比較し、現画像が前回の画像と異なるか否かを判定する。安全コントローラ8は、現画像が前回の画像と異なると判定すると(ステップS4のYES)、次に、ステップS5を実行する。また、安全コントローラ8は、現画像が前回の画像と異ならないと判定すると(ステップS4のNO)、ステップS5,S6をスキップして、次に、ステップS7を実行する。 In step S4, the safety controller 8 uses the image comparison unit 8c to compare the current image acquired in step S1 with the previous image stored in the image memory 8b. is different from the previous image. When the safety controller 8 determines that the current image is different from the previous image (YES in step S4), it then executes step S5. If the safety controller 8 determines that the current image does not differ from the previous image (NO in step S4), it skips steps S5 and S6 and then executes step S7.
 ステップS5では、安全コントローラ8は、画像比較部8cを用いて、現画像と、前回の画像とのずれを計測し、さらに、かご位置演算部8dを用いて、画像のずれに基づいて、前時点からの乗りかごの移動量を算出する。安全コントローラ8は、ステップS5を実行すると、次に、ステップS6を実行する。 In step S5, the safety controller 8 uses the image comparison unit 8c to measure the deviation between the current image and the previous image, and furthermore, uses the car position calculation unit 8d to calculate the previous image based on the deviation of the images. Calculate the amount of movement of the car from the point in time. After executing step S5, the safety controller 8 next executes step S6.
 ステップS6では、安全コントローラ8は、かご位置演算部8dを用いて、ステップS5で算出した乗りかごの移動量に基づいて、かご位置を算出する。安全コントローラ8は、ステップS6を実行すると、次に、ステップS7を実行する。 In step S6, the safety controller 8 uses the car position calculator 8d to calculate the car position based on the car movement amount calculated in step S5. After executing step S6, the safety controller 8 next executes step S7.
 なお、上述のステップS2~S6から判るように、実施例1では、乗りかごの通常走行時にくわえ、乗りかごが端階を行き過ぎた時においても、かご位置が計測される。 As can be seen from steps S2 to S6 described above, in the first embodiment, the position of the car is measured not only when the car travels normally, but also when the car passes over an end floor.
 ステップS7では、安全コントローラは、階床間マーク検出部8fを用いて、ステップS1で取得した現画像に基づいて、階床間マークが検出されたか否かを判定する。安全コントローラ8は、階床間マークが検出されたと判定すると(ステップS7のYES)、次に、ステップS8を実行する。また、安全コントローラ8は、端階マークが検出されていないと判定すると(ステップS7のNO)、ステップS8をスキップして、次に、ステップS9を実行する。 In step S7, the safety controller uses the floor-to-floor mark detection unit 8f to determine whether or not the floor-to-floor mark is detected based on the current image acquired in step S1. When the safety controller 8 determines that the floor-to-floor mark has been detected (YES in step S7), it then executes step S8. When the safety controller 8 determines that no end story mark has been detected (NO in step S7), it skips step S8 and then executes step S9.
 ステップS8では、安全コントローラ8は、かご位置補正部8gを用いて、かご位置を、ステップS7で検出した階床間マークに対応する昇降路内の位置に補正する。なお、実施例1では、現時点でのかご位置の計測値が、誤差の大小に関わらず、検出した階床間マークに対応する昇降路内の位置に置き換えられる。安全コントローラ8は、ステップS8を実行すると、次に、ステップS9を実行する。 In step S8, the safety controller 8 uses the car position correction unit 8g to correct the car position to a position within the hoistway corresponding to the floor-to-floor mark detected in step S7. In the first embodiment, the measured value of the car position at the present time is replaced with the position in the hoistway corresponding to the detected floor-to-floor mark regardless of the magnitude of the error. After executing step S8, the safety controller 8 next executes step S9.
 ステップS9では、安全コントローラ8は、現画像のデータを画像メモリ8bに記録する。安全コントローラ8は、ステップS9を実行すると、次に、ステップS10を実行する。 In step S9, the safety controller 8 records data of the current image in the image memory 8b. After executing step S9, the safety controller 8 next executes step S10.
 ステップS10では、安全コントローラ8は、現時点のかご位置のデータをかご位置メモリ8eに記録する。 In step S10, the safety controller 8 records the current car position data in the car position memory 8e.
 安全コントローラ8は、ステップS10を実行すると、現時点における一連の処理を終了する。なお、安全コントローラ8は、エレベータが稼働中は、所定の時間間隔で、ステップS1~S10を、繰り返し実行する。 After executing step S10, the safety controller 8 terminates the current series of processes. Note that the safety controller 8 repeatedly executes steps S1 to S10 at predetermined time intervals while the elevator is in operation.
 図4は、ガイドレール5(図1)の露出表面の画像の一例を示す模式図である。 FIG. 4 is a schematic diagram showing an example of an image of the exposed surface of the guide rail 5 (FIG. 1).
 図4では、画像センサ9(図1,2)によって取得される、時刻tにおける画像I(t)と時刻t+Δt(Δt:フレーム周期)における画像I(t+Δt)を示す。いずれも、ガイドレール5を構成する鋼材の露出表面の画像であり、鋼材の露出表面における凹凸分布を示す輝度分布のパターンを示す。なお、時刻tから時刻t+Δtまでの間、乗りかご1(図1)は下降している。 FIG. 4 shows an image I(t) at time t and an image I(t+Δt) at time t+Δt (Δt: frame period) acquired by the image sensor 9 (FIGS. 1 and 2). Both images are images of the exposed surface of the steel material that constitutes the guide rail 5, and show the pattern of the luminance distribution indicating the unevenness distribution on the exposed surface of the steel material. Note that the car 1 (FIG. 1) is lowered from time t to time t+Δt.
 乗りかご1が移動しているため、図4に示すように、画像I(t)と画像I(t+Δt)との間では、画像のずれdが生じる。なお、図4では、乗りかご1が下降しているため、画像フレーム中で、上方向に画像のずれdが生じる。この画像のずれdは、実施例1では、画像相関法を用いて、画像I(t)と画像I(t+Δt)を比較することにより算出される。この場合、画像I(t)もしくはその一部(例えば、図4中の位置Pにおける部分)を、画像フレーム中で、ガイドレール5の長手方向に沿って所定量ずつ移動しながら、移動した画像I(t)と画像I(t+Δt)との相関関数値が算出される。相関関数値が最大値となる場合の画像I(t)の総移動量が画像のずれdとされる。 Since the car 1 is moving, an image shift d occurs between the image I(t) and the image I(t+Δt), as shown in FIG. In FIG. 4, since the car 1 is lowered, an image shift d occurs in the upward direction in the image frame. This image shift d is calculated by comparing the image I(t) and the image I(t+Δt) using the image correlation method in the first embodiment. In this case, the image I(t) or a portion thereof (for example, the portion at position P in FIG. 4) is moved in the image frame by a predetermined amount along the longitudinal direction of the guide rail 5. A correlation function value between I(t) and the image I(t+Δt) is calculated. The total amount of movement of the image I(t) when the correlation function value is the maximum value is taken as the image shift d.
 画像のずれdは、時間Δtにおける乗りかご1の移動量(図4では下降量)に相当する。また、画像フレーム中で画像がずれる方向は、乗りかご1の移動方向(上昇、下降)を示す。したがって、画像のずれる方向に応じて画像のずれ正負を設定すれば、例えば、下方向(上昇方向)を正、上方向(下降方向)を負とすれば、Δtごとに画像のずれdを算出し、起動時のかご位置に積算すれば、現時点におけるかご位置を計測することができる。 The image shift d corresponds to the amount of movement (the amount of descent in FIG. 4) of the car 1 at the time Δt. Also, the direction in which the image shifts in the image frame indicates the moving direction (upward or downward) of the car 1 . Therefore, if the positive or negative image shift is set according to the direction of image shift, for example, if the downward direction (upward direction) is positive and the upward direction (downward direction) is negative, the image shift d is calculated for each Δt. Then, by accumulating the car position at the time of startup, the car position at the present time can be measured.
 なお、ガイドレール5には、表面に凹凸をつけるために、研磨などにより表面仕上げが施されていることが好ましい。また、画像センサ9は、ガイドレール5の表面を照らす光源を備えていることが好ましい。これらにより、かご位置の計測精度が向上する。 It should be noted that the guide rail 5 is preferably finished by polishing or the like in order to make the surface uneven. Moreover, the image sensor 9 preferably has a light source for illuminating the surface of the guide rail 5 . As a result, the car position measurement accuracy is improved.
 図5は、ガイドレール5(図1)の表面に設けられる端階マーク11,12(図1)の画像の一例を示す模式図である。 FIG. 5 is a schematic diagram showing an example of images of the end floor marks 11 and 12 (FIG. 1) provided on the surface of the guide rail 5 (FIG. 1).
 上述したように、実施例1では、端階マーク11,12(図1)は、それぞれ、英文字パターン「A」および「B」を有している。 As described above, in Example 1, the end floor marks 11 and 12 (FIG. 1) respectively have the English character patterns "A" and "B".
 図5では、図4と同様に、画像センサ9(図1,2)によって取得される、時刻tにおける画像I(t)と時刻t+Δt(Δt:フレーム周期)における画像I(t+Δt)を示す。いずれも、ガイドレール5の表面に並置される複数の端階マークの一部の画像である。なお、時刻tから時刻t+Δtまでの間、乗りかご1(図1)は、最下階付近で下降している。 As in FIG. 4, FIG. 5 shows an image I(t) at time t and an image I(t+Δt) at time t+Δt (Δt: frame period) acquired by the image sensor 9 (FIGS. 1 and 2). Both images are partial images of a plurality of end floor marks juxtaposed on the surface of the guide rail 5 . From time t to time t+Δt, car 1 (FIG. 1) is lowered near the lowest floor.
 乗りかご1が移動しているため、図5に示すように、画像I(t)と画像I(t+Δt)との間では、画像のずれdが生じる。なお、図5では、乗りかご1が下降しているため、画像フレーム中で、例えば、画像I(t)における位置Pが、画像I(t+Δt)では、上方向にdだけずれる。この画像のずれdは、例えば、図4の場合と同様に画像相関法を用いて、画像I(t)と画像I(t+Δt)を比較することにより算出される。 Since the car 1 is moving, an image shift d occurs between the image I(t) and the image I(t+Δt), as shown in FIG. In FIG. 5, since the car 1 is lowered, for example, the position P in the image I(t) is shifted upward by d in the image I(t+Δt) in the image frame. This image shift d is calculated by comparing the image I(t) and the image I(t+Δt), for example, using the image correlation method as in the case of FIG.
 画像のずれdは、時間Δtにおける乗りかご1の移動量(図5では下降量)に相当する。また、画像フレーム中で画像がずれる方向は、乗りかご1の移動方向(上昇、下降)を示す。したがって、画像のずれる方向に応じて画像のずれの正負を設定すれば、例えば、下方向(上昇方向)を正、上方向(下降方向)を負とすれば、Δtごとに画像のずれdを算出し、Δt前の時点におけるかご位置の計測値に積算すれば、現時点におけるかご位置を計測することができる。 The image shift d corresponds to the amount of movement (the amount of descent in FIG. 5) of the car 1 at time Δt. Also, the direction in which the image shifts in the image frame indicates the moving direction (upward or downward) of the car 1 . Therefore, if the sign of the image shift is set according to the direction of image shift, for example, if the downward direction (upward direction) is positive and the upward direction (downward direction) is negative, the image shift d is calculated every Δt. By calculating and adding to the measured value of the car position at the point before Δt, the car position at the present time can be measured.
 このように、端階マーク11,12の画像に基づき、乗りかご1が端階を行き過ぎる場合も含めて、端階付近におけるかご位置が計測される。 In this way, based on the images of the end floor marks 11 and 12, the car position near the end floor is measured, including the case where the car 1 goes over the end floor.
 実施例1では、英文字パターンAを有する端階マーク11と、英文字パターンBを有する端階マーク12とが、ガイドレールの長手方向に沿って、交互に並置される。すなわち、隣り合う二つの端階マークのパターン形状が互いに異なる。このため、図5に示すように、画像I(t+Δt)においては、上方向にdだけずれた位置付近におけるパターン部のみが、画像I(t)における位置P付近のパターン部に相当する。したがって、画像I(t)と画像I(t+Δt)を比較することにより、乗りかごの移動量が、下降方向にdであることが、一意的に定まる。 In Example 1, the end story marks 11 having the English character pattern A and the end story marks 12 having the English character pattern B are alternately arranged side by side along the longitudinal direction of the guide rail. That is, the pattern shapes of two adjacent end story marks are different from each other. Therefore, as shown in FIG. 5, in the image I(t+Δt), only the pattern portion near the position shifted upward by d corresponds to the pattern portion near the position P in the image I(t). Therefore, by comparing the image I(t) and the image I(t+Δt), it is uniquely determined that the amount of movement of the car in the downward direction is d.
 そこで、隣り合う二つの端階マークのパターン形状が同一である場合について説明する。 Therefore, the case where the pattern shapes of two adjacent end story marks are the same will be described.
 図6は、上述の実施例1に対する比較例として、隣り合う二つの端階マークのパターン形状が同一である場合における端階マークの画像の一例を示す模式図である。なお、実施例1と同様に、乗りかごは下降している。 FIG. 6 is a schematic diagram showing an example of an image of an edge floor mark when two adjacent edge floor marks have the same pattern shape, as a comparative example with respect to the first embodiment described above. As in the first embodiment, the car is lowered.
 本比較例では、隣り合う二つの端階マークの英文字パターンがともにAである。 In this comparative example, the English letter patterns of two adjacent end floor marks are both A.
 図6に示すように、画像I(t+Δt)においては、上方向にdだけずれた位置付近におけるパターン部が、画像I(t)における位置P付近のパターン部に相当する。さらに、画像I(t+Δt)においては、下方向にd’だけずれた位置付近におけるパターン部も、画像I(t)における位置P付近のパターン部に相当する。したがって、画像I(t)と画像I(t+Δt)を比較しただけでは、乗りかごの移動量が、方向を含めて、一意的に定まらない。 As shown in FIG. 6, in the image I(t+Δt), the pattern portion near the position shifted upward by d corresponds to the pattern portion near the position P in the image I(t). Furthermore, in the image I(t+Δt), the pattern portion near the position shifted downward by d′ also corresponds to the pattern portion near the position P in the image I(t). Therefore, the moving amount of the car, including the direction, cannot be uniquely determined by simply comparing the image I(t) and the image I(t+Δt).
 上述のように、実施例1では、端階(図1では最下階)に隣接するガイドレール5の表面に、複数(図1では6個)の端階マーク(11,12)が、ガイドレール5の長手方向に沿って並置される。さらに、複数の端階マークは、複数種のパターン形状(図1では、2種類の英文字パターンA,B)を有し、隣り合う端階マークのパターン形状が異なるように並置される。さらに、複数の端階マークは、複数種のパターン形状が所定の順番(図1では、上からA,Bの順番)で、繰り返して並ぶように並置される。このような端階マークの画像に基づいて、乗りかご1の端階減速停止制御が可能になるとともに、乗りかご1が端階を行き過ぎる場合を含めて、端階付近におけるかご位置を計測できる。 As described above, in the first embodiment, a plurality of (six in FIG. 1) end floor marks (11, 12) are provided on the surface of the guide rail 5 adjacent to the end floor (lowest floor in FIG. 1). They are juxtaposed along the longitudinal direction of rail 5 . Furthermore, the plurality of end floor marks have a plurality of types of pattern shapes (two types of alphabetic character patterns A and B in FIG. 1), and are arranged side by side so that adjacent end floor marks have different pattern shapes. Further, the plurality of end story marks are arranged in parallel so that the plurality of pattern shapes are repeatedly arranged in a predetermined order (the order of A and B from the top in FIG. 1). Based on the image of the end floor mark, the car 1 can be controlled to decelerate and stop at the end floor, and the position of the car near the end floor can be measured including the case where the car 1 goes over the end floor.
 端階マークのパターン形状の種類は、2種類に限らず、複数種類でよい。また、端階マークは、最上階の付近で、ガイドレールの表面に設けられてもよい。 The types of pattern shape of the end story mark are not limited to two types, and may be multiple types. The end floor mark may also be provided on the surface of the guide rail near the top floor.
 図7は、本発明の実施例2であるエレベータの全体構成を示す構成図である。 FIG. 7 is a configuration diagram showing the overall configuration of an elevator that is Embodiment 2 of the present invention.
 以下、主に、実施例1と異なる点について説明する。 The points that differ from the first embodiment will be mainly described below.
 実施例1では、安全コントローラ8(図1)は、画像センサ9(図1)を含むかご位置の計測系を一系統有している。これに対し、実施例2では、図7に示すように、安全コントローラ8は、かご位置の計測系を二系統有している。 In Embodiment 1, the safety controller 8 (Fig. 1) has a system of car position measurement systems including the image sensor 9 (Fig. 1). On the other hand, in the second embodiment, as shown in FIG. 7, the safety controller 8 has two car position measurement systems.
 安全コントローラ8は、乗りかご1の上部に設置される二台の画像センサ9と電気的に接続されている。二台の画像センサ9の一方(図7中左側)は、一対のガイドレール5の一方(図7中左側)の表面画像を取得する。さらに、二台の画像センサ9の他方(図7中右側)は、一対のガイドレール5の他方(図7中右側)の表面画像を取得する。 The safety controller 8 is electrically connected to two image sensors 9 installed on the top of the car 1. One of the two image sensors 9 (left side in FIG. 7) acquires a surface image of one of the pair of guide rails 5 (left side in FIG. 7). Further, the other of the two image sensors 9 (the right side in FIG. 7) acquires a surface image of the other of the pair of guide rails 5 (the right side in FIG. 7).
 一対のガイドレール5の各表面には、昇降路内における位置情報、例えば、最下階の床面からの高さを示す、階床間マーク10が設けられる。 On each surface of the pair of guide rails 5, a floor-to-floor mark 10 indicating position information in the hoistway, for example, the height from the floor surface of the lowest floor is provided.
 端階(図1では、最下階FL1)に隣接する一対のガイドレール5の各表面には、ガイドレール5の長手方向に沿って、複数(図7では、6個)の端階マーク11,12が並設される。 A plurality of (six in FIG. 7) end floor marks 11 are provided along the longitudinal direction of the guide rails 5 on each surface of the pair of guide rails 5 adjacent to the end floor (lowest floor FL1 in FIG. 1). , 12 are arranged in parallel.
 なお、各計測系における、かご位置の計測手段、ならびに端階マークによる端階減速停止制御手段は、実施例1と同様である。 It should be noted that the car position measuring means and end floor deceleration stop control means using end floor marks in each measurement system are the same as those in the first embodiment.
 実施例2では、かご位置の計測系を二系統有することにより、安全コントローラ8は、次のような機能を備えることができる。 In the second embodiment, the safety controller 8 can have the following functions by having two car position measurement systems.
 まず、安全コントローラ8は、通常は一方の計測系によって安全制御を実行し、一方の計測系が異常であると、他方の計測系によって安全制御を継続する。 First, the safety controller 8 normally executes safety control by one measurement system, and if one measurement system is abnormal, continues safety control by the other measurement system.
 また、安全コントローラ8は、両計測系の計測値を比較して、乗りかご1の横方向の変位の有無を判定する。安全コントローラ8は、横方向の変位があると判定すると、安全制御に用いるかご位置の計測値を補正する。 The safety controller 8 also compares the measured values of both measurement systems to determine whether the car 1 is displaced in the lateral direction. When the safety controller 8 determines that there is lateral displacement, it corrects the car position measurement value used for safety control.
 また、安全コントローラ8は、両計測系の計測値を比較して、計測系の異常の有無を判定する。安全コントローラ8は、異常が有ると判定すると、乗りかご1を、減速停止させたり、強制停止させたりする。 Also, the safety controller 8 compares the measured values of both measurement systems to determine whether there is an abnormality in the measurement system. When the safety controller 8 determines that there is an abnormality, it decelerates and stops the car 1 or forces it to stop.
 上述のように、実施例2によれば、ガイドレール5の表面の画像に基づく安全制御の信頼性が向上する。 As described above, according to the second embodiment, the reliability of safety control based on the image of the surface of the guide rail 5 is improved.
 なお、本発明は前述した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、前述した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、各実施例の構成の一部について、他の構成の追加・削除・置き換えをすることが可能である。 It should be noted that the present invention is not limited to the above-described embodiments, and includes various modifications. For example, the above-described embodiments have been described in detail in order to explain the present invention in an easy-to-understand manner, and are not necessarily limited to those having all the described configurations. Moreover, it is possible to add, delete, or replace a part of the configuration of each embodiment with another configuration.
 例えば、安全コントローラ8は、画像のずれd(図4,5)およびフレーム周期Δt(図4,5)に基づいて、乗りかご1の速度vを計測してもよい。この場合、安全コントローラ8は、dおよびΔtからvを算出する(v=d/Δt)。安全コントローラ8は、vの大きさが所定の過速度値となったら、非常止め装置を作動させる。 For example, the safety controller 8 may measure the speed v of the car 1 based on the image shift d (FIGS. 4 and 5) and the frame period Δt (FIGS. 4 and 5). In this case, safety controller 8 calculates v from d and Δt (v=d/Δt). The safety controller 8 activates the safety device when the magnitude of v reaches a predetermined overspeed value.
 また、エレベータは、巻上機やエレベータ制御装置が昇降路内に設置される、いわゆる機械室レスエレベータでもよい。 In addition, the elevator may be a so-called machine room-less elevator in which the hoist and elevator control device are installed in the hoistway.
1…乗りかご、2…釣合おもり、3…主ロープ、4…巻上機、5…ガイドレール、6…エレベータ制御装置、7…テールコード、8…安全コントローラ、9…画像センサ、10…階床間マーク、11…端階マーク、12…端階マーク、20…案内装置、41…モータ、42…ブレーキ、50…コンタクタ、60…動力電源、100…緩衝器 DESCRIPTION OF SYMBOLS 1... Car, 2... Balance weight, 3... Main rope, 4... Hoisting machine, 5... Guide rail, 6... Elevator control device, 7... Tail cord, 8... Safety controller, 9... Image sensor, 10... Inter-floor mark 11 End floor mark 12 End floor mark 20 Guide device 41 Motor 42 Brake 50 Contactor 60 Power supply 100 Shock absorber

Claims (7)

  1.  昇降路内の画像に基づいてエレベータの乗りかごの位置を検出するかご位置検出装置において、
     乗りかごに設けられ、前記乗りかごを案内するガイドレールの表面の画像を取得する画像センサと、
     端階に隣接する前記表面に、前記ガイドレールの長手方向に沿って並置される複数のマークと、
     前記画像センサが取得する前記複数のマークの画像に基づいて、前記乗りかごの位置を算出する安全コントローラと、
    を備え、
     前記複数のマークは、複数種のパターン形状を有し、隣り合う前記マークの前記パターン形状が異なるように並置されることを特徴とするかご位置検出装置。
    In a car position detection device that detects the position of an elevator car based on an image inside a hoistway,
    an image sensor that is provided in the car and acquires an image of the surface of the guide rail that guides the car;
    a plurality of marks juxtaposed along the length of the guide rail on the surface adjacent to an end story;
    a safety controller that calculates the position of the car based on the images of the plurality of marks acquired by the image sensor;
    with
    The car position detecting device, wherein the plurality of marks have a plurality of types of pattern shapes, and are arranged side by side such that the pattern shapes of adjacent marks are different.
  2.  請求項1に記載のかご位置検出装置において、
     前記複数のマークは、前記複数種のパターン形状が、所定の順番で、繰り返して並置されることを特徴とするかご位置検出装置。
    In the car position detection device according to claim 1,
    The cage position detecting device, wherein the plurality of marks are arranged in parallel in a predetermined order and the plurality of types of pattern shapes are repeatedly arranged.
  3.  請求項1に記載のかご位置検出装置において、
     前記複数のマークは、前記乗りかごの位置が、前記乗りかごが前記端階の付近で減速して前記端階に停止できる位置から、前記乗りかごが前記端階を行き過ぎる位置までの間において、前記ガイドレールの前記表面に並置されることを特徴とするかご位置検出装置。
    In the car position detection device according to claim 1,
    The plurality of marks indicate a position of the car between a position where the car can decelerate near the end floor and stop at the end floor and a position where the car passes over the end floor, A car position detection device, wherein the car position detection device is juxtaposed on the surface of the guide rail.
  4.  請求項1に記載のかご位置検出装置において、
     前記安全コントローラは、第1の時点で取得される前記複数のマークの画像と、第2の時点で取得される前記複数のマークの画像との画像ずれに基づいて、前記端階の付近における前記乗りかごの位置を算出することを特徴とするかご位置検出装置。
    In the car position detection device according to claim 1,
    The safety controller detects the image near the end floor based on the image deviation between the image of the plurality of marks acquired at a first time point and the image of the plurality of marks acquired at a second time point. A car position detection device that calculates the position of a car.
  5.  請求項4に記載のかご位置検出装置において、
     前記安全コントローラは、前記画像ずれに基づいて、前記乗りかごの移動方向における移動量を算出することを特徴とするかご位置検出装置。
    In the car position detection device according to claim 4,
    The car position detection device, wherein the safety controller calculates a moving amount of the car in a moving direction based on the image deviation.
  6.  昇降路内の画像に基づいて、乗りかごを減速または停止させる安全コントローラを備えるエレベータの安全装置において、
     乗りかごに設けられ、前記乗りかごを案内するガイドレールの表面の画像を取得する画像センサと、
     端階に隣接する前記表面に、前記ガイドレールの長手方向に沿って並置される複数のマークと、
    を備え、
     前記複数のマークは、複数種のパターン形状を有し、隣り合う前記マークの前記パターン形状が異なるように並置され、
     前記安全コントローラは、前記画像センサが前記マークの画像を取得すると、乗りかごを減速または停止させるとともに、前記画像センサが取得する前記複数のマークの画像に基づいて、前記乗りかごの位置を算出することを特徴とするエレベータの安全装置。
    In an elevator safety system with a safety controller that slows or stops a car based on images in the hoistway, comprising:
    an image sensor that is provided in the car and acquires an image of the surface of the guide rail that guides the car;
    a plurality of marks juxtaposed along the length of the guide rail on the surface adjacent to an end story;
    with
    the plurality of marks have a plurality of types of pattern shapes, and are arranged side by side such that the pattern shapes of adjacent marks are different;
    The safety controller decelerates or stops the car when the image sensor acquires the image of the mark, and calculates the position of the car based on the images of the plurality of marks acquired by the image sensor. An elevator safety device characterized by:
  7.  請求項6に記載のエレベータの安全装置において、
     前記安全コントローラは、算出される前記乗りかごの位置に基づいて、前記乗りかごが前記端階を行き過ぎたと判定すると、前記乗りかごを停止させることを特徴とするエレベータの安全装置。
    In the elevator safety device according to claim 6,
    A safety device for an elevator, wherein the safety controller stops the car when it determines that the car has gone too far over the end floor based on the calculated position of the car.
PCT/JP2021/020151 2021-05-27 2021-05-27 Car position detection device and elevator safety device using same WO2022249383A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/020151 WO2022249383A1 (en) 2021-05-27 2021-05-27 Car position detection device and elevator safety device using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/020151 WO2022249383A1 (en) 2021-05-27 2021-05-27 Car position detection device and elevator safety device using same

Publications (1)

Publication Number Publication Date
WO2022249383A1 true WO2022249383A1 (en) 2022-12-01

Family

ID=84229576

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/020151 WO2022249383A1 (en) 2021-05-27 2021-05-27 Car position detection device and elevator safety device using same

Country Status (1)

Country Link
WO (1) WO2022249383A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56161278A (en) * 1980-05-14 1981-12-11 Hitachi Ltd Detector for location of elevator
JPH01294180A (en) * 1988-05-19 1989-11-28 Mitsubishi Electric Corp Position detecting device for elevator
JP2002274765A (en) * 2001-02-20 2002-09-25 Inventio Ag Method for generating elevator shaft information to conduct elevator control
JP2008037557A (en) * 2006-08-04 2008-02-21 Hitachi Ltd Elevator device
JP2008285265A (en) * 2007-05-16 2008-11-27 Toshiba Elevator Co Ltd Elevator forced decelerating device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56161278A (en) * 1980-05-14 1981-12-11 Hitachi Ltd Detector for location of elevator
JPH01294180A (en) * 1988-05-19 1989-11-28 Mitsubishi Electric Corp Position detecting device for elevator
JP2002274765A (en) * 2001-02-20 2002-09-25 Inventio Ag Method for generating elevator shaft information to conduct elevator control
JP2008037557A (en) * 2006-08-04 2008-02-21 Hitachi Ltd Elevator device
JP2008285265A (en) * 2007-05-16 2008-11-27 Toshiba Elevator Co Ltd Elevator forced decelerating device

Similar Documents

Publication Publication Date Title
JP4368854B2 (en) Elevator equipment
KR100681078B1 (en) Elevator device
US10858218B2 (en) Elevator apparatus
EP2032489B1 (en) Multi-car elevator hoistway separation assurance
JP6167885B2 (en) Method for adjusting elevator car position detection device
JP2011195253A (en) Sheave wear amount measuring device for elevator
EP2090541B1 (en) Safety system for elevators
WO2010067435A1 (en) Elevator apparatus
JP5963335B1 (en) Elevator speed detector and elevator
JP4566587B2 (en) Elevator control device
CN112079222A (en) Elevator with a movable elevator car
WO2022249383A1 (en) Car position detection device and elevator safety device using same
JP3744271B2 (en) Elevator position detection device
CN112912328B (en) Control system for elevator
WO2022259417A1 (en) Car position detection device and elevator safety device using same
JP7319878B2 (en) Elevator and elevator control method
CN113493149B (en) Elevator safety system
WO2022269893A1 (en) Car position detection device and elevator safety device using same
WO2022259398A1 (en) Car position detection device and elevator using same
KR102265012B1 (en) Forced deceleration control apparatus and method of variable speed elevator
JPH05294583A (en) Device for detecting abrasion of elevator guide shoe
US20220063955A1 (en) Elevator systems
JP7315094B2 (en) Elevator safety monitoring device
JP2006306581A (en) Main rope slip detector of elevator
CN117923260A (en) Elevator, control device for elevator and control method for elevator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21943033

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE