WO2022248537A2 - Process for producing a vertical semiconductor component - Google Patents

Process for producing a vertical semiconductor component Download PDF

Info

Publication number
WO2022248537A2
WO2022248537A2 PCT/EP2022/064169 EP2022064169W WO2022248537A2 WO 2022248537 A2 WO2022248537 A2 WO 2022248537A2 EP 2022064169 W EP2022064169 W EP 2022064169W WO 2022248537 A2 WO2022248537 A2 WO 2022248537A2
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
electrode structure
substrate
gallium nitride
nitride layer
Prior art date
Application number
PCT/EP2022/064169
Other languages
German (de)
French (fr)
Other versions
WO2022248537A3 (en
Inventor
Dick Scholten
Christian Huber
Thomas Kaden
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Publication of WO2022248537A2 publication Critical patent/WO2022248537A2/en
Publication of WO2022248537A3 publication Critical patent/WO2022248537A3/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6835Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/482Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of lead-in layers inseparably applied to the semiconductor body
    • H01L23/4824Pads with extended contours, e.g. grid structure, branch structure, finger structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L24/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L24/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/93Batch processes
    • H01L24/94Batch processes at wafer-level, i.e. with connecting carried out on a wafer comprising a plurality of undiced individual devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66674DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/66712Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/66734Vertical DMOS transistors, i.e. VDMOS transistors with a step of recessing the gate electrode, e.g. to form a trench gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7813Vertical DMOS transistors, i.e. VDMOS transistors with trench gate electrode, e.g. UMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68377Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support with parts of the auxiliary support remaining in the finished device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/04042Bonding areas specifically adapted for wire connectors, e.g. wirebond pads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • H01L2224/0601Structure
    • H01L2224/0603Bonding areas having different sizes, e.g. different heights or widths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/291Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29101Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of less than 400°C
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29338Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29339Silver [Ag] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/4501Shape
    • H01L2224/45012Cross-sectional shape
    • H01L2224/45014Ribbon connectors, e.g. rectangular cross-section
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/4847Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48475Connecting portions connected to auxiliary connecting means on the bonding areas, e.g. pre-ball, wedge-on-ball, ball-on-ball
    • H01L2224/48476Connecting portions connected to auxiliary connecting means on the bonding areas, e.g. pre-ball, wedge-on-ball, ball-on-ball between the wire connector and the bonding area
    • H01L2224/48491Connecting portions connected to auxiliary connecting means on the bonding areas, e.g. pre-ball, wedge-on-ball, ball-on-ball between the wire connector and the bonding area being an additional member attached to the bonding area through an adhesive or solder, e.g. buffer pad
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/4901Structure
    • H01L2224/4903Connectors having different sizes, e.g. different diameters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4911Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain
    • H01L2224/49111Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain the connectors connecting two common bonding areas, e.g. Litz or braid wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/83801Soldering or alloying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/83801Soldering or alloying
    • H01L2224/8382Diffusion bonding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/8384Sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/852Applying energy for connecting
    • H01L2224/85201Compression bonding
    • H01L2224/85205Ultrasonic bonding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
    • H01L2224/92Specific sequence of method steps
    • H01L2224/922Connecting different surfaces of the semiconductor or solid-state body with connectors of different types
    • H01L2224/9222Sequential connecting processes
    • H01L2224/92242Sequential connecting processes the first connecting process involving a layer connector
    • H01L2224/92247Sequential connecting processes the first connecting process involving a layer connector the second connecting process involving a wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3157Partial encapsulation or coating
    • H01L23/3171Partial encapsulation or coating the coating being directly applied to the semiconductor body, e.g. passivation layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/73Means for bonding being of different types provided for in two or more of groups H01L24/10, H01L24/18, H01L24/26, H01L24/34, H01L24/42, H01L24/50, H01L24/63, H01L24/71
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L24/80 - H01L24/90
    • H01L24/92Specific sequence of method steps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/41766Source or drain electrodes for field effect devices with at least part of the source or drain electrode having contact below the semiconductor surface, e.g. the source or drain electrode formed at least partially in a groove or with inclusions of conductor inside the semiconductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/1015Shape
    • H01L2924/10155Shape being other than a cuboid
    • H01L2924/10158Shape being other than a cuboid at the passive surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/1026Compound semiconductors
    • H01L2924/1027IV
    • H01L2924/10272Silicon Carbide [SiC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/1026Compound semiconductors
    • H01L2924/1032III-V
    • H01L2924/1033Gallium nitride [GaN]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1203Rectifying Diode
    • H01L2924/12032Schottky diode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1203Rectifying Diode
    • H01L2924/12036PN diode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13064High Electron Mobility Transistor [HEMT, HFET [heterostructure FET], MODFET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]

Definitions

  • Transistors based on gallium nitride offer the possibility of realizing components with lower on-resistances and at the same time higher breakdown voltages than comparable components based on silicon or silicon carbide.
  • GaN transistors are primarily known for what are known as high-electron mobility transistors (HEMTs), in which the current flow takes place laterally on the top side of the substrate through a two-dimensional electron gas that forms the transistor channel.
  • HEMTs high-electron mobility transistors
  • Such lateral components can be produced by heteroepitaxy of the functional GaN layers on silicon wafers.
  • vertical devices in which the current flows from the front of the substrate to the back of the substrate, are more advantageous in terms of both the size and the electric field distribution inside the device.
  • Such a component cannot be produced directly using heteroepitaxial GaN layers on silicon (Si), since insulating intermediate layers (a so-called buffer) are required to adapt the lattice mismatch between GaN and Si and to reduce the substrate curvature.
  • the buffer itself is mechanically strained in such a way that it just compensates for the strain of the GaN layers at room temperature. Because the buffer one is an insulator, the current flow from the front of the substrate to the back of the substrate is prevented by the buffer.
  • Native GaN substrates are also known on which the required additional epitaxial GaN layers of the device can be grown without the need for an insulating buffer.
  • GaN substrates are small (typically 50 mm in diameter) and expensive.
  • FIG. 1 shows the basic structure of such a component 100 with an insulating buffer and rear side trench (here using a trench MOSFET 100).
  • the rear side trench can also be referred to below as a rear side cavern or rear side aperture.
  • the following III-V nitride semiconductor layers are grown epitaxially on the silicon substrate 61 or generally the carrier substrate: the insulating buffer 13, a highly doped contact semiconductor layer with n conductivity 14, the lightly doped n conductive drift layer 15, a p-conductive body layer 16 and a highly doped n-conductive source contact layer 17.
  • Source contact layer 17 and body layer 16 are penetrated by a trench (trench), the side walls and bottom of which are separated from gate electrode 21 by a gate dielectric 22 .
  • Source contact layer 17 and body layer 16 are contacted by a source electrode 41 which is separated from gate electrode 21 by an insulating layer 31 .
  • the silicon substrate 61 and the buffer 13 are removed by a rear-side trench 51, which ends in the highly doped contact semiconductor layer with n-type conductivity 14. This is through a rear drain electrode 52 contacted.
  • a conductive channel is formed in the body layer 16 by applying a gate voltage to the gate electrode 21, through which a current flow from the source electrode 41 to the drain electrode 52 is permitted.
  • the drain electrode 52 can consist of several metallic layers.
  • FIG. FIG. 2A illustrates a schematic cross-sectional view of a vertical trench MOSFET of the related art
  • FIG. 2B illustrates a schematic top view of the same trench MOSFET on a native semiconductor substrate 61A along with associated assembly and connection technology.
  • the vertical trench MOSFET can be a silicon trench MOSFET on a silicon substrate, a SiC trench MOSFET on a SiC substrate, or a GaN trench MOSFET on a GaN substrate.
  • the native semiconductor substrate 61A is electrically conductive and no insulating layers are provided between the native semiconductor substrate 61A and the drift layer 15, as a result of which vertical current flow through the trench MOSFET is possible.
  • the transistor electrodes In order to use a conventional vertical trench MOSFET in electrical circuits (as a module or discrete package), the transistor electrodes must be contacted.
  • the rear drain electrode 52 is usually on a circuit board 71, for example a DBC (direct bonded copper) - substrate, an AMB (active metal brazed) - substrate, a metal-core printed circuit board (insulated metal substrate (IMS)) or a printed circuit board upset. Technologies such as soft soldering or silver sintering are used for this purpose.
  • the source electrode 41 and the gate pad 23 on the front of the transistor are mostly by wire or Ribbon bond connections 96 are realized and are thus connected to the gate 73 or source connection 72 on the circuit board 71 .
  • the source electrode 41 is designed as a full-area electrode above the entire active transistor area. As a result, the lateral lead resistance for the transistor current can be reduced.
  • Several wires or ribbons are typically used for the bond connection in order to keep the current load in the source pad metallization low and also to reduce the connection resistance.
  • the bond connection is made directly over the active transistor area (bond over active). Another advantage of this is that no additional inactive chip area is required for a separate bond pad.
  • the source electrode 41 and the source pad overlap each other and are used interchangeably in the following. Larger lateral lead resistances are acceptable for the gate. For this reason, the individual gate electrode fingers 21 are led out to a gate pad 23 (not visible in the cross section). This can be within the active area of the transistor or at its edge. However, the gate electrode fingers 21 and the gate pad 23 do not contribute to the vertical current flow. The gate pad 23 thus increases the chip area requirement for the transistor without reducing its resistance. Fewer wires are typically required to connect to gate terminal 73 on circuit board 71 . Ultrasonic energy and pressure are applied to the transistor for the bonding process.
  • a so-called “die top system” is installed on the surface of the source electrode 41.
  • DTS used.
  • a DTS is a copper foil cut to the surface of the source electrode 41 and electrically bonded thereto by silver sintering.
  • the DTS and chip are connected when the chips are built in the module, i.e. a connection is only made after the processed wafer has been separated into individual chips.
  • the substrate 61 and the buffer layers 13 have so far been partially removed, so that a Rear cavern 51 is formed.
  • This process is technically demanding and the remaining stabilizing Si webs (61) on the edge of each individual transistor take up chip area and complicate further processing, for example due to the resulting topography on the underside of the chip.
  • the inventive method for producing a vertical semiconductor device with the features of claim 1 has the advantage of removing the substrate and the buffer layers from a GaN-on-Si wafer by clearly an additionally applied, graded metal foil, such as copper, molybdenum or Tungsten or corresponding layer combinations, is provided on the vertical semiconductor component before the singulation process.
  • graded metal foil is attached to the front side of the wafer, for example using silver technology or diffusion soldering, before the back side is processed. In this case, only gate electrodes and/or source electrodes and optionally auxiliary structures are contacted. Thus, the wafer can be more easily handled for subsequent backside processes.
  • the singulation process for example a wafer sawing process, the upper layer of the stepped metal foil is removed. As a result, intended separation points, such as saw lines, are uncovered. By exposing the intended separation points, the individual vertical semiconductor components can become electrically functional again.
  • the mechanical stability of the wafer can be stabilized during the back side processes.
  • the graded metal foil can mechanically stabilize the entire wafer and/or each individual chip before and after singulation.
  • conventional bonding methods using temperature and pressure can be used without the vertical semiconductor component being damaged or, in the case of a diaphragm, being deformed by the pressure.
  • the graded metal foil can be used as a replacement or substitute for a DTS. This saves a process step at chip level.
  • FIG. 1 is a schematic representation of a related art membrane transistor
  • FIGS. 2A and 2B are schematic representations of a related art vertical field effect transistor
  • FIG. 3A to FIG.8 schematic representations of a membrane
  • a vertical semiconductor component is described using a trench MOSFET as an example. It goes without saying, however, that the use of the stepped metal foil for processing the rear side of a semiconductor component is not limited to a trench MOSFET, so that in principle any vertical semiconductor components can be produced using this technology, such as Schottky diodes, pn diodes, vertical Diffusion MOSFETS (VDMOS), Current-Aperture Vertical Electron Transistors (CAVETs), vGroove Vertical High Electron Mobility Transistors (vHEMTs) or Fin Field Effect Transistors (FinFETs).
  • VDMOS vertical Diffusion MOSFETS
  • CAVETs Current-Aperture Vertical Electron Transistors
  • vHEMTs vGroove Vertical High Electron Mobility Transistors
  • Fin Field Effect Transistors Fin Field Effect Transistors
  • FIG. 3A shows a schematic top view of a vertical semiconductor device wafer 100 according to various embodiments.
  • 3B illustrates a schematic cross-sectional view of the semiconductor device wafer 100 illustrated in FIG. 3A. The solid line in FIG. 3B shown area.
  • a stepped metal foil 110 with a step structure 111 and a joining material 112 is arranged on the semiconductor component wafer 100 .
  • the semiconductor device wafer 100 is arranged on a carrier material 99 on the rear side of the wafer.
  • the step structure 111 and the joining material 112 are located on the underside of the metal foil 110 which faces the semiconductor device wafer 100 .
  • the metal foil 110 can be applied to the semiconductor component wafer 100 by means of silver sintering technology or diffusion soldering, for example.
  • the metal foil 110 can have a joining material 112, for example a silver sintering paste or electrolytic tin, which is arranged on the stepped structure 111, so that the joining material 112 is arranged between the stepped structure 111 and the semiconductor component wafer 100.
  • the step structure 111 is coated with the joining material 112 .
  • the metal foil 110 coated with joining material 112 and having a stepped structure 111 can be applied to the semiconductor component wafer 100 by means of pressure and/or temperature, for example joined.
  • the semiconductor device wafer 100 can be supported by a carrier material 99 on an opposite second side.
  • the fragile semiconductor component wafer 100 is mechanically stabilized.
  • the carrier material 99 on the rear side of the semiconductor device wafer 100 can be removed.
  • the further processing also referred to as the rear-side process
  • the semiconductor device wafer 100 can be applied to a carrier component 99 and can optionally be connected to it (see FIG. 4).
  • the semiconductor device wafer 100 can then be further processed.
  • This carrier component 99 can, for example, be sawing tape for a sawing process.
  • the metal foil 110 can be removed, for example reduced, to such an extent that only the step structure 111 remains on the semiconductor component wafer 100 . Desired separation points, for example saw lines, can be exposed between the steps of the step structure 111 . In this state, the semiconductor device wafer 100 can be sawed and the semiconductor devices can be singulated.
  • FIG. 4 shows the semiconductor component wafer 100 on the carrier material 99 with the metal foil 110 removed, so that only the stepped structure 111 and the joining material 112 remain on the semiconductor component wafer 100.
  • FIG. 4 shows the semiconductor component wafer 100 on the carrier material 99 with the metal foil 110 removed, so that only the stepped structure 111 and the joining material 112 remain on the semiconductor component wafer 100.
  • the vertical semiconductor device wafer 100 has: a gallium nitride layer system 15, 16, 17 on or over a first side of a substrate 61, 61A, a front-side contact structure 23, 41 on or over the gallium nitride layer system 15, 16, 17, where the front-side contact structure 23, 41 has at least a first electrode structure 41 and a second electrode structure 23 which are electrically insulated from one another; a backside contact structure 52 on or over a second side of the substrate 61, 61A, which is opposite the first side, and/or on or over the gallium nitride layer system 15, 16, 17 on the second side, the backside contact structure 52 having a third electrode structure 52 , which is electrically isolated from the first electrode structure 42 and the second electrode structure 23; a carrier support 101 on or above the front-side contact structure 23, 41, which is mechanically coupled to the front-side contact structure 23, 41 by means of a joining material 112, the carrier support 101 being set up in such a way that the first electrode structure 41 is coupled to the second
  • the carrier support 101 is a front-side support or front-side support for the semiconductor device wafer 100 and can also be referred to as a carrier element or carrier element.
  • the substrate 61, 61A may be a semiconductor substrate such as Si, SiC or GaN; or a non-conductive substrate, e.g. alumina, e.g. sapphire.
  • 5A-FIG. 5B and FIG. 6A-FIG. 6B illustrate schematic cross-sectional views of various aspects of GaN membrane wafers 100 with different backside embodiments.
  • FIG. 5A and FIG. 5B illustrate an embodiment of a method in which the substrate 61 and the buffer 13 are removed locally under the active areas by the back side processing, as a result of which a back side cavern 51 is formed (see also FIG. 7A).
  • FIG. 6A and FIG. 6B illustrate an embodiment of a method in which the substrate 61 and the buffer 13 are removed over the entire area by the rear-side processing (see also FIG. 7B).
  • the metal foil 110 is removed and the semiconductor component wafer 100 is singulated, for example sawed, along intended separation points. After the isolation, isolated membrane semiconductor components, for example membrane transistors, are provided in a stabilized form.
  • the method may further include a sintering process, for example a silver sintering process, to contact the semiconductor device wafer 100, for example by means of subsequent wire or ribbon bonding 96, as illustrated in the schematic cross-sectional views in FIG. 7A and FIG. 7B.
  • a sintering process for example a silver sintering process
  • FIG. 7A and FIG. 7B embodiments of GaN membrane transistors with a stabilized upper side are illustrated, which were joined onto a printed circuit board 71.
  • Gate runner 102 Large-area transistors can have a specific gate line, also referred to as gate runner 102, in the transistor cell array.
  • the gate runner 102 may be covered with relatively soft organic layers as a gate runner passivation.
  • the soft organic layers can pose a risk for pressure-sensitive sintering of a conventional DTS foil.
  • a copper foil can be applied under pressure over the gate runner 102 in the transistor cell array.
  • a particle can be pushed through the gate runner passivation under pressure during sintering.
  • a recess 104 in of the step structure 111 so that a particle is not pressed into the gate runner passivation.
  • FIG. 8A illustrates a plan view of a membrane semiconductor device wafer 100 with gate runner 102
  • FIG. 8B, FIG. 8C and FIG. 8D illustrate schematic cross-sectional views of embodiments taken along the line of FIG. 8A.
  • the method for manufacturing a vertical semiconductor device wafer 100 includes forming a gallium nitride layer system 15, 16, 17 on or over a first side of a substrate 61, 61A.
  • the method includes forming a front-side contact structure 23, 41 on or above the gallium nitride layer system 15, 16, 17.
  • the front-side contact structure 23, 41 has at least a first electrode structure 41 and a second electrode structure 23, which are electrically insulated from one another.
  • the method includes forming a backside contact structure 52 on or over a second side of the substrate 61, 61A and/or on or over the gallium nitride layer system 15, 16, 17 at the second side.
  • the second page is opposite the first page.
  • the rear contact structure 52 is electrically isolated from the first electrode structure 42 and the second electrode structure 23 .
  • the method includes applying a carrier support 101 to or above the front-side contact structure 23, 41 by means of a joining material 112.
  • the carrier support 101 is set up in such a way that the first electrode structure 41 is coupled to the second electrode structure 23 .
  • the method further includes processing from the second side of the substrate 61, 61A at least one of the gallium nitride layer system 15, 16, 17, the substrate 61, 61A and the backside contact structure 52.
  • the method further includes removing part of the carrier support 101 in such a way that the first electrode structure 41 and the second electrode structure 23 are at least electrically insulated from one another after removal.
  • the first electrode structure 41 and the second electrode structure 23 can also be physically separated or isolated from one another. If the substrate 61, 61A has been completely removed, at least locally, so that the GaN layer system 15, 15, 17 is exposed on the back, there can clearly no longer be a second side of the substrate 61, 61A.
  • the rear side of the semiconductor component wafer 100 is processed, for example forming the rear-side electrode structure, from the direction of the second side of the substrate 61, 61A (formerly possibly present) or in other words “at the second side of the substrate 61, 61A and/or on or over a side of the gallium nitride layer system 15, 16, 17 opposite the first side of the substrate 61, 61A.
  • the backside contact structure 52 may include a third electrode structure 52 .
  • the third electrode structure 52 is electrically insulated from the first electrode structure 42 and the second electrode structure 23 .
  • Vertical semiconductor device wafer 100 may be vertical transistor 100 .
  • the first electrode structure 41 is a source electrode 41 or a drain electrode
  • the second electrode structure 23 is a gate electrode 23
  • the rear contact structure 52 or the third electrode structure 52 is a drain electrode 52 or a source -Electrode.
  • the method can include electrically contacting the first electrode structure 42 , the second electrode structure 23 and the rear-side contact structure 52 or the third electrode structure 52 with a printed circuit board 71 .
  • the method can also include forming a desired separation point, which is set up for singulating the semiconductor component.
  • the method alternatively or additionally forms a front-side contact structure on or above the gallium nitride layer system 15, 16, 17, wherein the
  • Front-side contact structure has a first electrode structure of a first vertical semiconductor component and a second electrode structure of a second vertical semiconductor component.
  • a predetermined separation point is arranged (laterally) between the first electrode structure and the second electrode structure or is formed there.
  • the procedure also includes Forming a rear contact structure on or over a second side of the substrate 61, 61A opposite the first side and/or on or over the gallium nitride layer system 15, 16, 17 at the second side.
  • the backside contact structure is electrically isolated from the frontside contact structure.
  • the rear-side contact structure has a third electrode structure of the first vertical semiconductor component and a fourth electrode structure of the second vertical semiconductor component. The intended separation point is arranged (laterally) between the third electrode structure and the fourth electrode structure.
  • the method includes the application of the carrier support 101 on or over the front contact structure using the joining material 112 .
  • the carrier support 101 is set up in such a way that the first electrode structure is coupled to the second electrode structure.
  • the method comprises processing, from the second side of the substrate 61, 61A, at least one of the gallium nitride layer system 15, 16, 17, the substrate 61, 61A and the backside contact structure.
  • the method further includes removing part of the carrier support 101 in such a way that the first electrode structure and the second electrode structure are at least electrically insulated from one another after the removal.
  • the method can be used to singulate a number of vertical semiconductor components that are arranged on a common semiconductor component wafer.
  • the first vertical semiconductor component and the second vertical semiconductor component can be controlled semiconductor components, for example transistors, or uncontrolled semiconductor components, for example diodes. If the first semiconductor component and the second semiconductor component are each a diode, the first electrode structure and the second electrode structure is an anode electrode and the third electrode structure and the fourth electrode structure is a cathode electrode, or vice versa.
  • the method of one of the embodiments described above can include separating the desired separation point, so that the first vertical semiconductor component and the second vertical semiconductor component are singulated.
  • a desired separation point which is set up for separating the semiconductor component—for example a sawing line or a breaking edge, can be arranged between adjacent steps or step structures of the step structure 111 .
  • the processing can include, for example, at least a part of the substrate 61, 61A being removed.
  • the removal can take place, for example, in such a way that a rear-side cavern 51 is formed below the first electrode structure and the second electrode structure.
  • the processing may be such that the substrate 61, 61A is completely removed.
  • the backside contact structure 52 is formed after removing the portion of the substrate 61, 61A in various embodiments.
  • the gallium nitride layer system 15, 16, 17 can have, for example, at least one drift layer 17, a p-doped gallium nitride layer 15, 16 and an n-doped gallium nitride layer 16, 15.
  • the rear side contact structure 52 can be in direct contact with the gallium nitride layer system 15, 16, 17 at least in one area.
  • the joining material 112 can be electrically conductive, for example a silver, tin or copper sinter paste, or electroplated silver, tin or copper.
  • the carrier support 101 can have a step structure 111 on a foil 110 .
  • the step structure 111 can be coupled to the first electrode structure 42 by means of the joining material 112 .
  • the step structure 111 can be set up in such a way that the second electrode structure 23 is free from physical contact with the carrier support 101.
  • At least part of the foil 110 can be the removed part of the carrier support 101.
  • the carrier support 101 can have a step structure 111 on a foil 110 .
  • the step structure 111 can have at least a first step structure 111 and a second step structure 111 which are mechanically connected to one another by means of the foil 110 .
  • the first step structure 111 can be coupled to the first electrode structure by means of the joining material 112 and the second step structure 111 can be coupled by means of the joining material 112 be coupled to the second electrode structure 23 .
  • At least part of the foil 110 can be the removed part of the carrier support 101 .
  • One or the desired separation point can be arranged between adjacent (partial) step structures of the step structure, for example laterally between the first step structure and the second step structure.
  • the metal foil 110 and the stepped structure 111 are formed in one piece, for example as a structured or stepped metal foil 101.
  • the front-side contact structure can have at least one pad metallization, for example the first electrode structure and the second electrode structure, and an insulation layer 31 .
  • the pad metallization has a first height and the insulating layer 31 has a second height that is smaller than the first height, so that the pad metallization extends further from the substrate 61, 61A than the insulating layer 31.
  • the carrier support 101 can in this case be a planar or substantially planar foil 110 .
  • the substrate 61, 61A is applied to a carrier material 99 before the carrier carrier 101 is applied.
  • the carrier material 99 is removed before the at least one of the gallium nitride layer system 15, 16, 17, the substrate 61, 61A and the rear-side contact structure 52 are processed.
  • a vertical semiconductor device wafer 100 comprises: a gallium nitride layer system 15, 16, 17 on or over a first side of a substrate 61, 61A; a front-side contact structure 23, 41 on or above the gallium nitride layer system 15, 16, 17, the front-side contact structure 23, 41 having at least a first electrode structure 41 and a second electrode structure 23, which are electrically insulated from one another; a backside contact structure 52 on or above a second side of the substrate 61, 61A, which is opposite the first side, and / or on or above the gallium nitride layer system 15, 16, 17 at the second side, wherein the Backside contact structure 52 is electrically isolated from first electrode structure 42 and second electrode structure 23; a carrier support 101 on or above the front-side contact structure 23, 41, which is mechanically coupled to the front-side contact structure 23, 41 by means of a joining material 112, the carrier support 101 being set up in such a way that the first electrode structure 41 is coupled to the second electrode structure 23.
  • the vertical semiconductor device wafer 100 comprises: a gallium nitride layer system 15, 16, 17 on or over a first side of a substrate 61, 61A; a front-side contact structure 23, 41 on or above the gallium nitride layer system 15, 16, 17, the front-side contact structure 23, 41 having at least one source electrode 41 and one gate electrode 23 which are electrically insulated from one another; a backside contact structure 52 on or over a second side of the substrate 61, 61A, opposite the first side, and/or on or over the gallium nitride layer system 15, 16, 17 at the second side, the backside contact structure 52 being separated from the source electrode 42 and the gate electrode 23 is electrically insulated; the source electrode 42 has a first height and the gate electrode 23 has a second height different from the first height; and a compensation structure 111, which is arranged on the source electrode 42 and on the gate electrode 23 by means of a joining material 112, the compensation structure 111 being set up in such a way that the source electrode 42 is connected

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

A process for producing a vertical semiconductor component (100) is provided, said process comprising: forming a gallium nitride layer system (15, 16, 17) on or atop a first side of the substrate (61, 61A); forming a frontside contact structure (23, 41) on or atop the gallium nitride layer system (15, 16, 17), wherein the frontside contact structure (23, 41) has at least a first electrode structure (41) and a second electrode structure (23) that are electrically insulated from one another; forming a backside contact structure (52) on or atop a second side of the substrate (61, 61A) which is opposite the first side, and/or on or atop the gallium nitride layer system (15, 16, 17) on the second side, wherein the backside contact structure (52) is electrically insulated from the first electrode structure (42) and the second electrode structure (23); applying a carrier (101) on or atop the frontside contact structure (23, 41) by means of a joining material (112), wherein the carrier (101) is set up such that the first electrode structure (41) is coupled to the second electrode structure (23); and processing, from the second side of the substrate (61, 61A), at least one of the gallium nitride layer system (15, 16, 17), the substrate (61, 61A) and the backside contact structure (52); and removing a portion of the carrier (101) in such a way that the first electrode structure (41) and the second electrode structure (23) are at least electrically insulated from one another after the removal.

Description

Beschreibung description
Titel title
VERFAHREN ZUM HERSTELLEN EINES VERTIKALEN HALBLEITERBAUELEMENTS METHOD OF MAKING A VERTICAL SEMICONDUCTOR DEVICE
Stand der Technik State of the art
Transistoren auf Basis von Galliumnitrid (GaN) bieten die Möglichkeit, Bauelemente mit niedrigeren On-Widerständen bei gleichzeitig höheren Durchbruchsspannungen zu realisieren als vergleichbare Bauelemente auf Basis von Silizium oder Siliziumcarbid. Transistors based on gallium nitride (GaN) offer the possibility of realizing components with lower on-resistances and at the same time higher breakdown voltages than comparable components based on silicon or silicon carbide.
Bekannt sind GaN-Transistoren vor allem durch sogenannte high-electron mobility Transistoren (HEMTs), bei denen der Stromfluss lateral an der Substratoberseite durch ein zweidimensionales Elektronengas stattfindet, welches den Transistorkanal bildet. Solche lateralen Bauelemente können durch eine Heteroepitaxie der funktionalen GaN-Schichten auf Siliziumwafern hergestellt werden. Für hohe Durchbruchspannung bei kleinem On-Widerstand pro Einheitsfläche sind jedoch vertikale Bauelemente, bei denen der Strom von der Substratvorderseite zur Substratrückseite fließt, vorteilhafter, sowohl was die Baugröße als auch die elektrische Feldverteilung im Inneren des Bauelements angeht. Ein derartiges Bauelement ist direkt nicht mittels heteroepitaktischen GaN-Schichten auf Silizium (Si) darstellbar, da zur Anpassung des Gitterfehlpasses zwischen GaN und Si sowie zur Reduktion der Substratwölbung isolierende Zwischenschichten (ein sogenannter Buffer) benötigt werden. GaN transistors are primarily known for what are known as high-electron mobility transistors (HEMTs), in which the current flow takes place laterally on the top side of the substrate through a two-dimensional electron gas that forms the transistor channel. Such lateral components can be produced by heteroepitaxy of the functional GaN layers on silicon wafers. However, for high breakdown voltage with small on-resistance per unit area, vertical devices, in which the current flows from the front of the substrate to the back of the substrate, are more advantageous in terms of both the size and the electric field distribution inside the device. Such a component cannot be produced directly using heteroepitaxial GaN layers on silicon (Si), since insulating intermediate layers (a so-called buffer) are required to adapt the lattice mismatch between GaN and Si and to reduce the substrate curvature.
Der Buffer selbst ist mechanisch derart verspannt, dass er bei Raumtemperatur die Verspannung der GaN-Schichten gerade kompensiert. Da der Buffer ein Isolator ist, wird durch den Buffer jedoch der Stromfluss von der Substratvorderseite zur Substratrückseite verhindert. The buffer itself is mechanically strained in such a way that it just compensates for the strain of the GaN layers at room temperature. Because the buffer one is an insulator, the current flow from the front of the substrate to the back of the substrate is prevented by the buffer.
Es sind auch native GaN-Substrate bekannt, auf denen die benötigten zusätzlichen epitaktischen GaN-Schichten des Bauelements gewachsen werden können, ohne einen isolierenden Buffer zu benötigen. Derartige GaN-Substrate sind jedoch klein (typischerweise 50 mm Durchmesser) und teuer. Native GaN substrates are also known on which the required additional epitaxial GaN layers of the device can be grown without the need for an insulating buffer. However, such GaN substrates are small (typically 50 mm in diameter) and expensive.
Um den Transistorpreis pro Flächenelement zu reduzieren, kann es vorteilhaft sein, die verfügbaren heteroepitaktischen GaN-Schichten auf großen Siliziumsubstraten zu nutzen. Dazu sind vertikale Bauelemente (Trench- MOSFET, pn-Diode) bekannt, bei denen das Siliziumsubstrat sowie der isolierende Buffer unter dem Bauelement selektiv entfernt werden, wodurch ein Rückseiten-Graben (Rückseiten-Trench) ausgebildet wird, um so direkt die Rückseite der Driftzone des Bauelements an kontaktieren zu können. FIG.l zeigt den prinzipiellen Aufbau eines solchen Bauelements 100 mit isolierendem Buffer und Rückseiten-Trench (hier anhand eines Trench-MOSFETs 100). Der Rückseiten-Trench kann im Folgenden auch als Rückseitenkaverne oder Rückseitenapertur bezeichnet werden. In order to reduce the transistor price per area element, it can be advantageous to use the available heteroepitaxial GaN layers on large silicon substrates. Vertical components (trench MOSFET, pn diode) are known for this purpose, in which the silicon substrate and the insulating buffer under the component are selectively removed, whereby a backside trench (backside trench) is formed in order to directly cover the backside of the drift zone of the component to be able to contact. 1 shows the basic structure of such a component 100 with an insulating buffer and rear side trench (here using a trench MOSFET 100). The rear side trench can also be referred to below as a rear side cavern or rear side aperture.
Wie in FIG.l veranschaulicht ist, sind auf dem Siliziumsubstrat 61 oder allgemein dem Trägersubstrat folgende lll-V Nitridhalbleiterschichten (GaN mit Ausnahme des Buffers) epitaktisch aufgewachsen: der isolierende Buffer 13, eine hochdotierte Kontakthalbleiterschicht mit n-Leitfähigkeit 14, die niedrigdotierte n- leitfähige Driftlage 15, eine p-leitfähige Body-Schicht 16 sowie eine hochdotierte n-leitfähige Source- Kontaktschicht 17. As illustrated in FIG. 1, the following III-V nitride semiconductor layers (GaN with the exception of the buffer) are grown epitaxially on the silicon substrate 61 or generally the carrier substrate: the insulating buffer 13, a highly doped contact semiconductor layer with n conductivity 14, the lightly doped n conductive drift layer 15, a p-conductive body layer 16 and a highly doped n-conductive source contact layer 17.
Source- Kontaktschicht 17 sowie Body-Schicht 16 werden von einem Graben (Trench) durchdrungen, dessen Seitenwände und Boden durch ein Gate- Dielektrikum 22 von der Gate- Elektrode 21 getrennt sind. Source- Kontaktschicht 17 und Body-Schicht 16 werden durch eine Source-Elektrode 41 kontaktiert, welche durch eine Isolationsschicht 31 von der Gate- Elektrode 21 getrennt sind. Rückseitig sind das Siliziumsubstrat 61 und der Buffer 13 durch einen Rückseiten-Trench 51 entfernt, welcher in der hochdotierten Kontakthalbleiterschicht mit n-Leitfähigkeit 14 endet. Diese ist durch eine rückseitige Drain- Elektrode 52 an kontaktiert. Im Betrieb wird ein leitfähiger Kanal in der Body-Schicht 16 durch Anlegen einer Gate-Spannung an die Gate- Elektrode 21 gebildet, durch welchen ein Stromfluss von der Source- Elektrode 41 zu der Drain- Elektrode 52 ermöglicht wird. Source contact layer 17 and body layer 16 are penetrated by a trench (trench), the side walls and bottom of which are separated from gate electrode 21 by a gate dielectric 22 . Source contact layer 17 and body layer 16 are contacted by a source electrode 41 which is separated from gate electrode 21 by an insulating layer 31 . At the rear, the silicon substrate 61 and the buffer 13 are removed by a rear-side trench 51, which ends in the highly doped contact semiconductor layer with n-type conductivity 14. This is through a rear drain electrode 52 contacted. In operation, a conductive channel is formed in the body layer 16 by applying a gate voltage to the gate electrode 21, through which a current flow from the source electrode 41 to the drain electrode 52 is permitted.
In FIG.l ist zur Vereinfachung ein Transistor mit drei Zellen, d.h. drei sich wiederholenden Strukturen veranschaulicht. In einem realen Transistor sind typischerweise eine Vielzahl solcher Zellen vorhanden und somit effektiv parallelgeschaltet. Typische aktive Flächen liegen im Bereich einiger Quadratmillimeter, die verbleibenden GaN-Schichten haben eine Dicke von einigen Mikrometern. Die Drain- Elektrode 52 kann aus mehreren metallischen Schichten bestehen. 1 shows a three cell transistor, i.e. three repeating structures, for the sake of simplicity. In a real transistor, there are typically a large number of such cells and are therefore effectively connected in parallel. Typical active areas are in the range of a few square millimeters, the remaining GaN layers have a thickness of a few micrometers. The drain electrode 52 can consist of several metallic layers.
FIG. 2A veranschaulicht eine schematische Querschnittsansicht eines vertikalen Trench-MOSFETs der bezogenen Technik und FIG.2B veranschaulicht eine schematische Aufsicht desselben Trench-MOSFETs auf einem nativen Halbleitersubstrat 61A samt zugehöriger Aufbau- und Verbindungstechnik. Der vertikale Trench-MOSFET kann ein Silizium-Trench-MOSFET auf einem Siliziumsubstrat, ein SiC Trench-MOSFET auf einem SiC Substrat oder ein GaN Trench-MOSFET auf einem GaN-Substrat sein. Das native Halbleitersubstrat 61A ist elektrisch leitfähig und es sind keine isolierenden Schichten zwischen dem nativem Halbleitersubstrat 61A und der Driftlage 15 vorgesehen, wodurch vertikaler Stromfluss durch den Trench-MOSFET möglich ist. FIG. FIG. 2A illustrates a schematic cross-sectional view of a vertical trench MOSFET of the related art and FIG. 2B illustrates a schematic top view of the same trench MOSFET on a native semiconductor substrate 61A along with associated assembly and connection technology. The vertical trench MOSFET can be a silicon trench MOSFET on a silicon substrate, a SiC trench MOSFET on a SiC substrate, or a GaN trench MOSFET on a GaN substrate. The native semiconductor substrate 61A is electrically conductive and no insulating layers are provided between the native semiconductor substrate 61A and the drift layer 15, as a result of which vertical current flow through the trench MOSFET is possible.
Um einen herkömmlichen vertikalen Trench-MOSFET in elektrischen Schaltungen (als Modul oder diskretes Package) zu verwenden, müssen die Transistorelektroden ankontaktiert werden. Dazu wird die rückseitige Drain- Elektrode 52 üblicherweise auf eine Platine 71, beispielsweise ein DBC (Direct bonded copper) - Substrat, ein AMB (Active metal brazed) - Substrat, eine Metallkern-Leiterplatte (Insulated metal Substrate (IMS)) oder eine Leiterplatte aufgebracht. Hierzu werden Technologien wie Weichlöten oder Silbersintern eingesetzt. In order to use a conventional vertical trench MOSFET in electrical circuits (as a module or discrete package), the transistor electrodes must be contacted. For this purpose, the rear drain electrode 52 is usually on a circuit board 71, for example a DBC (direct bonded copper) - substrate, an AMB (active metal brazed) - substrate, a metal-core printed circuit board (insulated metal substrate (IMS)) or a printed circuit board upset. Technologies such as soft soldering or silver sintering are used for this purpose.
Die Source- Elektrode 41 und das Gate-Pad 23 auf der Vorderseite des Transistors werden hingegen meist durch Draht- oder Bändchenbondverbindungen 96 realisiert und so mit dem Gate 73- bzw. Source- Anschluss 72 auf der Platine 71 verbunden. Die Source-Elektrode 41 wird als vollflächige Elektrode oberhalb der gesamten aktiven Transistorfläche ausgeführt. Dadurch kann der laterale Zuleitungswiderstand für den Transistorstrom verringert werden. Für die Bondanbindung kommen typischerweise mehrere Drähte oder Bändchen zum Einsatz, um die Strombelastung in der Source-Pad Metallisierung gering zu halten und auch den Anschluss-Widerstand zu verringern. The source electrode 41 and the gate pad 23 on the front of the transistor, however, are mostly by wire or Ribbon bond connections 96 are realized and are thus connected to the gate 73 or source connection 72 on the circuit board 71 . The source electrode 41 is designed as a full-area electrode above the entire active transistor area. As a result, the lateral lead resistance for the transistor current can be reduced. Several wires or ribbons are typically used for the bond connection in order to keep the current load in the source pad metallization low and also to reduce the connection resistance.
Die Bondverbindung erfolgt direkt über der aktiven Transistorfläche (engl. Bond over active). Vorteil davon ist weiterhin, dass keine zusätzliche inaktive Chipfläche für ein separates Bondpad benötigt wird. Mit anderen Worten: die Source- Elektrode 41 und das Source-Pad überlappen einander und werden im Folgenden gleichbedeutend verwendet. Für das Gate sind größere laterale Zuleitungswiderstände akzeptabel. Deshalb werden die einzelnen Gate- Elektrodenfinger 21 zu einem Gate-Pad 23 herausgeführt (im Querschnitt nicht ersichtlich). Dies kann sich innerhalb der aktiven Fläche des Transistors befinden oder an dessen Rand. Die Gate- Elektrodenfinger 21 und das Gate-Pad 23 tragen jedoch nicht zum vertikalen Stromfluss bei. Das Gate-Pad 23 erhöht somit den Chipflächenbedarf für den Transistor ohne seinen Widerstand zu reduzieren. Für die Verbindung zum Gate-Anschluss 73 auf der Platine 71 sind typischerweise weniger Drähte erforderlich. Für den Bondvorgang wird der Transistor mit Ultraschallenergie und Druck beaufschlagt. The bond connection is made directly over the active transistor area (bond over active). Another advantage of this is that no additional inactive chip area is required for a separate bond pad. In other words: the source electrode 41 and the source pad overlap each other and are used interchangeably in the following. Larger lateral lead resistances are acceptable for the gate. For this reason, the individual gate electrode fingers 21 are led out to a gate pad 23 (not visible in the cross section). This can be within the active area of the transistor or at its edge. However, the gate electrode fingers 21 and the gate pad 23 do not contribute to the vertical current flow. The gate pad 23 thus increases the chip area requirement for the transistor without reducing its resistance. Fewer wires are typically required to connect to gate terminal 73 on circuit board 71 . Ultrasonic energy and pressure are applied to the transistor for the bonding process.
Um den lateralen elektrischen Widerstand in den Kontaktflächen zu reduzieren und um mit Kupferdraht auf Standard-Leistungshalbleiter bonden zu können, wird auf der Fläche der Source- Elektrode 41 ein sogenanntes „Die Top System“In order to reduce the lateral electrical resistance in the contact surfaces and to be able to bond to standard power semiconductors with copper wire, a so-called "die top system" is installed on the surface of the source electrode 41.
(DTS) eingesetzt. Ein DTS ist eine Kupferfolie, die auf die Fläche der Source- Elektrode 41 zugeschnitten ist und elektrisch leitend durch Silbersintern damit verbunden wird. Die Verbindung von DTS und Chip erfolgt beim Aufbau der Chips im Modul, d.h. eine Verbindung erfolgt erst nachdem der prozessierte Wafer in einzelne Chips vereinzelt wurde. (DTS) used. A DTS is a copper foil cut to the surface of the source electrode 41 and electrically bonded thereto by silver sintering. The DTS and chip are connected when the chips are built in the module, i.e. a connection is only made after the processed wafer has been separated into individual chips.
Um eine vertikale Leitfähigkeit von GaN-on-Si Wafern zu ermöglichen, werden bisher das Substrat 61und die Bufferschichten 13 partiell entfernt, sodass eine Rückseitenkaverne 51 gebildet ist. Dieser Prozess ist technisch anspruchsvoll und die verbleibenden stabilisierende Si-Stege (61) am Rand jedes einzelnen Transistors kosten Chipfläche und verkomplizieren die Weiterverarbeitung, beispielsweise durch die dadurch entstehende Topographie an der Chipunterseite. In order to enable vertical conductivity of GaN-on-Si wafers, the substrate 61 and the buffer layers 13 have so far been partially removed, so that a Rear cavern 51 is formed. This process is technically demanding and the remaining stabilizing Si webs (61) on the edge of each individual transistor take up chip area and complicate further processing, for example due to the resulting topography on the underside of the chip.
Bisherige technische Lösungen zum Stabilisieren fragiler Halbleitersubstrate 61, beispielsweise der Dünnwafertechnologie, verwenden einen temporären Bondprozess auf einem Carriersubstrat oder einer Carrierfolie. Das Carriersubstrat bzw. die Carrierfolie werden im Anschluss an die Rückseitenprozessierung wieder entfernt. Die solchermaßen prozessierten Dünnwafer benötigen aber eine ausreichende Eigenstabilität für die Vereinzelung in Chips. Previous technical solutions for stabilizing fragile semiconductor substrates 61, for example thin wafer technology, use a temporary bonding process on a carrier substrate or a carrier film. The carrier substrate or the carrier foil is removed again after the rear side has been processed. However, the thin wafers processed in this way require sufficient inherent stability for the separation into chips.
Bisher gibt es keine technische Lösung, um zuverlässig das Substrat 61 und die Bufferschichten 13 komplett von einem GaN-on-Si Wafer zu entfernen (anstelle einer lokalen Entfernung unter dem Transistor wie in FIG. 1 veranschaulicht ist) und dabei den Wafer so zu stabilisieren, dass er weiterverarbeitet werden kann. So far, there is no technical solution to reliably remove the substrate 61 and the buffer layers 13 completely from a GaN-on-Si wafer (instead of local removal under the transistor as illustrated in FIG. 1) and thereby stabilize the wafer that it can be further processed.
Offenbarung der Erfindung Disclosure of Invention
Vorteile der Erfindung Advantages of the Invention
Das erfindungsgemäße Verfahren zum Herstellen eines vertikalen Halbleiterbauelements mit den Merkmalen gemäß Anspruch 1 hat demgegenüber den Vorteil, das Substrat und die Bufferschichten von einem GaN-on-Si Wafer zu entfernen, indem anschaulich eine zusätzlich aufgebrachte, abgestufte Metallfolie, beispielsweise aus Kupfer, Molybdän oder Wolfram oder entsprechende Schichtkombinationen, auf dem vertikalen Halbleiterbauelement vor dem Vereinzelungsprozess bereitgestellt wird. Die abgestufte Metallfolie wird auf die Vorderseite des Wafers, beispielsweise mittels Silbertechnologie oder Diffusionslöten, gefügt, bevor dessen Rückseite bearbeitet wird. Dabei werden nur Gate- Elektroden und/oder Source- Elektroden und optional Hilfsstrukturen ankontaktiert. Somit kann der Wafer für nachfolgende Rückseitenprozesse leichter gehändelt werden. Vor dem Vereinzelungsprozess, beispielsweise einem Wafersägeprozess, wird die obere Lage der abgestuften Metallfolie entfernt. Dadurch werden Soll-Trennstellen, beispielsweise Sägelinien, freigelegt. Durch das Freilegen der Soll-Trennstellen können die einzelnen vertikalen Halbleiterbauelemente elektrisch wieder funktional werden. The inventive method for producing a vertical semiconductor device with the features of claim 1 has the advantage of removing the substrate and the buffer layers from a GaN-on-Si wafer by clearly an additionally applied, graded metal foil, such as copper, molybdenum or Tungsten or corresponding layer combinations, is provided on the vertical semiconductor component before the singulation process. The graded metal foil is attached to the front side of the wafer, for example using silver technology or diffusion soldering, before the back side is processed. In this case, only gate electrodes and/or source electrodes and optionally auxiliary structures are contacted. Thus, the wafer can be more easily handled for subsequent backside processes. Before the singulation process, for example a wafer sawing process, the upper layer of the stepped metal foil is removed. As a result, intended separation points, such as saw lines, are uncovered. By exposing the intended separation points, the individual vertical semiconductor components can become electrically functional again.
Die mechanische Stabilität des Wafers kann während der Rückseitenprozesse stabilisiert werden. Beispielsweise kann die abgestufte Metallfolie den ganzen Wafer und/oder jeden einzelnen Chip vor und nach dem Vereinzeln mechanisch stabilisieren. Dadurch können konventionelle Bondverfahren unter Verwendung von Temperatur und Druck zum Einsatz kommen, ohne dass das vertikale Halbleiterbauelement geschädigt wird bzw. im Falle einer Membran durch den Druck deformiert wird. Alternativ oder zusätzlich kann die abgestufte Metallfolie als Ersatz oder Substitut für ein DTS einzusetzen. Dadurch kann ein Prozess- Schritt auf Chipebene eingespart werden. The mechanical stability of the wafer can be stabilized during the back side processes. For example, the graded metal foil can mechanically stabilize the entire wafer and/or each individual chip before and after singulation. As a result, conventional bonding methods using temperature and pressure can be used without the vertical semiconductor component being damaged or, in the case of a diaphragm, being deformed by the pressure. Alternatively or additionally, the graded metal foil can be used as a replacement or substitute for a DTS. This saves a process step at chip level.
In den abhängigen Ansprüchen und der Beschreibung sind Weiterbildungen der Aspekte sowie vorteilhafte Ausgestaltungen des vertikalen Halbleiterbauelements beschrieben. Developments of the aspects and advantageous configurations of the vertical semiconductor component are described in the dependent claims and the description.
Zeichnung drawing
Ausführungsformen der Erfindung sind in den Figuren dargestellt und werden im Folgenden näher erläutert. Es zeigen: Embodiments of the invention are shown in the figures and are explained in more detail below. Show it:
FIG. 1 eine schematische Darstellung eines Membran-Transistors der bezogenen Technik; FIG. 1 is a schematic representation of a related art membrane transistor;
FIG.2A und FIG.2B schematische Darstellungen eines vertikalen Feldeffekttransistors der bezogenen Technik; und 2A and 2B are schematic representations of a related art vertical field effect transistor; and
FIG. 3A bis FIG.8 schematische Darstellungen eines Membran-FIG. 3A to FIG.8 schematic representations of a membrane
Halbleiterbauelements gemäß verschiedenen Aspekten. Semiconductor device according to various aspects.
In der folgenden ausführlichen Beschreibung wird auf die beigefügten Zeichnungen Bezug genommen, die Teil dieser Beschreibung bilden und in denen zur Veranschaulichung spezifische Ausführungsbeispiele gezeigt sind, in denen die Erfindung ausgeübt werden kann. Es versteht sich, dass andere Ausführungsbeispiele benutzt und strukturelle oder logische Änderungen vorgenommen werden können, ohne von dem Schutzumfang der vorliegenden Erfindung abzuweichen. Es versteht sich, dass die Merkmale der hierin beschriebenen verschiedenen Ausführungsbeispiele miteinander kombiniert werden können, sofern nicht spezifisch anders angegeben. Die folgende ausführliche Beschreibung ist deshalb nicht in einschränkendem Sinne aufzufassen, und der Schutzumfang der vorliegenden Erfindung wird durch die angefügten Ansprüche definiert. In den Figuren werden identische oder ähnliche Elemente mit identischen Bezugszeichen versehen, soweit dies zweckmäßig ist. In the following detailed description, reference is made to the accompanying drawings which form a part hereof, and in which is shown by way of illustration specific embodiments in which the invention may be practiced. It is understood that others Embodiments may be used and structural or logical changes may be made without departing from the scope of the present invention. It is understood that the features of the various exemplary embodiments described herein can be combined with one another unless specifically stated otherwise. The following detailed description is, therefore, not to be taken in a limiting sense, and the scope of the present invention is defined by the appended claims. In the figures, identical or similar elements are provided with identical reference symbols, insofar as this is appropriate.
In nachfolgender Beschreibung werden verschiedene Aspekte und Ausführungsformen eines vertikalen Halbleiterbauelements am Beispiel eines Trench-MOSFET beschrieben. Es versteht sich jedoch, dass das Verwenden der abgestuften Metallfolie zum Bearbeiten der Rückseite eines Halbleiterbauelementes nicht auf einen Trench-MOSFET beschränkt ist, sodass sich durch diese Technologie prinzipiell beliebige vertikale Halbleiterbauelemente hersteilen lassen, wie z.B. Schottky- Dioden, pn-Dioden, Vertical- Diffusion MOSFETS (VDMOS), Current-Aperture Vertical Electron Transistoren (CAVETs), vGroove Vertical High Electron Mobility Transistoren (vHEMTs) oder Finnen Feldeffekttransistoren (FinFETs). In the following description, various aspects and embodiments of a vertical semiconductor component are described using a trench MOSFET as an example. It goes without saying, however, that the use of the stepped metal foil for processing the rear side of a semiconductor component is not limited to a trench MOSFET, so that in principle any vertical semiconductor components can be produced using this technology, such as Schottky diodes, pn diodes, vertical Diffusion MOSFETS (VDMOS), Current-Aperture Vertical Electron Transistors (CAVETs), vGroove Vertical High Electron Mobility Transistors (vHEMTs) or Fin Field Effect Transistors (FinFETs).
Beschreibung der Ausführungsformen Description of the embodiments
FIG. 3A zeigt eine schematische Aufsicht eines vertikalen Halbleiterbauelement- Wafers 100 gemäß verschiedenen Ausführungsformen. FIG.3B veranschaulicht eine schematische Querschnittsansicht des in FIG.3A veranschaulichten Halbleiterbauelement-Wafers 100. Die durchgezogene Linie in FIG.3A zeigt den in FIG. 3B dargestellten Bereich. FIG. 3A shows a schematic top view of a vertical semiconductor device wafer 100 according to various embodiments. 3B illustrates a schematic cross-sectional view of the semiconductor device wafer 100 illustrated in FIG. 3A. The solid line in FIG. 3B shown area.
Auf dem Halbleiterbauelement-Wafer 100 ist eine abgestufte Metallfolie 110 mit einer Stufenstruktur 111 und einem Fügematerial 112 angeordnet. Der Halbleiterbauelement-Wafer 100 ist auf der Rückseite des Wafers auf einem Trägermaterial 99 angeordnet. Die Stufenstruktur 111 und das Fügematerial 112 befinden sich auf der Unterseite der Metallfolie 110, die dem Halbleiterbauelement-Wafer 100 zugewandt ist. Die Metallfolie 110 kann beispielsweise mittels Silbersintertechnologie oder Diffusionslöten auf dem Halbleiterbauelement-Wafer 100 aufgebracht sein. Zu diesem Zweck kann die Metallfolie 110 ein Fügematerial 112, beispielsweise eine Silbersinterpaste oder galvanisches Zinn, aufweisen, das auf der Stufenstruktur 111 angeordnet ist, so dass das Fügematerial 112 zwischen der Stufenstruktur 111 und dem Halbleiterbauelement-Wafer 100 angeordnet ist. Beispielsweise ist die Stufenstruktur 111 mit dem Fügematerial 112 beschichtet. A stepped metal foil 110 with a step structure 111 and a joining material 112 is arranged on the semiconductor component wafer 100 . The semiconductor device wafer 100 is arranged on a carrier material 99 on the rear side of the wafer. The step structure 111 and the joining material 112 are located on the underside of the metal foil 110 which faces the semiconductor device wafer 100 . The metal foil 110 can be applied to the semiconductor component wafer 100 by means of silver sintering technology or diffusion soldering, for example. For this purpose, the metal foil 110 can have a joining material 112, for example a silver sintering paste or electrolytic tin, which is arranged on the stepped structure 111, so that the joining material 112 is arranged between the stepped structure 111 and the semiconductor component wafer 100. For example, the step structure 111 is coated with the joining material 112 .
Die mit Fügematerial 112 beschichtete, mit Stufenstruktur 111 abgestufte Metallfolie 110 kann mittels Druck und/oder Temperatur auf dem Halbleiterbauelement-Wafer 100 aufgebracht werden, beispielsweise gefügt werden. The metal foil 110 coated with joining material 112 and having a stepped structure 111 can be applied to the semiconductor component wafer 100 by means of pressure and/or temperature, for example joined.
Während des Aufbringens der Metallfolie 110 auf einer ersten Seite des Halbleiterbauelement-Wafers 100 kann der Halbleiterbauelement-Wafer 100 auf einer gegenüberliegenden zweiten Seite durch ein Trägermaterial 99 abgestützt werden. During the application of the metal foil 110 on a first side of the semiconductor device wafer 100, the semiconductor device wafer 100 can be supported by a carrier material 99 on an opposite second side.
Nach dem Aufbringen und Verbinden der Metallfolie 110 mit dem Halbleiterbauelement-Wafer 100 ist der bruchempfindliche Halbleiterbauelement- Wafer 100 mechanisch stabilisiert. Dadurch kann das Trägermaterial 99 auf der Rückseite des Halbleiterbauelement-Wafers 100 entfernt werden. Dies ermöglicht, dass die Rückseite des stabilisierten Halbleiterbauelement-Wafers 100 weiterprozessiert werden kann. Beispielsweise kann das Weiterprozessieren (auch als Rückseitenprozess bezeichnet) ein lokales oder vollflächiges Entfernen des (Silizium-)substrats 61 und (optional) der Bufferschicht 13 aufweisen. After the metal foil 110 has been applied and connected to the semiconductor component wafer 100, the fragile semiconductor component wafer 100 is mechanically stabilized. As a result, the carrier material 99 on the rear side of the semiconductor device wafer 100 can be removed. This allows the back side of the stabilized semiconductor device wafer 100 to be further processed. For example, the further processing (also referred to as the rear-side process) can include a local or full-area removal of the (silicon) substrate 61 and (optionally) the buffer layer 13 .
Nach dem Rückseitenprozess kann der Halbleiterbauelement-Wafer 100 auf einer Trägerkomponente 99 aufgebracht und kann optional mit dieser verbunden werden (siehe FIG.4). Der Halbleiterbauelement-Wafer 100 kann dann weiterbearbeitet werden. Diese Trägerkomponente 99 kann beispielsweise ein Sägetape für einen Sägeprozess sein. Die Metallfolie 110 kann soweit entfernt werden, beispielsweise reduziert werden, dass nur noch die Stufenstruktur 111 auf dem Halbleiterbauelement-Wafer 100 zurückbleibt. Zwischen den Stufen der Stufenstruktur 111 können Soll- Trennstellen, beispielsweise Sägestraßen, freiliegen. In diesem Zustand kann der Halbleiterbauelement-Wafer 100 gesägt werden und die Halbleiterbauelemente vereinzelt werden. After the rear side process, the semiconductor device wafer 100 can be applied to a carrier component 99 and can optionally be connected to it (see FIG. 4). The semiconductor device wafer 100 can then be further processed. This carrier component 99 can, for example, be sawing tape for a sawing process. The metal foil 110 can be removed, for example reduced, to such an extent that only the step structure 111 remains on the semiconductor component wafer 100 . Desired separation points, for example saw lines, can be exposed between the steps of the step structure 111 . In this state, the semiconductor device wafer 100 can be sawed and the semiconductor devices can be singulated.
FIG.4 zeigt den Halbleiterbauelement- Wafer 100 auf dem Trägermaterial 99 mit entfernter Metallfolie 110, sodass nur noch die Stufenstruktur 111 und das Fügematerial 112 auf dem Halbleiterbauelement-Wafer 100 zurückbleibt. 4 shows the semiconductor component wafer 100 on the carrier material 99 with the metal foil 110 removed, so that only the stepped structure 111 and the joining material 112 remain on the semiconductor component wafer 100. FIG.
Anschaulich weist der vertikale Halbleiterbauelement-Wafer 100 auf: ein Galliumnitrid-Schichtensystem 15, 16, 17 auf oder über einer ersten Seite eines Substrats 61, 61A, eine Vorderseitenkontaktstruktur 23, 41 auf oder über dem Galliumnitrid-Schichtensystem 15, 16, 17, wobei die Vorderseitenkontaktstruktur 23, 41 mindestens eine erste Elektrodenstruktur 41 und eine zweite Elektrodenstruktur 23 aufweist, die elektrisch voneinander isoliert sind; eine Rückseitenkontaktstruktur 52 auf oder über einer zweiten Seite des Substrates 61, 61A, die der ersten Seite gegenüberliegt, und/oder auf oder über dem Galliumnitrid-Schichtensystem 15, 16, 17 bei der zweiten Seite, wobei die Rückseitenkontaktstruktur 52 eine dritte Elektrodenstruktur 52 aufweist, die von der ersten Elektrodenstruktur 42 und der zweiten Elektrodenstruktur 23 elektrisch isoliert ist; einen Carrierträger 101 auf oder über der Vorderseitenkontaktstruktur 23, 41, der mittels eines Fügematerials 112 mit der Vorderseitenkontaktstruktur 23, 41 mechanisch gekoppelt ist, wobei der Carrierträger 101 derart eingerichtet ist, dass die erste Elektrodenstruktur 41 mit der zweiten Elektrodenstruktur 23 gekoppelt ist. Clearly, the vertical semiconductor device wafer 100 has: a gallium nitride layer system 15, 16, 17 on or over a first side of a substrate 61, 61A, a front-side contact structure 23, 41 on or over the gallium nitride layer system 15, 16, 17, where the front-side contact structure 23, 41 has at least a first electrode structure 41 and a second electrode structure 23 which are electrically insulated from one another; a backside contact structure 52 on or over a second side of the substrate 61, 61A, which is opposite the first side, and/or on or over the gallium nitride layer system 15, 16, 17 on the second side, the backside contact structure 52 having a third electrode structure 52 , which is electrically isolated from the first electrode structure 42 and the second electrode structure 23; a carrier support 101 on or above the front-side contact structure 23, 41, which is mechanically coupled to the front-side contact structure 23, 41 by means of a joining material 112, the carrier support 101 being set up in such a way that the first electrode structure 41 is coupled to the second electrode structure 23.
Der Carrierträger 101 ist ein vorderseitiger Träger oder Vorderseitenträger für den Halbleiterbauelement-Wafer 100 und kann auch als Carrierelement oder Trägerelement bezeichnet werden. The carrier support 101 is a front-side support or front-side support for the semiconductor device wafer 100 and can also be referred to as a carrier element or carrier element.
Das Substrat 61, 61A kann ein Halbleitersubstrat sein, beispielsweise Si, SiC oder GaN; oder ein nicht-leitendes Substrat sein, beispielsweise Aluminiumoxid, beispielsweise Saphir. FIG.5A-FIG.5B und FIG.6A-FIG.6B veranschaulichen schematische Querschnittsansichten von verschiedenen Aspekten von GaN-Membran-Wafern 100 mit unterschiedlichen Ausführungsformen der Rückseiten. FIG.5A und FIG.5B veranschaulichen eine Ausführungsform eines Verfahrens, bei der durch die Rückseitenprozessierung das Substrat 61 und der Buffer 13 lokal unter den aktiven Flächen entfernt werden, wodurch eine Rückseitenkaverne 51 ausgebildet wird (siehe auch FIG.7A). FIG.6A und FIG.6B veranschaulichen eine Ausführungsform eines Verfahrens, bei der durch die Rückseitenprozessierung das Substrat 61 und der Buffer 13 vollflächig entfernt werden (siehe auch FIG.7B). The substrate 61, 61A may be a semiconductor substrate such as Si, SiC or GaN; or a non-conductive substrate, e.g. alumina, e.g. sapphire. 5A-FIG. 5B and FIG. 6A-FIG. 6B illustrate schematic cross-sectional views of various aspects of GaN membrane wafers 100 with different backside embodiments. FIG. 5A and FIG. 5B illustrate an embodiment of a method in which the substrate 61 and the buffer 13 are removed locally under the active areas by the back side processing, as a result of which a back side cavern 51 is formed (see also FIG. 7A). FIG. 6A and FIG. 6B illustrate an embodiment of a method in which the substrate 61 and the buffer 13 are removed over the entire area by the rear-side processing (see also FIG. 7B).
In verschiedenen Ausführungsformen wird die Metallfolie 110 entfernt und der Halbleiterbauelement- Wafer 100 wird entlang von Soll-Trennstellen vereinzelt, beispielsweise gesägt. Nach dem Vereinzeln sind vereinzelte Membran- Halbleiterbauelement, beispielsweise Membran-Transistoren, in stabilisierter Form bereitgestellt. In various embodiments, the metal foil 110 is removed and the semiconductor component wafer 100 is singulated, for example sawed, along intended separation points. After the isolation, isolated membrane semiconductor components, for example membrane transistors, are provided in a stabilized form.
Das Verfahren kann ferner einen Sinterprozess, beispielsweise ein Silbersinterprozess, aufweisen, um das Halbleiterbauelement-Wafer 100 zu kontaktieren, beispielsweise mittels eines anschließenden Draht- oder Bändchenbondens 96, wie in den schematischen Querschnittsansichten in FIG.7A und FIG.7B veranschaulicht ist. In FIG.7A und FIG.7B sind Ausführungsformen von GaN-Membran-Transistoren mit stabilisierter Oberseite veranschaulicht, die auf eine Leiterplatte 71 gefügt wurden. The method may further include a sintering process, for example a silver sintering process, to contact the semiconductor device wafer 100, for example by means of subsequent wire or ribbon bonding 96, as illustrated in the schematic cross-sectional views in FIG. 7A and FIG. 7B. In FIG. 7A and FIG. 7B, embodiments of GaN membrane transistors with a stabilized upper side are illustrated, which were joined onto a printed circuit board 71. FIG.
Großflächige Transistoren können eine spezifische Gate-Leitung, auch als Gate- Runner 102 bezeichnet, im Transistorzellenfeld aufweisen. Der Gate-Runner 102 kann mit relativ weichen organischen Schichten als Gate-Runner-Passivierung überdeckt sein. Die weichen organischen Schichten können für ein druckbehaftetes Sintern einer herkömmlichen DTS- Folie ein Risiko darstellen. Beim Sinterprozess kann eine Kupferfolie über dem Gate-Runner 102 im Transistorzellenfeld unter Druck aufgebracht werden. Ein Partikel kann beim Sintern unter Druck durch die Gate-Runner-Passivierung gedrückt werden. In der Metallfolie 110 kann im Bereich des Gate-Runners 102 eine Ausnehmung 104 in der Stufenstruktur 111 vorgesehen sein, so dass ein Partikel nicht in die Gate- Runner-Passivierung gedrückt wird. Mittels des beschriebenen Verfahrens kann auf einfache Weise eine Ausnehmung und/oder getrennte Source-Pads ausgebildet werden. FIG.8A veranschaulicht in einer Aufsicht ein Membran- Halbleiterbauelement-Wafer 100 mit Gate-Runner 102 und FIG.8B, FIG.8C und FIG.8D veranschaulichen schematische Querschnittsansichten von Ausführungsformen entlang der Schnittlinie von FIG.8A. Large-area transistors can have a specific gate line, also referred to as gate runner 102, in the transistor cell array. The gate runner 102 may be covered with relatively soft organic layers as a gate runner passivation. The soft organic layers can pose a risk for pressure-sensitive sintering of a conventional DTS foil. During the sintering process, a copper foil can be applied under pressure over the gate runner 102 in the transistor cell array. A particle can be pushed through the gate runner passivation under pressure during sintering. In the metal foil 110 in the area of the gate runner 102, a recess 104 in of the step structure 111 so that a particle is not pressed into the gate runner passivation. A recess and/or separate source pads can be formed in a simple manner by means of the method described. 8A illustrates a plan view of a membrane semiconductor device wafer 100 with gate runner 102, and FIG. 8B, FIG. 8C and FIG. 8D illustrate schematic cross-sectional views of embodiments taken along the line of FIG. 8A.
Mit anderen Worten: In other words:
In verschiedenen Ausführungsformen weist das Verfahren zum Herstellen eines vertikalen Halbleiterbauelement-Wafers 100 ein Ausbilden eines Galliumnitrid- Schichtensystems 15, 16, 17 auf oder über einer ersten Seite eines Substrats 61, 61A auf. Das Verfahren weist ein Ausbilden einer Vorderseitenkontaktstruktur 23, 41 auf oder über dem Galliumnitrid-Schichtensystem 15, 16, 17 auf. Die Vorderseitenkontaktstruktur 23, 41 weist mindestens eine erste Elektrodenstruktur 41 und eine zweite Elektrodenstruktur 23 auf, die elektrisch voneinander isoliert sind. Das Verfahren weist ein Ausbilden einer Rückseitenkontaktstruktur 52 auf oder über einer zweiten Seite des Substrates 61, 61A und/oder auf oder über dem Galliumnitrid-Schichtensystem 15, 16, 17 bei der zweiten Seite auf. Die zweite Seite liegt der ersten Seite gegenüber. Die Rückseitenkontaktstruktur 52 ist von der ersten Elektrodenstruktur 42 und der zweiten Elektrodenstruktur 23 elektrisch isoliert. Das Verfahren weist ein Aufbringen eines Carrierträgers 101 auf oder über der Vorderseitenkontaktstruktur 23, 41 mittels eines Fügematerials 112 auf. Der Carrierträger 101 ist derart eingerichtet, dass die erste Elektrodenstruktur 41 mit der zweiten Elektrodenstruktur 23 gekoppelt ist. Das Verfahren weist ferner ein Bearbeiten von der zweiten Seite des Substrates 61, 61A auf von mindestens einem von dem Galliumnitrid-Schichtensystem 15, 16, 17, dem Substrat 61, 61A und der Rückseitenkontaktstruktur 52. Das Verfahren weist ferner ein Entfernen eines Teils des Carrierträgers 101 derart auf, dass die erste Elektrodenstruktur 41 und die zweite Elektrodenstruktur 23 nach dem Entfernen mindestens elektrisch voneinander isoliert sind. Die erste Elektrodenstruktur 41 und die zweite Elektrodenstruktur 23 können auch körperlich voneinander separiert oder isoliert sein. Wenn das Substrat 61, 61A zumindest lokal vollständig entfernt wurde, so dass das GaN-Schichtsystem 15, 15, 17 rückseitig freiliegt kann es anschaulich keine zweite Seite des Substrats 61, 61A mehr geben. Die Bearbeitung der Rückseite des Halbleiterbauelement-Wafers 100, beispielsweise ein Ausbilden der Rückseitenelektrodenstruktur, erfolgt aus Richtung der zweiten Seite des (vormals gegebenenfalls vorhandenen) Substrates 61, 61A bzw. mit anderen Worten „bei der zweiten Seite des Substrats 61, 61A und/oder auf oder über einer Seite des Galliumnitrid-Schichtensystems 15, 16, 17, die der ersten Seite des Substrats 61, 61A gegenüberliegt. In various embodiments, the method for manufacturing a vertical semiconductor device wafer 100 includes forming a gallium nitride layer system 15, 16, 17 on or over a first side of a substrate 61, 61A. The method includes forming a front-side contact structure 23, 41 on or above the gallium nitride layer system 15, 16, 17. The front-side contact structure 23, 41 has at least a first electrode structure 41 and a second electrode structure 23, which are electrically insulated from one another. The method includes forming a backside contact structure 52 on or over a second side of the substrate 61, 61A and/or on or over the gallium nitride layer system 15, 16, 17 at the second side. The second page is opposite the first page. The rear contact structure 52 is electrically isolated from the first electrode structure 42 and the second electrode structure 23 . The method includes applying a carrier support 101 to or above the front-side contact structure 23, 41 by means of a joining material 112. The carrier support 101 is set up in such a way that the first electrode structure 41 is coupled to the second electrode structure 23 . The method further includes processing from the second side of the substrate 61, 61A at least one of the gallium nitride layer system 15, 16, 17, the substrate 61, 61A and the backside contact structure 52. The method further includes removing part of the carrier support 101 in such a way that the first electrode structure 41 and the second electrode structure 23 are at least electrically insulated from one another after removal. The first electrode structure 41 and the second electrode structure 23 can also be physically separated or isolated from one another. If the substrate 61, 61A has been completely removed, at least locally, so that the GaN layer system 15, 15, 17 is exposed on the back, there can clearly no longer be a second side of the substrate 61, 61A. The rear side of the semiconductor component wafer 100 is processed, for example forming the rear-side electrode structure, from the direction of the second side of the substrate 61, 61A (formerly possibly present) or in other words “at the second side of the substrate 61, 61A and/or on or over a side of the gallium nitride layer system 15, 16, 17 opposite the first side of the substrate 61, 61A.
Die Rückseitenkontaktstruktur 52 kann eine dritte Elektrodenstruktur 52 aufweisen. Die dritte Elektrodenstruktur 52 ist von der ersten Elektrodenstruktur 42 und der zweiten Elektrodenstruktur 23 elektrisch isoliert. The backside contact structure 52 may include a third electrode structure 52 . The third electrode structure 52 is electrically insulated from the first electrode structure 42 and the second electrode structure 23 .
Das vertikale Halbleiterbauelement- Wafer 100 kann ein vertikaler Transistor 100 sein. In diesem Fall ist die erste Elektrodenstruktur 41 eine Source-Elektrode 41 bzw. eine Drain- Elektrode, die zweite Elektrodenstruktur 23 ist eine Gate- Elektrode 23 und die Rückseitenkontaktstruktur 52 bzw. die dritte Elektrodenstruktur 52 ist eine Drain- Elektrode 52 bzw. eine Source-Elektrode. Das Verfahren kann ein elektrisches Kontaktieren der ersten Elektrodenstruktur 42, der zweiten Elektrodenstruktur 23 und der Rückseitenkontaktstruktur 52 bzw. der dritten Elektrodenstruktur 52 mit einer Leiterplatte 71 aufweisen. Vertical semiconductor device wafer 100 may be vertical transistor 100 . In this case, the first electrode structure 41 is a source electrode 41 or a drain electrode, the second electrode structure 23 is a gate electrode 23 and the rear contact structure 52 or the third electrode structure 52 is a drain electrode 52 or a source -Electrode. The method can include electrically contacting the first electrode structure 42 , the second electrode structure 23 and the rear-side contact structure 52 or the third electrode structure 52 with a printed circuit board 71 .
Das Verfahren kann ferner ein Ausbilden einer Soll-Trennstelle aufweisen, die zum Vereinzeln des Halbleiterbauelementes eingerichtet ist. The method can also include forming a desired separation point, which is set up for singulating the semiconductor component.
In verschiedenen Ausführungsformen weist das Verfahren alternativ oder zusätzlich ein Ausbilden einer Vorderseitenkontaktstruktur auf oder über dem Galliumnitrid-Schichtensystem 15, 16, 17 auf, wobei dieIn various embodiments, the method alternatively or additionally forms a front-side contact structure on or above the gallium nitride layer system 15, 16, 17, wherein the
Vorderseitenkontaktstruktur eine erste Elektrodenstruktur eines ersten vertikalen Halbleiterbauelementes und eine zweite Elektrodenstruktur eines zweiten vertikalen Halbleiterbauelementes aufweist. Eine Soll-Trennstelle ist (lateral) zwischen der ersten Elektrodenstruktur und der zweiten Elektrodenstruktur angeordnet ist oder wird dort ausgebildet. Das Verfahren weist ferner ein Ausbilden einer Rückseitenkontaktstruktur auf oder über einer zweiten Seite des Substrates 61, 61A, die der ersten Seite gegenüberliegt, und/oder auf oder über dem Galliumnitrid-Schichtensystem 15, 16, 17 bei der zweiten Seite auf. Die Rückseitenkontaktstruktur ist von der Vorderseitenkontaktstruktur elektrisch isoliert. Die Rückseiten kontaktstruktur weist eine dritte Elektrodenstruktur des ersten vertikalen Halbleiterbauelementes und eine vierte Elektrodenstruktur des zweiten vertikalen Halbleiterbauelementes auf. Die Soll-Trennstelle ist (lateral) zwischen der dritten Elektrodenstruktur und der vierten Elektrodenstruktur angeordnet. Das Verfahren weist das Aufbringen des Carrierträgers 101 auf oder über der Vorderseiten kontaktstruktur mittels des Fügematerials 112 auf. Der Carrierträger 101 ist derart eingerichtet, dass die erste Elektrodenstruktur mit der zweiten Elektrodenstruktur gekoppelt ist. Das Verfahren weist ein Bearbeiten, von der zweiten Seite des Substrates 61, 61A, mindestens eines von dem Galliumnitrid-Schichtensystem 15, 16, 17, dem Substrat 61, 61A und der Rückseitenkontaktstruktur auf. Das Verfahren weist ferner ein Entfernen eines Teils des Carrierträgers 101 derart auf, dass die erste Elektrodenstruktur und die zweite Elektrodenstruktur nach dem Entfernen mindestens elektrisch voneinander isoliert sind. Anschaulich können mittels des Verfahrens mehrere vertikale Halbleiterbauelemente, die auf einem gemeinsamen Halbleiterbauelement-Wafer angeordnet sind, vereinzelt werden. Das erste vertikale Halbleiterbauelement und das zweite vertikale Halbleiterbauelement können dabei gesteuerte Halbleiterbauelemente sein, beispielsweise Transistoren, oder ungesteuerte Halbleiterbauelemente sein, beispielsweise Dioden. Falls das erste Halbleiterbauelement und das zweite Halbleiterbauelement jeweils eine Diode ist, ist die erste Elektrodenstruktur und die zweite Elektrodenstruktur eine Anoden- Elektrode und die dritte Elektrodenstruktur und die vierte Elektrodenstruktur eine Kathoden- Elektrode, oder umgekehrt. Front-side contact structure has a first electrode structure of a first vertical semiconductor component and a second electrode structure of a second vertical semiconductor component. A predetermined separation point is arranged (laterally) between the first electrode structure and the second electrode structure or is formed there. The procedure also includes Forming a rear contact structure on or over a second side of the substrate 61, 61A opposite the first side and/or on or over the gallium nitride layer system 15, 16, 17 at the second side. The backside contact structure is electrically isolated from the frontside contact structure. The rear-side contact structure has a third electrode structure of the first vertical semiconductor component and a fourth electrode structure of the second vertical semiconductor component. The intended separation point is arranged (laterally) between the third electrode structure and the fourth electrode structure. The method includes the application of the carrier support 101 on or over the front contact structure using the joining material 112 . The carrier support 101 is set up in such a way that the first electrode structure is coupled to the second electrode structure. The method comprises processing, from the second side of the substrate 61, 61A, at least one of the gallium nitride layer system 15, 16, 17, the substrate 61, 61A and the backside contact structure. The method further includes removing part of the carrier support 101 in such a way that the first electrode structure and the second electrode structure are at least electrically insulated from one another after the removal. Clearly, the method can be used to singulate a number of vertical semiconductor components that are arranged on a common semiconductor component wafer. In this case, the first vertical semiconductor component and the second vertical semiconductor component can be controlled semiconductor components, for example transistors, or uncontrolled semiconductor components, for example diodes. If the first semiconductor component and the second semiconductor component are each a diode, the first electrode structure and the second electrode structure is an anode electrode and the third electrode structure and the fourth electrode structure is a cathode electrode, or vice versa.
Das Verfahren einer der zuvor beschriebenen Ausführungsformen kann ein Trennen der Soll-Trennstelle aufweisen, so dass das erste vertikale Halbleiterbauelement und das zweite vertikale Halbleiterbauelement vereinzelt sind. Eine Soll-Trennstelle, die zum Vereinzeln des Halbleiterbauelementes eingerichtet ist - beispielsweise eine Sägestraße oder eine Bruchkante, kann zwischen benachbarten Stufen bzw. Stufenstrukturen der Stufenstruktur 111 angeordnet sein. The method of one of the embodiments described above can include separating the desired separation point, so that the first vertical semiconductor component and the second vertical semiconductor component are singulated. A desired separation point, which is set up for separating the semiconductor component—for example a sawing line or a breaking edge, can be arranged between adjacent steps or step structures of the step structure 111 .
Das Bearbeiten kann in einem der zuvor beschriebenen Ausführungsformen beispielsweise zumindest ein Entfernen eines Teils des Substrates 61, 61A aufweisen. Das Entfernen kann beispielsweise derart erfolgen, dass eine Rückseitenkaverne 51 unterhalb der ersten Elektrodenstruktur und der zweiten Elektrodenstruktur ausgebildet wird. Alternativ kann das Bearbeiten derart erfolgen, dass das Substrat 61, 61A vollständig entfernt wird. Die Rückseitenkontaktstruktur 52 wird in verschiedenen Ausführungsformen nach dem Entfernen des Teils des Substrats 61, 61A ausgebildet. In one of the previously described embodiments, the processing can include, for example, at least a part of the substrate 61, 61A being removed. The removal can take place, for example, in such a way that a rear-side cavern 51 is formed below the first electrode structure and the second electrode structure. Alternatively, the processing may be such that the substrate 61, 61A is completely removed. The backside contact structure 52 is formed after removing the portion of the substrate 61, 61A in various embodiments.
Das Galliumnitrid-Schichtensystem 15, 16, 17 kann beispielsweise mindestens eine Driftlage 17, eine p-dotierte Galliumnitridschicht 15, 16 und eine n-dotierte Galliumnitridschicht 16, 15 aufweisen. The gallium nitride layer system 15, 16, 17 can have, for example, at least one drift layer 17, a p-doped gallium nitride layer 15, 16 and an n-doped gallium nitride layer 16, 15.
Die Rückseitenkontaktstruktur 52 kann zumindest in einem Bereich im direkten Kontakt mit dem Galliumnitrid-Schichtensystem 15, 16, 17 sein. The rear side contact structure 52 can be in direct contact with the gallium nitride layer system 15, 16, 17 at least in one area.
Das Fügematerial 112 kann elektrisch leitfähig sein, beispielsweise eine Silber-, Zinn- oder Kupfersinterpaste, oder galvanisches Silber, Zinn oder Kupfer sein. The joining material 112 can be electrically conductive, for example a silver, tin or copper sinter paste, or electroplated silver, tin or copper.
Der Carrierträger 101 kann eine Stufenstruktur 111 auf einer Folie 110 aufweisen. Die Stufenstruktur 111 kann mittels des Fügematerials 112 mit der ersten Elektrodenstruktur 42 gekoppelt werden. Die Stufenstruktur 111 kann derart eingerichtet sein, dass die zweite Elektrodenstruktur 23 frei ist von einem körperlichen Kontakt mit der Carrierträger 101. Zumindest ein Teil der Folie 110 kann das entfernte Teil des Carrierträgers 101 sein. The carrier support 101 can have a step structure 111 on a foil 110 . The step structure 111 can be coupled to the first electrode structure 42 by means of the joining material 112 . The step structure 111 can be set up in such a way that the second electrode structure 23 is free from physical contact with the carrier support 101. At least part of the foil 110 can be the removed part of the carrier support 101.
Alternativ kann der Carrierträger 101 eine Stufenstruktur 111 auf einer Folie 110 aufweisen. Die Stufenstruktur 111 kann mindestens eine erste Stufenstruktur 111 und eine zweite Stufenstruktur 111 aufweisen, die mittels der Folie 110 mechanisch miteinander verbunden sind. Die erste Stufenstruktur 111 kann mittels des Fügematerials 112 mit der ersten Elektrodenstruktur gekoppelt werden und die zweite Stufenstruktur 111 kann mittels des Fügematerials 112 mit der zweiten Elektrodenstruktur 23 gekoppelt werden. Zumindest ein Teil der Folie 110 kann der entfernte Teil des Carrierträgers 101 sein. Alternatively, the carrier support 101 can have a step structure 111 on a foil 110 . The step structure 111 can have at least a first step structure 111 and a second step structure 111 which are mechanically connected to one another by means of the foil 110 . The first step structure 111 can be coupled to the first electrode structure by means of the joining material 112 and the second step structure 111 can be coupled by means of the joining material 112 be coupled to the second electrode structure 23 . At least part of the foil 110 can be the removed part of the carrier support 101 .
Eine bzw. die Soll-Trennstelle kann zwischen benachbarten (Teil- )Stufenstrukturen der Stufenstruktur angeordnet sein, beispielsweise lateral zwischen der ersten Stufenstruktur und der zweiten Stufenstruktur. One or the desired separation point can be arranged between adjacent (partial) step structures of the step structure, for example laterally between the first step structure and the second step structure.
In verschiedenen Ausführungsformen sind die Metallfolie 110 und die Stufenstruktur 111 einstückig ausgebildet, beispielsweise als strukturierte oder abgestufte Metallfolie 101. In various embodiments, the metal foil 110 and the stepped structure 111 are formed in one piece, for example as a structured or stepped metal foil 101.
Alternativ oder zusätzlich kann die Vorderseitenkontaktstruktur mindestens eine Padmetallisierung, beispielsweise die erste Elektrodenstruktur und die zweite Elektrodenstruktur, und eine Isolationsschicht 31 aufweisen. Die Padmetallisierung weist eine erste Höhe auf und die Isolationsschicht 31 weist eine zweite Höhe auf, die kleiner ist als die erste Höhe, so dass sich die Padmetallisierung weiter von dem Substrat 61, 61A erstreckt als die Isolationsschicht 31. Der Carrierträger 101 kann in diesem Fall eine planare oder im Wesentlichen planare Folie 110 sein. Alternatively or additionally, the front-side contact structure can have at least one pad metallization, for example the first electrode structure and the second electrode structure, and an insulation layer 31 . The pad metallization has a first height and the insulating layer 31 has a second height that is smaller than the first height, so that the pad metallization extends further from the substrate 61, 61A than the insulating layer 31. The carrier support 101 can in this case be a planar or substantially planar foil 110 .
In verschiedenen Ausführungsformen wird das Substrat 61, 61A auf einem Trägermaterial 99 aufgebracht, bevor der Carrierträger 101 aufgebracht wird.In various embodiments, the substrate 61, 61A is applied to a carrier material 99 before the carrier carrier 101 is applied.
Das Trägermaterial 99 wird vor dem Bearbeiten des mindestens einem von dem Galliumnitrid-Schichtensystem 15, 16, 17, dem Substrat 61, 61A und der Rückseitenkontaktstruktur 52 entfernt. The carrier material 99 is removed before the at least one of the gallium nitride layer system 15, 16, 17, the substrate 61, 61A and the rear-side contact structure 52 are processed.
In verschiedenen Ausführungsformen weist ein vertikaler Halbleiterbauelement- Wafer 100 auf: ein Galliumnitrid-Schichtensystem 15, 16, 17 auf oder über einer ersten Seite eines Substrats 61, 61A; eine Vorderseitenkontaktstruktur 23, 41 auf oder über dem Galliumnitrid-Schichtensystem 15, 16, 17, wobei die Vorderseitenkontaktstruktur 23, 41 mindestens eine erste Elektrodenstruktur 41 und eine zweite Elektrodenstruktur 23 aufweist, die elektrisch voneinander isoliert sind; eine Rückseitenkontaktstruktur 52 auf oder über einer zweiten Seite des Substrates 61, 61A, die der ersten Seite gegenüberliegt, und/oder auf oder über dem Galliumnitrid-Schichtensystem 15, 16, 17 bei der zweiten Seite, wobei die Rückseitenkontaktstruktur 52 von der ersten Elektrodenstruktur 42 und der zweiten Elektrodenstruktur 23 elektrisch isoliert ist; einen Carrierträger 101 auf oder über der Vorderseitenkontaktstruktur 23, 41, der mittels eines Fügematerials 112 mit der Vorderseitenkontaktstruktur 23, 41 mechanisch gekoppelt ist, wobei der Carrierträger 101 derart eingerichtet ist, dass die erste Elektrodenstruktur 41 mit der zweiten Elektrodenstruktur 23 gekoppelt ist. In various embodiments, a vertical semiconductor device wafer 100 comprises: a gallium nitride layer system 15, 16, 17 on or over a first side of a substrate 61, 61A; a front-side contact structure 23, 41 on or above the gallium nitride layer system 15, 16, 17, the front-side contact structure 23, 41 having at least a first electrode structure 41 and a second electrode structure 23, which are electrically insulated from one another; a backside contact structure 52 on or above a second side of the substrate 61, 61A, which is opposite the first side, and / or on or above the gallium nitride layer system 15, 16, 17 at the second side, wherein the Backside contact structure 52 is electrically isolated from first electrode structure 42 and second electrode structure 23; a carrier support 101 on or above the front-side contact structure 23, 41, which is mechanically coupled to the front-side contact structure 23, 41 by means of a joining material 112, the carrier support 101 being set up in such a way that the first electrode structure 41 is coupled to the second electrode structure 23.
Alternativ oder zusätzlich weist der vertikale Halbleiterbauelement-Wafer 100 auf: ein Galliumnitrid-Schichtensystem 15, 16, 17 auf oder über einer ersten Seite eines Substrats 61, 61A; eine Vorderseitenkontaktstruktur 23, 41 auf oder über dem Galliumnitrid-Schichtensystem 15, 16, 17, wobei die Vorderseitenkontaktstruktur 23, 41 mindestens eine Source-Elektrode 41 und eine Gate- Elektrode 23 aufweist, die elektrisch voneinander isoliert sind; eine Rückseitenkontaktstruktur 52 auf oder über einer zweiten Seite des Substrates 61, 61A, die der ersten Seite gegenüberliegt, und/oder auf oder über dem Galliumnitrid-Schichtensystem 15, 16, 17 bei der zweiten Seite, wobei die Rückseitenkontaktstruktur 52 von der Source-Elektrode 42 und der Gate- Elektrode 23 elektrisch isoliert ist; wobei die Source-Elektrode 42 eine erste Höhe aufweist und die Gate- Elektrode 23 eine zweite Höhe aufweist, die unterschiedlich zu der ersten Höhe ist; und eine Ausgleichsstruktur 111, die mittels eines Fügematerials 112 auf der Source-Elektrode 42 und auf der Gate- Elektrode 23 angeordnet ist, wobei die Ausgleichsstruktur 111 derart eingerichtet ist, dass die Source- Elektrode 42 mit der Ausgleichsstruktur 111 und die Gate- Elektrode 23 mit der Ausgleichsstruktur 112 eine gleiche oder im Wesentlichen gleiche dritte Höhe aufweisen. Alternatively or additionally, the vertical semiconductor device wafer 100 comprises: a gallium nitride layer system 15, 16, 17 on or over a first side of a substrate 61, 61A; a front-side contact structure 23, 41 on or above the gallium nitride layer system 15, 16, 17, the front-side contact structure 23, 41 having at least one source electrode 41 and one gate electrode 23 which are electrically insulated from one another; a backside contact structure 52 on or over a second side of the substrate 61, 61A, opposite the first side, and/or on or over the gallium nitride layer system 15, 16, 17 at the second side, the backside contact structure 52 being separated from the source electrode 42 and the gate electrode 23 is electrically insulated; the source electrode 42 has a first height and the gate electrode 23 has a second height different from the first height; and a compensation structure 111, which is arranged on the source electrode 42 and on the gate electrode 23 by means of a joining material 112, the compensation structure 111 being set up in such a way that the source electrode 42 is connected to the compensation structure 111 and the gate electrode 23 have the same or substantially the same third height with the balancing structure 112 .
Dies ermöglicht eine gleiche Bauhöhe der Metallisierung auf Source- und Gate- Elektrodenstruktur, was vorteilhaft für beidseitig gefügte Chips sein kann. This enables the metallization to be of the same height on the source and gate electrode structure, which can be advantageous for chips joined on both sides.
Die beschriebenen und in den Figuren gezeigten Ausführungsformen sind nur beispielhaft gewählt. Unterschiedliche Ausführungsformen können vollständig oder in Bezug auf einzelne Merkmale miteinander kombiniert werden. Auch kann eine Ausführungsform durch Merkmale einer weiteren Ausführungsform ergänzt werden. Ferner können beschriebene Verfahrensschritte wiederholt sowie in einer anderen als in der beschriebenen Reihenfolge ausgeführt werden. Insbesondere ist die Erfindung nicht auf das angegebene Verfahren beschränkt. The embodiments described and shown in the figures are only chosen as examples. Different embodiments can be combined with one another completely or in relation to individual features. An embodiment can also be supplemented by features of a further embodiment. Furthermore, method steps described can be repeated and carried out in a different order than in the order described. In particular, the invention is not limited to the specified method.

Claims

Ansprüche Expectations
1. Verfahren zum Herstellen eines vertikalen Halbleiterbauelements (100), das Verfahren aufweisend: A method of manufacturing a vertical semiconductor device (100), the method comprising:
Ausbilden eines Galliumnitrid-Schichtensystems (15, 16, 17) auf oder über einer ersten Seite eines Substrats (61, 61A); forming a gallium nitride layer system (15, 16, 17) on or over a first side of a substrate (61, 61A);
Ausbilden einer Vorderseitenkontaktstruktur (23, 41) auf oder über dem Galliumnitrid-Schichtensystem (15, 16, 17), wobei dieForming a front contact structure (23, 41) on or above the gallium nitride layer system (15, 16, 17), wherein the
Vorderseitenkontaktstruktur (23, 41) mindestens eine erste Elektrodenstruktur (41) und eine zweite Elektrodenstruktur (23) aufweist, die elektrisch voneinander isoliert sind; Front side contact structure (23, 41) has at least a first electrode structure (41) and a second electrode structure (23) which are electrically isolated from each other;
Ausbilden einer Rückseitenkontaktstruktur (52) auf oder über einer zweiten Seite des Substrates (61, 61A), die der ersten Seite gegenüberliegt, und/oder auf oder über dem Galliumnitrid-Schichtensystem (15, 16, 17) bei der zweiten Seite, wobei die Rückseitenkontaktstruktur (52) von der ersten Elektrodenstruktur (42) und der zweiten Elektrodenstruktur (23) elektrisch isoliert ist; Forming a rear contact structure (52) on or over a second side of the substrate (61, 61A), which is opposite the first side, and / or on or over the gallium nitride layer system (15, 16, 17) at the second side, wherein the Backside contact structure (52) is electrically isolated from the first electrode structure (42) and the second electrode structure (23);
Aufbringen eines Carrierträgers (101) auf oder über derApplication of a carrier support (101) on or above the
Vorderseitenkontaktstruktur (23, 41) mittels eines Fügematerials (112), wobei der Carrierträger (101) derart eingerichtet ist, dass die erste Elektrodenstruktur (41) mit der zweiten Elektrodenstruktur (23) gekoppelt ist; und Bearbeiten, von der zweiten Seite des Substrates (61, 61A), mindestens eines von dem Galliumnitrid-Schichtensystem (15, 16, 17), dem Substrat (61, 61A) und der Rückseitenkontaktstruktur (52); und Front-side contact structure (23, 41) by means of a joining material (112), the carrier support (101) being set up in such a way that the first electrode structure (41) is coupled to the second electrode structure (23); and processing, from the second side of the substrate (61, 61A), at least one of the gallium nitride layer system (15, 16, 17), the substrate (61, 61A) and the backside contact structure (52); and
Entfernen eines Teils des Carrierträgers (101) derart, dass die erste Elektrodenstruktur (41) und die zweite Elektrodenstruktur (23) nach dem Entfernen mindestens elektrisch voneinander isoliert sind. Removing part of the carrier support (101) in such a way that the first electrode structure (41) and the second electrode structure (23) are at least electrically insulated from one another after the removal.
2 Verfahren gemäß Anspruch 1, wobei das vertikale Halbleiterbauelement (100) ein vertikaler Transistor (100) ist, wobei die erste Elektrodenstruktur (41) eine Source-Elektrode (41) bzw. eine Drain- Elektrode ist, die zweite Elektrodenstruktur (23) eine Gate- Elektrode (23) ist und die dritte Elektrodenstruktur (52) eine Drain- Elektrode (52) bzw. eine Source- Elektrode ist. 2 Method according to claim 1, wherein the vertical semiconductor device (100) is a vertical transistor (100), wherein the first electrode structure (41) is a source electrode (41) and a drain electrode, respectively, the second electrode structure (23) is a gate electrode (23) and the third electrode structure (52) is a drain electrode (52) and a source electrode, respectively.
3 Verfahren gemäß Anspruch 2, ferner aufweisend: ein elektrisches Kontaktieren der ersten Elektrodenstruktur (42), der zweiten Elektrodenstruktur (23) und der dritten Elektrodenstruktur (52) mit einer Leiterplatte (71). The method according to claim 2, further comprising: electrically contacting the first electrode structure (42), the second electrode structure (23) and the third electrode structure (52) with a printed circuit board (71).
4. Verfahren gemäß einem der Ansprüche 1 bis 3, ferner aufweisend: 4. The method according to any one of claims 1 to 3, further comprising:
Ausbilden eine Soll-Trennstelle, die zum Vereinzeln des Halbleiterbauelementes eingerichtet ist. forming a desired separation point, which is set up for singulating the semiconductor component.
5. Verfahren zum Herstellen eines vertikalen Halbleiterbauelements (100), das Verfahren aufweisend: 5. A method of manufacturing a vertical semiconductor device (100), the method comprising:
Ausbilden eines Galliumnitrid-Schichtensystems (15, 16, 17) auf oder über einer ersten Seite eines Substrats (61, 61A); forming a gallium nitride layer system (15, 16, 17) on or over a first side of a substrate (61, 61A);
Ausbilden einer Vorderseitenkontaktstruktur auf oder über dem Galliumnitrid- Schichtensystem (15, 16, 17), wobei die Vorderseitenkontaktstruktur eine erste Elektrodenstruktur eines ersten vertikalen Halbleiterbauelementes und eine zweite Elektrodenstruktur eines zweiten vertikalen Halbleiterbauelementes aufweist, wobei eine Soll-Trennstelle zwischen der ersten Elektrodenstruktur und der zweiten Elektrodenstruktur angeordnet ist; Forming a front-side contact structure on or above the gallium nitride layer system (15, 16, 17), the front-side contact structure having a first electrode structure of a first vertical semiconductor component and a second electrode structure of a second vertical semiconductor component, with a desired separation point between the first electrode structure and the second electrode structure is arranged;
Ausbilden einer Rückseitenkontaktstruktur auf oder über einer zweiten Seite des Substrates (61, 61A), die der ersten Seite gegenüberliegt, und/oder auf oder über dem Galliumnitrid-Schichtensystem (15, 16, 17) bei der zweiten Seite, wobei die Rückseitenkontaktstruktur von der Vorderseitenkontaktstruktur elektrisch isoliert ist, und wobei die Rückseitenkontaktstruktur eine dritte Elektrodenstruktur des ersten vertikalen Halbleiterbauelementes und eine vierte Elektrodenstruktur des zweiten vertikalen Halbleiterbauelementes aufweist, wobei die Soll-Trennstelle zwischen der dritten Elektrodenstruktur und der vierten Elektrodenstruktur angeordnet ist; Forming a backside contact structure on or over a second side of the substrate (61, 61A), which is opposite the first side, and/or on or over the gallium nitride layer system (15, 16, 17) at the second side, the backside contact structure extending from the Front-side contact structure is electrically isolated, and wherein the back-side contact structure has a third electrode structure of the first vertical semiconductor component and a fourth electrode structure of the second vertical semiconductor component, the intended separation point being arranged between the third electrode structure and the fourth electrode structure;
Aufbringen eines Carrierträgers (101) auf oder über der Vorderseitenkontaktstruktur mittels eines Fügematerials (112), wobei der Carrierträger (101) derart eingerichtet ist, dass die erste Elektrodenstruktur mit der zweiten Elektrodenstruktur gekoppelt ist; und Bearbeiten, von der zweiten Seite des Substrates (61, 61A), mindestens eines von dem Galliumnitrid-Schichtensystem (15, 16, 17), dem Substrat (61, 61A) und der Rückseitenkontaktstruktur; und Applying a carrier support (101) on or over the front-side contact structure by means of a joining material (112), the carrier support (101) being set up in such a way that the first electrode structure is coupled to the second electrode structure; and processing, from the second side of the substrate (61, 61A), at least one of the gallium nitride layer system (15, 16, 17), the substrate (61, 61A) and the backside contact structure; and
Entfernen eines Teils des Carrierträgers (101) derart, dass die erste Elektrodenstruktur und die zweite Elektrodenstruktur nach dem Entfernen mindestens elektrisch voneinander isoliert sind. Removing part of the carrier support (101) in such a way that the first electrode structure and the second electrode structure are at least electrically insulated from one another after the removal.
6. Verfahren gemäß Anspruch 5, ferner aufweisend: 6. The method of claim 5, further comprising:
Trennen der Soll-Trennstelle, so dass das erste vertikale Halbleiterbauelement und das zweite vertikale Halbleiterbauelement vereinzelt sind. Separating the intended separation point, so that the first vertical semiconductor component and the second vertical semiconductor component are singulated.
7. Verfahren gemäß einem der Ansprüche 1 bis 6, wobei das Bearbeiten zumindest ein Entfernen eines Teils des Substrates (61, 61A) aufweist. 7. The method according to any one of claims 1 to 6, wherein the processing comprises removing at least part of the substrate (61, 61A).
8. Verfahren gemäß Anspruch 7, wobei eine Rückseitenkaverne (51) unterhalb der ersten Elektrodenstruktur und der zweiten Elektrodenstruktur ausgebildet wird. 8. The method according to claim 7, wherein a rear side cavern (51) is formed below the first electrode structure and the second electrode structure.
9. Verfahren gemäß Anspruch 7, wobei das Substrat (61, 61A) vollständig entfernt wird. 9. The method according to claim 7, wherein the substrate (61, 61A) is completely removed.
10. Verfahren gemäß einem der Ansprüche 7 bis 9, wobei die Rückseitenkontaktstruktur (52) nach dem Entfernen des Teils des Substrats (61, 61A) ausgebildet wird. 10. The method according to any one of claims 7 to 9, wherein the backside contact structure (52) is formed after removing the part of the substrate (61, 61A).
11. Verfahren gemäß einem der Ansprüche 1 bis 10, wobei das Galliumnitrid-Schichtensystem (15, 16, 17) mindestens eine Driftlage (17), eine p-dotierte Galliumnitridschicht (15, 16) und eine n-dotierte Galliumnitridschicht (15, 16) aufweist. 11. The method according to any one of claims 1 to 10, wherein the gallium nitride layer system (15, 16, 17) at least one drift layer (17), a p-doped gallium nitride layer (15, 16) and an n-doped gallium nitride layer (15, 16 ) having.
12. Verfahren gemäß einem der Ansprüche 1 bis 11, wobei die Rückseitenkontaktstruktur (52) zumindest in einem Bereich im direkten Kontakt mit dem Galliumnitrid-Schichtensystem (15, 16, 17) ist. 12. The method according to any one of claims 1 to 11, wherein the rear side contact structure (52) is in direct contact with the gallium nitride layer system (15, 16, 17) at least in one region.
13. Verfahren gemäß einem der Ansprüche 1 bis 12, wobei das Fügematerial (112) elektrisch leitfähig ist. 13. The method according to any one of claims 1 to 12, wherein the joining material (112) is electrically conductive.
14. Verfahren gemäß einem der Ansprüche 1 bis 13, wobei der Carrierträger (101) eine Stufenstruktur (111) auf einer Folie (110) aufweist, wobei die Stufenstruktur (111) mittels des Fügematerials (112) mit der ersten Elektrodenstruktur (42) gekoppelt ist und wobei die Stufenstruktur (111) derart eingerichtet ist, dass die zweite Elektrodenstruktur (23) frei ist von einem körperlichen Kontakt mit der Carrierträger (101); und wobei zumindest ein Teil der Folie (110) das entfernte Teil des Carrierträgers (101) ist. 14. The method according to any one of claims 1 to 13, wherein the carrier support (101) has a step structure (111) on a film (110), the step structure (111) being coupled to the first electrode structure (42) by means of the joining material (112). and wherein the step structure (111) is set up such that the second electrode structure (23) is free from physical contact with the carrier support (101); and wherein at least part of the foil (110) is the removed part of the carrier support (101).
15. Verfahren gemäß einem der Ansprüche 1 bis 14, wobei der Carrierträger (101) eine Stufenstruktur (111) auf einer Folie (110) aufweist, wobei die Stufenstruktur (111) mindestens eine erste Stufenstruktur (111) und eine zweite Stufenstruktur (111) aufweist, die mittels der Folie (110) mechanisch miteinander verbunden sind, wobei die erste Stufenstruktur (111) mittels des Fügematerials (112) mit der ersten Elektrodenstruktur gekoppelt wird und die zweite Stufenstruktur (111) mittels des Fügematerials (112) mit der zweiten Elektrodenstruktur gekoppelt wird; und zumindest ein Teil der Folie (110) das entfernte Teil des Carrierträgers (101) ist. 15. The method according to any one of claims 1 to 14, wherein the carrier support (101) has a step structure (111) on a film (110), the step structure (111) having at least a first step structure (111) and a second step structure (111) which are mechanically connected to one another by means of the foil (110), the first step structure (111) being coupled to the first electrode structure by means of the joining material (112) and the second step structure (111) being coupled to the second electrode structure by means of the joining material (112). is paired; and at least part of the foil (110) is the removed part of the carrier support (101).
16. Verfahren gemäß einem der Ansprüche 14 oder 15, wobei die Soll-Trennstelle zwischen benachbarten Stufenstrukturen der Stufenstruktur (111) angeordnet ist. 16. The method according to any one of claims 14 or 15, wherein the desired separation point is arranged between adjacent step structures of the step structure (111).
17. Verfahren gemäß einem der Ansprüche 1 bis 16, wobei die Vorderseitenkontaktstruktur mindestens eine Padmetallisierung und eine Isolationsschicht (31) aufweist, wobei die Padmetallisierung eine erste Höhe aufweist und die Isolationsschicht (31) eine zweite Höhe aufweist, die kleiner ist als die erste Höhe, so dass sich die Padmetallisierung weiter von dem Substrat (61, 61A) erstreckt als die Isolationsschicht (31), und wobei der Carrierträger (101) eine planare oder im Wesentlichen planare Folie (110) ist. 17. The method according to any one of claims 1 to 16, wherein the front-side contact structure has at least one pad metallization and one insulation layer (31), the pad metallization having a first height and the insulation layer (31) having a second height that is smaller than the first height , so that the pad metallization extends further from the substrate (61, 61A) than the insulating layer (31), and wherein the carrier support (101) is a planar or substantially planar foil (110).
18. Verfahren gemäß einem der Ansprüche 1 bis 17, wobei das Substrat (61, 61A) auf einem Trägermaterial (99) aufgebracht wird, bevor der Carrierträger (101) aufgebracht wird; und wobei das Trägermaterial (99) vor dem Bearbeiten des mindestens einem von dem Galliumnitrid- Schichtensystem (15, 16, 17), dem Substrat (61, 61A) und der Rückseitenkontaktstruktur (52) entfernt wird. 18. The method according to any one of claims 1 to 17, wherein the substrate (61, 61A) is applied to a carrier material (99) before the carrier support (101) is applied; and wherein the carrier material (99) is removed before processing the at least one of the gallium nitride layer system (15, 16, 17), the substrate (61, 61A) and the backside contact structure (52).
19 Vertikaler Halbleiterbauelement-Wafer (100) aufweisend: ein Galliumnitrid-Schichtensystem (15, 16, 17) auf oder über einer ersten Seite eines Substrats (61, 61 A); eine Vorderseitenkontaktstruktur (23, 41) auf oder über dem Galliumnitrid- Schichtensystem (15, 16, 17), wobei die Vorderseitenkontaktstruktur (23, 41) mindestens eine erste Elektrodenstruktur (41) und eine zweite Elektrodenstruktur (23) aufweist, die elektrisch voneinander isoliert sind; eine Rückseitenkontaktstruktur (52) auf oder über einer zweiten Seite des Substrates (61, 61A), die der ersten Seite gegenüberliegt, und/oder auf oder über dem Galliumnitrid-Schichtensystem (15, 16, 17) bei der zweiten Seite, wobei die Rückseitenkontaktstruktur (52) von der ersten Elektrodenstruktur (42) und der zweiten Elektrodenstruktur (23) elektrisch isoliert ist; einen Carrierträger (101) auf oder über der Vorderseitenkontaktstruktur (23, 41), der mittels eines Fügematerials (112) mit der Vorderseitenkontaktstruktur (23,A vertical semiconductor device wafer (100) comprising: a gallium nitride layer system (15, 16, 17) on or over a first side of a substrate (61, 61A); a front-side contact structure (23, 41) on or above the gallium nitride layer system (15, 16, 17), the front-side contact structure (23, 41) having at least a first electrode structure (41) and a second electrode structure (23) which electrically insulates from one another are; a backside contact structure (52) on or over a second side of the substrate (61, 61A) opposite the first side and/or on or over the gallium nitride layer system (15, 16, 17) at the second side, the backside contact structure (52) is electrically isolated from the first electrode structure (42) and the second electrode structure (23); a carrier support (101) on or above the front-side contact structure (23, 41), which is connected to the front-side contact structure (23,
41) mechanisch gekoppelt ist, wobei der Carrierträger (101) derart eingerichtet ist, dass die erste Elektrodenstruktur (41) mit der zweiten Elektrodenstruktur (23) gekoppelt ist. 41) is mechanically coupled, the carrier support (101) being set up in such a way that the first electrode structure (41) is coupled to the second electrode structure (23).
20 Vertikaler Halbleiterbauelement-Wafer (100) aufweisend: ein Galliumnitrid-Schichtensystem (15, 16, 17) auf oder über einer ersten Seite eines Substrats (61, 61A); eine Vorderseitenkontaktstruktur (23, 41) auf oder über dem Galliumnitrid- Schichtensystem (15, 16, 17), wobei die Vorderseitenkontaktstruktur (23, 41) mindestens eine Source-Elektrode (41) und eine Gate- Elektrode (23) aufweist, die elektrisch voneinander isoliert sind; eine Rückseitenkontaktstruktur (52) auf oder über einer zweiten Seite des Substrates (61, 61A), die der ersten Seite gegenüberliegt, und/oder auf oder über dem Galliumnitrid-Schichtensystem (15, 16, 17) bei der zweiten Seite, wobei die Rückseitenkontaktstruktur (52) von der Source- Elektrode (42) und der Gate- Elektrode (23) elektrisch isoliert ist; wobei die Source-Elektrode (42) eine erste Höhe aufweist und die Gate- Elektrode (23) eine zweite Höhe aufweist, die unterschiedlich zu der ersten Höhe ist; und eine Ausgleichsstruktur (111), die mittels eines Fügematerials (112) auf der Source- Elektrode (42) und auf der Gate- Elektrode (23) angeordnet ist, wobei die Ausgleichsstruktur (111) derart eingerichtet ist, dass die Source-Elektrode (42) mit der Ausgleichsstruktur (111) und die Gate- Elektrode (23) mit der Ausgleichsstruktur (112) eine gleiche oder im Wesentlichen gleiche dritte Höhe aufweisen. A vertical semiconductor device wafer (100) comprising: a gallium nitride layer system (15, 16, 17) on or over a first side of a substrate (61, 61A); a front-side contact structure (23, 41) on or above the gallium nitride layer system (15, 16, 17), wherein the front-side contact structure (23, 41) has at least one source electrode (41) and one gate electrode (23) which is electrically are isolated from each other; a backside contact structure (52) on or over a second side of the substrate (61, 61A) opposite the first side, and/or on or over the gallium nitride layer system (15, 16, 17) at the second side, wherein the Backside contact structure (52) is electrically isolated from the source electrode (42) and the gate electrode (23); the source electrode (42) having a first height and the gate electrode (23) having a second height different from the first height; and a compensation structure (111) which is arranged on the source electrode (42) and on the gate electrode (23) by means of a joining material (112), the compensation structure (111) being set up in such a way that the source electrode ( 42) with the compensation structure (111) and the gate electrode (23) with the compensation structure (112) have the same or substantially the same third height.
PCT/EP2022/064169 2021-05-27 2022-05-25 Process for producing a vertical semiconductor component WO2022248537A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102021205375.0A DE102021205375A1 (en) 2021-05-27 2021-05-27 METHOD OF MAKING A VERTICAL SEMICONDUCTOR DEVICE
DE102021205375.0 2021-05-27

Publications (2)

Publication Number Publication Date
WO2022248537A2 true WO2022248537A2 (en) 2022-12-01
WO2022248537A3 WO2022248537A3 (en) 2023-01-19

Family

ID=82196392

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2022/064169 WO2022248537A2 (en) 2021-05-27 2022-05-25 Process for producing a vertical semiconductor component

Country Status (2)

Country Link
DE (1) DE102021205375A1 (en)
WO (1) WO2022248537A2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8981432B2 (en) * 2012-08-10 2015-03-17 Avogy, Inc. Method and system for gallium nitride electronic devices using engineered substrates
DE102015112649B4 (en) 2015-07-31 2021-02-04 Infineon Technologies Ag METHOD OF FORMING A SEMICONDUCTOR COMPONENT AND A SEMICONDUCTOR COMPONENT
DE102018116051A1 (en) * 2018-07-03 2020-01-09 Infineon Technologies Ag SEMICONDUCTOR DEVICE AND METHOD FOR PRODUCING A SEMICONDUCTOR DEVICE
DE102018132447B4 (en) 2018-12-17 2022-10-13 Infineon Technologies Ag Semiconductor device and method of manufacturing a semiconductor device

Also Published As

Publication number Publication date
WO2022248537A3 (en) 2023-01-19
DE102021205375A1 (en) 2022-12-01

Similar Documents

Publication Publication Date Title
DE102014111252B4 (en) Electronic component and method
DE102013112012B4 (en) Semiconductor devices and method of manufacturing a semiconductor device
DE102012110133B4 (en) A semiconductor device with a via and method of fabrication therefor
DE102007007142B4 (en) Benefits, semiconductor device and method for their production
DE102015115982A1 (en) Electronic component
DE102015115999B4 (en) Electronic component
DE102012103369B4 (en) A method of forming a semiconductor device and a semiconductor device
DE102013216709B4 (en) SEMICONDUCTOR ARRANGEMENT, METHOD FOR MANUFACTURING A NUMBER OF CHIP ASSEMBLIES AND METHOD FOR MANUFACTURING A SEMICONDUCTOR ARRANGEMENT
DE102014116082A1 (en) Semiconductor device with a voltage-compensated chip electrode
DE102015219183B4 (en) Power semiconductor device, semiconductor module, method for processing a power semiconductor device
DE102013104952B4 (en) Semiconductor packages and methods for their formation
DE102016113129B3 (en) A semiconductor device including a superjunction structure in a SiC semiconductor body
DE102009031378A1 (en) power transistor
DE102014107560A1 (en) Semiconductor device and method
DE102016105424A1 (en) A semiconductor device with a planar gate and trench field electrode structure
DE102013110541A1 (en) INTEGRATED CIRCUIT, CHIP CASING AND METHOD FOR PRODUCING AN INTEGRATED CIRCUIT
DE102012102124B4 (en) Power semiconductor device
WO2022248537A2 (en) Process for producing a vertical semiconductor component
DE102017123285A1 (en) High voltage termination structure of a power semiconductor device
DE102015111838B4 (en) Semiconductor device and manufacturing method therefor
DE102021205473A1 (en) VERTICAL SEMICONDUCTOR DEVICE AND METHOD OF MAKING THE SAME
WO2022223214A1 (en) Gan semiconductor device on a silicon substrate with a back-side trench and method for producing same
DE102020210937A1 (en) Semiconductor device and method of manufacturing a semiconductor device
DE102015111479A1 (en) SEMICONDUCTOR DEVICE WITH A CLAMP STRUCTURE
DE102018132237A1 (en) Power semiconductor device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22733304

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22733304

Country of ref document: EP

Kind code of ref document: A2