WO2022247780A1 - 处理方法、装置、设备及可读存储介质 - Google Patents

处理方法、装置、设备及可读存储介质 Download PDF

Info

Publication number
WO2022247780A1
WO2022247780A1 PCT/CN2022/094447 CN2022094447W WO2022247780A1 WO 2022247780 A1 WO2022247780 A1 WO 2022247780A1 CN 2022094447 W CN2022094447 W CN 2022094447W WO 2022247780 A1 WO2022247780 A1 WO 2022247780A1
Authority
WO
WIPO (PCT)
Prior art keywords
relay unit
downlink
uplink
signal
mobile terminal
Prior art date
Application number
PCT/CN2022/094447
Other languages
English (en)
French (fr)
Inventor
王欢
刘进华
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2022247780A1 publication Critical patent/WO2022247780A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/155Ground-based stations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/004Synchronisation arrangements compensating for timing error of reception due to propagation delay
    • H04W56/0045Synchronisation arrangements compensating for timing error of reception due to propagation delay compensating for timing error by altering transmission time

Definitions

  • the present application belongs to the technical field of communication, and specifically relates to a processing method, device, equipment and readable storage medium.
  • the signal amplifier can amplify the uplink and/or downlink signals, but because the amplifier is turned on, off, or uplink and downlink amplifying conversion, the signal amplification performance will lose its guarantee during the process of turning on, off or uplink and uplink amplifying conversion, how to reduce the performance of the signal amplifier Losses are the burning issue.
  • Embodiments of the present application provide a processing method, device, device, and readable storage medium, which can solve the problem of how to reduce performance loss of a signal amplifier.
  • a processing method including:
  • the signal amplifier acquires the converted conversion moment and/or the converted protection time, and the signal amplifier includes: a relay unit, or a relay unit and a mobile terminal;
  • the conversion includes one or more of the following:
  • the uplink amplification of the relay unit is received by the mobile terminal;
  • the downlink amplification of the relay unit is received by the mobile terminal;
  • the relay unit sends a signal to the terminal, and the relay unit receives the signal of the terminal.
  • a processing method including:
  • the control node obtains the protection time of the conversion of the signal amplifier, and the signal amplifier includes: a relay unit, or a relay unit and a mobile terminal;
  • the conversion includes one or more of the following:
  • the uplink amplification of the relay unit is received by the mobile terminal;
  • the downlink amplification of the relay unit is received by the mobile terminal;
  • the relay unit sends a signal to the terminal, and the relay unit receives the signal of the terminal.
  • a processing device comprising:
  • the first acquiring module is used to acquire the converted conversion moment and/or the converted protection time, and the signal amplifier includes: a relay unit, or a relay unit and a mobile terminal;
  • the conversion includes one or more of the following:
  • the uplink amplification of the relay unit is received by the mobile terminal;
  • the downlink amplification of the relay unit is received by the mobile terminal;
  • the relay unit sends a signal to the terminal, and the relay unit receives the signal of the terminal.
  • a processing device comprising:
  • the third obtaining module is used to obtain the protection time of the conversion of the signal amplifier, and the signal amplifier includes: a relay unit, or a relay unit and a mobile terminal;
  • the conversion includes one or more of the following:
  • the uplink amplification of the relay unit is received by the mobile terminal;
  • the downlink amplification of the relay unit is received by the mobile terminal;
  • the relay unit sends a signal to the terminal, and the relay unit receives the signal of the terminal.
  • a signal amplifier including: a processor, a memory, and a program stored in the memory and operable on the processor, and when the program is executed by the processor, the first aspect is implemented. The steps of the method.
  • a sixth aspect provides a signal amplifier, including a processor and a communication interface, wherein the processor is configured to implement the steps of the method described in the first aspect during execution.
  • a control node including: a processor, a memory, and a program stored in the memory and operable on the processor, and when the program is executed by the processor, the second aspect is implemented. The steps of the method.
  • a control node including a processor and a communication interface, wherein the processor is configured to implement the steps of the method described in the second aspect during execution.
  • a readable storage medium is provided, and a program or an instruction is stored on the readable storage medium, and when the program or instruction is executed by a processor, the steps of the method according to the first aspect or the second aspect are implemented.
  • a computer program/program product is provided, the computer program/program product is stored in a non-volatile storage medium, and the computer program/program product is executed by at least one processor to implement the first aspect Or the steps of the processing method described in the second aspect.
  • a chip in an eleventh aspect, includes a processor and a communication interface, the communication interface is coupled to the processor, and the processor is used to run programs or instructions to implement the first aspect or the second The method of processing described in the aspect.
  • a device configured to perform the steps of the method described in the first aspect or the second aspect.
  • the signal amplifier can obtain the conversion time and/or the protection time of the conversion, reduce the performance loss of the signal amplifier, reduce or avoid the possibility of uplink and downlink collisions, and further, the signal amplifier can report to the control node
  • the protection time-related information of the conversion of the signal amplifier is used to assist the control node scheduling and ensure the reliability of the control node scheduling.
  • Fig. 1 is the schematic diagram that comprises the network structure of signal amplifier
  • Fig. 2 is a schematic diagram of downlink to uplink switching of a signal amplifier
  • Fig. 3a is one of the schematic diagrams of the time delay of the signal amplification processing of the signal amplifier
  • Figure 3b is the second schematic diagram of signal amplifier signal amplification processing time delay
  • Fig. 4 is a schematic diagram of timing advance
  • FIG. 5 is a schematic diagram of a wireless communication system in an embodiment of the present application.
  • Fig. 6 is one of the flowcharts of the processing method provided by the embodiment of the present application.
  • Fig. 7 is the second flowchart of the processing method provided by the embodiment of the present application.
  • Fig. 8a is one of the schematic diagrams of the conversion from downlink amplification to uplink amplification provided by the embodiment of the present application;
  • Fig. 8b is the second schematic diagram of the conversion from downlink amplification to uplink amplification provided by the embodiment of the present application;
  • FIG. 9 is a schematic diagram of resource overlap provided by an embodiment of the present application.
  • Fig. 10 is a schematic diagram of the scheduling provided by the embodiment of the present application.
  • FIG 11 is one of the schematic diagrams of the processing device provided by the embodiment of the present application.
  • Figure 12 is the second schematic diagram of the processing device provided by the embodiment of the present application.
  • Fig. 13 is a schematic diagram of a signal amplifier provided by an embodiment of the present application.
  • Fig. 14 is a schematic diagram of a control node provided by an embodiment of the present application.
  • first, second and the like in the specification and claims of the present application are used to distinguish similar objects, and are not used to describe a specified order or sequence. It is to be understood that the terms so used are interchangeable under appropriate circumstances such that the embodiments of the application are capable of operation in sequences other than those illustrated or described herein and that "first" and “second” distinguish objects. It is usually one category, and the number of objects is not limited. For example, there may be one or more first objects.
  • “and” in the specification and claims indicates at least one of the connected objects, and the character “/" generally indicates that the related objects are an "or” relationship.
  • LTE Long Term Evolution
  • LTE-Advanced LTE-Advanced
  • LTE-A Long Term Evolution-Advanced
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single-carrier Frequency-Division Multiple Access
  • SC-FDMA Single-carrier Frequency-Division Multiple Access
  • system and “network” in the embodiments of the present application are often used interchangeably, and the described technologies can be used for the above-mentioned systems and radio technologies as well as other systems and radio technologies.
  • NR New Radio
  • the following description describes the New Radio (NR) system for illustrative purposes, and uses NR terminology in most of the following descriptions, but these techniques can also be applied to applications other than NR system applications, such as the 6th generation (6 th Generation, 6G) communication system.
  • 6G 6th Generation
  • the signal amplifier is used to expand the coverage of the cell, including receiving and amplifying the downlink signal from the upstream base station, so that the signal strength of the arriving terminal (such as a user terminal (User Equipment, UE)) increases; amplifying the uplink signal from the UE, so that the signal from the UE The strength of the uplink signal to the upstream base station increases.
  • the signal strength of the arriving terminal such as a user terminal (User Equipment, UE)
  • UE User Equipment
  • the signal amplifier/intelligent signal amplification can receive the control from the upstream base station, that is, the base station can control the transmission parameters of the intelligent amplifier, such as the switch and transmission beam of the intelligent amplifier, so as to improve the working efficiency of the amplifier and reduce interference.
  • the intermediate network node is a signal amplifier, which includes a terminal module (or called a mobile terminal (Mobile Termination, MT)) and a repeater unit (Repeater Unit , RU), and the signal amplifier does not include only one module in MT or RU.
  • the MT can establish a connection with the upstream base station, and the base station can exchange control signaling with the signal amplifier through the MT, and can instruct the MT/RU of the signal amplifier to transmit/receive related parameters.
  • the sending and receiving switching of the device cannot be completed instantaneously, and it takes processing time.
  • the signal amplifier switching from transmitting and receiving to amplifying uplink signals (or vice versa) will be involved.
  • the switching time may belong to the downlink part/uplink part, or part of the switching time is in the uplink part and part of the time is in the downlink part.
  • the signal amplification output power of the signal amplifier will drop significantly when switching from downlink to uplink. During this period of power drop, the signal amplifier cannot perform normal signal amplification.
  • the signal amplifier cannot be completed instantaneously from receiving the input signal to sending the output signal, it needs processing time.
  • a relay unit processing delay (RU processing delay) between the input signal and output signal of the amplifier, which is the amplification processing delay of the amplifier.
  • the sending timing of the signal needs to be advanced by a period of time (TA time) relative to its receiving timing, so that the sending signal is aligned with the uplink and downlink timing of the base station after arriving at the base station side after the air interface delay.
  • TA time a period of time
  • the wireless communication system includes a terminal 51 , a signal amplifier 52 and a network side device 53 .
  • the terminal 51 can also be called a terminal device or a user terminal (User Equipment, UE), and the terminal 51 can be a mobile phone, a tablet computer (Tablet Computer), a laptop computer (Laptop Computer) or a notebook computer, a personal digital assistant (Personal Digital Assistant, PDA), handheld computer, netbook, ultra-mobile personal computer (ultra-mobile personal computer, UMPC), mobile Internet device (Mobile Internet Device, MID), wearable device (Wearable Device) or vehicle-mounted device ( VUE), Pedestrian Terminal (PUE) and other terminal-side devices, wearable devices include: smart watches, bracelets, earphones, glasses, etc. It should be noted that, the embodiment of the present application does not limit the specific type of the terminal 51 .
  • the network side device 53 may be a base station or a core network, where a base station may be called a control node, a node B, an evolved node B, an access point, a base transceiver station (Base TransceiverStation, BTS), a radio base station, a radio transceiver, Basic Service Set (BSS), Extended Service Set (ESS), Node B, Evolved Node B (gNB), Home Node B, Home Evolved Node B, Wireless Local Area Networks (WLAN) Access point, Wireless Fidelity (WiFi) node, Transmitting Receiving Point (TRP), wireless access network node, or some other appropriate term in the field, so long as the same technical effect is achieved,
  • the base station is not limited to the specified technical vocabulary. It should be noted that in the embodiment of the present application, only the base station in the New Radio (NR) system is taken as an example, but the specific type of the base station is not limited.
  • an embodiment of the present application provides a processing method, and specific steps include: step 601 .
  • Step 601 The signal amplifier acquires the converted conversion moment and/or the converted protection time, and the signal amplifier includes: a relay unit, or a relay unit and a mobile terminal;
  • the conversion includes one or more of the following:
  • the signal is sent from the mobile terminal to the mobile terminal to receive the signal
  • the relay unit sends a signal to the control node and the relay unit receives the signal of the control node
  • the relay unit receives the signal of the terminal to the relay unit and sends the signal to the terminal;
  • the relay unit sends a signal to the terminal, and the relay unit receives a signal from the terminal.
  • the conversion time and/or the conversion protection time are stipulated by a protocol, or are configured by a control node, or are independently determined by the signal amplifier.
  • the control node includes a base station, but of course it is not limited thereto.
  • the method before the signal amplifier obtains the transition moment of transition, the method further includes:
  • the signal amplifier acquires a reference time
  • the reference time is Time Division Duplexing (Time Division Duplexing, TDD) indicating the switching time from downlink to uplink, or indicating the switching time from uplink to downlink for TDD;
  • TDD Time Division Duplexing
  • the reference time is the switching time from TDD indicating downlink to uplink, or the switching time from TDD indicating uplink to downlink;
  • the reference point time is the switching time from TDD indicating downlink to uplink, or the switching time from TDD indicating uplink to downlink;
  • the reference point time is the switching time from TDD indication downlink to uplink, or is the switching time from TDD indication uplink to downlink.
  • TDD indication herein includes TDD configuration and/or TDD dynamic indication.
  • the reference time is stipulated by a protocol, or is configured by a control node, or is independently determined by the signal amplifier.
  • the x time units are located in the downlink resources before the reference time, or the x time units are located in Uplink resources after the reference time.
  • the x time units are located in the uplink resources before the reference time, or the x time units are located in Downlink resources after the reference time.
  • the x time units are stipulated by a protocol, or are configured by a control node, or are independently determined by the signal amplifier.
  • the method also includes:
  • the signal amplifier sends first information to the control node, the first information is used by the control node to determine a guard time for switching of the signal amplifier;
  • the first information includes one or more of the following:
  • the method also includes:
  • the signal amplifier sends a guard time for transitions of the signal amplifier to the control node.
  • the signal amplifier can obtain the conversion time and/or the protection time of the conversion, reduce the performance loss of the signal amplifier, reduce or avoid the possibility of uplink and downlink collisions, and further, the signal amplifier can report to the control node
  • the protection time-related information of the conversion of the signal amplifier is used to assist the control node scheduling and ensure the reliability of the control node scheduling.
  • step 701 the embodiment of the present application provides a processing method, and the specific steps include: step 701 .
  • Step 701 The control node obtains the protection time of the conversion of the signal amplifier, and the signal amplifier includes: a relay unit, or a relay unit and a mobile terminal;
  • the conversion includes one or more of the following:
  • the signal is sent from the mobile terminal to the mobile terminal to receive the signal
  • the relay unit sends a signal to the control node and the relay unit receives the signal of the control node
  • the relay unit receives the signal of the terminal to the relay unit and sends the signal to the terminal;
  • the relay unit sends a signal to the terminal, and the relay unit receives a signal from the terminal.
  • control node includes a base station.
  • the switching time and/or the switching protection time are stipulated by a protocol, or determined by the control node according to the information reported by the signal amplifier.
  • the step of the control node obtaining the protection time of the conversion of the signal amplifier includes:
  • control node receives first information from the signal amplifier
  • the control node determines a guard time for switching of the signal amplifier according to the first information
  • the first information includes one or more of the following:
  • the step of the control node obtaining the protection time of the conversion of the signal amplifier includes:
  • the control node acquires the switching protection time of the signal amplifier reported by the signal amplifier.
  • the method also includes:
  • the control node acquires the position where the uplink resource overlaps the downlink resource when the relay unit amplifies downlink to the uplink amplification of the relay unit, or when the relay unit amplifies uplink to the relay unit downlink amplifies.
  • the method also includes:
  • the control node gives up downlink scheduling, or gives up uplink scheduling, or gives up part of uplink and part of downlink scheduling at the position where uplink resource and downlink resource overlap.
  • the signal amplifier can obtain the conversion time and/or the protection time of the conversion, reduce the performance loss of the signal amplifier, reduce or avoid the possibility of uplink and downlink collisions, and further, the signal amplifier can report to the control node
  • the protection time-related information of the conversion of the signal amplifier is used to assist the control node scheduling and ensure the reliability of the control node scheduling.
  • control node is used as a base station for example. .
  • Embodiment 1 Conversion from Downlink Amplification to Uplink Amplification
  • the RU determines the switching time (for example, the reference point is the switching time from TDD indication downlink to uplink).
  • the reference time is the switching time from TDD indication downlink (Downlink, DL) to uplink (Uplink, UL).
  • the reference time is the switching time from DL to UL indicated by TDD.
  • the reference point time TDD indicates the switching time from DL to UL.
  • the reference point time TDD indicates the switching time from DL to UL.
  • the reference time may be stipulated by the protocol, or indicated by the base station, or determined by the RU autonomously (can be reported to the base station).
  • the conversion time from downlink amplification to uplink amplification is x time units away from the reference time, and x is greater than or equal to zero.
  • x time units may be located in downlink resources before the reference time.
  • x time units may be located in uplink resources after the reference time.
  • the x time units are stipulated by the protocol, or indicated by the base station, or independently determined by the RU (can be reported to the base station).
  • the switching moment is the moment when switching from downlink to uplink starts.
  • the base station obtains the resource overlap time caused by the conversion from downlink amplification to uplink amplification (or obtains the guard interval of the conversion) to avoid uplink and downlink scheduling conflicts (for example, the base station schedules downlink in the overlapping part, and the amplification direction of RU is uplink amplification), see Figure 9.
  • the base station determines the overlap time/guard interval length based on at least one or more of the following information:
  • the RU can report the amplified processing delay, or set the limit value of the amplified processing delay.
  • the RU may report the transceiving transition time, or set a limit value for the transceiving transition time.
  • the RU may report the TA information, or set the limit value of the TA information, or the base station measures the TA value of the uplink transmission of the RU relative to the downlink reception, or the base station predicts the TA value according to the TA value of the MT unit of the amplifier. Estimate the TA value of the uplink transmission of the RU relative to the downlink reception.
  • the RU reports the overlapping time/guard interval length, for example, y time units.
  • the time unit may be a symbol (symbol), a time slot (slot), a sub-slot (sub-slots) or a millisecond (millisecond).
  • the base station obtains the location where resources overlap when switching from downlink amplification to uplink amplification, so that the base station can give up DL scheduling at the location of resource overlap, or give up UL scheduling at the location of resource overlap, or give up part of UL and part of DL scheduling at the location of resource overlap, see Figure 10.
  • the RU reports the position where the resource overlaps.
  • places where resources overlap include one of the following:
  • the resource overlapping position is agreed by the base station according to the protocol, or determined by the base station based on the information reported by the RU.
  • the reference time determined by the bit of resource overlap is the aforementioned reference time/transition time.
  • Embodiment 2 Conversion from uplink amplification to downlink amplification.
  • the RU determines the switching time (for example, the reference point is the switching time from uplink to downlink in the TDD indication).
  • the reference time is the switching time from UL to DL indicated by TDD.
  • the reference time is the switching time from UL to DL indicated by TDD.
  • the reference point time TDD indicates the switching time from UL to DL.
  • the reference point time TDD indicates the switching time from UL to DL.
  • the reference time may be stipulated by the protocol, or indicated by the base station, or determined by the RU autonomously (can be reported to the base station).
  • the conversion time from uplink amplification to downlink amplification is x time units away from the reference time, and x is greater than or equal to zero.
  • x time units may be located in downlink resources before the reference time.
  • x time units may be located in uplink resources after the reference time.
  • the x time units are stipulated by the protocol, or indicated by the base station, or independently determined by the RU (can be reported to the base station).
  • the switching moment is the moment when switching from uplink to downlink starts.
  • the base station obtains the resource overlap time caused by the conversion from uplink amplification to downlink amplification (or in other words, obtains the guard interval of the conversion) to avoid uplink and downlink scheduling conflicts (for example, the base station schedules downlink in the overlapping part, and the amplification direction of RU is uplink amplification).
  • the base station determines the overlap time/guard interval length based on at least one or more of the following information:
  • the RU may report the amplifying processing delay, or set a limit value of the amplifying processing delay.
  • the RU may report the transceiving transition time, or set a limit value for the transceiving transition time.
  • the RU may report the TA information, or set the limit value of the TA information, or the base station measures the TA value of the uplink transmission of the RU relative to the downlink reception, or the base station predicts the TA value according to the TA value of the MT unit of the amplifier. Estimate the TA value of the uplink transmission of the RU relative to the downlink reception.
  • the RU reports the overlapping time/guard interval length, for example, y time units.
  • the time unit may be a symbol (symbol), a time slot (slot), a sub-slot (sub-slots) or a millisecond (millisecond).
  • the base station obtains the resource overlapping position when the downlink amplification is converted to the uplink amplification, so that the base station abandons DL scheduling at the resource overlapping position, or abandons UL scheduling at the resource overlapping position, or abandons part of UL and part of DL scheduling at the resource overlapping position.
  • the RU reports the position where the resource overlaps.
  • places where resources overlap include one of the following:
  • the resource overlapping position is agreed by the base station according to the protocol, or determined by the base station based on the information reported by the RU.
  • the reference time determined by the bit of resource overlap is the aforementioned reference time/transition time.
  • an embodiment of the present application provides a processing device, which is applied to a signal amplifier, and the device 1100 includes:
  • the first obtaining module 1101 is configured to obtain the converted conversion moment and/or the converted protection time, and the signal amplifier includes: a relay unit, or a relay unit and a mobile terminal;
  • the conversion includes one or more of the following:
  • the signal is sent from the mobile terminal to the mobile terminal to receive the signal
  • the relay unit sends a signal to the control node and the relay unit receives the signal of the control node
  • the relay unit receives the signal of the terminal to the relay unit and sends the signal to the terminal;
  • the relay unit sends a signal to the terminal, and the relay unit receives a signal from the terminal.
  • the conversion time and/or the conversion protection time are stipulated by a protocol, or are configured by a control node, or are independently determined by the signal amplifier.
  • the device 1100 further includes:
  • the second obtaining module is used to obtain the reference moment
  • the reference time is the switching time from TDD indicating downlink to uplink, or the switching time from TDD indicating uplink to downlink;
  • the reference time is the switching time from TDD indicating downlink to uplink, or the switching time from TDD indicating uplink to downlink;
  • the reference point time is the switching time from TDD indicating downlink to uplink, or the switching time from TDD indicating uplink to downlink;
  • the reference point time is the switching time from TDD indication downlink to uplink, or is the switching time from TDD indication uplink to downlink.
  • the reference time is stipulated by a protocol, or is configured by a control node, or is independently determined by the signal amplifier.
  • the x time units are located in the downlink resources before the reference time, or the x time units are located in Uplink resources after the reference time.
  • the x time units are located in the uplink resources before the reference time, or the x time units are located in Downlink resources after the reference time.
  • the x time units are stipulated by a protocol, or are configured by a control node, or are independently determined by the signal amplifier.
  • the device 1100 further includes:
  • a first sending module configured to send first information to the control node, where the first information is used by the control node to determine a guard time for switching of the signal amplifier;
  • the first information includes one or more of the following:
  • the timing of the uplink transmission of the relay unit is advanced relative to the timing of downlink reception.
  • the device 1100 further includes:
  • the second sending module is used for the signal amplifier to send the switching guard time of the signal amplifier to the control node.
  • the device provided by the embodiment of the present application can realize each process realized by the method embodiment shown in FIG. 6 and achieve the same technical effect. To avoid repetition, details are not repeated here.
  • an embodiment of the present application provides a processing device, which is applied to a control node.
  • the device 1200 includes:
  • the third obtaining module 1201 is configured to obtain the protection time of the conversion of the signal amplifier, and the signal amplifier includes: a relay unit, or a relay unit and a mobile terminal;
  • the conversion includes one or more of the following:
  • the signal is sent from the mobile terminal to the mobile terminal to receive the signal
  • the relay unit sends a signal to the control node and the relay unit receives the signal of the control node
  • the relay unit receives the signal of the terminal to the relay unit and sends the signal to the terminal;
  • the relay unit sends a signal to the terminal, and the relay unit receives a signal from the terminal.
  • the switching time and/or the switching protection time are stipulated by a protocol, or determined by the control node according to the information reported by the signal amplifier.
  • the third acquiring module 1201 includes:
  • a receiving unit configured to receive first information from the signal amplifier
  • a determining unit configured to determine a guard time for switching of the signal amplifier according to the first information
  • the first information includes one or more of the following:
  • the third acquiring module 1201 is further configured to: acquire the guard time of the transition of the signal amplifier reported by the signal amplifier.
  • the device 1200 further includes:
  • the fourth acquisition module is configured to acquire the overlapping position of the uplink resource and the downlink resource when the relay unit amplifies downlink to the uplink amplification of the relay unit, or when the relay unit amplifies uplink to the relay unit downlink amplifies.
  • the device provided by the embodiment of the present application can realize each process realized by the method embodiment shown in Fig. 6, and achieve the same technical effect. To avoid repetition, details are not repeated here.
  • An embodiment of the present application further provides a signal amplifier, including a processor and a communication interface, and the processor is configured to obtain a converted conversion time and/or a converted guard time.
  • the network-side device embodiment corresponds to the above-mentioned network-side device method embodiment, and each implementation process and implementation mode of the above-mentioned method embodiment can be applied to this network-side device embodiment, and can achieve the same technical effect.
  • the embodiment of the present application also provides a signal amplifier.
  • the signal amplifier 1300 includes: a processor 1301, a memory 1302, and a network interface 1303, such as a common public radio interface (CPRI for short).
  • CPRI common public radio interface
  • instructions or programs stored in the memory 1302 and executable on the processor 1301 can be understood that the processor 1301 invokes instructions or programs in the memory 1302 to execute the methods executed by the modules shown in FIG. 11 and achieve the same technical effect. To avoid repetition, details are not repeated here.
  • the embodiment of the present application also provides a control node, including a processor and a communication interface, and the processor is used to obtain the guard time of the conversion of the signal amplifier.
  • the network-side device embodiment corresponds to the above-mentioned network-side device method embodiment, and each implementation process and implementation mode of the above-mentioned method embodiment can be applied to this network-side device embodiment, and can achieve the same technical effect.
  • the embodiment of the present application also provides a control node.
  • the network side device 1400 includes: an antenna 1401 , a radio frequency device 1402 , and a baseband device 1403 .
  • the antenna 1401 is connected to the radio frequency device 1402 .
  • the radio frequency device 1402 receives information through the antenna 1401, and sends the received information to the baseband device 1403 for processing.
  • the baseband device 1403 processes the information to be sent and sends it to the radio frequency device 1402
  • the radio frequency device 1402 processes the received information and sends it out through the antenna 1401 .
  • the foregoing frequency band processing device may be located in the baseband device 1403 , and the method performed by the network side device in the above embodiments may be implemented in the baseband device 1403 , and the baseband device 1403 includes a processor 1204 and a memory 1405 .
  • the baseband device 1403 may include, for example, at least one baseband board, and the baseband board is provided with a plurality of chips, as shown in FIG.
  • the baseband device 1403 may also include a network interface 1406, configured to exchange information with the radio frequency device 1402, such as a common public radio interface (common public radio interface, CPRI for short).
  • a network interface 1406 configured to exchange information with the radio frequency device 1402, such as a common public radio interface (common public radio interface, CPRI for short).
  • CPRI common public radio interface
  • the network side device in this embodiment of the present application further includes: instructions or programs stored in the memory 1405 and executable on the processor 1404 .
  • the processor 1404 invokes instructions or programs in the memory 1405 to execute the methods executed by the modules shown in FIG. 14 and achieve the same technical effect. To avoid repetition, details are not repeated here.
  • the embodiment of the present application also provides a computer program/program product, the computer program/program product is stored in a non-volatile storage medium, and the computer program/program product is executed by at least one processor to realize the Or the steps of the processing method described in FIG. 6 .
  • the embodiment of the present application also provides a readable storage medium, on which a program or instruction is stored, and when the program or instruction is executed by the processor, the various processes of the above-mentioned method embodiment shown in FIG. 5 or FIG. 6 are implemented. , and can achieve the same technical effect, in order to avoid repetition, it will not be repeated here.
  • the processor is the processor in the terminal described in the foregoing embodiments.
  • the readable storage medium includes computer readable storage medium, such as computer read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk, etc.
  • the embodiment of the present application also provides a chip, the chip includes a processor and a communication interface, the communication interface is coupled to the processor, and the processor is used to run programs or instructions to implement the above-mentioned FIG. 5 or FIG. 6.
  • the chip includes a processor and a communication interface
  • the communication interface is coupled to the processor
  • the processor is used to run programs or instructions to implement the above-mentioned FIG. 5 or FIG. 6.
  • the chip mentioned in the embodiment of the present application may also be called a system-on-chip, a system-on-chip, a system-on-a-chip, or a system-on-a-chip.
  • An embodiment of the present application further provides a computer program product, the computer program product is stored in a non-transitory storage medium, and the computer program product is executed by at least one processor to implement the various processes of the above method embodiments, and The same technical effect can be achieved, so in order to avoid repetition, details will not be repeated here.
  • the embodiment of the present application also provides a device configured to perform the processes in the above method embodiments, and achieve the same technical effect. To avoid repetition, details are not repeated here.
  • the term “comprising”, “comprising” or any other variation thereof is intended to cover a non-exclusive inclusion such that a process, method, article or apparatus comprising a set of elements includes not only those elements, It also includes other elements not expressly listed, or elements inherent in the process, method, article, or device. Without further limitations, an element defined by the phrase “comprising a " does not preclude the presence of additional identical elements in the process, method, article, or apparatus comprising that element.
  • the scope of the methods and devices in the embodiments of the present application is not limited to performing functions in the order shown or discussed, and may also include performing functions in a substantially simultaneous manner or in reverse order according to the functions involved. Functions are performed, for example, the described methods may be performed in an order different from that described, and various steps may also be added, omitted, or combined. Additionally, features described with reference to certain examples may be combined in other examples.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种处理方法、装置、设备及可读存储介质,该处理方法包括:信号放大器获取转换的转换时刻和/或转换的保护时间。

Description

处理方法、装置、设备及可读存储介质
相关申请的交叉引用
本申请主张在2021年05月28日在中国提交的中国专利申请No.202110592061.1的优先权,其全部内容通过引用包含于此。
技术领域
本申请属于通信技术领域,具体涉及一种处理方法、装置、设备及可读存储介质。
背景技术
信号放大器可以对上行和/或下行进行信号放大处理,但由于放大器开启、关闭或上下行放大转换,信号放大性能会在开启、关闭或上下行放大转换的过程中失去保证,如何减少信号放大器性能损失是亟待解决的问题。
发明内容
本申请实施例提供一种处理方法、装置、设备及可读存储介质,能够解决如何减少信号放大器性能损失的问题。
第一方面,提供一种处理方法,包括:
信号放大器获取转换的转换时刻和/或转换的保护时间,所述信号放大器包括:中继单元,或者中继单元和移动终端;
其中,所述转换包括以下一项或多项:
由所述中继单元下行放大到所述中继单元上行放大;
由所述中继单元上行放大到所述中继单元下行放大;
由所述中继单元关闭或非激活状态到所述中继单元上行放大;
由所述中继单元关闭或非激活状态到所述中继单元下行放大;
由所述移动终端发送到所述中继单元上行放大;
由所述移动终端接收到所述中继单元上行放大;
由所述移动终端发送到所述中继单元下行放大;
由所述移动终端接收到所述中继单元下行放大;
由所述中继单元上行放大到所述移动终端发送;
由所述中继单元上行放大到所述移动终端接收;
由所述中继单元下行放大到所述移动终端发送;
由所述中继单元下行放大到所述移动终端接收;
由所述移动终端接收信号到所述移动终端发送信号;
由所述移动终端发送信号到所述移动终端接收信号;
由所述中继单元接收控制节点的信号到所述中继单元向所述控制节点发送信号;
由所述中继单元向控制节点发送信号到所述中继单元接收所述控制节点的信号
由所述中继单元接收终端的信号到所述中继单元向所述终端发送信号;
由所述中继单元向终端发送信号到所述中继单元接收所述终端的信号。
第二方面,提供一种处理方法,包括:
控制节点获取信号放大器的转换的保护时间,所述信号放大器包括:中继单元,或者中继单元和移动终端;
其中,所述转换包括以下一项或多项:
由所述中继单元下行放大到所述中继单元上行放大;
由所述中继单元上行放大到所述中继单元下行放大;
由所述中继单元关闭或非激活状态到所述中继单元上行放大;
由所述中继单元关闭或非激活状态到所述中继单元下行放大;
由所述移动终端发送到所述中继单元上行放大;
由所述移动终端接收到所述中继单元上行放大;
由所述移动终端发送到所述中继单元下行放大;
由所述移动终端接收到所述中继单元下行放大;
由所述中继单元上行放大到所述移动终端发送;
由所述中继单元上行放大到所述移动终端接收;
由所述中继单元下行放大到所述移动终端发送;
由所述中继单元下行放大到所述移动终端接收;
由所述移动终端接收信号到所述移动终端发送信号;
由所述移动终端发送信号到所述移动终端接收信号;
由所述中继单元接收控制节点的信号到所述中继单元向所述控制节点发送信号;
由所述中继单元向控制节点发送信号到所述中继单元接收所述控制节点的信号
由所述中继单元接收终端的信号到所述中继单元向所述终端发送信号;
由所述中继单元向终端发送信号到所述中继单元接收所述终端的信号。
第三方面,提供一种处理装置,包括:
第一获取模块,用于获取转换的转换时刻和/或转换的保护时间,信号放大器包括:中继单元,或者中继单元和移动终端;
其中,所述转换包括以下一项或多项:
由所述中继单元下行放大到所述中继单元上行放大;
由所述中继单元上行放大到所述中继单元下行放大;
由所述中继单元关闭或非激活状态到所述中继单元上行放大;
由所述中继单元关闭或非激活状态到所述中继单元下行放大;
由所述移动终端发送到所述中继单元上行放大;
由所述移动终端接收到所述中继单元上行放大;
由所述移动终端发送到所述中继单元下行放大;
由所述移动终端接收到所述中继单元下行放大;
由所述中继单元上行放大到所述移动终端发送;
由所述中继单元上行放大到所述移动终端接收;
由所述中继单元下行放大到所述移动终端发送;
由所述中继单元下行放大到所述移动终端接收;
由所述移动终端接收信号到所述移动终端发送信号;
由所述移动终端发送信号到所述移动终端接收信号;
由所述中继单元接收控制节点的信号到所述中继单元向所述控制节点发送信号;
由所述中继单元向控制节点发送信号到所述中继单元接收所述控制节点 的信号
由所述中继单元接收终端的信号到所述中继单元向所述终端发送信号;
由所述中继单元向终端发送信号到所述中继单元接收所述终端的信号。
第四方面,提供一种处理装置,包括:
第三获取模块,用于获取信号放大器的转换的保护时间,所述信号放大器包括:中继单元,或者中继单元和移动终端;
其中,所述转换包括以下一项或多项:
由所述中继单元下行放大到所述中继单元上行放大;
由所述中继单元上行放大到所述中继单元下行放大;
由所述中继单元关闭或非激活状态到所述中继单元上行放大;
由所述中继单元关闭或非激活状态到所述中继单元下行放大;
由所述移动终端发送到所述中继单元上行放大;
由所述移动终端接收到所述中继单元上行放大;
由所述移动终端发送到所述中继单元下行放大;
由所述移动终端接收到所述中继单元下行放大;
由所述中继单元上行放大到所述移动终端发送;
由所述中继单元上行放大到所述移动终端接收;
由所述中继单元下行放大到所述移动终端发送;
由所述中继单元下行放大到所述移动终端接收;
由所述移动终端接收信号到所述移动终端发送信号;
由所述移动终端发送信号到所述移动终端接收信号;
由所述中继单元接收控制节点的信号到所述中继单元向所述控制节点发送信号;
由所述中继单元向控制节点发送信号到所述中继单元接收所述控制节点的信号
由所述中继单元接收终端的信号到所述中继单元向所述终端发送信号;
由所述中继单元向终端发送信号到所述中继单元接收所述终端的信号。
第五方面,提供一种信号放大器,包括:处理器、存储器及存储在所述存储器上并可在所述处理器上运行的程序,所述程序被所述处理器执行时实 现如第一方面所述的方法的步骤。
第六方面,提供了一种信号放大器,包括处理器及通信接口,其中,所述处理器用于执行时实现如第一方面所述的方法的步骤。
第七方面,提供一种控制节点,包括:处理器、存储器及存储在所述存储器上并可在所述处理器上运行的程序,所述程序被所述处理器执行时实现如第二方面所述的方法的步骤。
第八方面,提供了一种控制节点,包括处理器及通信接口,其中,所述处理器用于执行时实现如第二方面所述的方法的步骤。
第九方面,提供一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如第一方面或第二方面所述的方法的步骤。
第十方面,提供一种计算机程序/程序产品,所述计算机程序/程序产品被存储在非易失的存储介质中,所述计算机程序/程序产品被至少一个处理器执行以实现如第一方面或第二方面所述的处理的方法的步骤。
第十一方面,提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如第一方面或第二方面所述的处理的方法。
第十二方面,提供了一种设备,被配置为执行如第一方面或第二方面所述的方法的步骤。
在本申请实施例中,信号放大器可以获取转换的转换时刻和/或转换的保护时间,减少信号放大器性能损失,减少或避免上下行碰撞的可能性,进一步地,该信号放大器可以向控制节点上报信号放大器的转换的保护时间相关信息,以辅助控制节点调度,保证控制节点调度的可靠性。
附图说明
图1是包含信号放大器的网络结构的示意图;
图2是信号放大器下行到上行切换的示意图;
图3a是信号放大器信号放大处理时延的示意图之一;
图3b是信号放大器信号放大处理时延的示意图之二
图4是定时提前的示意图;
图5是本申请实施例中的无线通信系统的示意图;
图6是本申请实施例提供的处理方法的流程图之一;
图7是本申请实施例提供的处理方法的流程图之二;
图8a是本申请实施例提供的下行放大到上行放大的转换的示意图之一;
图8b是本申请实施例提供的下行放大到上行放大的转换的示意图之二;
图9是本申请实施例提供的资源重叠的示意图;
图10是本申请实施例提供的调度的示意图;
图11是本申请实施例提供的处理装置的示意图之一;
图12是本申请实施例提供的处理装置的示意图之二;
图13是本申请实施例提供的信号放大器的示意图;
图14是本申请实施例提供的控制节点的示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述指定的顺序或先后次序。应该理解这样使用的术语在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施,且“第一”、“第二”所区别的对象通常为一类,并不限定对象的个数,例如第一对象可以是一个,也可以是多个。此外,说明书以及权利要求中“和”表示所连接对象的至少其中之一,字符“/”一般表示前后关联对象是一种“或”的关系。
值得指出的是,本申请实施例所描述的技术不限于长期演进型(Long Term Evolution,LTE)/LTE的演进(LTE-Advanced,LTE-A)系统,还可用于其他无线通信系统,诸如码分多址(Code Division Multiple Access,CDMA)、时分多址(Time Division Multiple Access,TDMA)、频分多址(Frequency  Division Multiple Access,FDMA)、正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA)、单载波频分多址(Single-carrier Frequency-Division Multiple Access,SC-FDMA)和其他系统。本申请实施例中的术语“系统”和“网络”常被可互换地使用,所描述的技术既可用于以上提及的系统和无线电技术,也可用于其他系统和无线电技术。以下描述出于示例目的描述了新空口(New Radio,NR)系统,并且在以下大部分描述中使用NR术语,但是这些技术也可应用于NR系统应用以外的应用,如第6代(6 th Generation,6G)通信系统。
为了便于理解本申请实施例,下面先介绍以下技术点:
一、信号放大器。
信号放大器用于扩展小区的覆盖范围,包括接收和放大来自上游基站的下行信号,使得到达终端(比如用户终端(User Equipment,UE))的信号强度增加;放大来自UE的上行信号,使得自UE到上游基站的上行信号的强度增加。
信号放大器/智能信号放大可以接收来自上游基站的控制,即基站可以控制智能放大器的发送参数,例如智能放大器的开关和发送波束等,以提高放大器的工作效率和降低干扰。如图1所示网络结构中,包含3个网络节点,中间网络节点是一种信号放大器,其包含一个终端模块(或者称为移动终端(Mobile Termination,MT))和一个中继单元(Repeater Unit,RU),不排所述信号放大器只包含MT或RU中一个模块。其中MT可以与上游基站建立连接,基站通过MT与信号放大器交互控制信令,可以指示信号放大器的MT/RU的发送/接收相关参数。
二、发送(Transmit,TX)/接收(Receive,RX)切换。
设备的收发切换不能瞬间完成,是需要处理时间的。对于信号放大器,从下行信号放大到上行信号放大(或者反之)会涉及收发切换。该切换时间可以归属于下行部分/上行部分,或者一部分切换时间在上行部分,一部分时间在下行部分。如图2所示,信号放大器的信号放大输出功率在下行到上行切换时会有明显下降,在此段功率下降时间,信号放大器不能进行正常信号放大。
三、信号放大器的信号放大处理时延
信号放大器从接收输入信号到发送输出信号不能瞬间完成,是需要处理时间的。如图3a和图3b所示,放大器的输入信号和输出信号之间存在一个中继单元处理时延(RU processing delay),这个时延就是放大器的放大处理时延。
四、定时提前(Timing Advance,TA)
参见图4,UE向基站发送信号时,信号的发送定时需要相对于其接收定时提前一段时间(TA时间),以便发送信号经过空口时延到达基站侧后,和基站的上下行定时对齐。
参见图5,图中示出本申请实施例可应用的一种无线通信系统的示意图。无线通信系统包括终端51、信号放大器52和网络侧设备53。其中,终端51也可以称作终端设备或者用户终端(User Equipment,UE),终端51可以是手机、平板电脑(Tablet Computer)、膝上型电脑(Laptop Computer)或称为笔记本电脑、个人数字助理(Personal Digital Assistant,PDA)、掌上电脑、上网本、超级移动个人计算机(ultra-mobile personal computer,UMPC)、移动上网装置(Mobile Internet Device,MID)、可穿戴式设备(Wearable Device)或车载设备(VUE)、行人终端(PUE)等终端侧设备,可穿戴式设备包括:智能手表、手环、耳机、眼镜等。需要说明的是,在本申请实施例并不限定终端51的具体类型。
网络侧设备53可以是基站或核心网,其中,基站可被称为控制节点、节点B、演进节点B、接入点、基收发机站(Base TransceiverStation,BTS)、无线电基站、无线电收发机、基本服务集(BasicServiceSet,BSS)、扩展服务集(ExtendedServiceSet,ESS)、B节点、演进型B节点(gNB)、家用B节点、家用演进型B节点、无线局域网络(Wireless Local Area Networks,WLAN)接入点、无线保真(Wireless Fidelity,WiFi)节点、发送接收点(Transmitting Receiving Point,TRP)、无线接入网节点或所述领域中其他某个合适的术语,只要达到相同的技术效果,所述基站不限于指定技术词汇,需要说明的是,在本申请实施例中仅以新空口(New Radio,NR)系统中的基站为例,但是并不限定基站的具体类型。
参见图6,本申请实施例提供一种处理方法,具体步骤包括:步骤601。
步骤601:信号放大器获取转换的转换时刻和/或转换的保护时间,所述信号放大器包括:中继单元,或者中继单元和移动终端;
其中,所述转换包括以下一项或多项:
(1)由中继单元下行放大到中继单元上行放大;
(2)由中继单元上行放大到中继单元下行放大;
(3)由中继单元关闭或非激活状态到中继单元上行放大;
(4)由中继单元关闭或非激活状态到中继单元下行放大;
(5)由移动终端发送到中继单元上行放大;
(6)由移动终端接收到中继单元上行放大;
(7)由移动终端发送到中继单元下行放大;
(8)由移动终端接收到中继单元下行放大;
(9)由中继单元上行放大到移动终端发送;
(10)由中继单元上行放大到移动终端接收;
(11)由中继单元下行放大到移动终端发送;
(12)由中继单元下行放大到移动终端接收;
(13)由移动终端接收信号到移动终端发送信号;
(14)由移动终端发送信号到移动终端接收信号;
(15)由中继单元接收控制节点的信号到中继单元向控制节点发送信号;
(16)由中继单元向控制节点发送信号到中继单元接收控制节点的信号
(17)由中继单元接收终端的信号到中继单元向终端发送信号;
(18)由中继单元向终端发送信号到中继单元接收终端的信号。
可以理解的是,本文中的时刻也可以称为时间点。
在本申请的一种实施方式中,所述转换的时刻和/或转换的保护时间是由协议约定的,或者是控制节点配置的,或者是所述信号放大器自主确定的。可选地,控制节点包括基站,当然并不限于此。
在本申请的一种实施方式中,在所述信号放大器获取转换的转换时刻之前,所述方法还包括:
所述信号放大器获取参考时刻;
其中,如果以中继单元或移动终端下行接收定时为参考,所述参考时刻为时分双工(Time Division Duplexing,TDD)指示下行到上行的切换时刻,或者为TDD指示上行到下行的切换时刻;
或者,如果以中继单元下行发送定时为参考,所述参考时刻为TDD指示下行到上行的切换时刻,或者为TDD指示上行到下行的切换时刻;
或者,如果以中继单元或移动终端上行发送定时为参考,所述参考点时刻为TDD指示下行到上行的切换时刻,或者为TDD指示上行到下行的切换时刻;
或者,如果以中继单元上行接收定时为参考,所述参考点时刻为TDD指示下行到上行的切换时刻,或者,为TDD指示上行到下行的切换时刻。
可以理解的是,本文中的TDD指示包括TDD配置和/或TDD动态指示。
在本申请的一种实施方式中,所述参考时刻是由协议约定的,或者是控制节点配置的,或者是所述信号放大器自主确定的。
在本申请的一种实施方式中,所述中继单元下行放大到中继单元上行放大的转换时刻,或者,所述中继单元上行放大到中继单元下行放大的转换时刻,距离所述参考时刻x个时间单元,所述x大于等于0。
在本申请的一种实施方式中,若为中继单元下行放大到中继单元上行放大的转换,所述x个时间单元位于所述参考时刻前的下行资源,或者所述x个时间单元位于所述参考时刻后的上行资源。
在本申请的一种实施方式中,若为中继单元上行放大到中继单元下行放大的转换,所述x个时间单元位于所述参考时刻前的上行资源,或者所述x个时间单元位于所述参考时刻后的下行资源。
在本申请的一种实施方式中,所述x个时间单元是由协议约定的,或者是控制节点配置的,或者是所述信号放大器自主确定的。
在本申请的一种实施方式中,所述方法还包括:
所述信号放大器向所述控制节点发送第一信息,所述第一信息用于所述控制节点确定所述信号放大器的转换的保护时间;
其中,所述第一信息包括以下一项或多项:
(1)所述中继单元的放大处理时延;
(2)所述中继单元的发送和接收的转换时间;
(3)所述中继单元的上行发送相对于下行接收的定时提前。
在本申请的一种实施方式中,所述方法还包括:
所述信号放大器向所述控制节点发送所述信号放大器的转换的保护时间。
在本申请实施例中,信号放大器可以获取转换的转换时刻和/或转换的保护时间,减少信号放大器性能损失,减少或避免上下行碰撞的可能性,进一步地,该信号放大器可以向控制节点上报信号放大器的转换的保护时间相关信息,以辅助控制节点调度,保证控制节点调度的可靠性。
参见图7,本申请实施例提供一种处理方法,具体步骤包括:步骤701。
步骤701:控制节点获取信号放大器的转换的保护时间,所述信号放大器包括:中继单元,或者中继单元和移动终端;
其中,所述转换包括以下一项或多项:
(1)由中继单元下行放大到中继单元上行放大;
(2)由中继单元上行放大到中继单元下行放大;
(3)由中继单元关闭或非激活状态到中继单元上行放大;
(4)由中继单元关闭或非激活状态到中继单元下行放大;
(5)由移动终端发送到中继单元上行放大;
(6)由移动终端接收到中继单元上行放大;
(7)由移动终端发送到中继单元下行放大;
(8)由移动终端接收到中继单元下行放大;
(9)由中继单元上行放大到移动终端发送;
(10)由中继单元上行放大到移动终端接收;
(11)由中继单元下行放大到移动终端发送;
(12)由中继单元下行放大到移动终端接收;
(13)由移动终端接收信号到移动终端发送信号;
(14)由移动终端发送信号到移动终端接收信号;
(15)由中继单元接收控制节点的信号到中继单元向控制节点发送信号;
(16)由中继单元向控制节点发送信号到中继单元接收控制节点的信号
(17)由中继单元接收终端的信号到中继单元向终端发送信号;
(18)由中继单元向终端发送信号到中继单元接收终端的信号。
可选地,控制节点包括基站。
在本申请的一种实施方式中,所述转换的时刻和/或转换的保护时间是由协议约定的,或者是所述控制节点根据所述信号放大器上报的信息确定的。
在本申请的一种实施方式中,所述控制节点获取信号放大器的转换的保护时间的步骤,包括:
所述控制节点从所述信号放大器接收第一信息;
所述控制节点根据第一信息,确定所述信号放大器的转换的保护时间;
其中,所述第一信息包括以下一项或多项:
(1)所述中继单元的放大处理时延;
(2)所述中继单元的发送和接收的转换时间;
(3)所述中继单元的上行发送相对于下行接收的定时提前。
在本申请的一种实施方式中,所述控制节点获取信号放大器的转换的保护时间的步骤,包括:
所述控制节点获取所述信号放大器上报的所述信号放大器的转换的保护时间。
在本申请的一种实施方式中,所述方法还包括:
所述控制节点获取所述中继单元下行放大到中继单元上行放大,或者所述中继单元上行放大到中继单元下行放大时上行资源和下行资源重叠的位置。
在本申请的一种实施方式中,所述方法还包括:
控制节点在上行资源和下行资源重叠的位置放弃下行调度,或者放弃上行调度,或者放弃部分上行和部分下行调度。
在本申请实施例中,信号放大器可以获取转换的转换时刻和/或转换的保护时间,减少信号放大器性能损失,减少或避免上下行碰撞的可能性,进一步地,该信号放大器可以向控制节点上报信号放大器的转换的保护时间相关信息,以辅助控制节点调度,保证控制节点调度的可靠性。
下面结合实施例一和实施例二介绍本申请的实施方式,在实施例一和实施例二中以控制节点为基站进行举例。。
实施例一:下行放大到上行放大的转换
1、关于RU下行放大到上行放大的转换时刻(或者上行放大的开启时刻,或者下行放大的关闭时刻),参见图8a和图8b。
可选的,RU确定转换时刻之前,确定参考时刻(例如,参考点为TDD指示下行到上行的切换时刻)。
(1)以中继单元或所述移动终端下行接收定时(RU/MT DL RX timing)为参考,参考时刻为TDD指示下行(Downlink,DL)到上行(Uplink,UL)的切换时刻。
(2)以中继单元下行发送定时(RU DL TX timing)为参考,参考时刻为TDD指示DL到UL的切换时刻。
(3)以中继单元或所述移动终端上行发送定时(RU/MT UL TX timing)为参考,参考点时刻TDD指示DL到UL的切换时刻。
(4)以中继单元上行接收定时(RU UL RX timing)为参考,参考点时刻TDD指示DL到UL的切换时刻。
可选地,参考时刻可以由协议约定,或者基站指示,或者RU自主确定(可上报到基站)。
下行放大到上行放大的转换时刻距离参考时刻x个时间单元,x大于等于零。
进一步地,x个时间单元可位于参考时刻前的下行资源。
进一步地,x个时间单元可位于参考时刻后的上行资源。
可选地,x个时间单元由协议约定,或者基站指示,或者RU自主确定(可上报到基站)。
可选的,所述转换时刻为开始从下行到上行转换的时刻。
2、关于基站调度的辅助信息。
基站获取下行放大到上行放大转换造成的资源重叠时间(或者说,获取转换的保护间隔),避免上下行调度冲突(例如,基站在重叠部分调度下行,而RU的放大方向是上行放大),参见图9。
a、基站至少根据以下一项/多项信息确定重叠时间/保护间隔长度:
(1)RU的放大处理时延;
可选地,RU可以上报放大处理时延,或者设定所述放大处理时延的限制 值。
(2)RU的收发转换时间。
可选地,RU可上报所述收发转换时间,或者设定所述收发转换时间的限制值。
(3)RU的上行发送相对于下行接收的TA信息,即TA_RU。
可选地,RU可上报所述TA信息,或者设定所述TA信息的限制值,或者基站测量RU的上行发送相对于下行接收的TA的值,或者基站根据放大器的MT单元的TA值预估所述RU的上行发送相对于下行接收的TA的值。
b、RU上报所述重叠时间/保护间隔长度,例如y个时间单元。
其中,时间单元可以是符号(symbol)、时隙(slot)、子时隙(sub-slots)或者毫秒(millisecond)。
基站获取下行放大到上行放大转换时资源重叠的位置,以便基站在资源重叠的位置放弃DL调度,或在资源重叠的位置放弃UL调度,或在资源重叠的位置放弃部分UL和部分DL调度,参见图10。
可选地,RU上报所述资源重叠的位置。
例如,资源重叠的位置包括以下之一:
(1)参考时刻前的y时间单元;
(2)参考时刻后的y时间单元;
(3)参考时刻前y1时间单元与参考时刻后y2时间单元之和(y1+y2=y)。
可选地,资源重叠的位置是基站根据协议约定的,或者是基站基于RU上报的信息确定的。
可选地,资源重叠的位确定的参考时刻为前述参考时刻/转换时刻。
实施例二:上行放大到下行放大的转换。
1、关于RU上行放大到下行放大的转换时刻(或者上行放大的开启时刻,或者下行放大的关闭时刻)。
可选的,RU确定转换时刻之前,确定参考时刻(例如,参考点为TDD指示中上行到下行的切换时刻)。
(1)以RU/MT DL RX timing为参考,参考时刻为TDD指示UL到DL的切换时刻。
(2)以RU DL TX timing为参考,参考时刻为TDD指示UL到DL的切换时刻。
(3)以RU/MT UL TX timing为参考,参考点时刻TDD指示UL到DL的切换时刻。
(4)以RU UL RX timing为参考,参考点时刻TDD指示UL到DL的切换时刻。
可选地,参考时刻可以由协议约定,或者基站指示,或者RU自主确定(可上报到基站)。
上行放大到下行放大的转换时刻距离参考时刻x个时间单元,x大于等于零。
进一步地,x个时间单元可位于参考时刻前的下行资源。
进一步地,x个时间单元可位于参考时刻后的上行资源。
可选地,x个时间单元由协议约定,或者基站指示,或者RU自主确定(可上报到基站)。
可选的,所述转换时刻为开始从上行到下行转换的时刻。
2、关于基站调度的辅助信息。
基站获取上行放大到下行放大转换造成的资源重叠时间(或者说,获取转换的保护间隔),避免上下行调度冲突(例如,基站在重叠部分调度下行,而RU的放大方向是上行放大)。
a、基站至少根据以下一项/多项信息确定重叠时间/保护间隔长度:
(1)RU的放大处理时延;
可选地,RU可以上报放大处理时延,或者设定所述放大处理时延的限制值。
(2)RU的收发转换时间。
可选地,RU可上报所述收发转换时间,或者设定所述收发转换时间的限制值。
(3)RU的上行发送相对于下行接收的TA信息,即TA_RU。
可选地,RU可上报所述TA信息,或者设定所述TA信息的限制值,或者基站测量RU的上行发送相对于下行接收的TA的值,或者基站根据放大器 的MT单元的TA值预估所述RU的上行发送相对于下行接收的TA的值。
b、RU上报所述重叠时间/保护间隔长度,例如y个时间单元。
其中,时间单元可以是符号(symbol)、时隙(slot)、子时隙(sub-slots)或者毫秒(millisecond)。
基站获取下行放大到上行放大转换时资源重叠的位置,以便基站在资源重叠的位置放弃DL调度,或在资源重叠的位置放弃UL调度,或在资源重叠的位置放弃部分UL和部分DL调度。
可选地,RU上报所述资源重叠的位置。
例如,资源重叠的位置包括以下之一:
(1)参考时刻前的y时间单元;
(2)参考时刻后的y时间单元;
(3)参考时刻前y1时间单元与参考时刻后y2时间单元之和(y1+y2=y)。
可选地,资源重叠的位置是基站根据协议约定的,或者是基站基于RU上报的信息确定的。
可选地,资源重叠的位确定的参考时刻为前述参考时刻/转换时刻。
参见图11,本申请实施例提供一种处理装置,应用于信号放大器,该装置1100包括:
第一获取模块1101,用于获取转换的转换时刻和/或转换的保护时间,所述信号放大器包括:中继单元,或者中继单元和移动终端;
其中,所述转换包括以下一项或多项:
(1)由中继单元下行放大到中继单元上行放大;
(2)由中继单元上行放大到中继单元下行放大;
(3)由中继单元关闭或非激活状态到中继单元上行放大;
(4)由中继单元关闭或非激活状态到中继单元下行放大;
(5)由移动终端发送到中继单元上行放大;
(6)由移动终端接收到中继单元上行放大;
(7)由移动终端发送到中继单元下行放大;
(8)由移动终端接收到中继单元下行放大;
(9)由中继单元上行放大到移动终端发送;
(10)由中继单元上行放大到移动终端接收;
(11)由中继单元下行放大到移动终端发送;
(12)由中继单元下行放大到移动终端接收;
(13)由移动终端接收信号到移动终端发送信号;
(14)由移动终端发送信号到移动终端接收信号;
(15)由中继单元接收控制节点的信号到中继单元向控制节点发送信号;
(16)由中继单元向控制节点发送信号到中继单元接收控制节点的信号
(17)由中继单元接收终端的信号到中继单元向终端发送信号;
(18)由中继单元向终端发送信号到中继单元接收终端的信号。
在本申请的一种实施方式中,所述转换的时刻和/或转换的保护时间是由协议约定的,或者是控制节点配置的,或者是所述信号放大器自主确定的。
在本申请的一种实施方式中,该装置1100还包括:
第二获取模块,用于获取参考时刻;
其中,如果以中继单元或移动终端下行接收定时为参考,所述参考时刻为TDD指示下行到上行的切换时刻,或者为TDD指示上行到下行的切换时刻;
或者,如果以中继单元下行发送定时为参考,所述参考时刻为TDD指示下行到上行的切换时刻,或者为TDD指示上行到下行的切换时刻;
或者,如果以中继单元或移动终端上行发送定时为参考,所述参考点时刻为TDD指示下行到上行的切换时刻,或者为TDD指示上行到下行的切换时刻;
或者,如果以中继单元上行接收定时为参考,所述参考点时刻为TDD指示下行到上行的切换时刻,或者,为TDD指示上行到下行的切换时刻。
在本申请的一种实施方式中,所述参考时刻是由协议约定的,或者是控制节点配置的,或者是所述信号放大器自主确定的。
在本申请的一种实施方式中,所述中继单元下行放大到中继单元上行放大的转换时刻,或者,所述中继单元上行放大到中继单元下行放大的转换时刻,距离所述参考时刻x个时间单元,所述x大于等于0。
在本申请的一种实施方式中,若为中继单元下行放大到中继单元上行放 大的转换,所述x个时间单元位于所述参考时刻前的下行资源,或者所述x个时间单元位于所述参考时刻后的上行资源。
在本申请的一种实施方式中,若为中继单元上行放大到中继单元下行放大的转换,所述x个时间单元位于所述参考时刻前的上行资源,或者所述x个时间单元位于所述参考时刻后的下行资源。
在本申请的一种实施方式中,所述x个时间单元是由协议约定的,或者是控制节点配置的,或者是所述信号放大器自主确定的。
在本申请的一种实施方式中,所述装置1100还包括:
第一发送模块,用于向所述控制节点发送第一信息,所述第一信息用于所述控制节点确定所述信号放大器的转换的保护时间;
其中,所述第一信息包括以下一项或多项:
所述中继单元的放大处理时延;
所述中继单元的发送和接收的转换时间;
所述中继单元的上行发送相对于下行接收的定时提前。
在本申请的一种实施方式中,所述装置1100还包括:
第二发送模块,用于所述信号放大器向所述控制节点发送所述信号放大器的转换的保护时间。
本申请实施例提供的装置能够实现图6所示的方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
参见图12,本申请实施例提供一种处理装置,应用于控制节点,该装置1200包括:
第三获取模块1201,用于获取信号放大器的转换的保护时间,所述信号放大器包括:中继单元,或者中继单元和移动终端;
其中,所述转换包括以下一项或多项:
(1)由中继单元下行放大到中继单元上行放大;
(2)由中继单元上行放大到中继单元下行放大;
(3)由中继单元关闭或非激活状态到中继单元上行放大;
(4)由中继单元关闭或非激活状态到中继单元下行放大;
(5)由移动终端发送到中继单元上行放大;
(6)由移动终端接收到中继单元上行放大;
(7)由移动终端发送到中继单元下行放大;
(8)由移动终端接收到中继单元下行放大;
(9)由中继单元上行放大到移动终端发送;
(10)由中继单元上行放大到移动终端接收;
(11)由中继单元下行放大到移动终端发送;
(12)由中继单元下行放大到移动终端接收;
(13)由移动终端接收信号到移动终端发送信号;
(14)由移动终端发送信号到移动终端接收信号;
(15)由中继单元接收控制节点的信号到中继单元向控制节点发送信号;
(16)由中继单元向控制节点发送信号到中继单元接收控制节点的信号
(17)由中继单元接收终端的信号到中继单元向终端发送信号;
(18)由中继单元向终端发送信号到中继单元接收终端的信号。
在本申请的一种实施方式中,所述转换的时刻和/或转换的保护时间是由协议约定的,或者是所述控制节点根据所述信号放大器上报的信息确定的。
在本申请的一种实施方式中,第三获取模块1201包括:
接收单元,用于从所述信号放大器接收第一信息;
确定单元,用于根据第一信息,确定所述信号放大器的转换的保护时间;
其中,所述第一信息包括以下一项或多项:
(1)所述中继单元的放大处理时延;
(2)所述中继单元的发送和接收的转换时间;
(3)所述中继单元的上行发送相对于下行接收的定时提前。
在本申请的一种实施方式中,第三获取模块1201进一步用于:获取所述信号放大器上报的所述信号放大器的转换的保护时间。
在本申请的一种实施方式中,所述装置1200还包括:
第四获取模块,用于获取所述中继单元下行放大到中继单元上行放大,或者所述中继单元上行放大到中继单元下行放大时上行资源和下行资源重叠的位置。
本申请实施例提供的装置能够实现图6所示的方法实施例实现的各个过 程,并达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供一种信号放大器,包括处理器和通信接口,处理器用于获取转换的转换时刻和/或转换的保护时间。该网络侧设备实施例是与上述网络侧设备方法实施例对应的,上述方法实施例的各个实施过程和实现方式均可适用于该网络侧设备实施例中,且能达到相同的技术效果。
具体地,本申请实施例还提供了一种信号放大器。如图13所示,该信号放大器1300包括:处理器1301、存储器1302和网络接口1303,例如为通用公共无线接口(common public radio interface,简称CPRI)。
具体地,存储在存储器1302上并可在处理器1301上运行的指令或程序。可以理解的是,处理器1301调用存储器1302中的指令或程序执行图11所示各模块执行的方法,并达到相同的技术效果,为避免重复,故不在此赘述。
本申请实施例还提供一种控制节点,包括处理器和通信接口,处理器用于获取信号放大器的转换的保护时间。该网络侧设备实施例是与上述网络侧设备方法实施例对应的,上述方法实施例的各个实施过程和实现方式均可适用于该网络侧设备实施例中,且能达到相同的技术效果。
具体地,本申请实施例还提供了一种控制节点。如图14所示,该网络侧设备1400包括:天线1401、射频装置1402、基带装置1403。天线1401与射频装置1402连接。在上行方向上,射频装置1402通过天线1401接收信息,将接收的信息发送给基带装置1403进行处理。在下行方向上,基带装置1403对要发送的信息进行处理,并发送给射频装置1402,射频装置1402对收到的信息进行处理后经过天线1401发送出去。
上述频带处理装置可以位于基带装置1403中,以上实施例中网络侧设备执行的方法可以在基带装置1403中实现,该基带装置1403包括处理器1204和存储器1405。
基带装置1403例如可以包括至少一个基带板,该基带板上设置有多个芯片,如图14所示,其中一个芯片例如为处理器1404,与存储器1405连接,以调用存储器1405中的程序,执行以上方法实施例中所示的网络设备操作。
该基带装置1403还可以包括网络接口1406,用于与射频装置1402交互信息,该接口例如为通用公共无线接口(common public radio interface,简称 CPRI)。
具体地,本申请实施例的网络侧设备还包括:存储在存储器1405上并可在处理器1404上运行的指令或程序。可以理解的是,处理器1404调用存储器1405中的指令或程序执行图14所示各模块执行的方法,并达到相同的技术效果,为避免重复,故不在此赘述。
本申请实施例还提供一种计算机程序/程序产品,所述计算机程序/程序产品被存储在非易失的存储介质中,所述计算机程序/程序产品被至少一个处理器执行以实现如图5或图6所述的处理的方法的步骤。
本申请实施例还提供一种可读存储介质,所述可读存储介质上存储有程序或指令,该程序或指令被处理器执行时实现上述图5或图6所示方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
其中,所述处理器为上述实施例中所述的终端中的处理器。所述可读存储介质,包括计算机可读存储介质,如计算机只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等。
本申请实施例还提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现上述图5或图6所示方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
本申请实施例另提供了一种计算机程序产品,所述计算机程序产品存储在非瞬态的存储介质中,所述计算机程序产品被至少一个处理器执行以实现上述方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供了一种设备,被配置为执行如上述方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者 装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。此外,需要指出的是,本申请实施方式中的方法和装置的范围不限按示出或讨论的顺序来执行功能,还可包括根据所涉及的功能按基本同时的方式或按相反的顺序来执行功能,例如,可以按不同于所描述的次序来执行所描述的方法,并且还可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以计算机软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本申请各个实施例所述的方法。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (29)

  1. 一种处理方法,包括:
    信号放大器获取转换的转换时刻和/或转换的保护时间,所述信号放大器包括:中继单元,或者中继单元和移动终端;
    其中,所述转换包括以下一项或多项:
    由所述中继单元下行放大到所述中继单元上行放大;
    由所述中继单元上行放大到所述中继单元下行放大;
    由所述中继单元关闭或非激活状态到所述中继单元上行放大;
    由所述中继单元关闭或非激活状态到所述中继单元下行放大;
    由所述移动终端发送到所述中继单元上行放大;
    由所述移动终端接收到所述中继单元上行放大;
    由所述移动终端发送到所述中继单元下行放大;
    由所述移动终端接收到所述中继单元下行放大;
    由所述中继单元上行放大到所述移动终端发送;
    由所述中继单元上行放大到所述移动终端接收;
    由所述中继单元下行放大到所述移动终端发送;
    由所述中继单元下行放大到所述移动终端接收;
    由所述移动终端接收信号到所述移动终端发送信号;
    由所述移动终端发送信号到所述移动终端接收信号;
    由所述中继单元接收控制节点的信号到所述中继单元向所述控制节点发送信号;
    由所述中继单元向控制节点发送信号到所述中继单元接收所述控制节点的信号
    由所述中继单元接收终端的信号到所述中继单元向所述终端发送信号;
    由所述中继单元向终端发送信号到所述中继单元接收所述终端的信号。
  2. 根据权利要求1所述的方法,其中,所述转换的时刻和/或转换的保护时间是由协议约定的,或者是控制节点配置的,或者是所述信号放大器自主确定的。
  3. 根据权利要求1所述的方法,其中,在所述信号放大器获取转换的转换时刻之前,所述方法还包括:
    所述信号放大器获取参考时刻;
    其中,如果以所述中继单元或所述移动终端下行接收定时为参考,所述参考时刻为时分双工TDD指示下行到上行的切换时刻,或者为TDD指示上行到下行的切换时刻;
    或者,如果以所述中继单元下行发送定时为参考,所述参考时刻为TDD指示下行到上行的切换时刻,或者为TDD指示上行到下行的切换时刻;
    或者,如果以所述中继单元或所述移动终端上行发送定时为参考,所述参考点时刻为TDD指示下行到上行的切换时刻,或者为TDD指示上行到下行的切换时刻;
    或者,如果以所述中继单元上行接收定时为参考,所述参考点时刻为TDD指示下行到上行的切换时刻,或者,为TDD指示上行到下行的切换时刻。
  4. 根据权利要求3所述的方法,其中,所述参考时刻是由协议约定的,或者是控制节点配置的,或者是所述信号放大器自主确定的。
  5. 根据权利要求3所述的方法,其中,所述中继单元下行放大到所述中继单元上行放大的转换时刻,或者,所述中继单元上行放大到所述中继单元下行放大的转换时刻,距离所述参考时刻x个时间单元,所述x大于等于0。
  6. 根据权利要求5所述的方法,若为所述中继单元下行放大到所述中继单元上行放大的转换,其中,所述x个时间单元位于所述参考时刻前的下行资源,或者所述x个时间单元位于所述参考时刻后的上行资源。
  7. 根据权利要求5所述的方法,若为所述中继单元上行放大到所述中继单元下行放大的转换,其中,所述x个时间单元位于所述参考时刻前的上行资源,或者所述x个时间单元位于所述参考时刻后的下行资源。
  8. 根据权利要求7所述的方法,其中,所述x个时间单元是由协议约定的,或者是控制节点配置的,或者是所述信号放大器自主确定的。
  9. 根据权利要求1所述的方法,其中,所述方法还包括:
    所述信号放大器向所述控制节点发送第一信息,所述第一信息用于所述控制节点确定所述信号放大器的转换的保护时间;
    其中,所述第一信息包括以下一项或多项:
    所述中继单元的放大处理时延;
    所述中继单元的发送和接收的转换时间;
    所述中继单元的上行发送相对于下行接收的定时提前。
  10. 根据权利要求1所述的方法,所述方法还包括:
    所述信号放大器向所述控制节点发送所述信号放大器的转换的保护时间。
  11. 一种处理方法,包括:
    控制节点获取信号放大器的转换的保护时间,所述信号放大器包括:中继单元,或者中继单元和移动终端;
    其中,所述转换包括以下一项或多项:
    由所述中继单元下行放大到所述中继单元上行放大;
    由所述中继单元上行放大到所述中继单元下行放大;
    由所述中继单元关闭或非激活状态到所述中继单元上行放大;
    由所述中继单元关闭或非激活状态到所述中继单元下行放大;
    由所述移动终端发送到所述中继单元上行放大;
    由所述移动终端接收到所述中继单元上行放大;
    由所述移动终端发送到所述中继单元下行放大;
    由所述移动终端接收到所述中继单元下行放大;
    由所述中继单元上行放大到所述移动终端发送;
    由所述中继单元上行放大到所述移动终端接收;
    由所述中继单元下行放大到所述移动终端发送;
    由所述中继单元下行放大到所述移动终端接收;
    由所述移动终端接收信号到所述移动终端发送信号;
    由所述移动终端发送信号到所述移动终端接收信号;
    由所述中继单元接收控制节点的信号到所述中继单元向所述控制节点发送信号;
    由所述中继单元向控制节点发送信号到所述中继单元接收所述控制节点的信号
    由所述中继单元接收终端的信号到所述中继单元向所述终端发送信号;
    由所述中继单元向终端发送信号到所述中继单元接收所述终端的信号。
  12. 根据权利要求11所述的方法,其中,所述转换的时刻和/或转换的保护时间是由协议约定的,或者是所述控制节点根据所述信号放大器上报的信息确定的。
  13. 根据权利要求11所述的方法,其中,所述控制节点获取信号放大器的转换的保护时间的步骤,包括:
    所述控制节点从所述信号放大器接收第一信息;
    所述控制节点根据第一信息,确定所述信号放大器的转换的保护时间;
    其中,所述第一信息包括以下一项或多项:
    所述中继单元的放大处理时延;
    所述中继单元的发送和接收的转换时间;
    所述中继单元的上行发送相对于下行接收的定时提前。
  14. 根据权利要求11所述的方法,其中,所述控制节点获取信号放大器的转换的保护时间的步骤,包括:
    所述控制节点获取所述信号放大器上报的所述信号放大器的转换的保护时间。
  15. 根据权利要求11所述的方法,所述方法还包括:
    所述控制节点获取所述中继单元下行放大到中继单元上行放大,或者所述中继单元上行放大到中继单元下行放大时上行资源和下行资源重叠的位置。
  16. 一种处理装置,包括:
    第一获取模块,用于获取转换的转换时刻和/或转换的保护时间,信号放大器包括:中继单元,或者中继单元和移动终端;
    其中,所述转换包括以下一项或多项:
    由所述中继单元下行放大到所述中继单元上行放大;
    由所述中继单元上行放大到所述中继单元下行放大;
    由所述中继单元关闭或非激活状态到所述中继单元上行放大;
    由所述中继单元关闭或非激活状态到所述中继单元下行放大;
    由所述移动终端发送到所述中继单元上行放大;
    由所述移动终端接收到所述中继单元上行放大;
    由所述移动终端发送到所述中继单元下行放大;
    由所述移动终端接收到所述中继单元下行放大;
    由所述中继单元上行放大到所述移动终端发送;
    由所述中继单元上行放大到所述移动终端接收;
    由所述中继单元下行放大到所述移动终端发送;
    由所述中继单元下行放大到所述移动终端接收;
    由所述移动终端接收信号到所述移动终端发送信号;
    由所述移动终端发送信号到所述移动终端接收信号;
    由所述中继单元接收控制节点的信号到所述中继单元向所述控制节点发送信号;
    由所述中继单元向控制节点发送信号到所述中继单元接收所述控制节点的信号
    由所述中继单元接收终端的信号到所述中继单元向所述终端发送信号;
    由所述中继单元向终端发送信号到所述中继单元接收所述终端的信号。
  17. 根据权利要求16所述的装置,所述装置还包括:
    第二获取模块,用于获取参考时刻;
    其中,如果以所述中继单元或移动终端下行接收定时为参考,所述参考时刻为TDD指示下行到上行的切换时刻,或者为TDD指示上行到下行的切换时刻;
    或者,如果以中继单元下行发送定时为参考,所述参考时刻为TDD指示下行到上行的切换时刻,或者为TDD指示上行到下行的切换时刻;
    或者,如果以中继单元或移动终端上行发送定时为参考,所述参考点时刻为TDD指示下行到上行的切换时刻,或者为TDD指示上行到下行的切换时刻;
    或者,如果以中继单元上行接收定时为参考,所述参考点时刻为TDD指示下行到上行的切换时刻,或者,为TDD指示上行到下行的切换时刻。
  18. 根据权利要求16所述的装置,所述装置还包括:
    第一发送模块,用于向所述控制节点发送第一信息,所述第一信息用于所述控制节点确定所述信号放大器的转换的保护时间;
    其中,所述第一信息包括以下一项或多项:
    所述中继单元的放大处理时延;
    所述中继单元的发送和接收的转换时间;
    所述中继单元的上行发送相对于下行接收的定时提前。
  19. 根据权利要求16所述的装置,所述装置还包括:
    第二发送模块,用于所述信号放大器向所述控制节点发送所述信号放大器的转换的保护时间。
  20. 一种处理装置,包括:
    第三获取模块,用于获取信号放大器的转换的保护时间,所述信号放大器包括:中继单元,或者中继单元和移动终端;
    其中,所述转换包括以下一项或多项:
    由所述中继单元下行放大到所述中继单元上行放大;
    由所述中继单元上行放大到所述中继单元下行放大;
    由所述中继单元关闭或非激活状态到所述中继单元上行放大;
    由所述中继单元关闭或非激活状态到所述中继单元下行放大;
    由所述移动终端发送到所述中继单元上行放大;
    由所述移动终端接收到所述中继单元上行放大;
    由所述移动终端发送到所述中继单元下行放大;
    由所述移动终端接收到所述中继单元下行放大;
    由所述中继单元上行放大到所述移动终端发送;
    由所述中继单元上行放大到所述移动终端接收;
    由所述中继单元下行放大到所述移动终端发送;
    由所述中继单元下行放大到所述移动终端接收;
    由所述移动终端接收信号到所述移动终端发送信号;
    由所述移动终端发送信号到所述移动终端接收信号;
    由所述中继单元接收控制节点的信号到所述中继单元向所述控制节点发送信号;
    由所述中继单元向控制节点发送信号到所述中继单元接收所述控制节点的信号
    由所述中继单元接收终端的信号到所述中继单元向所述终端发送信号;
    由所述中继单元向终端发送信号到所述中继单元接收所述终端的信号。
  21. 根据权利要求20所述的装置,其中,所述第三获取模块包括:
    接收单元,用于从所述信号放大器接收第一信息;
    确定单元,用于根据第一信息,确定所述信号放大器的转换的保护时间;
    其中,所述第一信息包括以下一项或多项:
    所述中继单元的放大处理时延;
    所述中继单元的发送和接收的转换时间;
    所述中继单元的上行发送相对于下行接收的定时提前。
  22. 根据权利要求20所述的装置,其中,所述第三获取模块进一步用于:获取所述信号放大器上报的所述信号放大器的转换的保护时间。
  23. 根据权利要求20所述的装置,所述装置还包括:
    第四获取模块,用于获取所述中继单元下行放大到中继单元上行放大,或者所述中继单元上行放大到中继单元下行放大时上行资源和下行资源重叠的位置。
  24. 一种信号放大器,包括:处理器、存储器及存储在所述存储器上并可在所述处理器上运行的程序,所述程序被所述处理器执行时实现如权利要求1至10中任一项所述的方法的步骤。
  25. 一种控制节点,包括:处理器、存储器及存储在所述存储器上并可在所述处理器上运行的程序,所述程序被所述处理器执行时实现如权利要求11至15中任一项所述的方法的步骤。
  26. 一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如权利要求1至15中任一项所述的方法的步骤。
  27. 一种芯片,包括处理器和通信接口,其中,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如权利要求1至15任一项所述的方法的步骤。
  28. 一种计算机程序产品,所述计算机程序产品被至少一个处理器执行时实现如权利要求1至15任一项所述的方法的步骤。
  29. 一种设备,被配置为执行如如权利要求1至15任一项所述的方法的 步骤。
PCT/CN2022/094447 2021-05-28 2022-05-23 处理方法、装置、设备及可读存储介质 WO2022247780A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110592061.1A CN115412142B (zh) 2021-05-28 2021-05-28 处理方法、装置、设备及可读存储介质
CN202110592061.1 2021-05-28

Publications (1)

Publication Number Publication Date
WO2022247780A1 true WO2022247780A1 (zh) 2022-12-01

Family

ID=84155380

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/094447 WO2022247780A1 (zh) 2021-05-28 2022-05-23 处理方法、装置、设备及可读存储介质

Country Status (2)

Country Link
CN (1) CN115412142B (zh)
WO (1) WO2022247780A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015096286A1 (zh) * 2013-12-25 2015-07-02 华为技术有限公司 半双工频分双工的通信方法、基站和终端
CN104869627A (zh) * 2014-02-26 2015-08-26 中国移动通信集团公司 一种信号放大增益调整方法、装置及相关设备
CN105338612A (zh) * 2014-08-08 2016-02-17 中国移动通信集团公司 一种无线直放站的同步和控制方法、装置以及无线直放站
JP2017135633A (ja) * 2016-01-29 2017-08-03 株式会社東芝 通信中継システム、制御方法及びプログラム
CN107231182A (zh) * 2016-03-24 2017-10-03 上海大唐移动通信设备有限公司 Td-scdma干线放大器及信号同步控制方法
KR102037410B1 (ko) * 2018-07-13 2019-11-26 에스케이텔레콤 주식회사 Rf 중계기 및 그 제어방법

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1225849C (zh) * 2003-07-18 2005-11-02 大唐移动通信设备有限公司 一种对无线信号进行双向同步转发的方法及装置
CN100349389C (zh) * 2004-06-17 2007-11-14 Ut斯达康通讯有限公司 通讯信号双向放大装置
CN101018086B (zh) * 2006-02-10 2011-04-20 大唐移动通信设备有限公司 时分同步码分多址系统中中继放大器的同步收发控制方法与系统
CN103036606B (zh) * 2012-11-23 2015-06-03 奥维通信股份有限公司 一种基于数字导频搜索的td-lte转发系统及方法
CN104683082B (zh) * 2013-12-03 2018-10-09 索尼公司 无线通信系统和在无线通信系统中进行无线通信的方法
FR3056863B1 (fr) * 2016-09-26 2018-09-21 Safran Electronics & Defense Procede permettant une discrimination de communications montantes ou descendantes

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015096286A1 (zh) * 2013-12-25 2015-07-02 华为技术有限公司 半双工频分双工的通信方法、基站和终端
CN104869627A (zh) * 2014-02-26 2015-08-26 中国移动通信集团公司 一种信号放大增益调整方法、装置及相关设备
CN105338612A (zh) * 2014-08-08 2016-02-17 中国移动通信集团公司 一种无线直放站的同步和控制方法、装置以及无线直放站
JP2017135633A (ja) * 2016-01-29 2017-08-03 株式会社東芝 通信中継システム、制御方法及びプログラム
CN107231182A (zh) * 2016-03-24 2017-10-03 上海大唐移动通信设备有限公司 Td-scdma干线放大器及信号同步控制方法
KR102037410B1 (ko) * 2018-07-13 2019-11-26 에스케이텔레콤 주식회사 Rf 중계기 및 그 제어방법

Also Published As

Publication number Publication date
CN115412142B (zh) 2024-03-01
CN115412142A (zh) 2022-11-29

Similar Documents

Publication Publication Date Title
EP3310120B1 (en) Fast activation of multi-connectivity utilizing uplink signals
CN107431544B (zh) 用于设备到设备通信的方法和装置
WO2022017334A1 (zh) 控制信令的传输方法和设备
EP3952461A1 (en) Data sending method and communication apparatus
WO2018171626A1 (zh) 随机接入响应的方法和设备以及随机接入的方法和设备
JP2024501011A (ja) 中継通信方法および装置
WO2023025025A1 (zh) 传输参数确定方法、装置及信号中继设备
WO2022247780A1 (zh) 处理方法、装置、设备及可读存储介质
US11212839B2 (en) Method for random access and terminal device
WO2022077451A1 (zh) 无线通信的方法和终端设备
WO2023006091A1 (zh) 放大器的控制方法、放大器及网络侧设备
WO2023001022A1 (zh) 节点状态控制方法、装置及相关设备
WO2023246682A1 (zh) Ncr节点的开关状态配置方法、ncr节点及网络侧设备
WO2023208195A1 (zh) 定时调整方法、配置方法、装置、放大器及基站
WO2023198111A1 (zh) 中继器的资源复用方法、中继器及网络侧设备
WO2023006030A1 (zh) 信号传输方法、放大器及网络侧设备
WO2022247719A1 (zh) 切换方法、装置和网络侧设备
WO2022120803A1 (zh) 一种通信方法和装置
WO2022052095A1 (zh) 通信方法、设备、系统及存储介质
WO2022184047A1 (zh) 信息传输、获取方法及网络侧设备
WO2023011106A1 (zh) 一种通信方法及装置
WO2024016942A1 (zh) 通信方法、装置、设备以及存储介质
WO2023226759A1 (zh) 通信方法及装置
WO2024032638A1 (zh) 一种信息传输方法及通信装置
CN114499714B (zh) 一种信息确定、配置方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22810505

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE