WO2022247583A1 - 一种缓存分区恢复的接管方法、装置、设备及可读介质 - Google Patents

一种缓存分区恢复的接管方法、装置、设备及可读介质 Download PDF

Info

Publication number
WO2022247583A1
WO2022247583A1 PCT/CN2022/090127 CN2022090127W WO2022247583A1 WO 2022247583 A1 WO2022247583 A1 WO 2022247583A1 CN 2022090127 W CN2022090127 W CN 2022090127W WO 2022247583 A1 WO2022247583 A1 WO 2022247583A1
Authority
WO
WIPO (PCT)
Prior art keywords
node
cluster
partition
sub
cache
Prior art date
Application number
PCT/CN2022/090127
Other languages
English (en)
French (fr)
Inventor
侯红生
刘文志
Original Assignee
山东英信计算机技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山东英信计算机技术有限公司 filed Critical 山东英信计算机技术有限公司
Priority to US18/271,779 priority Critical patent/US11994992B2/en
Publication of WO2022247583A1 publication Critical patent/WO2022247583A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F12/00Accessing, addressing or allocating within memory systems or architectures
    • G06F12/02Addressing or allocation; Relocation
    • G06F12/08Addressing or allocation; Relocation in hierarchically structured memory systems, e.g. virtual memory systems
    • G06F12/0802Addressing of a memory level in which the access to the desired data or data block requires associative addressing means, e.g. caches
    • G06F12/0844Multiple simultaneous or quasi-simultaneous cache accessing
    • G06F12/0846Cache with multiple tag or data arrays being simultaneously accessible
    • G06F12/0848Partitioned cache, e.g. separate instruction and operand caches
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/06Digital input from, or digital output to, record carriers, e.g. RAID, emulated record carriers or networked record carriers
    • G06F3/0601Interfaces specially adapted for storage systems
    • G06F3/0602Interfaces specially adapted for storage systems specifically adapted to achieve a particular effect
    • G06F3/061Improving I/O performance
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/07Responding to the occurrence of a fault, e.g. fault tolerance
    • G06F11/16Error detection or correction of the data by redundancy in hardware
    • G06F11/20Error detection or correction of the data by redundancy in hardware using active fault-masking, e.g. by switching out faulty elements or by switching in spare elements
    • G06F11/2053Error detection or correction of the data by redundancy in hardware using active fault-masking, e.g. by switching out faulty elements or by switching in spare elements where persistent mass storage functionality or persistent mass storage control functionality is redundant
    • G06F11/2089Redundant storage control functionality
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F12/00Accessing, addressing or allocating within memory systems or architectures
    • G06F12/02Addressing or allocation; Relocation
    • G06F12/08Addressing or allocation; Relocation in hierarchically structured memory systems, e.g. virtual memory systems
    • G06F12/0802Addressing of a memory level in which the access to the desired data or data block requires associative addressing means, e.g. caches
    • G06F12/0866Addressing of a memory level in which the access to the desired data or data block requires associative addressing means, e.g. caches for peripheral storage systems, e.g. disk cache
    • G06F12/0868Data transfer between cache memory and other subsystems, e.g. storage devices or host systems
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/06Digital input from, or digital output to, record carriers, e.g. RAID, emulated record carriers or networked record carriers
    • G06F3/0601Interfaces specially adapted for storage systems
    • G06F3/0602Interfaces specially adapted for storage systems specifically adapted to achieve a particular effect
    • G06F3/0604Improving or facilitating administration, e.g. storage management
    • G06F3/0607Improving or facilitating administration, e.g. storage management by facilitating the process of upgrading existing storage systems, e.g. for improving compatibility between host and storage device
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/06Digital input from, or digital output to, record carriers, e.g. RAID, emulated record carriers or networked record carriers
    • G06F3/0601Interfaces specially adapted for storage systems
    • G06F3/0628Interfaces specially adapted for storage systems making use of a particular technique
    • G06F3/0629Configuration or reconfiguration of storage systems
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/06Digital input from, or digital output to, record carriers, e.g. RAID, emulated record carriers or networked record carriers
    • G06F3/0601Interfaces specially adapted for storage systems
    • G06F3/0628Interfaces specially adapted for storage systems making use of a particular technique
    • G06F3/0629Configuration or reconfiguration of storage systems
    • G06F3/0632Configuration or reconfiguration of storage systems by initialisation or re-initialisation of storage systems
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/06Digital input from, or digital output to, record carriers, e.g. RAID, emulated record carriers or networked record carriers
    • G06F3/0601Interfaces specially adapted for storage systems
    • G06F3/0628Interfaces specially adapted for storage systems making use of a particular technique
    • G06F3/0638Organizing or formatting or addressing of data
    • G06F3/0644Management of space entities, e.g. partitions, extents, pools
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/06Digital input from, or digital output to, record carriers, e.g. RAID, emulated record carriers or networked record carriers
    • G06F3/0601Interfaces specially adapted for storage systems
    • G06F3/0628Interfaces specially adapted for storage systems making use of a particular technique
    • G06F3/0655Vertical data movement, i.e. input-output transfer; data movement between one or more hosts and one or more storage devices
    • G06F3/0656Data buffering arrangements
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/06Digital input from, or digital output to, record carriers, e.g. RAID, emulated record carriers or networked record carriers
    • G06F3/0601Interfaces specially adapted for storage systems
    • G06F3/0628Interfaces specially adapted for storage systems making use of a particular technique
    • G06F3/0655Vertical data movement, i.e. input-output transfer; data movement between one or more hosts and one or more storage devices
    • G06F3/0658Controller construction arrangements
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/06Digital input from, or digital output to, record carriers, e.g. RAID, emulated record carriers or networked record carriers
    • G06F3/0601Interfaces specially adapted for storage systems
    • G06F3/0668Interfaces specially adapted for storage systems adopting a particular infrastructure
    • G06F3/067Distributed or networked storage systems, e.g. storage area networks [SAN], network attached storage [NAS]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2212/00Indexing scheme relating to accessing, addressing or allocation within memory systems or architectures
    • G06F2212/10Providing a specific technical effect
    • G06F2212/1032Reliability improvement, data loss prevention, degraded operation etc
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2212/00Indexing scheme relating to accessing, addressing or allocation within memory systems or architectures
    • G06F2212/28Using a specific disk cache architecture
    • G06F2212/283Plural cache memories
    • G06F2212/284Plural cache memories being distributed
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2212/00Indexing scheme relating to accessing, addressing or allocation within memory systems or architectures
    • G06F2212/28Using a specific disk cache architecture
    • G06F2212/285Redundant cache memory
    • G06F2212/286Mirrored cache memory
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2212/00Indexing scheme relating to accessing, addressing or allocation within memory systems or architectures
    • G06F2212/31Providing disk cache in a specific location of a storage system
    • G06F2212/312In storage controller
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2212/00Indexing scheme relating to accessing, addressing or allocation within memory systems or architectures
    • G06F2212/31Providing disk cache in a specific location of a storage system
    • G06F2212/313In storage device

Definitions

  • the present application relates to the field of storage technologies, and in particular to a takeover method, device, device and readable medium for cache partition recovery.
  • the storage controller has a read and write cache.
  • the caches of the two controllers back up each other to ensure that cache data is not lost when one of the controllers fails.
  • the traditional dual-controller storage device has certain limitations. When one controller fails, the storage device will lose half of its performance, and when both controllers fail, the storage device's business will be interrupted.
  • the four-controller topology is divided into two subclusters, and each subcluster consists of two storage controllers.
  • the four-controller topology establishes cache partitions on the two sub-clusters respectively. Since the caches of the four controllers back up each other, the cache partitions created on the other sub-cluster can be deleted normally on the sub-cluster where the configuration node is located.
  • the cache partition information on the other subcluster is still stored on the configuration node, and when the configuration node deletes such a cache partition, it will It indicates that there is no such cache partition, because when the cluster topology changes, the cache partition originally belonging to another subcluster is not processed on the subcluster where the configuration node is located. Improper deletion of the cache partition will reduce the acceleration function of the cache partition, thereby reducing the overall efficiency of the system.
  • the purpose of the embodiment of the present application is to propose a takeover method, device, device, and readable medium for cache partition recovery.
  • the sub-cluster remaining in the cluster takes over
  • the cache partition on the sub-cluster that exits the cluster ensures that the number of cache partitions is not lost, and the cache partition can be deleted normally to ensure the normal use of the acceleration function of the cache partition.
  • an aspect of the embodiment of the present application provides a takeover method for cache partition recovery, including the following steps: judging whether the cluster is a four-control topology, and if the cluster is a four-control topology, setting four control topology identification; in response to detecting that a cluster is changed to a dual-control topology cluster including the first node and the second node, it is judged whether the exited third node and the fourth node belong to the same sub-cluster, if the third node and the all The fourth node belongs to the same sub-cluster, further judging whether the cache partition of the sub-cluster has a four-control topology identifier; and if the cache partition of the sub-cluster has a four-control topology identifier, further judging that the sub-cluster is in a single-partition mode or a dual-partition mode, and the first node and the second node respectively take over the third node and the fourth node based on the single-partition mode or the dual
  • further judging whether the sub-cluster is in single-partition mode or dual-partition mode includes: further judging that the cache partitions of the third node and the fourth node in the sub-cluster are single cache partitions or A sub-partition of a cache partition; if the cache partitions of the third node and the fourth node in the sub-cluster are single cache partitions, confirm that the sub-cluster is in single-partition mode; The cache partitions of the three nodes and the fourth node are sub-partitions of the cache partition, and it is confirmed that the sub-cluster is in a dual-partition mode.
  • taking over the third node and the fourth node by the first node and the second node based on the single-partition mode or the dual-partition mode respectively includes: if the sub-cluster is a single In a partition mode, the first node takes over the cache partition of the third node, and the second node takes over the cache partition of the fourth node.
  • taking over the third node and the fourth node by the first node and the second node based on the single partition mode or the dual partition mode respectively includes: if the sub-cluster is dual In a partition mode, the first node takes over the sub-partition of the third node, and the second node takes over the sub-partition of the fourth node.
  • judging whether the cluster is a four-control topology includes: judging whether the cluster is a four-control topology according to the number of nodes in the cluster.
  • judging whether the withdrawn third node and the fourth node belong to the same sub-cluster includes: The number of nodes in the middle is monitored; in response to the detection that the cluster is changed to a dual-control topology cluster including the first node and the second node, it is determined whether the exited third node and the fourth node belong to the same sub-cluster.
  • judging whether the exited third node and the fourth node belong to the same subcluster includes: judging the exited third node and the fourth node according to the bits corresponding to the first node and the second node belong to the same subcluster.
  • a takeover device for cache partition recovery including: a first module configured to determine whether the cluster is a four-control topology, and if the cluster is a four-control topology, the The cache partition sets the four-control topology identifier; the second module is configured to respond to the detection that a cluster is changed to a dual-control topology cluster including the first node and the second node, and determine whether the exited third node and the fourth node belong to the same A sub-cluster, if the third node and the fourth node belong to the same sub-cluster, further determine whether the cache partition of the sub-cluster has a four-control topology identifier; and a third module, configured for if the sub-cluster The cache partition has a four-control topology identifier, and it is further determined whether the sub-cluster is in a single-partition mode or a dual-partition mode, and the first node and the second node are respectively based on the single
  • a computer device including: at least one processor; and a memory, the memory stores computer instructions that can be run on the processor, and when the instructions are executed by the processor, the steps of the method are implemented Including: judging whether the cluster is a four-control topology, if the cluster is a four-control topology, setting a four-control topology identifier for the cache partition of the cluster; in response to detecting that a cluster is changed to a dual-control topology including the first node and the second node cluster, judging whether the exited third node and the fourth node belong to the same subcluster, if the third node and the fourth node belong to the same subcluster, further judging whether the cache partition of the subcluster has a four-control topology identifier ; and if the cache partition of the sub-cluster has a four-control topology identifier, it is further judged whether the sub-cluster is in a single-partition mode
  • further judging whether the sub-cluster is in single-partition mode or dual-partition mode includes: further judging that the cache partitions of the third node and the fourth node in the sub-cluster are single cache partitions or A sub-partition of a cache partition; if the cache partitions of the third node and the fourth node in the sub-cluster are single cache partitions, confirm that the sub-cluster is in single-partition mode; The cache partitions of the three nodes and the fourth node are sub-partitions of the cache partition, and it is confirmed that the sub-cluster is in a dual-partition mode.
  • taking over the third node and the fourth node by the first node and the second node based on the single-partition mode or the dual-partition mode respectively includes: if the sub-cluster is a single In a partition mode, the first node takes over the cache partition of the third node, and the second node takes over the cache partition of the fourth node.
  • taking over the third node and the fourth node by the first node and the second node based on the single partition mode or the dual partition mode respectively includes: if the sub-cluster is dual In a partition mode, the first node takes over the sub-partition of the third node, and the second node takes over the sub-partition of the fourth node.
  • judging whether the cluster is a four-control topology includes: judging whether the cluster is a four-control topology according to the number of nodes in the cluster.
  • judging whether the withdrawn third node and the fourth node belong to the same sub-cluster includes: The number of nodes in the middle is monitored; in response to the detection that the cluster is changed to a dual-control topology cluster including the first node and the second node, it is determined whether the exited third node and the fourth node belong to the same sub-cluster.
  • judging whether the exited third node and the fourth node belong to the same subcluster includes: judging the exited third node and the fourth node according to the bits corresponding to the first node and the second node belong to the same subcluster.
  • a computer-readable storage medium stores a computer program for implementing the above method steps when executed by a processor.
  • the application has the following beneficial technical effects: after the four-control topology is split into two dual-controls, the sub-cluster remaining in the cluster cannot delete the cache partition on the other sub-cluster of the original cluster.
  • the subcluster that stays in the cluster takes over the cache partitions on the subcluster that exits the cluster to ensure that the number of cache partitions is not lost, and the cache partitions can be deleted normally to ensure the integrity of the cache partitions. Normal use of the acceleration function.
  • FIG. 1 is a schematic diagram of an embodiment of a takeover method for cache partition recovery provided by the present application
  • FIG. 2 is a schematic diagram of an embodiment of a takeover device for cache partition recovery provided by the present application
  • FIG. 3 is a schematic diagram of an embodiment of a computer device provided by the present application.
  • FIG. 4 is a schematic diagram of an embodiment of a computer-readable storage medium provided by the present application.
  • FIG. 1 is a schematic diagram of an embodiment of a takeover method for cache partition recovery provided by the present application. As shown in Figure 1, the embodiment of the present application includes the following steps:
  • the cache partition of the sub-cluster has a four-control topology identifier, it is further judged whether the sub-cluster is in single-partition mode or dual-partition mode, and the first node and the second node are based on the single-partition node and the fourth node take over.
  • the four-controller topology is split into two dual-controllers, and then the cluster judges whether the two nodes that exit the cluster belong to the same sub-cluster; finally, the two nodes on the sub-cluster that have not exited the cluster take over
  • the cache partitions of the two nodes on the subcluster exiting the cluster are divided into single-partition mode and dual-partition mode for adaptation.
  • the sub-cluster that remains in the cluster cannot delete the cache partition that belonged to another sub-cluster before, ensuring the normal use of the SSD cache partition acceleration function.
  • the takeover method for restoring the SSD cache partition after the cluster topology changes includes: when creating the cache partition, judge the cluster topology according to the number of nodes in the cluster, and if it is a four-control topology, give the cache partition a new Add a flag to identify the four-controller topology.
  • the four-controller topology is split into two dual-controllers due to human or other reasons.
  • the control end senses the change in the number of nodes in the cluster and triggers the cache partition takeover process through the state machine.
  • the implementation method of the takeover process is: when judging the cache partition, there is a flag that identifies the four-control topology. If there is a flag that identifies the four-control topology, it is divided into two cases: single partition mode and dual partition mode, and the adaptation takeover process is used respectively.
  • further determining whether the sub-cluster is in single-partition mode or dual-partition mode includes: further determining whether the cache partitions of the third node and the fourth node in the sub-cluster are single cache partitions or sub-partitions of cache partitions ; If the cache partitions of the third and fourth nodes in the subcluster are single cache partitions, confirm that the subcluster is in single partition mode; if the cache partitions of the third and fourth nodes in the subcluster are subpartitions of the cache partition, confirm The subcluster is in dual partition mode.
  • the taking over of the third node and the fourth node by the first node and the second node based on the single-partition mode or the dual-partition mode respectively includes: if the sub-cluster is in the single-partition mode, the first node The cache partition of the third node is taken over, and the cache partition of the fourth node is taken over by the second node.
  • the takeover is performed according to the index of the node (node), and the nodeindex of the four nodes of the four-control topology are respectively, the first node node0, the second node node1, the third node node2, and the fourth node node3, the first node node0 and the second node node1 form the first subcluster iogroup0, and the third node node2 and the fourth node node3 form the second subcluster iogroup1.
  • the first node node0 of the two nodes on the first subcluster iogroup0 takes over the single partition that originally belonged to the third node node2, and the second node The second node node1 takes over the single partition on the fourth node node3.
  • the taking over of the third node and the fourth node by the first node and the second node based on the single-partition mode or the dual-partition mode respectively includes: if the sub-cluster is in the dual-partition mode, the first node Take over the subpartition of the third node, and the subpartition of the fourth node is taken over by the second node.
  • both the third node node2 and the fourth node node3 have sub-partitions of cache partitions, and the first node node0 and the second node node1 need to take over the corresponding sub-partitions respectively.
  • the cache partition in the dual-partition mode only retains one piece of information data on the control end, it is only differentiated on the management end. Change the belongnode of the cache partition on the third node node2 to the first node node0, and the control end will partition the partition in dual-partition mode.
  • the flag bit of is transmitted to the management terminal, and the management terminal creates a sub-partition on the first node node0 and the second node node1 respectively according to the belongsnode and the identification of the dual-partition mode.
  • judging whether the cluster is a four-control topology includes: judging whether the cluster is a four-control topology according to the number of nodes in the cluster.
  • determining whether the withdrawn third node and the fourth node belong to the same sub-cluster includes: The terminal monitors the number of nodes in the cluster; in response to monitoring that the cluster is changed to a dual-control topology cluster including the first node and the second node, it is determined whether the exited third node and the fourth node belong to the same sub-cluster.
  • judging whether the exited third node and the fourth node belong to the same subcluster includes: judging whether the exited third node and the fourth node belong to the same subcluster according to the bits corresponding to the first node and the second node belong to the same subgroup.
  • FIG. 2 is a schematic diagram of an embodiment of a takeover device for cache partition recovery provided by the present application.
  • the embodiment of the present application includes the following modules: the first module S11 is configured to determine whether the cluster is a four-control topology, and if the cluster is a four-control topology, set the four-control topology identifier for the cache partition of the cluster; the second Module S12, configured to determine whether the exited third node and the fourth node belong to the same sub-cluster in response to detecting that a cluster is changed to a dual-control topology cluster including the first node and the second node, and if the third node and the second node The four nodes belong to the same sub-cluster, and further judge whether the cache partition of the sub-cluster has a four-control topology identifier; and the third module S13 is configured to further judge that the sub-cluster is
  • FIG. 3 is a schematic diagram of an embodiment of a computer device provided by the present application.
  • the embodiment of the present application includes the following devices: at least one processor S21; and a memory S22, the memory S22 stores computer instructions S23 that can run on the processor, and when the instructions are executed by the processor, the steps including the method are implemented : Determine whether the cluster is a four-controller topology.
  • the cluster is a four-controller topology
  • set the four-controller topology flag for the cache partition of the cluster in response to detecting that a cluster has changed to a dual-controller topology cluster including the first node and the second node, determine Whether the exited third node and the fourth node belong to the same sub-cluster, if the third node and the fourth node belong to the same sub-cluster, further judge whether the cache partition of the sub-cluster has a four-control topology identifier; and if the cache partition of the sub-cluster has The four-control topology identification further determines whether the sub-cluster is in single-partition mode or dual-partition mode, and the first node and the second node take over the third node and the fourth node based on the single-partition mode or dual-partition mode respectively.
  • further determining whether the sub-cluster is in single-partition mode or dual-partition mode includes: further determining whether the cache partitions of the third node and the fourth node in the sub-cluster are single cache partitions or sub-partitions of cache partitions; The cache partitions of the third node and the fourth node in the cluster are single cache partitions, and confirm that the sub-cluster is in single-partition mode; if the cache partitions of the third and fourth nodes in the sub-cluster are sub-partitions of the cache partition, confirm that the sub-cluster is Dual partition mode.
  • taking over the third node and the fourth node by the first node and the second node based on the single-partition mode or the dual-partition mode respectively includes: if the sub-cluster is in the single-partition mode, taking over the third node by the first node The cache partition of the node, and the cache partition of the fourth node is taken over by the second node.
  • taking over the third node and the fourth node by the first node and the second node based on the single-partition mode or the dual-partition mode respectively includes: if the sub-cluster is in the dual-partition mode, taking over the third node by the first node subpartition of the node, and the subpartition of the fourth node is taken over by the second node.
  • judging whether the cluster is a four-control topology includes: judging whether the cluster is a four-control topology according to the number of nodes in the cluster.
  • judging whether the withdrawn third node and the fourth node belong to the same sub-cluster includes: The number of nodes in the middle is monitored; in response to the detection that the cluster is changed to a dual-control topology cluster including the first node and the second node, it is determined whether the exited third node and the fourth node belong to the same sub-cluster.
  • judging whether the exited third node and the fourth node belong to the same sub-cluster includes: judging whether the exited third node and the fourth node belong to the same sub-cluster according to the bits corresponding to the first node and the second node cluster.
  • FIG. 4 is a schematic diagram of an embodiment of a computer-readable storage medium provided by the present application. As shown in FIG. 4 , the computer-readable storage medium stores S31 a computer program S32 for performing the above method when executed by a processor.
  • the program of the takeover method for cache partition recovery can be stored in a computer.
  • the program When the program is read from the storage medium, when executed, it may include the procedures of the embodiments of the above-mentioned methods.
  • the storage medium of the program may be a magnetic disk, an optical disk, a read-only memory (ROM) or a random access memory (RAM), and the like.
  • ROM read-only memory
  • RAM random access memory
  • the method disclosed according to the embodiment of the present application may also be implemented as a computer program executed by a processor, and the computer program may be stored in a computer-readable storage medium.
  • the computer program is executed by the processor, the above functions defined in the methods disclosed in the embodiments of the present application are executed.
  • the above-mentioned method steps and system units can also be realized by using a controller and a computer-readable storage medium for storing a computer program that enables the controller to realize the functions of the above-mentioned steps or units.
  • functions may be implemented in hardware, software, firmware, or any combination thereof. If implemented in software, the functions may be stored on or transmitted over as one or more instructions or code on a computer-readable medium.
  • Computer-readable media includes both computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another. Storage media may be any available media that can be accessed by a general purpose or special purpose computer.
  • the computer readable medium may include RAM, ROM, EEPROM, CD-ROM or other optical disk storage device, magnetic disk storage device or other magnetic storage device, or may be used to carry or store instructions in Any other medium that can be accessed by a general purpose or special purpose computer or a general purpose or special purpose processor, and the required program code or data structure. Also, any connection is properly termed a computer-readable medium.
  • Disk and disc includes compact disc (CD), laser disc, optical disc, digital versatile disc (DVD), floppy disk, blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers . Combinations of the above should also be included within the scope of computer-readable media.
  • the storage medium may be a read-only memory, a magnetic disk or an optical disk, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • Quality & Reliability (AREA)
  • Memory System Of A Hierarchy Structure (AREA)

Abstract

本申请公开了一种缓存分区恢复的接管方法,包括:判断集群是否为四控拓扑,若集群为四控拓扑,为集群的缓存分区设置四控拓扑标识;响应于监测到有集群变更为包括第一节点和第二节点的双控拓扑集群,判断退出的第三节点和第四节点是否属于同一子集群,若第三节点和第四节点属于同一子集群,进一步判断子集群的缓存分区是否有四控拓扑标识;以及若子集群的缓存分区有四控拓扑标识,进一步判断子集群是单分区模式或是双分区模式,并由第一节点和第二节点基于单分区模式或是双分区模式分别对第三节点和第四节点进行接管。本申请还公开了对应的装置、计算机设备和可读存储介质。本申请保证缓存分区数量不丢失,保证缓存分区加速功能的正常使用。

Description

一种缓存分区恢复的接管方法、装置、设备及可读介质
本申请要求在2021年05月23日提交中国专利局、申请号为202110561696.5、发明名称为“一种缓存分区恢复的接管方法、装置、设备及可读介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及存储技术领域,尤其涉及一种缓存分区恢复的接管方法、装置、设备及可读介质。
背景技术
随着存储技术的发展,一些应用场景对存储设备的可靠性提出了更高的要求,当存储设备的控制器出现故障时,仍然能够保证I/O的连续性,保持业务连续。
为了提高数据读写性能,存储控制器中都有读写缓存。在传统的双控制架构中,两个控制器的缓存会相互备份,以保证其中一个控制器发生故障时缓存数据不丢失。但是传统的双控制器存储设备有一定的局限性,当一个控制器发生故障时,存储设备会损失一半的性能,而当两个控制器都发生故障时,存储设备的业务则会中断。
所以近些年出现了四控制器存储设备,以提供更高的可靠性和安全性。通常四控拓扑分成两个子集群,每个子集群由两个存储控制器组成。四控拓扑分别在两个子集群上建立缓存分区,由于四个控制器的缓存会相互备份,在配置节点所在的子集群上能够正常的删除属于另一个子集群上建立的缓存分区。如果由于人为或其他原因四控被拆分成两个双控,配置节点所述在子集群上还保存着另一个子集群上的缓存分区信息,在配置节点删 除这样的缓存分区的时候,会提示没有这个缓存分区,因为在集群拓扑发生变化的时候,并没有在配置节点所在的子集群上处理原本属于另一个子集群的缓存分区。缓存分区中无法正常的删除会导致缓存分区加速功能降低,进而导致系统整体效率降低。
发明内容
有鉴于此,本申请实施例的目的在于提出一种缓存分区恢复的接管方法、装置、设备及可读介质,当四控拓扑被拆分成两个双控后,留在集群的子集群接管退出集群的子集群上的缓存分区,保证缓存分区的数量不丢失,能够正常的删除缓存分区,保证缓存分区的加速功能的正常使用。
基于上述目的,本申请实施例的一方面提供了一种缓存分区恢复的接管方法,包括以下步骤:判断集群是否为四控拓扑,若是集群为四控拓扑,为所述集群的缓存分区设置四控拓扑标识;响应于监测到有集群变更为包括第一节点和第二节点的双控拓扑集群,判断退出的第三节点和第四节点是否属于同一子集群,若是所述第三节点和所述第四节点属于同一子集群,进一步判断所述子集群的缓存分区是否有四控拓扑标识;以及若是所述子集群的缓存分区有四控拓扑标识,进一步判断所述子集群是单分区模式或是双分区模式,并由所述第一节点和所述第二节点基于单分区模式或是双分区模式分别对所述第三节点和所述第四节点进行接管。
在一些实施方式中,进一步判断所述子集群是单分区模式或是双分区模式包括:进一步判断所述子集群中所述第三节点和所述第四节点的缓存分区为单缓存分区或是缓存分区的子分区;若是所述子集群中所述第三节点和所述第四节点的缓存分区为单缓存分区,确认所述子集群为单分区模式;若是所述子集群中所述第三节点和所述第四节点的缓存分区为缓存分区的子分区,确认所述子集群为双分区模式。
在一些实施方式中,由所述第一节点和所述第二节点基于单分区模式或双分区模式分别对所述第三节点和所述第四节点进行接管包括:若是所述子集群是单分区模式,由所述第一节点接管所述第三节点的缓存分区, 并由所述第二节点接管所述第四节点的缓存分区。
在一些实施方式中,由所述第一节点和所述第二节点基于单分区模式或双分区模式分别对所述第三节点和所述第四节点进行接管包括:若是所述子集群是双分区模式,由所述第一节点接管所述第三节点的子分区,并由所述第二节点接管所述第四节点的子分区。
在一些实施方式中,判断集群是否为四控拓扑包括:根据集群中节点个数判断所述集群是否为四控拓扑。
在一些实施方式中,响应于监测到有集群变更为包括第一节点和第二节点的双控拓扑集群,判断退出的第三节点和第四节点是否属于同一子集群包括:由控制端对集群中节点个数进行监测;响应于监测到由集群变更为包括第一节点和第二节点的双控拓扑集群,判断退出的第三节点和第四节点是否属于同一子集群。
在一些实施方式中,判断退出的第三节点和第四节点是否属于同一子集群包括:根据所述第一节点和所述第二节点对应的比特位,判断退出的第三节点和第四节点是否属于同一子集群。
本申请实施例的另一方面,还提供了一种缓存分区恢复的接管装置,包括:第一模块,配置用于判断集群是否为四控拓扑,若是集群为四控拓扑,为所述集群的缓存分区设置四控拓扑标识;第二模块,配置用于响应于监测到有集群变更为包括第一节点和第二节点的双控拓扑集群,判断退出的第三节点和第四节点是否属于同一子集群,若是所述第三节点和所述第四节点属于同一子集群,进一步判断所述子集群的缓存分区是否有四控拓扑标识;以及第三模块,配置用于若是所述子集群的缓存分区有四控拓扑标识,进一步判断所述子集群是单分区模式或是双分区模式,并由所述第一节点和所述第二节点基于单分区模式或是双分区模式分别对所述第三节点和所述第四节点进行接管。
本申请实施例的再一方面,还提供了一种计算机设备,包括:至少一个处理器;以及存储器,存储器存储有可在处理器上运行的计算机指令, 指令由处理器执行时实现方法的步骤包括:判断集群是否为四控拓扑,若是集群为四控拓扑,为所述集群的缓存分区设置四控拓扑标识;响应于监测到有集群变更为包括第一节点和第二节点的双控拓扑集群,判断退出的第三节点和第四节点是否属于同一子集群,若是所述第三节点和所述第四节点属于同一子集群,进一步判断所述子集群的缓存分区是否有四控拓扑标识;以及若是所述子集群的缓存分区有四控拓扑标识,进一步判断所述子集群是单分区模式或是双分区模式,并由所述第一节点和所述第二节点基于单分区模式或是双分区模式分别对所述第三节点和所述第四节点进行接管。
在一些实施方式中,进一步判断所述子集群是单分区模式或是双分区模式包括:进一步判断所述子集群中所述第三节点和所述第四节点的缓存分区为单缓存分区或是缓存分区的子分区;若是所述子集群中所述第三节点和所述第四节点的缓存分区为单缓存分区,确认所述子集群为单分区模式;若是所述子集群中所述第三节点和所述第四节点的缓存分区为缓存分区的子分区,确认所述子集群为双分区模式。
在一些实施方式中,由所述第一节点和所述第二节点基于单分区模式或双分区模式分别对所述第三节点和所述第四节点进行接管包括:若是所述子集群是单分区模式,由所述第一节点接管所述第三节点的缓存分区,并由所述第二节点接管所述第四节点的缓存分区。
在一些实施方式中,由所述第一节点和所述第二节点基于单分区模式或双分区模式分别对所述第三节点和所述第四节点进行接管包括:若是所述子集群是双分区模式,由所述第一节点接管所述第三节点的子分区,并由所述第二节点接管所述第四节点的子分区。
在一些实施方式中,判断集群是否为四控拓扑包括:根据集群中节点个数判断所述集群是否为四控拓扑。
在一些实施方式中,响应于监测到有集群变更为包括第一节点和第二节点的双控拓扑集群,判断退出的第三节点和第四节点是否属于同一子集群包括:由控制端对集群中节点个数进行监测;响应于监测到由集群变更 为包括第一节点和第二节点的双控拓扑集群,判断退出的第三节点和第四节点是否属于同一子集群。
在一些实施方式中,判断退出的第三节点和第四节点是否属于同一子集群包括:根据所述第一节点和所述第二节点对应的比特位,判断退出的第三节点和第四节点是否属于同一子集群。
本申请实施例的再一方面,还提供了一种计算机可读存储介质,计算机可读存储介质存储有被处理器执行时实现如上方法步骤的计算机程序。
本申请具有以下有益技术效果:解决了当四控拓扑被拆分成两个双控后,留在集群的子集群不能删除原集群另一子集群上的缓存分区问题。当四控拓扑被拆分成两个双控后,留在集群的子集群接管退出集群的子集群上的缓存分区,保证缓存分区的数量不丢失,能够正常的删除缓存分区,保证缓存分区的加速功能的正常使用。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的实施例。
图1为本申请提供的缓存分区恢复的接管方法的实施例的示意图;
图2为本申请提供的缓存分区恢复的接管装置的实施例的示意图;
图3为本申请提供的计算机设备的实施例的示意图;
图4为本申请提供的计算机可读存储介质的实施例的示意图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚明白,以下结合具体实施例,并参照附图,对本申请实施例进一步详细说明。
需要说明的是,本申请实施例中所有使用“第一”和“第二”的表述 均是为了区分两个相同名称非相同的实体或者非相同的参量,可见“第一”、“第二”仅为了表述的方便,不应理解为对本申请实施例的限定,后续实施例对此不再一一说明。
基于上述目的,本申请实施例的第一个方面,提出了缓存分区恢复的接管方法的实施例。图1示出的是本申请提供的缓存分区恢复的接管方法的实施例的示意图。如图1所示,本申请实施例包括如下步骤:
S01、判断集群是否为四控拓扑,若是集群为四控拓扑,为集群的缓存分区设置四控拓扑标识;
S02、响应于监测到有集群变更为包括第一节点和第二节点的双控拓扑集群,判断退出的第三节点和第四节点是否属于同一子集群,若是第三节点和第四节点属于同一子集群,进一步判断子集群的缓存分区是否有四控拓扑标识;以及
S03、若是子集群的缓存分区有四控拓扑标识,进一步判断子集群是单分区模式或是双分区模式,并由第一节点和第二节点基于单分区模式或是双分区模式分别对第三节点和第四节点进行接管。
在本实施例中,首先,四控拓扑拆分成两个双控,然后,集群判断退出集群的两个节点是否属于同一个子集群;最后,没有退出集群的子集群上的两个节点去接管退出集群的子集群上的两个节点的缓存分区,分成单分区模式和双分区模式进行适配。解决了四控拓扑被拆分成两个双控后,仍旧留在集群的子集群不能删除之前属于另一个子集群上的缓存分区问题,保证SSD缓存分区加速功能的正常使用。
在本实施例中,在集群拓扑发生变化后SSD缓存分区恢复的接管方法包括:在创建缓存分区的时候,根据集群中的节点个数,判断集群拓扑,如果是四控拓扑,给缓存分区新增一个标识四控拓扑的flag。四控拓扑由于人为或其他原因被拆分成两个双控,控制端感知到集群中节点个数的变化,通过状态机触发缓存分区接管的流程。
根据集群中节点对应的bit位,判断退出集群中的节点是否归属于同一 个iogroup(子集群),如果一个子集群的两个节点同时退出了集群,新增对于这个子集群上的缓存分区的接管流程。接管流程实现方法为:判断缓存分区时候有标识四控拓扑的flag,如果有标识四控拓扑的flag,分成单分区模式和双分区模式两个情况分别取适配接管流程。
在本申请的一些实施例中,进一步判断子集群是单分区模式或是双分区模式包括:进一步判断子集群中第三节点和第四节点的缓存分区为单缓存分区或是缓存分区的子分区;若是子集群中第三节点和第四节点的缓存分区为单缓存分区,确认子集群为单分区模式;若是子集群中第三节点和第四节点的缓存分区为缓存分区的子分区,确认子集群为双分区模式。
在本申请的一些实施例中,由第一节点和第二节点基于单分区模式或双分区模式分别对第三节点和第四节点进行接管包括:若是子集群是单分区模式,由第一节点接管第三节点的缓存分区,并由第二节点接管第四节点的缓存分区。
在本实施例中,单分区场景下,按照node(节点)的index进行接管,四控拓扑的四个节点nodeindex分别为,第一节点node0、第二节点node1、第三节点node2、第四节点node3,第一节点node0和第二节点node1组成第一子集群iogroup0,第三节点node2和第四节点node3组成第二子集群iogroup1。假设第二子集群iogroup1上的两个节点同时退出了集群且不再重新加入集群,在第一子集群iogroup0上的两个节点第一节点node0接管原本属于第三节点node2上的单分区,第二节点node1接管第四节点node3上的单分区。以第一节点node0接管第三节点node2上的单分区为例,将第三节点node2上的单分区belongnode修改成第一节点node0,控制端往agent端(管理端)发送接管的任务,管理端在接管的时候根据belongnode在第一节点node0上,将原本属于第三节点node2上的缓存分区重新创建出来。
在本申请的一些实施例中,由第一节点和第二节点基于单分区模式或双分区模式分别对第三节点和第四节点进行接管包括:若是子集群是双分区模式,由第一节点接管第三节点的子分区,并由第二节点接管第四节点的子分区。
在本实施例中,在双分区场景下,第三节点node2和第四节点node3上都有缓存分区的子分区,需要第一节点node0和第二节点node1分别接管对应的子分区。因为双分区模式的缓存分区在控制端只保留一份信息数据,只是在管理端有区分,将第三节点node2上的缓存分区的belongnode修改成第一节点node0,控制端将分区是双分区模式的标志位传送到管理端,管理端根据belongnode和双分区模式的标识,在第一节点node0和第二节点node1上分别创建出一个子分区。
在本申请的一些实施例中,判断集群是否为四控拓扑包括:根据集群中节点个数判断集群是否为四控拓扑。
在本申请的一些实施例中,响应于监测到有集群变更为包括第一节点和第二节点的双控拓扑集群,判断退出的第三节点和第四节点是否属于同一子集群包括:由控制端对集群中节点个数进行监测;响应于监测到由集群变更为包括第一节点和第二节点的双控拓扑集群,判断退出的第三节点和第四节点是否属于同一子集群。
在本申请的一些实施例中,判断退出的第三节点和第四节点是否属于同一子集群包括:根据第一节点和第二节点对应的比特位,判断退出的第三节点和第四节点是否属于同一子集群。
在本申请的一些实施例中,可以适用于包括但不仅限于Linux系统下使用。
需要特别指出的是,上述缓存分区恢复的接管方法的各个实施例中的各个步骤均可以相互交叉、替换、增加、删减,因此,这些合理的排列组合变换之于缓存分区恢复的接管方法也应当属于本申请的保护范围,并且不应将本申请的保护范围局限在实施例之上。
基于上述目的,本申请实施例的第二个方面,提出了一种缓存分区恢复的接管装置。图2示出的是本申请提供的缓存分区恢复的接管装置的实施例的示意图。如图2所示,本申请实施例包括如下模块:第一模块S11,配置用于判断集群是否为四控拓扑,若是集群为四控拓扑,为集群的缓存 分区设置四控拓扑标识;第二模块S12,配置用于响应于监测到有集群变更为包括第一节点和第二节点的双控拓扑集群,判断退出的第三节点和第四节点是否属于同一子集群,若是第三节点和第四节点属于同一子集群,进一步判断子集群的缓存分区是否有四控拓扑标识;以及第三模块S13,配置用于若是子集群的缓存分区有四控拓扑标识,进一步判断子集群是单分区模式或是双分区模式,并由第一节点和第二节点基于单分区模式或是双分区模式分别对第三节点和第四节点进行接管。
基于上述目的,本申请实施例的第三个方面,提出了一种计算机设备。图3示出的是本申请提供的计算机设备的实施例的示意图。如图3所示,本申请实施例包括如下装置:至少一个处理器S21;以及存储器S22,存储器S22存储有可在处理器上运行的计算机指令S23,指令由处理器执行时实现包括方法的步骤:判断集群是否为四控拓扑,若是集群为四控拓扑,为集群的缓存分区设置四控拓扑标识;响应于监测到有集群变更为包括第一节点和第二节点的双控拓扑集群,判断退出的第三节点和第四节点是否属于同一子集群,若是第三节点和第四节点属于同一子集群,进一步判断子集群的缓存分区是否有四控拓扑标识;以及若是子集群的缓存分区有四控拓扑标识,进一步判断子集群是单分区模式或是双分区模式,并由第一节点和第二节点基于单分区模式或是双分区模式分别对第三节点和第四节点进行接管。
在一些实施方式中,进一步判断子集群是单分区模式或是双分区模式包括:进一步判断子集群中第三节点和第四节点的缓存分区为单缓存分区或是缓存分区的子分区;若是子集群中第三节点和第四节点的缓存分区为单缓存分区,确认子集群为单分区模式;若是子集群中第三节点和第四节点的缓存分区为缓存分区的子分区,确认子集群为双分区模式。
在一些实施方式中,由第一节点和第二节点基于单分区模式或双分区模式分别对第三节点和第四节点进行接管包括:若是子集群是单分区模式,由第一节点接管第三节点的缓存分区,并由第二节点接管第四节点的缓存分区。
在一些实施方式中,由第一节点和第二节点基于单分区模式或双分区模式分别对第三节点和第四节点进行接管包括:若是子集群是双分区模式,由第一节点接管第三节点的子分区,并由第二节点接管第四节点的子分区。
在一些实施方式中,判断集群是否为四控拓扑包括:根据集群中节点个数判断集群是否为四控拓扑。
在一些实施方式中,响应于监测到有集群变更为包括第一节点和第二节点的双控拓扑集群,判断退出的第三节点和第四节点是否属于同一子集群包括:由控制端对集群中节点个数进行监测;响应于监测到由集群变更为包括第一节点和第二节点的双控拓扑集群,判断退出的第三节点和第四节点是否属于同一子集群。
在一些实施方式中,判断退出的第三节点和第四节点是否属于同一子集群包括:根据第一节点和第二节点对应的比特位,判断退出的第三节点和第四节点是否属于同一子集群。
本申请还提供了一种计算机可读存储介质。图4示出的是本申请提供的计算机可读存储介质的实施例的示意图。如图4所示,计算机可读存储介质存储S31有被处理器执行时执行如上方法的计算机程序S32。
最后需要说明的是,本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,可以通过计算机程序来指令相关硬件来完成,缓存分区恢复的接管方法的程序可存储于一计算机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。其中,程序的存储介质可为磁碟、光盘、只读存储记忆体(ROM)或随机存储记忆体(RAM)等。上述计算机程序的实施例,可以达到与之对应的前述任意方法实施例相同或者相类似的效果。
此外,根据本申请实施例公开的方法还可以被实现为由处理器执行的计算机程序,该计算机程序可以存储在计算机可读存储介质中。在该计算机程序被处理器执行时,执行本申请实施例公开的方法中限定的上述功能。
此外,上述方法步骤以及系统单元也可以利用控制器以及用于存储使 得控制器实现上述步骤或单元功能的计算机程序的计算机可读存储介质实现。
本领域技术人员还将明白的是,结合这里的公开所描述的各种示例性逻辑块、模块、电路和算法步骤可以被实现为电子硬件、计算机软件或两者的组合。为了清楚地说明硬件和软件的这种可互换性,已经就各种示意性组件、方块、模块、电路和步骤的功能对其进行了一般性的描述。这种功能是被实现为软件还是被实现为硬件取决于具体应用以及施加给整个系统的设计约束。本领域技术人员可以针对每种具体应用以各种方式来实现的功能,但是这种实现决定不应被解释为导致脱离本申请实施例公开的范围。
在一个或多个示例性设计中,功能可以在硬件、软件、固件或其任意组合中实现。如果在软件中实现,则可以将功能作为一个或多个指令或代码存储在计算机可读介质上或通过计算机可读介质来传送。计算机可读介质包括计算机存储介质和通信介质,该通信介质包括有助于将计算机程序从一个位置传送到另一个位置的任何介质。存储介质可以是能够被通用或专用计算机访问的任何可用介质。作为例子而非限制性的,该计算机可读介质可以包括RAM、ROM、EEPROM、CD-ROM或其它光盘存储设备、磁盘存储设备或其它磁性存储设备,或者是可以用于携带或存储形式为指令或数据结构的所需程序代码并且能够被通用或专用计算机或者通用或专用处理器访问的任何其它介质。此外,任何连接都可以适当地称为计算机可读介质。例如,如果使用同轴线缆、光纤线缆、双绞线、数字用户线路(DSL)或诸如红外线、无线电和微波的无线技术来从网站、服务器或其它远程源发送软件,则上述同轴线缆、光纤线缆、双绞线、DSL或诸如红外线、无线电和微波的无线技术均包括在介质的定义。如这里所使用的,磁盘和光盘包括压缩盘(CD)、激光盘、光盘、数字多功能盘(DVD)、软盘、蓝光盘,其中磁盘通常磁性地再现数据,而光盘利用激光光学地再现数据。上述内容的组合也应当包括在计算机可读介质的范围内。
以上是本申请公开的示例性实施例,但是应当注意,在不背离权利要 求限定的本申请实施例公开的范围的前提下,可以进行多种改变和修改。根据这里描述的公开实施例的方法权利要求的功能、步骤和/或动作不需以任何特定顺序执行。此外,尽管本申请实施例公开的元素可以以个体形式描述或要求,但除非明确限制为单数,也可以理解为多个。
应当理解的是,在本文中使用的,除非上下文清楚地支持例外情况,单数形式“一个”旨在也包括复数形式。还应当理解的是,在本文中使用的“和/或”是指包括一个或者一个以上相关联地列出的项目的任意和所有可能组合。
上述本申请实施例公开实施例序号仅仅为了描述,不代表实施例的优劣。
本领域普通技术人员可以理解实现上述实施例的全部或部分步骤可以通过硬件来完成,也可以通过程序来指令相关的硬件完成,程序可以存储于一种计算机可读存储介质中,上述提到的存储介质可以是只读存储器,磁盘或光盘等。
所属领域的普通技术人员应当理解:以上任何实施例的讨论仅为示例性的,并非旨在暗示本申请实施例公开的范围(包括权利要求)被限于这些例子;在本申请实施例的思路下,以上实施例或者不同实施例中的技术特征之间也可以进行组合,并存在如上的本申请实施例的不同方面的许多其它变化,为了简明它们没有在细节中提供。因此,凡在本申请实施例的精神和原则之内,所做的任何省略、修改、等同替换、改进等,均应包含在本申请实施例的保护范围之内。

Claims (10)

  1. 一种缓存分区恢复的接管方法,其特征在于,包括以下步骤:
    判断集群是否为四控拓扑,若是集群为四控拓扑,为所述集群的缓存分区设置四控拓扑标识;
    响应于监测到有集群变更为包括第一节点和第二节点的双控拓扑集群,判断退出的第三节点和第四节点是否属于同一子集群,若是所述第三节点和所述第四节点属于同一子集群,进一步判断所述子集群的缓存分区是否有四控拓扑标识;以及
    若是所述子集群的缓存分区有四控拓扑标识,进一步判断所述子集群是单分区模式或是双分区模式,并由所述第一节点和所述第二节点基于单分区模式或是双分区模式分别对所述第三节点和所述第四节点进行接管。
  2. 根据权利要求1所述的缓存分区恢复的接管方法,其特征在于,进一步判断所述子集群是单分区模式或是双分区模式包括:
    进一步判断所述子集群中所述第三节点和所述第四节点的缓存分区为单缓存分区或是缓存分区的子分区;
    若是所述子集群中所述第三节点和所述第四节点的缓存分区为单缓存分区,确认所述子集群为单分区模式;
    若是所述子集群中所述第三节点和所述第四节点的缓存分区为缓存分区的子分区,确认所述子集群为双分区模式。
  3. 根据权利要求1所述的缓存分区恢复的接管方法,其特征在于,由所述第一节点和所述第二节点基于单分区模式或双分区模式分别对所述第三节点和所述第四节点进行接管包括:
    若是所述子集群是单分区模式,由所述第一节点接管所述第三节点的缓存分区,并由所述第二节点接管所述第四节点的缓存分区。
  4. 根据权利要求1所述的缓存分区恢复的接管方法,其特征在于,由所述第一节点和所述第二节点基于单分区模式或双分区模式分别对所述第三节 点和所述第四节点进行接管包括:
    若是所述子集群是双分区模式,由所述第一节点接管所述第三节点的子分区,并由所述第二节点接管所述第四节点的子分区。
  5. 根据权利要求1所述的缓存分区恢复的接管方法,其特征在于,判断集群是否为四控拓扑包括:
    根据集群中节点个数判断所述集群是否为四控拓扑。
  6. 根据权利要求1所述的缓存分区恢复的接管方法,其特征在于,响应于监测到有集群变更为包括第一节点和第二节点的双控拓扑集群,判断退出的第三节点和第四节点是否属于同一子集群包括:
    由控制端对集群中节点个数进行监测;
    响应于监测到由集群变更为包括第一节点和第二节点的双控拓扑集群,判断退出的第三节点和第四节点是否属于同一子集群。
  7. 根据权利要求1所述的缓存分区恢复的接管方法,其特征在于,判断退出的第三节点和第四节点是否属于同一子集群包括:
    根据所述第一节点和所述第二节点对应的比特位,判断退出的第三节点和第四节点是否属于同一子集群。
  8. 一种缓存分区恢复的接管装置,其特征在于,包括:
    第一模块,配置用于判断集群是否为四控拓扑,若是集群为四控拓扑,为所述集群的缓存分区设置四控拓扑标识;
    第二模块,配置用于响应于监测到有集群变更为包括第一节点和第二节点的双控拓扑集群,判断退出的第三节点和第四节点是否属于同一子集群,若是所述第三节点和所述第四节点属于同一子集群,进一步判断所述子集群的缓存分区是否有四控拓扑标识;以及
    第三模块,配置用于若是所述子集群的缓存分区有四控拓扑标识,进一步判断所述子集群是单分区模式或是双分区模式,并由所述第一节点和所述第二节点基于单分区模式或是双分区模式分别对所述第三节点和所述第四节点进行接管。
  9. 一种计算机设备,其特征在于,包括:
    至少一个处理器;以及
    存储器,所述存储器存储有可在所述处理器上运行的计算机指令,所述指令由所述处理器执行时实现权利要求1至7任意一项所述方法的步骤。
  10. 一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现权利要求1至7任意一项所述方法的步骤。
PCT/CN2022/090127 2021-05-23 2022-04-29 一种缓存分区恢复的接管方法、装置、设备及可读介质 WO2022247583A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/271,779 US11994992B2 (en) 2021-05-23 2022-04-29 Takeover method and apparatus for cache partition recovery, device and readable medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110561696.5 2021-05-23
CN202110561696.5A CN113448512B (zh) 2021-05-23 2021-05-23 一种缓存分区恢复的接管方法、装置、设备及可读介质

Publications (1)

Publication Number Publication Date
WO2022247583A1 true WO2022247583A1 (zh) 2022-12-01

Family

ID=77809942

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/090127 WO2022247583A1 (zh) 2021-05-23 2022-04-29 一种缓存分区恢复的接管方法、装置、设备及可读介质

Country Status (2)

Country Link
CN (1) CN113448512B (zh)
WO (1) WO2022247583A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113448512B (zh) * 2021-05-23 2022-06-17 山东英信计算机技术有限公司 一种缓存分区恢复的接管方法、装置、设备及可读介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107924354A (zh) * 2015-06-02 2018-04-17 Netapp股份有限公司 动态镜像
CN112000286A (zh) * 2020-08-13 2020-11-27 北京浪潮数据技术有限公司 一种四控全闪存储系统及其故障处理方法、装置
CN112162698A (zh) * 2020-09-17 2021-01-01 北京浪潮数据技术有限公司 一种缓存分区重建方法、装置、设备及可读存储介质
CN113448512A (zh) * 2021-05-23 2021-09-28 山东英信计算机技术有限公司 一种缓存分区恢复的接管方法、装置、设备及可读介质

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104461777B (zh) * 2014-11-26 2018-07-13 华为技术有限公司 一种存储阵列中数据镜像方法及存储阵列
CN106506625A (zh) * 2016-11-02 2017-03-15 郑州云海信息技术有限公司 四控服务器及四控服务器通信方法
CN110413611B (zh) * 2019-06-24 2023-05-12 腾讯科技(深圳)有限公司 数据存储、查询方法及装置
CN112463380A (zh) * 2020-11-30 2021-03-09 苏州浪潮智能科技有限公司 多节点服务器的分区控制方法、装置、系统及存储介质

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107924354A (zh) * 2015-06-02 2018-04-17 Netapp股份有限公司 动态镜像
CN112000286A (zh) * 2020-08-13 2020-11-27 北京浪潮数据技术有限公司 一种四控全闪存储系统及其故障处理方法、装置
CN112162698A (zh) * 2020-09-17 2021-01-01 北京浪潮数据技术有限公司 一种缓存分区重建方法、装置、设备及可读存储介质
CN113448512A (zh) * 2021-05-23 2021-09-28 山东英信计算机技术有限公司 一种缓存分区恢复的接管方法、装置、设备及可读介质

Also Published As

Publication number Publication date
CN113448512A (zh) 2021-09-28
CN113448512B (zh) 2022-06-17
US20230393985A1 (en) 2023-12-07

Similar Documents

Publication Publication Date Title
US10489254B2 (en) Storage cluster failure detection
US11320991B2 (en) Identifying sub-health object storage devices in a data storage system
EP3518110B1 (en) Designation of a standby node
WO2021238275A1 (zh) 一种集群节点故障的处理方法、装置、设备及可读介质
CN107015872A (zh) 监控数据的处理方法及装置
CN111880751B (zh) 一种硬盘迁移方法、分布式存储集群系统和存储介质
CN109491609B (zh) 一种缓存数据处理方法、装置、设备及可读存储介质
WO2022247583A1 (zh) 一种缓存分区恢复的接管方法、装置、设备及可读介质
CN108509296B (zh) 一种处理设备故障的方法和系统
US10853892B2 (en) Social networking relationships processing method, system, and storage medium
CN109189326B (zh) 分布式集群的管理方法和装置
US9043274B1 (en) Updating local database and central database
CN115826876A (zh) 数据写入方法、系统、存储硬盘、电子设备及存储介质
JP5016696B2 (ja) 高可用性システム、サーバ、高可用性維持方法及びプログラム
JP6697101B2 (ja) 情報処理システム
US11994992B2 (en) Takeover method and apparatus for cache partition recovery, device and readable medium
US9769059B2 (en) Fast interlayer forwarding
CN111654393B (zh) 区块链组网方法及系统
CN108614873B (zh) 一种数据处理方法及装置
CN114077517A (zh) 数据处理的方法、设备及系统
CN117411840A (zh) 链路故障处理方法、装置、设备、存储介质和程序产品
CN117354267A (zh) 链路故障处理方法、装置、设备、存储介质和程序产品
CN116743781A (zh) 数据管理方法、数据管理装置及计算机可读存储介质
KR101491452B1 (ko) 메시징 채널을 이용한 데이터 복제 방법 및 장치
CN116360687A (zh) 一种集群分布式存储的方法、装置、设备及介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22810312

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE